Science.gov

Sample records for pulsar xte j1751-305

  1. Discovery of a Second Millesecond Accreting Pulsar: XTE J1751-305

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Swank, J. H.; Strohmayer, T. E.; intZand, J. J. M.; Marshall, F. E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f(sub x) = (1.278 +/- 0.003) x 10 (exp -6) solar mass, yields a minimum mass for the companion of between 0.013 and 0.0017 solar mass depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30 deg-85 deg and the companion mass to be 0.013-0.035 solar mass. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.

  2. Discovery of a Second Millisecond Accreting Pulsar: XTE J1751-305

    NASA Astrophysics Data System (ADS)

    Markwardt, C. B.; Swank, J. H.; Strohmayer, T. E.; in 't Zand, J. J. M.; Marshall, F. E.

    2002-08-01

    We report the discovery by the Rossi X-Ray Timing Explorer Proportional Counter Array of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the Galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, fX=(1.278+/-0.003)×10-6 Msolar, yields a minimum mass for the companion of between 0.013 and 0.017 Msolar, depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in 1998 June was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30°-85° and the companion mass to be 0.013-0.035 Msolar. The companion is most likely a heated helium dwarf. We also present results from the Chandra High Resolution Camera-S observations, which provide the best-known position of XTE J1751-305.

  3. Searches for continuous gravitational waves from Scorpius X-1 and XTE J1751-305 in LIGO's sixth science run

    NASA Astrophysics Data System (ADS)

    Meadors, G. D.; Goetz, E.; Riles, K.; Creighton, T.; Robinet, F.

    2017-02-01

    Scorpius X-1 (Sco X-1) and x-ray transient XTE J1751-305 are low-mass x-ray binaries (LMXBs) that may emit continuous gravitational waves detectable in the band of ground-based interferometric observatories. Neutron stars in LMXBs could reach a torque-balance steady-state equilibrium in which angular momentum addition from infalling matter from the binary companion is balanced by angular momentum loss, conceivably due to gravitational-wave emission. Torque balance predicts a scale for detectable gravitational-wave strain based on observed x-ray flux. This paper describes a search for Sco X-1 and XTE J1751-305 in LIGO science run 6 data using the TwoSpect algorithm, based on searching for orbital modulations in the frequency domain. While no detections are claimed, upper limits on continuous gravitational-wave emission from Sco X-1 are obtained, spanning gravitational-wave frequencies from 40 to 2040 Hz and projected semimajor axes from 0.90 to 1.98 light-seconds. These upper limits are injection validated, equal any previous set in initial LIGO data, and extend over a broader parameter range. At optimal strain sensitivity, achieved at 165 Hz, the 95% confidence level random-polarization upper limit on dimensionless strain h0 is approximately 1.8 ×10-24. The closest approach to the torque-balance limit, within a factor of 27, is also at 165 Hz. Upper limits are set in particular narrow frequency bands of interest for J1751-305. These are the first upper limits known to date on r -mode emission from this XTE source. The TwoSpect method will be used in upcoming searches of Advanced LIGO and Virgo data.

  4. Electromagnetic Spindown of a Transient Accreting Millisecond Pulsar During Quiescence

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Mastrano, A.

    2016-02-01

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  5. Search for pulsations at high radio frequencies from accreting millisecond X-ray pulsars in quiescence

    NASA Astrophysics Data System (ADS)

    Iacolina, M. N.; Burgay, M.; Burderi, L.; Possenti, A.; di Salvo, T.

    2010-09-01

    Context. It is commonly believed that millisecond radio pulsars have been spun up by transfer of matter and angular momentum from a low-mass companion during an X-ray active mass transfer phase. A subclass of low-mass X-ray binaries is that of the accreting millisecond X-ray pulsars, transient systems that show periods of X-ray quiescence during which radio emission could switch on. Aims: The aim of this work is to search for millisecond pulsations from three accreting millisecond X-ray pulsars, XTE J1751-305, XTE J1814-338, and SAX J1808.4-3658, observed during their quiescent X-ray phases at high radio frequencies (5 div 8 GHz) in order to overcome the problem of the free-free absorption due to the matter engulfing the system. A positive result would provide definite proof of the recycling model, providing the direct link between the progenitors and their evolutionary products. Methods: The data analysis methodology has been chosen on the basis of the precise knowledge of orbital and spin parameters from X-ray observations. It is subdivided in three steps: we corrected the time series for the effects of (I) the dispersion due to interstellar medium and (II) of the orbital motions, and finally (III) folded modulo the spin period to increase the signal-to-noise ratio. Results: No radio signal with spin and orbital characteristics matching those of the X-ray sources has been found in our search, down to very low flux density upper limits. Conclusions: We analysed several mechanisms that could have prevented the detection of the signal, concluding that the low luminosity of the sources and the geometric factor are the most likely reasons for this negative result.

  6. The optical counterparts of accreting millisecond X-ray pulsars during quiescence

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.; Campana, S.; Casares, J.; Covino, S.; Israel, G. L.; Stella, L.

    2009-12-01

    Context: Eight accreting millisecond X-ray pulsars (AMXPs) are known to date. Although these systems are well studied at high energies, very little information is available for their optical/NIR counterparts. Up to now, only two of them, SAX J1808.4-3658 and IGR J00291+5934, have a secure multi-band detection of their optical counterparts in quiescence. Aims: All these systems are transient low-mass X-ray binaries. Optical and NIR observations carried out during quiescence give a unique opportunity to constrain the nature of the donor star and to investigate the origin of the observed quiescent luminosity at long wavelengths. In addition, optical observations can be fundamental as they ultimately allow us to estimate the compact object mass through mass function measurements. Methods: Using data obtained with the ESO-Very Large Telescope, we performed a deep optical and NIR photometric study of the fields of XTE J1814-338 and of the ultracompact systems XTE J0929-314 and XTE J1807-294 during quiescence in order to look for the presence of a variable counterpart. If suitable candidates were found, we also carried out optical spectroscopy. Results: We present here the first multi-band (VR) detection of the optical counterpart of XTE J1814-338 in quiescence together with its optical spectrum. The optical light curve shows variability in both bands consistent with a sinusoidal modulation at the known 4.3 h orbital period and presents a puzzling decrease of the V-band flux around superior conjunction that may be interpreted as a partial eclipse. The marginal detection of the very faint counterpart of XTE J0929-314 and deep upper limits for the optical/NIR counterpart of XTE J1807-294 are also reported. We also briefly discuss the results reported in the literature for the optical/NIR counterpart of XTE J1751-305. Conclusions: Our findings are consistent with AMXPs being systems containing an old, weakly magnetized neutron star, reactivated as a millisecond radio pulsar

  7. System mass constraints for the accreting millisecond pulsar XTE J1814-338 using Bowen fluorescence

    NASA Astrophysics Data System (ADS)

    Wang, L.; Steeghs, D.; Casares, J.; Charles, P. A.; Muñoz-Darias, T.; Marsh, T. R.; Hynes, R. I.; O'Brien, K.

    2017-04-01

    We present phase-resolved spectroscopy of the millisecond X-ray pulsar XTE J1814-338 obtained during its 2003 outburst. The spectra are dominated by high-excitation emission lines of He II λ4686, Hβ, and the Bowen blend C III/N III 4630-50 Å. We exploit the proven Bowen fluorescence technique to establish a complete set of dynamical system parameter constraints using bootstrap Doppler tomography, a first for an accreting millisecond X-ray pulsar binary. The reconstructed Doppler map of the N III λ4640 Bowen transition exhibits a statistically significant (>4σ) spot feature at the expected position of the companion star. If this feature is driven by irradiation of the surface of the Roche lobe filling companion, we derive a strict lower limit to the true radial velocity semi-amplitude K2. Combining our donor constraint with the well-constrained orbit of the neutron star leads to a determination of the binary mass ratio: q = 0.123^{+0.012}_{-0.010}. The component masses are not tightly constrained given our lack of knowledge of the binary inclination. We cannot rule out a canonical neutron star mass of 1.4 M⊙ (1.1 M⊙ < M1 < 3.1 M⊙; 95 per cent). The 68/95 per cent confidence limits of M2 are consistent with the companion being a significantly bloated, M-type main-sequence star. Our findings, combined with results from studies of the quiescent optical counterpart of XTE J1814-338, suggest the presence of a rotation-powered millisecond pulsar in XTE J1814-338 during an X-ray quiescent state. The companion mass is typical of the so-called redback pulsar binary systems (M2 ∼ 0.2 M⊙).

  8. The Fading of Transient Anomalous X-Ray Pulsar XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Gotthelf, E. V.

    2005-01-01

    Three observations of the 5.54 s transient anomalous X-ray pulsar XTE J1810-197 obtained over 6 months with the Newton X-ray Multi-Mirror (XMM-Newton) mission are used to study its spectrum and pulsed light curve as the source fades from outburst. The decay is consistent with an exponential of time constant ~300 days but not a power law as predicted in some models of sudden deep crustal heating events. All spectra are well fitted by a blackbody plus a steep power law, a problematic model that is commonly fitted to anomalous X-ray pulsars (AXPs). A two-temperature blackbody fit is also acceptable and better motivated physically in view of the faint optical/IR fluxes, the X-ray pulse shapes that weakly depend on energy in XTE J1810-197, and the inferred emitting areas that are less than or equal to the surface area of a neutron star. The fitted temperatures remained the same while the flux declined by 46%, which can be interpreted as a decrease in area of the emitting regions. The pulsar continues to spin down, albeit at a reduced rate of (5.1+/-1.6)×10-12 s s-1. The inferred characteristic age τc≡P/2P~17,000 yr, magnetic field strength Bs~1.7×1014 G, and outburst properties are consistent with both the outburst and quiescent X-ray luminosities being powered by magnetic field decay, i.e., XTE J1810-197 is a magnetar.

  9. RXTE and BeppoSAX Observations of the Transient X-ray Pulsar XTE J 18591+083

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; intZand, J. J. M.; Levine, A. M.; Marshall, F. E.

    2008-01-01

    We present observations of the 9.8 s X-ray pulsar XTE J159+083 made with the All-Sky Monitor (ASM) and Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer (RXTE), and the Wide Field Cameras (WFC) on board BeppoSAX. The ASM data cover a 12 year time interval and show that an extended outburst occurred between approximately MJD50, 250, and 50, 460 (1996 June 16 to 1997 January 12). The ASM data excluding this outburst interval suggest a possible 61 day modulation. Eighteen sets of PCA observations were obtained over an approx. one month interval in 1999. The flux variability measured with the PCA appears consistent with the possible period found with the ASM. The PCA measurements of the pulse period showed it to decrease non-monotonically and then to increase significantly. Doppler shifts due to orbital motion rather than accretion torques appear to be better able to explain the pulse period changes. Observations with the WFC during the extended outburst give an error box which is consistent with a previously determined PCA error box but is significantly smaller. The transient nature of XTE J1859+083 and the length of its pulse period are consistent with it being a Be/neutral star binary. The possible 61 day orbital period would be of the expected length for a Be star system with a 9.8 s pulse period.

  10. Constraints on the Emission and Viewing Geometry of the Transient Anomalous X-ray Pulsar XTE J1810-197

    NASA Technical Reports Server (NTRS)

    Perna, Rosalba; Gotthelf, E. V.

    2008-01-01

    The temporal decay of the flux components of the transient anomalous X-ray pulsar XTE J1 810-197 following its 2002 outburst presents a unique opportunity to probe the emission geometry of a magnetar. Toward this goal, we model the magnitude of the pulsar's modulation in narrow spectral bands over time. Following previous work, we assume that the postoutburst flux is produced in two distinct thermal components arising from a hot spot and a warm concentric ring. We include general relativistic effects on the blackbody spectra due to gravitational redshift and light bending near the stellar surface, which strongly depend on radius. This affects the model fits for the temperature and size of the emission regions. For the hot spot, the observed temporal and energy-dependent pulse modulation is found to require an anisotropic, pencil-beamed radiation pattern. We are able to constrain an allowed range for the angles that the line of sight (psi) and the hot spot pole (xi) make with respect to the spin axis. Within errors, this is defined by the locus of points in the xi-psi plane that lie along the line [xi + beta(R)] [psi + [beta(R)] = const, where beta(R) is a function of the radius R of the star. For a canonical value of R = 12 km, the viewing parameters range from psi = xi = 37deg to (psi, xi) = (85deg, 15deg). We discuss our results in the context of magnetar emission models.

  11. The Reawakening of the Sleeping X-ray Pulsar XTE J1946+274

    NASA Technical Reports Server (NTRS)

    Mueller, Sebastian; Mueller, Sebastian; Kuechnel, Matthias; Fuerst, Felix; Kreykenbohm, Ingo; Sagredo, Macarena; Obst, Maria; Wilms, Joern; Caballero, Isabel; Potttschmidt, Katja; Ferrigno, Carlo; Rothschild, Richard E.

    2012-01-01

    We report on a series of outbursts of the high mass X-ray binary XTE 11946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE 11946+274 is variable between individual outbursts.

  12. Analysis of variability in the burst oscillations of the accreting millisecond pulsar XTE J1814-338

    NASA Technical Reports Server (NTRS)

    Watts, Anna L.; Strohmayer, Tod E.; Markwardt, Craig B.

    2005-01-01

    The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.

  13. THE TRANSIENT ACCRETING X-RAY PULSAR XTE J1946+274: STABILITY OF X-RAY PROPERTIES AT LOW FLUX AND UPDATED ORBITAL SOLUTION

    SciTech Connect

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Kreykenbohm, Ingo; Caballero, Isabel; Jenke, Peter J.; Wilson-Hodge, Colleen A.; Fürst, Felix; Grinberg, Victoria; Hemphill, Paul B.; Rothschild, Richard E.; Klochkov, Dmitry; Terada, Yukikatsu; and others

    2015-12-10

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2–3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi–Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ∼35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (∼5 × 10{sup 37} erg s{sup −1}) and lowest (∼5 × 10{sup 36} erg s{sup −1}) observed 3–60 keV luminosities.

  14. XTE Science Briefing from KSCNF

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The X-ray Timing Explorer (XTE), launched on Dec. 30, 1995, is a Satellite that observes the fast-moving, high-energy worlds of black holes, neutron stars, x-ray pulsars and bursts of X-rays that light up the sky and then disappear forever. This videotape presents a pre-launch science briefing to the press by a few of the scientist and managers associated with the XTE satellite. The moderator for the press briefing is Jim Sahli, from the Public Affairs Office at Goddard Space Flight Center (GSFC). He introduces Alan Bunner, of the High Energy Astrophysics at NASA Headquarters; Fred Lamb, from the University of Illinois; Richard Mashotzky, X Ray Scientist at GSFC; Rick Rothschild, Principal Investigator from the University of California at San Diego; and Dale Schultz, the XTE project manager at GSFC. Dr. Bunner explains the electromagnetic spectrum, the placement of x-rays and the importance of the XTE observations to a better understanding of the Universe. Dr. Lamb, explains the difference between white dwarfs, neutron stars and black holes, and the type of observations that the XTE will give to a further understanding of these phenomena. Dr. Mashotzky expands the viewpoint to beyond the galaxy, and explains the interests of scientists who hope to use XTE to further study Quasars and Active Galactic Nuclei. Dr. Rothschild reviews some of the features of XTE, using a diagram to show the features of interest, such as the X ray Telescopes, and the collecting Proportional Counter Array (PCA.) Mr. Schultz presents a videotape tour of the XTE, in which he shows the scientific instruments and the other features of the satellite. In this tour, the source of each of the instruments is noted. Questions from the members of the press are then fielded. Many of the questions are about the cost of the XTE and any problems that are anticipated in regards to the launch.

  15. Target of Opportunity Positioning of Transient X-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto

    2003-01-01

    Our program successfully localized three newly-identified transient X-ray pulsars. XTE J1858+034 is a 221 s pulsar (Takeshima et al. 1998, IAUC 6826), XTE J1946+274 is a 15.8 s pulsar (Takeshima and Chakrabarty 1998, IAUC 7016), and XTE J0111.2-7317 is a 31 s pulsar in the Small Magellanic Cloud (Chakrabarty et al. 1998, IAUC 7048). This last pulsar was a particularly interesting source, and our XTE observations enabled prompt follow-up observations with the ASCA mission (Yokogawa et al. 2000, ApJ. 539, 191).

  16. Pulsars

    NASA Astrophysics Data System (ADS)

    Stappers, Benjamin W.

    2012-04-01

    Pulsars can be considered as the ultimate time-variable source. They show variations on time-scales ranging from nanoseconds to as long as years, and they emit over almost the entire electromagnetic spectrum. The dominant modulation is associated with the rotation period, which can vary from slighty more than a millisecond to upwards of ten seconds (if we include the magnetars). Variations on time-scales shorter than the pulse period are mostly associated with emission processes and are manifested as giant pulses, microstructure and sub-pulses (to name a few). On time-scales of a rotation to a few hundred rotations are other phenomena also associated with the emission, such as nulling, moding, drifting and intermittency. By probing these and slightly longer time-scales we find that pulsars exhibit ``glitches'', which are rapid variations in spin rates. They are believed to be related to the interaction between the superfluid interior of the neutron star and the outer crust. Detailed studies of glitches can reveal much about the properties of the constituents of neutron stars-the only way to probe the physics of material at such extreme densities. Time-scales of about an hour or longer reveal that some pulsars are in binary systems, in particular the most rapidly rotating systems. Discovering and studying those binary systems provides vital clues to the evolution of massive stars, while some of the systems are also the best probes of strong-field gravity theories; the elusive pulsar-black hole binary would be the ultimate system. Pulsars are tools that allow us to probe a range of phenomena and time-scales. It is possible to measure the time of arrival of pulses from some pulsars to better than a few tens of nanoseconds over years, making them some of the most accurate clocks known. Concerning their rotation, deviations from sphericity may cause pulsars to emit gravitational waves which might then be detected by next-generation gravitational-wave detectors. Pulsars

  17. Identification of IGR J01217-7257 with the transient SMC pulsar XTE J0119-731 (SXP 2.16) using XMM-Newton

    NASA Astrophysics Data System (ADS)

    Vasilopoulos, G.; Haberl, F.; Maggi, P.

    2017-09-01

    The transient IGR J01217-7257 in the Small Magellanic Cloud was found to be in a new outburst during INTEGRAL observations. We triggered an XMM-Newton target of opportunity observation near outburst maximum, which lead to the discovery of X-ray pulsations with a period of 2.165 s. This period is very similar to that detected from XTE J0119-731, suggesting that both sources are identical. The pulse profile obtained from the EPIC-pn instrument is complex and highly energy dependent. Pulse-phase spectroscopy reveals variations in the spectral slope correlated with the changes in flux during the pulse, with the harder X-ray spectrum at pulse maximum and softer during minimum. Analysis of XMM-Newton reflection grating spectra reveals the presence of emission lines that suggest the presence of ionized material around the neutron star. By monitoring the system during its outburst with Swift/XRT we detected a possible transition from the accretor to the propeller stage.

  18. Discovery of a Transient Magnetar: XTE J1810-197

    NASA Technical Reports Server (NTRS)

    Ibrahim, Alaa I.; Markwardt, Craig B.; Swank, Jean H.; Ransom, Scott; Roberts, Mallory; Kaspi, Victoria; Woods, Peter M.; Safi-Harb, Samar; Balman, Solen; Parke, William C.

    2004-01-01

    We report the discovery of a new X-ray pulsar, XTE J1810-197, that was serendipitously discovered on 2003 July 15 by the Rossi X-Ray Timing Explorer (RXTE) while observing the soft gamma repeater SGR 1806-20. The pulsar has a 5.54 s spin period, a soft X-ray spectrum (with a photon index of approx. = 4). and is detectable in earlier RXTE observations back to 2003 January but not before. These show that a transient outburst began between 2002 November 17 and 2003 January 23 and that the source's persistent X-ray flux has been declining since then. The pulsar exhibits a high spin-down rate P approx.= l0(exp -11) s/s with no evidence of Doppler shifts due to a binary companion. The rapid spin-down rate and slow spin period imply a supercritical characteristic magnetic field B approx. = 3 x l0(exp 14) G and a young age tau less than or = 7600 yr. Follow-up Chandra observations provided an accurate position of the source. Within its error radius, the 1.5 m Russian-Turkish Optical Telescope found a limiting magnitude R(sub c) = 21.5. All such properties are strikingly similar to those of anomalous X-ray pulsars ad soft gamma repeaters, providing strong evidence that the source is a new magnetar. However, archival ASCA and ROSAT observations found the source nearly 2 orders of magnitude fainter. This transient behavior and the observed long-term flux variability of the source in absence of an observed SGR-like burst activity make it the first confirmed transient magnetar and suggest that other neutron stars that share the properties of XTE 51810- 197 during its inactive phase may be unidentified transient magnetars awaiting detection via a similar activity. This implies a larger population of magnetars than previously surmised and a possible evolutionary connection between magnetars and other neutron star families. Subject headings: pulsars: general -pulsars: individual (XTE 51810- 197) - stars: magnetic fields -

  19. Hot White Dwarf Donors in Ultracompact X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Bildsten, Lars

    2002-09-01

    The discovery of two accreting millisecond X-ray pulsars in binaries with ~43 minute orbital periods allows for a new probe of the donor's structure. For XTE J1751-305, only a hot white dwarf (WD) can fill the Roche lobe. A cold He WD is a possible solution for XTE J0929-314, although I will show that evolutionary arguments make a hot WD more likely. In addition to being larger than the T=0 models, these finite entropy, low-mass (Mc<0.03 Msolar) WDs have a minimum mass for a fixed core temperature. If they remain hot as they lose mass and expand, they can ``evaporate'' to leave an isolated millisecond radio pulsar. They also adiabatically expand upon mass loss at a rate faster than the growth of the Roche radius if the angular momentum deposited in the disk is not returned to the donor. If the timescale of the resulting runaway mass transfer is shorter than the viscous timescale in the outer disk, then the mass transfer instability of Ruderman & Shaham for He WDs would be realized. However, my estimates of these timescales still make the instability unlikely for adiabatic responses. I close by noting the possible impact of finite temperature WDs on our understanding of AM CVn binaries.

  20. XTE J1855-026 is a supergiant X-ray binary

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; Casares, J.; Verrecchia, F.; Blay, P.; Israel, G. L.; Covino, S.

    2008-12-01

    The eclipsing X-ray pulsar XTE J1855-026 (Corbet & Mukai 2002, ApJ 577, 923) has been unambiguously identified by a recent Swift observation (Romano et al., ATel #1875) with the reddened early-type star proposed as candidate counterpart by Verrecchia et al. (ATel #102). High-quality spectra of the counterpart taken in August 2003 with the 4.2-m WHT (La Palma) show it to be a B0 Iaep luminous supergiant.

  1. Pulsar Animation

    NASA Image and Video Library

    Pulsars are thought to emit relatively narrow radio beams, shown as green in this animation. If these beams don't sweep toward Earth, astronomers cannot detect the radio signals. Pulsar gamma-ray e...

  2. BeppoSAX observations of XTE J1946+274

    NASA Astrophysics Data System (ADS)

    Doroshenko, R.; Santangelo, A.; Doroshenko, V.; Piraino, S.

    2017-03-01

    We report on the BeppoSAX monitoring of a giant outburst of the transient X-ray pulsar XTE J1946+274 in 1998. The source was detected with a flux of 4 × 10-9 erg cm-2 s-1 (in 0.1-120 keV range). The broadband spectrum, typical for accreting pulsars, is well described by a cutoff power law with a cyclotron resonance scattering feature (CRSF) at 38 keV. This value is consistent with earlier reports based on the observations with Suzaku at factor of ten lower luminosity, which implies that the feature is formed close to the neutron star surface rather than in the accretion column. Pulsations with P 15.82 s were observed up to 70 keV. The pulse profile strongly depends on energy and is characterised by a "soft" and a "hard" peaks shifted by half period, which suggests a strong phase dependence of the spectrum, and that two components with roughly orthogonal beam patterns are responsible for the observed pulse shape. This conclusion is supported by the fact that the CRSF, despite its relatively high energy, is only detected in the spectrum of the soft peak of the pulse profile. Along with the absence of correlation of the line energy with luminosity, this could be explained in the framework of the recently proposed "reflection" model for CRSF formation. However more detailed modelling of both line and continuum formation are required to confirm this interpretation.

  3. X-Ray Bursts from the Transient Magnetar Candidate XTE J1810-197

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Woods, Peter M.; Gavriil, Fotis P.; Kaspi, Victoria M.; Roberts, Mallory S. E.; Ibrahim, Alaa; Markwardt, Craig B.; Swank, Jean H.; Finger, Mark H.

    2005-01-01

    We have discovered four X-ray bursts, recorded with the Rossi X-ray Timing Explorer Proportional Counter Array between 2003 September and 2004 April, that we show to originate from the transient magnetar candidate XTE 51810-197. The burst morphologies consist of a short spike or multiple spikes lasting approx. 1 s each followed by extended tails of emission where the pulsed flux from XTE 51810-197 is significantly higher. The burst spikes are likely correlated with the pulse maxima, having a chance probability of a random phase distribution of 0.4%. The burst spectra are best fit to a blackbody with temperatures 4-8 keV, considerably harder than the persistent X-ray emission. During the X-ray tails following these bursts, the temperature rapidly cools as the flux declines, maintaining a constant emitting radius after the initial burst peak. The temporal and spectral characteristics of these bursts closely resemble the bursts seen from 1E 1048.1-5937 and a subset of the bursts detected from 1E 2259+586, thus establishing XTE J1810-197 as a magnetar candidate. The bursts detected from these three objects are sufficiently similar to one another, yet si,g&cantly differe2t from those seen from soft gamma repeaters, that they likely represent a new class of bursts from magnetar candidates exclusive (thus far) to the anomalous X-ray pulsar-like sources.

  4. Serendipitous Detections of XTE J1906+09 with the Rossi X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa

    2002-01-01

    The 89 s X-ray pulsar XTE J1906+09 was discovered during Rossi X-Ray Timing Explorer (RXTE) observations of SGR 1900+14 in 1996. Because of monitoring campaigns of SGR 1900+14, XTE J1906+09 was also monitored regularly in 1996 September, 1998 May-June, 1998 August-1999 July, and 2000 March-2001 January. A search for pulsations resulted in detections of only the two previously reported outbursts in 1996 September and 1998 August-September. Pulsed flux upper limits for the rest of the observations show that XTE J1906+09 is a transient X-ray pulsar and likely has a Be star companion. The RXTE all-sky monitor did not reveal XTE J1906+09. Pulse-timing analysis of the second outburst discovered a sinusoidal signature in the pulse frequencies that is likely produced by an orbital periastron passage. Fits to pulse phases using an orbital model and quadratic phase model have chi(exp 2) minima at orbital periods of 26-30 days for fixed mass functions of 5, 10, 15, and 20 solar masses. The pulse shape showed energy- and intensity-dependent variations. Pulse-phase spectroscopy quantified the energy-dependent variations. The phase-averaged spectrum used the pulse minimum spectrum as the background spectrum to eliminate effects from SGR 1900+14 and the Galactic ridge and was well fitted by an absorbed power law with a high-energy cutoff with column density N(sub H) = 6 +/- 1 x 10(exp 22)/sq cm, a photon index of 1.01 +/- 0.08, cutoff energy E(sub cut) = 11 +/- 1 keV, and e-folding energy E(sub fold) = 19 +/- 4 keV. Estimated 2-10 keV peak fluxes, corrected for contributions from the Galactic ridge and SGR 1900+14, are 6 x l0(exp -12) and 1.1 x 10(exp -10) ergs/sq cm/s for the 1996 and 1998 outbursts, respectively. XTE J1906+09 may be part of an unusual class of Be/X-ray binaries that do not lie on the general spin period versus orbital period correlation with the majority of Be/X-ray binaries.

  5. Monitoring The Crab Pulsar

    NASA Technical Reports Server (NTRS)

    Rots, Arnold H.; Swank, Jean (Technical Monitor)

    2001-01-01

    The monitoring of the X-ray pulses from the Crab pulsar is still ongoing at the time of this writing, and we hope to be able to continue the campaign for the life of the XTE mission. We have established beyond all doubt that: (1) the X-ray main pulse leads the radio pulse by approximately 300 microseconds, (2) this phase lag is constant and not influenced by glitches, (3) this lag does not depend on X-ray energy, (4) the relative phase of the two X-ray pulses does not vary, and (5) the spectral indices of primary, secondary, and inter-pulse are distinct and constant. At this time we are investigating whether the radio timing ephemeris can be replaced by an x-ray ephemeris and whether any long-time timing ephemeris can be established. If so, it would enable use to study variations in pulse arrival times at a longer time scales. Such a study is easier in x-rays than at radio wavelengths since the dispersion measure plays no role. These results were reported at the 2000 HEAD Meeting in Honolulu, HI. Travel was paid partly out of this grant. The remainder was applied toward the acquisition of a laptop computer that allows independent and fast analysis of all monitoring observations.

  6. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  7. SUBARCSECOND LOCATION OF IGR J17480-2446 WITH ROSSI XTE

    SciTech Connect

    Riggio, A.; Burderi, L.; Egron, E.; Di Salvo, T.; D'Ai, A.; Iaria, R.; Robba, N. R.; Papitto, A.; Belloni, T.; Motta, S.; Floris, M.; Testa, V.; Menna, M. T.

    2012-07-20

    On 2010 October 13, the X-ray astronomical satellite Rossi XTE, during the observation of the newly discovered accretion powered X-ray pulsar IGR J17480-2446, detected a lunar occultation of the source. From knowledge of the lunar topography and Earth, Moon, and spacecraft ephemerides at the epoch of the event, we determined the source position with an accuracy of 40 mas (1{sigma} c.l.), which is interesting, given the very poor imaging capabilities of RXTE ({approx}1 Degree-Sign ). For the first time, using a non-imaging X-ray observatory, the position of an X-ray source with a subarcsecond accuracy is derived, demonstrating the neat capabilities of a technique that can be fruitfully applied to current and future X-ray missions.

  8. Pulsars Magnetospheres

    NASA Technical Reports Server (NTRS)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  9. Pulsars for the Beginner

    ERIC Educational Resources Information Center

    DiLavore, Phillip; Wayland, James R.

    1971-01-01

    Presents the history of the discovery of pulsars, observations that have been made on pulsar radiation, and theories that have been presented for its presence and origin. Illustrations using pulsar's properties are presented in mechanics, electromagnetic radiation and thermodynamics. (DS)

  10. Pulsars for the Beginner

    ERIC Educational Resources Information Center

    DiLavore, Phillip; Wayland, James R.

    1971-01-01

    Presents the history of the discovery of pulsars, observations that have been made on pulsar radiation, and theories that have been presented for its presence and origin. Illustrations using pulsar's properties are presented in mechanics, electromagnetic radiation and thermodynamics. (DS)

  11. Upper Bounds on r-Mode Amplitudes from Observations of Low-Mass X-Ray Binary Neutron Stars

    NASA Technical Reports Server (NTRS)

    Mahmoodifar, Simin; Strohmayer, Tod

    2013-01-01

    We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2M solar mass we find dimensionless r-mode amplitudes in the range from about 1×10(exp-8) to 1.5×10(exp-6). For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that approx. less than 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21M solar mass) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.

  12. UPPER BOUNDS ON r-MODE AMPLITUDES FROM OBSERVATIONS OF LOW-MASS X-RAY BINARY NEUTRON STARS

    SciTech Connect

    Mahmoodifar, Simin; Strohmayer, Tod

    2013-08-20

    We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2 M{sub Sun} we find dimensionless r-mode amplitudes in the range from about 1 Multiplication-Sign 10{sup -8} to 1.5 Multiplication-Sign 10{sup -6}. For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that {approx}< 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21 M{sub Sun }) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.

  13. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  14. Pulsars - The New Celestial Clocks

    NASA Astrophysics Data System (ADS)

    Backer, D. C.

    Pulsars A Brief History of Neutron Stars Standard Model of Pulsars Origin and Evolution of Isolated Neutron Stars Radio Astronomy Fundamentals Radiation Properties Radio Telescopes Radio Astronomy Receivers Propogation in the Interstellar Medium Search Techniques Pulsar Timing Systems Further Topics on Radio Wave Propagation Absorption Birefringence Scattering Solar Wind and Ionosphere Relativistic Delay in Solar System Potential Pulsar Timing Arrival Time Measurement Time Correction Space Correction Pulsar Parameter Estimation Rotation Noise Astrometry Binary, Millisecond and Globular Cluster Pulsars Origin and Evolution Keplerian Binary Pulsar Timing Relativistic Binary Pulsars Globular Cluster Pulsars Planets Around Pulsars Pulsar Timing Array Time Coordinate Space Coordinate Gravitational Wave Background Pulsar Timing Array Experiments References

  15. Anomalous Pulsars

    NASA Astrophysics Data System (ADS)

    Malov, I. F.

    Many astrophysicists believe that Anomalous X-Ray Pulsars (AXP), Soft Gamma-Ray Repeaters (SGR), Rotational Radio Transients (RRAT), Compact Central Objects (CCO) and X-Ray Dim Isolated Neutron Stars (XDINS) belong to different classes of anomalous objects with neutron stars as the central bodies inducing all their observable peculiarities. We have shown earlier [1] that AXPs and SGRs could be described by the drift model in the framework of the preposition on usual properties of the central neutron star (rotation periods P 0.01 - 1 sec and, surface magnetic fields B ~ 10^11-10^13 G). Here we shall try to show that some differences of the sources under consideration will be explained by their geometry (particularly, by the angle β between their rotation and magnetic axes). If β <~ 100 (the aligned rotator) the drift waves at the outer layers of the neutron star magnetosphere should play a key role in the observable periodicity. For large values of β (the case of the nearly orthogonal rotator) an accretion from the surrounding medium (for example, from the relic disk) can cause some modulation and transient events in received radiation. Recently Kramer et al. [2] and Camilo et al. [3] have shown that AXPs J1810-197 and 1E 1547.0 - 5408 have both small angles β, that is these sources are nearly aligned rotators, and the drift model should be used for their description. On the other hand, Wang et al. [4] detected IR radiation from the cold disk around the isolated young X-ray pulsar 4U 0142+61. This was the first evidence of the disk-like matter around the neutron star. Probably there is the bimodality of anomalous pulsars. AXPs, SGRs and some radio transients belong to the population of aligned rotators with the angle between the rotation axis and the magnetic moment β < 200. These objects are described by the drift model, and their observed periods are connected with a periodicity of drift waves. Other sources have β ~ 900, and switching on's and switching off

  16. Pulsars and supernova remnants

    SciTech Connect

    Narayan, R.; Schaudt, K.J.

    1988-02-01

    With the recent discovery of the pulsar PSR 1951 + 22 in CTB 80, four pulsars are now known in supernova remnants (SNRs) of the plerion and composite classes. It is argued that this success rate of pulsar detections implies that young fast pulsars have long fan-beams that enable them to be seen from most directions. Based on calculations that use a pulsar luminosity model and allow for selection effects, it is suggested that the best SNRs for future pulsar searches are 3C 58, MSH 11-62, G24.7 + 0.6, and MSH 15-56. It is also concluded that the failure to detect pulsars in shell SNRs implies either that there are no pulsars in these SNRs or that the pulsars are unusually weak, possibly due to slow rotation or weak magnetic fields. 25 references.

  17. Is XTE J1701-407 Extended?

    NASA Astrophysics Data System (ADS)

    Kaplan, David

    2007-09-01

    We recently observed the neutron star X-ray transient XTE J1701-407 with Chandra, using 1 ks of ACIS-S data for localization. However, the Chandra data do not show a point source. Instead the source appears extended over ~6 arcsec. We have investigated the data, consulting with experts both at MIT and SAO, and cannot ascribe the data to purely instrumental effects (aspect errors or pileup). The extended X-ray emission could come from an outflow or a dust scattering halo - both very interesting and rare phenomena. Jets allow detailed calorimetry of the outbursts, while scattering halos lead to geometric distances. We request a 5 ks ACIS-S subarray observation to definitively assess the morphology, trying to discriminate between these scenarios before the target fades into quiescence.

  18. Binary and Millisecond Pulsars.

    PubMed

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44) orbit around an unevolved companion.

  19. Ensemble Pulsar Time Scale

    NASA Astrophysics Data System (ADS)

    Yin, D. S.; Gao, Y. P.; Zhao, S. H.

    2016-05-01

    Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observational data are not evenly sampled, and the internals between data points range from several hours to more than half a month. What's more, these data sets are sparse. And all these make it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, we use cubic spline interpolation to densify the data set, and make the intervals between data points even. Then, we employ the Vondrak filter to smooth the data set, and get rid of high-frequency noise, finally adopt the weighted average method to generate the ensemble pulsar time scale. The pulsar timing residuals represent clock difference between the pulsar time and atomic time, and the high precision pulsar timing data mean the clock difference measurement between the pulsar time and atomic time with a high signal to noise ratio, which is fundamental to generate pulsar time. We use the latest released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set to generate the ensemble pulsar time scale. This data set is from the newest NANOGRAV data release, which includes 9-year observational data of 37 millisecond pulsars using the 100-meter Green Bank telescope and 305-meter Arecibo telescope. We find that the algorithm used in this paper can lower the influence caused by noises in timing residuals, and improve long-term stability of pulsar time. Results show that the long-term (> 1 yr) frequency stability of the pulsar time is better than 3.4×10-15.

  20. Binary and Millisecond Pulsars.

    PubMed

    Lorimer, Duncan R

    2005-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  1. Pulsar time scale

    SciTech Connect

    Il'in, V.G.; Llyasov, Yu.P.; Kuz'min, A.D.; Pushkin, S.B.; Palii, G.N.; Shabanova, T.V.; Shchitov, Yu.P.

    1984-05-01

    In this article a new time scale is proposed, that of pulsar time PT which is based on the regular sequence of time intervals between pulses of a pulsar's radio emissions. In discussing variations in the arrival times of pulsar radio emissions, three kinds of variations in the radiation periods are described. PSR 0834 + 06 is used as the basic reference pulsar. Time scales are also determined for reference pulsars PSR 0905 + 08 and 1919 + 21. The initial parameters for the three reference pulsars needed for managing a PT scale are presented. The basic PT scale is defined as the continuous sequence of time intervals between radio-emission pulses of the basic reference pulsar.

  2. Delta XTE Lift and Mate at Complex 17A

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This NASA Kennedy Space Center (KSC) video release presents footage of the lift and mate of NASA's X-ray Timing Explorer (XTE) to a McDonnell Douglas Delta II rocket at Launch Complex 17A, Cape Canaveral Air Station. The video includes shots of the workcrews as well as wide angle views of the spacecraft in its launching position. The XTE was launched into a circular orbit with an altitude of 600 km and an inclination of 23 degrees on Dec. 30, 1995.

  3. Delta XTE Spacecraft Arrives at CCAS Skid Strip

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Footage shows the U.S Air Force Aircraft "Air Mobility Command" approaching, and landing at the Cape Canaveral Air Station Skid Strip (CCAS). The truck carrying the Delta XTE Spacecraft is also shown as it leaves the Air Mobility Command.

  4. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  5. Revised Pulsar Spindown

    SciTech Connect

    Contopoulos, Ioannis; Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2005-12-14

    We address the issue of electromagnetic pulsar spindown by combining our experience from the two limiting idealized cases which have been studied in great extent in the past: that of an aligned rotator where ideal MHD conditions apply, and that of a misaligned rotator in vacuum. We construct a spindown formula that takes into account the misalignment of the magnetic and rotation axes, and the magnetospheric particle acceleration gaps. We show that near the death line aligned rotators spin down much slower than orthogonal ones. In order to test this approach, we use a simple Monte Carlo method to simulate the evolution of pulsars and find a good fit to the observed pulsar distribution in the P-{dot P} diagram without invoking magnetic field decay. Our model may also account for individual pulsars spinning down with braking index n < 3, by allowing the corotating part of the magnetosphere to end inside the light cylinder. We discuss the role of magnetic reconnection in determining the pulsar braking index. We show, however, that n {approx} 3 remains a good approximation for the pulsar population as a whole. Moreover, we predict that pulsars near the death line have braking index values n > 3, and that the older pulsar population has preferentially smaller magnetic inclination angles. We discuss possible signatures of such alignment in the existing pulsar data.

  6. Evidence of a non-conservative mass transfer for XTE J0929-314

    NASA Astrophysics Data System (ADS)

    Marino, A.; Di Salvo, T.; Gambino, A. F.; Iaria, R.; Burderi, L.; Matranga, M.; Sanna, A.; Riggio, A.

    2017-07-01

    Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (>100 Hz) pulsations in low-mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims: We aim to demonstrate that a conservative mass transfer in this system will result in an X-ray luminosity that is higher than the observed, long-term averaged X-ray luminosity. Methods: Under the hypothesis of a conservative mass transfer driven by gravitational radiation, as expected for this system given the short orbital period of about 43.6 min and the low-mass of the companion implied by the mass function derived from timing techniques, we calculate the expected mass transfer rate in this system and predict the long-term averaged X-ray luminosity. This is compared with the averaged, over 15 years, X-ray flux observed from the system, and a lower limit of the distance to the source is inferred. Results: This distance is shown to be >7.4 kpc in the direction of the Galactic anticentre, implying a large height, >1.8 kpc, of the source with respect to the Galactic plane, placing the source in an empty region of the Galaxy. We suggest that the inferred value of the distance is unlikely. Conclusions: This problem can be solved if we hypothesize that the source is undergoing a non-conservative mass transfer, in which most of the mass transferred from the companion star is ejected from the system, probably because of the (rotating magnetic dipole) radiation pressure of the pulsar. If confirmed by future observations, this may be another piece of

  7. Ensemble Pulsar Time Scale

    NASA Astrophysics Data System (ADS)

    Dong-shan, Yin; Yu-ping, Gao; Shu-hong, Zhao

    2017-07-01

    Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observations are not evenly sampled, and the internals between two data points range from several hours to more than half a month. Further more, these data sets are sparse. All this makes it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, a cubic spline interpolation is used to densify the data set, and make the intervals between data points uniform. Then, the Vondrak filter is employed to smooth the data set, and get rid of the high-frequency noises, and finally the weighted average method is adopted to generate the ensemble pulsar time scale. The newly released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set is used to generate the ensemble pulsar time scale. This data set includes the 9-year observational data of 37 millisecond pulsars observed by the 100-meter Green Bank telescope and the 305-meter Arecibo telescope. It is found that the algorithm used in this paper can reduce effectively the influence caused by the noises in pulsar timing residuals, and improve the long-term stability of the ensemble pulsar time scale. Results indicate that the long-term (> 1 yr) stability of the ensemble pulsar time scale is better than 3.4 × 10-15.

  8. Arecibo Pulsar Highlights

    NASA Astrophysics Data System (ADS)

    Seymour, Andrew

    2016-01-01

    Here we present some of the recent interesting pulsar research that has been conducted from the Arecibo Observatory (AO). Many of these results are only possible because of the unique capabilities of AO's 305 meter telescope. Along with this, we state several possible improvements to AO's capabilities that would aid pulsar studies in the immediate future.

  9. Search for gamma-ray emission from four accreting millisecond pulsars with Fermi/LAT

    SciTech Connect

    Xing, Yi; Wang, Zhongxiang

    2013-06-01

    We report our search for γ-ray emission in the energy range from 100 MeV to 300 GeV from four accreting millisecond pulsars (AMPs), SAX J1808.4–3658, IGR J00291+5934, XTE J1814–338, and XTE J0929–314. The data are from four-year observations carried out by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. The AMPs were not detected, and the γ-ray luminosity upper limits we obtain are 5.1 × 10{sup 33} erg s{sup –1} for SAX J1808.4–3658, 2.1 × 10{sup 33} erg s{sup –1} for IGR J00291+5934, 1.2 × 10{sup 34} erg s{sup –1} for XTE J1814–338, and 2.2 × 10{sup 33} erg s{sup –1} for XTE J0929–314. We compare our results with γ-ray irradiation luminosities required for producing optical modulations seen from the companions in the AMPs, which has been suggested by Takata et al., and our upper limits have excluded γ-ray emission as the heating source in these systems except XTE J0929–314, the upper limit of which is not deep enough. Our results also do not support the model proposed by Takata et al. that relatively strong γ-ray emission could arise from the outer gap of a high-mass neutron star controlled by the photon-photon pair creation for the AMPs. Two AMPs, SAX J1808.4–3658 and IGR J00291+5934, have measurements of their spin-down rates, and we derive the upper limits of their γ-ray conversion efficiencies, which are 57% and 3%, respectively. We discuss the implications to the AMP systems by comparing the efficiency upper limit values with that of 20 γ-ray millisecond pulsars (MSP) detected by Fermi and the newly discovered transitional MSP binary J1023+0038.

  10. Observational properties of pulsars.

    PubMed

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.

  11. The Amazing Pulsar Machine

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.; Large Area Telescope, Fermi

    2014-01-01

    How rotation-powered pulsars accelerate particles to PeV energies and radiate pulsed emission from radio to gamma-ray wavelengths has remained a mystery for over 40 years. But in the last few years, the Fermi Large Area Telescope has revolutionized the study of pulsars and allowed us to peer deeper into the inner workings of this incredibly efficient natural accelerator. Thanks to Fermi discoveries, we now know that the high-energy emission is radiated in the outer magnetosphere, near the light cylinder, that millisecond pulsars are extremely efficient at emitting gamma-ray pulses and that the Crab nebula undergoes dramatic flaring that challenges particle acceleration theory. I will review how these discoveries, together with recent progress in global simulation of pulsar magnetospheres, are changing our models of pulsar particle acceleration, cascade pair production and high-energy emission.

  12. Glitches in southern pulsars

    NASA Astrophysics Data System (ADS)

    Wang, N.; Manchester, R. N.; Pace, R. T.; Bailes, M.; Kaspi, V. M.; Stappers, B. W.; Lyne, A. G.

    2000-10-01

    Timing observations of 40 mostly young pulsars using the ATNF Parkes radio telescope between 1990 January and 1998 December are reported. In total, 20 previously unreported glitches and 10 other glitches were detected in 11 pulsars. These included 12 glitches in PSR J1341-6220, corresponding to a glitch rate of 1.5 glitches per year. We also detected the largest known glitch, in PSR J1614-5047, with Δνgν~6.5×10-6, where ν=1/P is the pulse frequency. Glitch parameters were determined both by extrapolating timing solutions to interglitch intervals and by phase-coherent timing fits across the glitch(es). These fits also give improved positions and dispersion measures for many of the pulsars. Analysis of glitch parameters, both from this work and from previously published results, shows that most glitches have a fractional amplitude Δνgν of between 10-8 and 10-6. There is no consistent relationship between glitch amplitude and the time since the previous glitch or the time to the following glitch, either for the ensemble or for individual pulsars. As previously recognized, the largest glitch activity is seen in pulsars with ages of order 104yr, but for about 30per cent of such pulsars, no glitches were detected in the 8-year data span. There is some evidence for a new type of timing irregularity in which there is a significant increase in pulse frequency over a few days, accompanied by a decrease in the magnitude of the slow-down rate. Fits of an exponential recovery to post-glitch data show that for most older pulsars, only a small fraction of the glitch decays. In some younger pulsars a large fraction of the glitch decays, but in others there is very little decay. Apart from the Crab pulsar, there is no clear dependence of recovery time-scale on pulsar age.

  13. Radio efficiency of pulsars

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz; Zhang, Bing; Xu, Ren-Xin E-mail: zhang@physics.unlv.edu

    2014-03-20

    We investigate radio emission efficiency, ξ, of pulsars and report a near-linear inverse correlation between ξ and the spin-down power, E-dot , as well as a near-linear correlation between ξ and pulsar age, τ. This is a consequence of very weak, if any, dependences of radio luminosity, L, on pulsar period, P, and the period derivative, P-dot , in contrast to X-ray or γ-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is ≈10{sup 29} erg s{sup –1}, regardless of the position in the P-- P-dot diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for radio efficiency into the Monte Carlo-based population syntheses we can reproduce the observed sample using the random luminosity model. Using the Kolmogorov-Smirnov test on a synthetic flux distribution reveals a high probability of reproducing the observed distribution. Our results suggest that the plasma responsible for generating radio emission is produced under similar conditions regardless of pulsar age, dipolar magnetic field strength, and spin-down rate. The magnetic fields near the pulsar surface are likely dominated by crust-anchored, magnetic anomalies, which do not significantly differ among pulsars, leading to similar conditions for generating electron-positron pairs necessary to power radio emission.

  14. Stellar evolution and pulsars.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.

    1972-01-01

    It has been found that pulsars are rotating magnetic neutron stars, which are created during catastrophic collapses of old stars whose nuclear fuel has long since been used up. The maximum size of pulsars, based on the fastest rotation period of 33 msec, cannot exceed 100 km. The densest star the theory predicts is the neutron star. Its diameter is only 10 km. The processes producing radiation from pulsars are discussed, giving attention to a process similar to that by which a klystron operates and to a process based on a maser mechanism.

  15. Pulsar Artist Concept

    NASA Image and Video Library

    2017-01-06

    This artist's concept shows a pulsar, which is like a lighthouse, as its light appears in regular pulses as it rotates. Pulsars are dense remnants of exploded stars, and are part of a class of objects called neutron stars. Magnetars are different kinds of neutron stars -- they have violent, high-energy outbursts of X-ray and gamma ray light. A mysterious object called PSR J1119-6127 has been seen behaving as both a pulsar and a magnetar, suggesting that it could be a "missing link" between these objects. http://photojournal.jpl.nasa.gov/catalog/PIA21085

  16. Pulsar Candidate in Andromeda

    NASA Image and Video Library

    2017-03-23

    NASA's Nuclear Spectroscope Telescope Array, or NuSTAR, has identified a candidate pulsar in Andromeda -- the nearest large galaxy to the Milky Way. This likely pulsar is brighter at high energies than the Andromeda galaxy's entire black hole population. The inset image shows the pulsar candidate in blue, as seen in X-ray light by NuSTAR. The background image of Andromeda was taken by NASA's Galaxy Evolution Explorer in ultraviolet light. Andromeda is a spiral galaxy like our Milky Way but larger in size. It lies 2.5 million light-years away in the Andromeda constellation. http://photojournal.jpl.nasa.gov/catalog/PIA20970

  17. Geriatric Pulsar Still Kicking

    NASA Astrophysics Data System (ADS)

    2009-02-01

    The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active. The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known. Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars". Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second. The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Erratic Black Hole Regulates Itself Celebrate the International Year of Astronomy Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar. "This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it

  18. Wide Band Artificial Pulsar

    NASA Astrophysics Data System (ADS)

    Parsons, Zackary

    2017-01-01

    The Wide Band Artificial Pulsar (WBAP) is an instrument verification device designed and built by the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virgina. The site currently operates the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) and the Versatile Green Bank Astronomical Spectrometer (VEGAS) digital backends for their radio telescopes. The commissioning and continued support for these sophisticated backends has demonstrated a need for a device capable of producing an accurate artificial pulsar signal. The WBAP is designed to provide a very close approximation to an actual pulsar signal. This presentation is intended to provide an overview of the current hardware and software implementations and to also share the current results from testing using the WBAP.

  19. Fermi Pulsar Analysis

    NASA Image and Video Library

    This animation illustrates how analysis of Fermi data reveals new pulsars. Fermi's LAT records the precise arrival time and approximate direction of the gamma rays it detects, but to identify a pul...

  20. Cosmic Ray Positrons from Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  1. Pulsar statistics and their interpretations

    NASA Technical Reports Server (NTRS)

    Arnett, W. D.; Lerche, I.

    1981-01-01

    It is shown that a lack of knowledge concerning interstellar electron density, the true spatial distribution of pulsars, the radio luminosity source distribution of pulsars, the real ages and real aging rates of pulsars, the beaming factor (and other unknown factors causing the known sample of about 350 pulsars to be incomplete to an unknown degree) is sufficient to cause a minimum uncertainty of a factor of 20 in any attempt to determine pulsar birth or death rates in the Galaxy. It is suggested that this uncertainty must impact on suggestions that the pulsar rates can be used to constrain possible scenarios for neutron star formation and stellar evolution in general.

  2. Observations of accreting pulsars

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Bildsten, Lars; Chakrabarty, Deepto; Wilson, Robert B.; Finger, Mark H.

    1994-01-01

    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.

  3. Pulse Portraiture: Pulsar timing

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2016-06-01

    Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

  4. The Fermi LAT Pulsars

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2011-08-01

    The Large Area Telescope on the Fermi satellite is an impressive pulsar discovery machine, with over 75 pulse detections and counting. The populations of radio-selected, γ-selected and millisecond pulsars are now large enough to display observational patterns in the light curves and luminosities. These patterns are starting to teach us about the physics of the emission zone, which seems dominated by open field lines near the speed of light cylinder. The sample also provides initial inferences about the pulsar population. Apparently a large fraction of neutron stars have a young energetic γ-ray emitting phase, making these objects a good probe of massive star evolution. The long-lived millisecond γ-ray pulsars are even more ubiquitous and may produce a significant fraction of the γ-ray background. In any event, it is clear that the present LAT pulsar sample is dominated by nearby objects, and there is every expectation that the number, and quality, of pulsar detections will increase in years to come.

  5. Optical study of pulsars

    NASA Astrophysics Data System (ADS)

    Sanwal, Divas

    The Crab Pulsar emits radiation at all wavelengths from radio to extreme γ-rays including the optical. We have performed extremely high time resolution multicolor photometry of the Crab Pulsar at optical wavelengths to constrain the high energy emission models for pulsars. Our observations with 1 microsecond time resolution are a factor of 20 better than the previous best observations. We have completely resolved the peak of the main pulse of the Crab Pulsar in optical passbands. The peaks of the main pulse and the interpulse move smoothly from the rising branch to the falling branch with neither a flat top nor a cusp. We find that the peak of the Crab Pulsar main pulse in the B band arrives 140 microseconds before the peak of the radio pulse. The color of the emission changes across the phase. The maximum variation in the color ratio is about 25%. The bluest color occurs in the bridge region between the main pulse and the interpulse. The Crab Pulsar has faded by 2 +/- 2.8% since the previous observations in 1991 using the same instrument. The statistics of photon arrival times are consistent with atmospheric scintillation causing most of the variations in addition to the mean pulse variations in the shape. However, the autocorrelation function (ACF) of the Crab Pulsar light curve shows extra correlations at very short time scales. We identify two time scales, one at about 20 microseconds and another one at about 1000 microseconds at which we observe a break in the ACF. We conclude that these short timescale correlations are internal to the pulsar. We attribute the extra correlation observed in our data to microstructures. This is the first time evidence for microstructures has been observed outside the radio wavelengths. The upturn in the ACF at short time scales depends on the color. The U band shows about 10% more correlation at short time scales while the R band shows only about 3% change. We have also observed the young X-ray pulsar PSR 0656+14 at optical

  6. The Pulsating Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.

    2015-06-01

    Following the basic principles of a charge-separated pulsar magnetosphere, we consider the magnetosphere to be stationary in space, instead of corotating, and the electric field to be uploaded from the potential distribution on the pulsar surface, set up by the unipolar induction. Consequently, the plasma of the magnetosphere undergoes guiding center drifts of the gyromotion due to the forces transverse to the magnetic field. These forces are the electric force, magnetic gradient force, and field line curvature force. Since these plasma velocities are of drift nature, there is no need to introduce an emf along the field lines, which would contradict the {{E}\\parallel }={\\boldsymbol{E}} \\cdot {\\boldsymbol{B}} =0 plasma condition. Furthermore, there is also no need to introduce the critical field line separating the electron and ion open field lines. We present a self-consistent description where the magnetosphere is described in terms of electric and magnetic fields and also in terms of plasma velocities. The fields and velocities are then connected through the space-charge densities self-consistently. We solve the pulsar equation analytically for the fields and construct the standard steady-state pulsar magnetosphere. By considering the unipolar induction inside the pulsar and the magnetosphere outside the pulsar as one coupled system, and under the condition that the unipolar pumping rate exceeds the Poynting flux in the open field lines, plasma pressure can build up in the magnetosphere, in particular, in the closed region. This could cause a periodic opening up of the closed region, leading to a pulsating magnetosphere, which could be an alternative to pulsar beacons. The closed region can also be opened periodically by the build up of toroidal magnetic field through a positive feedback cycle.

  7. Pulsar lensing geometry

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam

    2016-05-01

    We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

  8. Superfluidity in Millisecond Pulsars (Review)

    NASA Astrophysics Data System (ADS)

    Pines, D.; Alpar, A.

    The authors review the evidence for superfluidity in the Vela pulsar, the Crab pulsar and PSR 0525+21, and examine the prospects for observing similar consequences of superfluidity in the already-discovered millisec pulsars. They consider, inter alia, the likelihood of observing glitches, the expected post-glitch behavior, and pulsar heating by energy dissipation due to the creep of neutron vortex lines in pinned superfluid regions of the crust.

  9. XTE J1701-462 seen by INTEGRAL

    NASA Astrophysics Data System (ADS)

    Produit, N.; Bazzano, A.; Schoenfelder, V.; Westergaard, N.-J.; McBreen, B.; Much, R.; Hermsen, W.; Molkov, S.

    2006-01-01

    The newly discovered X-ray transient XTE J1701-462 (ATEL #696, #700, #702, #703, #704, #706) was in the field of view of the INTEGRAL instruments during a routine Galactic Plane Scan on 2006 Jan. 21 at 03:45 UT, during one pointing of 1850 sec in JEM-X and three pointings in IBIS. It was detected by the JEM-X instrument with a flux of 58+-6 counts/s in 3-10 keV (about 0.9 Crab) and 2.8+-0.5 counts/s in 10-20 keV (about 0.13 Crab).

  10. A Possible Optical Counterpart to XTE J1550--564

    NASA Astrophysics Data System (ADS)

    Orosz, Jerome; Bailyn, Charles; Jain, Raj

    1998-09-01

    We report YALO consortium observations using the Yale 1m telescope at Cerro Tololo Interamerican Observatory and the ANDICAM CCD camera. We have identified a possible optical counterpart to the recent X-ray transient XTE J1550-564 (IAUC 7008) in V-band images obtained September 8.99 UT. The J2000 coordinates of the candidate are R.A. = 15h51m04s, Decl. = -56o28'37.5", with errors on each value of about +/- 3 arcseconds.

  11. A phenomenological pulsar model

    NASA Technical Reports Server (NTRS)

    Michel, F. C.

    1978-01-01

    Particle injection energies and rates previously calculated for the stellar wind generation by rotating magnetized neutron stars are adopted. It is assumed that the ambient space-charge density being emitted to form this wind is bunched. These considerations immediately place the coherent radio frequency luminosity from such bunches near 10 to the 28th erg/s for typical pulsar parameters. A comparable amount of incoherent radiation is emitted for typical (1 second) pulsars. For very rapid pulsars, however, the latter component grows more rapidly than the available energy sources. The comparatively low radio luminosity of the Crab and Vela pulsars is attributed to both components being limited in the same ratio. The incoherent radiation essentially has a synchotron spectrum and extends to gamma-ray energies; consequently the small part of the total luminosity that is at optical wavelengths is unobservable. Assuming full coherence at all wavelengths short of a critical length gives a spectral index for the flux density of -8/3 at higher frequencies. The finite energy available from the injected particles would force the spectrum to roll over below about 100 MHz, although intrinsic morphological factors probably enter for any specific pulsar as well.

  12. Generative pulsar timing analysis

    NASA Astrophysics Data System (ADS)

    Lentati, L.; Alexander, P.; Hobson, M. P.

    2015-03-01

    A new Bayesian method for the analysis of folded pulsar timing data is presented that allows for the simultaneous evaluation of evolution in the pulse profile in either frequency or time, along with the timing model and additional stochastic processes such as red spin noise, or dispersion measure variations. We model the pulse profiles using `shapelets' - a complete orthonormal set of basis functions that allow us to recreate any physical profile shape. Any evolution in the profiles can then be described as either an arbitrary number of independent profiles, or using some functional form. We perform simulations to compare this approach with established methods for pulsar timing analysis, and to demonstrate model selection between different evolutionary scenarios using the Bayesian evidence. The simplicity of our method allows for many possible extensions, such as including models for correlated noise in the pulse profile, or broadening of the pulse profiles due to scattering. As such, while it is a marked departure from standard pulsar timing analysis methods, it has clear applications for both new and current data sets, such as those from the European Pulsar Timing Array and International Pulsar Timing Array.

  13. NANOGrav Millisecond Pulsar Observing Program

    NASA Astrophysics Data System (ADS)

    Nice, David J.; Nanograv

    2015-01-01

    Gravitational waves from sources such as supermassive black hole binary systems are expected to perturb times-of-flight of signals traveling from pulsars to the Earth. The NANOGrav consortium aims to measure these perturbations in high precision millisecond pulsar timing measurements and thus to directly detect gravitational waves and characterize gravitational wave sources. By observing pulsars over time spans of many years, we are most sensitive to gravitational waves at nanohertz frequencies.In this presentation we describe the NANOGrav observing program. We presently observe an array of 45 millisecond pulsars, evenly divided between the Arecibo Observatory (for pulsars with declinations between -1 and 39 degrees) and the Green Bank Telescope (for other pulsars, with two pulsars overlapping with Arecibo). Observation of a large number of pulsars allows for searches of correlated perturbations between multiple pulsar signals, which will be crucial for achieving high-significance detection of gravitational waves in the face of uncorrelated noise (from gravitational waves and rotation noise) in the individual pulsars. As new high-quality pulsars are discovered, they are added to the program.Observations of each pulsar are made with cadence of 20 to 30 days, with observations of each pulsar in two separate radio bands. Arrival times for nearly all pulsars are measured with precision better than 1 microsecond (averaged over a typical observation of 20 minutes), and in the best cases the precision is better than 100 nanoseconds.We describe the NANOGrav nine-year data release, which contains time-of-arrival measurements and high quality timing solutions from 37 pulsars observed over spans ranging between 0.7 to 9.3 years.

  14. Pulsars:. Gigantic Nuclei

    NASA Astrophysics Data System (ADS)

    Xu, Renxin

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  15. Modelling pulsar glitches

    NASA Astrophysics Data System (ADS)

    Haskell, Brynmor

    2016-07-01

    Pulsar glitches, i.e. sudden jumps in the spin frequency of pulsars, are thought to be due to the presence of large scale superfluid components in neutron star interiors, and offer a unique insight into the physics of matter at high densities and low temperatures. Nevertheless, more than forty years after the first observation, many open questions still exist on the nature of pulsar glitches. In this talk I will review our current theoretical understanding of glitches, of their trigger mechanisms and of the hydrodynamics of superfluid neutron stars. In particular I will focus on 'superfluid vortex avalanches' and recent advances in applying this paradigm to glitch observations, and I will discuss hydrodynamical modelling of the post-glitch recovery.

  16. Pulse structure of four pulsars.

    PubMed

    Drake, F D; Craft, H D

    1968-05-17

    The pulse structure of the four known pulsars is given. The pulse is about 38 milliseconds for the two pulsars of longest period, and within the pulsewidth three subpulses typically appear. The pulsar of next longest period typically radiates two pulses separated about 23 milliseconds in time. The one short-period pulsar emits single pulses of constant shape. The first subpulses of all pulsars have nearly the same shape. The shape of the first subpulse agrees well with the pulse shape expected from a radio-emitting sphere which is excited by a spherically expanding disturbance, and in which the radio emission, once excited, decays exponentially.

  17. Delta XTE Spacecraft Solar Panel Deployment, Hangar AO at Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The footage shows technicians in the clean room checking and adjusting the deployment mechanism of the solar panel for XTE spacecraft. Other scenes show several technicians making adjustments to software for deployment of the solar panels.

  18. Delta XTE Spacecraft Solar Panel Deployment, Hangar AO at Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The footage shows technicians in the clean room checking and adjusting the deployment mechanism of the solar panel for XTE spacecraft. Other scenes show several technicians making adjustments to software for deployment of the solar panels.

  19. Scientific uses of pulsars.

    PubMed

    Counselman, C C; Shapiro, I I

    1968-10-18

    The recently discovered celestial sources of pulsed radio energy can be used to test general relativity, to study the solar corona, and to determine the earth's orbit and ephemeris time. The vector positions and transverse velocities of pulsars can be measured with radio interferometers; in combination with pulse-arrival-time data, the distance determination will yield the average interstellar electron density.

  20. The Pulsar Search Collaboratory

    ERIC Educational Resources Information Center

    Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.

    2010-01-01

    The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…

  1. The Pulsar Search Collaboratory

    ERIC Educational Resources Information Center

    Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.

    2010-01-01

    The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…

  2. Nulling and intermittent pulsars

    NASA Astrophysics Data System (ADS)

    Young, Neil

    2011-07-01

    Pulsars are extremely magnetised, rapidly rotating neutron stars which produce beams of electromagnetic radiation that sweep across the Earth. They exhibit a variety of interesting phenomena which allow us to gain insight into the physics of the emission process in these extreme magnetic fields. Intermittent pulsars are instrumental in this study due to their meta-stable configurations which result in abrupt cessation or re-activation of their radio emission. Their behaviour is believed to be tied to transient particle flow in the radio emission region. In the case of PSR B1931+24, the long-term modulation in the radio emission has been linked with the spin-down rate of the pulsar. Thus, offering a unique opportunity to study how magnetospheric changes can affect the magnetic braking of pulsars. Since the discovery of this behaviour in B1931+24, several other sources have been found to show similar radio emission modulation. Results from the analysis of the radio emission behaviour of these sources are presented, along with an update of the work carried out on observations of PSR B1931+24.

  3. Pulsars and Acceleration Sites

    NASA Technical Reports Server (NTRS)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  4. Pulsars and Acceleration Sites

    NASA Technical Reports Server (NTRS)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  5. Corrected Coordinates for the Possible OC to XTE J1550-56

    NASA Astrophysics Data System (ADS)

    Orosz, Jerome; Bailyn, Charles; Jain, Raj

    1998-09-01

    There was a slight error in the coordinates of the possible optical counterpart to XTE J1550-56 we reported in our previous telegram. The correct J2000 coordinates are RA = 15:50:58.78, DEC = -56:28:35.0. The coordinates printed on the finding chart available at http://www.astro.psu.edu/users/orosz/xte.html has been corrected (the arrow points to the correct object in any case). We regret this error.

  6. Student Discovers New Pulsar

    NASA Astrophysics Data System (ADS)

    2010-01-01

    A West Virginia high-school student has discovered a new pulsar, using data from the giant Robert C. Byrd Green Bank Telescope (GBT). Shay Bloxton, 15, a participant in a project in which students analyze data from the radio telescope, spotted evidence of the pulsar on October 15. Bloxton, along with NRAO astronomers observed the object again one month later. The new observation confirmed that the object is a pulsar, a rotating, superdense neutron star. Bloxton is a sophomore at Nicholas County High School in Summersville, West Virginia. "I was very excited when I found out I had actually made a discovery," Bloxton said. She went to Green Bank in November to participate in the follow-up observation. She termed that visit "a great experience." "It also helped me learn a lot about how observations with the GBT are actually done," she added. The project in which she participated, called the Pulsar Search Collaboratory (PSC), is a joint project of the National Radio Astronomy Observatory (NRAO) and West Virginia University, funded by a grant from the National Science Foundation. Pulsars are known for their lighthouse-like beams of radio waves that sweep through space as the neutron star rotates, creating a pulse as the beam sweeps by the Earth. First discovered in 1967, pulsars serve as valuable natural "laboratories" for physicists studying exotic states of matter, quantum mechanics and General Relativity. The GBT, dedicated in 2000, has become one of the world's leading tools for discovering and studying pulsars. The PSC, led by NRAO Education Officer Sue Ann Heatherly and Project Director Rachel Rosen, includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from 1500 hours of observing with the GBT. The 120 terabytes of data were produced by 70,000 individual pointings of the giant, 17-million-pound telescope. Some 300 hours of the

  7. Observations of Accreting Pulsars

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark; hide

    1997-01-01

    We summarize 5 years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered five new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A0535+26, GRO J2058+42, 4U 1145-619, and A1118-616), and also measured the accretion torque history during outbursts of six of those transients whose orbital param- eters were also known. We have also continuously measured the pulsed flux and spin frequency for eiaht persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic neutron stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long timescales, which blurs the con- ventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars but are uncorrelated, or even anti- correlated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA/Goddard Space Flight Center.

  8. Observations of Accreting Pulsars

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark; hide

    1997-01-01

    We summarize five years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered 5 new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A 0535+26, GRO J2058+42, 4U 1145-619 and A 1118-616), and also measured the accretion torque history of during outbursts of 6 of those transients whose orbital parameters were also known. We have also continuously measured the pulsed flux and spin frequency for eight persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long time scales, blurring the conventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars, but uncorrelated, or even anticorrelated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA-Goddard Space Flight Center.

  9. The Design of an Intelligent FITS File Database for XTE

    NASA Astrophysics Data System (ADS)

    Rots, A. H.

    The X-ray Timing Explorer (XTE) is a High Energy Astrophysics mission intended for launch in the second half of 1995. It carries two pointed instruments that together cover the range 2-250 keV at s time resolution and moderate spectral resolution, and one instrument that will monitor the X-ray sky continuously over the 2-10 keV range. XTE's on-board science data systems provide considerable processing power and unprecedented flexibility in telemetry data modes. Events are processed on-board in several simultaneous data modes, chosen from a large repertoire of modes. Consequently, keeping track of the collected data in the database and providing a mechanism to select data that satisfy selection criteria couched in physical terms is a challenging problem. The XTE Guest Observer Facility, in conformity with the practices at the Office of Guest Investigator Programs, will provide the data in FITS format. The design of these FITS files includes two new features that address the cataloging and data selection issues. First, a hierarchy of FITS tables will be used to navigate the database. A master index will allow software to browse through the catalog with the granularity of individual observations, and find references to instrument indices (one index per instrument or subsystem per observation), as well as, for instance, source information. An instrument index table will contain references to data files generated by data-system components for various time intervals during the observation. The emphasis for the data tables is on those containing raw data, but there will be additional ones holding, for instance, data products and calibration information. Thus, given access to the master index and a set of selection criteria, extractor software will be able to determine the location of the requested data. Second, a Data Description Language (DDL) has been developed to label each data item unambiguously and to facilitate data selection browsing. Through the use of tokens

  10. On the randomness of pulsar nulls

    NASA Astrophysics Data System (ADS)

    Redman, Stephen L.; Rankin, Joanna M.

    2009-05-01

    Pulsar nulling is not always a random process; most pulsars, in fact, null non-randomly. The Wald-Wolfowitz statistical runs test is a simple diagnostic that pulsar astronomers can use to identify pulsars that have non-random nulls. It is not clear at this point how the dichotomy in pulsar nulling randomness is related to the underlying nulling phenomenon, but its nature suggests that there are at least two distinct reasons that pulsars null.

  11. The Optimization of GBT Pulsar Data for the GBNCC Pulsar Survey

    NASA Astrophysics Data System (ADS)

    Gordon, Ashlee Nicole; Green Bank NRAO, GBNCC

    2016-01-01

    The Green Bank Telescope collects data from the Green Bank Northern Celestial Cap (GBNCC) pulsar survey in order to find new pulsars within its sensitivity and also, to confirm previously found pulsars within its sensitivity range. The collected data is then loaded into the CyberSKA website database where astronomers are tasked with rating the data sets based on its potential to be a pulsar from 0(unclassified), 1(class 1 pulsar), 2(class 2 pulsar), 3(class 3 pulsar), 4(radio frequency interference), 5(not a pulsar), 6(know pulsar), 7(harmonic of a known pulsar). This specific research done was to use previously classified pulsars to create a python script that will automatically identify the data set as a pulsar or a non-pulsar. After finding the recurring frequencies of radio frequency interference (RFI), the frequencies were then added to a pipeline to further discern pulsars from RFI.

  12. Looking for black-holes in X-ray binaries with XMM-Newton: XTE J1817-330 and XTE J1856+053

    SciTech Connect

    Sala, Gloria; Greiner, Jochen; Primak, Natalia

    2008-10-08

    The X-ray binary XTE J1817-330 was discovered in outburst on 26 January 2006 with RXTE/ASM. One year later, another X-ray transient discovered in 1996, XTE J1856+053, was detected by RXTE during a new outburst on 28 February 2007. We triggered XMM-Newton target of opportunity observationson these two objects to constrain their parameters and search for a stellar black holes. We summarize the properties of these two X-ray transients and show that the soft X-ray spectra indicate indeed the presence of an accreting stellar black hole in each of the two systems.

  13. Atomic time scales and pulsars

    NASA Astrophysics Data System (ADS)

    Petit, G.

    2014-12-01

    I review the atomic time scales generated by the BIPM, International Atomic Time TAI and the realization of Terrestrial Time TT(BIPM). TT(BIPM) is shown to be now accurate to within a few 10..16 in relative frequency and the performances of TAI and TT(BIPM) are compared. Millisecond pulsars have a very regular period of rotation and data from several pulsars may be used to realize an ensemble pulsar timescale. It is shown that a pulsar timescale may detect past instabilities in TAI. However TT(BIPM) is much more stable than TAI and should be used as a reference in pulsar analysis. Since the beginning of regular millisecond pulsar observations in the 1980s, primary standards and atomic time have gained one order of magnitude in accuracy every ~ 12 years, and this trend should continue for some time.

  14. Why are Pulsar Planets Rare?

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Livio, Mario; Palaniswamy, Divya

    2016-12-01

    Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Only pulsars with a suitable companion (with an extreme mass ratio) are able to form planets. Second, while a dead zone (a region of low turbulence) in the disk is generally thought to be essential for planet formation, it is most probably rare in disks around pulsars, because of the irradiation from the pulsar. The irradiation strongly heats the inner parts of the disk, thus pushing the inner boundary of the dead zone out. We suggest that the rarity of pulsar planets can be explained by the low probability for these two requirements to be satisfied: a very low-mass companion and a dead zone.

  15. Multiwavelength observations of XTE J1859+226

    NASA Astrophysics Data System (ADS)

    Haswell, C. A.; Chaty, S.; Cui, W.; Casares, J. V.; Hynes, R. I.

    2000-03-01

    On March 2 06:00 UT the transient source XTE J1859+226 had faded considerably to R=18.0 in the optical (IAC) and to a flux of about 13 mCrab (RXTE ASM). However, it clearly remains active in the X-rays. From extrapolating the last spectrum obtained with HST on 2000, February 8th we predict the following approximate magnitude and colours: V~18.4, U-B=-0.5, B-V = V-R = R-I = +0.4. A final simultaneous HST/RXTE visit to this source (most likely a black hole) is scheduled for 2000, March 5th between 06:10 and 13:41 UT.

  16. SIGPROC: Pulsar Signal Processing Programs

    NASA Astrophysics Data System (ADS)

    Lorimer, D. R.

    2011-07-01

    SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).

  17. Gamma radiation from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1990-01-01

    The probable magnetospheric location and source of the gamma ray emission from some young radiopulsars is discussed. The suggested evolution of this emission as a function of pulsar period gives a diminished gamma-ray luminosity for a more rapidly spinning pre-Crab pulsar. A greatly enhanced one, similar to that of unidentified Cos B sources, is predicted for a slightly slower post-Vela pulsar, followed by a relatively rapid quenching of the gamma-ray luminosity at still longer periods. Possible anomalous exo-magnetospheric pulsed MeV and TeV-PeV radiation from the Crab pulsar is considered.

  18. The Extended Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos

    2012-01-01

    We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.

  19. Electrodynamics of Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Beloborodov, Andrei M.

    2016-12-01

    We review electrodynamics of rotating magnetized neutron stars, from the early vacuum model to recent numerical experiments with plasma-filled magnetospheres. Significant progress became possible due to the development of global particle-in-cell simulations which capture particle acceleration, emission of high-energy photons, and electron-positron pair creation. The numerical experiments show from first principles how and where electric gaps form, and promise to explain the observed pulsar activity from radio waves to gamma-rays.

  20. Pulsar extinction. [astrophysics

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Baker, K.; Turk, J. S.

    1975-01-01

    Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius.

  1. Electrodynamics of Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Beloborodov, Andrei M.

    2017-07-01

    We review electrodynamics of rotating magnetized neutron stars, from the early vacuum model to recent numerical experiments with plasma-filled magnetospheres. Significant progress became possible due to the development of global particle-in-cell simulations which capture particle acceleration, emission of high-energy photons, and electron-positron pair creation. The numerical experiments show from first principles how and where electric gaps form, and promise to explain the observed pulsar activity from radio waves to gamma-rays.

  2. The pulsar spectral index distribution

    NASA Astrophysics Data System (ADS)

    Bates, S. D.; Lorimer, D. R.; Verbiest, J. P. W.

    2013-05-01

    The flux-density spectra of radio pulsars are known to be steep and, to first order, described by a power-law relationship of the form Sν ∝ να, where Sν is the flux density at some frequency ν and α is the spectral index. Although measurements of α have been made over the years for several hundred pulsars, a study of the intrinsic distribution of pulsar spectra has not been carried out. From the result of pulsar surveys carried out at three different radio frequencies, we use population synthesis techniques and a likelihood analysis to deduce what underlying spectral index distribution is required to replicate the results of these surveys. We find that in general the results of the surveys can be modelled by a Gaussian distribution of spectral indices with a mean of -1.4 and unit standard deviation. We also consider the impact of the so-called gigahertz-peaked spectrum pulsars proposed by Kijak et al. The fraction of peaked-spectrum sources in the population with any significant turnover at low frequencies appears to be at most 10 per cent. We demonstrate that high-frequency (>2 GHz) surveys preferentially select flatter spectrum pulsars and the converse is true for lower frequency (<1 GHz) surveys. This implies that any correlations between α and other pulsar parameters (for example age or magnetic field) need to carefully account for selection biases in pulsar surveys. We also expect that many known pulsars which have been detected at high frequencies will have shallow, or positive, spectral indices. The majority of pulsars do not have recorded flux density measurements over a wide frequency range, making it impossible to constrain their spectral shapes. We also suggest that such measurements would allow an improved description of any populations of pulsars with `non-standard' spectra. Further refinements to this picture will soon be possible from the results of surveys with the Green Bank Telescope and LOFAR.

  3. ELECTROMAGNETIC SPINDOWN OF A TRANSIENT ACCRETING MILLISECOND PULSAR DURING QUIESCENCE

    SciTech Connect

    Melatos, A.; Mastrano, A. E-mail: alpham@unimelb.edu.au

    2016-02-10

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751–305, SAX J1808.4–3658, and Swift J1756.9–2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  4. Planet formation around millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Banit, Menashe; Ruderman, Malvin; Shaham, Jacob

    1993-01-01

    We present a model for the formation of planets in circular orbits around millisecond pulsars. We propose that the planets originate from a circumbinary excretion disk around a binary millisecond pulsar and show how physical conditions in such a disk lead to the eventual formation of planets.

  5. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Did you know that the very first exoplanets ever confirmed were found around a pulsar? The precise timing measurements of pulsar PSR 1257+12 were what made the discovery of its planetary companions possible. Yet surprisingly, though weve discovered thousands of exoplanets since then, only one other planet has ever been confirmed around a pulsar. Now, a team of CSIRO Astronomy and Space Science researchers are trying to figure out why.Formation ChallengesThe lack of detected pulsar planets may simply reflect the fact that getting a pulsar-planet system is challenging! There are three main pathways:The planet formed before the host star became a pulsar which means it somehow survived its star going supernova (yikes!).The planet formed elsewhere and was captured by the pulsar.The planet formed out of the debris of the supernova explosion.The first two options, if even possible, are likely to be rare occurrences but the third option shows some promise. In this scenario, after the supernova explosion, a small fraction of the material falls back toward the stellar remnant and is recaptured, forming what is known as a supernova fallback disk. According to this model, planets could potentially form out of this disk.Disk ImplicationsLed by Matthew Kerr, the CSIRO astronomers set out to systematically look for these potential planets that might have formed in situ around pulsars. They searched a sample of 151 young, energetic pulsars, scouring seven years of pulse time-of-arrival data for periodic variation that could signal the presence of planetary companions. Their methods to mitigate pulsar timing noise and model realistic orbits allowed them to have good sensitivity to low-mass planets.The results? They found no conclusive evidence that any of these pulsars have planets.This outcome carries with it some significant implications. The pulsar sample spans 2 Myr in age, in which planets should have had enough time to form in debris disks. The fact that none were detected

  6. Pulsar timing and general relativity

    NASA Technical Reports Server (NTRS)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  7. Pulsar timing and general relativity

    NASA Technical Reports Server (NTRS)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  8. Magnetars and white dwarf pulsars

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Malheiro, Manuel; Coelho, Jaziel G.

    2016-07-01

    The anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely B ≳ 1014G, and for that reason are known as magnetars. However, in the last years, some SGRs/AXPs with low surface magnetic fields B ˜ (1012-1013)G have been detected, challenging the magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on WDs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized WDs can have surface magnetic field B ˜ 107-1010 G and rotate very fast with frequencies Ω ˜ 1rad/s, consistent with the observed rotation periods P ˜ (2-12)s.

  9. Sensitivity of Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2015-08-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.

  10. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2016-05-01

    The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk-magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.

  11. Millisecond pulsars: Timekeepers of the cosmos

    NASA Technical Reports Server (NTRS)

    Kaspi, Victoria M.

    1995-01-01

    A brief discussion on the characteristics of pulsars is given followed by a review of millisecond pulsar discoveries including the very first, PRS B1937+21, discovered in 1982. Methods of timing millisecond pulsars and the accuracy of millisecond pulsars as clocks are discussed. Possible reasons for the pulse residuals, or differences between the observed and predicted pulse arrival times for millisecond pulsars, are given.

  12. Doppler Imaging of Black Hole SYSTEMS:XTE J1118+480.

    NASA Astrophysics Data System (ADS)

    Callanan, Paul; Perres-Torres, Manuel; Garcia, Michael

    We present time-resolved spectroscopy of the black-hole candidate XTE J1118+480 obtained during its approach to quiescence. Doppler imaging of the intense Hα line shows persistent emission with an origin in the gas stream/hotspot. In addition the Doppler maps show enhanced emission in the +Vx -Vy quadrant clearing incompatible with a stream/hotspot origin. We favour a non-uniform disk intensity distribution due to tidal effects as the origin of this emission. We compare our map with that of XTE J1118+480 in outburst as well as with those of other transient systems in quiescence

  13. SEXTANT: A Demonstration of X-ray Pulsar-Based Navigation Using NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Mitchell, Jason W; Winternitz, Luke M; Hasouneh, Monther A; Price, Samuel R; Valdez, Jennifer; Yu, Wayne H; Semper, Sean R; Wood, Kent S.; Wolff, Michael Thomas; Arzoumanian, Zaven; Litchford, Ronald J; Gendreau, Keith

    2014-08-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology-demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray pulsar-based navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. The SEXTANT XNAV demonstration will exploit the large collecting area (>1800 cm^2), low background (<0.2 counts/s), and precise timing (<300 ns) of the NICER X-ray Timing Instrument (XTE). Taking advantage of NICER’s science observations of X-ray emitting millisecond pulsars, which are nature’s most stable clocks, the SEXTANT flight software will demonstrate real-time orbit determination with error less than 10 km in any direction, through measurements made over 2 weeks or less in the highly dynamic low-Earth ISS orbit. The completed technology demonstration will bring the XNAV concept and algorithms to a Technology Readiness Level of 8 and will inform the design and configuration of future practical XNAV implementations.

  14. FSSC Science Tools: Pulsar Analysis

    NASA Technical Reports Server (NTRS)

    Thompson, Dave

    2010-01-01

    This slide presentation reviews the typical pulsar analysis, giving tips for screening of the data, the use of time series analysis, and utility tools. Specific information about analyzing Vela data is reviewed.

  15. Fermi's New Pulsar Detection Technique

    NASA Image and Video Library

    To locate a pulsar in Fermi LAT data requires knowledge of the object’s sky position, its pulse period, and how the pulse rate slows over time. Computers check many different combinations of posi...

  16. Millisecond radio pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    Verbunt, Frank; Lewin, Walter H. G.; van Paradijs, Jan

    1989-04-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  17. Millisecond radio pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    Verbunt, Frank; Lewin, Walter H. G.; van Paradijs, Jan

    1989-11-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  18. Millisecond radio pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Verbunt, Frank; Lewin, Walter H. G.; Vanparadijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  19. The LOFAR Pulsar Data Pipeline

    NASA Astrophysics Data System (ADS)

    Alexov, A.; Hessels, J.; Mol, J. D.; Stappers, B.; van Leeuwen, J.

    2010-12-01

    The LOw Frequency ARray (LOFAR) for radio astronomy is being built in the Netherlands by ASTRON, with extensions throughout Europe. LOFAR operates at radio frequencies below 250 MHz. The project is an interferometric array of radio antennas grouped into stations that are distributed over an area of hundreds of kilometers. LOFAR will revolutionise low-frequency radio astronomy. Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group has been developing the LOFAR Pulsar Data Pipeline to both study known pulsars as well as search for new ones. The pipeline is being developed for the Blue Gene/P (BG/P) supercomputer and a large Linux cluster in order to utilize enormous amounts of computation capabilities (˜ 50 Tflops) and data streams of up to 23TB/hour. The LOFAR pipeline output will be using the Hierarchical Data Format 5 (HDF5) to efficiently store large amounts of numerical data, and to manage complex data encompassing a variety of data types, across distributed storage and processing architectures. We present the LOFAR Pulsar Data Pipeline overview, the pulsar beam-formed data format, the status of the pipeline processing as well as our future plans for developing additional transient pipelines.

  20. Radio pulsar disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Michel, F. C.

    1983-01-01

    Macroscopic physics are discussed for the case of a disk close to an isolated, magnetized, rotating neutron star that acts as a Faraday disk dynamo, while the disk acts as both a load and a neutral sheet. This sheet allows the polar cap current to return to the neutron star, splitting a dipolar field into two monopolar halves. The dominant energy loss is from the stellar wind torque, and the next contribution is dissipation in the auroral zones, where the current returns to the star in a 5 cm-thick sheet. The disk itself may be a source of visible radiation comparable to that in pulsed radio frequency emission. As the pulsar ages, the disk expands and narrows into a ring which, it is suggested, may lead to a cessation of pulsed emission at periods of a few sec.

  1. Electromagnetic cascades in pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1981-01-01

    The development of pair photon cascades initiated by high energy electrons above a pulsar polar cap is simulated numerically. The calculation uses the energy of the primary electron, the magnetic field strength, and the period of rotation as parameters and follows the curvature radiation emitted by the primary, the conversion of this radiation e(+) - e(-) pairs in the intense fields, and the quantized synchrotron radiation by the secondary pairs. A recursive technique allows the tracing of an indefinite number of generations using a Monte Carlo method. Gamma ray and pair spectra are calculated for cascades in different parts of the polar cap and with different acceleration models. It is found that synchrotron radiation from secondary pairs makes an important contribution to the gamma ray spectrum above 25 MeV, and that the final gamma ray and pair spectra are insensitive to the height of the accelerating region, as long as the acceleration of the primary electrons is not limited by radiation reaction.

  2. Radio pulsar disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Michel, F. C.

    1983-01-01

    Macroscopic physics are discussed for the case of a disk close to an isolated, magnetized, rotating neutron star that acts as a Faraday disk dynamo, while the disk acts as both a load and a neutral sheet. This sheet allows the polar cap current to return to the neutron star, splitting a dipolar field into two monopolar halves. The dominant energy loss is from the stellar wind torque, and the next contribution is dissipation in the auroral zones, where the current returns to the star in a 5 cm-thick sheet. The disk itself may be a source of visible radiation comparable to that in pulsed radio frequency emission. As the pulsar ages, the disk expands and narrows into a ring which, it is suggested, may lead to a cessation of pulsed emission at periods of a few sec.

  3. Ion-proton pulsars

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  4. Pulsars In The Headlines

    NASA Astrophysics Data System (ADS)

    Del Puerto, C.

    1967 was the year of the so-called “war of the six days” or “third Arab Israeli war”, the year of the Che Guevara's death in Bolivia, the year of the military coup in Greece and, in medicine, the year of the first human heart transplant. Moreover, the signing of the international agreement on the use of space with peaceful means and the crash of the Russian shuttle Soyuz-1, with Cosmonaut Vladimir Kamarov on board also happened that year. Likewise, Spanish writer and professor of journalists, José Azorín, passed away. However, here we are interested in 1967 because it was the year of the detection of pulsars, which astronomers initially confused with signals from extraterrestrials or Little Green Men. Nowadays, they are still present in the headlines.

  5. Fermi Finds Youthful Pulsar Among Ancient Stars

    NASA Image and Video Library

    In three years, NASA's Fermi has detected more than 100 gamma-ray pulsars, but something new has appeared. Among a type of pulsar with ages typically numbering a billion years or more, Fermi has fo...

  6. Equilibrium spin pulsars unite neutron star populations

    NASA Astrophysics Data System (ADS)

    Ho, Wynn; Klus, Helen; Coe, Malcolm; Andersson, Nils

    2015-08-01

    We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.

  7. Millisecond pulsars - Nature's most stable clocks

    NASA Astrophysics Data System (ADS)

    Taylor, Joseph H., Jr.

    1991-07-01

    The author describes the role pulsars might play in time and frequency technology. Millisecond pulsars are rapidly rotating neutron stars: spherical flywheels some 20 km in diameter, 1.4 times as massive as the Sun, and spinning as fast as several thousand radians per second. Radio noise generated in a pulsar's magnetosphere by a highly beamed process is detectable over interstellar distances, as a periodic sequence of pulses similar to the ticks of an excellent clock. High-precision comparisons between pulsar time and terrestrial atomic time show that over intervals of several years, some millisecond pulsars have fractional stabilities comparable to those of the best atomic clocks. The author briefly reviews the physics of pulsars, discusses the techniques of pulsar timing measurements, and summarizes the results of careful studies of pulsar stabilities.

  8. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is

  9. Towards a Realistic Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice; Contopoulos, Ioannis

    2012-01-01

    We present the magnetic and electric field structures as well as the currents ami charge densities of pulsar magnetospberes which do not obey the ideal condition, E(raised dot) B = O. Since the acceleration of particles and the production of radiation requires the presence of an electric field component parallel to the magnetic field, E(sub ll) the structure of non-Ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-Ideal pulsar maglletospheres is important because their comparison (including models for t he production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support nonzero values for E(sub ll) and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) Force-Free Electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that tltis is at most 20-40% (depending on t he non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = pc and discuss their possible implicatioll on the determination of the "on/ off" states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E(sub ll) locally produce oscillations, potentially observable in the data.

  10. A New Standard Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  11. A new standard pulsar magnetosphere

    SciTech Connect

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-20

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  12. TOWARD A REALISTIC PULSAR MAGNETOSPHERE

    SciTech Connect

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice

    2012-04-10

    We present the magnetic and electric field structures and the currents and charge densities of pulsar magnetospheres that do not obey the ideal condition, E {center_dot} B = 0. Since the acceleration of particles and the production of radiation require the presence of an electric field component parallel to the magnetic field, E{sub ||}, the structure of non-ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-ideal pulsar magnetospheres is important because their comparison (including models for the production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support non-zero values for E{sub ||} and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) force-free electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that this is at most 20%-40% (depending on the non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = {rho}c and discuss their possible implication on the determination of the 'on/off' states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E{sub ||} locally produce oscillations, potentially observable in the data.

  13. What brakes the Crab pulsar?

    NASA Astrophysics Data System (ADS)

    Čadež, A.; Zampieri, L.; Barbieri, C.; Calvani, M.; Naletto, G.; Barbieri, M.; Ponikvar, D.

    2016-03-01

    Context. Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. Aims: The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. Methods: We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. Results: From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2 × 1010 turns. Conclusions: Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.

  14. PREDICTING RANGES FOR PULSARS' BRAKING INDICES

    SciTech Connect

    Magalhaes, Nadja S.; Miranda, Thaysa A.; Frajuca, Carlos

    2012-08-10

    The theoretical determination of braking indices of pulsars is still an open problem. In this paper we report results of a study concerning such determination based on a modification of the canonical model, which admits that pulsars are rotating magnetic dipoles, and on data from the seven pulsars with known braking indices. In order to test the modified model, we predict ranges for the braking indices of other pulsars.

  15. Pulsar Timing with the Fermi LAT

    DTIC Science & Technology

    2010-12-01

    Pulsar Timing with the Fermi LAT Paul S. Ray∗, Matthew Kerr†, Damien Parent∗∗ and the Fermi PSC‡ ∗Naval Research Laboratory, 4555 Overlook Ave., SW...Laboratory, Washington, DC 20375, USA ‡Fermi Pulsar Search Consortium Abstract. We present an overview of precise pulsar timing using data from the Large...unbinned photon data. In addition to determining the spindown behavior of the pulsars and detecting glitches and timing noise, such timing analyses al

  16. Search for Millisecond Pulsars for the Pulsar Timing Array project

    NASA Astrophysics Data System (ADS)

    Milia, S.

    2012-03-01

    Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the sub­class of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the space­time at the

  17. Formation of Planets around Pulsars

    NASA Astrophysics Data System (ADS)

    Banit, M.; Ruderman, M. A.; Shaham, J.; Applegate, J. H.

    1993-10-01

    Pulse arrival-time delays PSR 1257+ 12 suggest the existence of at least two planets in nearly circular orbits around it. In this paper we discuss different scenarios for the formation of planets in circular orbits around pulsars. Among other topics, we look in some detail at wind emission mechanisms that are particularly relevant to the process of evaporation of planets around pulsars and discuss their possible role in orbit circularization. We conclude that the formation of such planets may occur in a very late phase of low-mass X-ray binary (LMXB) or binary millisecond pulsar (BMP) evolution. Evaporation of the companion star in these phases supplies matter to a circumbinary "excretion" disk in which the physical conditions, similar to those appropriate for the BMP 1957+20 system, may allow the formation of planets like those observed in PSR 1257+12.

  18. The Crab pulsar at VHE

    NASA Astrophysics Data System (ADS)

    Zanin, Roberta

    2017-03-01

    The last six years have witnessed major revisions of our knowledge about the Crab Pulsar. The consensus scenario for the origin of the high-energy pulsed emission has been challenged with the discovery of a very-high-energy power law tail extending up to 400 GeV, above the expected spectral cut off at a few GeV. Now, new measurements obtained by the MAGIC collaboration extend the energy spectrum of the Crab Pulsar even further, on the TeV regime. Above 400 GeV the pulsed emission comes mainly from the interpulse, which becomes more prominent with energy due to a harder spectral index. These findings require γ -ray production via inverse Compton scattering close to or beyond the light cylinder radius by an underlying particle population with Lorentz factors greater than 5 × 106. We will present those new results and discuss the implications in our current knowledge concerning pulsar environments.

  19. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  20. PINT, a New Pulsar Timing Software

    NASA Astrophysics Data System (ADS)

    Luo, Jing; Jenet, Fredrick A.; Ransom, Scott M.; Demorest, Paul; Van Haasteren, Rutger; Archibald, Anne

    2015-01-01

    We are presenting a new pulsar timing software PINT. The current pulsar timing group are heavily depending on Tempo/Tempo2, a package for analysis pulsar data. However, for a high accuracy pulsar timing related project, such as pulsar timing for gravitational waves, an alternative software is needed for the purpose of examing the results. We are developing a Tempo independent software with a different structure. Different modules is designed to be more isolated and easier to be expanded. Instead of C, we are using Python as our programming language for the advantage of flexibility and powerful docstring. Here, we are presenting the detailed design and the first result of the software.

  1. The Disturbance of a Millisecond Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Lentati, L. T.; Kerr, M.; Bailes, M.; Bhat, N. D. R.; Coles, W. A.; Dai, S.; Dempsey, J.; Hobbs, G.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Spiewak, R.; van Straten, W.; Toomey, L.; Wang, J.-B.; Wen, L.; You, X.-P.; Zhu, X.-J.

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643-1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  2. Galactic X-ray emission from pulsars

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1981-01-01

    The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.

  3. Proper Motions of High Galactic Latitude Pulsars

    NASA Astrophysics Data System (ADS)

    McGary, R.; Goss, M.; Fruchter, A.; Thorsett, S.

    1997-12-01

    Although the locations of over 600 pulsars are known today, their birthplaces remain somewhat of an enigma. It has been conjectured by Narayan and Ostriker (1990) that there are two different types of pulsars in the Galaxy, one born near the Galactic plane and a second born high above the plane with large velocities. The existence of two distinct subpopulations would account for the observations by Harrison, Lyne, and Anderson (1993) of four pulsars with velocities toward the Galactic plane. Thirteen of the 31 pulsars in our group have been observed at two epochs at 20 cm at the VLA in Socorro, New Mexico. This pulsar data is unique in that it was taken at the VLA using a "matched filter." The pulsar was detected using the Princeton Mark III Timing Machine and the correlator was then gated with the correct phase so that it only gathered data when the pulsar was "on." By gating our data, we have been able to increase the signal to noise ratio of weak pulsars by a factor of six. This increased SNR enables us to accurately determined positions for pulsars as weak as 2 mJy in the ungated data. By doubling the number of pulsars high above the Galactic plane with measured proper motions, we will be able to improve our understanding of the birth and evolution of the pulsar population.

  4. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-04

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum.

  5. Centrifugal Acceleration in Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Thomas, R. M. C.; Gangadhara, R. T.

    We present a relativistic model of pulsar radio emission by plasma accelerated along the rotating magnetic field lines projected on to a 2D plane perpendicular to the rotation axis. We have derived the expression for the trajectory of a particle, and estimated the spectrum of radio emission by the plasma bunches. We used the parameters given by Peyman &Gangadhara (2002). The analytical expressions for the Stokes parameters are obtained, and their values compared with the observed profiles. The one sense of circular polarization, observed in many pulsars, can be explained in light of our model.

  6. Sporadically Emitting Pulsars at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.

    2017-01-01

    Sporadic emission from pulsars has long been observed, however, the mechanism which causes the intermittency is still a mystery. The proposed observations of three nulling pulsars (J0659+1414, J2048-1616 and J1456-6843), two Rotating Radio Transients (J0410-31 and J1423-56) and one intermittent pulsar (J1107-5907) will provide information on pulsar emission over a variety of time scales. Studying these objects at low frequencies allows us to explore the links between the different populations and how the sporadic emission evolves with frequency. Ultimately, studying these extraordinary pulsars gives us new insight into the dynamic nature of the emission processes and pulsar magnetosphere. This information is imperative for linking models and theories regarding pulsar radio emission physics to the myriad sporadic emission phenomena we observe.

  7. Pulsar gamma rays from polar cap regions

    NASA Technical Reports Server (NTRS)

    Chiang, James; Romani, Roger W.

    1992-01-01

    The production is studied of pulsar gamma rays by energetic electrons flowing in the open field region above pulsar polar caps. The propagation was followed of curvature radiation from primary electrons, as well as hard synchrotron radiation generated by secondary pairs, through the pulsar magnetosphere for vacuum dipole open field geometries. Using data from radio and optical observations, models were constructed for the specific geometries and viewing angles appropriate to particular pulsars. These detailed models produce normalized spectra above 10 MeV, pulse profiles, beaming fractions and phase resolved spectra appropriate for direct comparison with COS-B and GRO data. Models are given for the Crab, Vela, and other potentially detectable pulsars; general agreement with existing data is good, although perturbations to the simplified models are needed for close matches. The calculations were extended to the millisecond pulsar range, which allows the production of predictions for the flux and spectra of populations of recycled pulsars and search strategies are pointed out.

  8. YOUNG RADIO PULSARS IN GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Boyles, J.; Lorimer, D. R.; Turk, P. J.; Mnatsakanov, R.; Lynch, R. S.; Ransom, S. M.; Freire, P. C.; Belczynski, K.

    2011-11-20

    Currently three isolated radio pulsars and one binary radio pulsar with no evidence of any previous recycling are known in 97 surveyed Galactic globular clusters (GCs). As pointed out by Lyne et al., the presence of these pulsars cannot be explained by core-collapse supernovae, as commonly assumed for their counterparts in the Galactic disk. We apply a Bayesian analysis to the results from surveys for radio pulsars in GCs and find the number of potentially observable non-recycled radio pulsars present in all clusters to be <3600. Accounting for beaming and retention considerations, the implied birthrate for any formation scenario for all 97 clusters is <0.25 pulsars century{sup -1} assuming a Maxwellian distribution of velocities with a dispersion of 10 km s{sup -1}. The implied birthrates for higher velocity dispersions are substantially higher than inferred for such pulsars in the Galactic disk. This suggests that the velocity dispersion of young pulsars in GCs is significantly lower than those of disk pulsars. These numbers may be substantial overestimates due to the fact that the currently known sample of young pulsars is observed only in metal-rich clusters. We propose that young pulsars may only be formed in GCs with metallicities with log[Fe/H] > - 0.6. In this case, the potentially observable population of such young pulsars is 447{sup +1420}{sub -399} (the error bars give a 95% confidence interval) and their birthrate is 0.012{sup +0.037}{sub -0.010} pulsars century{sup -1}. The most likely creation scenario to explain these pulsars is the electron capture supernova of an OMgNe white dwarf.

  9. Improving Recent Large-Scale Pulsar Surveys

    NASA Astrophysics Data System (ADS)

    Cardoso, Rogerio Fernando; Ransom, S.

    2011-01-01

    Pulsars are unique in that they act as celestial laboratories for precise tests of gravity and other extreme physics (Kramer 2004). There are approximately 2000 known pulsars today, which is less than ten percent of pulsars in the Milky Way according to theoretical models (Lorimer 2004). Out of these 2000 known pulsars, approximately ten percent are known millisecond pulsars, objects used for their period stability for detailed physics tests and searches for gravitational radiation (Lorimer 2008). As the field and instrumentation progress, pulsar astronomers attempt to overcome observational biases and detect new pulsars, consequently discovering new millisecond pulsars. We attempt to improve large scale pulsar surveys by examining three recent pulsar surveys. The first, the Green Bank Telescope 350MHz Drift Scan, a low frequency isotropic survey of the northern sky, has yielded a large number of candidates that were visually inspected and identified, resulting in over 34.000 thousands candidates viewed, dozens of detections of known pulsars, and the discovery of a new low-flux pulsar, PSRJ1911+22. The second, the PALFA survey, is a high frequency survey of the galactic plane with the Arecibo telescope. We created a processing pipeline for the PALFA survey at the National Radio Astronomy Observatory in Charlottesville- VA, in addition to making needed modifications upon advice from the PALFA consortium. The third survey examined is a new GBT 820MHz survey devoted to find new millisecond pulsars by observing the target-rich environment of unidentified sources in the FERMI LAT catalogue. By approaching these three pulsar surveys at different stages, we seek to improve the success rates of large scale surveys, and hence the possibility for ground-breaking work in both basic physics and astrophysics.

  10. The Variability and Spectrum of NGC 4051 from Deep, Simultaneous EUVE and XTE Observations

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Cagnoni, Ilaria; Papadakis, Iossif; McHardy, Ian

    1998-01-01

    We present timing and spectral analysis of the data collected by the Extreme Ultraviolet Explorer Satellite (EUVE) for the Seyfert 1 galaxy NGC 4051 during 1996. NGC 4051 was observed twice in May 1996 and again in December 1996 for a total of more than 200 ksec. The observations were always simultaneous with hard X-ray observations conducted with the X-Ray Timing Explorer (XTE). The EUVE light curves are extremely variable during each observation, with the maximum variability during May 1996 when we registered changes by a factor of 21 over 8 hours and more than a factor of 24 variations from peak to minimum. We detected signal in the EUVE spectrograph in the 75-100 Arange which is well fitted by absorbed power law models. We will illustrate the results of our spectral and detailed power spectrum analysis for the simultaneous EUVE and XTE spectra and light curves and discuss the consequences on possible emission mechanisms.

  11. The Variability and Spectrum of NGC 4051 from Deep, Simultaneous EUVE and XTE Observations

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Cagnoni, Ilaria; Papadakis, Iossif; McHardy, Ian

    1998-01-01

    We present timing and spectral analysis of the data collected by the Extreme Ultraviolet Explorer Satellite (EUVE) for the Seyfert 1 galaxy NGC 4051 during 1996. NGC 4051 was observed twice in May 1996 and again in December 1996 for a total of more than 200 ksec. The observations were always simultaneous with hard X-ray observations conducted with the X-Ray Timing Explorer (XTE). The EUVE light curves are extremely variable during each observation, with the maximum variability during May 1996 when we registered changes by a factor of 21 over 8 hours and more than a factor of 24 variations from peak to minimum. We detected signal in the EUVE spectrograph in the 75-100 Arange which is well fitted by absorbed power law models. We will illustrate the results of our spectral and detailed power spectrum analysis for the simultaneous EUVE and XTE spectra and light curves and discuss the consequences on possible emission mechanisms.

  12. Multiwavelength observations of XTE J1859+226 on 1999, November 6th

    NASA Astrophysics Data System (ADS)

    Haswell, C. A.; Chaty, S.; Norton, A. J.; Chen, W.; Hynes, R. I.

    1999-11-01

    Further simultaneous HST and RXTE observations (visit #3) of the new X-ray transient XTE J1859+226 are scheduled for November 6th 1999 19:37 - 22:22 UT. Coordinated multi-wavelength observations (simultaneous, near-simultaneous, and following the evolution over days/weeks) would be extremely helpful. If you can observe simultaneously with HST and/or RXTE, high time-resolution data (< 10 seconds) will be particularly useful.

  13. XTE J1752-223: Optical spectroscopy and infrared counterpart detection

    NASA Astrophysics Data System (ADS)

    Torres, M. A. P.; Steeghs, D.; Jonker, P. G.; Thompson, I.; Soderberg, A. M.

    2009-10-01

    Prompted by the discovery of its bright optical counterpart and the announcement of increased X-ray activity (ATels #2258, #2259, #2261, #2265, #2263), we have acquired additional observations of XTE J1752-223 at optical and near-infrared wavelengths. OPTICAL SPECTROSCOPY: An optical spectrum covering 3330-9165 Angstrom was obtained with the MIKE echelle spectrograph on the Magellan Clay telescope starting on 2009 Oct 26 UT 23:52.

  14. Radio detection of XTE J1752-223 with the ATCA

    NASA Astrophysics Data System (ADS)

    Brocksopp, Catherine; Corbel, Stephane; Tzioumis, Tasso; Fender, Rob

    2009-11-01

    Following the detection of the new X-ray transient, XTE J1752-223, by RXTE and Swift (ATel. #2258; see also ATels. #2259, #2261, #2263, #2265, #2268, #2269), we have performed radio observations with the Australia Telescope Compact Array and the new CABB back-end. Data were obtained at 5.5 GHz and 9 GHz on October 30 and November 1. We detect a radio source at a position consistent with the X-ray coordinates.

  15. Development of the solar array deployment and drive system for the XTE spacecraft

    NASA Technical Reports Server (NTRS)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  16. Outburst of the 2 s Anomalous X-ray Pulsar 1E 1547.0-5408

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Reynolds, J.; Ransom, S. M.

    2008-01-01

    Following our discovery of radio pulsations from the newly recognized anomalous X-ray pulsar (AXP) 1E 1547.0-5408, we initiated X-ray monitoring with the Swift X-ray telescope and obtained a single target-of-opportunity observation with the Newton X-ray Multi-Mirror Mission (XMM-Newton). In comparison with its historic minimum flux of 3 x 10(exp -l3)ergs/sq cm/s, the source was found to be in a record high state, f(sub x)(1-8 keV) = 5 x 10(exp -12)ergs/sq cm/s, or L(sub x) = 1.7 x 10(exp 35)(d/9 kpc )(sup 2)ergs/s, and declining by 25% in 1 month. Extrapolating the decay, we bound the total energy in this outburst to 1042 ergs < E < ergs. The spectra (fitted with a Comptonized blackbody) show that an increase in the temperature and area of a hot region, to 0.5 keV and -16% of the surface area of the neutron star, respectively, are primarily responsible for its increase in luminosity. The energy, spectrum, and timescale of decay are consistent with a deep crustal heating event, similar to an interpretation of the X-ray turn-on of the transient AXP XTE J18 10- 197. Simultaneous with the 4.6 hr ATdA4-Newton observation, we observed at 6.4 GHz with the Parkes telescope, measuring the phase relationship of the radio and X-ray pulse. The X-ray pulsed fraction of 1E 1547.0-5408 is only approx. 7 %, while its radio pulse is relatively broad for such a slow pulsar, which may indicate a nearly aligned rotator. As also inferred from the transient behavior of XTE J18 10-197, the only other AXP known to emit in the radio, the magnetic field rearrangement responsible for this X-ray outburst of 1E 1547.0-5408 is probably the cause of its radio turn-on.

  17. Braking Index of Isolated Pulsars

    NASA Astrophysics Data System (ADS)

    Hamil, Oliver; Stone, Jirina; Urbanec, Martin; Urbancova, Gabriela

    2015-04-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω, and their time derivatives which show unambiguously that the pulsars are slowing down. The exact mechanism of the spin-down is a question of debate in detail, but the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR). The energy loss by a rotating pulsar is proportional to a model dependent power of Ω. This relation leads to the power law Ω˙ = -K Ωn where n is called the braking index, equal to the ratio (ΩΩ̈)/ Ω˙2 . The simple MDR model predicts the value of n = 3, but observations of isolated pulsars provide rather precise values of n, individually accurate to a few percent or better, in the range 1 < n < 2.8, which is consistently less than the predictions of the MDR model. In this work, we study the dynamical limits of the MDR model as a function of angular velocity. The effects of variation in the rest mass, the moment of inertia, and the dependence on a realistic Equation of State of the rotating star are considered. Furthermore, we introduce a simulated superfluid effect by which the angular momentum of the core is eliminated from the calculation.

  18. RESISTIVE SOLUTIONS FOR PULSAR MAGNETOSPHERES

    SciTech Connect

    Li, Jason; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2012-02-10

    The current state of the art in the modeling of pulsar magnetospheres invokes either the vacuum or force-free limits for the magnetospheric plasma. Neither of these limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. To better understand the structure of such magnetospheres, we combine accelerating fields and force-free solutions by considering models of magnetospheres filled with resistive plasma. We formulate Ohm's law in the minimal velocity fluid frame and construct a family of resistive solutions that smoothly bridges the gap between the vacuum and the force-free magnetosphere solutions. The spin-down luminosity, open field line potential drop, and the fraction of open field lines all transition between the vacuum and force-free values as the plasma conductivity varies from zero to infinity. For fixed inclination angle, we find that the spin-down luminosity depends linearly on the open field line potential drop. We consider the implications of our resistive solutions for the spin-down of intermittent pulsars and sub-pulse drift phenomena in radio pulsars.

  19. CHANGES IN THE CRAB PULSAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scientists are learning more about how pulsars work by studying a series of Hubble Space Telescope images of the heart of the Crab Nebula. The images, taken over a period of several months, show that the Crab is a far more dynamic object than previously understood. At the center of the nebula lies the Crab Pulsar. The pulsar is a tiny object by astronomical standards -- only about six miles across -- but has a mass greater than that of the Sun and rotates at a rate of 30 times a second. As the pulsar spins its intense magnetic field whips around, acting like a sling shot, accelerating subatomic particles and sending them hurtling them into space at close to the speed of light. The tiny pulsar and its wind are the powerhouse for the entire Crab Nebula, which is 10 light-years across -- a feat comparable to an object the size of a hydrogen atom illuminating a volume of space a kilometer across. The three pictures shown here, taken from the series of Hubble images, show dramatic changes in the appearance of the central regions of the nebula. These include wisp-like structures that move outward away from the pulsar at half the speed of light, as well as a mysterious 'halo' which remains stationary, but grows brighter then fainter over time. Also seen are the effects of two polar jets that move out along the rotation axis of the pulsar. The most dynamic feature seen -- a small knot that 'dances around' so much that astronomers have been calling it a 'sprite' -- is actually a shock front (where fast-moving material runs into slower-moving material)in one of these polar jets. The telescope captured the images with the Wide Field and Planetary Camera 2 using a filter that passes light of wavelength around 550 nanometers, near the middle of the visible part of the spectrum. The Crab Nebula is located 7,000 light-years away in the constellation Taurus. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  20. Pulsar VLBI to Measure Cosmological Rotation and Study Pulsar Emission Regions

    NASA Astrophysics Data System (ADS)

    Gwinn, C. R.

    2009-08-01

    Pulsars are useful for measuring the rotation of the universe. Also, their emission regions provide interesting laboratories for plasma physics. I describe here how VLBI of pulsars, and the VSOP-2 spacecraft, can contribute to such studies.

  1. A Pulsar and a Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  2. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  3. Relativistic spin precession in the double pulsar.

    PubMed

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  4. Trompe L'Oeil 'binary' pulsars

    NASA Astrophysics Data System (ADS)

    Nelson, Robert W.; Finn, Lee S.; Wasserman, Ira

    1990-01-01

    A freely precessing pulsar produces pulse phase residuals which can mimic those of a pulsar in a binary orbit. In particular, discrete sets of phase residuals due to precessional motion of an isolated pulsar are sampled; it is shown that this data is well fit by residuals from a binary pulsar in a sufficiently tight orbit. Analytic and numerical relationships between the projected orbital size, a(p) sin i, and the orbital eccentricity, e, of a misidentified binary pulsar; are found the observations that would distinguish between these models are discussed. Regardless of the mechanism that causes the precession, the maximum amplitude of the phase residual is pi/2: consequently, a(p)sin i is (approximately) bounded by cP(puls)/4. The newly discovered 'binary' millisecond pulsars in the globular cluster 47 Tuc is discussed, and it is shown that the periodic frequency modulation reported cannot be explained by free precession.

  5. Birth of millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Bailyn, C. D.

    1988-01-01

    It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.

  6. Birth of millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Bailyn, C. D.

    1988-01-01

    It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.

  7. Spacecraft Navigation Using X-ray Pulsars

    DTIC Science & Technology

    2006-01-01

    make them attractive as potential natural naviga- tion beacons and why a practical implementation looks most feasible in the X-ray band. We then...describe the history of the X-ray navigation program at NRL up through our current Defense Advanced Research Proj- ects Agency (DARPA) program. Finally, we...that produce the powerful radiation beams. These pulsars then turn off and inhabit the “pulsar graveyard.” During their lives, these pulsars make very

  8. Self-modulational formation of pulsar microstructures

    NASA Technical Reports Server (NTRS)

    Chian, A. C.-L.; Kennel, C. F.

    1987-01-01

    A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.

  9. ON PULSAR DISTANCE MEASUREMENTS AND THEIR UNCERTAINTIES

    SciTech Connect

    Verbiest, J. P. W.; Lee, K. J.; Weisberg, J. M.; Chael, A. A.; Lorimer, D. R.

    2012-08-10

    Accurate distances to pulsars can be used for a variety of studies of the Galaxy and its electron content. However, most distance measures to pulsars have been derived from the absorption (or lack thereof) of pulsar emission by Galactic H I gas, which typically implies that only upper or lower limits on the pulsar distance are available. We present a critical analysis of all measured H I distance limits to pulsars and other neutron stars, and translate these limits into actual distance estimates through a likelihood analysis that simultaneously corrects for statistical biases. We also apply this analysis to parallax measurements of pulsars in order to obtain accurate distance estimates and find that the parallax and H I distance measurements are biased in different ways, because of differences in the sampled populations. Parallax measurements typically underestimate a pulsar's distance because of the limited distance to which this technique works and the consequential strong effect of the Galactic pulsar distribution (i.e., the original Lutz-Kelker bias), in H I distance limits, however, the luminosity bias dominates the Lutz-Kelker effect, leading to overestimated distances because the bright pulsars on which this technique is applicable are more likely to be nearby given their brightness.

  10. The Parkes Pulsar Timing Array Project

    NASA Astrophysics Data System (ADS)

    Manchester, R. N.; Hobbs, G.; Bailes, M.; Coles, W. A.; van Straten, W.; Keith, M. J.; Shannon, R. M.; Bhat, N. D. R.; Brown, A.; Burke-Spolaor, S. G.; Champion, D. J.; Chaudhary, A.; Edwards, R. T.; Hampson, G.; Hotan, A. W.; Jameson, A.; Jenet, F. A.; Kesteven, M. J.; Khoo, J.; Kocz, J.; Maciesiak, K.; Oslowski, S.; Ravi, V.; Reynolds, J. R.; Sarkissian, J. M.; Verbiest, J. P. W.; Wen, Z. L.; Wilson, W. E.; Yardley, D.; Yan, W. M.; You, X. P.

    2013-01-01

    A `pulsar timing array' (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of `global' phenomena such as a background of gravitational waves or instabilities in atomic timescales that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 ms pulsars is being observed at three radio-frequency bands, 50 cm (~700 MHz), 20 cm (~1400 MHz), and 10 cm (~3100 MHz), with observations at intervals of two to three weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters, and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For 10 of the 20 pulsars, rms timing residuals are less than 1 μs for the best band after fitting for pulse frequency and its first time derivative. Significant `red' timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array and a PTA based on the Square Kilometre Array. We also present an `extended PPTA' data set that combines PPTA data with earlier Parkes timing data for these pulsars.

  11. Optical pulsations from a transitional millisecond pulsar

    NASA Astrophysics Data System (ADS)

    Ambrosino, F.; Papitto, A.; Stella, L.; Meddi, F.; Cretaro, P.; Burderi, L.; Di Salvo, T.; Israel, G. L.; Ghedina, A.; Di Fabrizio, L.; Riverol, L.

    2017-10-01

    Millisecond pulsars are neutron stars that attain their very fast rotation during a 108-109-yr-long phase of disk accretion of matter from a low-mass companion star1,2. They can be detected as accretion-powered millisecond X-ray pulsars if towards the end of this phase their magnetic field is strong enough to channel the in-flowing matter towards their magnetic poles3. When mass transfer is reduced or ceases altogether, pulsed emission generated by magnetospheric particle acceleration and powered by the star rotation is observed, preferentially in the radio4 and gamma-ray5 bands. A few transitional millisecond pulsars that swing between an accretion-powered X-ray pulsar regime and a rotationally powered radio pulsar regime in response to variations of the mass in-flow rate have been recently identified6,7. Here, we report the detection of optical pulsations from a transitional millisecond pulsar. The pulsations were observed when the pulsar was surrounded by an accretion disk, and originated inside the magnetosphere or within a few hundreds of kilometres from it. Energy arguments rule out reprocessing of accretion-powered X-ray emission and argue against a process related to accretion onto the pulsar polar caps; synchrotron emission of electrons in a rotation-powered pulsar magnetosphere8 seems more likely.

  12. Pulsar discovery by global volunteer computing.

    PubMed

    Knispel, B; Allen, B; Cordes, J M; Deneva, J S; Anderson, D; Aulbert, C; Bhat, N D R; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Crawford, F; Demorest, P B; Fehrmann, H; Freire, P C C; Gonzalez, M E; Hammer, D; Hessels, J W T; Jenet, F A; Kasian, L; Kaspi, V M; Kramer, M; Lazarus, P; van Leeuwen, J; Lorimer, D R; Lyne, A G; Machenschalk, B; McLaughlin, M A; Messenger, C; Nice, D J; Papa, M A; Pletsch, H J; Prix, R; Ransom, S M; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Venkataraman, A

    2010-09-10

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

  13. The spin evolution of young pulsars

    NASA Astrophysics Data System (ADS)

    Espinoza, Cristóbal M.

    2013-03-01

    The current understanding of the spin evolution of young pulsars is reviewed through a compilation of braking index measurements. An immediate conclusion is that the spin evolution of all pulsars with a measured braking index is not purely caused by a constant magnetic dipole. The case of PSR J1734-3333 and its upward movement towards the magnetars is used as a guide to try to understand why pulsars evolve with n < 3. Evolution between different pulsar families, driven by the emergence of a hidden internal magnetic field, appears as one possible picture.

  14. X-ray Emission from Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav

    2006-01-01

    Isolated (solitary or non-accreting) millisecond pulsars with observed X-ray emission can be divided in two distinct groups: those emitting nonthermal (magnetospheric) radiation and pulsars with the bulk of X-rays of a thermal origin, presumably emitted from small hot spots around the magnetic poles on the neutron star surface (polar caps). I will discuss properties of X-ray emission detected with Chandra and XMM-Newton from a number of millisecond pulsars, with emphasis on those of the thermal component, and compare them with predictions of radio pulsar models.

  15. The pulsar planet production process

    NASA Technical Reports Server (NTRS)

    Phinney, E. S.; Hansen, B. M. S.

    1993-01-01

    Most plausible scenarios for the formation of planets around pulsars end with a disk of gas around the pulsar. The supplicant author then points to the solar system to bolster faith in the miraculous transfiguration of gas into planets. We here investigate this process of transfiguration. We derive analytic sequences of quasi-static disks which give good approximations to exact solutions of the disk diffusion equation with realistic opacity tables. These allow quick and efficient surveys of parameter space. We discuss the outward transfer of mass in accretion disks and the resulting timescale constraints, the effects of illumination by the central source on the disk and dust within it, and the effects of the widely different elemental compositions of the disks in the various scenarios, and their extensions to globular clusters. We point out where significant uncertainties exist in the appropriate grain opacities, and in the effect of illumination and winds from the neutron star.

  16. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  17. Particle acceleration in pulsar magnetospheres

    NASA Technical Reports Server (NTRS)

    Baker, K. B.

    1978-01-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

  18. The International Pulsar Timing Array

    NASA Astrophysics Data System (ADS)

    Manchester, R. N.; IPTA

    2013-11-01

    The International Pulsar Timing Array (IPTA) is an organization whose raison d’être is to facilitate collaboration between the three main existing PTAs (the EPTA in Europe, NANOGrav in North America and the PPTA in Australia) in order to realize the benefits of combined PTA data sets in reaching the goals of PTA projects. Currently, shared data sets for 50 pulsars are available for IPTA-based projects. Operation of the IPTA is administered by a Steering Committee consisting of six members, two from each PTA, plus the immediate past Chair in a non-voting capacity. A Constitution and several Agreements define the framework for the collaboration. Web pages provide information both to members of participating PTAs and to the general public. With support from an NSF PIRE grant, the IPTA facilitates the organization of annual Student Workshops and Science Meetings. These are very valuable both in training new students and in communicating current results from IPTA-based research.

  19. The pulsar planet production process

    NASA Technical Reports Server (NTRS)

    Phinney, E. S.; Hansen, B. M. S.

    1993-01-01

    Most plausible scenarios for the formation of planets around pulsars end with a disk of gas around the pulsar. The supplicant author then points to the solar system to bolster faith in the miraculous transfiguration of gas into planets. We here investigate this process of transfiguration. We derive analytic sequences of quasi-static disks which give good approximations to exact solutions of the disk diffusion equation with realistic opacity tables. These allow quick and efficient surveys of parameter space. We discuss the outward transfer of mass in accretion disks and the resulting timescale constraints, the effects of illumination by the central source on the disk and dust within it, and the effects of the widely different elemental compositions of the disks in the various scenarios, and their extensions to globular clusters. We point out where significant uncertainties exist in the appropriate grain opacities, and in the effect of illumination and winds from the neutron star.

  20. Theory of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Bucciantini, N.

    2008-02-01

    Our understanding of Pulsar Wind Nebulae (PWNe), has greatly improved in the last years thanks to unprecedented high resolution images taken from the HUBBLE, CHANDRA and XMM satellites. The discovery of complex but similar inner features, with the presence of unexpected axisymmetric rings and jets, has prompted a new investigation into the dynamics of the interaction of the pulsar winds with the surrounding SNR, which, thanks to the improvement in the computational resources, has let to a better understanding of the properties of these objects. On the other hand the discovery of non-thermal emission from bow shock PWNe, and of systems with a complex interaction between pulsar and SNR, has led to the development of more reliable evolutionary models. I will review the standard theory of PWNe, their evolution, and the current status in the modeling of their emission properties, in particular I will show that our evolutionary models are able to describe the observations, and that the X-ray emission can now be reproduced with sufficient accuracy, to the point that we can use these nebulae to investigate fundamental issues as the properties of relativistic outflows and particle acceleration.

  1. Precision measurements of pulsar dispersion

    NASA Astrophysics Data System (ADS)

    Phillips, J. A.; Wolszczan, A.

    1992-01-01

    Timing observations of eight pulsars over a frequency range from 25 MHz to 5 GHz are performed in order to investigate possible departures from the nu exp -2 dispersion law that applies to the propagation of radio waves through the tenuous interstellar plasma. Apparent deviations from a cold plasma law were found at high frequencies (2-5 GHz) for two pulsars: PSR 0525 + 21 and PSR 1237 + 25. The absence of LF deviations from a nu exp -2 dispersion law at the 1-ms level is consistent with a Kolmogorov spectrum of the interstellar plasma turbulence extending to scale sizes of about 10 exp 15 cm. Forms of the interstellar dispersion law which included nu exp -3 and nu exp -4 terms arising from clumping, magnetic fields, and temperature effects in the dispersing gas were examined. Pulsar dispersion was found to be an insensitive probe of gas temperature, even for a hot plasma. Dispersion delays varying as nu exp -4 could be detected at decameter wavelengths if the line of sight passes through a dense H II region.

  2. Searching for pulsars using image pattern recognition

    SciTech Connect

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M. E-mail: berndsen@phas.ubc.ca; and others

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  3. A Search for Radio Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Sayer, Ronald Winston

    1996-01-01

    We have built a data acquisition backend for radio pulsar search observations carried out at the NRAO 140 -foot telescope in Green Bank, West Virginia. Our system sampled 512 spectral channels over 40 MHz every 256 mus, reduced samples to one-bit precision, and wrote the resulting data stream onto magnetic tape for later, off-line processing. We have completed three surveys with this backend. In the first survey, we searched most of the Northern Hemisphere for millisecond radio pulsars. Previous surveys directed towards most of the region covered had not been as sensitive to pulsars with millisecond periods. We obtained high quality data for 15,876 deg^2 of sky. Eight new pulsars were discovered and 76 previously known pulsars were detected. Two of the eight new pulsars (PSR J1022+1001 and PSR J1518+4904) are millisecond pulsars in binary systems. PSR J1518+4904 is a 41 ms radio pulsar in an eccentric (e = 0.25) 8.6 day orbit with another stellar object, probably another neutron star. It is only the fifth double neutron star system known. The system's relativistic advance of periastron has been measured to be ˙omega = 0.0112 +/- 0.0002 ^circ yr^{-1}, implying that the total mass of the pair of stars is 2.65 +/-0.07Modot. We have searched for radio pulsar companions to 40 nearby OB runaway stars. No pulsar companions to OB runaways were discovered. One previously unknown pulsar, PSR J2044+4614, was discovered while observing towards target O star BD+45,3260. However, follow-up timing observations reveal that the pulsar is not associated with the target O star. Assuming standard models for the pulsar beaming fraction and luminosity function, we conclude that most OB runaways do not have pulsar companions. We have completed a survey for pulsed radio signals towards 27 gamma-ray sources detected by the EGRET instrument of the Compton Gamma Ray Observatory. No new pulsars were discovered.

  4. Searching for Pulsars Using Image Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  5. THE TIMING OF NINE GLOBULAR CLUSTER PULSARS

    SciTech Connect

    Lynch, Ryan S.; Freire, Paulo C. C.; Ransom, Scott M.; Jacoby, Bryan A. E-mail: pfreire@mpifr-bonn.mpg.de E-mail: bryan.jacoby@gmail.com

    2012-02-01

    We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters (GCs) M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with other authors, except for PSR J1701-3006B in M62. Gas in this system is probably responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called 'black widow' class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that one of the pulsars in NGC 6624 is indeed a member of the rare class of non-recycled pulsars found in GCs. We have also measured the orbital precession and Shapiro delay for a relativistic binary in NGC 6544. If we assume that the orbital precession can be described entirely by general relativity, which is likely, we are able to measure the total system mass (2.57190(73) M{sub Sun }) and companion mass (1.2064(20) M{sub Sun }), from which we derive the orbital inclination (sin i = 0.9956(14)) and the pulsar mass (1.3655(21) M{sub Sun }), the most precise such measurement ever obtained for a millisecond pulsar. The companion is the most massive known around a fully recycled pulsar.

  6. The Magnetar Nature and the Outburst Mechanism of a Transient Anomalous X-ray Pulsar

    NASA Technical Reports Server (NTRS)

    Guver, Tolga; Ozel, Feryal; Gogus, Ersin; Kouveliotou, Chryssa

    2007-01-01

    Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.

  7. Detailed Physical Modeling Reveals the Magnetar Nature of a Transient Anomalous X-ray Pulsar

    NASA Technical Reports Server (NTRS)

    Guever, T.; Oezel, F.; Goegues, E.; Kouveliotou, C.

    2007-01-01

    Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.

  8. Moving relativistic large-scale X-ray jets in the microquasar XTE J1550-564

    NASA Astrophysics Data System (ADS)

    Corbel, S.; Fender, R. P.; Tzioumis, A. K.; Tomsick, J. A.; Orosz, J. A.; Miller, J. M.; Wijnands, R.; Kaaret, P.

    2003-10-01

    We have discovered large-scale moving X-ray and radio jets from the microquasar XTE J1550-564. Using X-ray and radio observations performed between 2000 and 2002, we showed that plasma ejected from XTE J1550-564 has been able to travel at relativistic velocities during many years, with evidence for gradual deceleration. The broadband spectrum of the jets is consistent with synchrotron emission from high energy particles accelerated in shocks. Full details can be found in Corbel et al. [Science 298 (2002a) 196], Karret et al. [ApJ 582 (2003) 933] and Tomsick et al. [ApJ (2003) 945].

  9. Moving relativistic large-scale X-ray jets in the microquasar XTE J1550-564

    NASA Astrophysics Data System (ADS)

    Corbel, S.; Fender, R. P.; Tzioumis, A. K.; Tomsick, J. A.; Orosz, J. A.; Miller, J. M.; Wijnands, R.; Kaaret, P.

    We have discovered large-scale moving X-ray and radio jets from the microquasar XTE J1550-564. Using X-ray observations from the Chandra Observatory performed between June 2000 (see also Tomsick et al., these proceedings) and June 2002, we showed that ejected plasma from XTE J1550-564 has been able to travel at relativistic velocities during many years, with evidence for gradual deceleration. The broadband spectrum of the jets is consistent with synchrotron emission from high energy particles accelerated in shocks. Full details can be found in Corbel et al. 2002, Kaaret et al. 2002, Tomsick et al. 2002.

  10. Braking index of isolated pulsars

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Stone, J. R.; Urbanec, M.; Urbancová, G.

    2015-03-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω , and their time derivatives that show unambiguously that the pulsars are slowing down. Although the exact mechanism of the spin-down is a question of detailed debate, the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR) from a rotating magnetized body. Other processes, including the emission of gravitational radiation, and of relativistic particles (pulsar wind), are also being considered. The calculated energy loss by a rotating pulsar with a constant moment of inertia is assumed proportional to a model dependent power of Ω . This relation leads to the power law Ω ˙ =-K Ωn where n is called the braking index. The MDR model predicts n exactly equal to 3. Selected observations of isolated pulsars provide rather precise values of n , individually accurate to a few percent or better, in the range 1

  11. Report on a Stable New Pulsar

    DTIC Science & Technology

    1985-12-01

    Figure 3). Only three 1 d pulsars are known to pulse in optical light (PSR0531+21 in the Crab Nebula , PSR0833-45 in the Vela supernova remnant, and...PSR0540-693 in t he Large Magellanic Cloud) and only one of these (the Crab Nebula pulsar) has been found ta pulse in all wavelength bands from I

  12. The Binary Pulsar: Gravity Waves Exist.

    ERIC Educational Resources Information Center

    Will, Clifford

    1987-01-01

    Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)

  13. The Binary Pulsar: Gravity Waves Exist.

    ERIC Educational Resources Information Center

    Will, Clifford

    1987-01-01

    Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)

  14. Neutron Stars and the Discovery of Pulsars.

    ERIC Educational Resources Information Center

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  15. Neutron Stars and the Discovery of Pulsars.

    ERIC Educational Resources Information Center

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  16. Radio-quiet Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Lin, Lupin Chun-Che

    2016-09-01

    A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog) known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400) of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on) are also specified to discuss their common and specific features.

  17. Radio polarimetry of Galactic Centre pulsars

    NASA Astrophysics Data System (ADS)

    Schnitzeler, D. H. F. M.; Eatough, R. P.; Ferrière, K.; Kramer, M.; Lee, K. J.; Noutsos, A.; Shannon, R. M.

    2016-07-01

    To study the strength and structure of the magnetic field in the Galactic Centre (GC), we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A⋆. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ˜ 16 and 33 μG; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (˜12°). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths ≳100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.

  18. Competing spin density wave, collinear, and helical magnetism in Fe1 +xTe

    NASA Astrophysics Data System (ADS)

    Stock, C.; Rodriguez, E. E.; Bourges, P.; Ewings, R. A.; Cao, H.; Chi, S.; Rodriguez-Rivera, J. A.; Green, M. A.

    2017-04-01

    The Fe1 +xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe1 +xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe1 +xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (˜0.45 , 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H ,K ) plane. The excitations preserve the C4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. While the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.

  19. Searching for Pulsars with the SKA

    NASA Astrophysics Data System (ADS)

    Ransom, Scott

    2007-12-01

    One of the SKA Key Science Projects involves "strong field tests of gravity using pulsars and black holes". However, we currently don't know of any pulsar - black hole binaries! Another component of this key science project involves the detection of nano-Hertz gravitational waves using an ensemble of many tens or hundreds of very high-precision millisecond pulsars, many of which are also, as yet, unknown. It is clear that some of the first major pulsar projects conducted with early phases of the SKA will involve large-area surveys. Given the likely nature of the mid-frequency-range SKA (i.e. large numbers of small dishes), such surveys will be incredibly challenging, and will require extremely large data and computational rates. However, the technical issues are likely surmountable, and the resulting surveys will find thousands of new pulsars, many of which will be useful for these and other basic physics tests.

  20. SUB-LUMINOUS {gamma}-RAY PULSARS

    SciTech Connect

    Romani, R. W.; Kerr, M.; Craig, H. A.; Johnston, S.; Cognard, I.; Smith, D. A.

    2011-09-01

    Most pulsars observed by the Fermi Large Area Telescope have {gamma}-ray luminosities scaling with spin-down power E-dot as L{sub {gamma}}{approx}(E-dot x 10{sup 33} erg s{sup -1}){sup 1/2}. However, there exist one detection and several upper limits an order of magnitude or more fainter than this trend. We describe these 'sub-luminous' {gamma}-ray pulsars and discuss the case for this being an orientation effect. Of the 12 known young radio pulsars with E-dot >10{sup 34} erg s{sup -1} and d {<=} 2 kpc several are substantially sub-luminous. The limited available geometrical constraints favor aligned geometries for these pulsars, although no one case for alignment is compelling. In this scenario GeV emission detected from such sub-luminous pulsars can be due to a lower altitude, lower-power accelerator gap.

  1. Sub-luminous γ-ray pulsars

    SciTech Connect

    Romani, R. W.; Kerr, M.; Craig, H. A.; Johnston, S.; Cognard, I.; Smith, D. A.

    2011-08-17

    Here, most pulsars observed by the Fermi Large Area Telescope have γ-ray luminosities scaling with spin-down power ${\\dot{E}}$ as $L_\\gamma \\approx ({\\dot{E}}\\, \\times \\, 10^{33}\\,{\\rm erg \\,s^{-1}})^{1/2}$. However, there exist one detection and several upper limits an order of magnitude or more fainter than this trend. We describe these "sub-luminous" γ-ray pulsars and discuss the case for this being an orientation effect. Of the 12 known young radio pulsars with ${\\dot{E}}>10^{34}\\, {\\rm erg\\,s^{-1}}$ and d ≤ 2 kpc several are substantially sub-luminous. The limited available geometrical constraints favor aligned geometries for these pulsars, although no one case for alignment is compelling. In this scenario GeV emission detected from such sub-luminous pulsars can be due to a lower altitude, lower-power accelerator gap.

  2. A radio pulsar spinning at 716 Hz.

    PubMed

    Hessels, Jason W T; Ransom, Scott M; Stairs, Ingrid H; Freire, Paulo C C; Kaspi, Victoria M; Camilo, Fernando

    2006-03-31

    We have discovered a 716-hertz eclipsing binary radio pulsar in the globular cluster Terzan 5 using the Green Bank Telescope. It is the fastest spinning neutron star found to date, breaking the 24-year record held by the 642-hertz pulsar B1937+21. The difficulty in detecting this pulsar, because of its very low flux density and high eclipse fraction (approximately 40% of the orbit), suggests that even faster spinning neutron stars exist. If the pulsar has a mass less than twice the mass of the Sun, then its radius must be constrained by the spin rate to be <16 kilometers. The short period of this pulsar also constrains models that suggest that gravitational radiation, through an r-mode (Rossby wave) instability, limits the maximum spin frequency of neutron stars.

  3. Possible evidence that pulsars are quark stars

    SciTech Connect

    Xu Renxin

    2008-01-10

    It is a pity that the real state of matter in pulsar-like stars is still not determined confidently because of the uncertainty about cold matter at supranuclear density, even 40 years after the discovery of pulsar. Nuclear matter (related to neutron stars) is one of the speculations for the inner constitution of pulsars even from the Landau's time more than 70 years ago, but quark matter (related to quark stars) is an alternative due to the fact of asymptotic freedom of interaction between quarks as the standard model of particle physics develops since 1960s. Therefore, one has to focus on astrophysical observations in order to answer what the nature of pulsars is. In this presentation, I would like to summarize possible observational evidence/hints that pulsar-like stars could be quark stars, and to address achievable clear evidence for quark stars in the future experiments.

  4. Optical and near-IR observations of XTE J1859+226

    NASA Astrophysics Data System (ADS)

    Hynes, R. I.; Haswell, C. A.; Norton, A. J.; Chaty, S.; Rolfe, D. J.; Lott, D. A.; Solheim, J.-E.; Ostensen, R.; Garcia, R. A.; Fried, R.; O'Brien, K.; Horne, K.; Ioannou, Z.; Shafter, A.; Abbott, T. M. C.; Krisciunas, K.; Ivison, R. J.; Sano, Y.; Chen, W.; Shrader, C.; Livio, M.; Robinson, E. L.; Wagner, R. M.

    1999-10-01

    Following optical and near-infrared monitoring of XTE J1859+226 (IAUC #7279, #7284), HST/STIS observations were performed on Oct 18.10-18.38 spanning 112-1026nm. The UV spectrum shows broad (12000km/s FWZI) and deep Lyman alpha absorption, strong CIV 155nm emission (EW 1.1nm, 4000km/s FWZI) and weaker emission lines of CIII, NV, OIII, OIV, OV, SiIV and HeII. Sharp absorption lines of SiII, SiIII, MgII and other species also appear with possible interstellar origin.

  5. INTEGRAL observes A1744-361 (XTE J1748-361) in hard X-rays

    NASA Astrophysics Data System (ADS)

    Grebenev, S. A.; Goldoni, P.; Schoenfelder, V.; Roques, J.-P.; Sunyaev, R. A.; Courvoisier, T.; Winkler, C.

    2004-04-01

    The X-ray transient A1744-361 (XTE J1748-361) was detected with ISGRI/IBIS on April 7-8, 2004 during the INTEGRAL Galactic Center Deep Exposure observation. The average flux in the 17-45 keV band was equal to 19.8+/-1.6 mCrab (the S/N ratio was 13). The photon spectrum was extending to at least 100 keV. The source was seen neither in March during previous GCDE observations nor in the beginning of April during the Galactic Center Open Program observation (the 3-sigma upper limit was 1.5 mCrab).

  6. Multiple topological nontrivial phases in strained HgxCd1 -xTe

    NASA Astrophysics Data System (ADS)

    Rauch, Tomáš; Achilles, Steven; Henk, Jürgen; Mertig, Ingrid

    2017-07-01

    We investigate theoretically the electronic structure of tetragonally strained HgxCd1 -xTe . The topological phase diagram of the system was obtained by calculating both the topological invariants and the electronic structure of the (001) surface. We find strong topological-insulator and Weyl-semimetal phases that are caused by multiple inversions among the topmost valence bands. The topological character of the occupied bulk bands is fundamentally governed by the band inversion induced by spin-orbit coupling rather than by the s p band inversion, which is usually considered as origin of the topological nontriviality.

  7. ATCA detection of increased radio emission from XTE J1752-223

    NASA Astrophysics Data System (ADS)

    Brocksopp, Catherine; Corbel, Stephane; Tzioumis, Tasso; Fender, Rob; Coriat, Mickael

    2010-01-01

    Following the announcement that the new X-ray transient source, XTE J1752-223 (ATel. 2258), is making a transition from the hard to the intermediate state (ATel. 2387, 2391, 2396), we have observed the radio counterpart with the Australia Telescope Compact Array and the new CABB back-end. The radio source has risen from the previous ~2 mJy plateau to 20 mJy at 1.2, 2.5, 5.5, 9, 17, 19 GHz on January 21.

  8. Black Hole Candidate XTE J1859+226 in the Low/Hard State

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fox, D. W.; Pooley, D.; Lewin, W. H. G.

    2000-07-01

    Recent flaring activity of this source in the optical (Casares et al. 2000, IAUC #7451) has motivated a public RXTE TOO observation on 8 July 2000. XTE J1859+226 is a known X-ray nova that reached 1.4 Crab in the RXTE/ASM in October 1999 (Smith 1999, ATEL #47). During that outburst the source exhibited 150 and 187 Hz quasi-periodic oscillations (Cui et al. 2000, ApJ 535, L123) and radio emission (Pooley & Hjellming, IAUC #7278).

  9. Phase tracking for pulsar navigation with Doppler frequency

    NASA Astrophysics Data System (ADS)

    Xinyuan, Zhang; Ping, Shuai; Liangwei, Huang

    2016-12-01

    Doppler frequency in pulsar navigation is an effect caused by spacecraft and pulsar motion, which would worsen the pulsar navigation accuracy. To describe this influence, we establish the Doppler frequency measurement model based on pulsar timing. With this model, we describe the relationship between the phase estimation performance and the observation time when Doppler frequency exists. To reduce the pulsar navigation error due to the Doppler frequency, we designed the phase tracking loop for the pulsar navigation. The pulsar frequency can be modified before the phase estimation. As a result, the impact of the Doppler frequency could be lessened, and the observation interval lengths can be lengthened to improve the phase estimation performance.

  10. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    SciTech Connect

    Knispel, B.; Kim, H.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B.; Eatough, R. P.; Keane, E. F.; Kramer, M.; Anderson, D.; Crawford, F.; Rastawicki, D.; Hammer, D.; Papa, M. A.; Siemens, X.; Lyne, A. G.; Miller, R. B.; Sarkissian, J.; and others

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  11. Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

    NASA Astrophysics Data System (ADS)

    Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.

    2013-09-01

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  12. The Guitar Nebula, Bow Shocks From High Velocity Pulsars, and Companions of Recycled Pulsars

    NASA Astrophysics Data System (ADS)

    Lundgren, S. C.; Cordes, J. M.; Romani, R. W.

    1992-12-01

    We report results of optical studies of neutron star interactions with companion objects and the surrounding medium. In Hα observations of 11 high velocity, high spindown energy pulsars we have discovered one spectacular bow shock nebula, the Guitar Nebula, produced by the motion of the pulsar, PSR 2224+65, through partially neutral gas. One other pulsar, PSR 0136+57, has a faint feature near the pulsar position with a nonstellar morphology. We discuss the possibility that this is another shock and give upper limits on shock emission for the rest of the pulsars. Further, we consider possible scaling of shock emission with pulsar spindown energy and velocity, and detectability of shocks in other pulsars. Shocks may even reveal the existence of neutron stars not detectable as pulsars due to beaming or lack of pulsed radio emission. Our observations of several binary millisecond pulsars show some intriquing counterparts in some cases and allow strong limits to be placed on the magnitude of any counterparts in others. In pulsars 1534+12 and 1953+29 optical counterparts near the pulsar position are most likely chance coincidence with foreground stars. We imaged PSR 1257+12 in the hope of seeing the remnants of the disk which resulted in formation of planets or another pulsar wind driven shock nebula. We place upper limits on optical emission from nebulosity in the vicinity of the pulsar. This work was supported by grants from NSF, NASA and the National Astronomy and Ionosphere Center which operates Arecibo Observatory under contract with the NSF.

  13. The state of pulsar theories

    NASA Astrophysics Data System (ADS)

    Michel, F.

    With the discovery of rapidly pulsing astrophysical objects, soon to become identified as rotating neutron stars, the role of centrifugal force in the physics of pulsars came to be a central pre-occupation in theoretical interpretation. The very term "light cylinder" illustrates this bias. The Goldreich and Julian (1969) model was warmly accepted by most theorists since it attributed pulsar action to centrifugal force alone. Since this was an aligned rotator model, the pulsations per se were attributed to an inclination of the magnetic dipole from the spin axis, with the physics assumed to be "about the same." About 15 years later, Krause-Polstorff and Michel (1985) numerically solved for the aligned rotator using exactly the same physics (except for the MHD assumption) as GJ and found that such a model is not dynamic but has stationary solutions with plasma trapped in two polar domes (on sign of charge) and a torus (opposite sign). Given the surrounding vacuum, the MHD assumption was indeed inappropriate. Introducing other known physics such a pair production seems to provide no help (Smith et al., 2001), and several other authors have independently confirmed the basic KPM results. It is useful to recall that many phenomenological models such as the "Hollow Cone Model" are directly based on GJ. Another 15 years has found the situation largely returned to that 30 years earlier, with only the slightest differences distinguishing current models from GJ (typically a small "gap" is postulated along open field lines). And numerical solutions to the "pulsar equation" have been found, but those equations assume MHD everywhere. Unless the vacuum can be well approximated as being a conductor, such solutions have little relevance. A more appropriate starting point would seem to be the Deutsch fields for an inclined rotator, as recently re-examined (Michel and Li, 1999). The speaker will try to sort out some of this confusion, but is not overly optimistic.

  14. Magnetoreflectivity of Pb{sub 1{minus}x}Eu{sub x}Te epilayers and PbTe/Pb{sub 1{minus}x}Eu{sub x}Te multiple quantum wells

    SciTech Connect

    Yuan, S.; Krenn, H.; Springholz, G.; Ueta, Y.; Bauer, G.; McCann, P.J.

    1997-02-01

    Molecular-beam epitaxy grown n-type Pb{sub 1{minus}x}Eu{sub x}Te epilayers (x{le}0.034) and PbTe/Pb{sub 1{minus}x}Eu{sub x}Te (x{le}0.039) multiple-quantum-well (MQW) samples were studied by magnetoreflectivity in the Faraday configuration (B{parallel}[111]) for magnetic fields up to 6T at 4.2 K. Since the IV-VI lead salt compounds are quite polar semiconductors, resonant electron-longitudinal-optic- (LO-) phonon coupling (Fr{umlt o}hlich coupling) modifies the cyclotron resonance (CR) energies in the Pb{sub 1{minus}x}Eu{sub x}Te single epilayers for the three-dimensional (3D) case. Due to the many-valley band structure {ital two} different Fr{umlt o}hlich coupling constants are relevant. However, the CR energies of quasi-two-dimensional (2D) carriers in PbTe wells [n{sup 2D}=(1.5{minus}3){times}10{sup 11}cm{sup {minus}2}] of PbTe/Pb{sub 1{minus}x}Eu{sub x}Te MQW samples do {ital not} exhibit a significant resonant electron-LO-phonon interaction. This observation is attributed to finite-electron concentration effects, in particular, to a partial filling of the lowest 2D Landau spin level. The static and dynamic screening of the polar interaction are considered as well, but are ruled out as an explanation for the absence of any remarkable polaron correction to the CR energies of electrons in the PbTe quantum wells for the range of carrier concentrations investigated. The magnetoreflectivity spectra of Pb{sub 1{minus}x}Eu{sub x}Te single layers and PbTe/Pb{sub 1{minus}x}Eu{sub x}Te quantum well samples are simulated numerically, using a model for the dielectric response of which also includes the electron-LO-phonon interaction. The transverse and longitudinal masses, and thus also the interband momentum matrix elements are determined for Pb{sub 1{minus}x}Eu{sub x}Te as a function of the composition up to x{lt}0.034. It is found that the transverse mass {ital increases} with Eu content, whereas the longitudinal one nearly stays constant. (Abstract Truncated)

  15. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1-xTe2

    DOE PAGES

    Belopolski, Ilya; Sanchez, Daniel S.; Ishida, Yukiaki; ...

    2016-12-05

    Here, the recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series MoxW1-xTe2 are inversion-breaking, layered, tunable semimetals already under study as a promising platform for new electronics and recently proposed to host Type II, or strongly Lorentz-violating, Weyl fermions. Here we report the discovery of a Weyl semimetal in MoxW1-xTe2 at x=25%. We use pump-probe angle-resolved photoemission spectroscopy (pump-probe ARPES) to directly observe a topologicalmore » Fermi arc above the Fermi level, demonstrating a Weyl semimetal. The excellent agreement with calculation suggests that MoxW1-xTe2 is a Type II Weyl semimetal. We also find that certain Weyl points are at the Fermi level, making MoxW1-xTe2 a promising platform for transport and optics experiments on Weyl semimetals.« less

  16. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1-xTe2

    NASA Astrophysics Data System (ADS)

    Belopolski, Ilya; Sanchez, Daniel S.; Ishida, Yukiaki; Pan, Xingchen; Yu, Peng; Xu, Su-Yang; Chang, Guoqing; Chang, Tay-Rong; Zheng, Hao; Alidoust, Nasser; Bian, Guang; Neupane, Madhab; Huang, Shin-Ming; Lee, Chi-Cheng; Song, You; Bu, Haijun; Wang, Guanghou; Li, Shisheng; Eda, Goki; Jeng, Horng-Tay; Kondo, Takeshi; Lin, Hsin; Liu, Zheng; Song, Fengqi; Shin, Shik; Hasan, M. Zahid

    2016-12-01

    The recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series MoxW1-xTe2 are inversion-breaking, layered, tunable semimetals already under study as a promising platform for new electronics and recently proposed to host Type II, or strongly Lorentz-violating, Weyl fermions. Here we report the discovery of a Weyl semimetal in MoxW1-xTe2 at x=25%. We use pump-probe angle-resolved photoemission spectroscopy (pump-probe ARPES) to directly observe a topological Fermi arc above the Fermi level, demonstrating a Weyl semimetal. The excellent agreement with calculation suggests that MoxW1-xTe2 is a Type II Weyl semimetal. We also find that certain Weyl points are at the Fermi level, making MoxW1-xTe2 a promising platform for transport and optics experiments on Weyl semimetals.

  17. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    NASA Technical Reports Server (NTRS)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  18. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    NASA Technical Reports Server (NTRS)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  19. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1-xTe2.

    PubMed

    Belopolski, Ilya; Sanchez, Daniel S; Ishida, Yukiaki; Pan, Xingchen; Yu, Peng; Xu, Su-Yang; Chang, Guoqing; Chang, Tay-Rong; Zheng, Hao; Alidoust, Nasser; Bian, Guang; Neupane, Madhab; Huang, Shin-Ming; Lee, Chi-Cheng; Song, You; Bu, Haijun; Wang, Guanghou; Li, Shisheng; Eda, Goki; Jeng, Horng-Tay; Kondo, Takeshi; Lin, Hsin; Liu, Zheng; Song, Fengqi; Shin, Shik; Hasan, M Zahid

    2016-12-05

    The recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series MoxW1-xTe2 are inversion-breaking, layered, tunable semimetals already under study as a promising platform for new electronics and recently proposed to host Type II, or strongly Lorentz-violating, Weyl fermions. Here we report the discovery of a Weyl semimetal in MoxW1-xTe2 at x=25%. We use pump-probe angle-resolved photoemission spectroscopy (pump-probe ARPES) to directly observe a topological Fermi arc above the Fermi level, demonstrating a Weyl semimetal. The excellent agreement with calculation suggests that MoxW1-xTe2 is a Type II Weyl semimetal. We also find that certain Weyl points are at the Fermi level, making MoxW1-xTe2 a promising platform for transport and optics experiments on Weyl semimetals.

  20. A Pulsar Eases Off the Brakes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In 2006, pulsar PSR 18460258 unexpectedly launched into a series of energetic X-ray outbursts. Now a study has determined that this event may have permanently changed the behavior of this pulsar, raising questions about our understanding of how pulsars evolve.Between CategoriesA pulsar a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation can be powered by one of three mechanisms:Rotation-powered pulsars transform rotational energy into radiation, gradually slowing down in a predictable way.Accretion-powered pulsars convert the gravitational energy of accreting matter into radiation.Magnetars are powered by the decay of their extremely strong magnetic fields.Astronomical classification often results in one pesky object that doesnt follow the rules. In this case, that object is PSR 18460258, a young pulsar categorized as rotation-powered. But in 2006, PSR 18460258 suddenly emitted a series of short, hard X-ray bursts and underwent a flux increase behavior that is usually only exhibited by magnetars. After this outburst, it returned to normal, rotation-powered-pulsar behavior.Since the discovery of this event, scientists have been attempting to learn more about this strange pulsar that seems to straddle the line between rotation-powered pulsars and magnetars.Unprecedented DropOne way to examine whats going on with PSR 18460258 is to evaluate whats known as its braking index, a measure of how quickly the pulsars rotation slows down. For a rotation-powered pulsar, the braking index should be roughly constant. The pulsar then slows down according to a fixed power law, where the slower it rotates, the slower it slows down.In a recent study, Robert Archibald (McGill University) and collaborators report on 7 years worth of timing observations of PSR 18460258 after its odd magnetar-like outburst. They then compare these observations to 6.5 years of data from before the outburst. The team finds that the braking index for this bizarre

  1. MAXI observations of the black hole candidate XTE J1752-223

    NASA Astrophysics Data System (ADS)

    Nakahira, Satoshi; Yamaoka, Kazutaka; Yoshida, Atsumasa; Sakauchi, Yoko; Negoro, Hitoshi; Matsuoka, Masaru; Sugizaki, Mutsumi; Mihara, Tatehiro; Matsuoka, M.; Kawasaki, K.; Ueno, S.; Tomida, H.; Suzuki, M.; Ishikawa, M.; Mihara, T.; Kohama, M.; Nakagawa, Y. E.; Sugizaki, M.; Yamamoto, T.; Saotome, T.; Kawai, N.; Morii, M.; Sugimori, K.; Yoshida, A.; Yamaoka, K.; Nakahira, S.; Tsunemi, H.; Kimura, M.; Negoro, H.; Nakajima, M.; Miyoshi, S.; Ozawa, H.; Ishiwata, R.; Ueda, Y.; Isobe, N.; Eguchi, S.; Hiroi, K.; Daikyuji, A.; Uzawa, A.; Matsumura, T.; Yamazaki, K.

    MAXI observations of the black hole candidate XTE J1752-223 The black hole X-ray nova XTE J1752-223 was discovered by RXTE on October 23, 2009. The GSC detector of MAXI All-sky X-ray Monitor on the International Space Station detected the source on October 23 at about 30 mCrab in the 1.5-20 keV band. Since then, GSC/MAXI mon-itored the source except for an invisible period due to the sun angle constraint from December 7 to 23. The light curve showed two plateaus at 140 mCrab from October 26 to November 25, and at 290 mCrab from December 5 to January 10, 2010. Then the spectrum drastically softened since January 19. The X-ray flux in the 1.5-4 keV band increased by a factor of more than two. Its spectrum turned out to be a shape with two components: a disk blackbody and a power law, suggesting the state transition from the low/hard to the high/soft state. In this paper, observational results by GSC and SSC of MAXI, and from the Suzaku ToO observation will be presented.

  2. Relativistic Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748-288

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Fox, D. W.; Matteo, T. DI; Wijnands, R.; Belloni, T.; Pooley, D.; Kouveliotou, C.; Lewin, W. H. G.

    2001-01-01

    We report evidence for an Fe K(alpha) fluorescence line feature and disk reflection in the very high, high-, and low-state X-ray spectra of the Galactic microquasar XTE J1748-288 during its 1998 June outburst. Spectral analyses are made on data gathered throughout the outburst by the Rossi X-Ray Timing Explorer Proportional Counter Array. Gaussian line, relativistic disk emission line, and ionized disk reflection models are fitted to the data. In the very high state the line profile appears strongly redshifted, consistent with disk emission from the innermost stable orbits around a maximally rotating Kerr black hole. In the high state the line profile is less redshifted and increasingly prominent. The low-state line profile is very strong (approx. 0.5 keV equivalent width) and centered at 6.7 +/- 0.10 keV; disk line emission model fits indicate that the inner edge of the disk fluctuates between approx. 20Rg and approx. 100Rg in this state. The disk reflection fraction is traced through the outburst; reflection from an ionized disk is preferred in the very high and high states, and reflection from a relatively neutral disk is preferred in the low state. We discuss the implications of our findings for the binary system dynamics and accretion flow geometry in XTE J1748-288.

  3. Relativistic Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748-288

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Fox, D. W.; DiMatteo, T.; Wijnands, R.; Belloni, T.; Pooley, D.; Kouveliotou, C.; Lewin, W. H. G.

    2001-01-01

    We report evidence for an Fe K-alpha fluorescence line feature and disk reflection in the very high, high-, and low-state X-ray spectra of the Galactic microquasar XTE J1748 - 288 during its 1998 June outburst. Spectral analyses are made on data gathered throughout the outburst by the Rossi X-Ray Timing Explorer Proportional Counter Array. Gaussian line, relativistic disk emission line, and ionized disk reflection models are fitted to the data. In the very high state the line profile appears strongly redshifted, consistent with disk emission from the innermost stable orbits around a maximally rotating Kerr black hole. In the high state the line profile is less redshifted and increasingly prominent. The low-state line profile is very strong (approx. 0.5 keV equivalent width) and centered at 6.7 +/- 0.10 keV; disk line emission model fits indicate that the inner edge of the disk fluctuates between approx. 20R(sub g) and - approx. 100R(sub g) in this state. The disk reflection fraction is traced through the outburst; reflection from an ionized disk is preferred in the very high and high states, and reflection from a relatively neutral disk is preferred in the low state. We discuss the implications of our findings for the binary system dynamics and accretion flow geometry in XTE J1748 - 288.

  4. Resolved, expanding jets in the Galactic black hole candidate XTE J1908+094

    NASA Astrophysics Data System (ADS)

    Rushton, A. P.; Miller-Jones, J. C. A.; Curran, P. A.; Sivakoff, G. R.; Rupen, M. P.; Paragi, Z.; Spencer, R. E.; Yang, J.; Altamirano, D.; Belloni, T.; Fender, R. P.; Krimm, H. A.; Maitra, D.; Migliari, S.; Russell, D. M.; Russell, T. D.; Soria, R.; Tudose, V.

    2017-07-01

    Black hole X-ray binaries undergo occasional outbursts caused by changing inner accretion flows. Here we report high angular resolution radio observations of the 2013 outburst of the black hole candidate X-ray binary system XTE J1908+094, using data from the Very Long Baseline Array and European VLBI Network. We show that following a hard-to-soft state transition, we detect moving jet knots that appear asymmetric in morphology and brightness, and expand to become laterally resolved as they move away from the core, along an axis aligned approximately -11° east of north. We initially see only the southern component, whose evolution gives rise to a 15-mJy radio flare and generates the observed radio polarization. This fades and becomes resolved out after 4 days, after which a second component appears to the north, moving in the opposite direction. From the timing of the appearance of the knots relative to the X-ray state transition, a 90° swing of the inferred magnetic field orientation, the asymmetric appearance of the knots, their complex and evolving morphology, and their low speeds, we interpret the knots as working surfaces where the jets impact the surrounding medium. This would imply a substantially denser environment surrounding XTE J1908+094 than has been inferred to exist around the microquasar sources GRS 1915+105 and GRO J1655-40.

  5. Outflows from Supersonically-Moving Pulsars

    NASA Astrophysics Data System (ADS)

    Klingler, Noel; Kargaltsev, Oleg; Rangelov, Blagoy; Pavlov, George

    2015-08-01

    Pulsar wind nebulae (PWNe) are sources of nonthermal X-ray emission and prominent sites of particle acceleration. Among other parameters, the PWN appearance depends on the pulsar velocity. If a pulsar moves with a supersonic speed, the ram pressure exceeds the ambient medium pressure, resulting in a bow shock PWN with a tail behind the pulsar. We report on Chandra observations of extended pulsar tails behind PSR J1509-5850 and J1747-2958 ("the Mouse"), and the discovery of a puzzling outflow (in the J1509-5850 PWN) strongly misaligned with the pulsar's direction of motion. We resolve the structures of the heads of the two PWNe and interpret them in light of pulsar wind models. We perform spatially resolved spectral measurements and find only marginal evidence of cooling in the long tail of PSR J1509-5850. The morphologies of the PWN heads and the extended tails are discussed and compared with those of other bow shock PWNe detected by Chandra. A possible unifying scheme will be discussed.

  6. Acceleration by pulsar winds in binary systems

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Gaisser, T. K.

    1990-01-01

    In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation and the spin-down power will drive a wind of relativistic electron-positron pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. The authors investigate the possibility of particle acceleration at such a pulsar wind shock and the production of very high energy (VHE) and ultra high energy (UHE) gamma rays from interactions of accelerated protons in the companion star's wind or atmosphere. They find that in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma rays. The authors discuss the application of the pulsar wind model to binary sources such as Cygnus X-3, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.

  7. Pulsar Search Using Supervised Machine Learning

    NASA Astrophysics Data System (ADS)

    Ford, John M.

    2017-05-01

    Pulsars are rapidly rotating neutron stars which emit a strong beam of energy through mechanisms that are not entirely clear to physicists. These very dense stars are used by astrophysicists to study many basic physical phenomena, such as the behavior of plasmas in extremely dense environments, behavior of pulsar-black hole pairs, and tests of general relativity. Many of these tasks require a large ensemble of pulsars to provide enough statistical information to answer the scientific questions posed by physicists. In order to provide more pulsars to study, there are several large-scale pulsar surveys underway, which are generating a huge backlog of unprocessed data. Searching for pulsars is a very labor-intensive process, currently requiring skilled people to examine and interpret plots of data output by analysis programs. An automated system for screening the plots will speed up the search for pulsars by a very large factor. Research to date on using machine learning and pattern recognition has not yielded a completely satisfactory system, as systems with the desired near 100% recall have false positive rates that are higher than desired, causing more manual labor in the classification of pulsars. This work proposed to research, identify, propose and develop methods to overcome the barriers to building an improved classification system with a false positive rate of less than 1% and a recall of near 100% that will be useful for the current and next generation of large pulsar surveys. The results show that it is possible to generate classifiers that perform as needed from the available training data. While a false positive rate of 1% was not reached, recall of over 99% was achieved with a false positive rate of less than 2%. Methods of mitigating the imbalanced training and test data were explored and found to be highly effective in enhancing classification accuracy.

  8. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  9. Pulsar rotation with superfluid entrainment

    NASA Astrophysics Data System (ADS)

    Antonelli, Marco; Pizzochero, Pierre M.

    2017-06-01

    Large pulsar glitches (like the ones detected in the Vela) are though to be a consequence of the superfluid component present in the interior of mature neutron stars: this component can rotate differentially with respect to the normal part of the star, storing the angular momentum needed to produce the observed sudden decrease of the pulsar rotational period. However strong entrainment (a non-dissipative effect that couples the superfluid component with the non-superfluid component inside the star) challenges this picture. Here we study the impact of entrainment on the angular momentum that can be exchanged between the normal component and the superfluid during a glitch by means of a consistent global model. This allows to estimate the maximum angular momentum reservoir stored into the superfluid component of the star: the essential ingredient are newly calculated mesoscopic pinning forces that block the superfluid vorticity in the crust of the neutron star. This method can also provide a quantitative test for global models of rotating neutron stars, as well as for microphysical inputs present in literature (like entrainment parameters and pinning forces).

  10. A digital pulsar backend based on FPGA

    NASA Astrophysics Data System (ADS)

    Luo, Jin-Tao; Chen, Lan; Han, Jin-Lin; Esamdin, Ali; Wu, Ya-Jun; Li, Zhi-Xuan; Hao, Long-Fei; Zhang, Xiu-Zhong

    2017-01-01

    A digital pulsar backend based on a Field Programmable Gate Array (FPGA) is developed. It is designed for incoherent de-dispersion of pulsar observations and has a maximum bandwidth of 512 MHz. The channel bandwidth is fixed to 1 MHz, and the highest time resolution is 10 {{μ }} s. Testing observations were carried out using the Urumqi 25-m telescope administered by Xinjiang Astronomical Observatory and the Kunming 40-m telescope administered by Yunnan Observatories, targeting PSR J0332+5434 in the L band and PSR J0437–4715 in the S band, respectively. The successful observation of PSR J0437–4715 demonstrates its ability to observe millisecond pulsars.

  11. Limits to the Stability of Pulsar Time

    NASA Technical Reports Server (NTRS)

    Petit, Gerard

    1996-01-01

    The regularity of the rotation rate of millisecond pulsars is the underlying hypothesis for using these neutron stars as 'celestial clocks'. Given their remote location in our galaxy and to our lack of precise knowledge on the galactic environment, a number of phenomena effect the apparent rotation rate observed on Earth. This paper reviews these phenomena and estimates the order of magnitude of their effect. It concludes that an ensemble pulsar time based on a number of selected millisecond pulsars should have a fractional frequency stability close to 2 x 10(sup -15) for an averaging time of a few years.

  12. Pulsar Emission Geometry and Accelerating Field Strength

    DTIC Science & Technology

    2011-11-01

    ar X iv :1 11 1. 03 25 v1 [ as tr o- ph .H E ] 1 N ov 2 01 1 2011 Fermi Symposium, Roma., May. 9-12 1 Pulsar Emission Geometry and Accelerating...observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems. The high...the Vela and CTA 1 pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission

  13. Frequency dependence of pulsar integrated profiles

    SciTech Connect

    Thorsett, S.E. )

    1991-08-01

    The dependence of component separation on observing frequency has been studied for seven pulsars that exhibit double- or multiple-component average profiles. In each case, a review of all available data shows a smooth variation of given form. No evidence is found for a 'break frequency' at which the separation behavior discretely changes. It is argued that previous reports of such a discontinuity are due to insufficiently sampled data together with a prejudice toward pure power-law functional behaviors. The absence of such a break has implications for theories of the pulsar emission mechanism and of the propagation of radio waves in the pulsar magnetosphere. 44 refs.

  14. Pulsar observations and neutron star models

    NASA Technical Reports Server (NTRS)

    Boerner, G.; Cohen, J. M.

    1972-01-01

    Information about the physical parameters of neutron stars is obtained from pulsar observations. The energy balance of the Crab nebula and the Vela X remnant allows derivation of limits for the masses of the Crab and Vela pulsars. Glitch observations provide further clues on the masses of these two pulsars. The degree of confidence in the derived numbers is pointed out. The possibility of observing neutron stars in binary systems as pulsating X-ray sources is discussed. The importance of observing redshifted gamma ray lines from the surface of neutron stars, and thus directly measuring either individual or statistical properties of these objects is pointed out.

  15. Age Discrepancy Throws Pulsar Theories into Turmoil

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have found a pulsar -- a spinning, superdense neutron star -- that apparently is considerably younger than previously thought. This finding, combined with the discovery in 2000 of a pulsar that was older than previously thought, means that many assumptions astronomers have made about how pulsars are born and age must be reexamined, according to the researchers. Supernova Remnant and Pulsar -- Click on image for larger view Infrared Image of Supernova Remnant; Dashed Line and Arrow Indicate Pulsar's Motion Detected by VLA "We are learning that each individual pulsar is a very complicated object, and we should assume nothing about it," said Bryan Gaensler, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. "Our work makes it more difficult to put pulsars into neat categories, but ultimately will yield new insights into how pulsars are born," he added. The research is reported in the March 10 edition of the Astrophysical Journal Letters. The astronomers studied a pulsar called B1951+32 and a supernova remnant called CTB 80, both nearly 8,000 light-years from Earth. The supernova remnant is the shell of debris from the explosion of a giant star. The explosion resulted from the giant star's catastrophic collapse into the superdense neutron star. By observing the pulsar and the supernova remnant from 1989 to 2000 with the VLA, the scientists were able to measure the movement of the pulsar, which, they found, is moving directly outward from the center of the shell of explosion debris. "We've always felt that, if you see a pulsar and a supernova remnant close together, the pulsar had been born in an explosion at the center of the supernova remnant, but this is the first time that actual observational measurement shows a pulsar moving away from the center of the supernova remnant. It's nice to finally have such an example," said Joshua Migliazzo of the Center for

  16. Pulsar wind model for the spin-down behavior of intermittent pulsars

    SciTech Connect

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Wang, N.; Xu, R. X.

    2014-06-10

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  17. Astronomers Discover Fastest-Spinning Pulsar

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  18. Tuning the composition of ternary Bi2Se3xTe3(1-x) nanoplates and their Raman scattering investigations

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Chen, Haiping; Yang, Chao; Gan, Wei; Muhammad, Zahir; Song, Li

    2016-07-01

    We present the composition engineering and Raman scattering study of Bi2Se3xTe3(1-x) nanoplates that were synthesized by chemical vapor deposition method using different substrates, including fluorophlogopite mica, SiO2/Si. The characterizations revealed high crystallinity and layered-structure in the ternary Bi2Se3xTe3(1-x) products. Raman spectra of Bi2Se3xTe3(1-x) ranging from 80-200 cm-1 as a function of different Se-doping levels shows that intrinsic Raman peaks of Bi2Se3xTe3(1-x) nanoplates shift to higher frequency as the ratio of doped-Se increasing. The discontinuity of Raman peaks was found and discussed.

  19. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  20. Quasars, pulsars, black holes and HEAO's

    NASA Technical Reports Server (NTRS)

    Doolitte, R. F.; Moritz, K.; Whilden, R. D. C.

    1974-01-01

    Astronomical surveys are discussed by large X-ray, gamma ray, and cosmic ray instruments carried onboard high-energy astronomy observatories. Quasars, pulsars, black holes, and the ultimate benefits of the new astronomy are briefly discussed.

  1. Piccard: Pulsar timing data analysis package

    NASA Astrophysics Data System (ADS)

    van Haasteren, Rutger

    2016-10-01

    Piccard is a Bayesian-inference pipeline for Pulsar Timing Array (PTA) data and interacts with Tempo2 (ascl:1210.015) through libstempo. The code is use mainly for single-pulsar analysis and gravitational-wave detection purposes of full Pulsar Timing Array datasets. Modeling of the data can include correlated signals per frequency or modeled spectrum, with uniform, dipolar, quadrupolar, or anisotropic correlations; multiple error bars and EFACs per pulsar; and white and red noise. Timing models can be numerically included, either by using the design matrix (linear timing model), or by calling libstempo for the full non-linear timing model. Many types of samplers are included. For common-mode mitigation, the signals can be reconstructed mitigating arbitrary signals simultaneously.

  2. Gamma radiation from pulsar magnetospheric gaps

    NASA Technical Reports Server (NTRS)

    Chiang, James; Romani, Roger W.

    1992-01-01

    We investigate the production of gamma rays in two pulsar emission models: the 'polar cap' model and the 'outer cap' model. For the former, we have performed detailed simulations of energetic electrons flowing in the vacuum dipole open field line region. In the outer gap case, we generate light curves for various magnetosphere geometries. Using data from radio and optical observations, we construct models for specific viewing angles appropriate to the Crab and Vela pulsars. Phase-resolved spectra are also computed in the polar cap case and provide signatures for testing the models. The calculations have been extended to include millisecond pulsars, and we have been able to predict fluxes and spectra for populations of recycled pulsars, which are compared to COS B data for globular cluster populations.

  3. The anomalous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Li, Xiangdong

    2002-03-01

    In the last few years it has been recognized that a group of X-ray pulsars have peculiar properties which set them apart from the majority of accreting pulars in X-ray binaries. They are called the Anomalous X-ray Pulsars (AXP). These objects are characterized by very soft X-ray spectra with low and steady X-ray fluxes, narrow-distributed spin periods, steady spin-down, no optical/infrared counterparts. Some of them may associate with supernova remnants. The nature of AXP remains mysterious. It has been suggested that AXP are accreting neutron stars, or solitary "magnetars", neutron stars with super strong magnetic fields (≍1010-1011T). In this paper we review the recent progress in the studies of AXP, and discuss the possible implications from comparison of AXP with other neutron stars, such as radio pulsars, radio quiet X-ray pulsar candidates and soft γ-ray repeaters.

  4. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2013-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).

  5. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2014-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6397 at 10cm, for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system.

  6. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2014-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).

  7. The origin of the Guitar pulsar

    NASA Astrophysics Data System (ADS)

    Tetzlaff, N.; Neuhäuser, R.; Hohle, M. M.

    2009-11-01

    Among a sample of 140 OB associations and clusters, we want to identify probable parent associations for the Guitar pulsar (PSR B2224+65), which would then also constrain its age. For this purpose, we are using an Euler-Cauchy technique, treating the vertical component of the Galactic potential to calculate the trajectories of the pulsar and each association into the past. To include errors, we use Monte Carlo simulations varying the initial parameters within their error intervals. The whole range of possible pulsar radial velocities is taken into account during the simulations. We find that the Guitar pulsar most probably originated from the Cygnus OB3 association ~0.8Myr ago, inferring a current radial velocity of vr ~ -30kms-1, consistent with the inclination of its bow shock.

  8. Multiwavelength Observations of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Slane, Patrick

    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. Such observations reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and newly formed dust. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very-high-energy γ-rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.

  9. OSSE observations of the Crab pulsar

    NASA Technical Reports Server (NTRS)

    Ulmer, M. P.; Matz, S. M.; Cameron, R. A.; Grabelsky, D. A.; Grove, J. E.; Johnson, W. N.; Jung, G. V.; Kinzer, R. L.; Kurfess, J. D.; Leising, M. D.

    1992-01-01

    Preliminary results are presented of the Compton Gamma Ray Observatory Oriented Scintillation Spectrometer Experiment (OSSE) observations of the Crab pulsar. The pulsar energy spectra and light curves are in general agreement with previous observations, validating the OSSE pulsar data acquisition modes and data analysis algorithms. The data suggest that the spectrum of the pulsar varies throughout the light curve. The 'interpulse' region has a slightly flatter spectrum in the approx. 60 to 250 keV region and a slightly steeper spectrum at higher energies than the two main pulses. No evidence was found for any lines in the spectra with a typical sensitivity of about 10(exp -4) photons/sq cm/s.

  10. Interactive Database of Pulsar Flux Density Measurements

    NASA Astrophysics Data System (ADS)

    Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.

    2012-12-01

    The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.

  11. An Independent 1967 Discovery of Pulsars

    NASA Astrophysics Data System (ADS)

    Schisler, Charles

    2008-02-01

    During a 1-year tour of duty at the Ballistic Missile Early Warning Site, Clear Air Force Station, Alaska, pulsed signals unrelated to the station radar were observed. Detection of the 4-min/day sidereal advance in the times of occurrence of the signals showed that they were of astronomical origin. At least ten distinct sources were observed and approximate celestial positions of these sources determined from the azimuth and occurrence time of the signals. The strongest source, first detected in mid-August 1967, was identified with the Crab Nebula. Following the announcement of the discovery of pulsars by the Cambridge group in 1968, it was realised that the detected sources were most likely pulsars. In particular, it is virtually certain that the Crab Nebula source was the Crab pulsar. Following the recent de-activation of the radar system, it is now possible to discuss this independent discovery of pulsars.

  12. Outlook for Detecting Gravitational Waves with Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic

  13. Braking Index of GEMINGA Pulsar

    NASA Astrophysics Data System (ADS)

    Ramanamurthy, P. V.; Mattox, J. R.; EGRET Science Team

    1993-12-01

    The pulsar Geminga, also known as 2CG195+04, IE0630+178 and the faint star G", is a remarkable object in the sense that its energy output is almost all in high energy gamma rays. The pulsar elements of this 237 ms pulsar as given by various authors are surveyed. The braking index, $ n = ftimes ddot f / (dot f)(2) as obtained from the elements given by any one group (Hermsen et al. 1992; Bertsch et al. 1992) based on their own data set appears to be too high or has a very large upper limit compared with 3, the value expected for magnetic dipole radiation. This is largely due to the uncertainty in the value of \\ddot f. It is difficult to carry the absolute phase from one set of observations to another for a variety of reasons. Rather than fitting a polynomial in elapsed time to the event phases over different data sets, we have taken a different approach to determine \\ddot f. Hermsen et al. (1992) and Mattox et al. (1993) have determined f and \\dot f from COS-B and EGRET data respectively at two widely separated epochs. Assuming that there were no glitches, we obtained \\ddot f by dividing the difference in \\dot f values at the two epochs by the time difference between the two epochs; the resulting value of \\ddot f is (4 \\pm 2) times 10^{-26} s^{-3} . Combining this with the f and \\dot f values we obtained a value of (4.5 \\pm 2.3) for the braking index. This value agrees well with the expected. With more observations of Geminga scheduled for the Compton GRO, we expect that the error in \\dot f and consequently the errors in \\ddot f and n$ will decrease further in future. \\leftline{Bertsch et al. (1992) Nature, 357, 306} \\leftline{Hermsen et al. (1992) IAU Circular # 5541} \\leftline{Mattox et al. Proc. 2nd Compton Symp., (September, 1993), College} \\leftline{\\quad Park, Md., U.S.A.}

  14. Pulsar-aided SETI experimental observations

    NASA Technical Reports Server (NTRS)

    Heidmann, J.; Biraud, F.; Tarter, J.

    1989-01-01

    The rotational frequencies of pulsars are used to select preferred radio frequencies for SETI. Pulsar rotational frequencies are converted into SETI frequencies in the 1-10 GHz Galactic radio window. Experimental observations using the frequencies are conducted for target stars closer than 25 parsecs, unknown targets in a globular cluster, and unknown targets in the Galaxy closer than 2.5 kpc. The status of these observations is discussed.

  15. OSSE Observations of the Crab Pulsar

    DTIC Science & Technology

    1994-01-01

    Crab nebula and pulsar (Leventhal, MacCallum, & Watts 1977; Ling et al. 1979; Strickman, Johnson, & Kurfess 1979; Ayre et al. 1983; Agrinier et al...emission from the Crab nebula , as well as detector background. The background portion was then subtracted from the entire light curve. The phase ranges we...detections c) References for previous upper limits d) Based on total Crab nebula plus pulsar spectrum e) Upper limits (3) f) Comments related to

  16. On the structure of pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Nikitina, Elena

    2011-07-01

    The angle BETA between rotation and magnetic axes are calculated by two methods for 283 radio pulsars at the wavelength 10 cm, 132 ones at 20 cm and 80 objects at the wavelength near 30 cm. The common average of the angle BETA is 43.5 degrees. Some effects which can give errors in the values of BETA are discussed. There are no correlations between values of BETA and pulsar ages.

  17. Magnetar-like Activity and Radio Emission Variability from the High Magnetic Field Pulsar PSR J1119-6127

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron B.; Majid, Walid A.; Horiuchi, Shinji; Kocz, Jonathon; Lippuner, Jonas; Prince, Thomas Allen

    2017-08-01

    We present results from a high frequency radio monitoring campaign of the high magnetic field pulsar PSR J1119-6127 with the Deep Space Network (DSN) 70 m antenna (DSS-43) in Canberra, Australia, following recently reported magnetar-like activity. Dramatic pulsed radio emission variability was observed over several months at S-band (2.3 GHz) and X-band (8.4 GHz) after an initial disappearance of radio pulsations. The S-band pulse profile evolved from a multiple-peaked structure into a single-peak over several weeks, which is extremely unusual for radio pulsars. We also observed significant differences between the polarized pulse profiles at both S-band and X-band. In addition, pulsed emission variability was observed on shorter timescales, of order tens of minutes, during individual observations.The spectral index from 2.3 GHz to 8.4 GHz varied between < -4.8(2) to -1.7(2) during times when the multi-peaked pulse profile was most prominent at S-band, which is considerably steeper than the pulsar’s inferred spectral index of -0.9(1) from previous measurements between 1.4 GHz and 3.1 GHz. We detected unusually bright, transient X-band pulsations as the S-band pulse profile became single-peaked, which led to a flattening of the spectral index to -0.4(1). This transition is likely further evidence of magnetar-like behavior since this spectral index value agrees remarkably well with measurements from other known radio magnetars, such as XTE J1810-1917, SGR J1745-2900, and PSR J1622-4950. A week later, the spectral index steepened and then flattened from -1.34(7) to -0.95(9) over several days. Bright single pulse events were also detected at S/X-band with peak flux densities exceeding 0.49/0.27 Jy.Although PSR J1119-6127 is normally a rotation-powered pulsar, it is possible that the decay of the pulsar’s strong magnetic field, together with other magnetar-like mechanisms, may be responsible for the observed emission variability. We will discuss how these results

  18. Millisecond Pulsars, their Evolution and Applications

    NASA Astrophysics Data System (ADS)

    Manchester, R. N.

    2017-09-01

    Millisecond pulsars (MSPs) are short-period pulsars that are distinguished from "normal" pulsars, not only by their short period, but also by their very small spin-down rates and high probability of being in a binary system. These properties are consistent with MSPs having a different evolutionary history to normal pulsars, viz., neutron-star formation in an evolving binary system and spin-up due to accretion from the binary companion. Their very stable periods make MSPs nearly ideal probes of a wide variety of astrophysical phenomena. For example, they have been used to detect planets around pulsars, to test the accuracy of gravitational theories, to set limits on the low-frequency gravitational-wave background in the Universe, and to establish pulsar-based timescales that rival the best atomic-clock timescales in long-term stability. MSPs also provide a window into stellar and binary evolution, often suggesting exotic pathways to the observed systems. The X-ray accretion-powered MSPs, and especially those that transition between an accreting X-ray MSP and a non-accreting radio MSP, give important insight into the physics of accretion on to highly magnetized neutron stars.

  19. A novel mechanism for creating double pulsars

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1992-01-01

    Simulations of encounters between pairs of hard binaries, each containing a neutron star and a main-sequence star, reveal a new formation mechanism for double pulsars in dense cores of globular clusters. In many cases, the two normal stars are disrupted to form a common envelope around the pair of neutron stars, both of which will be spun up to become millisecond pulsars. We predict that a new class of pulsars, double millisecond pulsars, will be discovered in the cores of dense globular clusters. The genesis proceeds through a short-lived double-core common envelope phase, with the envelope ejected in a fast wind. It is possible that the progenitor may also undergo a double X-ray binary phase. Any circular, short-period double pulsar found in the galaxy would necessarily come from disrupted disk clusters, unlike Hulse-Taylor class pulsars or low-mass X-ray binaries which may be ejected from clusters or formed in the galaxy.

  20. The Future of Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    Stappers, B. W.

    Significant advances have been made in the sensitivity of pulsar timing arrays for the detection of gravitational waves in the last decade. This presentation looked forward to consider where the development of pulsar timing arrays might go as we head towards the Square Kilometre Array (SKA) and then beyond. I reviewed where progress needs to be made in terms of sensitivity to gravitational waves, including improvements to existing observing approaches and new telescopes such as MeerKAT and FAST and techniques like LEAP. The dramatic increase in the number of millisecond pulsars is presented and how that might affect progress towards a first detection is discussed. Developments in analytic techniques were also discussed, including the removal of interstellar medium effects, red noise and pulse profile variations. A summary of how the SKA can contribute through an increased millisecond pulsar population and pulsar timing sensitivity was presented. With the likelihood that the SKA will implement some form of Key Science Project approach, some ideas of how will this affect how the International Pulsar Timing Array effort and how it might evolve into a KSP were discussed.

  1. Detecting pulsars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (i.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  2. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    SciTech Connect

    Cordes, J. M.; Jenet, F. A. E-mail: merlyn@phys.utb.edu

    2012-06-10

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T Almost-Equal-To 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  3. Pulsar observations with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Fidalgo, David

    2016-07-01

    The vast majority of spectra of gamma-ray pulsars exhibit an exponential cut-off at a few GeV, as seen by the Large Area Telescope (LAT) on board of the Fermi satellite. Due to this cut-off, current Imaging Atmospheric Cherenkov Telescopes (IACTs) with an energy threshold as low as 30 GeV, struggle to detect pulsars. So far, emission above 50 GeV has been confirmed only for the Crab and Vela pulsars. In the case of the former, the spectrum even extends up to about 1 TeV firmly revealing a second emission component. To further understand the emission mechanism of gamma-ray pulsars, the MAGIC collaboration continues the search of pulsars above 50 GeV. In this talk we report on recent results on the Crab and Geminga Pulsar obtained with the MAGIC telescopes, including the analysis of data taken with a new trigger system lowering the energy threshold of the MAGIC telescopes.

  4. Interstellar scintillations of pulsar radiation.

    PubMed

    Lang, K R

    1969-12-12

    Time fluctuations in the intensity of pulsed radiation from CP 0834, CP 1133, AP 1237, and CP 1919 have been investigated. Power spectra, modulation indices, frequency distributions, and decorrelation frequencies are consistent with scintillation theory. If it is assumed that these scintillations are due to irregularities in the interstellar medium that travel at a velocity of 20 kilometers per second, the irregularities have a scale size on the order of 10(4) kilometers and a distance from the earth of approximately 70 parsecs. These interstellar scintillations would not have been observed if the apparent angular diameters of the pulsars were larger than 0.3 X 10(-5) second of arc, and they would cause even a point radio source to have an apparent angular diameter of approximately 10(-3) second of arc at 318 megahertz.

  5. The imprint of pulsar parameters on the morphology of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Bühler, Rolf; Giomi, Matteo

    2016-11-01

    The morphology of young Pulsar Wind Nebulae (PWN) is largely determined by the properties of the wind injected by the pulsar. We have used a recent parametrization of the wind obtained from force-free electrodynamics simulations of pulsar magnetospheres to simulate nebulae for different sets of pulsar parameters. We performed axisymmetric relativistic magnetohydrodynamics simulations to test the morphology dependence of the nebula on the obliquity of the pulsar and on the magnetization of the pulsar wind. We compare these simulations to the morphology of the Vela and Crab PWN. We find that the morphology of Vela can be reproduced qualitatively if the pulsar obliquity angle is α ≈ 45° and the magnetization of the wind is high (σ0 ≈ 3.0). A morphology similar to the one of the Crab nebula is only obtained for low-magnetization simulations with α ≳ 45°. Interestingly, we find that Kelvin-Helmholtz instabilities produce small-scale turbulences downstream of the reverse shock of the pulsar wind.

  6. Scaling from Jupiter to pulsars and the acceleration of cosmic ray particles by pulsars, 3

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.

    1985-01-01

    An expression for the rate of energy generation by a pulsar an estimate of contribution from all the pulsars in our galaxy to the observed cosmic ray intensity was presented. The theory was then developed to an expanded version, and observational facts supporting the theory were cited.

  7. Exploring Radio Pulsars With New Technologies

    NASA Astrophysics Data System (ADS)

    Torne, Pablo

    2017-04-01

    Pulsars are rapidly-rotating, highly-magnetized compact neutron stars. Their strong gravitational and magnetic fields, together with the stability of their rotations and the precision with which we can measure them using radio telescopes, make pulsars unique laboratories for a wide variety of physical experiments. This thesis presents an investigation of the application of new receiver technologies and observing techniques at different radio wavelengths to the search for and study of pulsars. Discovering new pulsars always expands our capabilities to do new science. In general, the most exciting pulsars are those in binary systems because of their potential in high-precision tests of General Relativity and other gravity theories, and for constraining the Equation-of-State of ultra-dense matter. I present a search for pulsars in the Galactic Centre, where the probabilities of finding pulsar binaries, including the long-sought pulsar-black hole system, are high. The data were taken with the Effelsberg 100-m radio telescope and used high radio frequencies between 4.85 and 18.95 GHz to partially overcome the strong scattering in the direction to the centre of the Galaxy. With approximately 50 per cent of the results reviewed, no new pulsars have been discovered. We carried out a study of the sensitivity limits of the survey, finding that our sensitivity to Galactic Centre pulsars is highly reduced by the contributions to the total system noise of the Galactic Centre background and the atmosphere. We conclude that the paucity of detections in this and perhaps also previous similar surveys is likely due to insufficient sensitivity, and not a lack of pulsars in the region. In March 2013, a radio magnetar, one of the rarest types of pulsars, became suddenly visible from the Galactic Centre. I led two multifrequency observing campaigns on this source, SGR J1745-2900, in order to study its radio emission properties. Four different observatories were involved (including

  8. EGRET High-Energy gamma -Ray Pulsar Studies. II. Individual Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Fierro, J. M.; Arzoumanian, Z.; Bailes, M.; Bell, J. F.; Bertsch, D. L.; Brazier, K. T. S.; Chiang, J.; D'Amico, N.; Dingus, B. L.; Esposito, J. A.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Johnston, S.; Kanbach, G.; Kaspi, V. M.; Kniffen, D. A.; Lin, Y. C.; Lyne, A. G.; Manchester, R. N.; Mattox, J. R.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Nel, H. I.; Nice, D.; Nolan, P. L.; Schneid, E. J.; Shriver, S. K.; Sreekumar, P.; Taylor, J. H.; Thompson, D. J.; Willis, T. D.

    1995-07-01

    More than 2 yr of observations performed by the Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory (CGRO) are examined for evidence of high-energy γ-ray emission from individual millisecond pulsars. Upper limits are placed on steady emission. In addition, for those millisecond pulsars for which an accurate timing solution is available, upper limits to pulsed γ-ray emission are established. The results are compared with predictions of current pulsar γ-ray emission models. In particular, the absence of a detection of γ-rays from the nearby millisecond pulsar PSR J0437-4715 severely constrains theories regarding γ-ray emission from millisecond pulsars.

  9. Multiwavelength Observations of the Black Hole Candidate XTE J1550-564 during the 2000 Outburst

    NASA Astrophysics Data System (ADS)

    Jain, Raj K.; Bailyn, Charles D.; Orosz, Jerome A.; McClintock, Jeffrey E.; Remillard, Ronald A.

    2001-06-01

    We report optical, infrared, and X-ray light curves for the outburst, in 2000, of the black hole candidate XTE J1550-564. We find that the start of the outburst in the H and V bands precedes that seen in the Rossi X-Ray Timing Explorer All-Sky Monitor by 11.5+/-0.9 and 8.8+/-0.6 days, respectively; a similar delay has been observed in two other systems. About 50 days after the primary maxima in the VIH light curves, we find secondary maxima, most prominently in H. This secondary peak is absent in the X-ray light curve but coincides with a transition to the low/hard state. We suggest that this secondary peak may be due to nonthermal emission associated with the formation of a jet.

  10. A versatile 50 ft-lb-sec reaction wheel for TRMM and XTE missions

    NASA Astrophysics Data System (ADS)

    Bialke, Bill

    A 50 ft-lb-sec Reaction Wheel is being manufactured by ITHACO, Inc. for NASA's X-ray Timing Explorer (XTE) and Tropical Rainfall Measuring Mission (TRMM) missions, using the same mechanical assemblies as a similar Reaction Wheel developed by ITHACO for the Air Force's Advanced Research and Global Observation Satellite (ARGOS) (P91-1) mission. The versatile design allows variation in motor torque and speed capability with no mechanical modifications. State of the art ball bearing technology is combined with flight proven materials and conventional fabrication techniques to produce a relaible and manufacturable wheel assembly. An ironless armature brushless DC motor is incorporated for high efficiency and minimum weight. Comprehensive tradeoff analyses from the Reaction Wheel development are discussed for each component, and performance characteristics are presented for design variations from a high torque Reaction Wheel used in a three axis stabilized spacecraft to a low torque Momentum Wheel used in a momentum biased attitude Control System.

  11. Quenching studies in bridgman-grown Cd xHg 1-xTe

    NASA Astrophysics Data System (ADS)

    Capper, P.; Gosney, J. J. G.; Jones, C. L.; Quelch, M. J. T.

    1983-09-01

    Rapid quenching of crystals of Cd xHg 1- xTe (CMT) while growing at the slow rates of the Bridgman process reveals the solid/liquid interface at the point of quenching. The shape and extent of these interfaces, revealed by etching longitudinally-cut sections, have been related to the resulting radial composition variations as determined by infra-red transmission measurements. In the singly-quenched crystals features are seen at the interface which are believed to be diffusional boundary layers. Optical microscopy and electron microprobe analysis have been used to determine the thickness of these layers. The evidence suggests that melt stirring reduces the thickness as expected for diffusional boundary layers.

  12. The Rossi X-Ray Timing Explorer (XTE) Solar Array Anomaly

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.; Kichak, Robert; Niemeyer, Lee; Stegeman, Richard

    2004-01-01

    The XTE was launched December 30, 1995. Shortly after launch, it become apparent that the solar array was not performing as expected. On leaving shadow, the array exhibited many discontinuous drops in current output. The size of each of these drops was consistent with the loss of a part of a sell. The current decreases could not be caused by the loss of an entire circuit. This meant that the array may have had numerous cracked solar cells that opened as array got warmer. Studies performed on the array's qualification panel suggest that the cell cracks may have been cased by extensive tap testing performed on the array and that these cracks were undetectable at room temperature using usual inspection method.

  13. Optical investigation of the diluted magnetic semiconductor Zn 1- xMn xTe

    NASA Astrophysics Data System (ADS)

    Lemasson, P.; Van Huong, C. Nguyen; Benhida, A.; Lascaray, J. P.; Triboulet, R.

    1990-01-01

    Zn 1- xMn xTe alloys (0 <- x <- 0.72) have been investigated by photocurrent spectroscopy, electroreflectance in the electr olyte configuration and under vacuum by absorption and reflectivity measurements. Electroreflectance enables one to accurately determine the fundamental gap as a function of the alloy composition. We find E0( x) = (2.28 + 0.53 x) eV, a linear law which is in good agreement with previously published results. In the case of thermally treated samples with x ≈ 0.70 electroreflectance, photocurrent and absorption spectroscopy indicate that the fundamental transition may be totally different from what is expected depending on the part of the ingot from which the samples the originate ( E0 = 1.854 eV instead of 2.65 eV). It is assumed on the basis of complementary investigations that the complete band structure of the anomalous samples is shifted towards lower energy values.

  14. The Velocity Distribution of Isolated Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  15. THE MASS OF THE BLACK HOLE IN XTE J1118+480

    SciTech Connect

    Khargharia, Juthika; Froning, Cynthia S.; Robinson, Edward L.; Gelino, Dawn M. E-mail: cynthia.froning@colorado.edu E-mail: dawn@ipac.caltech.edu

    2013-01-01

    We present contemporaneous, broadband, near-infrared spectroscopy (0.9-2.45 {mu}m) and H-band photometry of the black hole X-ray binary, XTE J1118+480. We determined the fractional dilution of the NIR ellipsoidal light curves of the donor star from other emission sources in the system by comparing the absorption features in the spectrum with field stars of known spectral type. We constrained the donor star spectral type to K7 V-M1 V and determined that the donor star contributed 54% {+-} 27% of the H-band flux at the epoch of our observations. This result underscores the conclusion that the donor star cannot be assumed to be the only NIR emission source in quiescent X-ray binaries. The H-band light curve shows a double-humped asymmetric modulation with extra flux at orbital phase 0.75. The light curve was fitted with a donor star model light curve, taking into account a constant second flux component based on the dilution analysis. We also fitted models that included emission from the donor star, a constant component from the accretion disk, and a phase-variable component from the bright spot where the mass accretion stream impacts the disk. These simple models with reasonable estimates for the component physical parameters can fully account for the observed light curve, including the extra emission at phase 0.75. From our fits, we constrained the binary inclination to 68 Degree-Sign {<=} i {<=} 79 Degree-Sign . This leads to a black hole mass of 6.9 M{sub Sun} {<=} M{sub BH} {<=} 8.2 M{sub Sun }. Long-term variations in the NIR light curve shape in XTE J1118+480 are similar to those seen in other X-ray binaries and demonstrate the presence of continued activity and variability in these systems even when in full quiescence.

  16. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  17. Pulsed X-rays from the Vela pulsar

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Finley, J. P.; Zimmerman, H. U.

    1993-01-01

    An unambiguous detection by the Rosat satellite of pulsed X-ray emission from the Vela pulsar is reported. The pulse signal is soft, appearing mainly at energies less than 1 keV. The Rosat observations resolve the two sources of emission and show that the pointlike emission centered on the pulsars is soft, whereas the emission from the compact nebula is hard. The observations show that Vela more closely resembles older pulsars that the archetypal young pulsar embedded in an SNR.

  18. Basic physics and cosmology from pulsar timing data

    NASA Technical Reports Server (NTRS)

    Taylor, J. H.

    1991-01-01

    Radio pulsars provide unparalleled opportunities for making measurements of astrophysically interesting phenomena. The author concentrates on two particular applications of high precision timing observations of pulsars: tests of relativistic gravitation theory using the binary pulsar 1913+16, and tests of cosmological models using timing data from millisecond pulsars. New upper limits are presented for the energy density of a cosmic background of low frequency gravitational radiation.

  19. The Wind Interaction Regions of the VELA Pulsar: a Pulsar Jet and Bow Shock Nebula

    NASA Astrophysics Data System (ADS)

    Markwardt, Craig Bishop

    The Vela pulsar is a nearby young pulsar actively radiating radio to γ-rays. We present evidence in this work that the Vela pulsar is also interacting with its surroundings via a relativistic wind, which manifests itself as two different nebular structures. ROSAT PSPC observations of the Vela pulsar show that a 45 arcmin long collimated X-ray feature projects from the pulsar. We favor the interpretation that the feature is a 'cocoon' of heated gas formed when a jet outflow from the Vela pulsar interacts with the interior medium of the supernova remnant. This interpretation is consistent with the observed center-filled morphology and spectrum of the cocoon structure. Combined ROSAT + ASCA observations of the 'head' of the cocoon, the point where the jet is believed to interact with the supernova remnant, demonstrate that the spectrum has a thermal peak near 1 keV, but extends to at least 7 keV. No distinct spectral lines are seen. The spectral parameters of the cocoon could be produced by a cocoon with a pulsar jet whose speed is at least 800 km s-1, depending on the angle of inclination. The mechanical power driving the jet is ≥1036 erg s-1, consistent with the Vela pulsar's rotational energy loss rate. On smaller spatial scales, it has been known that the Vela pulsar is surrounded by a 2 arcmin diameter 'compact' nebula which has power law spectral emission. Our ROSAT HRI observations of the region show that the nebula very likely a bow shock structure formed by a nearly isotropic pulsar wind interacting with the supernova remnant. The axis of the nebula is aligned with the pulsar's known proper motion vector. The high particle energies and magnetic fields near the pulsar make the bow shock an ideal environment for generating X-ray synchrotron emission. We show that a full three dimensional model of the nebula, taking into account what is known about the geometry and pulsar wind physics, is consistent with the observations.

  20. Chandra Associates Pulsar and Historic Supernova

    NASA Astrophysics Data System (ADS)

    2001-01-01

    SAN DIEGO -- Scientists using NASA’s Chandra X-ray Observatory have found new evidence that a pulsar in the constellation of Sagittarius was created when a massive star exploded, witnessed by Chinese astronomers in the year 386 AD. If confirmed, this will be only the second pulsar to be clearly associated with a historic event. These results were presented today by Victoria Kaspi and Mallory Roberts of McGill University at the American Astronomical Society meeting. Also participating in the research were Gautum Vasisht from the Jet Propulsion Laboratory, Eric Gotthelf from Columbia University, Michael Pivovaroff from Therma-Wave, Inc., and Nobuyuki Kawai from the Institute of Physical and Chemical Research, Japan. The scientists used Chandra to locate the pulsar exactly at the geometric center of the supernova remnant known as G11.2-0.3. This location provides very strong evidence that the pulsar, a neutron star that is rotating 14 times a second, was formed in the supernova of 386 AD, and therefore has an age of 1615 years. "Determining the true ages of astronomical objects is notoriously difficult, and for this reason, historical records of supernovas are of great importance,"said Kaspi."In roughly the past 2,000 years, fewer than 10 reports of probable supernovae have been archived mostly by Asian astronomers. Of those handful, the remnant of 1054 AD, the Crab Nebula, was until now the only pulsar whose birth could be associated with a historic event - and, hence, the only neutron star that has a firm age." Between mid-April and mid-May in the year 386 AD, a young "guest star", presumably a supernova, was recorded by Chinese observers in the direction of the sky now known as the constellation of Sagittarius. In the 1970s, radio astronomers discovered an expanding nebula of gas and high-energy particles, called G11.2-0.3, that is believed to be the remnant of that explosion. In 1997, a team of X-ray astronomers used Japan’s ASCA satellite to discover a pulsar

  1. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, V. M.

    2008-03-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  2. Ion-implantation-induced damage and resonant levels in Pb/sub 1-x/Sn/sub x/Te

    SciTech Connect

    Gresslehner, K.H.; Palmetshofer, L.

    1980-09-01

    The dependence of the carrier concentration on the implantation dose and on the temperature was investigated in ion-implanted thin films of Pb/sub 1-x/Sn/sub x/Te (0< or =x<0.1). By assuming a twofold defect level in the conduction band we are able to fit the experimental results. With increasing tin content the energy of the defect level shifts towards the conduction-band edge. By extending the results to SnTe a general model for the understanding of the electrical properties of ion-implanted Pb/sub 1-x/Sn/sub x/Te (0< or =x< or =1) is suggested.

  3. Unusual flux-distance relationship for pulsars suggested by analysis of the Australia national telescopy facility pulsar catalogue

    SciTech Connect

    Singleton, John; Perez, M R; Singleton, J; Ardavan, H; Ardavan, A

    2009-01-01

    We analyze pulsar fluxes at 1400 MHz (S(1400)) and distances d taken from the Australia National Telescope Facility (ATNF) Pulsar Catalogue. Under the assumption that pulsar populations in different parts of the Galaxy are similar, we find that either (a) pulsar fluxes diminish with distance according to a non-standard power law (we suggest S(1400){proportional_to} 1/d rather than {proportional_to} 1/d{sup 2}) or (b) that there are very significant (i.e. order of magnitude) errors in the distance estimates quoted in the ATNF Catalogue. The former conclusion (a) supports a recent model for pulsar emission that has also successfully explained the frequency spectrum of the Crab pulsar over 16 orders of magnitude of frequency, whilst alternative (b) would necessitate a radical re-evaluation of both the dispersion method for estimating pulsar distances and current ideas about the distribution of pulsars within our Galaxy.

  4. ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS IN THE OUTER GAP MODEL: CONFRONTING FERMI OBSERVATIONS

    SciTech Connect

    Tong, H.; Song, L. M.; Xu, R. X.

    2011-09-01

    Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are magnetar candidates, i.e., neutron stars powered by a strong magnetic field. If they are indeed magnetars, they will emit high-energy gamma rays that are detectable by the Fermi Large Area Telescope (LAT), according to the outer gap model. However, no significant detection is reported in recent Fermi-LAT observations of all known AXPs and SGRs. Considering the discrepancy between theory and observations, we calculate the theoretical spectra for all AXPs and SGRs with sufficient observational parameters. Our results show that most AXPs and SGRs are high-energy gamma-ray emitters if they are really magnetars. The four AXPs 1E 1547.0-5408, XTE J1810-197, 1E 1048.1-5937, and 4U 0142+61 should have been detected by Fermi-LAT. There is therefore a conflict between the outer gap model in the case of magnetars and Fermi observations. Possible explanations in the magnetar model are discussed. On the other hand, if AXPs and SGRs are fallback disk systems, i.e., accretion-powered for the persistent emissions, most of them are not high-energy gamma-ray emitters. Future deep Fermi-LAT observations of AXPs and SGRs will help us make clear whether they are magnetars or fallback disk systems.

  5. Multifunctional Cu2-xTe Nanocubes Mediated Combination Therapy for Multi-Drug Resistant MDA MB 453

    NASA Astrophysics Data System (ADS)

    Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Aburto, Rebeca Romero; Mitcham, Trevor; Bouchard, Richard R.; Ajayan, Pulickel M.; Sakamoto, Yasushi; Maekawa, Toru; Kumar, D. Sakthi

    2016-10-01

    Hypermethylated cancer populations are hard to treat due to their enhanced chemo-resistance, characterized by aberrant methylated DNA subunits. Herein, we report on invoking response from such a cancer lineage to chemotherapy utilizing multifunctional copper telluride (Cu2-XTe) nanocubes (NCs) as photothermal and photodynamic agents, leading to significant anticancer activity. The NCs additionally possessed photoacoustic and X-ray contrast imaging abilities that could serve in image-guided therapeutic studies.

  6. Disentangling the NIR/optical emission of the black hole XTE J1650-500 during outburst

    NASA Astrophysics Data System (ADS)

    Curran, P. A.; Chaty, S.; Zurita Heras, J. A.

    2012-11-01

    Context. While the sources of X-ray and radio emission in the different states of low-mass X-ray binaries are relatively well understood, the origin of the near-infrared (NIR) and optical emission is more often debated. It is likely that the NIR/optical flux originates from an amalgam of different emission regions, because it occurs at the intersecting wavelengths of multiple processes. Aims: We aim to identify the NIR/optical emission region(s) of one such low-mass X-ray binary and black hole candidate, XTE J1650-500, via photometric, timing, and spectral analyses. Methods: We present unique NIR/optical images and spectra, obtained with the ESO-New Technology Telescope, during the peak of the 2001 outburst of XTE J1650-500. Results: The data suggest that the NIR/optical flux is due to a combination of emission mechanisms including a significant contribution from X-ray reprocessing and, at early times in the hard state, a relativistic jet that is NIR/radio dim compared to similar sources. Conclusions: The jet of XTE J1650-500 is relatively weak compared to that of other black hole low-mass X-ray binaries, possibly because we observe as it is being "turned off" or quenched at the state transition. While there are several outliers to the radio-X-ray correlation of the hard state of low-mass X-ray binaries, XTE J1650-500 is the first example of an outlier to the NIR/optical-X-ray correlation. Based on observations made with the European Southern Observatory telescopes obtained from the ESO/ST-ECF Science Archive Facility.

  7. On the Origin of Radio Emission in the X-Ray States of XTE J1650-500 during the 2001-2002 Outburst

    NASA Astrophysics Data System (ADS)

    Corbel, S.; Fender, R. P.; Tomsick, J. A.; Tzioumis, A. K.; Tingay, S.

    2004-12-01

    We report on simultaneous radio and X-ray observations of the black hole candidate XTE J1650-500 during the course of its 2001-2002 outburst. The scheduling of the observations allowed us to sample the properties of XTE J1650-500 in different X-ray spectral states, namely, the hard state, the steep power-law state, and the thermal dominant state, according to the recent spectral classification of McClintock & Remillard. The hard state is consistent with a compact jet dominating the spectral energy distribution at radio frequencies; however, the current data suggest that its contribution as direct synchrotron emission at higher energies may not be significant. In that case, XTE J1650-500 may be dominated by Compton processes (either inverse Comptonization of thermal disk photons and/or synchrotron self-Compton radiation from the base of the compact jet) in the X-ray regime. We surprisingly detect a faint level of radio emission in the thermal dominant state that may be consistent with the emission of previously ejected material interacting with the interstellar medium, similar (but on a smaller angular scale) to what was observed in XTE J1550-564 by Corbel and coworkers. Based on the properties of radio emission in the steep power-law state of XTE J1650-500 and taking into account the behavior of other black hole candidates (namely, GX 339-4, XTE J1550-564, and XTE J1859+226) while in the intermediate and steep power-law states, we are able to present a general pattern of behavior for the origin of radio emission in these two states that could be important for understanding the accretion-ejection coupling very close to the black hole event horizon.

  8. The black hole candidate XTE J1752-223 towards and in quiescence: optical and simultaneous X-ray-radio observations

    NASA Astrophysics Data System (ADS)

    Ratti, E. M.; Jonker, P. G.; Miller-Jones, J. C. A.; Torres, M. A. P.; Homan, J.; Markoff, S.; Tomsick, J. A.; Kaaret, P.; Wijnands, R.; Gallo, E.; Özel, F.; Steeghs, D. T. H.; Fender, R. P.

    2012-07-01

    We present optical, X-ray and radio observations of the black hole transient (BHT) XTE J1752-223 towards and in quiescence. Optical photometry shows that the quiescent magnitude of XTE J1752-223 is fainter than 24.4 mag in the i' band. A comparison with measurements of the source during its 2009-2010 outburst shows that the outburst amplitude is more than 8 mag in the i' band. Known X-ray properties of the source combined with the faintness of the quiescence optical counterpart and the large outburst optical amplitude point towards a short orbital-period system (Porb≲ 6.8 h) with an M type (or later) mass donor, at a distance of 3.5 ≲d≲ 8 kpc. Simultaneous X-ray and radio data were collected with Chandra and the Expanded Very Large Array (EVLA), allowing constraints to be placed on the quiescent X-ray and radio flux of XTE J1752-223. Furthermore, using data covering the final stage of the outburst decay, we investigated the low-luminosity end of the X-ray-radio correlation for this source and compared it with other BHTs. We found that XTE J1752-223 adds to the number of outliers with respect to the 'standard' X-ray-radio luminosity relation. Furthermore, XTE J1752-223 is the second source, after the BHT H1743-322, that shows a transition from the region of the outliers towards the 'standard' correlation at low luminosity. Finally, we report on a faint, variable X-ray source we discovered with Chandra at an angular distance of ˜2.9 arcsec to XTE J1752-223 and at a position angle consistent with that of the radio jets previously observed from the BHT. We discuss the possibility that we detected X-ray emission associated with a jet from XTE J1752-223.

  9. Binary Pulsar B1259-63 Spectrum Evolution and Classification of Pulsar Spectra

    NASA Astrophysics Data System (ADS)

    Dembska, M.; Kijak, J.; Lewandowski, W.

    2012-12-01

    Recently published results (Kijak et al. 2011a) indicated the evidence for a new aspect in radio pulsars spectra. We studied the radio spectrum of PSR B1259-63 in an unique binary with Be star LS 2883 and showed that this pulsar undergoes a spectrum evolution due to the orbital motion. We proposed a qualitative model which explains this evolution. We considered two mechanisms that might influence the observed radio emission: free-free absorption and cyclotron resonance. According to the published results (Kijak et al. 2011b), there were found objects with a new type of pulsar radio spectra, called gigahertz-peaked spectra (GPS) pulsars. Most of them were found to exist in very interesting environments. Therefore, it is suggested that the turnover phenomenon is associated with the environment, rather than being related intrinsically to the radio emission mechanism. Having noticed an apparent resemblance between the B1259-63 spectrum and the GPS, we suggested that the same mechanisms should be responsible for both cases. Thus, we believe that this binary system can hold the clue to the understanding of the gigahertz-peaked spectra of isolated pulsars. Using the same database we constructed spectra for chosen observing days and obtained different types of spectra. Comparing to current classification of pulsar spectra, there occurs a suggestion that the appearance of various spectra shapes, different from a simple power law which is typical for radio pulsars, is possibly caused by environmental conditions around neutron stars.

  10. Turn-over in pulsar spectra: From young pulsars to millisecond ones

    NASA Astrophysics Data System (ADS)

    Kijak, J.; Lewandowski, W.; Serylak, M.

    2008-02-01

    The evidence for turn-over in young pulsar radio spectra at high frequencies is presented. The frequency at which a spectrum shows the maximum flux density is called the peak frequency. This peak frequency appears to depend on pulsar age and dispersion measure. A possible relation with pulsar age is interesting. Millisecond pulsars, which are very old objects, may show no evidence for spectral turn-over down to 100 MHz. Some studied pulsars with turn-over at high frequencies have been shown to have very interesting interstellar environments. This could suggest that the turn-over phenomenon is associated with the enviromental conditions around the neutron stars, rahter than being related intrinsically with the radio emission mechanism. Although there are no earlier reports of such a connection, a more detailed study on larger sample of pulsars is needed to address this idea more quantitatively. In this context, future observations below 200 MHz using LOFAR will allow us to investigate turn-over in radio pulsar spectra.

  11. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    SciTech Connect

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J.; Heatherly, S. A.; Scoles, S.; Lynch, R.; Kondratiev, V. I.; Ransom, S. M.; Moniot, M. L.; Thompson, C.; Cottrill, A.; Raycraft, M.; Weaver, M.; Snider, A.; Dudenhoefer, J.; Allphin, L.; Thorley, J.; and others

    2013-05-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg{sup 2} of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  12. Detection and localization of continuous gravitational waves with pulsar timing arrays: the role of pulsar terms

    NASA Astrophysics Data System (ADS)

    Zhu, X.-J.; Wen, L.; Xiong, J.; Xu, Y.; Wang, Y.; Mohanty, S. D.; Hobbs, G.; Manchester, R. N.

    2016-09-01

    A pulsar timing array is a Galactic-scale detector of nanohertz gravitational waves (GWs). Its target signals contain two components: the `Earth term' and the `pulsar term' corresponding to GWs incident on the Earth and pulsar, respectively. In this work we present a Frequentist method for the detection and localization of continuous waves that takes into account the pulsar term and is significantly faster than existing methods. We investigate the role of pulsar terms by comparing a full-signal search with an Earth-term-only search for non-evolving black hole binaries. By applying the method to synthetic data sets, we find that (i) a full-signal search can slightly improve the detection probability (by about five per cent); (ii) sky localization is biased if only Earth terms are searched for and the inclusion of pulsar terms is critical to remove such a bias; (iii) in the case of strong detections (with signal-to-noise ratio ≳30), it may be possible to improve pulsar distance estimation through GW measurements.

  13. The Pulsar Search Collaboratory: Discovery and Timing of Five New Pulsars

    NASA Astrophysics Data System (ADS)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Heatherly, S. A.; Boyles, J.; Lynch, R.; Kondratiev, V. I.; Scoles, S.; Ransom, S. M.; Moniot, M. L.; Cottrill, A.; Weaver, M.; Snider, A.; Thompson, C.; Raycraft, M.; Dudenhoefer, J.; Allphin, L.; Thorley, J.; Meadows, B.; Marchiny, G.; Liska, A.; O'Dwyer, A. M.; Butler, B.; Bloxton, S.; Mabry, H.; Abate, H.; Boothe, J.; Pritt, S.; Alberth, J.; Green, A.; Crowley, R. J.; Agee, A.; Nagley, S.; Sargent, N.; Hinson, E.; Smith, K.; McNeely, R.; Quigley, H.; Pennington, A.; Chen, S.; Maynard, T.; Loope, L.; Bielski, N.; McGough, J. R.; Gural, J. C.; Colvin, S.; Tso, S.; Ewen, Z.; Zhang, M.; Ciccarella, N.; Bukowski, B.; Novotny, C. B.; Gore, J.; Sarver, K.; Johnson, S.; Cunningham, H.; Collins, D.; Gardner, D.; Monteleone, A.; Hall, J.; Schweinhagen, R.; Ayers, J.; Jay, S.; Uosseph, B.; Dunkum, D.; Pal, J.; Dydiw, S.; Sterling, M.; Phan, E.

    2013-05-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg2 of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  14. Sub-luminous γ-ray pulsars

    DOE PAGES

    Romani, R. W.; Kerr, M.; Craig, H. A.; ...

    2011-08-17

    Here, most pulsars observed by the Fermi Large Area Telescope have γ-ray luminosities scaling with spin-down powermore » $${\\dot{E}}$$ as $$L_\\gamma \\approx ({\\dot{E}}\\, \\times \\, 10^{33}\\,{\\rm erg \\,s^{-1}})^{1/2}$$. However, there exist one detection and several upper limits an order of magnitude or more fainter than this trend. We describe these "sub-luminous" γ-ray pulsars and discuss the case for this being an orientation effect. Of the 12 known young radio pulsars with $${\\dot{E}}>10^{34}\\, {\\rm erg\\,s^{-1}}$$ and d ≤ 2 kpc several are substantially sub-luminous. The limited available geometrical constraints favor aligned geometries for these pulsars, although no one case for alignment is compelling. In this scenario GeV emission detected from such sub-luminous pulsars can be due to a lower altitude, lower-power accelerator gap.« less

  15. Probing Microstructure in Interstellar Plasma with Pulsars

    NASA Astrophysics Data System (ADS)

    Backer, Donald

    1999-11-01

    Pulsars provide excellent probes of small structure in the interstellar plasma. The list of observable effects includes dispersion, Faraday rotation, diffraction and refraction. Of great interest recently has been episodes of lensing and dual path propagation when the plasma perturbation has just the right focal length for the pulsar-perturber-earth geometry at a given frequency. I will discuss a recent study of the variable dispersion, refraction and diffraction of the millisecond pulsar B1937+21. This is based mainly on daily observations at 327 and 610 MHz with a pulsar monitoring telescope in Green Bank, WV. Further observations at 820 and 1395 MHz allow us to investigate the limits on dispersion measure determination set by diffraction. Length scales in the medium from 10^10 to 10^15 cm are probed. A second study focuses on a rare event in the Crab pulsar where the dispersion measure jumped by 0.1 pc cm-3 within one week and, prior to the jump, a faint and delayed ghost of the pulsed emission was observed. These phenomena can be explained in terms of a plasma wedge crossing the line of sight. The most likely location of this wedge is in the Rayleigh-Taylor unstable interface between the expanding supernova remains and the pre-supernova stellar wind debris.

  16. Pulsar Wind Bubble Blowout from a Supernova

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Chevalier, Roger A.

    2017-08-01

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh-Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell is subject to a robust Rayleigh-Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 1051 erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.

  17. IS CALVERA A GAMMA-RAY PULSAR?

    SciTech Connect

    Halpern, J. P.

    2011-07-20

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ('Calvera') was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi {gamma}-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first 'orphaned' central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the {gamma}-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

  18. PULSAR WIND NEBULAE WITH THICK TOROIDAL STRUCTURE

    SciTech Connect

    Chevalier, Roger A.; Reynolds, Stephen P. E-mail: reynolds@ncsu.edu

    2011-10-10

    We investigate a class of pulsar wind nebulae that show synchrotron emission from a thick toroidal structure. The best studied such object is the small radio and X-ray nebula around the Vela pulsar, which can be interpreted as the result of interaction of a mildly supersonic inward flow with the recent pulsar wind. Such a flow near the center of a supernova remnant can be produced in a transient phase when the reverse shock reaches the center of the remnant. Other nebulae with a thick toroidal structure are G106.6+2.9 and G76.9+1.0. Their structure contrasts with young pulsar nebulae like the Crab Nebula and 3C 38, which show a more chaotic, filamentary structure in the synchrotron emission. In both situations, a torus-jet structure is present where the pulsar wind passes through a termination shock, indicating the flow is initially toroidal. We suggest that the difference is due to the Rayleigh-Taylor instability that operates when the outer boundary of the nebula is accelerating into freely expanding supernova ejecta. The instability gives rise to mixing in the Crab and related objects, but is not present in the nebulae with thick toroidal regions.

  19. Is Calvera a Gamma-Ray Pulsar?

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.

    2011-07-01

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ("Calvera") was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi γ-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first "orphaned" central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the γ-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

  20. Polarization Properties of Rotation Powered Pulsars

    NASA Technical Reports Server (NTRS)

    Harding Alice K.

    2009-01-01

    Polarization measurements of rotation-powered pulsars and their nebulae have unique diagnostic potential. The polarization position angle of the pulsar wind nebula, as is know for the Crab pulsar, can tell us the orientation of the spin axis. Phase-resolved polarimetry of pulsars has had enormous diagnostic capability at radio and optical wavelengths and could also be a powerful diagnostic in the X-ray range. Measurement of the polarization properties as a function of pulse phase can therefore provide a multidimensional mapping of the pulsar emission. In the 'rotating vector' model, radiation originating near a magnetic pole is expected to show a characteristic S-shaped swing of the position angle vs. pulse phase. In this case it is possible to determine the magnetic inclination and viewing angles. Radiation originating further from the poles or further above the neutron star surface will have a more complex polarization signature, as a result of relativistic effects of aberration and time-of-flight delays and may also cause depolarization of the signal. I will discuss predicted polarization properties of pulsed emission in polar cap models, where radiation originates near the neutron star surface at the magnetic poles, and in slot gap and outer gap models, where radiation originates over a range of altitudes out to the speed-of-light cylinder.

  1. Thermal properties of three Fermi pulsars

    NASA Astrophysics Data System (ADS)

    Danilenko, A.; Karpova, A.; Kirichenko, A.; Shibanov, Y.; Shternin, P.; Zharikov, S.; Zyuzin, D.

    2014-07-01

    We analysed thermal properties of the Fermi pulsars J0357+3205, J1741-2054, and J0633+0632 using data from the XMM-Newton and Chandra archives. The X-ray spectra of all three pulsars can be fitted by sum of thermal and power-law components. For J1741-2054, the thermal component is best described by a blackbody model whose normalization suggests that the thermal emission comes from the bulk of the neutron star surface. The effective temperature of 60 eV, which is rather large for a pulsar as old as J1741-2054, makes it similar to the well-studied pulsar B1055-52, one of ``the three musketeers''. The thermal components of PSRs J0357+3205 and J0633+0632 can be equally well described by blackbody or the hydrogen atmosphere models. In the former case the normalizations suggest hot polar cap as thermal emission origin and only upper limits on the neutron stars surface temperatures can be computed. For the hydrogen atmosphere models, the normalizations are in agreement with emission coming from a substantial part of neutron star surface. Thermal properties of the pulsars are confronted with similar data on other isolated neutron stars and predictions of the neutron star cooling theory.

  2. The dynamic pulsar emission over multiple frequencies

    NASA Astrophysics Data System (ADS)

    Joshi, Bhalchandra

    In this presentation, a review of single pulse emission from radio pulsars, with particular emphasis on recent simultaneous multi-frequency studies with the GMRT on PSRs B0031-07, B0809+74 and B2319+60, is carried out. After a brief description of single pulse phenomena in radio pulsar, the relationship between subpulse drifting, nulling and profile mode-changes is explored. Recent results, obtained with the GMRT, the WSRT and Effelsberg telescope, which show that all these phenomena are correlated from 325 MHz to 4.8 GHz are discussed alongwith results on other pulsars with the GMRT and the ORT. These results suggest that these phenomena are manifestations of global changes in magnetosphere. Implications for recent models, invoking such changes, are discussed after a brief description of these models, which were proposed to explain changes in spin-down of pulsars observed during the ON and OFF states of intermittent pulsars. The presentation ends with discussion of future observations and theoretical challenges in this field.

  3. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  4. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  5. Optical second-harmonic imaging of Pb{sub x}Cd{sub 1-x}Te ternary alloys

    SciTech Connect

    Scheidt, T.; Rohwer, E.G.; Bergmann, H.M. von; Saucedo, E.; Dieguez, E.; Fornaro, L.; Stafast, H.

    2005-05-15

    We employ femtosecond laser pulses (80 fs, 1.59 eV, and 80 MHz) to study the optical second-harmonic (SH) response of Pb{sub x}Cd{sub 1-x}Te ternary alloys (x about 0.2) grown by the vertical Bridgman method. The alloy segregates into a Pb-rich and a Cd-rich phase, the latter dominating the SH response of the ternary alloy by at least two orders of magnitude. Several sample regions show a regular layer-by-layer accommodation of the Pb-rich and Cd-rich phases as seen by a periodic alternation of the alloy's SH response on a {approx}10-{mu}m length scale. Furthermore, we employ polarization-resolved SH imaging as well as SH imaging at different azimuthal angles to obtain spatially resolved mappings of the sample, which are sensitive to the composition as well as the growth orientation of the Pb{sub x}Cd{sub 1-x}Te material system. We observe an azimuthal phase shift of approximately 30 deg. between coherent macroscopic regions (several mm{sup 2}) in the Cd-rich phase of the ternary alloy. We interpret these regions as large area crystalline grains of (111) and (411) crystal orientations and approximately equal composition. Hence, SH imaging is shown to spatially resolve regions of different growth directions within the Pb{sub x}Cd{sub 1-x}Te sample.

  6. Discovery and X-ray Monitoring of a New Black Hole Candidate XTE J1752-223

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, Nikolai; Swank, J. H.; Markwardt, C. B.; Krimm, H.

    2010-03-01

    On October 23, 2009 a new X-ray transient source XTE J1752-223 was discovered by RXTE during observations scanning the Galactic Bulge region. Source identification in the optical, infra-red, and radio immediately followed. The first pointed RXTE observation, three days after the discovery, revealed a very hard non-thermal energy spectrum and strong iron line emission. After the initial rise the source flux leveled off and showed very stable properties for more than a month of monitoring observations until the Sun was too close for RXTE to observe. We analyzed RXTE data collected during this monitoring campaign. The aperiodic fast variability properties are strongly reminiscent of the extreme hard states shown by the well known black hole binary Cygnus X-1, as well as several other black hole candidates. The overall similarity of the source properties to those of other Galactic black holes classify XTE J1752-223 as a new stellar black hole candidate. We compare spectral and variability properties of XTE J1752-223 to Cygnus X-1 and discuss possible implications for various mechanisms of non-thermal emission.

  7. PULSAR OBSERVATIONS USING THE FIRST STATION OF THE LONG WAVELENGTH ARRAY AND THE LWA PULSAR DATA ARCHIVE

    SciTech Connect

    Stovall, K.; Dowell, J.; Eftekhari, T.; McCrackan, M.; Schinzel, F. K.; Taylor, G. B.; Ray, P. S.; Blythe, J.; Garcia, A.; Lazio, T. J. W.

    2015-08-01

    We present initial pulsar results from the first station of the Long Wavelength Array (LWA1) obtained during the commissioning period of LWA1 and in early science results. We present detections of periodic emission from 44 previously known pulsars, including 3 millisecond pulsars. The effects of the interstellar medium (ISM) on pulsar emission are significantly enhanced at the low frequencies of the LWA1 band (10–88 MHz), making LWA1 a very sensitive instrument for characterizing changes in the dispersion measure (DM) and other effects from the ISM. Pulsars also often have significant evolution in their pulse profile at low frequency and a break in their spectral index. We report DM measurements for 44 pulsars, mean flux density measurements for 36 pulsars, and multi-frequency component spacing and widths for 15 pulsars with more than one profile component. For 27 pulsars, we report spectral index measurements within our frequency range. We also introduce the LWA1 Pulsar Data Archive, which stores reduced data products from LWA1 pulsar observations. Reduced data products for the observations presented here can be found in the archive. Reduced data products from future LWA1 pulsar observations will also be made available through the archive.

  8. Planets around pulsars - Implications for planetary formation

    NASA Technical Reports Server (NTRS)

    Bodenheimer, Peter

    1993-01-01

    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  9. EVIDENCE OF AN ASTEROID ENCOUNTERING A PULSAR

    SciTech Connect

    Brook, P. R.; Karastergiou, A.; Buchner, S.; Roberts, S. J.; Keith, M. J.; Johnston, S.; Shannon, R. M.

    2014-01-10

    Debris disks and asteroid belts are expected to form around young pulsars due to fallback material from their original supernova explosions. Disk material may migrate inward and interact with a pulsar's magnetosphere, causing changes in torque and emission. Long-term monitoring of PSR J0738–4042 reveals both effects. The pulse shape changes multiple times between 1988 and 2012. The torque, inferred via the derivative of the rotational period, changes abruptly from 2005 September. This change is accompanied by an emergent radio component that drifts with respect to the rest of the pulse. No known intrinsic pulsar processes can explain these timing and radio emission signatures. The data lead us to postulate that we are witnessing an encounter with an asteroid or in-falling debris from a disk.

  10. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2012-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  11. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2012-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  12. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2010-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution).

  13. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2011-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  14. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2011-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  15. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2013-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  16. Testing gravity with pulsar scintillation measurements

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Nishizawa, Atsushi; Pen, Ue-Li

    2017-04-01

    We propose to use pulsar scintillation measurements to test predictions of alternative theories of gravity. Compared to single-path pulsar timing measurements, the scintillation measurements can achieve an accuracy of one part in a thousand within one wave period, which means picosecond scale resolution in time, due to the effect of multipath interference. Previous scintillation measurements of PSR B 0834 +06 have hours of data acquisition, making this approach sensitive to mHz gravitational waves. Therefore it has unique advantages in measuring the effect of gravity or other mechanisms on light propagation. We illustrate its application in constraining the scalar gravitational-wave background, in which case the sensitivities can be greatly improved with respect to previous limits. We expect much broader applications in testing gravity with existing and future pulsar scintillation observations.

  17. Are there two types of pulsars?

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.

    2016-11-01

    In order to investigate the importance of dissipation in the pulsar magnetosphere, we decided to combine force-free with Aristotelian electrodynamics. We obtain solutions that are ideal (non-dissipative) everywhere except in an equatorial current sheet where Poynting flux from both hemispheres converges and is dissipated into particle acceleration and radiation. We find significant dissipative losses (up to about 50 per cent of the pulsar spin-down luminosity), similar to what is found in global Particle-In-Cell simulations in which particles are provided only on the stellar surface. We conclude that there might indeed exist two types of pulsars, strongly dissipative ones with particle injection only from the stellar surface, and ideal (weakly dissipative) ones with particle injection in the outer magnetosphere and in particular at the Y-point.

  18. CONSECUTIVE BRIGHT PULSES IN THE VELA PULSAR

    SciTech Connect

    Palfreyman, Jim L.; Dickey, John M.; Hotan, Claire E.; Hotan, Aidan W.; Young, Timothy G.

    2011-07-01

    We report on the discovery of consecutive bright radio pulses from the Vela pulsar, a new phenomenon that may lead to a greater understanding of the pulsar emission mechanism. This results from a total of 345 hr worth of observations of the Vela pulsar using the University of Tasmania's 26 m radio telescope to study the frequency and statistics of abnormally bright pulses and sub-pulses. The bright pulses show a tendency to appear consecutively. The observations found two groups of six consecutive bright pulses and many groups of two to five bright pulses in a row. The strong radio emission process that produces the six bright pulses lasts between 0.4 and 0.6 s. The numbers of bright pulses in sequence far exceed what would be expected if individual bright pulses were independent random events. Consecutive bright pulses must be generated by an emission process that is long lived relative to the rotation period of the neutron star.

  19. Polarisation properties of pulsars at optical wavelengths

    NASA Astrophysics Data System (ADS)

    Mignani, Roberto; Marelli, Martino; Shearer, Andrew; Slowikowska, Agnieszka

    2016-07-01

    Polarisation measurements of pulsars offer unique insights into their highly-magnetised relativistic environments and represent a primary test for neutron star magnetosphere models and radiation emission mechanisms. Besides the radio band, optical observations have been, so far, best suited to these goals, with polarisation measurements in the X-rays becoming possible in the near future thanks to missions, such as XIPE and IXPE. In this talk, we review the status of the optical polarisation measurements of pulsars and we foresee possible synergies between X-ray polarimetry observations of selected pulsars with, e.g XIPE and IXPE, and optical observations with the next generation of extremely large telescope, such as the E-ELT.

  20. Gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1994-01-01

    While the proposed research received partial funding under this grant, during the term of support substantial progress was made on the development of a new model for the emission of gamma-rays from isolated rotation-powered pulsars. In phase one of the work, we showed how a modified version of the 'outer gap' model of pulsar emission could reproduce the double peaked profiles seen in CGRO pulsar observations. This work also demonstrated the spectrum of gap radiation varies significantly with position in the magnetosphere, and produced approximate computations of the emission from outer magnetosphere gap zones, including primary curvature radiation, gamma - gamma pair production and synchrotron radiation and inverse Compton scattering by the resulting secondary particles. This work was followed in phase two by a more complete treatment of the geometry of the radiation zone, and improved connections with observations at other wavelengths.

  1. Polarimetric Observation of Pulsars with Hexes

    NASA Astrophysics Data System (ADS)

    Xue, M.; Bhat, R.; Tremblay, S.; Ord, S.; Sobey, C.; Kirsten, F.

    2016-07-01

    The MWA VCS pipeline is now reliably generating high time resolution observations of radio pulsars in all four Stokes parameters. Here, we are proposing to test the polarimetric response of and our ability to calibrate the new Hex array currently under construction. These observation will provide data that will be used to study the pulsars themselves (including their emission mechanism and beam geometry), the interstellar medium and towards understanding the Galactic magnetic field. We are proposing a set of observations of three pulsars (J0034-0534, J0437-4715, and J2145-0750) at a wide range of hour angles to characterise the fidelity and stability of the polarimetric solutions with the hexes. The observation would be performed between 170-200 MHz and 140-170 MHz respectively. This project will form part of the PhD program of Mengyao Xue.

  2. A Search for Pulsar Companions to OB Runaway Stars

    NASA Technical Reports Server (NTRS)

    Kaspi, V. M.

    1995-01-01

    We have searched for radio pulsar companions to 40 nearby OB runaway stars. Observations were made at 474 and 770 MHz with the NRAO 140 ft telescope. The survey was sensitive to long- period pulsars with flux densities of 1 mJy or more. One previously unknown pulsar was discovered, PSRJ2044+4614, while observing towards target O star BD+45,3260. Follow-up timing observations of the pulsar measured its position to high precision, revealing a 9' separation between the pulsar and the target star, unequivocally indicating they are not associated.

  3. A survey for Hα pulsar bow shocks

    SciTech Connect

    Brownsberger, Sasha; Romani, Roger W. E-mail: sashab@stanford.edu

    2014-04-01

    We report on a survey for Hα bow shock emission around nearby γ-detected energetic pulsars. This survey adds three Balmer-dominated neutron star bow shocks to the six previously confirmed examples. In addition to the shock around Fermi pulsar PSR J1741–2054, we now report Hα structures around two additional γ-ray pulsars, PSR J2030+4415 and PSR J1509–5850. These are the first known examples of Hα nebulae with pre-ionization halos. With new measurements, we show that a simple analytic model can account for the angular size and flux of the bow shocks' apices. The latter, in particular, provides a new pulsar probe and indicates large moments of inertia and smaller distances than previously assumed in several cases. In particular, we show that the re-measured PSR J0437–4715 shock flux implies I = (1.7 ± 0.2) × 10{sup 45}/(f {sub HI}sin i) g cm{sup 2}. We also derive a distance d ≈ 0.72 kpc for the γ-ray only pulsar PSR J2030+4415 and revised distances for PSRs J1959+2048 (1.4 kpc) and J2555+6535 (∼1 kpc), smaller than the conventional DM-estimated values. Finally, we report upper limits for 94 additional LAT pulsars. An estimate of the survey sensitivity indicates that for a warm neutral medium filling factor φ{sub WNM} ∼ 0.3 there should be a total of approximately nine Hα bow shocks in our LAT-targeted survey; given that seven such objects are now known, a much larger φ{sub WNM} seems problematic.

  4. A Survey for Hα Pulsar Bow Shocks

    NASA Astrophysics Data System (ADS)

    Brownsberger, Sasha; Romani, Roger W.

    2014-04-01

    We report on a survey for Hα bow shock emission around nearby γ-detected energetic pulsars. This survey adds three Balmer-dominated neutron star bow shocks to the six previously confirmed examples. In addition to the shock around Fermi pulsar PSR J1741-2054, we now report Hα structures around two additional γ-ray pulsars, PSR J2030+4415 and PSR J1509-5850. These are the first known examples of Hα nebulae with pre-ionization halos. With new measurements, we show that a simple analytic model can account for the angular size and flux of the bow shocks' apices. The latter, in particular, provides a new pulsar probe and indicates large moments of inertia and smaller distances than previously assumed in several cases. In particular, we show that the re-measured PSR J0437-4715 shock flux implies I = (1.7 ± 0.2) × 1045/(f H I sin i) g cm2. We also derive a distance d ≈ 0.72 kpc for the γ-ray only pulsar PSR J2030+4415 and revised distances for PSRs J1959+2048 (1.4 kpc) and J2555+6535 (~1 kpc), smaller than the conventional DM-estimated values. Finally, we report upper limits for 94 additional LAT pulsars. An estimate of the survey sensitivity indicates that for a warm neutral medium filling factor phiWNM ~ 0.3 there should be a total of approximately nine Hα bow shocks in our LAT-targeted survey; given that seven such objects are now known, a much larger phiWNM seems problematic.

  5. Large scale pulsar surveys, new pulsar discoveries, and the observability of pulsar beams strongly bent by the Sag. A* black hole

    NASA Astrophysics Data System (ADS)

    Stovall, Kevin

    Pulsars are useful tools for a large range of topics including but not limited to the detection of gravitational waves; tests of theories of gravity; population studies of pulsars, neutron stars, and binary systems; and analysis of Galactic structure. In the case of detections of gravitational waves, large numbers of extremely fast pulsars with periods of a few milliseconds distributed across a large number of angular separations are needed. In the case of population and Galactic structure studies, large numbers of pulsars distributed throughout the Galaxy are necessary. In order to find pulsars in the exotic systems useful for tests of theories of gravity, large number of pulsar discoveries are necessary in order to find these rare objects. As all of these efforts require the discovery of large numbers of pulsars, a significant effort has been made over the past few years, and will continue into the foreseeable future, to detect many more new radio pulsars through large scale pulsar surveys. The surveys related to this work include the Pulsar Arecibo L-Band Feed Array, the Green Bank 350MHz Drift Scan Survey, the Arecibo 327MHz Drift Scan Survey (AO327), and the Green Bank North Celestial Cap (GBNCC) survey. Data analysis from each of these surveys has resulted or will result in millions of pulsar candidates to be combed through, in some way, in order to find new radio pulsars. Here we discuss these surveys and the data analysis pipelines for two of them (AO327 and GBNCC). We also introduce a web based software system called ARCC Explorer, which enables researchers of varying levels, including high school and undergraduate students, to assist in the discovery process. In addition, we give discovery or timing solutions for 93 new pulsars directly discovered as a result of this work. One particularly interesting, but not yet detected, pulsar system is the pulsar-black hole system. Attempts have been made (and are still ongoing) to detect pulsars orbiting the black

  6. Nature of Coherent Radio Emission from Pulsars

    NASA Astrophysics Data System (ADS)

    Mitra, Dipanjan

    2017-09-01

    The pulsar radio emission originates from regions below 10% of the light cylinder radius. This requires a mechanism where coherent emission is excited in relativistic pair plasma with frequency ν _{cr} which is below the plasma frequency ν_{°} i.e. ν _{cr} < ν_{°}. A possible model for the emission mechanism is charged bunches (charged solitons) moving relativistically along the curved open dipolar magnetic field lines capable of exciting coherent curvature radio emission. In this article, we review the results from high quality observations in conjunction with theoretical models to unravel the nature of coherent curvature radio emission in pulsars.

  7. The Ages, Speeds and Offspring of Pulsars

    NASA Astrophysics Data System (ADS)

    Hansen, Bradley Miles Stougaard

    1996-01-01

    We investigate the cooling of low mass white dwarfs with helium cores. We construct a detailed numerical model using the most modern input physics, including our own calculations of low temperature hydrogen opacities. We use our models to constrain the ages of binary millisecond pulsars from the optical observations of their white dwarf companions. We use this to place limits on the initial spin periods, magnetic field decay times and accretion histories of the millisecond pulsars. Our models can also be used along with observations of spectroscopic gravities and radial velocities to place interesting constraints on the neutron star equation of state. We provide grids of temperature and luminosity as a function of age for various white dwarf masses and surface compositions to facilitate future analyses. We have investigated the effect of the pulsar wind on the atmospheric composition of binary companions. The spallation of atmospheric helium to hydrogen increases the cooling age of the white dwarf. We find that all white dwarf companions in binaries with orbital period < 300 days should cool as DA (hydrogen surface layer) white dwarfs, irrespective of their original hydrogen content. We investigate the effect of various wind compositions and note that, if almost all the hydrogen on the surface of a pulsar companion is the result of spallation of an ionic wind, then the D/H ratio is large. We investigate the processes by which planets might form around a millisecond pulsar such as PSR B1257 + 12. We study the evolution of accretion disks of different mass, angular momentum and composition, corresponding to various proposed formation scenarios. We find that most formation scenarios require a high efficiency of conversion of metal-rich material into planets if they are to produce the observed parameters of the 1257 + 12 planetary system. We have studied the distribution of pulsar proper motions in the light of the recent analysis of Lyne & Lorimer (1994). Using a

  8. Limits to the Stability of Pulsar Time

    DTIC Science & Technology

    1995-12-01

    variations in the observed rotation rate of order 10-lo. Even a Pluto -like planet in a similar orbit would cause variations close to lo-" (Figure 1). It...encounter with a star[l21, average effect of galactic stars, white dwarfs , and giant molecular clouds[ul. As expected, the largest effect is for the pulsar...order of magnitude of the effect is proportional to the mass of the companion: For a Jupiter-like planet orbiting the pulsar in a few tens of years

  9. Pulsar glitches: the crust is not enough.

    PubMed

    Andersson, N; Glampedakis, K; Ho, W C G; Espinoza, C M

    2012-12-14

    Pulsar glitches are traditionally viewed as a manifestation of vortex dynamics associated with a neutron superfluid reservoir confined to the inner crust of the star. In this Letter we show that the nondissipative entrainment coupling between the neutron superfluid and the nuclear lattice leads to a less mobile crust superfluid, effectively reducing the moment of inertia associated with the angular momentum reservoir. Combining the latest observational data for prolific glitching pulsars with theoretical results for the crust entrainment, we find that the required superfluid reservoir exceeds that available in the crust. This challenges our understanding of the glitch phenomenon, and we discuss possible resolutions to the problem.

  10. Interstellar scattering of the Vela pulsar

    NASA Technical Reports Server (NTRS)

    Backer, D. C.

    1974-01-01

    The frequency dependence of the parameters of interstellar scattering between 837 and 8085 MHz for the Vela pulsar are consistent with thin-screen models of strong scattering. The magnitudes of the parameters indicate an anomalous turbulence along the path when they are compared with results for other pulsars with comparable column densities of free electrons in the line of sight. This anomaly is due presumably to the Gum Nebula. The decorrelation frequency, appropriately defined, is related to the pulse broadening time by 2 pi as predicted theoretically.

  11. Effect of long-term intensity variations on pulsar searches and the pulsar luminosity function

    NASA Technical Reports Server (NTRS)

    Krishnamohan, S.

    1981-01-01

    Long-term intensity data for five pulsars are used to obtain the probability density distribution of intensities for each pulsar, and it is found that they are described satisfactorily by chi-squared distributions. Based on these distributions, the number of new pulsars expected to be found on repeatedly searching the same region of the sky with the same sensitivity is given. Nearly 25 percent more new pulsars are expected to be found on the first repeat search. It is also shown that the luminosity function deduced from either a single survey or surveys with very different sensitivities is not affected by the omission of flux density variations in the calculation of selection effects. Finally, a method is proposed for deriving the luminosity function by combining the different searches of a given area on the basis of a probabilistic approach to the evaluation of selection effects.

  12. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    NASA Technical Reports Server (NTRS)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  13. PULSAR BINARY BIRTHRATES WITH SPIN-OPENING ANGLE CORRELATIONS

    SciTech Connect

    O'Shaughnessy, Richard; Kim, Chunglee E-mail: ckim@astro.lu.s

    2010-05-20

    One ingredient in an empirical birthrate estimate for pulsar binaries is the fraction of sky subtended by the pulsar beam: the pulsar beaming fraction. This fraction depends on both the pulsar's opening angle and the misalignment angle between its spin and magnetic axes. The current estimates for pulsar binary birthrates are based on an average value of beaming fractions for only two pulsars, i.e., PSRs B1913+16 and B1534+12. In this paper, we revisit the observed pulsar binaries to examine the sensitivity of birthrate predictions to different assumptions regarding opening angle and alignment. Based on empirical estimates for the relative likelihood of different beam half-opening angles and misalignment angles between the pulsar rotation and magnetic axes, we calculate an effective beaming correction factor, f{sub b,eff}, whose reciprocal is equivalent to the average fraction of all randomly selected pulsars that point toward us. For those pulsars without any direct beam geometry constraints, we find that f{sub b,eff} is likely to be smaller than 6, a canonically adopted value when calculating birthrates of Galactic pulsar binaries. We calculate f{sub b,eff} for PSRs J0737-3039A and J1141-6545, applying the currently available constraints for their beam geometry. As in previous estimates of the posterior probability density function P(R) for pulsar binary birthrates R, PSRs J0737-3039A and J1141-6545 still significantly contribute to, if not dominate, the Galactic birthrate of tight pulsar-neutron star (NS) and pulsar-white dwarf (WD) binaries, respectively. Our median posterior present-day birthrate predictions for tight PSR-NS binaries, wide PSR-NS binaries, and tight PSR-WD binaries given a preferred pulsar population model and beaming geometry are 89 Myr{sup -1}, 0.5 Myr{sup -1}, and 34 Myr{sup -1}, respectively. For long-lived PSR-NS binaries, these estimates include a weak (x1.6) correction for slowly decaying star formation in the galactic disk. For pulsars

  14. Chandra Examines a Quadrillion-Volt Pulsar

    NASA Astrophysics Data System (ADS)

    2001-09-01

    The high-voltage environment of one of the most energetic and strongly magnetized pulsars known has been surveyed by NASA's Chandra X-ray Observatory. A team of astronomers found a powerful jet of high-energy particles extending over a distance of 20 light years and bright arcs believed to be due to particles of matter and anti-matter generated by the pulsar. The team of US, Canadian, and Japanese scientists pointed Chandra at the rapidly spinning neutron star B1509-58, located 19,000 light years away in the constellation of Circinus, for over five hours. These results were announced at the "Two Years of Science with Chandra" symposium in Washington, DC. "Jets and arcs on this vast scale have never been seen in any other pulsar," said Bryan Gaensler of the Smithsonian Astrophysical Observatory. "The spectacular images we have obtained of this source are letting us test theories as to how pulsars unleash so much energy." The features seen with Chandra give the scientists insight into the process by which voltages of more than 7000 trillion volts are created around rotating neutron stars (the dense remnants of supernova explosions) and how these extreme voltages affect their environment. B1509-58 is of particular interest because it has a much stronger magnetic field than the Crab Nebula pulsar, which exhibits similar features on a much smaller scale. The general picture emerging from these results is that high-energy particles of matter and antimatter are streaming away from the neutron star along its poles and near its equator. The particles leaving the poles produce the jets; astronomers speculate that only one side of the jet is apparent in B1509-58, indicating that this one side is beamed in our direction, while the other is rushing away. "Until this observation, no one knew for sure whether such tremendous voltages and energy outputs were a trademark of all pulsars, or if the Crab was an oddball," said Vicky Kaspi of McGill University in Montreal. "Now thanks

  15. Peculiarities in the Emission of Radio-Loud and Radio-Quiet Gamma Pulsars and Gamma-Quiet Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Malov, I.; Timirkeeva, M.

    2017-06-01

    Comparison of three pulsar samples — radio pulsars (R), gamma pulsars (γ) and pulsars with emission in both ranges (γ+R) — has been carried out. It was shown that magnetic fields at the light cylinder are two orders of magnitude higher in gamma pulsars (=3.60 - 3.95 G) when compared with radio pulsars (=1 .75 G). Losses of rotation energy in these objects differ much more (log dE/dt=35.37 -35.53 and 32.60, correspondingly). Gamma pulsars form two groups separated in space. The conclusion is made that generation of gamma emission takes place at the light cylinder and can be caused by the synchrotron mechanism.

  16. Generation of radio waves in pulsars.

    PubMed

    Smith, F G

    1970-12-05

    Pulsars generate radio waves by an unknown process which gives the highest volume emissivity known in astrophysics. The radiation forms a beam the width and polarization of which are independent of frequency. This article assembles the observational facts which any theory of emission must explain.

  17. Observations of the Eclipsing Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Bookbinder, Jay

    1990-12-01

    FRUCHTER et al. (1988a) HAVE RECENTLY DISCOVERED a 1.6 MSEC PULSAR (PSR 1957+20) IN A 9.2 HOUR ECLIPSING BINARY SYSTEM. THE UNUSUAL BEHAVIOR OF THE DISPERSION MEASURE AS A FUNCTION OF ORBITAL PHASE, AND THE DISAPPEARANCE OF THE PULSAR SIGNAL FOR 50 MINUTES DURING EACH ORBIT, IMPLIES THAT THE ECLIPSES ARE DUE TO A PULSAR-INDUCED WIND FLOWING OFF OF THE COMPANION. THE OPTICAL COUNTERPART IS A 21ST MAGNITUDE OBJECT WHICH VARIES IN INTENSITY OVER THE BINARY PERIOD; ACCURATE GROUND-BASED OBSERVATIONS ARE PREVENTED BY THE PROXIMITY (0.7") OF A 20TH MAGNITUDE K DWARF. WE PROPOSE TO OBSERVE THE OPTICAL COUNTERPART IN A TWO-PART STUDY. FIRST, THE WF/PC WILL PROVIDE ACCURATE MULTICOLOR PHOTOMETRY, ENABLING US TO DETERMINE UNCONTAMINATED MAGNITUDES AND COLORS BOTH AT MAXIMUM (ANTI-ECLIPSE) AS WELL AS AT MINIMUM (ECLIPSE). SECOND, WE PROPOSE TO OBSERVE THE EXPECTED UV LINE EMISSION WITH FOS, ALLOWING FOR AN INTIAL DETERMINATION OF THE TEMPERATURE AND DENSITY STRUCTURE AND ABUNDANCES OF THE WIND THAT IS BEING ABLATED FROM THE COMPANION. STUDY OF THIS UNIQUE SYSTEM HOLDS ENORMOUS POTENTIAL FOR THE UNDERSTANDING OF THE RADIATION FIELD OF A MILLISECOND PULSAR AND THE EVOLUTION OF LMXRBs AND MSPs IN GENERAL. WE EXPECT THESE OBSERVATIONS TO PLACE VERY SIGNIFICANT CONTRAINTS ON MODELS OF THIS UNIQUE OBJECT.

  18. Pulsar J1823-3021A

    NASA Image and Video Library

    This video shows the on and off state of gamma rays from pulsar J1823-3021A as seen by Fermi's Large Area Telescope (LAT). The object pulses 183.8 times a second and has a spin period of 5.44 milli...

  19. On some electrodynamic properties of binary pulsars

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo

    2006-07-01

    The main purpose of my thesis is to examine some electrodynamic properties of binary pulsars, trying to understand the peculiar physical processes that can happen in their magnetospheres; the ultimate aim is to discuss if such systems can be the source of the observed flux of cosmic rays between the knee and the ankle, since the mechanisms of acceleration for the cosmic rays in this range of energies are still unknown. Attention around binary pulsars has arisen after the recent discovery (December 2003) of the first double neutron star system in which both the stars are visible as pulsars (PSR J0737-3039); the inspection of the physical features of this binary pulsar has led to some intriguing possibilities up to now unexplored. In this thesis I will first of all review what is already known about the main properties of this binary system. I will describe in particular the possibility to go further in the verification of the predictions of general relativity with the so-called post-Keplerian parameters; I will discuss the possibility of studying the optical properties of the magnetospheres, since the inclination angle of the orbit is nearly 90° and some orbital phases show an eclipse of the light from one pulsar due to absorption by the magnetosphere of the companion; I will rapidly summarize how the discovery of that binary pulsar can enlarge our knowledge about the origin and evolution of double neutron star systems; lastly, I will examine the increase in the estimate of the Galactic double neutron star merger rate due to the discovery of PSR J0737-3039. I will then summarize the current knowledge about the magnetosphere of a single pulsar. After describing the Gold-Pacini model for the energy loss of the oblique rotator (in which the magnetic and rotational axes are not parallel), I will discuss the Goldreich-Julian model for the aligned axisymmetric rotator in the force-free approximation in which the inertial and gravitational forces are neglected with

  20. Recently Discovered Pulsars and Unidentified Egret Sources

    NASA Astrophysics Data System (ADS)

    Torres, Diego F.; Butt, Yousaf M.; Camilo, Fernando

    2001-10-01

    We present a correlative study between all unidentified EGRET sources at low Galactic latitudes and the newly discovered pulsars in the released portion of the Parkes multibeam radio survey. We note 14 positional coincidences: eight of these are ``Vela-like'' pulsars with relatively small periods, small characteristic ages, and high spin-down luminosities. Three of these coincidences have been investigated by D'Amico et al. and Camilo et al. Among the others, we argue that PSR J1015-5719 may plausibly generate part of the high-energy radiation observed from 3EG J1014-5705. Three additional interesting cases are 3EG J1410-6147, either of PSRs J1412-6145 or J1413-6141 if the pulsars are at the estimated distance of the coincident SNR G312.4-0.4, and 3EG J1639-4702/PSR J1637-4642. The remaining positional coincidences between the EGRET sources and the newly discovered pulsars are almost certainly spurious.

  1. Pulsars at the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Majid, Walid

    2016-07-01

    Over the past few years, a number of groups using data from NASA's space-borne Fermi LAT instrument have identified excess gamma-ray flux toward the inner 1º of the Galactic Center (GC), with an even larger significant excess within 0.2º degrees. At present there are two leading candidates for this excess: dark matter annihilation and a population of unresolved millisecond pulsars (MSPs). We are currently developing dedicated instrumentation to carry out a sensitive search for the pulsars in this region of the galaxy using a newly developed front end and receiver on a Deep Space Network large diameter antenna in Australia. In this presentation, we will provide an overview of the challenges encountered with pulsar searches at the GC region and a summary of previous and ongoing efforts to survey this region with radio telescopes. We will also provide preliminary results from our recent observations of the GC region at 2 and 8 GHz and will conclude with prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  2. Pulsars at the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.; Prince, Thomas A.

    2016-06-01

    Over the past few years, a number of groups using data from NASA’s space-borne Fermi LAT instrument have identified excess gamma-ray flux toward the inner degree of the Galactic Center (GC), with an even larger significant excess within 0.2 degrees. At present there are two leading candidates for this excess: dark matter annihilation and a population of unresolved millisecond pulsars (MSPs). We are currently developing dedicated instrumentation to carry out a sensitive search for the pulsars in this region of the galaxy using a newly developed front end and receiver on a Deep Space Network large diameter antenna in Australia. In this presentation, we will provide an overview of the challenges encountered with pulsar searches at the GC region and a summary of previous and ongoing efforts to survey this region with radio telescopes. We will also provide preliminary results from our recent observations of the GC region at 2 and 8 GHz and will conclude with prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  3. Pulsars at the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.

    2016-04-01

    Over the past few years, a number of groups using data from NASA’s space-borne Fermi LAT instrument have identified excess gamma-ray flux toward the inner few degrees of the Galactic Center (GC), with an even larger significant excess within 1 degree of this region. At present there are two leading candidates for this excess: dark matter annihilation and a population of unresolved millisecond pulsars (MSPs). We are currently developing dedicated instrumentation to carry out a sensitive search for the pulsars in this region of the galaxy using a newly developed front end and receiver on a Deep Space Network large diameter antenna in Australia. In this presentation, we will provide an overview of the challenges encountered with pulsar searches at the GC region and a summary of previous and ongoing efforts to survey this region with radio telescopes. We will also provide preliminary results from our recent observations of the GC region at 2 and 8 GHz and will conclude with prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  4. Multiwavelength Studies of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Slane, Patrick O.

    2010-03-01

    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. High-energy observations, in particular, reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and emission from late-phase nebulae that are extremely faint in other bands. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very high energy gamma-rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.

  5. A HIGH BRAKING INDEX FOR A PULSAR

    SciTech Connect

    Archibald, R. F.; Ferdman, R. D.; Kaspi, V. M.; Tendulkar, S. P.; Gotthelf, E. V.; Guillot, S.; Harrison, F. A.; Keane, E. F.; Pivovaroff, M. J.; Stern, D.; Tomsick, J. A.

    2016-03-01

    We present a phase-coherent timing solution for PSR J1640–4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR J1640–4631 to be n = 3.15 ± 0.03. Using a series of simulations, we argue that this unusually high braking index is not due to timing noise, but is intrinsic to the pulsar's spin-down. We cannot, however, rule out contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking indices greater than three are allowed in nature; hence, other physical mechanisms such as mass or magnetic quadrupoles are important in pulsar spin-down. We also present a 3σ upper limit on the pulsed flux at 1.4 GHz of 0.018 mJy.

  6. Chandra Results on Pulsars and Plerions

    NASA Astrophysics Data System (ADS)

    Pavlov, G. G.

    2000-10-01

    I will overview the results of imaging, spectral and timing analysis of isolated neutron stars observed in Chandra Cycle 1, including the young Vela pulsar and its X-ray plerion, the middle-aged pulsar B1055--52, the millisecond pulsar J0437--4715, the radio-silent isolated neutron stars in the PKS 1209--51/52, Puppis A and Cas A supernova remnants. Among the results are the fine spatial structure and spectrum of the Vela compact nebula, the multicomponent light curve and spectrum of the Vela pulsar, discovery of the 424 ms period of 1E 1207--52, the phase-dependent spectrum and energy-dependent pulse profile of PSR B1055-52, the lack of X-ray emission from the bow-shock nebula of PSR J0437--4715. The work was partially supported by SAO grants GO0-1012X, GO0-1126X and GO0-1131A.

  7. Modification of band gap in surface layer in Cd 1-xZn xTe by YAG:Nd +3 laser radiation

    NASA Astrophysics Data System (ADS)

    Medvid, Artur; Fedorenko, Leonid L.; Korbutjak, Dmytro V.; Kryluk, Sergiy G.; Yusupov, Mikola M.; Mychko, Aleksandr

    2007-02-01

    A mechanism of formation of graded band-gap based on Thermogradient Effect (TGE) is proposed in Cd 1-xZn xTe at irradiation by second harmonic of a Q-switched YAG:Nd laser. According to the effect, the interstitial atoms of Cd (Cd i) in Cd 1-xZn xTe move along the temperature gradient while the Cd vacancies (V Cd) and Zn atoms - in the opposite direction, into the bulk of the semiconductor where temperature is lower. Photoluminescence (PL) spectra studied at 5 K show that concentration of Zn atoms increases due to aggregation of VCd with Zn after laser irradiation. Formation of a graded band-gap in Cd 1-xZn xTe crystal at irradiation by second harmonica of YAG:Nd laser by is shown to be possible.

  8. High-Energy Emission From Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Usov, Vladimir V.; Muslimov, Alex G.

    2004-01-01

    The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. In these sources, the primary and secondary electrons continue to accelerate to high altitude and their Lorentz factors are limited by curvature and synchrotron radiation reaction. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons a t 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV. Subject headings: pulsars: general

  9. CHANDRA PULSAR SURVEY (ChaPS)

    SciTech Connect

    Kargaltsev, Oleg; Durant, Martin; Pavlov, George G.; Garmire, Gordon

    2012-08-01

    Taking advantage of the high sensitivity of the Chandra X-ray Observatory's (CXO) Advanced CCD Imaging Spectrometer, we have conducted a snapshot survey of pulsars previously undetected in X-rays. We detected 12 pulsars and established deep flux limits for 11 pulsars. Using these new results, we revisit the relationship between the X-ray luminosity, L{sup psr}{sub X}, and spin-down power, E-dot . We find that the obtained limits further increase the extremely large spread in the non-thermal X-ray efficiencies, {eta}{sup psr}{sub X} = L{sup psr}{sub X}/ E-dot , with some of them being now below 10{sup -5}. Such a spread cannot be explained by poorly known distances or by beaming of pulsar radiation. We also find evidence of a break in the dependence of L{sup psr}{sub X} on E-dot , such that pulsars become more X-ray efficient at E-dot {approx}<10{sup 34}-10{sup 35} erg s{sup -1}. We examine the relationship between the {gamma}-ray luminosity, L{sup psr}{sub {gamma}}, and E-dot , which exhibits a smaller scatter compared to that in X-rays. This confirms that the very large spread in the X-ray efficiencies cannot be explained just by the beaming because the {gamma}-ray emission is generally expected to be beamed stronger than the X-ray emission. Intriguingly, there is also an indication of a break in the L{sup psr}{sub {gamma}} ( E-dot ) dependence at E-dot {approx}10{sup 35} erg s{sup -1}, with lower- E-dot pulsars becoming less {gamma}-ray efficient. We also examine the distance-independent L{sup psr}{sub {gamma}}/L{sup psr}{sub X} ratio as a function of E-dot for a sample of {gamma}-ray pulsars observed by CXO and find that it peaks at E-dot {approx}10{sup 35} erg s{sup -1}, showing that the breaks cannot originate from poorly measured distances. We discuss the implications of our findings for existing models of magnetospheric emission and venues for further exploration.

  10. DETECTING MASSIVE GRAVITONS USING PULSAR TIMING ARRAYS

    SciTech Connect

    Lee, Kejia; Kramer, Michael; Jenet, Fredrick A.; Price, Richard H.; Wex, Norbert

    2010-10-20

    At the limit of weak static fields, general relativity becomes Newtonian gravity with a potential field that falls off as inverse distance rather than a theory of Yukawa-type fields with a finite range. General relativity also predicts that the speed of disturbances of its waves is c, the vacuum light speed, and is non-dispersive. For these reasons, the graviton, the boson for general relativity, can be considered to be massless. Massive gravitons, however, are features of some alternatives to general relativity. This has motivated experiments and observations that, so far, have been consistent with the zero-mass graviton of general relativity, but further tests will be valuable. A basis for new tests may be the high sensitivity gravitational wave (GW) experiments that are now being performed and the higher sensitivity experiments that are being planned. In these experiments, it should be feasible to detect low levels of dispersion due to non-zero graviton mass. One of the most promising techniques for such a detection may be the pulsar timing program that is sensitive to nano-Hertz GWs. Here, we present some details of such a detection scheme. The pulsar timing response to a GW background with the massive graviton is calculated, and the algorithm to detect the massive graviton is presented. We conclude that, with 90% probability, massless gravitons can be distinguished from gravitons heavier than 3 x 10{sup -22} eV (Compton wavelength {lambda}{sub g} = 4.1 x 10{sup 12} km), if bi-weekly observation of 60 pulsars is performed for 5 years with a pulsar rms timing accuracy of 100 ns. If 60 pulsars are observed for 10 years with the same accuracy, the detectable graviton mass is reduced to 5 x 10{sup -23} eV ({lambda}{sub g} = 2.5 x 10{sup 13} km); for 5 year observations of 100 or 300 pulsars, the sensitivity is respectively 2.5 x 10{sup -22} ({lambda}{sub g} = 5.0 x 10{sup 12} km) and 10{sup -22} eV ({lambda}{sub g} = 1.2 x 10{sup 13} km). Finally, a 10 year

  11. Avalanche Dynamics of Radio Pulsar Glitches

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Peralta, C.; Wyithe, J. S. B.

    2008-01-01

    We test statistically the hypothesis that radio pulsar glitches result from an avalanche process, in which angular momentum is transferred erratically from the flywheel-like superfluid in the star to the slowly decelerating, solid crust via spatially connected chains of local, impulsive, threshold-activated events, so that the system fluctuates around a self-organized critical state. Analysis of the glitch population (currently 285 events from 101 pulsars) demonstrates that the size distribution in individual pulsars is consistent with being scale invariant, as expected for an avalanche process. The measured power-law exponents fall in the range -0.13 <= a<= 2.4, with a ≈ 1.2 for the youngest pulsars. The waiting-time distribution is consistent with being exponential in seven out of nine pulsars where it can be measured reliably, after adjusting for observational limits on the minimum waiting time, as for a constant-rate Poisson process. PSR J0537-6910 and PSR J0835-4510 are the exceptions; their waiting-time distributions show evidence of quasi-periodicity. In each object, stationarity requires that the rate λ equal -epsilondot nu/langleΔνrangle, where dot nu is the angular acceleration of the crust, langle Δ ν rangle is the mean glitch size, and epsilondot nu is the relative angular acceleration of the crust and superfluid. Measurements yield epsilon <= 7 × 10-5 for PSR J0358+5413 and epsilon <= 1 (trivially) for the other eight objects, which have a < 2. There is no evidence that λ changes monotonically with spin-down age. The rate distribution itself is fitted reasonably well by an exponential for λ >= 0.25 yr-1, with langle λ rangle = 1.3+ 0.7-0.6 yr-1. For λ < 0.25 yr-1 the exact form is unknown; the exponential overestimates the number of glitching pulsars observed at low λ, where the limited total observation time exercises a selection bias. In order to reproduce the aggregate waiting-time distribution of the glitch population as a whole, the

  12. Observational Signatures of Black Holes: Spectral and Temporal Features of XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shrader, C. R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The theoretical predictions of the converging inflow, or Bulk-Motion Comptonization model are discussed and some predictions are compared to X- and gamma-ray observations of the high-soft state of Galactic black hole candidate XTE J1550+564. The approx. 10(exp 2)-Hz QPO phenomenon tends to be detected in the high-state at times when the bolometric luminosity surges and the hard-powerlaw spectral component is dominant. Furthermore, the power in these features increases with energy. We offer interpretation of this phenomenon, as oscillations of the innermost part of the accretion disk, which in turn supplies the seed photons for the converging inflow where the hard power-law is formed through Bulk Motion Comptonization (BMC). We further argue that the noted lack of coherence between intensity variations of the high-soft-state low and high energy bands is a natural consequence of our model, and that a natural explanation for the observed hard and soft lag phenomenon is offered. In addition, we address some criticisms of the BMC model supporting our claims with observational results.

  13. Relativistically Skewed Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748-288

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Fox, D. W.; DiMatteo, T.; Wijnands, R.; Belloni, T.; Kouveliotou, C.; Lewin, W. H. G.

    2000-01-01

    We report evidence for an Fe K-alpha fluorescence line feature in the Very High, High, and Low state X-ray spectra of the galactic microquasar XTE JI748-288 during its June 1998 outburst. Spectral analyses were made on observations spread across the outburst, gathered with the Rossi X-ray Timing Explorer. Gaussian line. disk emission line, relativistic disk emission line, and disk reflection models are fit to the data. In the Very High State, the line profile is strongly redshifted and consistent with emission from the innermost radius of a maximally rotating Kerr black hole, 1.235 R(sub g). The line profile is less redshifted in the High State, but increasingly prominent. In the Low State, the line profile is very strong and centered af approx. 6.7 keV; disk line emission models constrain the inner edge of the disk to fluctuate between approx.20 and approx.59 R(sub g). We trace the disk reflection fraction across the full outburst of this source, and find well-constrained fractions below those observed in AGN in the Very High and High States, but consistent with other galactic sources in the Low State. We discuss the possible implications for black hole X-ray binary system dynamics and accretion flow geometry.

  14. On the Nature of XTE J0421+560/CI Cam

    NASA Technical Reports Server (NTRS)

    Belloni, T.; vandenAncker, M.; Dieters, S.; Fender, R.; Fox, D. W.; Kommers, J. M.; Lewin, W. H. G.; VanParadijs, J.

    1999-01-01

    We present the results of the analysis of RXTE, BATSE and optical/IR data of the 1998 outburst of the x-ray transient system XTE J0421+650. The x-ray outburst shows a very fast decay initial e-folding time approximately 0.5 days, slowing down to about 2.3 days). The X ray spectrum in the 2-25 keV band is thermal, softening considerably during decay. Intrinsic absorption is observed, also strongly variable. A strong iron line at around 6.7 keV is observed. No fast time variability is observed (<0.1 rms in the 1-4906 Hz band at peak). The analysis of optical/IR data suggest that the secondary is a b[e] star and place the system at a distance of about 2 kpc. At this distance the 2-25 keV luminosity is about 5 x 10(exp 37) erg/seconds. We compare the properties of this system with those of the Be/NS LMC transient A 0538-66 and suggest that CI cam is of a similar nature. The presence of strong radio emission during outburst indicates that the compact object could be a black hole.

  15. Highly efficient functional GexPb1-xTe based thermoelectric alloys.

    PubMed

    Gelbstein, Yaniv; Davidow, Joseph

    2014-10-07

    Methods for enhancement of the direct thermal to electrical energy conversion efficiency, upon development of advanced thermoelectric materials, are constantly investigated mainly for efficient implementation of thermoelectric devices in automotive vehicles, for converting the waste heat generated in such engines into useful electrical power and thereby reduction of the fuel consumption and CO2 emission levels. It was recently shown that GeTe based compounds and specifically GeTe-PbTe rich alloys are efficient p-type thermoelectric compositions. In the current research, Bi2Te3 doping and PbTe alloying effects in GexPb1-xTe alloys, subjected to phase separation reactions, were investigated for identifying the phase separation potential for enhancement of the thermoelectric properties beyond a pure alloying effect. All of the investigated compositions exhibit maximal dimensionless figure of merit, ZT, values beyond 1, with the extraordinary value of 2.1 found for the 5% Bi2Te3 doped-Ge0.87Pb0.13Te composition, considered as among the highest ever reported.

  16. Evolution of relativistic jets from XTE J1550-564 and the environment of microquasars

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang Nan; Hao, Jing Fang

    2008-10-01

    Two relativistic X-ray jets have been detected with the Chandra X-ray observatory in the black hole X-ray transient XTE J1550-564. We report a full analysis of the evolution of the two jets with a gamma-ray burst external shock model. A plausible scenario suggests a cavity outside the central source and the jets first travelled with constant velocity and then are slowed down by the interactions between the jets and the interstellar medium (ISM). The best fitted radius of the cavity is ~0.36 pc on the eastern side and ~0.46 pc on the western side, and the densities also show asymmetry, of ~0.015 cm-3 on the east to ~0.21 cm-3 on the west. Large scale low density region is also found in another microquasar system, H 1743-322. These results are consistent with previous suggestions that the environment of microquasars should be rather vacuous, compared to the normal Galactic environment. A generic scenario for microquasar jets is proposed, classifying the observed jets into three main categories, with different jet morphologies (and sizes) corresponding to different scales of vacuous environments surrounding them.

  17. THE CROSS SPECTRAL TIME LAG EVOLUTION ALONG BRANCHES IN XTE J1701-462

    SciTech Connect

    Li Zhaosheng; Chen Li; Bu Qingcui; Wang Dehua; Qu Jinlu E-mail: chenli@bnu.edu.cn

    2013-04-20

    We investigate the cross spectrum of XTE J1701-462 in various types of neutron star low-mass X-ray binary subclasses during its 2006-2007 outburst. We analyze the relation between the time lags and temporal variabilities. We find that the hard time lags accompany horizontal branch oscillations (HBOs) and the soft time lags dominate the noise in the low frequency range 0.1-10 Hz on HB. In the Cyg-like phase, the time lags decrease on the middle normal branch (NB) from HB/NB vertex to NB/FB vertex, whereas the time lags are roughly invariant in the Sco-like source. We discuss the fact that the Compton upscattering by the corona introduces the soft lag in low-frequency noise. We suggest that the variation of the Comptonization component from the disk emission leads to the HBOs' time lag evolutions along the Z tracks. We also report the rms amplitude spectrum and phase lag spectrum for the normal branch oscillation (NBO). A {approx}160 Degree-Sign phase lag is found. We find that the rms amplitudes of both the Cyg-like and the Sco-like NBOs linearly increase with the photon energy in low energy bands, and drop in the highest energy band.

  18. Transient relativistic ejections and stationary core in XTE J1752-223

    NASA Astrophysics Data System (ADS)

    Yang, J.; Paragi, Z.; Corbel, S.; Gurvits, L. I.; Campbell, R. M.; Brocksopp, C.

    2011-11-01

    The Galactic X-ray transient XTE J1752-223 was shown to have properties of black hole binary candidates. As reported in our previous paper, we identified transient and decelerating ejecta in multi-epoch Very Long Baseline Interferometry (VLBI) observations with the European VLBI Network (EVN) and the NRAO Very Long Baseline Array (VLBA). Here we present new EVN and VLBA data in which a new transient ejection event and later a stationary component are identified. The latter is interpreted as a reappearance of the radio core/compact jet during the transition from soft to hard X-ray state. This component appears to be highly variable in brightness although effects of tropospheric instabilities might play a role too. We also re-analyse the earlier VLBI data and find that the transient ejecta closer to the core position has significantly higher proper motion, further strengthening the case for strongly decelerating ejecta on the scale of several hundred milliarcsecond, never observed in X-ray binaries before. Although the distance of the source is not well constrained, it is clear that these ejectas are at least mildly relativistic at the early stages. Moreover, we show the large scale environment of the transient from the Westerbork synthesis array data recorded in parallel during the EVN run.

  19. NMR study of vacancy and structure-induced changes in Cu2-xTe

    NASA Astrophysics Data System (ADS)

    Sirusi, Ali A.; Page, Alexander; Uher, Ctirad; Ross, Joseph H.

    2017-07-01

    We report Cu and Te NMR measurements on Cu2-xTe with x between 0.13 and 0.22. Aided by powder x-ray analysis and computed NMR quadrupole shifts, a structure change near x=0.20 was found consistent with structures reported by Baranova, with best fits to the β-I structure for x=0.22 and β-III for smaller x. NMR T1 and Hall effect results demonstrate p-type electronic behavior with filling of simple hole pockets induced by increased numbers of vacancies for both phases. Furthermore the Cu and Te chemical shifts are large and negative, as observed in topologically inverted semiconductors, with a splitting into two distinct local environments for both Cu and Te sites in the x=0.22 structure. Cu T1 results show a rapid decrease of the energy barrier for initiation of Cu ion hopping to 0.12 eV for x=0.22, considerably smaller than observed at higher temperatures, indicating a tail of relatively mobile Cu ions which may be of significance for potential device applications.

  20. RXTE Spectral Study of the New X-ray Transient XTE J1859+226

    NASA Astrophysics Data System (ADS)

    Focke, W. B.; Markwardt, C. B.; Swank, J. H.; Taam, R. E.

    1999-12-01

    The transient galactic black hole candidate XTE J1859+226 was discovered by the RXTE All Sky Monitor (ASM) on 1999 October 9, within a day after its outburst began. Pointed observations with RXTE began on 1999 October 10.57, and continued at a rate of about twice per day. Preliminary results of fits to PCA and HEXTE spectra for October 9--14 show that a simple absorbed powerlaw is insufficient to model the data. The fit is greatly improved by using an absorbed cutoff powerlaw with reflection. The photon index rose from 1.8 on October 9 to 3.2 on October 14. The cutoff energy started near 100 keV, dropped to 50 keV, then rose to an undetectable level between October 12.86 and October 13.11, potentially indicating a state change. We will present spectral analysis of these and later data, along with comparison of the spectral and timing properties. This work was funded by NASA.

  1. RXTE Studies of the New X-ray Transient XTE J1859+226

    NASA Astrophysics Data System (ADS)

    Focke, W. B.; Markwardt, C. B.; Swank, J. H.; Taam, R. E.

    The transient galactic black hole candidate XTE J1859+226 was discovered by the RXTE All Sky Monitor (ASM) on 1999 October 9, within a day after its outburst began. Pointed observations with RXTE began on 1999 October 10.57. The source peaked at about 1.5 Crab 8 days after onset. Preliminary results of fits to PCA and HEXTE spectra for the early observations show that a simple absorbed powerlaw is insufficient to model the data. The fit is greatly improved by using an absorbed cutoff powerlaw with reflection. The photon index was 1.7 on October 9 and quickly rose, remained between 2.5--2.8 for a few weeks, then dropped to values between 2--2.5. A cutoff energy which was initially below 100 keV quickly rose to an undetectable level. Reflection was significant, but highly variable. The source showed strong temporal variability with a QPO varying from 0.5--4 Hz at some times, and very little temporal variability at others. We will present spectral and temporal analyses of the PCA and HEXTE data, focusing on their interpretation relative to possible state changes in the source.

  2. XTE J1550-564: INTEGRAL Observations of a Failed Outburst

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.

    2004-01-01

    The well known black-hole X-ray binary transient XTE J1550-564 underwent an outburst during the spring of 2003 which was substantially underluminous in comparison to previous periods of peak activity in that source. In addition, our analysis shows that it apparently remained in the hard spectral state over the duration of that outburst. This is again in sharp contrast to major out-bursts of that source in 1998/1999 during which it exhibited an irregular light curve, multiple state changes and collimated outflows. This leads us to classify it as a failed outburst. We present the results of our study of the spring 2003 event including light curves based on observations from both INTEGRAL and RXTE. In addition, we studied the evolution of the high-energy 3-300 keV continuum spectrum using data obtained with three main instruments on INTEGRAL. These spectra are consistent with typical low-hard-state thermal Comptonization emission. We also consider the 2003 event in the context of a multi-source, multi-event period-peak luminosity diagram in which it is a clear outlyer. We then consider the possibility that the 2003 event was due to a discrete accretion event rather than a limit-cycle instability. In that context, apply model fitting to derive the timescale for viscous propagation in the disk, and infer some physical characteristics.

  3. Multi-frequency Scatter Broadening Evolution of Pulsars. I

    NASA Astrophysics Data System (ADS)

    Krishnakumar, M. A.; Joshi, Bhal Chandra; Manoharan, P. K.

    2017-09-01

    We present multi-wavelength scatter broadening observations of 47 pulsars made with the Giant Metre-wave Radio Telescope (GMRT), Ooty Radio Telescope (ORT), and Long Wavelength Array (LWA). The GMRT observations were made in the phased array mode at 148, 234, and 610 MHz and the ORT observations at 327 MHz. The LWA data sets were obtained from the LWA pulsar data archive. The broadening of each pulsar as a function of observing frequency provides the frequency scaling index, α. The estimations of α have been obtained for 39 pulsars and include entirely new estimates for 31 pulsars. This study increases the total sample of pulsars available with α estimates by ∼50%. The overall distribution of α with the dispersion measure (DM) of the pulsar shows interesting variations, which are consistent with earlier studies. However, for a given value of DM, a range of α values are observed, indicating the characteristic turbulence along each line of sight. For each pulsar, the estimated level of turbulence, {C}{n{{e}}}2, has also been compared with α and DM. Additionally, we compare the distribution of α with the theoretically predicted model to infer the general characteristics of the ionized interstellar medium. Nearly 65% of the pulsars show a flatter index (i.e., α < 4.4) than that expected from the Kolmogorov turbulence model. Moreover, the group of pulsars with flatter indices is typically associated with an enhanced value of {C}{n{{e}}}2 compared to those with steeper indices.

  4. Multi-wavelength analysis of young pulsars: an overview.

    NASA Astrophysics Data System (ADS)

    Maritz, J. M.; Meintjes, P. J.; Buchner, S. J.

    Young pulsars emit a broad spectrum of radiation that range from radio to gamma ray energies. These pulsars are considered as rotation powered pulsars that spin rapidly and are strongly magnetized. Following the discovery of pulsars nearly four decades ago, the population of known pulsars already reached a number of roughly two thousand. This known population of pulsars includes both millisecond and normal pulsars that were discovered by several telescopes. We analyze both HartRAO radio data and Fermi gamma ray data of the Vela pulsar. We also explore a proposed method of probing the electron column density of the instellar gas through analyzing the gamma ray diffuse data associated with the Fermi two-year observation. This paper serves as an overview of gamma ray and radio timing analysis of bright young pulsars with respect to the use of open source timing analysis tools (Tempo2, Psrchive, Enrico and the Fermi tools). We reason that the multi-wavelength picture of pulsars can help clarify questions regarding the origin of pulsed radiation emission mechanisms in several energy bands, but that radio observations will prove adequate for timing noise analysis, given the accurate and long radio data sets. The process of identifying gravitational waves in timing data, rests on gaining a deeper insight into the timing noise phenomena.

  5. OSCILLATION-DRIVEN MAGNETOSPHERIC ACTIVITY IN PULSARS

    SciTech Connect

    Lin, Meng-Xiang; Xu, Ren-Xin; Zhang, Bing E-mail: r.x.xu@pku.edu.cn

    2015-02-01

    We study the magnetospheric activity in the polar cap region of pulsars under stellar oscillations. The toroidal oscillation of the star propagates into the magnetosphere, which provides additional voltage due to unipolar induction, changes Goldreich-Julian charge density from the traditional value due to rotation, and hence influences particle acceleration. We present a general solution of the effect of oscillations within the framework of the inner vacuum gap model and consider three different inner gap modes controlled by curvature radiation, inverse Compton scattering, and two-photon annihilation, respectively. With different pulsar parameters and oscillation amplitudes, one of three modes would play a dominant role in defining the gap properties. When the amplitude of oscillation exceeds a critical value, mode changing occurs. Oscillations also lead to a change of the size of the polar cap. As applications, we show the inner gap properties under oscillations in both normal pulsars and anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs). We interpret the onset of radio emission after glitches/flares in AXPs/SGRs as due to oscillation-driven magnetic activities in these objects, within the framework of both the magnetar model and the solid quark star model. Within the magnetar model, radio activation may be caused by the enlargement of the effective polar cap angle and the radio emission beam due to oscillation, whereas within the solid quark star angle, it may be caused by activation of the pulsar inner gap from below the radio emission death line due to an oscillation-induced voltage enhancement. The model can also explain the glitch-induced radio profile change observed in PSR J1119–6127.

  6. Properties and geometry of radio pulsar emission

    NASA Astrophysics Data System (ADS)

    Smits, Johannes Martinus

    2006-10-01

    This thesis consists of a number of studies on the radio emission of pulsars. The central topics are polarisation and multi frequency observations, which both lead to important information on the geometry of the emission. The first chapter introduces different aspects of pulsars that are related to the research that has been done in this thesis. In particular it deals with different aspects concerning the geometry of pulsar emission. Chapter 2 is about the nature of the radio emission. It shows the result of an attempt to confirm and expand on work that has been published by Jenet et al. (2001) on the detection of coherence in pulsar radiation. From an analysis of high time resolution observations, we found that the detection of coherence is consistent with the effects of interstellar scintillation. In chapter 3 a study is carried out on the orthogonal polarisation mode behaviour as a function of frequency of 18 pulsars. By making the assumption that the radiation consists of two 100% polarised completely orthogonal superposed modes, both modes could be separated In chapter 4 PSR B0031-07 is studied at two frequencies using two observations that were carried out simultaneously. It is shown that from the three known drift modes, only one drift mode is seen at high frequency. Based on this result we suggest a geometrical model in which different modes are emitted in concentric rings around the magnetic axis, with each mode having a different radius. The fifth chapter follows the suggestions made in chapter 4 to create a geometrical model of PSR B0031-07 for two of the drift modes. The results can be used to limit the possible geometries of PSR B0031-07. The final chapter consists of documentation of software that was written in C and utilised for this thesis for handling and analysing data files in the EPN format

  7. Growth and characterization of CdTe, Mn(x)Cd(1-x)Te, Zn(x)Cd(1-x)Te, and CdSe(y)Te(1-y) crystals

    NASA Astrophysics Data System (ADS)

    Lay, K. Y.; Giles-Taylor, N. C.; Schetzina, J. F.; Bachmann, K. J.

    1986-05-01

    Structures and growth characteristics of crystals based on the Cd-Te lattice, which are potentially useful in infrared radiation detectors, are described. Single crystals of CdTe, Mn(x)Cd(1-x)Te, and CdSe(y)Te(1-y) have been grown by the vertical Bridgman method and those of Zn(x)Cd(1-l)Te by zone leveling. Photoluminescence (PL) spectra were used to determine the quality and uniformity of composition. From the probing of small areas, allowed by this PL characterization technique, the uniform incorporation of Mn, Zn, and Se into the CdTe lattice was determined.

  8. Growth and characterization of CdTe, Mn(x)Cd(1-x)Te, Zn(x)Cd(1-x)Te, and CdSe(y)Te(1-y) crystals

    SciTech Connect

    Lay, K.Y.; Giles-Taylor, N.C.; Schetzina, J.F.; Bachmann, K.J.

    1986-05-01

    Structures and growth characteristics of crystals based on the Cd-Te lattice, which are potentially useful in infrared radiation detectors, are described. Single crystals of CdTe, Mn(x)Cd(1-x)Te, and CdSe(y)Te(1-y) have been grown by the vertical Bridgman method and those of Zn(x)Cd(1-l)Te by zone leveling. Photoluminescence (PL) spectra were used to determine the quality and uniformity of composition. From the probing of small areas, allowed by this PL characterization technique, the uniform incorporation of Mn, Zn, and Se into the CdTe lattice was determined. 15 references.

  9. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    NASA Astrophysics Data System (ADS)

    Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.

    2013-07-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.

  10. Application of the Gaussian mixture model in pulsar astronomy - pulsar classification and candidates ranking for the Fermi 2FGL catalogue

    NASA Astrophysics Data System (ADS)

    Lee, K. J.; Guillemot, L.; Yue, Y. L.; Kramer, M.; Champion, D. J.

    2012-08-01

    Machine learning, algorithms designed to extract empirical knowledge from data, can be used to classify data, which is one of the most common tasks in observational astronomy. In this paper, we focus on Bayesian data classification algorithms using the Gaussian mixture model and show two applications in pulsar astronomy. After reviewing the Gaussian mixture model and the related expectation-maximization algorithm, we present a data classification method using the Neyman-Pearson test. To demonstrate the method, we apply the algorithm to two classification problems. First, it is applied to the well-known period-period derivative diagram, where we find that the pulsar distribution can be modelled with six Gaussian clusters, with two clusters for millisecond pulsars (recycled pulsars) and the rest for normal pulsars. From this distribution, we derive an empirical definition for millisecond pulsars as {P\\dot;}/{10-17}≤3.23({P}/{100ms})-2.34. The two millisecond pulsar clusters may have different evolutionary origins, since the companion stars to these pulsars in the two clusters show different chemical compositions. Four clusters are found for normal pulsars. Possible implications for these clusters are also discussed. Our second example is to calculate the likelihood of unidentified Fermi point sources being pulsars and rank them accordingly. In the ranked point-source list, the top 5 per cent sources contain 50 per cent known pulsars, the top 50 per cent contain 99 per cent known pulsars and no known active galaxy (the other major population) appears in the top 6 per cent. Such a ranked list can be used to help the future follow-up observations for finding pulsars in unidentified Fermi point sources.

  11. High-energy pulsar models: Developments and new questions

    NASA Astrophysics Data System (ADS)

    Venter, C.; Harding, A. K.

    2014-03-01

    The past few years have seen a major advance in observational knowledge of high-energy (HE) pulsars. The Fermi Large Area Telescope (LAT) and {AGILE} have increased the number of known γ-ray pulsars by an order of magnitude, its members being divided roughly equally among millisecond pulsars (MSPs), young radio-loud pulsars, and young radio-quiet pulsars. Many new and diverse emission characteristics are being measured, while radio and X-ray follow-up observations increase the pulsar detection rate and enrich our multiwavelength picture of these extreme sources. The wealth of new data has provided impetus for further development and improvement of existing theoretical pulsar models. Geometric light curve (LC) modelling has uncovered three broad classes into which HE pulsars fall: those where the radio profile leads, is aligned with, or lags the γ-ray profile. For example, the original MSP and original black widow system are members of the second class, requiring co-located emission regions and thereby breaking with traditional notions of radio emission origin. These models imply narrow accelerator gaps in the outer magnetosphere, indicating copious pair production even in MSP magnetospheres that were previously thought to be pair-starved. The increased quality and variety of the LCs necessitate construction of ever more sophisticated models. We will review progress in global magnetosphere solutions which specify a finite conductivity on field lines above the stellar surface, filling the gap between the standard vacuum and force-free (FF; plasma-filled) models. The possibility of deriving phase-resolved spectra for the brightest pulsars, coupled with the fact that the HE pulsar population is sizable enough to allow sampling of various pulsar geometries, will enable much more stringent testing of future radiation models. Reproduction of the observed phase-resolved behavior of this disparate group will be one of the next frontiers in pulsar science, impacting on our

  12. High-Energy Pulsar Models: Developments and New Questions

    NASA Technical Reports Server (NTRS)

    Venter, C.; Harding, A. K.

    2014-01-01

    The past few years have seen a major advance in observational knowledge of high-energy (HE) pulsars. The Fermi Large Area Telescope (LAT) and AGILE have increased the number of known gamma-ray pulsars by an order of magnitude, its members being divided roughly equally among millisecond pulsars (MSPs), young radio-loud pulsars, and young radio-quiet pulsars. Many new and diverse emission characteristics are being measured, while radio and X-ray follow-up observations increase the pulsar detection rate and enrich our multiwavelength picture of these extreme sources. The wealth of new data has provided impetus for further development and improvement of existing theoretical pulsar models. Geometric light curve (LC) modelling has uncovered three broad classes into which HE pulsars fall: those where the radio profile leads, is aligned with, or lags the gamma-ray profile. For example, the original MSP and original black widow system are members of the second class, requiring co-located emission regions and thereby breaking with traditional notions of radio emission origin. These models imply narrow accelerator gaps in the outer magnetosphere, indicating copious pair production even in MSP magnetospheres that were previously thought to be pair-starved. The increased quality and variety of the LCs necessitate construction of ever more sophisticated models. We will review progress in global magnetosphere solutions which specify a finite conductivity on field lines above the stellar surface, filling the gap between the standard vacuum and force-free (FF; plasma-filled) models. The possibility of deriving phase-resolved spectra for the brightest pulsars, coupled with the fact that the HE pulsar population is sizable enough to allow sampling of various pulsar geometries, will enable much more stringent testing of future radiation models. Reproduction of the observed phase-resolved behavior of this disparate group will be one of the next frontiers in pulsar science, impacting on

  13. Einstein@Home Finds an Elusive Pulsar

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Since the release of the second Fermi-LAT catalog in 2012, astronomers have been hunting for 3FGL J1906.6+0720, a gamma-ray source whose association couldn't be identified. Now, personal-computer time volunteered through the Einstein@Home project has resulted in the discovery of a pulsar that has been hiding from observers for years. A Blind Search: Identifying sources detected by Fermi-LAT can be tricky: the instrument's sky resolution is limited, so the position of the source can be hard to pinpoint. The gamma-ray source 3FGL J1906.6+0720 appeared in both the second and third Fermi-LAT source catalogs, but even after years of searching, no associated radio or X-ray source had been found. A team of researchers, led by Colin Clark of the Max Planck Institute for Gravitational Physics, suspected that the source might be a gamma-ray pulsar. To confirm this, however, they needed to detect pulsed emission — something inherently difficult given the low photon count and the uncertain position of the source. The team conducted a blind search for pulsations coming from the general direction of the gamma-ray source. Two things were needed for this search: clever data analysis and a lot of computing power. The data analysis algorithm was designed to be adaptive: it searched a 4-dimensional parameter space that included a safety margin, allowing the algorithm to wander if the source was at the edge of the parameter space. The computing power was contributed by tens of thousands of personal computers volunteered by participants in the Einstein@Home project, making much shorter work out of a search that would have required dozens of years on a single laptop. The sky region around the newly discovered pulsar. The dotted ellipse shows the 3FGL catalog 95% confidence region for the source. The data analysis algorithm was designed to search an area 50% larger (given by the dashed ellipse), but it was allowed to “walk away” within the gray shaded region if the source seemed to

  14. First Principles Calculations of Structural, Electronic, Thermodynamic and Thermal Properties of BaxSr1-xTe Ternary Alloys

    NASA Astrophysics Data System (ADS)

    Chelli, S.; Meradji, H.; Amara Korba, S.; Ghemid, S.; El Haj Hassan, F.

    2014-12-01

    The structural, electronic thermodynamic and thermal properties of BaxSr1-xTe ternary mixed crystals have been studied using the ab initio full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, the Perdew-Burke-Ernzerhof-generalized gradient approximation (PBE-GGA) was used for the exchange-correlation potential. Moreover, the recently proposed modified Becke Johnson (mBJ) potential approximation, which successfully corrects the band-gap problem was also used for band structure calculations. The ground-state properties are determined for the cubic bulk materials BaTe, SrTe and their mixed crystals at various concentrations (x = 0.25, 0.5 and 0.75). The effect of composition on lattice constant, bulk modulus and band gap was analyzed. Deviation of the lattice constant from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the ternary BaxSr1-xTe alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing, ΔHm as well as the phase diagram. It was shown that these alloys are stable at high temperature. Thermal effects on some macroscopic properties of BaxSr1-xTe alloys were investigated using the quasi-harmonic Debye model, in which the phononic effects are considered.

  15. A NON-RADIAL OSCILLATION MODEL FOR PULSAR STATE SWITCHING

    SciTech Connect

    Rosen, R.; McLaughlin, M. A.; Thompson, S. E.

    2011-02-10

    Pulsars are unique astrophysical laboratories because of their clock-like timing precision, providing new ways to test general relativity and detect gravitational waves. One impediment to high-precision pulsar timing experiments is timing noise. Recently, Lyne et al. showed that the timing noise in a number of pulsars is due to quasi-periodic fluctuations in the pulsars' spin-down rates and that some of the pulsars have associated changes in pulse profile shapes. Here we show that a non-radial oscillation model based on asteroseismological theory can explain these quasi-periodic fluctuations. Application of this model to neutron stars will increase our knowledge of neutron star emission and neutron star interiors and may improve pulsar timing precision.

  16. The Multipupil Fiber Spectroscopy of the Crab-pulsar Neighbourhood

    NASA Astrophysics Data System (ADS)

    Zharikov, S.; Shibanov, Y.; Koptsevich, A.; Afanas'ev, V.; Dodonov, S.

    2001-03-01

    We present the spatially resolved optical spectroscopy of the 12 arcsec × 24 arcsec Crab pulsar neighbourhood in the range λ λ 4600 - 5700 Å made with the Multipupil Fiber Spectrograph at the 6 m telescope of the SAO RAS. The spectra exhibit blue- and red-shifted strong [O III] and weaker Hβ and He II emission lines with the shifts and intensities varying with the position in the field. They hint the presence of a cone-like rotating structure centered at the pulsar position and oriented along the symmetry axis of the compact, torus-like pulsar nebula seen in optical continuum and soft X-rays. The kinematic structure is most likely associated with the pulsar nebula. If so, the compact nebular rotates counter-clockwise with respect to its symmetry axis, or the pulsar spin axis, and the estimated rotational velocity within cylindrical radii of several thousand AU from the pulsar is ~ 2000-3000 km/s.

  17. High Magnetic Field Pulsars and Magnetars: A Unified Picture.

    PubMed

    Zhang; Harding

    2000-05-20

    We propose a unified picture of high magnetic field radio pulsars and magnetars by arguing that they are all rotating high-field neutron stars but that their magnetic axes have different orientations with respect to their rotation axes. In strong magnetic fields where photon splitting suppresses pair creation near the surface, the high-field pulsars can have active inner accelerators while the anomalous X-ray pulsars cannot. This can account for the very different observed emission characteristics of the anomalous X-ray pulsar 1E 2259+586 and the high-field radio pulsar PSR J1814-1744. A predicted consequence of this picture is that radio pulsars having surface magnetic fields greater than about 2x1014 G should not exist.

  18. Long-Term Timing of Globular Cluster Pulsars

    NASA Astrophysics Data System (ADS)

    Roi Smith, Sergio; Lynch, Ryan S.

    2017-01-01

    Pulsar timing is a powerful astrophysical tool that allows us to study both pulsars and their environment. Timing models provide information about the pulsar itself, including mass, position, and orbital parameters for pulsars in binary systems. Timing models also provide information about the pulsar’s neighborhood and about the interstellar medium (ISM) between the pulsar and the Earth. We present the results of timing two millisecond globular cluster pulsars over five years, as well as steps involved in preparing the data for use in the timing model. Data was obtained using the Robert C. Byrd Green Bank Telescope (GBT) observing at 1.5 GHz between 2011 and 2015. Here, a description of the data processing procedure is given, and timing results including dispersion measure and higher order rotational period derivatives are discussed.

  19. Candidates for Pulsars with Gigahertz-Peaked Spectra

    NASA Astrophysics Data System (ADS)

    Tarczewski, L.; Kijak, J.; Lewandowski, W.

    2012-12-01

    Kijak et al. (2011) provided a definite evidence for a new type of pulsar radio spectra. These spectra show the maximum flux above 1 GHz and their energy decreases below 1 GHz, producing a positive spectral index at lower frequencies. They called these objects the gigahertz-peaked spectra (GPS) pulsars. We study a spectrum of radio pulsars and try to find pulsars with the turn-over effect at high frequencies. We created a database of candidates for pulsars with GPS effect using Maron et al. (2000) and ATNF database (Manchester et al. 2005), and also using recent papers where flux measurements were published (for example Bates et al. 2011). As a result a set of 22 candidates for pulsars with GPS was found.

  20. A periodically active pulsar giving insight into magnetospheric physics.

    PubMed

    Kramer, M; Lyne, A G; O'Brien, J T; Jordan, C A; Lorimer, D R

    2006-04-28

    PSR B1931+24 (J1933+2421) behaves as an ordinary isolated radio pulsar during active phases that are 5 to 10 days long. However, when the radio emission ceases, it switches off in less than 10 seconds and remains undetectable for the next 25 to 35 days, then switches on again. This pattern repeats quasi-periodically. The origin of this behavior is unclear. Even more remarkably, the pulsar rotation slows down 50% faster when it is on than when it is off. This indicates a massive increase in magnetospheric currents when the pulsar switches on, proving that pulsar wind plays a substantial role in pulsar spin-down. This allows us, for the first time, to estimate the magnetospheric currents in a pulsar magnetosphere during the occurrence of radio emission.

  1. Switched magnetospheric regulation of pulsar spin-down.

    PubMed

    Lyne, Andrew; Hobbs, George; Kramer, Michael; Stairs, Ingrid; Stappers, Ben

    2010-07-23

    Pulsars are famed for their rotational clocklike stability and their highly repeatable pulse shapes. However, it has long been known that there are unexplained deviations (often termed timing noise) from the rate at which we predict these clocks should run. We show that timing behavior often results from two different spin-down rates. Pulsars switch abruptly between these states, often quasi-periodically, leading to the observed spin-down patterns. We show that for six pulsars the timing noise is correlated with changes in the pulse shape. Many pulsar phenomena, including mode changing, nulling, intermittency, pulse-shape variability, and timing noise, are therefore linked and are caused by changes in the pulsar's magnetosphere. We consider the possibility that high-precision monitoring of pulse profiles could lead to the formation of highly stable pulsar clocks.

  2. Pulsar braking and the P-dot{P} diagram

    NASA Astrophysics Data System (ADS)

    Johnston, Simon; Karastergiou, A.

    2017-05-01

    The location of radio pulsars in the period-period derivative (P-\\dot{P}) plane has been a key diagnostic tool since the early days of pulsar astronomy. Of particular importance is how pulsars evolve through the P-\\dot{P} diagram with time. Here we show that the decay of the inclination angle (\\dot{α }) between the magnetic and rotation axes plays a critical role. In particular, \\dot{α } strongly impacts on the braking torque, an effect that has been largely ignored in previous work. We carry out simulations that include a negative \\dot{α } term, and show that it is possible to reproduce the observational P-\\dot{P} diagram without the need for either pulsars with long birth periods or magnetic field decay. Our best model indicates a birth rate of one radio pulsar per century and a total Galactic population of ˜20 000 pulsars beaming towards Earth.

  3. Vela-like Pulsars: A Bridge Between Young and Old

    NASA Technical Reports Server (NTRS)

    Finley, John P.

    1997-01-01

    This grant was in support of a guest observation using the ASCA satellite of the young, spin-powered pulsar PSR B1706-44. The pulsar is interesting for several reasons: 1) it is young and shares many similar characteristics with the Vela pulsar, 2) it is one of a few pulsars which has been detected by the EGRET detector aboard the CGRO satellite, and 3) it is one of the confirmed sources of TeV gamma-rays discovered with ground based telescopes. The goals of the observation were to search for pulsations in the X-ray domain and to study the near stellar environment to determine if the pulsar is embedded within a compact nebula as in the case of the Vela pulsar.

  4. Thermal analysis of specific heat measurements in glassy Se80-xTe20Sbx alloys in glass transition region

    NASA Astrophysics Data System (ADS)

    Saraswat, S.; Mehta, N.; Sharma, S. D.

    2016-01-01

    In the present report, we have done specific heat measurements in glassy Se80-xTe20Sbx (0 ≤ x ≤ 15) alloys in glass transition region. Differential scanning calorimetry (DSC) technique is used for this purpose. We have observed a tremendously huge increase in the specific heat (Cp) values at the glass transition temperature. The thermal analysis shows that the values of Cp below glass transition temperature and the difference of Cp values before and after glass transition (∆Cp) are highly composition-dependent.

  5. Binary and Millisecond Pulsars at the New Millennium.

    PubMed

    Lorimer, Duncan R

    2001-01-01

    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.

  6. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  7. On magnetic pair production above fast pulsar polar caps

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Magnetic pair production is one of high-energy electromagnetic conversion processes important to the development of pair-photon cascades in pulsars. On the basis of current polar cap models, the properties of magnetic pair production in fast pulsars are discussed. Suppose there is a roughly dipole magnetic field at the stellar surface, the author estimate the effects on non-zero curvature of magnetic field lines upon curvature radiation from primary particles and pair production rate near the surface of pulsars.

  8. Limits on neutron Lorentz violation from pulsar timing

    SciTech Connect

    Altschul, Brett

    2007-01-15

    Pulsars are the most accurate naturally occurring clocks, and data about them can be used to set bounds on neutron-sector Lorentz violations. If SO(3) rotation symmetry is completely broken for neutrons, then pulsars' rotation speeds will vary periodically. Pulsar timing data limits the relevant Lorentz-violating coefficients to be smaller than 1.7x10{sup -8} at at least 90% confidence.

  9. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array

    NASA Astrophysics Data System (ADS)

    Reardon, D. J.; Hobbs, G.; Coles, W.; Levin, Y.; Keith, M. J.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Dai, S.; Kerr, M.; Lasky, P. D.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Shannon, R. M.; van Straten, W.; Toomey, L.; Wang, J.; Wen, L.; You, X. P.; Zhu, X.-J.

    2016-01-01

    We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024-0719, J1045-4509, J1600-3053, J1603-7202, and J1730-2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437-4715 and J1909-3744 with Mp = 1.44 ± 0.07 and 1.47 ± 0.03 M⊙, respectively. The improved orbital period-derivative measurement for PSR J0437-4715 results in a derived distance measurement at the 0.16 per cent level of precision, D = 156.79 ± 0.25 pc, one of the most fractionally precise distance measurements of any star to date.

  10. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  11. MULTIWAVELENGTH CONSTRAINTS ON PULSAR POPULATIONS IN THE GALACTIC CENTER

    SciTech Connect

    Wharton, R. S.; Chatterjee, S.; Cordes, J. M.; Deneva, J. S.; Lazio, T. J. W.

    2012-07-10

    The detection of radio pulsars within the central few parsecs of the Galaxy would provide a unique probe of the gravitational and magneto-ionic environments in the Galactic center (GC) and, if close enough to Sgr A*, precise tests of general relativity in the strong-field regime. While it is difficult to find pulsars at radio wavelengths because of interstellar scattering, the payoff from detailed timing of pulsars in the GC warrants a concerted effort. To motivate pulsar surveys and help define search parameters for them, we constrain the pulsar number and spatial distribution using a wide range of multiwavelength measurements. These include the five known radio pulsars within 15' of Sgr A*, non-detections in high-frequency pulsar surveys of the central parsec, radio and gamma-ray measurements of diffuse emission, a catalog of radio point sources from an imaging survey, infrared observations of massive star populations in the central few parsecs, candidate pulsar wind nebulae in the inner 20 pc, and estimates of the core-collapse supernova rate based on X-ray measurements. We find that under current observational constraints, the inner parsec of the Galaxy could harbor as many as {approx}10{sup 3} active radio pulsars that are beamed toward Earth. Such a large population would distort the low-frequency measurements of both the intrinsic spectrum of Sgr A* and the free-free absorption along the line of sight of Sgr A*.

  12. Acoustooptical pulsar processor: application of frequency scale calibration

    NASA Astrophysics Data System (ADS)

    Esepkina, Nelli A.; Lavrov, Aleksandr P.; Molodyakov, Sergey A.; Oreshko, Vasiliy V.

    2007-02-01

    The acoustooptical processor (AOP) is based on an acoustooptical spectrum analyzer with a CCD photodetector operating in a special pipeline operational mode (shift-and-add mode), which allows spectral components of the input signal to be added with a controlled time delay immediately in the CCD photodetector. The proposed AOP was successfully used on an RT-64 radio telescope (Kalyazin Radio Astronomy Observatory FIAN) for the observation of pulsars at 1.4 GHz in a bandwidth of 45 MHz. The frequency scale calibration allows increasing accuracy measurement of time of arrival radioemission pulsar. Experimental results of frequency scale calibration and pulsars profiles for a pulsar PSR 1937+21 are submitted.

  13. The Effects of Geometrical Factors on Pulsar Rotation Parameters

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Guang-li; Guo, Li

    2017-07-01

    This paper presents a detailed investigation of the effects of geometrical factors on pulsar rotation parameters, for examples the Earth rotation parameter, precession-nutation model, pulsar velocity and acceleration relative to the solar system barycenter (SSB), and planetary ephemeris error. The relations of these factors with the pulsar rotation parameters are derived, and the magnitudes of the effects of these factors are estimated, assuming that pulsars have typical parameter values. The effects of the Earth rotation parameter and precession-nutation model are negligible at the current accuracy level of observation. As the effect of the planetary ephemeris error on the pulsar rotation parameters is much less than the rotation parameters themselves, so it is also negligible. The effect of pulsar radial velocity relative to the SSB is 4 orders of magnitude less than the pulsar period. However, the effects of the pulsar transverse velocity and radial acceleration on the period derivative are not ignorable, especially for millisecond pulsars, where they may dominate the observed value of period derivative.

  14. Pulsar timing for the Fermi gamma-ray space telescope

    DOE PAGES

    Smith, D. A.; Guillemot, L.; Camilo, F.; ...

    2008-10-27

    Here, we describe a comprehensive pulsar monitoring campaign for the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The detection and study of pulsars in gamma rays give insights into the populations of neutron stars and supernova rates in the Galaxy, into particle acceleration mechanisms in neutron star magnetospheres, and into the “engines” driving pulsar wind nebulae. LAT's unprecedented sensitivity between 20 MeV and 300 GeV together with its 2.4 sr field-of-view makes detection of many gamma-ray pulsars likely, justifying the monitoring of over two hundred pulsars with large spin-down powers. To search for gamma-ray pulsationsmore » from most of these pulsars requires a set of phase-connected timing solutions spanning a year or more to properly align the sparse photon arrival times. We describe the choice of pulsars and the instruments involved in the campaign. Attention is paid to verifications of the LAT pulsar software, using for example giant radio pulses from the Crab and from PSR B1937+21 recorded at Nançay, and using X-ray data on PSR J0218+4232 from XMM-Newton. We demonstrate accuracy of the pulsar phase calculations at the microsecond level.« less

  15. Observing peculiar γ-ray pulsars with AGILE

    NASA Astrophysics Data System (ADS)

    Pilia, M.; Pellizzoni, A.

    2011-08-01

    The AGILE γ-ray satellite provides large sky exposure levels (>=109 cm2 s per year on the Galactic Plane) with sensitivity peaking at E ~100 MeV where the bulk of pulsar energy output is typically released. Its ~1 μs absolute time tagging capability makes it perfectly suited for the study of γ-ray pulsars. AGILE collected a large number of γ-ray photons from EGRET pulsars (>=40,000 pulsed counts for Vela) in two years of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves, γ-ray emission from pulsar glitches and Pulsar Wind Nebulae. AGILE detected about 20 nearby and energetic pulsars with good confidence through timing and/or spatial analysis. Among the newcomers we find pulsars with very high rotational energy losses, such as the remarkable PSR B1509-58 with a magnetic field in excess of 1013 Gauss, and PSR J2229+6114 providing a reliable identification for the previously unidentified EGRET source 3EG2227+6122. Moreover, the powerful millisecond pulsar B1821-24, in the globular cluster M28, is detected during a fraction of the observations.

  16. Characterization of a Precision Pulsar Timing Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Lam, Michael T.

    2017-01-01

    We aim to construct a Galactic-scale detector comprised of an array of pulsars distributed across the sky in an effort to detect low-frequency (nanohertz) gravitational waves. Even without a detection, observations of pulsar timing arrays have allowed us to begin to place impactful astrophysical constraints on dynamical processes occurring during galaxy mergers. Understanding the detector is necessary for improving our sensitivity to gravitational waves and making a detection. Therefore, our goal is to characterize the entire propagation path through the pulsar timing array detector. To do so, we must understand: what intrinsic noise processes occur at the pulsar, what effects the interstellar medium has on pulsed radio emission, and what errors we introduce when measuring the incident electromagnetic radiation at our observatories.In this work, we observed of one of the most spin-stable objects known for 24 hours to understand the fundamental limits of precision pulsar timing. We investigated the effect of non-simultaneous, multi-frequency sampling of pulsar dispersion measures on timing and analyzed the cause of deterministic and stochastic temporal variations seen in dispersion measure time series. We analyzed errors in pulse arrival times and determined the white noise budget for pulsars on the timescale of a single observation. Finally, we measured the excess noise beyond the white noise model in pulsar timing residuals and incorporated our results into a global model over all pulsar populations to improve excess noise scaling relations.

  17. Implication of the Observable Spectral Cutoff Energy Evolution in XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational appearances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational apperances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow

  18. IMPLICATION OF THE OBSERVED SPECTRAL CUTOFF ENERGY EVOLUTION IN XTE J1550-564

    SciTech Connect

    Titarchuk, Lev; Shaposhnikov, Nikolai E-mail: lev.titarchuk@nrl.navy.mi

    2010-12-01

    The physical mechanisms responsible for the production of non-thermal emission in accreting black holes (BHs) should be imprinted in the observational appearances of the power-law tails in the X-ray spectra from these objects. Phenomenology of different spectral states exhibited by galactic BH binaries allows us to establish the physics of the photon upscattering under different accretion regimes. We revisit the data collected by the Rossi X-ray Timing Explorer from the BH X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high-energy cutoff of the power-law part of the spectrum. For the 1998 outburst, the transition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy. This was followed by an extended minimum which then showed an abrupt reversal to a clear increasing trend as the source evolved to the very high and high-soft states. The 2000 outburst showed only the decreasing and extended minimum portions of this pattern. We attribute this difference in the cutoff energy behavior to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions, the bulk motion takes a leading role in boosting the input soft photons. Recent Monte Carlo simulations by Laurent and Titarchuk strongly support this scenario.

  19. Sustained magnetic fields in binary millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Chanmugam, G.; Brecher, K.

    1987-10-01

    It is proposed here that the magnetic fields of neutron stars do not decay either in binary millisecond pulsars (BMPs) or in general. This eliminates the severe discrepancy between the hypothesis that neutron stars in BMPs formed from the accretion-induced collapse of white dwarfs with shorter orbital periods and the observation that the fraction of pulsars which are BMPs is too large by a factor of over 100. It is also shown that, if such neutron stars are formed from the accretion-induced magnetic flux and an angular momentum-conserving collapse of white dwarfs, most of them are likely to have been born, and remain, spinning rapidly and to have weak magnetic fields, in agreement with observations of BMPs and low-mass X-ray binaries.

  20. Tackling radio polarization of energetic pulsars

    SciTech Connect

    Craig, H. A.

    2014-08-01

    The traditional, geometrical rotating vector model (RVM) has proved particularly poor at capturing the polarization sweeps of the young energetic and millisecond pulsars detected by Fermi. We augment this model by including finite altitude effects using a swept back vacuum dipole geometry. By further including the effects of orthogonal mode jumps, multiple emission altitudes, open zone growth via y-point lowering, and interstellar scattering, we show that a wide range of departures from RVM can be modeled well while retaining a geometrical picture. We illustrate these effects by fitting six Fermi-detected pulsars (J0023+0923, J1024–0719, J1744–1134, J1057–5226, J1420–6048, and J2124–3358) and we describe how such modeling can improve our understanding of their emission geometry.

  1. Gravitational wave emission from oscillating millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  2. PuMa, a digital Pulsar Machine

    NASA Astrophysics Data System (ADS)

    Voûte, J. L. L.; Kouwenhoven, M. L. A.; van Haren, P. C.; Langerak, J. J.; Stappers, B. W.; Driesens, D.; Ramachandran, R.; Beijaard, Th. D.

    2002-04-01

    We have designed and constructed PuMa, a pulsar machine that has both a baseband recording and a digital filterbank mode. Its design is based on the use of digital signal processors (DSPs). Their operation is controlled by software, which makes PuMa reconfigurable, flexible and easy to operate. The maximum number of channels in the digital filterbank mode is 32 768 over a bandwidth of 80 MHz. This makes PuMa suitable for pulsar observations at low sky frequencies. The maximum bandwidth in baseband recording mode is two times 10 MHz. The machine was installed at the Westerbork Synthesis Radio Telescope in The Netherlands in 1998. We discuss in some detail PuMa's technical properties and capabilities. Recent observations, a sample of which are presented here, demonstrate its capabilities and that it is performing up to its specifications.

  3. Mildly Recycled Pulsars at High-Energies

    NASA Astrophysics Data System (ADS)

    Pellizzoni, A.

    2011-08-01

    Mildly recyled pulsars (MRP), conventionally defined as neutron star having spin period in the 20-100 ms range and surface magnetic field <1011 Gauss, probably rise from binary systems (disrupted or not) with an intermediate or an high mass companion. Despite their relatively low spin-down energies compared to the ``fully'' recycled millisecond pulsars (arising from common low mass X-ray binaries), nearby MRPs can be detected by deep X-ray observations and by timing analysis of the very long data span provided by gamma-ray space detectors. The discovery of peculiar timing and spectral properties, possibly transitional, of the MRPs can be of the utmost importance to link different classes of neutron stars and study their evolution.

  4. Pulsar searches in nearby dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Rubio-Herrera, Eduardo; Maccarone, Thomas

    2013-03-01

    We have been undertaking a comprehensive survey for pulsars and fast radio transients in the dwarf spheroidal satellite galaxies of the Milky Way using the Green Bank Radio Telescope operating at a central frequency of 350 MHz. Our search pipeline allows the detection of periodical signals and single dispersed pulses and it is optimized to search for millisecond radio pulsars. Here we present preliminary results of the searches we have conducted in the Ursa Minoris, Draco and Leo I dwarf spheroidal satellite galaxies. Our searches have revealed no periodic signals but a few unconfirmed millisecond single pulses at various dispersion measures, possibly related to neutron stars. Detecting neutron stars in these systems can potentially help to test the existence of haloes of dark matter surrounding these systems as predicted by Dehnen & King (2006).

  5. Pulsar braking: Time dependent moment of inertia?

    NASA Astrophysics Data System (ADS)

    Urbanec, Martin

    2017-08-01

    Pulsars rotate with extremely stable rotational frequency enabling one to measure its first and second time derivatives. These observed values can be combined to the so-called braking index. However observed values of braking index differ from the theoretical value of 3 corresponding to braking by magnetic dipole radiation being the dominant theoretical model. Such a difference can be explained by contribution of other mechanism like pulsar wind or quadrupole radiation, or by time dependency of magnetic field or moment of inertia. In this presentation we focus on influence of time dependent moment of inertia on the braking index. We will also discuss possible physical models for time-dependence of moment of inertia.

  6. Crab pulsar timing 1982-87

    NASA Astrophysics Data System (ADS)

    Lyne, A. G.; Pritchard, R. S.; Smith, F. G.

    1988-08-01

    Observations of the arrival times of pulses from the pulsar in the Crab Nebula over a six-year interval are presented. The data are intended to permit the investigation of the interior of the neutron star through the study of glitches and timing noise and to provide an ephemeris for high-energy observations. The first and second frequency derivatives provide a value for the braking index of n = 2.509 + or - 0.001, which is consistent with previous observations. The third frequency derivative can now be determined over an 18-yr span and is as expected for this braking index. The predominant deviations from a simple slow-down model form a sinusoid with a period of 20 months, attributable to an oscillation of the bulk of the neutron superfluid in the pulsar. One conspicuous glitch occurred in August, 1986 and the subsequent recovery was studied from only one hour after the event.

  7. Geminga’s Puzzling Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Posselt, B.; Pavlov, G. G.; Slane, P. O.; Romani, R.; Bucciantini, N.; Bykov, A. M.; Kargaltsev, O.; Weisskopf, M. C.; Ng, C.-Y.

    2017-01-01

    We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures—two ≈ 0.2{d}250 pc long lateral tails and a segmented axial tail of ≈ 0.05{d}250 pc length, where {d}250=d/(250 {pc}). The photon indices of the power-law spectra of the lateral tails, {{Γ }}≈ 1, are significantly harder than those of the pulsar ({{Γ }}≈ 1.5) and the axial tail ({{Γ }}≈ 1.6). There is no significant diffuse X-ray emission between the lateral tails—the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indications of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids, which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.

  8. PARTICLE TRANSPORT IN YOUNG PULSAR WIND NEBULAE

    SciTech Connect

    Tang Xiaping; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2012-06-20

    The model for pulsar wind nebulae (PWNe) as a result of the magnetohydrodynamic (MHD) downstream flow from a shocked, relativistic pulsar wind has been successful in reproducing many features of the nebulae observed close to central pulsars. However, observations of well-studied young nebulae like the Crab Nebula, 3C 58, and G21.5-0.9 do not show the toroidal magnetic field on a larger scale that might be expected in the MHD flow model; in addition, the radial variation of spectral index due to synchrotron losses is smoother than expected in the MHD flow model. We find that pure diffusion models can reproduce the basic data on nebular size and spectral index variation for the Crab, 3C 58, and G21.5-0.9. Most of our models use an energy-independent diffusion coefficient; power-law variations of the coefficient with energy are degenerate with variation in the input particle energy distribution index in the steady state, transmitting boundary case. Energy-dependent diffusion is a possible reason for the smaller diffusion coefficient inferred for the Crab. Monte Carlo simulations of the particle transport allowing for advection and diffusion of particles suggest that diffusion dominates over much of the total nebular volume of the Crab. Advection dominates close to the pulsar and is likely to play a role in the X-ray half-light radius. The source of diffusion and mixing of particles is uncertain, but may be related to the Rayleigh-Taylor instability at the outer boundary of a young PWN or to instabilities in the toroidal magnetic field structure.

  9. Tests of general relativity using pulsars

    NASA Technical Reports Server (NTRS)

    Reichley, P. E.

    1971-01-01

    The arrival times of the pulses from each pulsar are measured by a cesium clock. The observations are all made at a frequency of 2388 MHz (12.5 cm wavelength) on a 26 m dish antenna. The effect of interstellar charged particles is a random one that increases the noise level on the arrival time measurements. The variation in clock rate is shown consisting of two effects: the time dilation effect of special relativity and the red shift effect of general relativity.

  10. Fermi-LAT Search for Pulsar Wind Nebulae around gamma-ray Pulsars

    SciTech Connect

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Conrad, J.; Dermer, C. D.; de Angelis, A.; de Luca, A.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Favuzzi, C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hays, E.; Hobbs, G.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Johnston, S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S. -H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Makeev, A.; Marelli, M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Noutsos, A.; Nuss, E.; Ohsugi, T.; Okumura, A.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Romani, R. W.; Sadrozinski, H. F. -W.; Sander, A.; Parkinson, P. M. Saz; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; Van Etten, A.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Weltevrede, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-12-13

    The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three PWNe: the Crab Nebula, Vela-X, and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates ($\\dot{E}$) from ~3 × 1033 erg s–1 to 5 × 1038 erg s–1 and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the γ-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X, and a new PWN candidate associated with the LAT pulsar PSR J1023–5746, coincident with the TeV source HESS J1023–575. Here, we further explore the association between the HESS and the Fermi source by modeling its spectral energy distribution. Lastly, flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.

  11. Fermi-LAT Search for Pulsar Wind Nebulae around gamma-ray Pulsars

    DOE PAGES

    Ackermann, M.; Ajello, M.; Baldini, L.; ...

    2010-12-13

    The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three PWNe: the Crab Nebula, Vela-X, and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates (more » $$\\dot{E}$$) from ~3 × 1033 erg s–1 to 5 × 1038 erg s–1 and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the γ-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X, and a new PWN candidate associated with the LAT pulsar PSR J1023–5746, coincident with the TeV source HESS J1023–575. Here, we further explore the association between the HESS and the Fermi source by modeling its spectral energy distribution. Lastly, flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.« less

  12. FERMI-LAT SEARCH FOR PULSAR WIND NEBULAE AROUND GAMMA-RAY PULSARS

    SciTech Connect

    Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brigida, M.; Bruel, P.

    2011-01-01

    The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three PWNe: the Crab Nebula, Vela-X, and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates ( E-dot ) from {approx}3 x 10{sup 33} erg s{sup -1} to 5 x 10{sup 38} erg s{sup -1} and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the {gamma}-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X, and a new PWN candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the HESS and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.

  13. Braking index of isolated pulsars. II. A novel two-dipole model of pulsar magnetism

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Stone, N. J.; Stone, J. R.

    2016-09-01

    The magnetic dipole radiation model is currently the best approach we have to explain pulsar radiation. However, a most characteristic parameter of the observed radiation, the braking index nobs , shows deviations for all the eight best studied isolated pulsars, from the simple model prediction ndip=3 . The index depends upon the rotational frequency and its first and second time derivatives but also on the assumption that the magnetic dipole moment and inclination angle and the moment of inertia of the pulsar are constant in time. In a recent paper [Phys. Rev. D 91, 063007 (2015)], we showed conclusively that changes in the moment of inertia with frequency alone cannot explain the observed braking indices. Possible observational evidence for the magnetic dipole moment migrating away from the rotational axis at a rate α ˙ ˜0.6 ° per 100 years over the lifetime of the Crab pulsar has been recently suggested by Lyne et al. In this paper, we explore the magnetic dipole radiation model with constant moment of inertia and magnetic dipole moment but variable inclination angle α . We first discuss the effect of the variation of α on the observed braking indices and show they all can be understood. However, no explanation for the origin of the change in α is provided. After discussion of the possible source(s) of magnetism in pulsars, we propose a simple mechanism for the change in α based on a toy model in which the magnetic structure in pulsars consists of two interacting dipoles. We show that such a system can explain the Crab observation and the measured braking indices.

  14. Particle acceleration in axisymmetric pulsar current sheets

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Philippov, Alexander; Parfrey, Kyle; Spitkovsky, Anatoly

    2015-03-01

    The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars.

  15. LEAP: the Large European Array for Pulsars

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lee, K. J.; Liu, K.; McKee, J.; Perrodin, D.; Purver, M.; Sanidas, S.; Smits, R.; Stappers, B. W.

    2016-02-01

    The Large European Array for Pulsars (LEAP) is an experiment that harvests the collective power of Europe's largest radio telescopes in order to increase the sensitivity of high-precision pulsar timing. As part of the ongoing effort of the European Pulsar Timing Array, LEAP aims to go beyond the sensitivity threshold needed to deliver the first direct detection of gravitational waves. The five telescopes presently included in LEAP are the Effelsberg Telescope, the Lovell Telescope at Jodrell Bank, the Nançay Radio Telescope, the Sardinia Radio Telescope and the Westerbork Synthesis Radio Telescope. Dual polarization, Nyquist-sampled time series of the incoming radio waves are recorded and processed offline to form the coherent sum, resulting in a tied-array telescope with an effective aperture equivalent to a 195-m diameter circular dish. All observations are performed using a bandwidth of 128 MHz centred at a frequency of 1396 MHz. In this paper, we present the design of the LEAP experiment, the instrumentation, the storage and transfer of data and the processing hardware and software. In particular, we present the software pipeline that was designed to process the Nyquist-sampled time series, measure the phase and time delays between each individual telescope and a reference telescope and apply these delays to form the tied-array coherent addition. The pipeline includes polarization calibration and interference mitigation. We also present the first results from LEAP and demonstrate the resulting increase in sensitivity, which leads to an improvement in the pulse arrival times.

  16. Pulsar Magnetospheres: Beyond the Flat Spacetime Dipole

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2016-12-01

    Most studies of the pulsar magnetosphere have assumed a pure magnetic dipole in flat spacetime. However, recent work suggests that the effects of general relativity are in fact of vital importance and that realistic pulsar magnetic fields will have a significant nondipolar component. We introduce a general analytical method for studying the axisymmetric force-free magnetosphere of a slowly rotating star of arbitrary magnetic field, mass, radius, and moment of inertia, including all the effects of general relativity. We confirm that spacelike current is generically present in the polar caps (suggesting a pair production region), irrespective of the stellar magnetic field. We show that general relativity introduces a ∼ 60 % correction to the formula for the dipolar component of the surface magnetic field inferred from spindown. Finally, we show that the location and shape of the polar caps can be modified dramatically by even modestly strong higher moments. This can affect emission processes occurring near the star and may help explain the modified beam characteristics of millisecond pulsars.

  17. Eclipsing Pulsar Promises Clues to Crushed Matter

    NASA Image and Video Library

    2017-09-28

    NASA image release August 17, 2010 Astronomers using NASA's Rossi X-ray Timing Explorer (RXTE) have found the first fast X-ray pulsar to be eclipsed by its companion star. Further studies of this unique stellar system will shed light on some of the most compressed matter in the universe and test a key prediction of Einstein's relativity theory. Known as Swift J1749.4-2807 -- J1749 for short -- the system erupted with an X-ray outburst on April 10. During the event, RXTE observed three eclipses, detected X-ray pulses that identified the neutron star as a pulsar, and even recorded pulse variations that indicated the neutron star's orbital motion. To view a video of this pulsar go here: www.flickr.com/photos/gsfc/4901238111 To read more click here Credit: NASA/GSFC NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  18. Multiwavelength analysis of four millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Guillemot, L.; Cognard, I.; Johnson, T. J.; Venter, C.; Harding, A. K.

    2011-08-01

    Radio timing observations of millisecond pulsars (MSPs) in support of Fermi LAT observations of the gamma-ray sky enhance the sensitivity of high-energy pulsation searches. With contemporaneous ephemerides we have detected gamma-ray pulsations from PSR B1937+21, the first MSP ever discovered, and B1957+20, the first known black-widow system. The two MSPs share a number of properties: they are energetic and distant compared to other gamma-ray MSPs, and both of them exhibit aligned radio and gamma-ray emission peaks, indicating co-located emission regions in the outer magnetosphere of the pulsars. However, radio observations are also crucial for revealing MSPs in Fermi unassociated sources. In a search for radio pulsations at the position of such unassociated sources, the Nançay Radio Telescope discovered two MSPs, PSRs J2017+0603 and J2302+4442, increasing the sample of known Galactic disk MSPs. Subsequent radio timing observations led to the detection of gamma-ray pulsations from these two MSPs as well. We describe multiwavelength timing and spectral analysis of these four pulsars, and the modeling of their gamma-ray light curves in the context of theoretical models.

  19. Genesis stories for the millisecond pulsar

    NASA Astrophysics Data System (ADS)

    Ruderman, M. A.; Shaham, J.

    1983-09-01

    Theoretical models proposed to explain the origin of the millisecond pulsar (MP) PSR 1937+214 are reviewed, examining their ability to explain its low surface dipole magnetic field (B), its low birth temperature (less than 10 to the 8th K), the absence of a companion or remnant, and its low velocity perpendicular to the Galactic plane. The models discussed are a single isolated explosion forming a rapidly spinning neutron star, spin-up of a dead pulsar by accretion from a companion, collapse of an accreting spinning white dwarf, and fusion of a tight binary composed of two old neutron stars. Although all of the models have difficulties in explaining one or more of the MP characteristics, the second model is found to be most probable in the light of present knowledge. The lack of a companion is explained by its tidal disruption after it had fed the accreting pre-pulsar for 1 Gyr or more and its mass had decreased to about 0.01 solar mass. Neutron stars accreting in this way have been observed in Galactic-bulge X-ray sources.

  20. Partial accretion regime of accreting millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Eksi, Kazim

    2016-07-01

    The inner parts of the disks around neutron stars in low mass X-ray binaries may become geometrically thick due to inhibition of accretion at the disk mid-plane when the central object is rotating rapidly. In such a case matter inflowing through the disk may keep accreting onto the poles of the neutron star from the parts of the disk away from the disk mid-plane while the matter is propelled at the disk mid-plane. An important ingredient of the evolution of millisecond pulsars is then the fraction of the inflowing matter that can accrete onto the poles in the fast rotation regime depending on the fastness parameter. This ``soft'' propeller regime may be associated with the rapid decay stage observed in the light curves of several accreting millisecond pulsars. To date only a few studies considered the partial accretion regime. By using geometrical arguments we improve the existing studies and test the model by reproducing the lightcurves of millisecond X-ray pulsars via time dependent simulations of disk evolution. We also present analytical solutions that represent disks with partial accretion.

  1. In-Flight Observations of Long-Term Single-Event Effect (SEE) Performance on X-ray Timing Explorer (XTE) Solid-state Recorders (SSRs)

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Gee, George; LaBel, Kenneth A.; Barth, Janet L.

    2004-01-01

    We present multi-year Single Event Upset (SEU) flight data on Solid State Recorder (SSR) memories for the X-ray Timing Explorer (XTE) NASA mission. Actual SEU rates are compared to the predicted rates based on ground test data and environment models.

  2. Influence of soft X-ray of a vacuum spark with laser initiation on the surface properties of solid solutions CdXHg1-XTe

    NASA Astrophysics Data System (ADS)

    Ananyin, O. B.; Bogdanov, G. S.; Vovchenko, E. D.; Gerasimov, I. A.; Melekhov, A. P.; Krapiva, P. S.; Novikov, I. K.; Ramakoti, R. S.; Sredin, V. G.

    2016-09-01

    At a certain form of broadband source soft X-ray spectrum is expected to achieve selective radiation exposure to one of the elements of a multi-component material CdXHg1-XTe. In this case we can talk about a change of the surface properties of the substance as a result of selective absorption of soft X-rays.

  3. Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots growth in a silicate glass matrix by the fusion method

    SciTech Connect

    Dantas, Noelio Oliveira; Lima Fernandes, Guilherme de; Almeida Silva, Anielle Christine; Baffa, Oswaldo; Gómez, Jorge Antônio

    2014-09-29

    In this study, we synthesized Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots (USQDs) in SiO{sub 2}-Na{sub 2}CO{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system using the fusion method. Growth of these Cd{sub 1−x}Mn{sub x}Te USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn{sup 2+}) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd{sub 1−x}Mn{sub x}Te USQDs with uniformly distributed size and magnetic phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn{sup 2+}, and confirmed that Mn{sup 2+} are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd{sub 1−x}Mn{sub x}Te USQDs may allow the control of optical and magnetic properties.

  4. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    SciTech Connect

    Lobato, Ronaldo V.; Malheiro, M.; Coelho, J. G.

    2015-12-17

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  5. AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF AXISYMMETRIC PULSARS

    SciTech Connect

    Philippov, Alexander A.; Spitkovsky, Anatoly

    2014-04-20

    We perform ''first-principles'' relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitate pair production. As pair plasma supply increases, we observe the transition from a charge-separated ''electrosphere'' solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically dominated pulsar wind. We calculate the magnetospheric structure, current distribution, and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.

  6. Identification of the X-ray pulsar in Hercules: A new optical pulsar

    NASA Technical Reports Server (NTRS)

    Davidsen, A.; Henry, J. P.; Middleditch, J.; Smith, H. E.

    1972-01-01

    A series of photographic, photoelectric, and spectroscopic observations beginning June 1, 1972 has led to the optical identification of Her X-1 (2U 1705 + 34), a pulsed X-ray source in an eclipsing binary system, with the thirteenth magnitude blue variable star HZ Herculis. The detection of optical pulses at the frequency of the X-ray pulsar on three nights makes the identification conclusive and establishes HZ Her as the second known optical pulsar. The strength of the optical pulses may be correlated with the orbital phase but is not obviously related to the high or low intensity states of the X-ray source.

  7. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Coelho, J. G.; Malheiro, M.

    2015-12-01

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ˜ 107 - 1010 G and rotate very fast with angular frequencies Ω ˜ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission "o2" is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  8. High-Frequency Quasi-Periodic Oscillations in the 2000 Outburst of the Galactic Microquasar XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Wijnands, R.; Homan, J.; Belloni, T.; Pooley, D.; Kouveliotou, C.; vanderKlis, M.; Lewin, W. H. G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We present an analysis of the high-frequency timing properties of the April-May 2000 outburst of the black hole candidate and Galactic microquasar XTE J1550-564, measured with the Rossi X-ray Timing Explorer, The rapid X-ray variability we measure is consistent with the source being in either the "very high" or "intermediate" canonical black hole state. A strong (5-8% RMS) quasi-periodic oscillation (QPO) is found between 249-278 Hz; this may represent the first recurrence of the same high-frequency QPO in subsequent outbursts of a transient black hole candidate. We also present possible evidence for a lower-frequency QPO at approximately 187 Hz, also reported previously and likely present simultaneously with the higher-frequency QPO. We discuss these findings within the context of the 1998 outburst of XTE J1550-564, and comment on implications for models of QPOs, accretion flows, and black hole spin.

  9. Long-Term Spectral and Timing Behavior of the Black Hole Candidate XTE J1908+094

    NASA Technical Reports Server (NTRS)

    Gogus, Ersin; Finger, Mark H.; Kouveliotou, Chryssa; Woods, Peter M.; Patel, Sandeep K.; Ruppen, Michael; Swank, Jean H.; Markwardt, Craig B.; VanDerKlis, Michiel

    2004-01-01

    We present the long-term X-ray light curves and detailed spectral and timing analyses of XTE J1908+094 using the Rossi X-Ray Timing Explorer Proportional Counter Array observations covering two outbursts in 2002 and early 2003. At the onset of the first outburst, the source was found in a spectrally low/hard state lasting for approx.40 days, followed by a 3 day long transition to the high/soft state. The source flux (in 2- 10 keV) reached approx.100 mcrab on 2002 April 6, then decayed rapidly. In power spectra, we detect strong band-limited noise and varying low- frequency quasi-periodic oscillations that evolved from approx.0.5 to approx.5 Hz during the initial low/hard state of the source. We find that the second outburst closely resembled the spectral evolution of the first. The X-ray transient s overall outburst characteristics led us to classify XTE J1908+094 as a black hole candidate. Here we also derive precise X-ray position of the source using Chandra observations that were performed during the decay phase of the first outburst and following the second outburst.

  10. THE VARIABLE QUIESCENT X-RAY EMISSION OF THE TRANSIENT NEUTRON STAR XTE J1701-462

    SciTech Connect

    Fridriksson, Joel K.; Homan, Jeroen; Wijnands, Rudy; Altamirano, Diego; Degenaar, Nathalie; Cackett, Edward M.; Brown, Edward F.; Mendez, Mariano; Belloni, Tomaso M.

    2011-08-01

    We present the results of continued monitoring of the quiescent neutron star low-mass X-ray binary XTE J1701-462 with Chandra and Swift. A new Chandra observation from 2010 October extends our tracking of the neutron star surface temperature from {approx_equal}800 days to {approx_equal}1160 days since the end of an exceptionally luminous 19 month outburst. This observation indicates that the neutron star crust may still be slowly cooling toward thermal equilibrium with the core; another observation further into quiescence is needed to verify this. The shape of the overall cooling curve is consistent with that of a broken power law, although an exponential decay to a constant level cannot be excluded with the present data. To investigate possible low-level activity, we conducted a monitoring campaign of XTE J1701-462 with Swift during 2010 April-October. Short-term flares-presumably arising from episodic low-level accretion-were observed up to a luminosity of {approx}1 x 10{sup 35} erg s{sup -1}, {approx}20 times higher than the normal quiescent level. We conclude that flares of this magnitude are not likely to have significantly affected the equilibrium temperature of the neutron star and are probably not able to have a measurable impact on the cooling curve. However, it is possible that brighter and longer periods of low-level activity have had an appreciable effect on the equilibrium temperature.

  11. Application of the Nonballistic Model to the Black Hole Candidate XTE J1752-223 and the Quasar NRAO 150

    NASA Astrophysics Data System (ADS)

    Zheng, T. Y.; Gong, B. P.

    2017-02-01

    Optical and radio observations of the black hole candidate XTE J1752-223 have exhibited a slightly curved motion of the jet components, which is associated with its radio light curve. In addition, observations of the quasar NRAO 150 have revealed a core-jet structure wobbling with a high angular speed. In this paper, the phenomena displayed in these two different sources are interpreted as the precession of a bent jet. In such a scenario, hot spots reproduced at different separations from the core precess on the same precession cone, in which different components correspond to different propagation times to the observer. By fitting the kinematics of the components of XTE J1752-223 and its light curve with a curved pattern of precession period 314 days, we find that the propagation time can make an earlier event appear later, and the jet axis can oscillate during its precession. Simulating the quasar NRAO 150 with the same scenario reveals that the knots at larger separation from the core precess at a slower speed than those closer in. A possible mechanism relating to the cooling time of a component is proposed. These three new results are of importance in understanding the physics underlying the curved jet as well as the activity of the central engine of different black hole systems.

  12. Prediction of an arc-tunable Weyl Fermion metallic state in Mo(x)W(1-x)Te2.

    PubMed

    Chang, Tay-Rong; Xu, Su-Yang; Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Bian, Guang; Zheng, Hao; Sanchez, Daniel S; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Bansil, Arun; Jeng, Horng-Tay; Lin, Hsin; Zahid Hasan, M

    2016-02-15

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal's boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in Mo(x)W(1-x)Te2 where Weyl nodes are formed by touching points between metallic pockets. We show that the Fermi arc length can be changed as a function of Mo concentration, thus tuning the topological strength. Our results provide an experimentally feasible route to realizing Weyl physics in the layered compound Mo(x)W(1-x)Te2, where non-saturating magneto-resistance and pressure-driven superconductivity have been observed.

  13. High-School Teams Joining Massive Pulsar Search

    NASA Astrophysics Data System (ADS)

    2008-09-01

    High school students and teachers will join astronomers on the cutting edge of science under a program to be operated by the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU), and funded by the National Science Foundation (NSF). The program, called the Pulsar Search Collaboratory, will engage West Virginia students and teachers in a massive search for new pulsars using data from the Robert C. Byrd Green Bank Telescope (GBT). Sue Ann Heatherly Sue Ann Heatherly, NRAO Education Officer CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) The NSF announced a $892,838 grant to NRAO and WVU to conduct the three-year program. The project will involve 60 teachers and some 600 students in helping astronomers analyze data from 1500 hours of observing time on the GBT. The 120 terabytes of data produced by some 70,000 individual pointings of the giant, 17-million-pound telescope is expected to reveal dozens of previously-unknown pulsars. "The students in this program will be partners in frontier research, discovering new pulsars and measuring changes in pulsars already known," said Sue Ann Heatherly, the NRAO Education Officer in Green Bank and Principal Investigator in the project. Pulsars are superdense neutron stars, the corpses of massive stars that have exploded as supernovae. As the neutron star spins, lighthouse-like beams of radio waves, streaming from the poles of its powerful magnetic field, sweep through space. When one of these beams sweeps across the Earth, radio telescopes can capture the pulse of radio waves. Pulsars serve as exotic laboratories for studying the physics of extreme conditions. Scientists can learn valuable new information about the physics of subatomic particles, electromagnetics, and General Relativity by observing pulsars and the changes they undergo over time. The Pulsar Search Collaboratory (PSC) combines the capabilities of NRAO and WVU to provide a unique opportunity for teachers and students

  14. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  15. Parameters of radio pulsars in binary systems and globular clusters

    NASA Astrophysics Data System (ADS)

    Loginov, A. A.; Malov, I. F.

    2017-02-01

    The parameters of radio pulsars in binary systems and globular clusters are investigated. It is shown that such pulsars tend to have short periods (of the order of several milliseconds). Themagnetic fields of most of the pulsars considered are weak (surface fields of the order of 108-109 G). This corresponds to the generally accepted view that short-period neutron stars are spun up by angular momentum associated with the stellar wind from a companion. However, the fields at the light cylinders in these objects are two to three orders of magnitude higher than for the main population of single neutron stars. The dependence of the pulse width on the period does not differ from the corresponding dependences for single pulsars, assuming the emission is generated inside the polar cap, at moderate distances from the surface or near the light cylinder. The radio luminosities of pulsars in binary systems do not show the correlation with the rate of loss of rotational energy that is characteristic for single pulsars, probably due to the influence of accreting matter from a companion. Moreover, accretion apparently decreases the power of the emergent radiation, and can explain the observed systematic excess of the radio luminosity of single pulsars compared to pulsars in binary systems. The distributions and dependences presented in the article support generally accepted concepts concerning the processes occurring in binary systems containing neutron stars.

  16. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2007-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST), due to launch in November 2007, will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered pulsars. As the only presently known galactic GeV source class; pulsars will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma-ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all unidentified EGRET sources, to possibly uncover more radio-quiet Geminga-like pulsars.

  17. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2006-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST) will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered pulsars. As the only presently known galactic GeV source class, pulsars will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all unidentified EGRET sources, to possibly uncover more radio-quiet Geminga-like pulsars.

  18. Pulsar simulations for the Fermi Large Area Telescope

    DOE PAGES

    Razzano, M.; Harding, Alice K.; Baldini, L.; ...

    2009-05-21

    Pulsars are among the prime targets for the Large Area Telescope (LAT) aboard the recently launched Fermi observatory. The LAT will study the gamma-ray Universe between 20 MeV and 300 GeV with unprecedented detail. Increasing numbers of gamma-ray pulsars are being firmly identified, yet their emission mechanisms are far from being understood. To better investigate and exploit the LAT capabilities for pulsar science, a set of new detailed pulsar simulation tools have been developed within the LAT collaboration. The structure of the pulsar simulator package (PulsarSpectrum) is presented here. Starting from photon distributions in energy and phase obtained from theoreticalmore » calculations or phenomenological considerations, gamma-rays are generated and their arrival times at the spacecraft are determined by taking into account effects such as barycentric effects and timing noise. Pulsars in binary systems also can be simulated given orbital parameters. As a result, we present how simulations can be used for generating a realistic set of gamma-rays as observed by the LAT, focusing on some case studies that show the performance of the LAT for pulsar observations.« less

  19. THE PECULIAR PULSAR POPULATION OF THE CENTRAL PARSEC

    SciTech Connect

    Dexter, Jason; O'Leary, Ryan M. E-mail: oleary@berkeley.edu

    2014-03-01

    Pulsars orbiting the Galactic center black hole, Sgr A*, would be potential probes of its mass, distance, and spin, and may even be used to test general relativity. Despite predictions of large populations of both ordinary and millisecond pulsars in the Galactic center, none have been detected within 25 pc by deep radio surveys. One explanation has been that hyperstrong temporal scattering prevents pulsar detections, but the recent discovery of radio pulsations from a highly magnetized neutron star (magnetar) within 0.1 pc shows that the temporal scattering is much weaker than predicted. We argue that an intrinsic deficit in the ordinary pulsar population is the most likely reason for the lack of detections to date: a ''missing pulsar problem'' in the Galactic center. In contrast, we show that the discovery of a single magnetar implies efficient magnetar formation in the region. If the massive stars in the central parsec form magnetars rather than ordinary pulsars, their short lifetimes could explain the missing pulsars. Efficient magnetar formation could be caused by strongly magnetized progenitors, or could be further evidence of a top-heavy initial mass function. Furthermore, current high-frequency surveys should already be able to detect bright millisecond pulsars, given the measured degree of temporal scattering.

  20. Pulsar Simulations for the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Razzano, M.; Harding, A. K.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Burnett, T.; Chiang, J.; Digel, S. W.; Dubois, R.; Kuss, M. W.; hide

    2009-01-01

    Pulsars are among the prime targets for the Large Area Telescope (LAT) aboard the recently launched Fermi observatory. The LAT will study the gamma-ray Universe between 20 MeV and 300 GeV with unprecedented detail. Increasing numbers of gamma-ray pulsars are being firmly identified, yet their emission mechanisms are far from being understood. To better investigate and exploit the tAT capabilities for pulsar science. a set of new detailed pulsar simulation tools have been developed within the LAT collaboration. The structure of the pulsar simulator package (PulsarSpeccrum) is presented here. Starting from photon distributions in energy and phase obtained from theoretical calculations or phenomenological considerations, gamma-rays are generated and their arrival times at the spacecraft are determined by taking Into account effects such as barycentric effects and timing noise. Pulsars in binary systems also can be simulated given orbital parameters. We present how simulations can be used for generating a realistic set of gamma rays as observed by the LAT, focusing on some case studies that show the performance of the LAT for pulsar observations.

  1. Electromagnetic tornado in the vacuum gap of a pulsar

    SciTech Connect

    Kontorovich, V. M.

    2010-06-15

    The solution for an electromagnetic tornado that describes the motion in the discharge filament of breakdown in the vacuum gap of a pulsar has been obtained. This solution can serve as an explanation of the observed circular polarization of giant radiation pulses from pulsars.

  2. X-ray studies of three binary millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Webb, N. A.; Olive, J.-F.; Barret, D.

    2005-10-01

    It is thought that millisecond pulsars with white dwarf companions are born from X-ray binaries. The majority of known systems have been studied uniquely in the radio domain, which limits our understanding of such systems. We present here the X-ray observations of the millisecond pulsar PSR J0218+4232 and the two faint millisecond pulsars PSR J0751+1807 and PSR J1012+5307, which we discuss in conjunction with radio observations. We confirm the previously detected X-ray pulsations of PSR J0218+4232 and we show that its folded lightcurve is strongly dependent on energy. We present evidence to suggest that the broad band X-ray spectrum for this pulsar may not be a simple power law, but that there is some evidence for an excess of soft thermal emission over the power law spectrum, in particular from the strongest pulse, in support of a heated polar cap model for this pulsar. We also present the X-ray spectra of the two faint millisecond pulsars as well as some evidence to suggest that both of these millisecond pulsars show pulsations in the X-ray band. We then discuss the implied nature of the magnetic field configuration as a means of discriminating between competing magnetic field evolution theories in millisecond pulsars.

  3. Construction and Identification of Profiles of Curvature Radiation of Pulsars

    NASA Astrophysics Data System (ADS)

    Avdyushev, V. A.; Bordovitsyn, V. A.; Grokhovskaya, A. A.

    2017-03-01

    Parameters of the observed radiation of pulsars are identified with the help of numerical simulation within the framework of the nonlinear least squares problem. With the help of the obtained parameter values, we have constructed profiles of radiation and indicatrices of the angular distribution of the instantaneous radiated power for experimentally observed pulsars.

  4. Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Denisov, V. I.; Denisova, I. P.; Pimenov, A. B.; Sokolov, V. A.

    2016-11-01

    In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed.

  5. ON THE X-RAY OUTBURSTS OF TRANSIENT ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS

    SciTech Connect

    Cal Latin-Small-Letter-Dotless-I skan, Sirin; Ertan, Uenal

    2012-10-20

    We show that the X-ray outburst light curves of four transient anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), namely, XTE J1810-197, SGR 0501+4516, SGR 1627-41, and CXOU J164710.2-455216, can be produced by the fallback disk model that was also applied to the outburst light curves of persistent AXPs and SGRs in our earlier work. The model solves the diffusion equation for the relaxation of a disk that has been pushed back by a soft gamma-ray burst. The sets of main disk parameters used for these transient sources are very similar to each other and to those employed in our earlier models of persistent AXPs and SGRs. There is a characteristic difference between the X-ray outburst light curves of transient and persistent sources. This can be explained by the differences in the disk surface density profiles of the transient and persistent sources in quiescence indicated by their quiescent X-ray luminosities. Our results imply that a viscous disk instability operating at a critical temperature in the range of {approx}1300-2800 K is a common property of all fallback disks around AXPs and SGRs. The effect of the instability is more pronounced and starts earlier for the sources with lower quiescent luminosities, which leads to the observable differences in the X-ray enhancement light curves of transient and persistent sources. A single active disk model with the same basic disk parameters can account for the enhancement phases of both transient and persistent AXPs and SGRs. We also present a detailed parameter study to show the effects of disk parameters on the evolution of the X-ray luminosity of AXPs and SGRs in the X-ray enhancement phases.

  6. The Use of X-Ray Pulsars for Aiding GPS Satellite Orbit Determination

    DTIC Science & Technology

    2005-03-01

    pulsar used was PSR B0531+21 (Crab Pulsar) which is a very well known bright pulsar in the Crab Nebula [28]. Feasibly, if GPS x-ray detectors were 4...Variations Within the Pulse Profile Peaks of the Crab Nebula Pulsar,” The Astrophysical Journal , 467 (1996). 18. Halsell, Charles A. Orbit

  7. Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations

    SciTech Connect

    Pletsch, H. J.; Guillemot, L.; Fehrmann, H.; Allen, B.; Kramer, M.; Aulbert, C.; Ackermann, M.; Ajello, M.; de Angelis, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Celik, O.; Charles, E.; Chaves, R. C. G.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; Dermer, C. D.; Digel, S. W.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Grenier, I. A.; Grondin, M. -. H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; den Hartog, P. R.; Hayashida, M.; Hays, E.; Hill, A. B.; Hou, X.; Hughes, R. E.; Johannesson, G.; Jackson, M. S.; Jogler, T.; Johnson, A. S.; Johnson, W. N.; Kataoka, J.; Kerr, M.; Knodlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; de Palma, F.; Paneque, D.; Perkins, J. S.; Piron, F.; Pivato, G.; Porter, T. A.; Raino, S.; Rando, R.; Ray, P. S.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Romoli, C.; Sanchez, D. A.; Parkinson, P. M. S.; Schulz, A.; Sgro, C.; do Couto e Silva, E.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2012-12-07

    We present that millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such “recycled” rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. Lastly, the pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  8. Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations

    DOE PAGES

    Pletsch, H. J.; Guillemot, L.; Fehrmann, H.; ...

    2012-12-07

    We present that millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such “recycled” rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. Lastly, the pulsar is in a circular orbit with an orbital period ofmore » only 93 minutes, the shortest of any spin-powered pulsar binary ever found.« less

  9. Pulsar Search Results from the Arecibo Remote Command Center

    NASA Astrophysics Data System (ADS)

    Rodriguez, Miguel; Stovall, Kevin; Banaszak, Shawn A.; Becker, Alison; Biwer, Christopher M.; Boehler, Keith; Caballero, Keeisi; Christy, Brian; Cohen, Stephanie; Crawford, Fronefield; Cuellar, Andres; Danford, Andrew; Percy Dartez, Louis; Day, David; Flanigan, Joseph D.; Fonrouge, Aldo; Gonzalez, Adolfo; Gustavson, Kathy; Handzo, Emma; Hinojosa, Jesus; Jenet, Fredrick A.; Kaplan, David L. A.; Lommen, Andrea N.; Longoria, Chasity; Lopez, Janine; Lunsford, Grady; Mahany, Nicolas; Martinez, Jose; Mata, Alberto; Miller, Andy; Murray, James; Pankow, Chris; Ramirez, Ivan; Reser, Jackie; Rojas, Pablo; Rohr, Matthew; Rolph, Kristina; Rose, Caitlin; Rudnik, Philip; Siemens, Xavier; Tellez, Andrea; Tillman, Nicholas; Walker, Arielle; Wells, Bradley L.; Zaldivar, Jonathan; Zermeno, Adrienne; Gbncc Consortium, Palfa Consortium, Gbtdrift Consortium, Ao327 Consortium

    2015-01-01

    This poster presents the pulsar discoveries made by students in the Arecibo Remote Command Center (ARCC) program. The ARCC program was started at the University of Texas - Brownsville (UTB) within the Center for Advanced Radio Astronomy (CARA) as a group of scientists, faculty, graduate, undergraduate, and high school students interested in astrophysics. It has since expanded to form other ARCC programs at the University of Wisconsin-Milwaukee (UWM) and Franklin and Marshall College (F&M). The students in the ARCC group control the world's largest radio telescopes to search and discover pulsars. Pulsars are exotic neutron stars that emit beams of electromagnetic radiation. ARCC students use a web application to view and rate the images of radio pulsar candidates based on their signal characteristics. To date, ARCC students have searched through thousands of candidates and have discovered 61 pulsars to date.

  10. PROPAGATION AND STABILITY OF SUPERLUMINAL WAVES IN PULSAR WINDS

    SciTech Connect

    Mochol, Iwona; Kirk, John G. E-mail: john.kirk@mpi-hd.mpg.de

    2013-07-01

    Nonlinear electromagnetic waves with superluminal phase velocity can propagate in the winds around isolated pulsars, and around some pulsars in binary systems. Using a short-wavelength approximation, we find and analyze an integrable system of equations that govern their evolution in spherical geometry. A confined mode is identified that stagnates to finite pressure at large radius and can form a precursor to the termination shock. Using a simplified criterion, we find this mode is stable for most isolated pulsars, but may be unstable if the external pressure is high, such as in the pulsar wind nebulae in starburst galaxies and in W44. Pulsar winds in eccentric binary systems, such as PSR 1259-63, may go through phases with stable and unstable electromagnetic precursors, as well as phases in which the density is too high for these modes to propagate.

  11. Binary millisecond pulsar discovery via gamma-ray pulsations.

    PubMed

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  12. Pulsar rotation and dispersion measures and the galactic magnetic field.

    NASA Technical Reports Server (NTRS)

    Manchester, R. N.

    1972-01-01

    Use of observations of pulsar polarization and pulse time of arrival at frequencies between 250 and 500 MHz to determine rotation and dispersion measures for 19 and 21 pulsars, respectively. These measurements have been used to calculate mean line-of-sight components of the magnetic field in the path to the pulsars. These and other observations show that there is probably no contribution to the observed rotation measure from the pulsar itself. Low-latitude, low-dispersion pulsars are observed to have strong field components, and a strong dependence of rotation-measure sign on galactic longitude has been found. The observations are consistent with a relatively uniform field of about 3.5 microgauss directed toward about l = 90 deg in the local region, but appear to be inconsistent with the helical model for the local field.

  13. On the search for coherent radiation from radio pulsars

    NASA Astrophysics Data System (ADS)

    Smits, J. M.; Stappers, B. W.; Macquart, J.-P.; Ramachandran, R.; Kuijpers, J.

    2003-07-01

    We have examined data from pulsars B0950+08 and B0329+54 for evidence of temporally coherent radiation using the modified coherence function (MCF) technique of \\citet{Jenet}. We consider the influence of both instrumental bandpass and interstellar propagation effects. Even after removal of the effects due to the instrumental bandpass, we detect a signature in the MCF of our PSR B0329+54 data which is consistent with the definition of a coherent signal. However, we model the effects due to interstellar scintillation for this pulsar and show that it reproduces the observed signature. In particular, the temporal coherence time is close to the reciprocal of the decorrelation bandwidth due to diffractive scintillation. Furthermore, comparison of the coherence times of three pulsars reported by \\citet{Jenet} with their expected diffractive decorrelation bandwidths suggests that the detection of coherence in these pulsars is also likely a result of interstellar scintillation, and is not intrinsic to the pulsars.

  14. Pulsars, X-ray synchrotron nebulae, and guest stars

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.; Wang, Zhen-Ru

    1988-01-01

    X-ray observations of supernova remnants and radio pulsars are used to derive luminosities of neutron stars and synchrotron nebulae. Observations of known isolated pulsars are used to develop an empirical relationship between the X-ray luminosity and the rate of loss of rotational energy. This is used to derive the characteristics of pulsars hidden in remnants which show evidence for a central compact object or associated nebular emission, but no clear pulsed signal from the neutron star itself. Possible periods and period derivatives for the hidden pulsars are discussed. Some might have periods as long as 0.5 s, and period derivatives considerably higher than that of PSR 1509 - 58, currently the pulsar with the highest known period derivative.

  15. Pulsars, X-ray synchrotron nebulae, and guest stars

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.; Wang, Zhen-Ru

    1988-01-01

    X-ray observations of supernova remnants and radio pulsars are used to derive luminosities of neutron stars and synchrotron nebulae. Observations of known isolated pulsars are used to develop an empirical relationship between the X-ray luminosity and the rate of loss of rotational energy. This is used to derive the characteristics of pulsars hidden in remnants which show evidence for a central compact object or associated nebular emission, but no clear pulsed signal from the neutron star itself. Possible periods and period derivatives for the hidden pulsars are discussed. Some might have periods as long as 0.5 s, and period derivatives considerably higher than that of PSR 1509 - 58, currently the pulsar with the highest known period derivative.

  16. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  17. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  18. Rotation powered pulsars in the x-rays

    NASA Astrophysics Data System (ADS)

    Arumugasamy, Prakash

    The dissertation focuses on the study of rotation-powered pulsars, the primary observational manifestation of neutron stars. These objects are powerful sources of electromagnetic radiation and relativistic particles whose emission is provided by the loss of pulsar rotational energy. Understanding the evolution of pulsars, which happens over billion year timescales, requires detection and study of pulsars at different stages of evolution. I present detailed X-ray analyses of pulsars at four distinct stages of evolution and compare their emission behavior with that of other pulsars expected to be in similar evolutionary stages. I also show key characteristics of the pulsars that make them unique in their group. I start with a young and energetic pulsar, PSR J2022+3842 (characteristic age tauc ≈ 9 kyr, spin-down power E = 3 x 1037 erg s-1), with powerful non-thermal emission. X-ray timing of the pulsar revealed double-peaked X-ray profile with a period twice the previously established value. Our analysis allowed us to update the pulsar's spin-down power and X-ray efficiency using the correct timing results, which brought the pulsar more in-line with other young X-ray pulsars. I also provide the phase-dependent behavior of the pulsar's non-thermal emission. Pulsars with true ages, often substituted by characteristic age, below tauc ˜100 kyr are considered young and ones with tau c ≥ 1 Myr are considered old, with the 'middle-aged' pulsars in the middle. My next pulsar is a tauc = 1.8 Myr old J1836+5925 (E = 1 x 1034 erg s-1), which is perhaps the brightest X-ray source among the oldest pulsars still observable in the gamma-rays. Detailed timing and spectral analyses show strong evidence of an absorption feature (perhaps an electron cyclotron line) in the pulsar's spectrum. Characterizing its thermal emission might have important implications for the neutron star cooling models. Moving another two orders of magnitude up in tauc, we arrive at one of the oldest known

  19. A search for fast gamma-ray pulsars with OSSE

    NASA Technical Reports Server (NTRS)

    Hertz, P.; Grove, J. E.; Grabelsky, D. A.; Matz, S. M.

    1995-01-01

    Pulsar mode data from the Oriented Scintillation Spectrometer Experiment (OSSE) onboard the Compton Gamma Ray Observatory (CGRO), with time resolution between 125 microsecs and 8 ms, have been analyzed for the presence of short-period gamma-ray pulsations. Observations of known point sources (including SN 1987A, SN 1993J, GRO J0422+32, and several pulsars) and of regions where higher densities of pulsars are expected (including the Galactic center, the Galactic plane and arms, and the Large Magellanic Cloud) are included in the study. Both isolated pulsars and pulsars in close binary systems are searched for; in the latter case, the quadratic coherence recovery technique is used to correct for broadening of the pulsar signal from orbital motion. No new gamma-ray pulsars have been detected. Upper limits on the pulsed gamma-ray flux from isolated pulsars in the 50-210 keV energy range of OSSE are between 0.2 x 10(exp -3) and 2.0 x 10(exp -3) photons/s/sq cm for pulse periods between 250 microsecs and 0.5 s. Upper limits on the pulsed flux from binary pulsars are between 1.5 x 10(exp -3) and 6.4 x 10(exp -3) photons/s/sq cm for the same energy band and pulse period range. We estimate that, in the Galaxy, there are fewer than approximately 125 isolated pulsars similar to PSR B1509-58 with radiation peaks in the OSSE band but undetected in the radio and X-rays bands.

  20. FREQUENCY DEPENDENCE OF PULSE WIDTH FOR 150 RADIO NORMAL PULSARS

    SciTech Connect

    Chen, J. L.; Wang, H. G.

    2014-11-01

    The frequency dependence of the pulse width is studied for 150 normal pulsars, mostly selected from the European Pulsar Network, for which the 10% multifrequency pulse widths can be well fit with the Thorsett relationship W {sub 10} = Aν{sup μ} + W {sub 10,} {sub min}. The relative fraction of pulse width change between 0.4 GHz and 4.85 GHz, η = (W {sub 4.85} – W {sub 0.4})/W {sub 0.4}, is calculated in terms of the best-fit relationship for each pulsar. It is found that 81 pulsars (54%) have η < –10% (group A), showing considerable profile narrowing at high frequencies, 40 pulsars (27%) have –10% ≤η ≤ 10% (group B), meaning a marginal change in pulse width, and 29 pulsars (19%) have η > 10% (group C), showing a remarkable profile broadening at high frequencies. The fractions of the group-A and group-C pulsars suggest that the profile narrowing phenomenon at high frequencies is more common than the profile broadening phenomenon, but a large fraction of the group-B and group-C pulsars (a total of 46%) is also revealed. The group-C pulsars, together with a portion of group-B pulsars with slight pulse broadening, can hardly be explained using the conventional radius-to-frequency mapping, which only applies to the profile narrowing phenomenon. Based on a recent version of the fan beam model, a type of broadband emission model, we propose that the diverse frequency dependence of pulse width is a consequence of different types of distribution of emission spectra across the emission region. The geometrical effect predicting a link between the emission beam shrinkage and spectrum steepening is tested but disfavored.

  1. Spin-down of Pulsars, and Their Electromagnetic and Gravitational Wave Radiations

    NASA Astrophysics Data System (ADS)

    Yue-zhu, Zhang; Yan-yan, Fu; Yi-huan, Wei; Cheng-min, Zhang; Shao-hua, Yu; Yuan-yue, Pan; Yuan-qi, Guo; De-hua, Wang

    2016-04-01

    Pulsars posses extremely strong magnetic fields, and their magnetic axis does not coincide with their rotation axis, this causes the pulsars to emit electromagnetic radiations. Pulsars rely on their rotational energy to compensate for the energy loss caused by the electromagnetic radiation, which leads to the gradually decelerated spin of pulsars. According to the theoretical deduction, we have calculated the initial period of the Crab Nebula pulsar, and derived the period evolution of the pulsar at any time in the future under the effect of the electromagnetic radiation. Considered the possible existence of quadrupole moment in the mass distribution of a pulsar, the gravitational wave radiation will also make the pulsar spin down, hence the variation of spin period of the Crab pulsar under the effect of gravitational wave radiation is further analyzed. Finally, combining the two kinds of radiation mechanisms, the evolution of spin period of the Crab pulsar under the joint action of these two kinds of radiation mechanisms is analyzed.

  2. XTE J2123-058: A New Neutron Star X-Ray Transient

    NASA Astrophysics Data System (ADS)

    Tomsick, John A.; Halpern, Jules P.; Kemp, Jonathan; Kaaret, Philip

    1999-08-01

    We report on optical and RXTE observations of a new high-latitude bursting X-ray transient, XTE J2123-058. We identified the optical counterpart and discovered a 5.9573+/-0.0016 hr periodic optical modulation, which was subsequently shown to be the same as the spectroscopic orbital period. From the absence of orbital X-ray modulation and the presence of partial optical eclipses we conclude that the binary inclination is between 55° and 73°. From the optical magnitude in quiescence and from the X-ray flux of type I X-ray bursts, we estimate that the source distance is between 4.5 and 15 kpc, which implies that the source is unusually far from the Galactic plane, since b=-36.2d. Optical bursts with properties consistent with being reprocessed X-ray bursts occurred. We detected a pair of high-frequency quasi-periodic oscillations (QPOs) at 847.1+/-5.5 Hz and 1102+/-13 Hz simultaneously. According to the beat-frequency model, this QPO separation implies a neutron star spin period of 3.92+/-0.22 ms. A change in the energy spectrum occurred during the decay of the outburst, which may have been due to the onset of the propeller mechanism. If so, then the neutron star magnetic field strength is between 2 and 8×108 G for an assumed distance of 10 kpc. However, the changes in the timing and spectral properties observed during the decay are typical of atoll sources, which may indicate that the changes are due solely to the dynamics of the accretion disk. As the phase-averaged V-band magnitude declined from 17.26 at the peak of the outburst to 19.24, and the X-ray flux decreased from 9.6×10-10 to 7.3×10-11 ergs cm-2 s-1, the peak-to-peak amplitude of the V-band modulation increased from 0.75 to 1.49 mag. This behavior can be explained if the size of the accretion disk decreases during the decay of the outburst.

  3. The High Time Resolution Universe Pulsar Survey - II. Discovery of five millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Bates, S. D.; Bailes, M.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; D'Amico, N.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Lyne, A.; Milia, S.; Possenti, A.; Stappers, B.; van Straten, W.

    2011-10-01

    We present the discovery of five millisecond pulsars found in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) survey. The pulsars have rotational periods from ˜2.3 ms to ˜7.5 ms, and all are in binary systems with orbital periods ranging from ˜0.3 to ˜150 d. In four of these systems, the most likely companion is a white dwarf, with minimum masses of ˜0.2 M⊙. The other pulsar, J1731-1847, has a very low mass companion and exhibits eclipses and is thus a member of the 'black widow' class of pulsar binaries. These eclipses have been observed in bands centred near frequencies of 700, 1400 and 3000 MHz, from which measurements have been made of the electron density in the eclipse region. These measurements have been used to examine some possible eclipse mechanisms. The eclipse and other properties of this source are used to perform a comparison with the other known eclipsing and 'black widow' pulsars. These new discoveries occupy a short-period and high-dispersion measure (DM) region of parameter space, which we demonstrate is a direct consequence of the high time and frequency resolution of the HTRU survey. The large implied distances to our new discoveries make observation of their companions unlikely with both current optical telescopes and the Fermi Gamma-ray Space Telescope. The extremely circular orbits make any advance of periastron measurements highly unlikely. No relativistic Shapiro delays are obvious in any of the systems although the low flux densities would make their detection difficult unless the orbits were fortuitously edge-on.

  4. Particle Acceleration in Dissipative Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  5. Accretion onto Fast X-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Rappaport, S. A.; Fregeau, J. M.; Spruit, H.

    2004-01-01

    The recent emergence of a new class of accretion-powered, transient, millisecond X-ray pulsars presents some difficulties for the conventional picture of accretion onto rapidly rotating magnetized neutron stars and their spin behavior during outbursts. In particular, it is not clear that the standard paradigm can accommodate the wide range in M(i.e., approx. greater than a factor of 50) over which these systems manage to accrete and the high rate of spindown that the neutron stars exhibit in at least a number of cases. When the accretion rate drops sufficiently, the X-ray pulsar is said to become a "fast rotator," and in the conventional view, this is accompanied by a transition from accretion to "propellering," in which accretion ceases and the matter is ejected from the system. On the theoretical side, we note that this scenario for the onset of propellering cannot be entirely correct because it is not energetically self-consistent. We show that, instead, the transition is likely to take place through disks that combine accretion with spindown and terminate at the corotation radius. We demonstrate the existence of such disk solutions by modifying the Shakura-Sunyaev equations with a simple magnetic torque prescription. The solutions are completely analytic and have the same dependence on M and a (the viscosity parameter) as the original Shakura-Sunyaev solutions, but the radial profiles can be considerably modified, depending on the degree of fastness. We apply these results to compute the torques expected during the outbursts of the transient millisecond pulsars and find that we can explain the large spin-down rates that are observed for quite plausible surface magnetic fields of approx. 10(exp 90 G.

  6. DA 495: An Aging Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Kothes, R.; Landecker, T. L.; Reich, W.; Safi-Harb, S.; Arzoumanian, Z.

    2008-11-01

    We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100 m Radio Telescope. Removal of flux density contributions from a superimposed H II region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index α = - 0.45 +/- 0.20 below the break and α = - 0.87 +/- 0.10 above it (Sν propto να). The spectral break is more than 3 times lower in frequency than the lowest break detected in any other PWN. The break in the spectrum is likely the result of synchrotron cooling, and DA 495, at an age of ~20,000 yr, may have evolved from an object similar to the Vela X nebula, with a similarly energetic pulsar. We find a magnetic field of ~1.3 mG inside the nebula. After correcting for the resulting high internal rotation measure, the magnetic field structure is quite simple, resembling the inner part of a dipole field projected onto the plane of the sky, although a toroidal component is likely also present. The dipole field axis, which should be parallel to the spin axis of the putative pulsar, lies at an angle of ~50° east of the north celestial pole and is pointing away from us toward the southwest. The upper limit for the radio surface brightness of any shell-type supernova remnant emission around DA 495 is Σ1GHz ~ 5.4 × 10-23 W m-2 Hz-1 sr-1 (assuming a radio spectral index of α = - 0.5), lower than the faintest shell-type remnant known to date.

  7. Elementary wideband timing of radio pulsars

    SciTech Connect

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M. E-mail: pdemores@nrao.edu

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  8. COSMIC-RAY POSITRONS FROM MILLISECOND PULSARS

    SciTech Connect

    Venter, C.; Kopp, A.; Büsching, I.; Harding, A. K.; Gonthier, P. L.

    2015-07-10

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  9. Strange Stars, Neutron Stars and Pulsar Emission

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; Horvath, J. E.

    1990-11-01

    RESUMEN. Se ha conjeturado que una partlecula de dieciocho quarks, sin Carga, sin espi'n y sin colar (quark-alfa) podri'a ser estable a ba5as tern peraturas y presiones aiTh COfl respecto a materia extrafla. Presentamos en este trabajo la estmctura de estrellas extraflas incluyendo los efectos y apariencia de parti'culas uark-alfa en las capas exteriores. La estruc tura interna ya no es hoinogenea del centro a la superficie, sino que muestra un centro de materia extrafla, capas s6lidas y una costra delgada de materia normal en la superficie. La superficie de materia nonnal permite la fornaci6n de una magnetosfera, la que se piensa sea el sitlo en donde ocurre la emisi6n del pulsar. La superficie de superflui'do ayuda a explicar el fen6rneno de `glitch', el cual ba sido observado en muchos pulsares. Se discute la ecuaci6n de estado para rnateria quark-alfa relevante en este regimen. ABSTIZACT:It has been conjectured that an quark, uncharged, spinless and colorless particle Cquark-alpha) could be stable at low pressures and temperatures even with respect to strange matter. We present in work tlie structure of stars including the effects of the appearance of quark-alpi' particles ii their outer layers. The internal structure is no longer from tlie center to the surface, but show a strange matter core, a solid and superfluid layers and a thin crust of normal matter at the surface. The normal matter surface allows tlie fon tion of a magnetosphere, whicl is to be tl place where pulsar emission occurs. A superfluid layer helps to explain tlie glitch , wlflch has been observed in . equation of state for quark-alpha matter relevant in regime is also discussed. Keq LA)OtL : ARY S - OF STATF - ?.ACT

  10. Cosmic-ray Positrons from Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Venter, C.; Kopp, A.; Harding, A. K.; Gonthier, P. L.; Büsching, I.

    2015-07-01

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  11. Fermi -Lat Observations Of The Geminga Pulsar

    DOE PAGES

    Abdo, A. A.

    2010-08-09

    We report on the Fermi-LAT observations of the Geminga pulsar, the second brightest non-variable GeV source in the γ-ray sky and the first example of a radio-quiet γ-ray pulsar. The observations cover one year, from the launch of the Fermi satellite through 2009 June 15. A data sample of over 60,000 photons enabled us to build a timing solution based solely on γ-rays. Timing analysis shows two prominent peaks, separated by Δphgr = 0.497 ± 0.004 in phase, which narrow with increasing energy. Pulsed γ-rays are observed beyond 18 GeV, precluding emission below 2.7 stellar radii because of magnetic absorption.more » The phase-averaged spectrum was fitted with a power law with exponential cutoff of spectral index Γ = (1.30 ± 0.01 ± 0.04), cutoff energy E 0 = (2.46 ± 0.04 ± 0.17) GeV, and an integral photon flux above 0.1 GeV of (4.14 ± 0.02 ± 0.32) × 10–6 cm–2 s–1. The first uncertainties are statistical and the second ones are systematic. The phase-resolved spectroscopy shows a clear evolution of the spectral parameters, with the spectral index reaching a minimum value just before the leading peak and the cutoff energy having maxima around the peaks. The phase-resolved spectroscopy reveals that pulsar emission is present at all rotational phases. The spectral shape, broad pulse profile, and maximum photon energy favor the outer magnetospheric emission scenarios.« less

  12. Scattering analysis of LOFAR pulsar observations

    NASA Astrophysics Data System (ADS)

    Geyer, M.; Karastergiou, A.; Kondratiev, V. I.; Zagkouris, K.; Kramer, M.; Stappers, B. W.; Grießmeier, J.-M.; Hessels, J. W. T.; Michilli, D.; Pilia, M.; Sobey, C.

    2017-09-01

    We measure the effects of interstellar scattering on average pulse profiles from 13 radio pulsars with simple pulse shapes. We use data from the LOFAR High Band Antennas, at frequencies between 110 and 190 MHz. We apply a forward fitting technique, and simultaneously determine the intrinsic pulse shape, assuming single Gaussian component profiles. We find that the constant τ, associated with scattering by a single thin screen, has a power-law dependence on frequency τ ∝ ν-α, with indices ranging from α = 1.50 to 4.0, despite simplest theoretical models predicting α = 4.0 or 4.4. Modelling the screen as an isotropic or extremely anisotropic scatterer, we find anisotropic scattering fits lead to larger power-law indices, often in better agreement with theoretically expected values. We compare the scattering models based on the inferred, frequency-dependent parameters of the intrinsic pulse, and the resulting correction to the dispersion measure (DM). We highlight the cases in which fits of extreme anisotropic scattering are appealing, while stressing that the data do not strictly favour either model for any of the 13 pulsars. The pulsars show anomalous scattering properties that are consistent with finite scattering screens and/or anisotropy, but these data alone do not provide the means for an unambiguous characterization of the screens. We revisit the empirical τ versus DM relation and consider how our results support a frequency dependence of α. Very long baseline interferometry, and observations of the scattering and scintillation properties of these sources at higher frequencies, will provide further evidence.

  13. Elementary Wideband Timing of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template "portrait," the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a "fiducial component," and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824-2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  14. Arecibo Pulsar Survey Using ALFA. IV. Mock Spectrometer Data Analysis, Survey Sensitivity, and the Discovery of 40 Pulsars

    NASA Astrophysics Data System (ADS)

    Lazarus, P.; Brazier, A.; Hessels, J. W. T.; Karako-Argaman, C.; Kaspi, V. M.; Lynch, R.; Madsen, E.; Patel, C.; Ransom, S. M.; Scholz, P.; Swiggum, J.; Zhu, W. W.; Allen, B.; Bogdanov, S.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Ferdman, R.; Freire, P. C. C.; Jenet, F. A.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lorimer, D. R.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Venkataraman, A.

    2015-10-01

    The on-going Arecibo Pulsar-ALFA (PALFA) survey began in 2004 and is searching for radio pulsars in the Galactic plane at 1.4 GHz. Here we present a comprehensive description of one of its main data reduction pipelines that is based on the PRESTO software and includes new interference-excision algorithms and candidate selection heuristics. This pipeline has been used to discover 40 pulsars, bringing the survey’s discovery total to 144 pulsars. Of the new discoveries, eight are millisecond pulsars (MSPs; P\\lt 10 ms) and one is a Fast Radio Burst (FRB). This pipeline has also re-detected 188 previously known pulsars, 60 of them previously discovered by the other PALFA pipelines. We present a novel method for determining the survey sensitivity that accurately takes into account the effects of interference and red noise: we inject synthetic pulsar signals with various parameters into real survey observations and then attempt to recover them with our pipeline. We find that the PALFA survey achieves the sensitivity to MSPs predicted by theoretical models but suffers a degradation for P≳ 100 ms that gradually becomes up to ˜10 times worse for P\\gt 4 {{s}} at {DM}\\lt 150 pc cm-3. We estimate 33 ± 3% of the slower pulsars are missed, largely due to red noise. A population synthesis analysis using the sensitivity limits we measured suggests the PALFA survey should have found 224 ± 16 un-recycled pulsars in the data set analyzed, in agreement with the 241 actually detected. The reduced sensitivity could have implications on estimates of the number of long-period pulsars in the Galaxy.

  15. Magnetospheric structure of rotation powered pulsars

    SciTech Connect

    Arons, J. California Univ., Livermore, CA . Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  16. [Pulsar perimetry. A review and new results].

    PubMed

    Gonzalez de la Rosa, M; Gonzalez-Hernandez, M

    2013-02-01

    We present a review and update on Pulsar perimetry, which combines temporal frequency, contrast and spatial frequency stimuli. The effects of age, visual acuity, and learning on results are described. Data on threshold fluctuation, signal-to-noise ratio, and the possibility of reducing noise with filtering techniques are provided. We describe its dynamic range and the possibility of compensating for profound defects. Finally, we show the results obtained in normal patients and in those with ocular hypertension or initial glaucoma, as well as an analysis of glaucoma progression.

  17. Accretion powered X-ray pulsars

    NASA Technical Reports Server (NTRS)

    White, N. E.; Swank, J. H.; Holt, S. S.

    1982-01-01

    A unified description of the properties of 14 X-ray pulsars is presented and compared with the current theoretical understanding of these systems. The sample extends over six orders of magnitude in luminosity, with the only trend in the phase averaged spectra being that the lower luminosity systems appear to have less abrupt high energy cutoffs. There is no correlation of luminosity with power law index, high energy cutoff energy or iron line EW. Detailed pulse phase spectroscopy is given for five systems.

  18. Detecting gravitational wave bursts with Pulsar Timing

    NASA Astrophysics Data System (ADS)

    Cornish, Neil; Ellis, Justin

    2016-03-01

    The history of astronomy has shown that the Universe is full of suprises. One of the great hopes for gravitational wave astronomy is the discovery of unanticipated phenomena. To accomplish this we need to develop flexible analysis techniques that are able to detect signals with arbitrary waveform morphology. Here I will describe a multi-wavelet approach for the analysis of timing residuals from a pulsar timing array. Please schedule my talk immediately after the related talk by my co-author Justin Ellis.

  19. Theory of pulsar magnetosphere and wind

    NASA Astrophysics Data System (ADS)

    Pétri, Jérôme

    2016-10-01

    > leptons or does it contain a non-negligible fraction of protons and/or ions? Is it almost entirely filled or mostly empty except for some small anecdotal plasma filled regions? Answers to these questions will strongly direct the description of the magnetosphere to seemingly contradictory results leading sometimes to inconsistencies. Nevertheless, accounts are given as to the latest developments in the theory of pulsar magnetospheres and winds, the existence of a possible electrosphere and physical insight obtained from related observational signatures of multi-wavelength pulsed emission.

  20. Neutron star binaries, pulsars and burst sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1981-01-01

    Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.

  1. Pulsar population synthesis using palfa detections and pulsar search collaboratory discoveries including a wide DNS system and a nearby MSP

    NASA Astrophysics Data System (ADS)

    Swiggum, Joseph Karl

    Using the ensemble of detections from pulsar surveys, we can learn about the sizes and characteristics of underlying populations. In this thesis, I analyze results from the Pulsar Arecibo L-band Feed Array (PALFA) precursor and Green Bank Telescope 350 MHz Drift Scan surveys; I examine survey sensitivity to see how detections can inform pulsar population models, I look at new ways of including young scientists -- high school students -- in the discovery process and I present timing solutions for students' discoveries (including a nearby millisecond pulsar and a pulsar in a wide-orbit double neutron star system). The PALFA survey is on-going and uses the ALFA 7-beam receiver at 1400 MHz to search both inner and outer Galactic sectors visible from Arecibo (32° ?£? 77° and 168° ?£? 214°) close to the Galactic plane (|b| ? 5°) for pulsars. The PALFA precursor survey observed a subset of this region, (|b| ? 1°) and detected 45 pulsars, including one known millisecond pulsar (MSP) and 11 previously unknown, long-period (normal) pulsars. I assess the sensitivity of the PALFA precursor survey and use the number of normal pulsar and MSP detections to infer the size of each underlying Galactic population. Based on 44 normal pulsar detections and one MSP, we constrain each population size to 107,000+36,000-25,000 and 15,000 +85,000-6,000 respectively with 95% confidence. Based on these constraints, we predict yields for the full PALFA survey and find a deficiency in normal pulsar detections, possibly due to radio frequency interference and/or scintillation, neither of which are currently accounted for in population simulations. The GBT 350 MHz Drift Scan survey collected data in the summer of 2007 while the GBT was stationary, undergoing track replacement. Results discussed here come from ~20% of the survey data, which were processed and donated to the Pulsar Search Collaboratory (PSC). The PSC is a joint outreach program between WVU and NRAO, involving high school

  2. Study of CdTe/MgxCd1-xTe Double Heterostructures and Their Application in High Efficiency Solar Cells and in Luminescence Refrigeration

    NASA Astrophysics Data System (ADS)

    Zhao, Xinhao

    CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH samples show very strong Photoluminescence (PL) intensity, long carrier lifetimes (up to 3.6 micros) and low effective interface recombination velocity at the CdTe/MgxCd1-xTe heterointerface ( 1 cm/s), indicating the high material quality. Indium has been attempted as an n-type dopant in CdTe and it is found that the carriers are 100% ionized in the doping range of 1x1016 cm-3 to 1x1018 cm-3. With decent doping levels, long minority carrier lifetime, and almost perfect surface passivation by the MgxCd 1-xTe layer, the CdTe/MgxCd1-xTe DHs are applied to high efficiency CdTe solar cells. Monocrystalline CdTe solar cells with efficiency of 17.0% and a record breaking open circuit voltage of 1.096 V have been demonstrated in our group. Mg0.13Cd0.87Te (1.7 eV), also with high material quality, has been proposed as a current matching cell to Si (1.1 eV) solar cells, which could potentially enable a tandem solar cell with high efficiency and thus lower the electricity cost. The properties of Mg0.13Cd 0.87Te/Mg0.5Cd0.5Te DHs and solar cells have been investigated. Carrier lifetime as long as 0.56 ?s is observed and a solar cell with 11.2% efficiency and open circuit voltage of 1.176 V is demonstrated. The CdTe/MgxCd1-xTe DHs could also be potentially applied to luminescence refrigeration, which could be used in vibration-free space applications. Both external luminescence quantum efficiency and excitation-dependent PL measurement show that the best quality samples are almost 100% dominated by radiative recombination, and calculation shows that the internal quantum efficiency can be as high as 99.7% at the optimal injection level (10 17 cm-3

  3. Properties of pulsars with short and long periods

    NASA Astrophysics Data System (ADS)

    Loginov, A. A.; Malov, I. F.

    2015-11-01

    A comparative analysis has been conducted for the timescale on which the observed radio emission of pulsars is switched off (nulling fraction), the polarization parameters, and the residual deviations in the pulse arrival times for pulsars with periods P >0.1 s and P <0.1 s. For the former group of pulsars, the greater the energy injected into the magnetosphere from internal layers of the neutron star, the smaller the nulling fraction; in the latter group, nullings are not observed at all. Mode switches are also observed only in pulsarswith long pulse-to-pulse intervals ( P >1 s), and in many objects they are correlatedwith the presence of nullings. The degree of polarization grows with decreasing period, and is systematically higher in objects with P <0.1 s than in long-period pulsars. The relative deviations of the pulse arrival times are, on average, appreciably smaller for pulsars with P >0.1 s. The observed differences in the parameters of pulsars with short and long periods can be understood if the radiation of pulsars with P <0.1 s is generated near the light cylinder.

  4. Detecting pulsars with interstellar scintillation in variance images

    NASA Astrophysics Data System (ADS)

    Dai, S.; Johnston, S.; Bell, M. E.; Coles, W. A.; Hobbs, G.; Ekers, R. D.; Lenc, E.

    2016-11-01

    Pulsars are the only cosmic radio sources known to be sufficiently compact to show diffractive interstellar scintillations. Images of the variance of radio signals in both time and frequency can be used to detect pulsars in large-scale continuum surveys using the next generation of synthesis radio telescopes. This technique allows a search over the full field of view while avoiding the need for expensive pixel-by-pixel high time resolution searches. We investigate the sensitivity of detecting pulsars in variance images. We show that variance images are most sensitive to pulsars whose scintillation time-scales and bandwidths are close to the subintegration time and channel bandwidth. Therefore, in order to maximize the detection of pulsars for a given radio continuum survey, it is essential to retain a high time and frequency resolution, allowing us to make variance images sensitive to pulsars with different scintillation properties. We demonstrate the technique with Murchision Widefield Array data and show that variance images can indeed lead to the detection of pulsars by distinguishing them from other radio sources.

  5. Timing of 29 Pulsars Discovered in the PALFA Survey

    NASA Astrophysics Data System (ADS)

    Lyne, A. G.; Stappers, B. W.; Bogdanov, S.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Knispel, B.; Lynch, R.; Allen, B.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Hessels, J. W. T.; Jenet, F. A.; Lazarus, P.; van Leeuwen, J.; Lorimer, D. R.; Madsen, E.; McKee, J.; McLaughlin, M. A.; Parent, E.; Patel, C.; Ransom, S. M.; Scholz, P.; Seymour, A.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J.; Wharton, R. S.; Zhu, W. W.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B.

    2017-01-01

    We report on the discovery and timing observations of 29 distant long-period pulsars found in the ongoing Arecibo L-band Feed Array pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over several years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associated with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5-0.5, while J1925+1720 is coincident with a high-energy Fermi γ-ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199 day binary orbit with a companion having a minimum mass of 0.33 M⊙. Several of the sources exhibit timing noise, and two, PSRs J0611+1436 and J1907+0631, have both suffered large glitches, but with very different post-glitch rotation properties. In particular, the rotational period of PSR J0611+1436 will not recover to its pre-glitch value for about 12 years, a far greater recovery timescale than seen following any other large glitches.

  6. Pulsar Wind Nebulae, Space Velocities and Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The original proposal for this LTSA grant was for X-ray studies of pulsars, and especially pulsar wind nebulae and what they could tell us about pulsar properties, especially their space velocities. By any metric, this program has been very successful. No fewer than 14 papers on directly related topics (and several dozen more on related topics) have been published in refereed journals with the PI as lead or co-author, all observational results that have had significant impact on the field. These include the first X-ray detection of the "Duck" pulsar, a clear demonstration that estimated pulsar ages can be off by over an order of magnitude (via observations of the young supernova remnant G11.2-0.3) and the detection of the first pulsar wind nebula around a millisecond pulsar. These publications have also resulted in 4 press releases. Moreover, they also represent the thesis work of two PhD students at MIT (Froney Crawford and Mike Pivovaroff) and one postdoctoral fellow, Bryan Gaensler, now Assistant Professor at Harvard.

  7. Binary Pulsar PSR 1913 + 16: Model for Its Origin.

    PubMed

    Van Horn, H M; Sofia, S; Savedoff, M P; Duthie, J G; Berg, R A

    1975-05-30

    The existing observational data for the binary pulsar PSR 1913 + 16 are sufficient to give a rather well-defined model for the system. On the basis of evolutionary considerations, the pulsar must be a neutron star near the upper mass limit of 1.2 solar masses (M.). The orbital inclination is probably high, i>/= 700, and the mass of the unseen companion probably lies close to the upper limit of the range 0.25 M. to 1.0 M.. The secondary cannot be a main sequence star and is probably a degenerate helium dwarf. At the 5.6-kiloparsec distance indicated by the dispersion measure, the magnetic dipole model gives an age of approximately 4 x 104 years, a rate of change of the pulsar period of P approximately 2 nanoseconds per day, and a surface magnetic field strength approximately (1/3) that of the Crab pulsar. The pulsar is fainter than an apparent magnitude V approximately + 26.5 and is at least approximately 80 times fainter than the Crab pulsar in the x-ray band. The companion star should be fainter than V approximately + 30, and a radio supernova remnant may be detectable near the position of the pulsar at a flux level of

  8. The Pulsar Quartet: Listening to a Galactic Symphony

    NASA Astrophysics Data System (ADS)

    Kiziltan, Bülent

    2014-06-01

    Pulsars are exotic dead stars that emit very regular radio pulses. These pulses are attributed to their regular rotation. Some pulsars are spinning fast enough that the audio equivalent waveform of their pulses fall within our hearing range. If human ears were tuned to radio waves it would have been possible to ‘hear’ these very compact stars. We produced the audio waveform of these pulsar signals and mapped them onto a frequency chart to find the corresponding musical notes. We use these ‘audible' pulsars like musical instruments in a symphony orchestra to play a full quartet. At the same time, an accompanying visual interface shows the realistic distribution of all pulsars in our own Galaxy. Pulsars shine as they play each note in the quartet with realistic brightening and subsequent dimming proportional to their rotational energies. This can serve as an educational tool at all levels to demonstrate many interesting aspects of stellar evolution and articulate an aesthetic connection of us with the cosmos. Interested in watching the light show while the Milky Way Pulsar Orchestra plays a quartet?

  9. Towards robust detection of gravitational waves by pulsar timing

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; Sampson, Laura

    2016-01-01

    Precision timing of highly stable milli-second pulsars is a promising technique for detecting very low frequency sources of gravitational waves. In any one pulsar, the gravitational wave signal appears as an additional source of timing noise, and it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources, or in the limit where there are many pulsars in the array, the waves produce a unique tensor correlation pattern that depends only on the angular separation of each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when there are a finite number of signals and pulsars, which breaks the statistical isotropy of the timing array and of the gravitational wave sky. We also study the use of "sky-scrambles'' to break the signal correlations in the data as a way to increase confidence in a detection.

  10. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2007-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST), due to launch in November 2007, will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered p ulsars. As the only presently known galactic GeV source class, pulsar s will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma-ray pulsar s, including millisecond pulsars, giving much better statistics for e lucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric partic le acceleration and radiation mechanisms, by comparing data with theo retical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all un identified EGRET sources, to possibly uncover more radio-quiet Geming a-like pulsars.

  11. On Detecting Millisecond Pulsars at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Macquart, Jean-Pierre; Kanekar, Nissim

    2015-06-01

    The lack of detected pulsars at the Galactic Center (GC) region is a long-standing mystery. We argue that the high stellar density in the central parsec around the GC is likely to result in a pulsar population dominated by millisecond pulsars (MSPs), similar to the situation in globular cluster environments. Earlier GC pulsar searches have been largely insensitive to such an MSP population, accounting for the lack of pulsar detections. We estimate the best search frequency for such an MSP population with present and upcoming broad-band radio telescopes for two possible scattering scenarios, the “weak-scattering” case suggested by the recent detection of a magnetar close to the GC, and the “strong-scattering” case, with the scattering screen located close to the GC. The optimal search frequencies are ≈8 GHz (weak-scattering) and ≈25 GHz (strong-scattering), for pulsars with periods 1-20 ms, assuming that GC pulsars have a luminosity distribution similar to that those in the rest of the Milky Way. We find that 10-30 hr integrations with the Very Large Array and the Green Bank Telescope would be sufficient to detect MSPs at the GC distance in the weak-scattering case. However, if the strong-scattering case is indeed applicable to the GC, observations with the full Square Kilometre Array would be needed to detect the putative MSP population.

  12. ON DETECTING MILLISECOND PULSARS AT THE GALACTIC CENTER

    SciTech Connect

    Macquart, Jean-Pierre

    2015-06-01

    The lack of detected pulsars at the Galactic Center (GC) region is a long-standing mystery. We argue that the high stellar density in the central parsec around the GC is likely to result in a pulsar population dominated by millisecond pulsars (MSPs), similar to the situation in globular cluster environments. Earlier GC pulsar searches have been largely insensitive to such an MSP population, accounting for the lack of pulsar detections. We estimate the best search frequency for such an MSP population with present and upcoming broad-band radio telescopes for two possible scattering scenarios, the “weak-scattering” case suggested by the recent detection of a magnetar close to the GC, and the “strong-scattering” case, with the scattering screen located close to the GC. The optimal search frequencies are ≈8 GHz (weak-scattering) and ≈25 GHz (strong-scattering), for pulsars with periods 1–20 ms, assuming that GC pulsars have a luminosity distribution similar to that those in the rest of the Milky Way. We find that 10–30 hr integrations with the Very Large Array and the Green Bank Telescope would be sufficient to detect MSPs at the GC distance in the weak-scattering case. However, if the strong-scattering case is indeed applicable to the GC, observations with the full Square Kilometre Array would be needed to detect the putative MSP population.

  13. Arecibo 1418 MHz Polarimetry and Morphological Classification of 95 Pulsars

    NASA Astrophysics Data System (ADS)

    Weitz, K. A.; Weisberg, J. M.; Dawson, B. R.; Despotes, J. T.; Morgan, J. J.; Zink, E. C.; Cordes, J. M.; Lundgren, S. C.; Backer, D. C.

    1995-12-01

    The classification of pulsars allows for the organization of groups of objects which share common features. These classes can then be studied for further correlations, providing insight into a variety of emission and evolutionary questions. Most classification systems are based on the analysis of polarized profiles over a wide frequency range. We gathered polarization data on over one hundred pulsars at 1418 MHz in fifteen observing sessions from 1989 to 1993, using the 305 meter Arecibo telescope. A 20 MHz digital multichannel correlation polarimeter was employed on-line. The multifrequency channels were then dedispersed before summing. All data for each individual pulsar were then calibrated and combined into one full Stokes parameter profile. This process led to polarized average pulse profiles for ninety-five of the pulsars. We used the Rankin (1983) system as the basis for our morphological classifications of the 95 pulsars. In Rankin's model, the frequency evolution of the polarized characteristics of each pulse component is assessed in order to distinguish core from hollow cone emission beams. We studied our 1418 MHz data and all other published polarimetry on each pulsar in order to determine the morphological classifications. We present the polarized profiles and discuss the morphological classifications for these 95 pulsars.

  14. PRESTO: PulsaR Exploration and Search TOolkit

    NASA Astrophysics Data System (ADS)

    Ransom, Scott

    2011-07-01

    PRESTO is a large suite of pulsar search and analysis software. It was primarily designed to efficiently search for binary millisecond pulsars from long observations of globular clusters (although it has since been used in several surveys with short integrations and to process a lot of X-ray data as well). To date, PRESTO has discovered well over a hundred and fifty pulsars, including approximately 100 recycled pulsars, about 80 of which are in binaries. It is written primarily in ANSI C, with many of the recent routines in Python. Written with portability, ease-of-use, and memory efficiency in mind, it can currently handle raw data from the following pulsar machines or formats: PSRFITS search-format data (as from GUPPI at the GBT and the Mock Spectrometers at Arecibo)SPIGOT at the GBTMost Wideband Arecibo Pulsar Processor (WAPP) at AreciboThe Parkes and Jodrell Bank 1-bit filterbank formatsBerkeley-Caltech Pulsar Machine (BCPM) at the GBT (may it RIP...)8-bit filterbank format from SIGPROC (other formats will be added if required)A time series composed of single precision (i.e. 4-byte) floating point dataPhoton arrival times (or events) in ASCII or double-precision binary formats

  15. Imprints of relic gravitational waves on pulsar timing

    NASA Astrophysics Data System (ADS)

    Tong, Ming-Lei; Ding, Yong-Heng; Zhao, Cheng-Shi; Gao, Feng; Yan, Bao-Rong; Yang, Ting-Gao; Gao, Yu-Ping

    2016-03-01

    Relic gravitational waves (RGWs), a background originating during inflation, would leave imprints on pulsar timing residuals. This makes RGWs an important source for detection of RGWs using the method of pulsar timing. In this paper, we discuss the effects of RGWs on single pulsar timing, and quantitatively analyze the timing residuals caused by RGWs with different model parameters. In principle, if the RGWs are strong enough today, they can be detected by timing a single millisecond pulsar with high precision after the intrinsic red noises in pulsar timing residuals are understood, even though simultaneously observing multiple millisecond pulsars is a more powerful technique for extracting gravitational wave signals. We correct the normalization of RGWs using observations of the cosmic microwave background (CMB), which leads to the amplitudes of RGWs being reduced by two orders of magnitude or so compared to our previous works. We obtained new constraints on RGWs using recent observations from the Parkes Pulsar Timing Array, employing the tensor-to-scalar ratio r = 0.2 due to the tensor-type polarization observations of CMB by BICEP2 as a reference value, even though its reliability has been brought into question. Moreover, the constraints on RGWs from CMB and Big Bang nucleosynthesis will also be discussed for comparison.

  16. Pulsar Wind Nebulae, Space Velocities and Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The original proposal for this LTSA grant was for X-ray studies of pulsars, and especially pulsar wind nebulae and what they could tell us about pulsar properties, especially their space velocities. By any metric, this program has been very successful. No fewer than 14 papers on directly related topics (and several dozen more on related topics) have been published in refereed journals with the PI as lead or co-author, all observational results that have had significant impact on the field. These include the first X-ray detection of the "Duck" pulsar, a clear demonstration that estimated pulsar ages can be off by over an order of magnitude (via observations of the young supernova remnant G11.2-0.3) and the detection of the first pulsar wind nebula around a millisecond pulsar. These publications have also resulted in 4 press releases. Moreover, they also represent the thesis work of two PhD students at MIT (Froney Crawford and Mike Pivovaroff) and one postdoctoral fellow, Bryan Gaensler, now Assistant Professor at Harvard.

  17. Simulations of the magnetospheres of accreting millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2017-08-01

    Accreting pulsars power relativistic jets and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field, shaped by its interaction with the surrounding accretion disc. Here, we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The magnetic field is also evolved inside the disc, which is a defined volume with a specified velocity field and conductivity profile, found using an α-disc model. We study a range of disc α-parameters, thicknesses, magnetic Prandtl numbers and inner truncation radii. We find that a large fraction of the magnetic flux in the pulsar's closed zone is opened by the intrusion of the disc, leading to an enhancement of the power extracted by the pulsar wind and the spin-down torque applied to the pulsar. In our simulations, most of the spin-down contribution to the stellar torque acts on open field lines. The efficiency of field-line opening is high in the simulations' long-term quasi-steady states, which implies that a millisecond pulsar's electromagnetic wind could be strong enough to power the observed neutron-star radio jets, and may significantly affect the pulsar's spin evolution.

  18. Thermal annealing impact on the properties of Cd xHg 1-xTe epitaxial layers with anodic oxidation

    NASA Astrophysics Data System (ADS)

    Huseynov, E. K.; Eminov, Sh. O.; Radjabli, A. A.; Isamyilov, N. D.; Ibragimov, T. I.

    2007-05-01

    From the point of view of its fundamental properties, solid solution Hg 1-xCd xTe (0 less than or equal to x less than or equal to l) (MCT) is one of very attractive materials of infrared optoelectronics and has received considerable attention over the past forty odd years. In the early 90s, bulk growth of MCT was phased out for the routine production of first generation photo-conductive devices. But it is hard process to growth MCT single crystals with homogeneous composition. This fact determined a vital importance change in the MCT technology during the last decade which first at all induced by the mostly replacement of bulk growth by epitaxial technologies (LPE, MBE, VPE etc.).

  19. High-Frequency Quasi-Periodic Oscillations in the Black Hole X-Ray Transient XTE J1650-500

    NASA Technical Reports Server (NTRS)

    Holman, Jeroen; Klein-Wolt, Marc; Rossi, Sabrina; Miller, Jon M.; Wijnands, Rudy; Belloni, Tomaso; VanDerKlis, Michiel; Lewin, Walter H. G.

    2003-01-01

    We report the detection of high-frequency variability in the black hole X-ray transient XTE 51650-500. A quasi-periodic oscillation (QPO) was found at 250 Hz during a transition from the hard to the soft state. We also detected less coherent variability around 50 Hz that disappeared when the 250 Hz QPO showed up. There are indications that when the energy spectrum hardened the QPO frequency increased from approx. 110 to approx. 270 Hz, although the observed frequencies are also consistent with being 1 : 2 : 3 harmonics of each other. Interpreting the 250 Hz as the orbital frequency at the innermost stable orbit around a Schwarzschild black hole leads to a mass estimate of 8.2 solar mass. The spectral results by Miller et al., which suggest considerable black hole spin, would imply a higher mass.

  20. High-Frequency Quasi-Periodic Oscillations in the Black Hole X-Ray Transient XTE J1650-500

    NASA Technical Reports Server (NTRS)

    Holman, Jeroen; Klein-Wolt, Marc; Rossi, Sabrina; Miller, Jon M.; Wijnands, Rudy; Belloni, Tomaso; VanDerKlis, Michiel; Lewin, Walter H. G.

    2003-01-01

    We report the detection of high-frequency variability in the black hole X-ray transient XTE 51650-500. A quasi-periodic oscillation (QPO) was found at 250 Hz during a transition from the hard to the soft state. We also detected less coherent variability around 50 Hz that disappeared when the 250 Hz QPO showed up. There are indications that when the energy spectrum hardened the QPO frequency increased from approx. 110 to approx. 270 Hz, although the observed frequencies are also consistent with being 1 : 2 : 3 harmonics of each other. Interpreting the 250 Hz as the orbital frequency at the innermost stable orbit around a Schwarzschild black hole leads to a mass estimate of 8.2 solar mass. The spectral results by Miller et al., which suggest considerable black hole spin, would imply a higher mass.