Sample records for pulsatile perfusion based

  1. Pulsatile extracorporeal circulation during on-pump cardiac surgery enhances aortic wall shear stress.

    PubMed

    Assmann, Alexander; Benim, Ali Cemal; Gül, Fethi; Lux, Philipp; Akhyari, Payam; Boeken, Udo; Joos, Franz; Feindt, Peter; Lichtenberg, Artur

    2012-01-03

    Controversy on superiority of pulsatile versus non-pulsatile extracorporeal circulation in cardiac surgery still continues. Stroke as one of the major adverse events during cardiopulmonary bypass is, in the majority of cases, caused by mobilization of aortic arteriosclerotic plaques that is inducible by pathologically elevated wall shear stress values. The present study employs computational fluid dynamics to evaluate the aortic blood flow and wall shear stress profiles under the influence of antegrade or retrograde perfusion with pulsatile versus non-pulsatile extracorporeal circulation. While, compared to physiological flow, a non-pulsatile perfusion resulted in generally decreased blood velocities and only moderately increased shear forces (48 Pa versus 20 Pa antegradely and 127 Pa versus 30 Pa retrogradely), a pulsatile perfusion extensively enhanced the occurrence of turbulences, maximum blood flow speed and maximum wall shear stress (1020 Pa versus 20 Pa antegradely and 1178 Pa versus 30 Pa retrogradely). Under these circumstances arteriosclerotic embolism has to be considered. Further simulations and experimental work are necessary to elucidate the impact of our findings on the scientific discourse of pulsatile versus non-pulsatile extracorporeal circulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Microvascular Responsiveness to Pulsatile and Nonpulsatile Flow During Cardiopulmonary Bypass.

    PubMed

    O'Neil, Michael P; Alie, Rene; Guo, Linrui Ray; Myers, Mary-Lee; Murkin, John M; Ellis, Christopher G

    2018-06-01

    Pulsatile perfusion may offer microcirculatory advantages over conventional nonpulsatile perfusion during cardiopulmonary bypass (CPB). Here, we present direct visual evidence of microvascular perfusion and vasoreactivity between perfusion modalities. A prospective, randomized cohort study of 20 high-risk cardiac surgical patients undergoing pulsatile (n = 10) or nonpulsatile (n = 10) flow during CPB was conducted. Changes in sublingual mucosal microcirculation were assessed with orthogonal polarization spectral imaging along with near-infrared spectroscopic indices of thenar muscle tissue oxygen saturation (StO 2 ) and its recovery during a vascular occlusion test at the following time points: baseline (T 0 ), 30 minutes on CPB (T 1 ), 90 minutes on CPB (T 2 ), 1 hour after CPB (T 3 ), and 24 hours after CPB (T 4 ). On the basis of our scoring scale, a shift in microcirculatory blood flow occurred over time. The pulsatile group maintained normal perfusion characteristics, whereas the nonpulsatile group exhibited deterioration in perfusion during CPB (T 2 : 74.0% ± 5.6% versus 57.6% ± 5.0%) and after CPB (T 3 : 76.2% ± 2.7% versus 58.9% ± 5.2%, T 4 : 85.7% ± 2.6% versus 69.8% ± 5.9%). Concurrently, no important differences were found between groups in baseline StO 2 and consumption slope at all time points. Reperfusion slope was substantially different between groups 24 hours after CPB (T 4 : 6.1% ± 0.6% versus 3.7% ± 0.5%), indicating improved microvascular responsiveness in the pulsatile group versus the nonpulsatile group. Pulsatility generated by the roller pump during CPB improves microcirculatory blood flow and tissue oxygen saturation compared with nonpulsatile flow in high-risk cardiac surgical patients, which may reflect attenuation of the systemic inflammatory response and ischemia-reperfusion injury. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Pulsatile perfusion bioreactor for cardiac tissue engineering.

    PubMed

    Brown, Melissa A; Iyer, Rohin K; Radisic, Milica

    2008-01-01

    Cardiovascular disease is the number one cause of mortality in North America. Cardiac tissue engineering aims to engineer a contractile patch of physiological thickness to use in surgical repair of diseased heart tissue. We previously reported that perfusion of engineered cardiac constructs resulted in improved tissue assembly. Because heart tissues respond to mechanical stimuli in vitro and experience rhythmic mechanical forces during contraction in vivo, we hypothesized that provision of pulsatile interstitial medium flow to an engineered cardiac patch would result in enhanced tissue assembly by way of mechanical conditioning and improved mass transport. Thus, we constructed a novel perfusion bioreactor capable of providing pulsatile fluid flow at physiologically relevant shear stresses and flow rates. Pulsatile perfusion (PP) was achieved by incorporation of a normally closed solenoid pinch valve into the perfusion loop and was carried out at a frequency of 1 Hz and a flow rate of 1.50 mL/min (PP) or 0.32 mL/min (PP-LF). Nonpulsatile flow at 1.50 mL/min (NP) or 0.32 mL/min (NP-LF) served as controls. Static controls were cultivated in well plates. The main experimental groups were seeded with cells enriched for cardiomyocytes by one preplating step (64% cardiac Troponin I+, 34% prolyl-4-hydroxylase+), whereas pure cardiac fibroblasts and cells enriched for cardiomyocytes by two preplating steps (81% cardiac Troponin I+, 16% prolyl-4-hydroxylase+) served as controls. Cultivation under pulsatile flow had beneficial effects on contractile properties. Specifically, the excitation threshold was significantly lower in the PP condition (pulsatile perfusion at 1.50 mL/min) than in the Static control, and the contraction amplitude was the highest; whereas high maximum capture rate was observed for the PP-LF conditions (pulsatile perfusion at 0.32 mL/min). The enhanced hypertrophy index observed for the PP-LF group was consistent with the highest cellular length and diameter in this group. Within the same cultivation groups (Static, NP-LF, PP-LF, PP, and NP) there were no significant differences in the diameter between fibroblasts and cardiomyocytes, although cardiomyocytes were significantly more elongated than fibroblasts under PP-LF conditions. Cultivation of control cell populations resulted in noncontractile constructs when cardiac fibroblasts were used (as expected) and no overall improvement in functional properties when two steps of preplating were used to enrich for cardiomyocytes in comparison with only one step of preplating.

  4. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    PubMed

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and fiber assembly. Gene expression and protein synthesis analyses coupled with histological and immunofluorescence staining revealed that elastin-containing vascular tissues were fabricated. More importantly, co-localization and co-immunoprecipitation experiments demonstrated that elastin and fibrillin-1 were abundant throughout the cross-section of the tissue constructs suggesting a process of elastin protein crosslinking. This study paves a way forward to engineer elastin-containing functional vascular substitutes from multipotent progenitor cells in a bioreactor. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Tissue Pulsatility Imaging of Cerebral Vasoreactivity during Hyperventilation

    PubMed Central

    Kucewicz, John C.; Dunmire, Barbrina; Giardino, Nicholas D.; Leotta, Daniel F.; Paun, Marla; Dager, Stephen R.; Beach, Kirk W.

    2008-01-01

    Tissue Pulsatility Imaging (TPI) is an ultrasonic technique that is being developed at the University of Washington to measure tissue displacement or strain due to blood flow over the cardiac and respiratory cycles. This technique is based in principle on plethysmography, an older non-ultrasound technology for measuring expansion of a whole limb or body part due to perfusion. TPI adapts tissue Doppler signal processing methods to measure the “plethysmographic” signal from hundreds or thousands of sample volumes in an ultrasound image plane. This paper presents a feasibility study to determine if TPI can be used to assess cerebral vasoreactivity. Ultrasound data were collected transcranially through the temporal acoustic window from four subjects before, during, and after voluntary hyperventilation. In each subject, decreases in tissue pulsatility during hyperventilation were observed that were statistically correlated with the subject’s end-tidal CO2 measurements. PMID:18336991

  6. Sildenafil citrate and uteroplacental perfusion in fetal growth restriction

    PubMed Central

    Dastjerdi, Marzieh Vahid; Hosseini, Sayedehafagh; Bayani, Leila

    2012-01-01

    Background: To determine whether the phosphodiesterase type 5 inhibitor, Sildenafil citrate, affects uteroplacental perfusion. Materials and Methods: Based on a randomized double-blinded and placebo-controlled trial, forty one pregnant women with documented intrauterine growth retardation at 24-37 weeks of gestation were evaluated for the effect of a single dose of Sildenafil citrate on uteroplacental circulation as determined by Doppler ultrasound study of the umbilical and middle cerebral arteries. Statistical analysis included χ2-test to compare proportions, and independent-samples t-test and paired student's t-test to compare continuous variables. Results: Sildenafil group fetuses demonstrated a significant decrease in systolic/diastolic ratios (0.60 [SD 0.40] [95% Cl 0.37-0.84], P=0.000), and pulsatility index (0.12 [SD 0.15] [95% Cl 0.02-0.22], P=0.019) for the umbilical artery and a significant increase in middle cerebral artery pulsatility index (MCA PI) (0.51 [SD 0.60] [95% Cl 0.16-0.85], P=0.008). Conclusion: Doppler velocimetry index values reflect decreased placental bed vascular resistance after Sildenafil. Sildenafil citrate can improve fetoplacental perfusion in pregnancies complicated by intrauterine growth restriction. It could be a potential therapeutic strategy to improve uteroplacental blood flow in pregnancies with fetal growth restriction (FGR). PMID:23798922

  7. Processing of pulse oximeter signals using adaptive filtering and autocorrelation to isolate perfusion and oxygenation components

    NASA Astrophysics Data System (ADS)

    Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.

    2005-03-01

    A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.

  8. Human Thiel-Embalmed Cadaveric Aortic Model with Perfusion for Endovascular Intervention Training and Medical Device Evaluation.

    PubMed

    McLeod, Helen; Cox, Ben F; Robertson, James; Duncan, Robyn; Matthew, Shona; Bhat, Raj; Barclay, Avril; Anwar, J; Wilkinson, Tracey; Melzer, Andreas; Houston, J Graeme

    2017-09-01

    The purpose of this investigation was to evaluate human Thiel-embalmed cadavers with the addition of extracorporeal driven ante-grade pulsatile flow in the aorta as a model for simulation training in interventional techniques and endovascular device testing. Three human cadavers embalmed according to the method of Thiel were selected. Extracorporeal pulsatile ante-grade flow of 2.5 L per min was delivered directly into the aorta of the cadavers via a surgically placed connection. During perfusion, aortic pressure and temperature were recorded and optimized for physiologically similar parameters. Pre- and post-procedure CT imaging was conducted to plan and follow up thoracic and abdominal endovascular aortic repair as it would be in a clinical scenario. Thoracic endovascular aortic repair (TEVAR) and endovascular abdominal repair (EVAR) procedures were conducted in simulation of a clinical case, under fluoroscopic guidance with a multidisciplinary team present. The Thiel cadaveric aortic perfusion model provided pulsatile ante-grade flow, with pressure and temperature, sufficient to conduct a realistic simulation of TEVAR and EVAR procedures. Fluoroscopic imaging provided guidance during the intervention. Pre- and post-procedure CT imaging facilitated planning and follow-up evaluation of the procedure. The human Thiel-embalmed cadavers with the addition of extracorporeal flow within the aorta offer an anatomically appropriate, physiologically similar robust model to simulate aortic endovascular procedures, with potential applications in interventional radiology training and medical device testing as a pre-clinical model.

  9. Multilayer-based lab-on-a-chip systems for perfused cell-based assays

    NASA Astrophysics Data System (ADS)

    Klotzbach, Udo; Sonntag, Frank; Grünzner, Stefan; Busek, Mathias; Schmieder, Florian; Franke, Volker

    2014-12-01

    A novel integrated technology chain of laser-microstructured multilayer foils for fast, flexible, and low-cost manufacturing of lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers, which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer, their corresponding foils and plates are chosen. In the third step, the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step, the multiple plates and foils are joined using different bonding techniques like adhesive bonding, welding, etc. This multilayer technology together with pneumatically driven micropumps and valves permits the manufacturing of fluidic structures and perfusion systems, which spread out above multiple planes. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.

  10. The Influence of Different Operating Conditions on the Blood Damage of a Pulsatile Ventricular Assist Device.

    PubMed

    Xu, Zihao; Yang, Ming; Wang, Xianghui; Wang, Zhong

    2015-01-01

    Because of pulsatile blood flow's benefit for myocardial recovery, perfusion of coronary arteries and end organs, pulsatile ventricular assist devices (VADs) are still widely used as paracorporeal mechanical circulatory support devices in clinical applications, especially in pediatric heart failure patients. However, severe blood damage limits the VAD's service period. Besides optimizing the VAD geometry to reduce blood damage, the blood damage may also be decreased by changing the operating conditions. In this article, a pulsatile VAD was used to investigate the influence of operating conditions on its blood damage, including hemolysis, platelet activation, and platelet deposition. Three motion profiles of pusher plate (sine, cosine, and polynomial), three stroke volumes (ejection fractions) (56 ml [70%], 42 ml [52.5%], and 28 ml [35%]), three pulsatile rates (75, 100, and 150 bpm), and two assist modes (copulsation and counterpulsation) were implemented respectively in VAD fluid-structure interaction simulations to calculate blood damage. The blood damage indices indicate that cosine motion profile, higher ejection fraction, higher pulsatile rate, and counterpulsation can decrease platelet deposition whereas increase hemolysis and platelet activation, and vice versa. The results suggest that different operating conditions have different effects on pulsatile VAD's blood damage and may be beneficial to choose suitable operating condition to reduce blood damage in clinical applications.

  11. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients.

    PubMed

    Kanadani, Fabio N; Figueiredo, Carlos R; Miranda, Rafaela Morais; Cunha, Patricia Lt; M Kanadani, Tereza Cristina; Dorairaj, Syril

    2015-01-01

    Glaucomatous neuropathy can be a consequence of insufficient blood supply, increase in intraocular pressure (IOP), or other risk factors that diminish the ocular blood flow. To determine the ocular perfusion pressure (OPP) in normal and systemic hypertensive patients. One hundred and twenty-one patients were enrolled in this prospective and comparative study and underwent a complete ophthalmologic examination including slit lamp examination, Goldmann applanation tonometry, stereoscopic fundus examination, and pulsatile ocular blood flow (POBF) measurements. The OPP was calculated as being the medium systemic arterial pressure (MAP) less the IOP. Only right eye values were considered for calculations using Student's t-test. The mean age of the patients was 57.5 years (36-78), and 68.5% were women. There was a statistically significant difference in the OPP of the normal and systemic hypertensive patients (p < 0.05). The difference in the OPP between these groups varied between 8.84 and 17.9 mm Hg. The results of this study suggest that although the systemic hypertensive patients have a higher OPP in comparison to normal patients, this increase does not mean that they also have a higher OBF (as measured by POBF tonograph). This may be caused by chronic changes in the vascular network and in the blood hemodynamics in patients with systemic hypertension. How to cite this article: Kanadani FN, Figueiredo CR, Miranda RM, Cunha PLT, Kanadani TCM, Dorairaj S. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients. J Curr Glaucoma Pract 2015;9(1):16-19.

  12. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.

    PubMed

    Jeong, Sung In; Kim, So Yeon; Cho, Seong Kwan; Chong, Moo Sang; Kim, Kyung Soo; Kim, Hyuck; Lee, Sang Bong; Lee, Young Moo

    2007-02-01

    Novel tubular scaffolds of marine source collagen and PLGA fibers were fabricated by freeze drying and electrospinning processes for vascular grafts. The hybrid scaffolds, composed of a porous collagen matrix and a fibrous PLGA layer, had an average pore size of 150+/-50 microm. The electrospun fibrous PLGA layer on the surface of a porous tubular collagen scaffold improved the mechanical strength of the collagen scaffolds in both the dry and wet states. Smooth muscle cells (SMCs)- and endothelial cells (ECs)-cultured collagen/PLGA scaffolds exhibited mechanical properties similar to collagen/PLGA scaffolds unseeded with cells, even after culturing for 23 days. The effect of a mechanical stimulation on the proliferation and phenotype of SMCs and ECs, cultured on collagen/PLGA scaffolds, was evaluated. The pulsatile perfusion system enhanced the SMCs and ECs proliferation. In addition, a significant cell alignment in a direction radial to the distending direction was observed in tissues exposed to radial distention, which is similar to the phenomenon of native vessel tissues in vivo. On the other hand, cells in tissues engineered in the static condition were randomly aligned. Immunochemical analyses showed that the expressions of SM alpha-actin, SM myosin heavy chain, EC von Willebrand factor, and EC nitric oxide were upregulated in tissues engineered under a mechano-active condition, compared to vessel tissues engineered in the static condition. These results indicated that the co-culturing of SMCs and ECs, using collagen/PLGA hybrid scaffolds under a pulsatile perfusion system, leads to the enhancement of vascular EC development, as well as the retention of the differentiated cell phenotype.

  13. Effect of increased pressure during pulsatile pump perfusion of deceased donor kidneys in transplantation.

    PubMed

    Patel, S K; Pankewycz, O G; Weber-Shrikant, E; Zachariah, M; Kohli, R; Nader, N D; Laftavi, M R

    2012-09-01

    Pulsatile pump perfusion of potential kidneys for transplantation is known to decrease the rate of delayed graft function (DGF) and improve their 1-year survival. Flow and resistance parameters are often used to determine the suitability of kidneys for transplantation. Kidneys with low flow rates are often subjected to higher pressures to improve flow. This study evaluated the effect of higher pump pressures on posttransplant renal function. We performed a retrospective analysis of 73 deceased donor kidneys preserved using pump perfusion (LifePort) at our center between May 2006 and September 2009. We calculated the mean pump pressure (MP) for the duration of perfusion of each kidney, using systolic pressure (SP) and diastolic pressure (DP) readings with the following formula: (MP = DP + 1/3 (SP - DP). The kidneys were divided into a low (LP; n = 49) and a high-pressure group (HP; n = 24) based on a MP cutoff value of 23 mm Hg. The two groups were then compared for differences in perfusion dynamics and primary endpoints including DGF and 1-year graft survival. Statistical analysis was performed using paired Student t test and chi-square analysis. The two groups were comparable for donor age, extended criteria, sensitization, and cold ischemic times. They differed significantly in higher initial (0.65 ± 0.4 versus 0.4 ± 0.2, P = .01), average (0.25 ± 0.08 versus 0.18 ± 0.06, P = .0006), and terminal resistance (0.21 ± 0.07 versus 0.17 ± 0.06, P = .008) of HP versus LP kidneys. Flow rates were comparable between the two groups. DGF was higher in HP kidneys (75% versus 40%, P = .006) with similar 1-year graft survival (87.5% versus 89%, P = .7). Perfusate flow through a kidney can be improved by increasing pressure settings to overcome elevated resistance. This maneuver was not associated with a lower rate of DGF after transplantation. One-year graft survival remained unaffected. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Quantification of residual limb skeletal muscle perfusion with contrast-enhanced ultrasound during application of a focal junctional tourniquet

    PubMed Central

    Davidson, Brian P.; Belcik, J. Todd; Mott, Brian H.; Landry, Gregory; Lindner, Jonathan R.

    2015-01-01

    Objective Focal junctional tourniquets (JTs) have been developed to control hemorrhage from proximal limb injuries. These devices may permit greater collateral perfusion than circumferential tourniquets. We hypothesized that JTs eliminate large-vessel pulse pressure yet allow a small amount of residual limb perfusion that could be useful for maintaining tissue viability. Methods Ten healthy control subjects were studied. Transthoracic echocardiography, Doppler ultrasound of the femoral artery (FA) and posterior tibial artery, and contrast-enhanced ultrasound (CEU) perfusion imaging of the anterior thigh extensor and calf plantar flexor muscles were performed at baseline and during application of a JT over the common FA. Intramuscular arterial pulsatility index was also measured from CEU intensity variation during the cardiac cycle. Results FA flow was eliminated by JTs in all subjects; posterior tibial flow was eliminated in all but one. Perfusion measured in the thigh and calf muscles was similar at baseline (0.33 ± 0.29 vs 0.29 ± 0.22 mL/min/g). Application of the JT resulted in a reduction of perfusion (P < .05) that was similar for the thigh and calf (0.08 ± 0.07 and 0.10 ± 0.03 mL/min/g). On CEU, microvascular flux rate was reduced by ≈55%, and functional microvascular blood volume was reduced by ≈35%. Arterial pulsatility index was reduced by ≈90% in the calf. JT inflation did not alter left ventricle dimensions, fractional shortening, cardiac output, or arterial elastance as a measure of total systolic load. Conclusions Application of a JT eliminates conduit arterial pulse and markedly reduces intramuscular pulse pressure, but thigh and calf skeletal muscle perfusion is maintained at 25% to 35% of basal levels. These data suggest that JTs that are used to control limb hemorrhage allow residual tissue perfusion even when pulse pressure is absent. PMID:25065582

  15. Design and validation of a pulsatile perfusion bioreactor for 3D high cell density cultures.

    PubMed

    Chouinard, Julie A; Gagnon, Serge; Couture, Marc G; Lévesque, Alain; Vermette, Patrick

    2009-12-15

    This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real-time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48-h culture period. Cells were uniformly dispersed within the 14.40 mm x 17.46 mm x 6.35 mm chamber. A larger fraction of the cells suspended in 6.35-mm thick gels and cultured in a traditional CO(2) incubator were found to be round and dead [corrected]. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. 2009 Wiley Periodicals, Inc.

  16. Lung protection in cardio-pulmonary bypass.

    PubMed

    Salameh, A; Greimann, W; Vollroth, M; Dhein, S; Bahramsoltani, M; Dahnert, I

    2017-02-01

    Since the invention of the heart-lung machine paediatric cardiac surgery developed rapidly. For correction of complex cardiac malformations the application of a cardio-pulmonary bypass (CPB) has become indispensable but possible negative effects of this technique should not be neglected. Especially, both bypassed organs i.e. heart and lung are not perfused during the procedure and therefore are threatened by ischemia and reperfusion injury. Additionally, CPB was developed with a non-pulsatile flow but there are clinical observations that pulsatile flow might be superior with improved patient outcomes. Thus, the aim of our study was to evaluate the effect of CPB on lung structure and to assess whether different flow modalities (pulsatile vs. non-pulsatile flow) or application of the antibiotic minocycline might be advantageous. Thirty five piglets of four weeks age were examined and divided into five experimental groups: control (no CPB) without or with minocycline, CPB (non-pulsatile flow) without or with minocycline and CPB with pulsatile flow. CPB was performed for 90 min followed by a 120 min reperfusion and recovery phase. Thereafter, adenosine triphosphate-content of lung biopsies and histology was carried out. We found that CPB was associated with a significant thickening of alveolar wall accompanied by an infiltration of neutrophil leucocytes. Moreover, markers for hypoxia, apoptosis, nitrosative stress, inflammation and DNA damage were significantly elevated after CPB. These cellular damages could be partially inhibited by minocycline or pulsatile flow. Both, minocycline and pulsatile flow attenuate lung damage after CPB.

  17. Choroidal microcirculation in patients with rotary cardiac assist device.

    PubMed

    Polska, Elzbieta; Schima, Heinrich; Wieselthaler, Georg; Schmetterer, Leopold

    2007-06-01

    In recent years, fully implanted rotary blood pumps have been used for long-term cardiac assist in patients with end-stage heart failure. With these pumps, the pulsatility of arterial blood flow and arterial pressure pulse is considerably reduced. Effects on end-organ perfusion, particularly microcirculation, have been assessed. The ocular choroid offers a unique opportunity to study the pulsatile component of blood flow by measurement of fundus pulsation amplitude (FPA) as well as the microcirculation by laser Doppler flowmetry. Both techniques were applied in three male patients with rotary pumps (MicroMed DeBakey VAD), in whom pump velocity was adjusted to four levels of flow between individual minimal need and maximal support. In addition, blood flow velocities in the ophthalmic artery (peak, end-diastolic and mean flow velocity--PSV, EDV and MFV, respectively) were measured using color Doppler imaging. Systolic blood pressure increased by 6 to 22 mm Hg with increasing support. At maximal support FPA was reduced by -60% to -52% as compared with minimal pump support. Blood flow in the choroidal microvasculature, however, did not show relevant changes. A reduction in PSV (-31%, range -47% to -21%) and a pronounced rise in EDV (+93%, range +28% to +147%) was observed, whereas MFV was independent of pump flow. Our data indicate that mean choroidal blood flow is maintained when pump support is varied within therapeutic values, whereas the ratio of pulsatile to non-pulsatile choroidal flow changes. This study shows that, in patients with ventricular assist devices, a normal perfusion rate in the ocular microcirculation is maintained over a wide range of support conditions.

  18. Relationship of oscillating and average components of laser Doppler flowmetry signal

    NASA Astrophysics Data System (ADS)

    Mizeva, Irina; Frick, Peter; Podtaev, Sergey

    2016-08-01

    Signals from laser Doppler flowmeters widely used in intravital studies of skin blood flow include, along with a slowly varying average component, an oscillating part. However, in most clinical studies, pulsations are usually smoothed by data preprocessing and only the mean blood flow is analyzed. To reveal the relationship between average and oscillating perfusion components measured by a laser Doppler flowmeter, we examined the microvascular response to the contralateral cold pressor test recorded at two different sites of the hand: dorsal part of the arm and finger pad. Such a protocol makes it possible to provide a wide range of perfusion. The average perfusion always decreases during cooling, while the oscillating component demonstrates a differently directed response. The wavelet analysis of laser Doppler flowmetry (LDF) signals shows that the pulsatile component is nonlinearly related to the average perfusion. Under low perfusion, the amplitude of pulsations is proportional to its mean value, but, as perfusion increases, the amplitude of pulsations becomes lower. The type of response is defined by the basal perfusion and the degree of vasoconstriction caused by cooling. Interpretation of the results is complicated by the nonlinear transfer function of the LDF device, the contribution of which is studied using artificial examples.

  19. Wireless Monitoring of Liver Hemodynamics In Vivo

    DOE PAGES

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; ...

    2014-07-14

    Liver transplants have their highest failure rate in the first two weeks following surgery. There are no devices for continuous, real-time monitoring of the graft, currently. Here, we present a continuous perfusion and oxygen consumption monitor based on photoplethysmography. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.125 mL/min/g of tissue. We show the possibility of using the pulsatile wave tomore » measure the arterial oxygen saturation similar to pulse oximetry. This signal is used as a feedback to extract the venous oxygen saturation from the DC levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19 and 1.39% respectively when no vascular occlusions were induced. The resulting error increased to 2.82 and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of the oximetry catheter used as a reference. This work is the first realization of a wireless perfusion and oxygenation sensor for continuous monitoring of hepatic perfusion and oxygenation changes.« less

  20. Development of a new extracorporeal whole-liver perfusion system.

    PubMed

    Naruse, Katsutoshi; Sakai, Yasuyuki; Guo, Lei; Natori, Takeshi; Shindoh, Junichi; Karasawa, Yasuaki; Iida, Yuhki; Kojima, Kentaro; Michishita, Kazuya; Makuuchi, Masatoshi

    2003-01-01

    We have developed a new extracorporeal whole-liver accommodation device in which a whole swine liver is placed in a physiological state by modeling the intraabdominal arrangement in the pig body, with the liver supported by a special inferior vena cava tube. Furthermore, we employed a diaphragm-type artificial heart in our system to produce pulsatile blood flow through the hepatic artery, which is considered to be indispensable to dilate peripheral vessels and supply oxygenated whole blood to the peripheral liver tissue. Beneficial effects were demonstrated in visual findings and bile juice secretion. The color of the liver surface in our system remained bright red, indicating that the liver vessels were well drained and free from congestion, and bile juice secretion was maintained at more than 10 ml/h throughout the perfusion period. Our system exhibited excellent ammonia removal and urea nitrogen synthesis, and serum aspartate aminotransferase levels showed no increase, indicating the absence of hepatocyte destruction. Histological findings showed that the liver could expand appropriately and was free from compression caused by its own weight. In conclusion, our original liver accommodation device enabled appropriate expansion of the whole liver and supplied adequate oxygenated blood to peripheral areas by means of a pulsatile pump.

  1. In vitro performance of a perfusion and oxygenation optical sensor using a unique liver phantom

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; King, Travis J.; Long, Ruiqi; Ericson, M. N.; Wilson, Mark A.; McShane, Michael J.; Coté, Gerard L.

    2012-03-01

    Between the years 1999 and 2008, on average 2,052 people died per year on the waiting list for liver transplants. Monitoring perfusion and oxygenation in transplanted organs in the 7 to 14 days period post-transplant can enhance graft and patient survival rates, and resultantly increase the availability of organs. In this work, we present in vitro results using a unique liver phantom that support the ability of our sensor to detect perfusion changes in the portal vein at low levels (50 mL/min . 4.5% of normal level). Our sensor measures diffuse reflection from three wavelengths (735, 805 and 940 nm) around the hemoglobin isobestic point (805 nm) to determine perfusion and oxygenation separately. To assess the sensitivity of our sensor to flow changes in the low range, we used two peristaltic pumps to pump a dye solution mimicking the optical properties of oxygenated blood, at various rates, through a PDMS based phantom mimicking the optical properties of liver tissue. The collected pulsatile signal increased by 120% (2.2X) for every 100 mL/min flow rise for all three wavelengths in the range 50 to 500 mL/min. In addition, we used different dye mixtures to mimic oxygenation changes at constant perfusion/flow levels. The optical properties of the dye mixtures mimic oxygen saturations ranging between 0 and 100%. The sensor was shown to be sensitive to changes in oxygen saturations above 50%.

  2. Photoplethysmography beyond perfusion and oxygenation monitoring: Pulse wave analysis for hepatic graft monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akl, Tony; Wilson, Mark A.; Ericson, Milton Nance

    2014-01-01

    Photoplethysmography is a widely used technique in monitoring perfusion and blood oxygen saturation by using the amplitude of the pulsatile signal on one or multiple wavelengths. However, the pulsatile signal carries in its waveform a substantial amount of information about the mechanical properties of the tissue and vasculature under investigation that is still yet to be utilized to its full potential. In this work, we present the feasibility of pulse wave analysis for the application of monitoring hepatic implants and diagnosing graft complications. In particular, we show the possibility of computing the slope of the pulse during the diastole phasemore » to assess the location of vascular complications when they take place. This hypothesis was tested in a series of in vitro experiments using a PDMS based phantom mimicking the optical and mechanical properties of the portal vein. The emptying time of the vessel increased from 305 ms to 515 ms when an occlusion was induced downstream from the phantom. However, in the case of upstream occlusions, the emptying time remained constant. In both cases, a decrease in the amplitude of the pulse was recorded indicating the drop in flow levels. In addition, we show that quantifying the emptying time of the vasculature under investigation can be used to assess its compliance. The emptying time decreased from 305 ms for phantoms with compliance of 15 KPa to 195 ms for phantoms with compliance of 100 KPa. These compliance levels mimic those seen for normal and fibrotic hepatic tissue respectively.« less

  3. Safety and efficacy of the Aperio thrombectomy device when compared to the Solitaire AB/FR and the Revive devices in a pulsatile flow system.

    PubMed

    Saleh, Mahdi; Spence, John Nathan; Nayak, Sanjeev; Pearce, Gillian; Tennuci, Christopher; Roffe, Christine

    2012-01-01

    There are a limited number of studies comparing the Aperio mechanical thrombectomy device to other stent-based devices. In this paper, we compared the Aperio thrombectomy device to the Solitaire AB, FR and Revive devices in a model of the middle cerebral artery (MCA) within a modified pulsatile flow system. Thrombi made of lamb's blood were placed into a pulsatile flow system perfused with Hartmann's solution at 80 bpm with a mean pressure of 90 mm Hg. 30 experiments were run with each device. Recanalization rates were similar for all three devices (90% with the Solitaire AB, FR, 80% with the Revive, and 90% with the Aperio). The mean number of attempts to retrieve the thrombus was also similar for all three devices (1.7 with the Solitaire AB, FR, 2.1 with the Revive, 1.6 with the Aperio). Clot fragmentation and embolization rates revealed no statistical significance but there was a trend towards lower embolization rates with the Aperio (23% compared to 40% with the Solitaire AB, FR and 47% with the Revive). The Aperio was the fastest to recanalize the MCA (mean of 66 seconds compared to 186 seconds for the Solitaire AB, FR and 169 seconds for the Revive). In this in vitro setting, the Aperio device seems to be an efficacious and safe device when compared to other similar clinically used mechanical thrombectomy devices. Larger clinical trials are warranted.

  4. Augmentative effect of pulsatility on the wall shear stress in tube flow.

    PubMed

    Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K

    1999-08-01

    Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.

  5. State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair.

    PubMed

    Waked, Karl; Schepens, Marc

    2018-01-01

    During open thoracoabdominal aortic aneurysm repair (OTAAAR), there is an inevitable organ ischemic period that occurs when the abdominal arteries are being reattached to the aortic graft. Despite various protective techniques, the incidence of renal and visceral complications remains substantial. This state-of-the-art review gives an overview of the current and most evidence-based organ protection methods during OTAAAR, based on the most recent publications and personal experience. An electronic search was performed in four medical databases, using the following MeSH terms: thoracoabdominal aneurysm, TAAAR, visceral protection, renal protection, kidney, perfusion, and intestines. Every publication type was considered. The literature search was ended on August 31st, 2017. The left heart bypass (LHB) is currently the most frequent adjunct to provide distal aortic perfusion (DAP) during aortic clamping. Together with systemic hypothermia, it forms the cornerstone in organ protection during aortic clamping. Further renal protection can be obtained by selective renal perfusion (SRP) with cold blood or cold crystalloid solution, the latter enriched with mannitol. The perfusion should be administered in a volume- and pressure-controlled way and, if possible, by use of a pulsatile pump. Selective visceral perfusion (SVP) is not routinely used, as it does not provide adequate blood flow for visceral protection. The best way to protect the intestines is by minimizing the ischemic time. The preservation of renal and visceral function after OTAAAR can only be obtained with specific strategies before, during, and after the operation. This involves a series of measures, including selective digestive decontamination (SDD), avoidance of nephrotoxic drugs, minimizing the renal and intestinal ischemic time, systemic cooling, avoidance of hemodynamic instability, and regional protective perfusion of the kidneys. Future innovations in catheters, cardiac bypass flow types, mechanical components, hybrid vascular grafts, and pharmaceutical protection measures will hopefully further reduce organ complications.

  6. One or 4 h of "in-house" reconditioning by machine perfusion after cold storage improve reperfusion parameters in porcine kidneys.

    PubMed

    Gallinat, Anja; Efferz, Patrik; Paul, Andreas; Minor, Thomas

    2014-11-01

    In-house machine perfusion after cold storage (hypothermic reconditioning) has been proposed as convenient tool to improve kidney graft function. This study investigated the role of machine perfusion duration for early reperfusion parameters in porcine kidneys. Kidney function after cold preservation (4 °C, 18 h) and subsequent reconditioning by one or 4 h of pulsatile, nonoxygenated hypothermic machine perfusion (HMP) was studied in an isolated kidney perfusion model in pigs (n = 6, respectively) and compared with simply cold-stored grafts (CS). Compared with CS alone, one or 4 h of subsequent HMP similarly and significantly improved renal flow and kidney function (clearance and sodium reabsorption) upon warm reperfusion, along with reduced perfusate concentrations of endothelin-1 and increased vascular release of nitric oxide. Molecular effects of HMP comprised a significant (vs CS) mRNA increase in the endothelial transcription factor KLF2 and lower expression of endothelin that were observed already at the end of one-hour HMP after CS. Reconditioning of cold-stored kidneys is possible, even if clinical logistics only permit one hour of therapy, while limited extension of the overall storage time by in-house machine perfusion might also allow for postponing of transplantation from night to early day work. © 2014 Steunstichting ESOT.

  7. Noncontact blood perfusion mapping in clinical applications

    NASA Astrophysics Data System (ADS)

    Iakovlev, Dmitry; Dwyer, Vincent; Hu, Sijung; Silberschmidt, Vadim

    2016-04-01

    Non-contact imaging photoplethysmography (iPPG) to detect pulsatile blood microcirculation in tissue has been selected as a successor to low spatial resolution and slow scanning blood perfusion techniques currently employed by clinicians. The proposed iPPG system employs a novel illumination source constructed of multiple high power LEDs with narrow spectral emission, which are temporally modulated and synchronised with a high performance sCMOS sensor. To ensure spectrum stability and prevent thermal wavelength drift due to junction temperature variations, each LED features a custom-designed thermal management system to effectively dissipate generated heat and auto-adjust current flow. The use of a multi-wavelength approach has resulted in simultaneous microvascular perfusion monitoring at various tissue depths, which is an added benefit for specific clinical applications. A synchronous detection algorithm to extract weak photoplethysmographic pulse-waveforms demonstrated robustness and high efficiency when applied to even small regions of 5 mm2. The experimental results showed evidences that the proposed system could achieve noticeable accuracy in blood perfusion monitoring by creating complex amplitude and phase maps for the tissue under examination.

  8. Safety and efficacy of the Aperio thrombectomy device when compared to the Solitaire AB/FR and the Revive devices in a pulsatile flow system

    PubMed Central

    Saleh, Mahdi; Spence, John Nathan; Nayak, Sanjeev; Pearce, Gillian; Tennuci, Christopher; Roffe, Christine

    2012-01-01

    Background and Purpose: There are a limited number of studies comparing the Aperio mechanical thrombectomy device to other stent-based devices. In this paper, we compared the Aperio thrombectomy device to the Solitaire AB, FR and Revive devices in a model of the middle cerebral artery (MCA) within a modified pulsatile flow system. Methods: Thrombi made of lamb’s blood were placed into a pulsatile flow system perfused with Hartmann’s solution at 80 bpm with a mean pressure of 90 mm Hg. 30 experiments were run with each device. Results: Recanalization rates were similar for all three devices (90% with the Solitaire AB, FR, 80% with the Revive, and 90% with the Aperio). The mean number of attempts to retrieve the thrombus was also similar for all three devices (1.7 with the Solitaire AB, FR, 2.1 with the Revive, 1.6 with the Aperio). Clot fragmentation and embolization rates revealed no statistical significance but there was a trend towards lower embolization rates with the Aperio (23% compared to 40% with the Solitaire AB, FR and 47% with the Revive). The Aperio was the fastest to recanalize the MCA (mean of 66 seconds compared to 186 seconds for the Solitaire AB, FR and 169 seconds for the Revive). Conclusions: In this in vitro setting, the Aperio device seems to be an efficacious and safe device when compared to other similar clinically used mechanical thrombectomy devices. Larger clinical trials are warranted. PMID:23173104

  9. [Clinical and experimental study of the production of renal hemodynamic effects of IABP-assisted pulsatile flow extracorporeal circulation].

    PubMed

    Moro, H

    1992-01-01

    Renal hemodynamics during IABP-assisted pulsatile flow extracorporeal circulation was assessed in terms of measurement values for intraoperative renal blood flow obtained by the local thermodilution method in human clinical patients. In addition, the effect of IABP on renal hemodynamics was investigated in an animal model of renal denervation in a study undertaken to elucidate the action mechanism of IABP. Eighteen patients with acquired heart disease were involved in the study and measured for the renal blood flow (RBF), cardiac output (CO), renal-systemic partition coefficient for blood flow (RBF/CO), renal vascular resistance (RVR) and perfusion pressure. In the pulsatile flow group, the RBF/CO increased as the number of pump runs increased, whole the RVR was conversely reduced with increasing pump runs. The experimental study without extracorporeal circulation was conducted on 19 mongrel dogs. During IABP runs RBF/CO increased, while the RVR decreased. After renal denervation, no noticeable influence of IABP upon renal hemodynamics was observed. Following a loading dose of noradrenaline (Norad), the RVR increased in a Norad concentration-dependent fashion, independently of IABP and renal denervation. These results indicate that IABP reduces the RVR and thereby exerts a favorable action on renal hemodynamics during pump times. The study thus warrants us to surmise that a mechanism involving the renal sympathetic nerves might play an important role in the production of favorable renal hemodynamic effects of IABP-assisted pulsatile flow extracorporeal circulation.

  10. Using a pulse oximeter to determine clinical depth of anesthesia-investigation of the utility of the perfusion index.

    PubMed

    Krishnamohan, Anirudh; Siriwardana, Viraj; Skowno, Justin J

    2016-11-01

    Peripheral vasodilation is a well-recognized side effect of general anesthesia, and induces changes in the amplitude of the pulse plethysmograph (PPG) waveform. This can be continuously quantitaed using the Perfusion Index (PI), a ratio of the pulsatile to nonpulsatile signal amplitude in the PPG waveform. We hypothesized that the perfusion index would rise with the induction of anesthesia in children, and fall with emergence, and performed a prospective, observational study to test this. Our primary aim was to test whether the different clinical stages of anesthesia were associated with changes in the perfusion index, and the secondary aim was to test the correlation between the normalized perfusion index and the MAC value. Twenty-one patients between the ages of 1 and 18 undergoing minor procedures with no anticipated painful stimuli were recruited. Patients with significant illnesses were excluded. Data collection commenced with a preinduction baseline, and data were collected continuously, with event marking, until completion of the anesthesia and removal of the pulse oximeter. Data collected included perfusion index, heart rate, and anesthetic gas concentration values. A normalized perfusion index was calculated by subtracting the initial baseline perfusion index value from all perfusion index values, allowing changes, from a standardized initial baseline value of zero, to be analyzed. During induction, the mean normalized perfusion index rose from 0.0 to 4.2, and then declined to 0.470 when the patients returned to consciousness. P < 0.001 using repeated measures anova test. The normalized perfusion index was correlated with MAC values (r 2 = 0.33, 95% CI 0.18-0.47, P < 0.01). The perfusion index changed significantly during different stages of anesthesia. There is a significant correlation between the perfusion index, measured by pulse oximetry, and the MAC value, in pediatric patients undergoing minor procedures. © 2016 John Wiley & Sons Ltd.

  11. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.

    PubMed

    Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E

    2016-09-01

    Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Analysis of pressure head-flow loops of pulsatile rotodynamic blood pumps.

    PubMed

    Jahren, Silje E; Ochsner, Gregor; Shu, Fangjun; Amacher, Raffael; Antaki, James F; Vandenberghe, Stijn

    2014-04-01

    The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  13. Multilayer based lab-on-a-chip-systems for substance testing

    NASA Astrophysics Data System (ADS)

    Sonntag, Frank; Grünzner, Stefan; Schmieder, Florian; Busek, Mathias; Klotzbach, Udo; Franke, Volker

    2015-03-01

    An integrated technology chain for laser-microstructuring and bonding of polymer foils for fast, flexible and low-cost manufacturing of multilayer lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer the corresponding foils and plates are chosen. In the third step the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step the multiple plates and foils are joined using thermal diffusion bonding. Membranes for pneumatically driven valves and micropumps where bonded via chemical surface modification. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.

  14. Monitoring patients with continuous-flow ventricular assist devices outside of the intensive care unit: novel challenges to bedside nursing.

    PubMed

    O'Shea, Genevieve; Teuteberg, Jeffrey J; Severyn, Donald A

    2013-03-01

    Ventricular assist devices provide therapeutic options for patients with severe heart failure who have exhausted available medical therapies. With restoration of organ perfusion with ventricular assist devices, the heart failure resolves and quality of life and functional status improve. The current generation of continuous-flow devices present novel challenges to the clinical assessment of patients by substantially reducing or nearly eliminating any palpable pulse. Patients therefore generally have inadequate arterial pulsatility for most noninvasive monitoring devices such as pulse oximeters or automated blood pressure cuffs to work accurately. This article describes the function of continuous-flow devices and how this function affects common monitoring options, as well as how to clinically assess recipients of continuous-flow devices to promptly identify those whose condition may be deteriorating or who may be receiving inadequate perfusion.

  15. Body mapping of human cutaneous microcirculatory perfusion using a real-time laser Doppler imager.

    PubMed

    Harbi, Pascal; Thacher, Tyler

    2013-03-01

    There are many pathologies and/or surgical situations where understanding how cutaneous capillary blood flow is behaving would be of clinical benefit. Laser Doppler imaging (LDI) has long been considered an ideal candidate for this yet was never widely adopted. The technology was deemed too slow, needing minutes to record one image. Here, we present the use of a new, real-time LDI, which is sensitive enough to resolve pulsatile blood flow in the microcirculation and can record images and videos instantaneously. We show that when comparing the ratios of absolute perfusion images from different regions of the body, remarkably reproducible data can be obtained when looking at a control population of male volunteers. In the future, we plan to add more control and diseased groups, effectively giving the clinician a non-invasive, safe and easy-to-use diagnostic for assessing the extent of microcirculatory disorders and high-risk surgical situations.

  16. Computational analysis of aortic hemodynamics during total and partial extracorporeal membrane oxygenation and intra-aortic balloon pump support.

    PubMed

    Caruso, Maria Vittoria; Gramigna, Vera; Renzulli, Attilio; Fragomeni, Gionata

    2016-01-01

    The extracorporeal membrane oxygenation (ECMO) is a temporary, but prolonged circulatory support for cardiopulmonary failure. Clinical evidence suggests that pulsed flow is healthier than non pulsatile perfusion. The aim of this study was to computationally evaluate the effects of total and partial ECMO assistance and pulsed flow on hemodynamics in a patient-specific aorta model. The pulsatility was obtained by means of the intra-aortic balloon pump (IABP), and two different cases were investigated, considering a cardiac output (CO) of 5 L/min: Case A - total assistance - the whole flow delivered through the ECMO arterial cannula; Case B - partial assistance - flow delivered half through the cannula and half through the aorta. Computational fluid dynamic (CFD) analysis was carried out using the multiscale approach to couple the 3D aorta model with the lumped parameter model (resistance boundary condition). In case A pulsatility followed the balloon radius change, while in case B it was mostly influenced by the cardiac one. Furthermore, during total assistance, a blood stagnation occurred in the ascending aorta; in the case of partial assistance, the flow was orderly when the IABP was on and was chaotic when the balloon was off. Moreover, the mean arterial pressure (MAP) was higher in case B. The wall shear stress was worse in ascending aorta in case A. Partial support is hemodynamically advisable.

  17. Comparative Study of Continuous and Pulsatile Left Ventricular Assist Devices on Hemodynamics of a Pediatric End-to-Side Anastomotic Graft

    PubMed Central

    Yang, Ning; Deutsch, Steven; Paterson, Eric G.; Manning, Keefe B.

    2013-01-01

    Although there are many studies that focus on understanding the consequence of pumping mode (continuous vs. pulsatile) associated with ventricular assist devices (VADs) on pediatric vascular pulsatility, the impact on local hemodynamics has been largely ignored. Hence, we compare not only the hemodynamic parameters indicative of pulsatility but also the local flow fields in the aorta and the great vessels originating from the aortic arch. A physiologic graft anastomotic model is constructed based on a pediatric, patient specific, aorta with a graft attached on the ascending aorta. The flow is simulated using a previously validated second-order accurate Navier–Stokes flow solver based upon a finite volume approach. The major findings are: (1) pulsatile support provides a greater degree of vascular pulsatility when compared to continuous support, which, however, is still 20% less than pulsatility in the healthy aorta; (2) pulsatile support increases the flow in the great vessels, while continuous support decreases it; (3) complete VAD support results in turbulence in the aorta, with maximum principal Reynolds stresses for pulsatile support and continuous support of 7081 and 249 dyn/cm2, respectively; (4) complete pulsatile support results in a significant increase in predicted hemolysis in the aorta; and (5) pulsatile support causes both higher time-averaged wall shear stresses (WSS) and oscillatory shear indices (OSI) in the aorta than does continuous support. These findings will help to identify the risk of graft failure for pediatric patients with pulsatile and continuous VADs. PMID:24348881

  18. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    PubMed

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  19. Mechanical stress regulates transport in a compliant 3D model of the blood-brain barrier.

    PubMed

    Partyka, Paul P; Godsey, George A; Galie, John R; Kosciuk, Mary C; Acharya, Nimish K; Nagele, Robert G; Galie, Peter A

    2017-01-01

    Transport of fluid and solutes is tightly controlled within the brain, where vasculature exhibits a blood-brain barrier and there is no organized lymphatic network facilitating waste transport from the interstitial space. Here, using a compliant, three-dimensional co-culture model of the blood-brain barrier, we show that mechanical stimuli exerted by blood flow mediate both the permeability of the endothelial barrier and waste transport along the basement membrane. Application of both shear stress and cyclic strain facilitates tight junction formation in the endothelial monolayer, with and without the presence of astrocyte endfeet in the surrounding matrix. We use both dextran perfusion and TEER measurements to assess the initiation and maintenance of the endothelial barrier, and microparticle image velocimetry to characterize the fluid dynamics within the in vitro vessels. Application of pulsatile flow to the in vitro vessels induces pulsatile strain to the vascular wall, providing an opportunity to investigate stretch-induced transport along the basement membrane. We find that a pulsatile wave speed of approximately 1 mm/s with Womersley number of 0.004 facilitates retrograde transport of high molecular weight dextran along the basement membrane between the basal endothelium and surrounding astrocytes. Together, these findings indicate that the mechanical stress exerted by blood flow is an important regulator of transport both across and along the walls of cerebral microvasculature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Feasibility of transabdominal Doppler sonography for studying uterine blood flow characteristics in cycling gilts.

    PubMed

    Herlta, Catherine; Starka, Rosa; Sigmarsson, Haukur L; Kauffold, Johannes

    2018-06-01

    To test for the feasibility of transabdominal Doppler sonography (color, power, pulse wave) to define uterine perfusion characteristics throughout the estrous cycle in gilts. A total of 15 gilts were synchronized for estrus and scanned in their following spontaneous cycle while being restrained in a purpose-designed mobile crate. To define uterine perfusion characteristics, vessels in between and within uterine cross-sections were imaged and recorded as video sequences to be analyzed by PixelFlux® software for perfused area (Amix), blood flow velocity (vmix) and intensity (Imix) as well as resistance (RIvmix) and pulsatility index (PIvmix). Color Doppler sonography proved to be the only feasible technique, as it was less affected by animal movements than power and pulse wave sonography. As determined by color Doppler sonography, all five parameters determined showed specific patterns through the estrous cycle, i. e. Amix, vmix, Imix were high in proestrus, decreased in estrus and remained low in midestrus and most parts of diestrus; RIvmix and PIvmix with inversely paralleled patterns. This study has demonstrated that transabdominal color Doppler but not power and pulse wave Doppler sonography is feasible to be performed in crate-restrained gilts for studying uterine perfusion characteristics during the estrous cycle, and that changes of uterine perfusion over the course of the estrous cycle can be clearly followed by color Doppler sonography. Results encourage the use of color Doppler sonography for studying i. e. uterine capacity or uterus related infertility such as for cases of clinically unapparent endometritis. Schattauer GmbH.

  1. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible?

    PubMed

    Cardim, Danilo; Robba, C; Bohdanowicz, M; Donnelly, J; Cabella, B; Liu, X; Cabeleira, M; Smielewski, P; Schmidt, B; Czosnyka, M

    2016-12-01

    Although intracranial pressure (ICP) is essential to guide management of patients suffering from acute brain diseases, this signal is often neglected outside the neurocritical care environment. This is mainly attributed to the intrinsic risks of the available invasive techniques, which have prevented ICP monitoring in many conditions affecting the intracranial homeostasis, from mild traumatic brain injury to liver encephalopathy. In such scenario, methods for non-invasive monitoring of ICP (nICP) could improve clinical management of these conditions. A review of the literature was performed on PUBMED using the search keywords 'Transcranial Doppler non-invasive intracranial pressure.' Transcranial Doppler (TCD) is a technique primarily aimed at assessing the cerebrovascular dynamics through the cerebral blood flow velocity (FV). Its applicability for nICP assessment emerged from observation that some TCD-derived parameters change during increase of ICP, such as the shape of FV pulse waveform or pulsatility index. Methods were grouped as: based on TCD pulsatility index; aimed at non-invasive estimation of cerebral perfusion pressure and model-based methods. Published studies present with different accuracies, with prediction abilities (AUCs) for detection of ICP ≥20 mmHg ranging from 0.62 to 0.92. This discrepancy could result from inconsistent assessment measures and application in different conditions, from traumatic brain injury to hydrocephalus and stroke. Most of the reports stress a potential advantage of TCD as it provides the possibility to monitor changes of ICP in time. Overall accuracy for TCD-based methods ranges around ±12 mmHg, with a great potential of tracing dynamical changes of ICP in time, particularly those of vasogenic nature.

  2. Principles of cerebral hemodynamics when intracranial pressure is raised: lessons from the peripheral circulation

    PubMed Central

    Kim, Mi Ok; Adji, Audrey; O’Rourke, Michael F.; Avolio, Alberto P.; Smielewski, Peter; Pickard, John D.; Czosnyka, Marek

    2015-01-01

    Background: The brain is highly vascular and richly perfused, and dependent on continuous flow for normal function. Although confined within the skull, pressure within the brain is usually less than 15 mmHg, and shows small pulsations related to arterial pulse under normal circumstances. Pulsatile arterial hemodynamics in the brain have been studied before, but are still inadequately understood, especially during changes of intracranial pressure (ICP) after head injury. Method: In seeking cohesive explanations, we measured ICP and radial artery pressure (RAP) invasively with high-fidelity manometer systems, together with middle cerebral artery flow velocity (MCAFV) (transcranial Doppler) and central aortic pressure (CAP) generated from RAP, using a generalized transfer function technique, in eight young unconscious, ventilated adults following closed head trauma. We focused on vascular effects of spontaneous rises of ICP (‘plateau waves’). Results: A rise in mean ICP from 29 to 53 mmHg caused no consistent change in pressure outside the cranium, or in heart rate, but ICP pulsations increased in amplitude from 8 to 20 mmHg, and ICP waveform came to resemble that in the aorta. Cerebral perfusion pressure (=central aortic pressure – ICP), which equates with transmural pressure, fell from 61 to 36 mmHg. Mean MCAFV fell from 53 to 40 cm/s, whereas pulsatile MCAFV increased from 77 to 98 cm/s. These significant changes (all P < 0.01) may be explained using the Monro–Kellie doctrine, because of compression of the brain, as occurs in a limb when external pressure is applied. Conclusion: The findings emphasize importance of reducing ICP, when raised, and on the additional benefits of reducing wave reflection from the lower body. PMID:25764046

  3. An easy to assemble microfluidic perfusion device with a magnetic clamp

    PubMed Central

    Tkachenko, Eugene; Gutierrez, Edgar; Ginsberg, Mark H.; Groisman, Alex

    2009-01-01

    We have built and characterized a magnetic clamp for reversible sealing of PDMS microfluidic chips against cover glasses with cell cultures and a microfluidic chip for experiments on shear stress response of endothelial cells. The magnetic clamp exerts a reproducible uniform pressure on the microfluidic chip, achieving fast and reliable sealing for liquid pressures up to 40 kPa inside the chip with <10% deformations of microchannels and minimal variations of the substrate shear stress in perfusion flow. The microfluidic chip has 8 test regions with the substrate shear stress varying by a factor of 2 between each region, thus covering a 128-fold range from low venous to arterial. The perfusion is driven by differential pressure, which makes it possible to create pulsatile flows mimicking pulsing in the vasculature. The setup is tested by 15 – 40 hours perfusions over endothelial monolayers with shear stress in the range of 0.07 - 9 dyn/cm2. Excellent cell viability at all shear stresses and alignment of cells along the flow at high shear stresses are repeatedly observed. A scratch wound healing assay under a shear flow is demonstrated and cell migration velocities are measured. Transfection of cells with a fluorescent protein is performed, and migrating fluorescent cells are imaged at a high resolution under shear flow in real time. The magnetic clamp can be closed with minimal mechanical perturbation to cells on the substrate and used with a variety of microfluidic chips for experiments with adherent and non-adherent cells. PMID:19350090

  4. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.

    PubMed

    Abay, Tomas Ysehak; Kyriacou, Panayiotis A

    2015-09-01

    In the last decades, photoplethysmography (PPG) has been used as a noninvasive technique for monitoring arterial oxygen saturation by pulse oximetry (PO), whereas near-infrared spectroscopy (NIRS) has been employed for monitoring tissue blood perfusion. While NIRS offers more parameters to evaluate oxygen delivery and consumption in deep tissues, PO only assesses the state of oxygen delivery. For a broader assessment of blood perfusion, this paper explores the utilization of dual-wavelength PPG by using the pulsatile (ac) and continuous (dc) PPG for the estimation of arterial oxygen saturation (SpO2) by conventional PO. Additionally, the Beer-Lambert law is applied to the dc components only for the estimation of changes in deoxyhemoglobin (HHb), oxyhemoglobin (HbO2), and total hemoglobin (tHb) as in NIRS. The system was evaluated on the forearm of 21 healthy volunteers during induction of venous occlusion (VO) and total occlusion (TO). A reflectance PPG probe and NIRS sensor were applied above the brachioradialis, PO sensors were applied on the fingers, and all the signals were acquired simultaneously. While NIRS and forearm SpO2 indicated VO, SpO2 from the finger did not exhibit any significant drop from baseline. During TO, all the indexes indicated the change in blood perfusion. HHb, HbO2, and tHb changes estimated by PPG presented high correlation with the same parameters obtained by NIRS during VO (r(2) = 0.960, r(2) = 0.821, and r(2) = 0.974, respectively) and during TO (r(2) = 0.988, r(2) = 0.940, and r(2) = 0.938, respectively). The system demonstrated the ability to extract valuable information from PPG signals for a broader assessment of tissue blood perfusion.

  5. Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats.

    PubMed

    Bessa, K L; Belletati, J F; Santos, L; Rossoni, L V; Ortiz, J P

    2011-08-01

    This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.

  6. Comparison of two types of neonatal extracorporeal life support systems with pulsatile and nonpulsatile flow.

    PubMed

    Haines, Nikkole; Wang, Shigang; Myers, John L; Undar, Akif

    2009-11-01

    We compared the effects of two neonatal extracorporeal life support (ECLS) systems on circuit pressures and surplus hemodynamic energy levels in a simulated ECLS model. The clinical set-up included the Jostra HL-20 heart-lung machine, either the Medtronic ECMO (0800) or the MEDOS 800LT systems with company-provided circuit components, a 10 Fr arterial cannula, and a pseudo-patient. We tested the system in nonpulsatile and pulsatile flow modes at two flow rates using a 40/60 glycerin/water blood analog, for a total of 48 trials, with n = 6 for each set-up. The pressure drops over the Medtronic ECLS were significantly higher than those over the MEDOS system regardless of the flow rate or perfusion mode (144.8 +/- 0.2 mm Hg vs. 35.7 +/- 0.2 mm Hg, respectively, at 500 mL/min in nonpulsatile mode, P < 0.001). The preoxygenator mean arterial pressures were significantly increased and the precannula hemodynamic energy values were decreased with the Medtronic ECLS circuit. These results suggest that the MEDOS ECLS circuit better transmits hemodynamic energy to the patient, keeps mean circuit pressures lower, and has lower pressure drops than the Medtronic Circuit.

  7. Suivi in situ de cultures tridimensionnelles en bioreacteur a perfusion grace a la tomographie d'emission par positrons

    NASA Astrophysics Data System (ADS)

    Chouinard, Julie

    The continuous assessment of developing tissue substitutes is crucial to understand their evolution over time. However, this represents quite a challenge when thick samples must be evaluated with standard microscopy techniques. Common characterization methods are time consuming and usually result in the destruction of the culture. Real-time, in situ, non-invasive and non-destructives methods are needed to monitor the growth of large non-transparent constructs in tissue engineering. Medical imaging modalities, which can provide information on the structure and function of internal organs and tissues in living organisms, have the potential of allowing repetitive monitoring of these 3D cultures in vitro. The working hypothesis of this thesis was to establish standard noninvasive and nondestructive real-time bioreactor imaging protocols for in situ monitoring of the viability and metabolism of endothelial cells when grown in perfused 3D fibrin gel scaffolds. To achieve this goal, a culture chamber with hollow fibers was designed and a pulsatile perfusion bioreactor system, able to promote cell survival and proliferation, was constructed and validated. Standard imaging protocols in Positron Emission Tomography (PET) are not adapted to image bioreactor systems. A suitable method had to be devised using the well-known radiotracer 18F-fluorodeoxyglucose ( 18FDG), a marker of glucose metabolism. Optimal uptake conditions were determined using cell monolayers and the best parameters were then applied on perfused 3D cultures to evaluate perfusion, cell viability and emerging cell structures. After only 12 hours of culture, the cell density could be estimated and cell structures were localized within the fibrin gels after 1-2 weeks of culture. PET is a promising tool for tissue engineering with many specific tracers available that might eventually be able to reveal new information on tissue development. Key words: Endothelial cells, Perfusion bioreactor, Positron Emission Tomography (PET), 18F-fluorodeoxyglucose ( 18FDG), Tissue Engineering, 3D cultures, Fibrin.

  8. Surface obstacles in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  9. Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2016-06-01

    Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.

  10. Recent developments in persufflation for organ preservation.

    PubMed

    Min, Catherine G; Papas, Klearchos K

    2018-06-01

    To summarize current literature and recent findings on the potential of humidified oxygenated gas perfusion (persufflation) as an alternative method for improved organ preservation. Although there are some conflicting data, the majority of the evidence suggests that persufflation, by enhancing oxygenation, can improve preservation and even rescue organs, including organs with prior exposure to warm ischemia. In some cases, persufflation produced better results than hypothermic machine perfusion. The timing of persufflation is of importance; benefits of persufflation appear to increase as the timing of its administration postprocurement decreases. This may be particularly true for tissues that are more sensitive to ischemia, such as the pancreas prior to islet isolation. Combining oxygen persufflation with nitric oxide and addition of pulsatile flow may provide further benefits and amplify its effects on improving transplant outcomes. Persufflation is a promising, relatively simple, preservation technique that enables improved oxygenation, which provides protection and improvement in the graft condition during preservation and prior to transplantation. More detailed studies are needed to optimize persufflation and evaluate its short and long-term effects in vivo.

  11. Flow Dynamics of Contrast Dispersion in the Aorta

    NASA Astrophysics Data System (ADS)

    Eslami, Parastou; Seo, Jung-Hee; Chen, Marcus; Mittal, Rajat

    2016-11-01

    The time profile of the contrast concentration or arterial input function (AIF) has many fundamental clinical implications and is of importance for many imaging modalities and diagnosis such as MR perfusion, CT perfusion and CT angiography (CTA). Contrast dispersion in CTA has been utilized to develop a novel method- Transluminal Attenuation Flow Encoding (TAFE)- to estimate coronary blood flow (CBF). However, in clinical practice, AIF is only available in the descending aorta and is used as a surrogate of the AIF at the coronary ostium. In this work we use patient specific computational models of the complete aorta to investigate the fluid dynamics of contrast dispersion in the aorta. The simulation employs a realistic kinematic model of the aortic valve and the dispersion patterns are correlated with the complex dynamics of the pulsatile flow in the curved aorta. The simulations allow us to determine the implications of using the descending aorta AIF as a surrogate for the AIF at the coronary ostium. PE is supported by the NIH Individual Partnership Program. -/abstract- Category: 4.7.1: Biological fluid dynamics: Physiological - Cardiovasc This work was done at Johns Hopkins University.

  12. Correlations of Neck/Shoulder Perfusion Characteristics and Pain Symptoms of the Female Office Workers with Sedentary Lifestyle.

    PubMed

    Bau, Jian-Guo; Chia, Taipau; Wei, Shan-Hua; Li, Yung-Hui; Kuo, Fun-Chie

    2017-01-01

    Modern office workers are often impacted by chronic neck/shoulder pain. Most of the previous studies which investigated the relationship of the occupational factors and musculoskeletal symptoms had adopted questionnaire survey. In this study the microcirculatory characteristics and perceived symptoms in neck/shoulder region were compared among office workers with sedentary lifestyle. Thirty-seven female office workers were recruited in this study. Microcirculatory flow in neck/shoulder region characterized by the mean blood flow (MMBF value), pulsatile blood flow (PMBF value), and the PMBF/MMBF ratio (perfusion pulsatility, PP) were investigated using Laser Doppler Flowmetry (LDF). A Chinese version of the Standardized Nordic Musculoskeletal Questionnaire (NMQ) were also administered to collect the information of perceived neck/shoulder symptoms. Correlations between the perfusion characteristics and the individual/occupational factors were analyzed using the Spearman test. The difference of the MMBF values between the low-pain group (pain level≤2) and the high-pain group (pain level>2) were compared using the Mann-Whitney U test. There were 81% participants reported neck or shoulder pain symptoms. The duration of shoulder pain was significantly correlated with the workers' age and the duration of employment (p<0.01) (n = 37). While both the MMBF and PMBF values in shoulder region were significantly reduced with the workers' age and the duration of employment (p<0.05) (n = 27). And there was a 54% reduction in the MMBF value of the workers from age of 23 to 47. And the MMBF value of the high-pain group (n = 15) was significantly lower than the value of the low-pain group (n = 15) (p<0.05). The duration of shoulder pain showed a moderately negative correlation with PMBF values (n = 19). Besides, the PP value was moderately correlated with shoulder pain level attributed by the rapid reduction of MMBF values (p = 0.07). In this study, the LDF method was used for the first time in the workplace in Taiwan. It was demonstrated that the MMBF in shoulder region were affected by aging effect and towards lower value at higher pain level. Impaired microcirculation caused by age effect, when coupled with sedentary lifestyle, was found to be more likely to evoke ischemia shoulder pain. Further studies are needed to assess current indicator, PP value, and the underlying mechanism of pain caused by sedentary lifestyle.

  13. Preload-Based Starling-Like Control for Rotary Blood Pumps: Numerical Comparison with Pulsatility Control and Constant Speed Operation

    PubMed Central

    Mansouri, Mahdi; Salamonsen, Robert F.; Lim, Einly; Akmeliawati, Rini; Lovell, Nigel H.

    2015-01-01

    In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report the performance of the preload-based Starling-like controller in comparison with our recently designed pulsatility controller and constant speed operation. In handling the transition from a baseline state to test states, which include vigorous exercise, blood loss and a major reduction in the LV contractility (LVC), the preload controller outperformed pulsatility control and constant speed operation in all three test scenarios. In exercise, preload-control achieved an increase of 54% in mean pump flow (QP-) with minimum loading on the LV, while pulsatility control achieved only a 5% increase in flow and a decrease in mean pump speed. In a hemorrhage scenario, the preload control maintained the greatest safety margin against LV suction. PLVED for the preload controller was 4.9 mmHg, compared with 0.4 mmHg for the pulsatility controller and 0.2 mmHg for the constant speed mode. This was associated with an adequate mean arterial pressure (MAP) of 84 mmHg. In transition to low LVC, QP- for preload control remained constant at 5.22 L/min with a PLVED of 8.0 mmHg. With regards to pulsatility control, QP- fell to the nonviable level of 2.4 L/min with an associated PLVED of 16 mmHg and a MAP of 55 mmHg. Consequently, pulsatility control was deemed inferior to constant speed mode with a PLVED of 11 mmHg and a QP- of 5.13 L/min in low LVC scenario. We conclude that pulsatility control imposes a danger to the patient in the severely reduced LVC scenario, which can be overcome by using a preload-based Starling-like control approach. PMID:25849979

  14. The influence of Sildenafil citrate on uterine tissue perfusion and the cardiovascular system during the luteal phase of the ovarian cycle in cows.

    PubMed

    Dzięcioł, Michał; Stańczyk, Ewa; Noszczyk-Nowak, Agnieszka; Michlik, Katarzyna; Kozdrowski, Roland; Niżański, Wojciech; Pasławskab, Urszula; Mrowiec, Jacek; Twardoń, Jan

    2014-03-01

    The aim of the study was to evaluate the influence of the Sildenafil citrate on the blood flow in the uterus of cows during dioestrus. Uterine blood flow was examined in five, healthy, adult cows. Between day 6-8 of the ovarian cycle, each cow received 200mg of sildenafil diluted in 10ml of warm saline into the body of the uterus. Analysis of the blood pressure, ECG and the maximum velocity in m/s (V max) in the aorta was performed and selected parameters of the blood flow (PI, pulsatile index; RI, resistance index; SPV, systolic peak velocity; EDV, end diastolic velocity; FVI, flow velocity integral; SV/DV, systolic peak velocity: end-diastolic velocity ratio) were measured in the uterine artery (Arteria uterine) before and after sildenafil infusion. In addition, Color Doppler examination of the uterine wall perfusion was analyzed. A significant decrease of values of PI and SV/DV ratio as well as an increase of end diastolic velocity and time averaged maximum velocity was noted. With the use of color coded sonography, the increased intensity of the blood flow in the uterine wall was observed. It was concluded that intrauterine administration of sildenafil during dioestrus can increase uterine tissue perfusion. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. A novel ex-vivo porcine renal xenotransplantation model using a pulsatile machine preservation system.

    PubMed

    Guarrera, James V; Stone, Jonathan; Tulipan, Jacob; Jhang, Jeffrey; Arrington, Ben; Boykin, Jason; Markowitz, Glen; Ratner, Lloyd E

    2011-01-01

    Animal models to investigate pathophysiology and xenotransplantation require complex techniques and significant animal utilization. The aim of the study was to develop a reliable ex-vivo technique to test xenotransplant interventions. Miniature Swine being utilized for a nonsurvival study acted as donor animals. Kidneys were flushed and rapidly explanted and chilled to 4°C. Kidneys were assigned to be the control (CK) (n=3) and the mate were used as a Xenograft Kidneys (XK) (n=3). Kidneys were perfused on separate Waters RM 3 perfusion devices. Perfusion temperature was 35-37°C and pressure was 100-110/60-70 mmHg at 60 pulses per minute. CKs were reperfused with autologous blood collected at the time of organ procurement. XKs were reperfused using freshly donated whole human blood. Physical characteristics, urine output were recorded. Core needle biopsies were obtained and examined by a blinded pathologist for evidence of antibody mediated rejection. XK kidneys demonstrated homogenous reperfusion which rapidly became patchy at 5-7 minutes. XK kidneys had become complete black and thrombosed by 60-70 minutes. XK biopsies demonstrated peritubular capillaritis. CK kidneys demonstrated homogenous reperfusion and urine production. H&E stain of CKs only demonstrated nonspecific inflammation. Our ex-vivo porcine xenotransplant model shows early promise as a tool for studying Xeno- associated hyperacute rejection. This technique saves resources and animal utilization.

  16. First trimester maternal uterine artery Doppler examination in HIV-positive women.

    PubMed

    Savvidou, M D; Samuel, M I; Akolekar, R; Poulton, M; Nicolaides, K H

    2011-11-01

    The aim of the current study was to assess the effect of maternal HIV infection, treated or untreated, on the degree of placental invasion, as assessed by the pulsatility index of the uterine arteries during a Doppler examination at 11(+0) -13(+6) weeks' gestation. This was a nested case-control study in which a uterine artery Doppler examination was performed in the first trimester in 76 HIV-positive women. Each woman was matched with 30 HIV-negative women. As the pulsatility index of the uterine arteries depends on a number of maternal and fetal characteristics, its values in each case and control were expressed as multiples of the median (MoM) of the unaffected group. Among the 76 HIV-positive women, 33 (43.4%) were on antiretroviral treatment at the time of the Doppler examination, including 14 women (42.4%) on nucleoside reverse transcriptase inhibitors (NRTIs) and a protease inhibitor, 18 women (54.5%) on NRTIs and a nonnucleoside reverse transcriptase inhibitor and one woman (3.1%) on monotherapy. Compared with the HIV-negative women, the HIV-positive women were more likely to be heavier (P<0.01), to be of African origin (P<0.01), to be nonsmokers (P=0.01) and to deliver smaller neonates earlier (P<0.01). The median adjusted pulsatility index of the uterine arteries was not statistically different between the cases and controls [1.07; interquartile range (IQR) 0.85-1.24 MoM vs. 0.99; IQR 0.81-1.20 MoM; P= 0.28] or, in HIV-positive women, between those receiving and not receiving antiretroviral treatment (P=0.12). HIV-positive women with uncomplicated pregnancies have normal placental perfusion in the first trimester of pregnancy. 2011 British HIV Association.

  17. Changes in the retrobulbar arterial circulation after decrease of the elevated intraocular pressure in men and women with primary open angle glaucoma.

    PubMed

    Marjanović, Ivan; Martinez, Antonio; Marjanović, Marija; Kontić, Djordje; Hentova-Senćanić, Paraskeva; Marković, Vujica; Bozić, Marija

    2013-01-01

    An altered perfusion of the optic nerve head has been proposed as a pathogenic factor of glaucoma. The aim of this study was to evaluate the changes of the hemodynamic parameters in the retrobulbar arterial circulation after decrease of the elevated intraocular pressure (IOP) in women and men with primary open angle glaucoma. The study included 60 patients (33 males and 27 females) older than 50 years, with diagnosed and treated primary open angle glaucoma (77 eyes of 39 patients had increased IOP, > 25 mm Hg).They were examined at the Clinic of Eye Diseases (complete ophthalmologic exam) and Clinic of Neurology, Clinical Center of Serbia, Belgrade, from December 2009 to December 2010. Imaging of hemodynamic parameters of three retrobulbar arterial vessels: ophthalmic, central retinal and posterior ciliary arteries with color Doppler was performed. Among women, hemodynamic arterial parameter of the peak-systolic velocity was increased in the central retinal artery and decreased in the ophthalmic artery and posterior ciliary arteries; end-diastolic velocity was increased in all three retrobulbar vascular levels; Pourcelot resistivity index was increased, but pulsatility index was decreased in all three vessels. Among men, peak-systolic velocity, end-diastolic velocity and pulsatility index were decreased in all three vessels; resistivity index was increased in the ophthalmic artery, but decreased in the central retinal artery and posterior ciliary arteries. There was a significant change of the ophthalmic artery pulsatility index in women, and the end-diastolic velocity of the ophthalmic artery in men. There was a difference of the retrobulbar arterial circulation between women and men with primary open angle glaucoma after decrease of the elevated intraocular pressure.The role of vascular factors in the supply of the optic disc neuroretinal rim is important.

  18. Validation of color Doppler ultrasonography for evaluating the uterine blood flow and perfusion during late normal pregnancy and uterine torsion in buffaloes.

    PubMed

    Hussein, Hassan A

    2013-04-15

    The aim of this study was to verify the efficacy of color Doppler ultrasonography for diagnosis of degree and duration of uterine torsion in buffaloes. In Assiut province/Upper Egypt, 65 buffaloes (37 with uterine torsion, 28 with normal late pregnancy) were examined clinically and using Doppler ultrasonography. The Doppler indices including resistance index (RI), pulsatility index (PI), time-averaged maximum velocity (TAMV), and blood flow volume (BFV) in the arteries ipsilateral to the uterine torsion (IPUT) and in arteries contralateral to the uterine torsion (COUT) were recorded. Methods of correction were documented along with dam and calf survival. Torsion was recorded postcervically with vaginal involvement in 35/37 (94.6%) of the cases. The degrees of uterine torsion were light and high in 9/37 (24.3%) and 28/37 (75.7%) of the cases, respectively (P = 0.001). Right uterine torsion was present in 36/37 (97.3%) of the cases (P = 0.0001). Pulsatility index, RI, TAMV, and BFV in IPUT and COUT did not differ significantly (P > 0.05) in normal late pregnancy. The PI and RI in IPUT were significantly higher (P < 0.01) than in COUT, and the TAMV and BFV in IPUT were less (P < 0.001) than that in COUT in uterine torsion. The PI and RI of torsion cases in IPUT were higher (P < 0.001) than that in normal pregnancy. Time-averaged maximum velocity and BFV in torsion cases were lower (P < 0.01) than that of normal pregnancy in IPUT. There was approximately 50% of RI and PI higher than in light degree uterine torsion in IPUT (P < 0.001). Consequently, TAMV and BFV were greatly lower (P < 0.0001) than that in light degree in IPUT. Pulsatility index and RI were positively correlated (r = 0.856; P < 0.001) with the duration and degree of the uterine torsion, and TAMV and BFV were negatively correlated (r = -0.763; P < 0.001). In all cases of uterine torsion the uterine flow velocity waveform showed high systolic flow and absence of early diastolic flow and poor uterine and placentomal blood perfusion. In conclusion, depicting blood flow within the middle uterine artery using color Doppler sonography could be helpful in correct diagnosis of duration and degree of uterine torsion and concurrently predicting the viability of the fetus and dam. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Design of a cost-effective, hemodynamically adjustable model for resuscitative endovascular balloon occlusion of the aorta (REBOA) simulation.

    PubMed

    Keller, Benjamin A; Salcedo, Edgardo S; Williams, Timothy K; Neff, Lucas P; Carden, Anthony J; Li, Yiran; Gotlib, Oren; Tran, Nam K; Galante, Joseph M

    2016-09-01

    Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an adjunct technique for salvaging patients with noncompressible torso hemorrhage. Current REBOA training paradigms require large animals, virtual reality simulators, or human cadavers for acquisition of skills. These training strategies are expensive and resource intensive, which may prevent widespread dissemination of REBOA. We have developed a low-cost, near-physiologic, pulsatile REBOA simulator by connecting an anatomic vascular circuit constructed out of latex and polyvinyl chloride tubing to a commercially available pump. This pulsatile simulator is capable of generating cardiac outputs ranging from 1.7 to 6.8 L/min with corresponding arterial blood pressures of 54 to 226/14 to 121 mmHg. The simulator accommodates a 12 French introducer sheath and a CODA balloon catheter. Upon balloon inflation, the arterial waveform distal to the occlusion flattens, distal pulsation within the simulator is lost, and systolic blood pressures proximal to the balloon catheter increase by up to 62 mmHg. Further development and validation of this simulator will allow for refinement, reduction, and replacement of large animal models, costly virtual reality simulators, and perfused cadavers for training purposes. This will ultimately facilitate the low-cost, high-fidelity REBOA simulation needed for the widespread dissemination of this life-saving technique.

  20. Surface obstacles in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2016-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e. constant velocity unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Beyond the important practical applications, characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigated the wake of four canonical surface obstacles: hemisphere, cube, and circular cylinders with aspect ratio of 1:1 and 2:1. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Centeor Biomimetics and Bioinspired Engineering (COBRE).

  1. The effect of acetazolamide on different ocular vascular beds.

    PubMed

    Haustein, Michael; Spoerl, Eberhard; Boehm, Andreas G

    2013-05-01

    To assess the effect of acetazolamide (AZ) on different ocular vascular beds. In a prospective study, 32 healthy volunteers (16 male, 16 female) with a mean age of 23.9 ± 3.3 years (20-39 years) were included. Before and after intravenous administration of 1,000 mg AZ (single dose), ocular microcirculation parameters were measured every 20 min for 2 h. Retinal vessel diameters (VD) were measured by the retina vessel analyzer, blood flow (BF) in the neuroretinal rim by the laser doppler flowmeter according to Riva, and the parapapillary retinal BF by the scanning laser Doppler flowmeter. Additionally, the Langham ocular blood flow system was used to determine the ocular pulse amplitude (OPA) and the pulsatile ocular blood flow (pOBF). The measurements were correlated with systemic blood pressure (BP), ocular perfusion pressure (OPP), capillary base excess parameters and serum AZ levels. Arterial and venous VD were significantly increased by about 4-5% each. Papillary BF increased significantly about 40%. Parapapillary retinal flow dropped significantly about 19% (120 min). OPA and pOBF showed no statistically significant changes. BP showed no significant changes, and OPP was significantly increased. There were no correlations with pH or systemic perfusion parameters. AZ leads to a dilatation of retinal VD, to an increase of BF in the optic nerve head, and to a decrease of parapapillary retinal BF. The different BF changes in different vascular beds might be due to different regulatory mechanisms, steal effects, or different distributions of the carbonic anhydrase.

  2. Heterogeneity of hypoxia in solid tumours and mechanochemical reactions with oxygen nanobubbles.

    PubMed

    Orel, V B; Zabolotny, M A; Orel, V E

    2017-05-01

    Tumour hypoxia leads to radio and chemotherapy resistance among cancer patients. The aim of this paper is to formulate a hypothesis on the heterogeneity of hypoxia in solid tumours. Tumour vasculature is known to be significantly variable. The great structural and functional abnormalities of tumour microcirculation cause spatial and temporal heterogeneity in its perfusion. Tumours have constantly been under the influence of pulsatile blood perfusion with variable pressure that initiates inhomogeneous erythrocyte deformation and following impact on oxygen disorder release from red blood cells into plasma within the blood vessel. Furthermore, stochastically released oxygen in tumour vessel, plasma and interstitial fluid may lead to heterogeneity of hypoxia. Under the influence of increased heterogeneity of hemodynamic force, the oxygen molecules dissolved in blood plasma are inclined to form nanobubbles (NBs) in tumour vessels. Considering the fact that tumour interstitial fluid pressure is increased compared to normal tissues, we assume that oxygen NBs may burst under the impact of shear stress. During the course of mechanochemical reaction, when a nanobubble (NB) bursts, both reactive oxygen species and ions form in various charged states. In consequence of a chain reaction, free radical oxygen molecules bind to proteins and lipids, thus reducing oxygen molecules in a chaotic manner within the tumour. The proposed hypothesis should be used as a methodical approach based on the simultaneous ultrasound imaging diagnostic techniques and therapy, regarding the mechanochemical effect on NB conglomerates with drugs in the tumour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Metastatic breast carcinoma presenting as unilateral pulsatile tinnitus: a case report.

    PubMed

    Moore, Andrew; Cunnane, Max; Fleming, Jason C

    2015-02-01

    Pulsatile tinnitus is a rare symptom, yet it may herald life-threatening pathology in the absence of other symptoms or signs. Pulsatile tinnitus tends to imply a vascular cause, but metastatic disease also can present in this way. Clinicians should therefore adopt a specific diagnostic algorithm for pulsatile tinnitus and always consider the possibility of metastatic disease. A history of malignant disease and new cranial nerve palsies should raise clinical suspicion for skull base metastases. We describe the case of a 63-year-old woman presenting with unilateral subjective pulsatile tinnitus and a middle ear mass visible on otoscopy. Her background included the diagnosis of idiopathic unilateral vagal and hypoglossal nerve palsies 4 years previously, with normal magnetic resonance imaging (MRI). Repeat MRI and computed tomography imaging were consistent with metastatic breast carcinoma. This case raises important questions about imaging protocols and the role of serial scanning in patients at high risk of metastatic disease.

  4. Effects of captopril on the human foetal placental circulation: an interaction with bradykinin and angiotensin I.

    PubMed Central

    de Moura, R; Lopes, M A

    1995-01-01

    1. The mechanism underlying the foetal toxicity induced by captopril is not well understood. Since bradykinin and angiotensin II appear to be important in the regulation of the placental circulation, experiments were performed to assess the effects of captopril on the vascular actions of these peptides on the human foetal placental circulation. 2. Full-term human placentas, obtained from normal pregnancy, were perfused with a modified Tyrode solution bubbled with O2 using a pulsatile pump. The placental perfusion pressure was measured with a Statham pressure transducer and recorded continuously on a Hewlett-Packard polygraph. 3. Bradykinin (0.1, 0.3 and 1.0 nmol) injected into the placental arterial circulation produced an increase in placental perfusion pressure in all experiments. This effect of bradykinin was significantly inhibited by indomethacin (3 x 10(-7) M). 4. Captopril (10(-7) M) significantly potentiated the pressor effect of bradykinin on the human placental circulation (n = 6). This effect of captopril was reversed by indomethacin (3 x 10(-7) M). 5. Angiotensin I (n = 6) and angiotensin II (n = 6), injected into the placental arterial circulation, both produced dose-dependent increases in placental perfusion pressure. The dose-response curves to angiotensin I (n = 6) were significantly displaced to the right by captopril in a concentration-dependent manner. 6. We suggest that the toxic effects of captopril on the foetus, rather than reflecting an inhibition of angiotensin II formation, may instead be related to a potentiation of the vasoconstrictor effect of bradykinin on the foetal placental circulation, thereby reducing blood flow and causing foetal damage. The reasons for this are discussed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7669485

  5. Hypertonic Lactate to Improve Cerebral Perfusion and Glucose Availability After Acute Brain Injury.

    PubMed

    Carteron, Laurent; Solari, Daria; Patet, Camille; Quintard, Hervé; Miroz, John-Paul; Bloch, Jocelyne; Daniel, Roy T; Hirt, Lorenz; Eckert, Philippe; Magistretti, Pierre J; Oddo, Mauro

    2018-06-19

    Lactate promotes cerebral blood flow and is an efficient substrate for the brain, particularly at times of glucose shortage. Hypertonic lactate is neuroprotective after experimental brain injury; however, human data are limited. Prospective study (clinicaltrials.gov NCT01573507). Academic ICU. Twenty-three brain-injured subjects (13 traumatic brain injury/10 subarachnoid hemorrhage; median age, 59 yr [41-65 yr]; median Glasgow Coma Scale, 6 [3-7]). Three-hour IV infusion of hypertonic lactate (sodium lactate, 1,000 mmol/L; concentration, 30 µmol/kg/min) administered 39 hours (26-49 hr) from injury. We examined the effect of hypertonic lactate on cerebral perfusion (using transcranial Doppler) and brain energy metabolism (using cerebral microdialysis). The majority of subjects (13/23 = 57%) had reduced brain glucose availability (baseline pretreatment cerebral microdialysis glucose, < 1 mmol/L) despite normal baseline intracranial pressure (10 [7-15] mm Hg). Hypertonic lactate was associated with increased cerebral microdialysis lactate (+55% [31-80%]) that was paralleled by an increase in middle cerebral artery mean cerebral blood flow velocities (+36% [21-66%]) and a decrease in pulsatility index (-21% [13-26%]; all p < 0.001). Cerebral microdialysis glucose increased above normal range during hypertonic lactate (+42% [30-78%]; p < 0.05); reduced brain glucose availability correlated with a greater improvement of cerebral microdialysis glucose (Spearman r = -0.53; p = 0.009). No significant changes in cerebral perfusion pressure, mean arterial pressure, systemic carbon dioxide, and blood glucose were observed during hypertonic lactate (all p > 0.1). This is the first clinical demonstration that hypertonic lactate resuscitation improves both cerebral perfusion and brain glucose availability after brain injury. These cerebral vascular and metabolic effects appeared related to brain lactate supplementation rather than to systemic effects.

  6. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.

    PubMed

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara

    2017-08-01

    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  7. Pulsatile tinnitus: imaging and differential diagnosis.

    PubMed

    Hofmann, Erich; Behr, Robert; Neumann-Haefelin, Tobias; Schwager, Konrad

    2013-06-01

    Pulsatile tinnitus, unlike idiopathic tinnitus, usually has a specific, identifiable cause. Nonetheless, uncertainty often arises in clinical practice about the findings to be sought and the strategy for work-up. Selective literature review and evaluation of our own series of patients. Pulsatile tinnitus can have many causes. No prospective studies on this subject are available to date. Pulsatile tinnitus requires both a functional organ of hearing and a genuine, physical source of sound, which can, under certain conditions, even be objectified by an examiner. Pulsatile tinnitus can be classified by its site of generation as arterial, arteriovenous, or venous. Typical arterial causes are arteriosclerosis, dissection, and fibromuscular dysplasia. Common causes at the arteriovenous junction include arteriovenous fistulae and highly vascularized skull base tumors. Common venous causes are intracranial hypertension and, as predisposing factors, anomalies and normal variants of the basal veins and sinuses. In our own series of patients, pulsatile tinnitus was most often due to highly vascularized tumors of the temporal bone (16%), followed by venous normal variants and anomalies (14%) and vascular stenoses (9%). Dural arteriovenous fistulae, inflammatory hyperemia, and intracranial hypertension were tied for fourth place (8% each). The clinical findings and imaging studies must always be evaluated together. Thorough history-taking and clinical examination are the basis for the efficient use of imaging studies to reveal the cause of pulsatile tinnitus.

  8. Extremely pulsatile flow around a surface-mounted hemisphere: synergistic experiments and simulations

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Beratlis, Nikolaos; Balaras, Elias; Plesniak, Michael W.

    2017-11-01

    Extremely pulsatile flow (where the amplitude of oscillation pulsation is of the same order as the mean flow) over a three-dimensional, surface-mounted bluff body gives rise a wealth of fluid dynamics phenomena. In this study, we extend our previous experimental work on extremely pulsatile flow around a surface-mounted hemisphere by performing a complementary direct numerical simulation. Results from the experiment and simulation will be presented and compared. After establishing the agreement between experiment and simulation, we will examine the morphology and dynamics of the vortex structures in the wake of the hemisphere, and the effects of extreme pulsatility. The dynamics of the arch-type recirculation vortex is of primary interest, in particular its upstream propagation due to self-induced velocity in the direction opposite to the freestream during deceleration. In addition to the velocity field, the surface pressure field throughout the pulsatile cycle will be presented. These synergistic experiments and simulations provide a detailed view into the complex flow fields associated with pulsatile flow over a surface-mounted hemisphere. This material is based upon work supported by the National Science Foundation under Grant Number CBET-1236351 and the GW Center for Biomimetics and Bioinspired Engineering.

  9. Correlations of Neck/Shoulder Perfusion Characteristics and Pain Symptoms of the Female Office Workers with Sedentary Lifestyle

    PubMed Central

    Wei, Shan-Hua; Li, Yung-Hui; Kuo, Fun-Chie

    2017-01-01

    Aim Modern office workers are often impacted by chronic neck/shoulder pain. Most of the previous studies which investigated the relationship of the occupational factors and musculoskeletal symptoms had adopted questionnaire survey. In this study the microcirculatory characteristics and perceived symptoms in neck/shoulder region were compared among office workers with sedentary lifestyle. Methods Thirty-seven female office workers were recruited in this study. Microcirculatory flow in neck/shoulder region characterized by the mean blood flow (MMBF value), pulsatile blood flow (PMBF value), and the PMBF/MMBF ratio (perfusion pulsatility, PP) were investigated using Laser Doppler Flowmetry (LDF). A Chinese version of the Standardized Nordic Musculoskeletal Questionnaire (NMQ) were also administered to collect the information of perceived neck/shoulder symptoms. Correlations between the perfusion characteristics and the individual/occupational factors were analyzed using the Spearman test. The difference of the MMBF values between the low-pain group (pain level≤2) and the high-pain group (pain level>2) were compared using the Mann-Whitney U test. Results There were 81% participants reported neck or shoulder pain symptoms. The duration of shoulder pain was significantly correlated with the workers’ age and the duration of employment (p<0.01) (n = 37). While both the MMBF and PMBF values in shoulder region were significantly reduced with the workers’ age and the duration of employment (p<0.05) (n = 27). And there was a 54% reduction in the MMBF value of the workers from age of 23 to 47. And the MMBF value of the high-pain group (n = 15) was significantly lower than the value of the low-pain group (n = 15) (p<0.05). The duration of shoulder pain showed a moderately negative correlation with PMBF values (n = 19). Besides, the PP value was moderately correlated with shoulder pain level attributed by the rapid reduction of MMBF values (p = 0.07). Conclusion In this study, the LDF method was used for the first time in the workplace in Taiwan. It was demonstrated that the MMBF in shoulder region were affected by aging effect and towards lower value at higher pain level. Impaired microcirculation caused by age effect, when coupled with sedentary lifestyle, was found to be more likely to evoke ischemia shoulder pain. Further studies are needed to assess current indicator, PP value, and the underlying mechanism of pain caused by sedentary lifestyle. PMID:28060875

  10. Effect of echo artifacts on characterization of pulsatile tissues in neonatal cranial ultrasonic movies

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Takahashi, Kazuki; Tabata, Yuki; Kitsunezuka, Yoshiki

    2016-04-01

    Effect of echo artifacts on characterization of pulsatile tissues has been examined in neonatal cranial ultrasonic movies by characterizing pulsatile intensities with different regions of interest (ROIs). The pulsatile tissue, which is a key point in pediatric diagnosis of brain tissue, was detected from a heartbeat-frequency component in Fourier transform of a time-variation of 64 samples of echo intensity at each pixel in a movie fragment. The averages of pulsatile intensity and power were evaluated in two ROIs: common fan-shape and individual cranial-shape. The area of pulsatile region was also evaluated as the number of pixels where the pulsatile intensity exceeds a proper threshold. The extracranial pulsatile region was found mainly in the sections where mirror image was dominant echo artifact. There was significant difference of pulsatile area between two ROIs especially in the specific sections where mirror image was included, suggesting the suitability of cranial-shape ROI for statistical study on pulsatile tissues in brain. The normalized average of pulsatile power in the cranial-shape ROI exhibited most similar tendency to the normalized pulsatile area which was treated as a conventional measure in spite of its requirement of thresholding. It suggests the potential of pulsatile power as an alternative measure for pulsatile area in further statistical study of pulsatile tissues because it was neither affected by echo artifacts nor threshold.

  11. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    PubMed

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  12. Topical fundus pulsation measurement in patients with active central serous chorioretinopathy.

    PubMed

    Tittl, Michael; Polska, Elzbieta; Kircher, Karl; Kruger, Andreas; Maar, Noemi; Stur, Michael; Schmetterer, Leopold

    2003-07-01

    To determine regional pulsatile choroidal blood flow using laser interferometry in patients with active central serous chorioretinopathy (CSC). The study compared an equally sized age-, sex-, and refractive error-matched control group of healthy volunteers obtained from the Department of Clinical Pharmacology with 18 consecutive patients who had newly diagnosed active, unilateral CSC obtained from the University of Vienna Eye Clinic, Vienna, Austria. Regional fundus pulsation amplitude as assessed using laser interferometry. The median age of the patients was 40 years; the male-female ratio was 16:2. Foveal fundus pulsation amplitude was significantly higher in eyes with CSC (mean [SD], 5.5 [1.7] micro m) than in the eyes of the control subjects (4.1 [1.1] micro m; P =.005). In addition, eyes with CSC had a significantly higher variability in fundus pulsation amplitude (mean [SD], 48% [20%]) assessed at different fundus locations around the leak than the controls did (20% [9%]; P<.001). To our knowledge, this is the first study that measures topical fundus pulsations in patients who have active, unilateral CSC. These data indicate a generally increased foveal pulsatile choroidal blood flow and an abnormal distribution of fundus pulsation amplitude in the area close to the leak. Whether these findings reinforce the concept that choroidal perfusion abnormalities play a role in the pathogenesis of CSC remains to be established.

  13. Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability.

    PubMed

    Arakawa, Mamoru; Nishimura, Takashi; Takewa, Yoshiaki; Umeki, Akihide; Ando, Masahiko; Kishimoto, Yuichiro; Kishimoto, Satoru; Fujii, Yutaka; Date, Kazuma; Kyo, Shunei; Adachi, Hideo; Tatsumi, Eisuke

    2016-06-01

    We previously developed a novel control system for a continuous-flow left ventricular assist device (LVAD), the EVAHEART, and demonstrated that sufficient pulsatility can be created by increasing its rotational speed in the systolic phase (pulsatile mode) in a normal heart animal model. In the present study, we assessed this system in its reliability and ability to follow heart rate variability. We implanted an EVAHEART via left thoracotomy into five goats for the Study for Fixed Heart Rate with ventricular pacing at 80, 100, 120 and 140 beats/min and six goats for the Study for native heart rhythm. We tested three modes: the circuit clamp, the continuous mode and the pulsatile mode. In the pulsatile mode, rotational speed was increased during the initial 35 % of the RR interval by automatic control based on the electrocardiogram. Pulsatility was evaluated by pulse pressure and dP/dt max of aortic pressure. As a result, comparing the pulsatile mode with the continuous mode, the pulse pressure was 28.5 ± 5.7 vs. 20.3 ± 7.9 mmHg, mean dP/dt max was 775.0 ± 230.5 vs 442.4 ± 184.7 mmHg/s at 80 bpm in the study for fixed heart rate, respectively (P < 0.05). The system successfully determined the heart rate to be 94.6 % in native heart rhythm. Furthermore, pulse pressure was 41.5 ± 7.9 vs. 27.8 ± 5.6 mmHg, mean dP/dt max was 716.2 ± 133.9 vs 405.2 ± 86.0 mmHg/s, respectively (P < 0.01). In conclusion, our newly developed the pulsatile mode for continuous-flow LVADs reliably provided physiological pulsatility with following heart rate variability.

  14. A computational model-based validation of Guyton's analysis of cardiac output and venous return curves

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.; Mark, R. G.

    2002-01-01

    Guyton developed a popular approach for understanding the factors responsible for cardiac output (CO) regulation in which 1) the heart-lung unit and systemic circulation are independently characterized via CO and venous return (VR) curves, and 2) average CO and right atrial pressure (RAP) of the intact circulation are predicted by graphically intersecting the curves. However, this approach is virtually impossible to verify experimentally. We theoretically evaluated the approach with respect to a nonlinear, computational model of the pulsatile heart and circulation. We developed two sets of open circulation models to generate CO and VR curves, differing by the manner in which average RAP was varied. One set applied constant RAPs, while the other set applied pulsatile RAPs. Accurate prediction of intact, average CO and RAP was achieved only by intersecting the CO and VR curves generated with pulsatile RAPs because of the pulsatility and nonlinearity (e.g., systemic venous collapse) of the intact model. The CO and VR curves generated with pulsatile RAPs were also practically independent. This theoretical study therefore supports the validity of Guyton's graphical analysis.

  15. Correlation mapping for visualizing propagation of pulsatile CSF motion in intracranial space based on magnetic resonance phase contrast velocity images: preliminary results.

    PubMed

    Yatsushiro, Satoshi; Hirayama, Akihiro; Matsumae, Mitsunori; Kajiwara, Nao; Abdullah, Afnizanfaizal; Kuroda, Kagayaki

    2014-01-01

    Correlation time mapping based on magnetic resonance (MR) velocimetry has been applied to pulsatile cerebrospinal fluid (CSF) motion to visualize the pressure transmission between CSF at different locations and/or between CSF and arterial blood flow. Healthy volunteer experiments demonstrated that the technique exhibited transmitting pulsatile CSF motion from CSF space in the vicinity of blood vessels with short delay and relatively high correlation coefficients. Patient and healthy volunteer experiments indicated that the properties of CSF motion were different from the healthy volunteers. Resultant images in healthy volunteers implied that there were slight individual difference in the CSF driving source locations. Clinical interpretation for these preliminary results is required to apply the present technique for classifying status of hydrocephalus.

  16. Electrocardiogram frequency change by extracorporeal blood perfusion in a swine ventricular fibrillation model

    PubMed Central

    2013-01-01

    Background Extracorporeal cardiopulmonary resuscitation (ECPR) refers to the application of extracorporeal blood circulation with oxygenation as a resuscitation tool. The objective of this study is to observe the frequency component changes in the electrocardiogram (ECG) by ECPR during prolonged ventricular fibrillation (VF). Methods Six swine were prepared as a VF model. Extracorporeal blood circulation with a pulsatile blood pump and oxygenator was set up for the model. ECG signals were measured for 13 min during VF and analyzed using frequency analysis methods. The median frequency (MF), dominant frequency (DF), and amplitude spectrum area (AMSA) were calculated from a spectrogram obtained using short-time Fourier transform (STFT). Results MF decreased from 11 Hz at the start to 9 Hz at 2 min after VF and then increased to 11 Hz at 4.5 min after VF. DF started at 7 Hz and increased to 11 Hz within the first min and decreased to 9 Hz at 2 min, then increased to 12 Hz at 4.5 min after VF. Both frequency components decreased gradually from 4.5 min until 10 min after VF. After the oxygenated blood perfusion was initiated, both MF and DF increased remarkably and exceeded 12 and 14 Hz, respectively. Similarly, AMSA decreased gradually for the first 10 min, but increased remarkably and varied beyond 13 mV∙Hz after the oxygenated blood supply started. Remarkable frequency increases in ECG due to the oxygenated blood perfusion during ECPR were observed in the swine VF model. Conclusions The ECG frequency analysis during ECPR can give the resuscitation provider important information about the cardiac perfusion status and the appropriateness of the ECPR setup as well as the prediction of defibrillation success. PMID:24274395

  17. Effects of cyclic flexure on endothelial permeability and apoptosis in arterial segments perfused ex vivo.

    PubMed

    Van Epps, J Scott; Chew, Douglas W; Vorp, David A

    2009-10-01

    Certain arteries (e.g., coronary, femoral, etc.) are exposed to cyclic flexure due to their tethering to surrounding tissue beds. It is believed that such stimuli result in a spatially variable biomechanical stress distribution, which has been implicated as a key modulator of remodeling associated with atherosclerotic lesion localization. In this study we utilized a combined ex vivo experimental/computational methodology to address the hypothesis that local variations in shear and mural stress associated with cyclic flexure influence the distribution of early markers of atherogenesis. Bilateral porcine femoral arteries were surgically harvested and perfused ex vivo under pulsatile arterial conditions. One of the paired vessels was exposed to cyclic flexure (0-0.7 cm(-1)) at 1 Hz for 12 h. During the last hour, the perfusate was supplemented with Evan's blue dye-labeled albumin. A custom tissue processing protocol was used to determine the spatial distribution of endothelial permeability, apoptosis, and proliferation. Finite element and computational fluid dynamics techniques were used to determine the mural and shear stress distributions, respectively, for each perfused segment. Biological data obtained experimentally and mechanical stress data estimated computationally were combined in an experiment-specific manner using multiple linear regression analyses. Arterial segments exposed to cyclic flexure had significant increases in intimal and medial apoptosis (3.42+/-1.02 fold, p=0.029) with concomitant increases in permeability (1.14+/-0.04 fold, p=0.026). Regression analyses revealed specific mural stress measures including circumferential stress at systole, and longitudinal pulse stress were quantitatively correlated with the distribution of permeability and apoptosis. The results demonstrated that local variation in mechanical stress in arterial segments subjected to cyclic flexure indeed influence the extent and spatial distribution of the early atherogenic markers. In addition, the importance of including mural stresses in the investigation of vascular mechanopathobiology was highlighted. Specific example results were used to describe a potential mechanism by which systemic risk factors can lead to a heterogeneous disease.

  18. Achieving low anastomotic leak rates utilizing clinical perfusion assessment.

    PubMed

    Kream, Jacob; Ludwig, Kirk A; Ridolfi, Timothy J; Peterson, Carrie Y

    2016-10-01

    Anastomotic leak after colorectal resection increases morbidity, mortality, and in the setting of cancer, increases recurrences rates and reduces survival odds. Recent reports suggest that fluorescence evaluation of perfusion after colorectal anastomosis creation is associated with low anastomotic leak rates (1.4%). The purpose of this work was to evaluate whether a similar low anastomotic leak rate after left-sided colorectal resections could be achieved using standard assessment of blood flow to the bowel ends. We performed a retrospective chart review at an academic tertiary referral center, evaluating 317 consecutive patients who underwent a pelvic anastomosis after sigmoid colectomy, left colectomy, or low anterior resection. All operations were performed by a single surgeon from March 2008 to January 2015 with only standard clinical measures used to assess perfusion to the bowel ends. The primary outcome measure was the anastomotic leak rate as diagnosed by clinical symptoms, exam, or routine imaging. The average patient age was 59.7 years with an average body mass index of 28.8 kg/m(2). Rectal cancer (128, 40.4%) was the most common indication for operation while hypertension (134, 42.3%) was the most common comorbidity. In total, 177 operations were laparoscopic (55.8%), 13 were reoperative resections (4.1%), and 108 were protected with a loop ileostomy (34.1%). Preoperative chemotherapy was administered to 25 patients (7.9%) while preoperative chemo/radiation was administered to 64 patients (20.2%). The anastomotic leak rate was 1.6% (5/317). Our data suggests that standard, careful evaluation of adequate blood flow via inspection and confirmation of pulsatile blood flow to the bowel ends and meticulous construction of the colorectal or coloanal anastomoses can result in very low leak rates, similar to the rate reported when intraoperative imaging is used to assess perfusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation diagrams and Poincaré maps. It is shown that traveling waves of pressure and velocity cause a delay in the radial displacement of the shell at different values of the axial coordinate. The effect of different pulse wave velocities is also studied. Comparisons with the corresponding ideal case without wave propagation (i.e. with the same pulsatile velocity and pressure at any point of the shell) are here discussed. Bifurcation diagrams of Poincaré maps obtained from direct time integration have been used to study the system in the spectral neighborhood of the fundamental natural frequency. By increasing the forcing frequency, the response undergoes very complex nonlinear dynamics (chaos, amplitude modulation and period-doubling bifurcation), here deeply investigated.

  20. Vortex propagation around a wall-mounted obstacle in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2015-11-01

    Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  1. Increasing LH Pulsatility in Women With Hypothalamic Amenorrhoea Using Intravenous Infusion of Kisspeptin-54

    PubMed Central

    Jayasena, Channa N.; Abbara, Ali; Veldhuis, Johannes D.; Comninos, Alexander N.; Ratnasabapathy, Risheka; De Silva, Akila; Nijher, Gurjinder M. K.; Ganiyu-Dada, Zainab; Mehta, Amrish; Todd, Catriona; Ghatei, Mohammad A.; Bloom, Stephen R.

    2014-01-01

    Background: Hypothalamic amenorrhea (HA) is the one of the most common causes of period loss in women of reproductive age and is associated with deficient LH pulsatility. High-dose kisspeptin-54 acutely stimulates LH secretion in women with HA, but chronic administration causes desensitization. GnRH has paradoxical effects on reproductive activity; we therefore hypothesized that a dose-dependent therapeutic window exists within which kisspeptin treatment restores the GnRH/LH pulsatility in women with HA. Aim: The aim of the study was to determine whether constant iv infusion of kisspeptin-54 temporarily increases pulsatile LH secretion in women with HA. Methods: Five patients with HA each underwent six assessments of LH pulsatility. Single-blinded continuous iv infusion of vehicle or kisspeptin-54 (0.01, 0.03, 0.10, 0.30, or 1.00 nmol/kg/h) was administered. The LH pulses were detected using blinded deconvolution. Results: Kisspeptin increased LH pulsatility in all patients with HA, with peak responses observed at different doses in each patient. The mean peak number of pulses during infusion of kisspeptin-54 was 3-fold higher when compared with vehicle (number of LH pulses per 8 h: 1.6 ± 0.4, vehicle; 5.0 ± 0.5, kisspeptin-54, P < .01 vs vehicle). The mean peak LH pulse secretory mass during kisspeptin-54 was 6-fold higher when compared with vehicle (LH pulse secretory mass in international units per liter: 3.92 ± 2.31, vehicle; 23.44 ± 12.59, kisspeptin-54; P < .05 vs vehicle). Conclusions: Kisspeptin-54 infusion temporarily increases LH pulsatility in women with HA. Furthermore, we have determined the dose range within which kisspeptin-54 treatment increases basal and pulsatile LH secretion in women with HA. This work provides a basis for studying the potential of kisspeptin-based therapies to treat women with HA. PMID:24517142

  2. Dynamical modes of two almost identical chemical oscillators connected via both pulsatile and diffusive coupling.

    PubMed

    Safonov, Dmitry A; Vanag, Vladimir K

    2018-05-03

    The dynamical regimes of two almost identical Belousov-Zhabotinsky oscillators with both pulsatile (with time delay) and diffusive coupling have been studied theoretically with the aid of ordinary differential equations for four combinations of these types of coupling: inhibitory diffusive and inhibitory pulsatile (IDIP); excitatory diffusive and inhibitory pulsatile; inhibitory diffusive and excitatory pulsatile; and finally, excitatory diffusive and excitatory pulsatile (EDEP). The combination of two types of coupling creates a condition for new feedback, which promotes new dynamical modes for the IDIP and EDEP coupling.

  3. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling.

    PubMed

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of amoxicillin. In vitro release study firstly indicated a three-pulse release profile of the tablet. Later the pulse tablet was found to generate the sustained release of amoxicillin in beagle dogs. Furthermore, the Simcyp® software was used to simulate the in vivo concentration time curve model of the three-pulse release tablet for amoxicillin in both human and beagle dog. The prediction by PBPK model nicely fitted the observation in human and beagle dog. This study has demonstrated the interrelation of factors affecting the pulsatile formulation of amoxicillin using a Box-Behnken design. The three-pulse release tablets of amoxicillin were proven to generate pulsatile release in vitro and sustained release in vivo. This formulation was also found to extend the effective plasma concentration in human compared to the tablet of immediate release based on the simulation data by PBPK modeling. This study provides an example of using PBPK to guide the development of pulsatile dosage forms.

  4. The Effect of Milrinone on Splanchnic and Cerebral Perfusion in Infants With Congenital Heart Disease Prior to Surgery: An Observational Study.

    PubMed

    Bianchi, Maria Otilia; Cheung, Po-Yin; Phillipos, Ernest; Aranha-Netto, Abimael; Joynt, Chloe

    2015-08-01

    Despite the advancement in the postoperative care of neonates with congenital heart disease (CHD), there is little information on preoperative management of systemic and regional hemodynamics, which may be related to outcomes. We aimed to determine the preoperative effect of milrinone, a phosphodiesterase III inhibitor, on cardiac output and splanchnic and cerebral perfusion in neonates with CHD. Neonates with CHD requiring cardiac surgery were enrolled in a prospective, single-blinded study once a clinical decision of starting milrinone (0.75 μg/kg per minute intravenously) using institutional criteria was made. Demographic and clinical variables and outcomes were recorded. Combined cardiac output and measures of splanchnic (superior mesenteric and celiac arteries) and cerebral (anterior and middle cerebral arteries) perfusion were determined by Doppler studies at 0, 6, 24, and 48 h after milrinone infusion. Investigators were unaware of intervention time points and patients in analyzing blood flow measurements. Seventeen term (39.2 ± 1.3 weeks) neonates were included with hypoplastic left-sided heart syndrome (78.5%) as the most common diagnosis. Combined cardiac output increased by 28% within 48 h (613 ± 154 vs. 479 ± 147 mL/kg per minute at baseline, P < 0.05). Superior mesenteric artery mean velocity increased at 6 h and throughout 48 h of milrinone infusion (P < 0.05). Peak and mean velocities at cerebral arteries increased with milrinone infusion (P < 0.05~0.08), and the corresponding changes at celiac artery were modest. There were no significant changes in splanchnic and cerebral resistive and pulsatility indices during milrinone infusion. Milrinone increases cardiac output with concurrent effects on splanchnic and cerebral blood flows during the short-term preoperative use in neonates with CHD.

  5. Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion

    PubMed Central

    Campbell, Ian C.; Timmins, Lucas H.; Giddens, Don P.; Virmani, Renu; Veneziani, Alessandro; Rab, S. Tanveer; Samady, Habib; McDaniel, Michael C.; Finn, Aloke V.; Taylor, W. Robert; Oshinski, John N.

    2013-01-01

    Purpose We investigated whether local hemodynamics were associated with sites of plaque erosion and hypothesized that patients with plaque erosion have locally elevated WSS magnitude in regions where erosion has occurred. Methods We generated 3D, patient-specific models of coronary arteries from biplane angiographic images in 3 human patients with plaque erosion diagnosed by optical coherence tomography (OCT). Using computational fluid dynamics, we simulated pulsatile blood flow and calculated both wall shear stress (WSS) and oscillatory shear index (OSI). We also investigated anatomic features of plaque erosion sites by examining branching and local curvature in x-ray angiograms of barium-perfused autopsy hearts. Results Neither high nor low magnitudes of mean WSS were associated with sites of plaque erosion. OSI and local curvature were also not associated with erosion. Anatomically, 8 of 13 hearts had a nearby bifurcation upstream of the site of plaque erosion. Conclusions This study provides preliminary evidence that neither hemodynamics nor anatomy are predictors of plaque erosion, based upon a very unique dataset. Our sample sizes are small, but this dataset suggests that high magnitudes of wall shear stress, one potential mechanism for inducing plaque erosion, are not necessary for erosion to occur. PMID:24223678

  6. Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†

    PubMed Central

    Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier

    2017-01-01

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602

  7. Film coatings for oral pulsatile release.

    PubMed

    Maroni, Alessandra; Zema, Lucia; Loreti, Giulia; Palugan, Luca; Gazzaniga, Andrea

    2013-12-05

    Pulsatile delivery is generally intended as a release of the active ingredient that is delayed for a programmable period of time to meet particular chronotherapeutic needs and, in the case of oral administration, also target distal intestinal regions, such as the colon. Most oral pulsatile delivery platforms consist in coated formulations wherein the applied polymer serves as the release-controlling agent. When exposed to aqueous media, the coating initially performs as a protective barrier and, subsequently, undergoes a timely failure based on diverse mechanisms depending on its physico-chemical and formulation characteristics. Indeed, it may be ruptured because of the gradual expansion of the core, swell and/or erode due to the glassy-rubbery polymer transition or become permeable thus allowing the drug molecules to diffuse outwards. Otherwise, when the coating is a semipermeable membrane provided with one or more orifices, the drug is released through the latter as a result of an osmotic water influx. The vast majority of pulsatile delivery systems described so far have been prepared by spray-coating, which offers important versatility and feasibility advantages over other techniques such as press- and dip-coating. In the present article, the design, manufacturing and performance of spray-coated pulsatile delivery platforms is thus reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. 21 CFR 870.4320 - Cardiopulmonary bypass pulsatile flow generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass pulsatile flow generator... Cardiopulmonary bypass pulsatile flow generator. (a) Identification. A cardiopulmonary bypass pulsatile flow... device is placed in a cardiopulmonary bypass circuit downstream from the oxygenator. (b) Classification...

  9. 21 CFR 870.4320 - Cardiopulmonary bypass pulsatile flow generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass pulsatile flow generator... Cardiopulmonary bypass pulsatile flow generator. (a) Identification. A cardiopulmonary bypass pulsatile flow... device is placed in a cardiopulmonary bypass circuit downstream from the oxygenator. (b) Classification...

  10. Physiological adaptation of the growth-restricted fetus.

    PubMed

    Maršál, Karel

    2018-05-01

    The growth-restricted fetus in utero is exposed to a hostile environment and suffers undernutrition and hypoxia. To cope with the stress, the fetus changes its physiological functions. These adaptive changes aid intrauterine survival; however, they can lead to permanent functional and structural changes that can contribute to the development of serious chronic diseases later in life. Epigenetic mechanisms are an important part of the pathophysiological processes behind this "developmental origin of adult diseases." The dominant cardiovascular adaptive change is the redistribution of blood flow in hypoxic fetuses, with preferential supply of blood to the fetal brain, myocardium, and adrenal glands. The proportion of blood from the umbilical vein to the ductus venosus and foramen ovale increases, which increases the cardiac output of the left heart ventricle. The increased perfusion of fetal brain can be followed with Doppler ultrasound as increased diastolic velocities and decreased pulsatility index in the middle cerebral artery. Copyright © 2018. Published by Elsevier Ltd.

  11. EIT based pulsatile impedance monitoring during spontaneous breathing in cystic fibrosis.

    PubMed

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Gong, Bo; Müller-Lisse, Ullrich; Moeller, Knut

    2017-06-01

    Evaluating the lung function in patients with obstructive lung disease by electrical impedance tomography (EIT) usually requires breathing maneuvers containing deep inspirations and forced expirations. Since these maneuvers strongly depend on the patient's co-operation and health status, normal tidal breathing was investigated in an attempt to develop continuous maneuver-free measurements. Ventilation related and pulsatile impedance changes were systematically analyzed during normal tidal breathing in 12 cystic fibrosis (CF) patients and 12 lung-healthy controls (HL). Tidal breaths were subdivided into three inspiratory (In1, In2, In3) and three expiratory (Ex1, Ex2, Ex3) sections of the same amplitude of global impedance change. Maximal changes of the ventilation and the pulsatile impedance signal occurring during these sections were determined (▵I V and ▵I P ). Differences in ▵I V and ▵I P among sections were ascertained in relation to the first inspiratory section. In addition, ▵I V /▵I P was calculated for each section. Medians of changes in ▵I V were  <0.05% in all sections for both subject groups. Both groups showed a similar pattern of ▵I P changes during tidal breathing. Changes in ▵I P first decreased during inspiration (In2), then increased towards the end of inspiration (In3) and reached a maximum at the beginning of expiration (Ex1). During the last two sections of expiration (Ex2, Ex3) ▵I P changes decreased. The CF patients showed higher variations in ▵I P changes compared to the controls (CF:  -426.5%, HL:  -158.1%, coefficient of variation). Furthermore, ▵I V /▵I P significantly differed between expiratory sections for the CF patients (Ex1-Ex2, p  <  0.01; Ex1-Ex3, p  <  0.001; Ex2-Ex3, p  <  0.05), but not for the controls. No significant differences in ▵I V /▵I P between inspiratory sections were determined for both groups. Differences in ▵I P changes and in ▵I V /▵I P between both subject groups were speculated to be caused by higher breathing efforts of the CF patients due to airway obstruction leading to higher intrathoracic pressures, and thus to greater changes in lung perfusion.

  12. Continuous and Pulsatile Pediatric Ventricular Assist Device Hemodynamics with a Viscoelastic Blood Model

    PubMed Central

    Good, Bryan C.; Deutsch, Steven; Manning, Keefe B.

    2015-01-01

    Purpose To investigate the effects of pulsatile and continuous pediatric ventricular assist (PVAD) flow and pediatric blood viscoelasticity on hemodynamics in a pediatric aortic graft model. Methods Hemodynamic parameters of pulsatility, along with velocity and wall shear stress (WSS), are analyzed and compared between Newtonian and viscoelastic blood models at a range of physiological pediatric hematocrits using computational fluid dynamics. Results Both pulsatile and continuous PVAD flow lead to a decrease in pulsatility (surplus hemodynamic energy (SHE), ergs/cm3) compared to healthy aortic flow but with continuous PVAD pulsatility up to 2.4 times lower than pulsatile PVAD pulsatility at each aortic outlet. Significant differences are also seen between the two flow modes in velocity and WSS. The higher velocity jet during systole with pulsatile flow leads to higher WSSs at the anastomotic toe and at the aortic branch bifurcations. The lower velocity but continuous flow jet leads to a much different flow field and higher WSSs into diastole. Under a range of physiological pediatric hematocrit (20-60%), both velocity and WSS can vary significantly with the higher hematocrit blood model generally leading to higher peak WSSs but also lower WSSs in regions of flow separation. Conclusions The large decrease in pulsatility seen from continuous PVAD flow could lead to complications in pediatric vascular development while the high WSSs during peak systole from pulsatile PVAD flow could lead to blood damage. Both flow modes lead to similar regions prone to intimal hyperplasia (IH) resulting from low time-averaged WSS (TAWSS) and high oscillatory shear index (OSI). PMID:26643646

  13. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.

    PubMed

    Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin

    2014-12-01

    We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Does Flexible Arterial Tubing Retain More Hemodynamic Energy During Pediatric Pulsatile Extracorporeal Life Support?

    PubMed

    Wang, Shigang; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate the hemodynamic performance and energy transmission of flexible arterial tubing as the arterial line in a simulated pediatric pulsatile extracorporeal life support (ECLS) system. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump head, Medos Hilite 2400 LT oxygenator, Biomedicus arterial/venous cannula (10 Fr/14 Fr), 3 feet of polyvinyl chloride (PVC) arterial tubing or latex rubber arterial tubing, primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at flow rates of 300 to 1200 mL/min (300 mL/min increments) under nonpulsatile and pulsatile modes at 36°C using either PVC arterial tubing (PVC group) or latex rubber tubing (Latex group). Real-time pressure and flow data were recorded using a custom-based data acquisition system. Mean pressures and energy equivalent pressures (EEP) were the same under nonpulsatile mode between the two groups. Under pulsatile mode, EEPs were significantly great than mean pressure, especially in the Latex group (P < 0.05). There was no difference between the two groups with regards to pressure drops across ECLS circuit, but pulsatile flow created more pressure drops than nonpulsatile flow (P < 0.05). Surplus hemodynamic energy (SHE) levels were always higher in the Latex group than in the PVC group at all sites. Although total hemodynamic energy (THE) losses were higher under pulsatile mode compared to nonpulsatile mode, more THE was delivered to the pseudopatient, particularly in the Latex group (P < 0.05). The results showed that the flexible arterial tubing retained more hemodynamic energy passing through it under pulsatile mode while mean pressures and pressure drops across the ECLS circuit were similar between PVC and latex rubber arterial tubing. Further studies are warranted to verify our findings. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling

    PubMed Central

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Background Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients’ compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. Methods The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box–Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Results and Discussion Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box–Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of amoxicillin. In vitro release study firstly indicated a three-pulse release profile of the tablet. Later the pulse tablet was found to generate the sustained release of amoxicillin in beagle dogs. Furthermore, the Simcyp® software was used to simulate the in vivo concentration time curve model of the three-pulse release tablet for amoxicillin in both human and beagle dog. The prediction by PBPK model nicely fitted the observation in human and beagle dog. Conclusions This study has demonstrated the interrelation of factors affecting the pulsatile formulation of amoxicillin using a Box–Behnken design. The three-pulse release tablets of amoxicillin were proven to generate pulsatile release in vitro and sustained release in vivo. This formulation was also found to extend the effective plasma concentration in human compared to the tablet of immediate release based on the simulation data by PBPK modeling. This study provides an example of using PBPK to guide the development of pulsatile dosage forms. PMID:27479702

  16. Elimination of motion, pulsatile flow and cross-talk artifacts using blade sequences in lumbar spine MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Kostopoulos, Spiros; Glotsos, Dimitrios; Roka, Violeta; Koutsiaris, Aristotle G; Batsikas, Georgios; Sakkas, Georgios K; Tsagkalis, Antonios; Notaras, Ioannis; Stathakis, Sotirios; Papanikolaou, Nikos; Vassiou, Katerina

    2013-07-01

    The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Pulsatile tinnitus as the presenting symptom in a patient with posterior reversible encephalopathy syndrome.

    PubMed

    Mohammed, Hassan; Briggs, Mayen; Phillips, John

    2016-09-01

    We present a case of posterior reversible encephalopathy syndrome (PRES) presenting with pulsatile tinnitus. We highlight the significance of a detailed neurological and cardiovascular assessment including the measurement of blood pressure in patients presenting with pulsatile tinnitus. Case presentation and literature review. One patient with undiagnosed PRES, who presented to our ear, nose and throat surgery department with pulsatile tinnitus is discussed. Symptoms, signs, investigations and treatments are presented. A literature review is also included. Pulsatile tinnitus can be the presenting symptom of neurovascular disorders, some of which might have serious sequelae if not treated promptly. Detailed neurological and cardiovascular history is recommended in addition to radiological investigations in patients presenting with pulsatile tinnitus.

  18. Bedside assistance in freehand ultrasonic diagnosis by real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion

    NASA Astrophysics Data System (ADS)

    Fukuzawa, M.; Kawata, K.; Nakamori, N.; Kitsunezuka, Y.

    2011-03-01

    By real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion, freehand ultrasonic diagnosis of neonatal ischemic diseases has been assisted at the bedside. The 2D ultrasonic movie was taken with a conventional ultrasonic apparatus (ATL HDI5000) and ultrasonic probes of 5-7 MHz with the compact tilt-sensor to measure the probe orientation. The real-time 3D visualization was realized by developing an extended version of the PC-based visualization system. The software was originally developed on the DirectX platform and optimized with the streaming SIMD extensions. The 3D scatter diagram of the latest pulsatile tissues has been continuously generated and visualized as projection image with the ultrasonic movie in the current section more than 15 fps. It revealed the 3D structure of pulsatile tissues such as middle and posterior cerebral arteries, Willis ring and cerebellar arteries, in which pediatricians have great interests in the blood flow because asphyxiated and/or low-birth-weight neonates have a high risk of ischemic diseases such as hypoxic-ischemic encephalopathy and periventricular leukomalacia. Since the pulsatile tissue-motion is due to local blood flow, it can be concluded that the system developed in this work is very useful to assist freehand ultrasonic diagnosis of ischemic diseases in the neonatal cranium.

  19. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma.

    PubMed

    Mastiholimath, V S; Dandagi, P M; Jain, S Samata; Gadad, A P; Kulkarni, A R

    2007-01-02

    In this study, investigation of an oral colon specific, pulsatile device to achieve time and/or site specific release of theophylline, based on chronopharmaceutical consideration. The basic design consists of an insoluble hard gelatin capsule body, filled with eudragit microcapsules of theophylline and sealed with a hydrogel plug. The entire device was enteric coated, so that the variability in gastric emptying time can be overcome and a colon-specific release can be achieved. The theophylline microcapsules were prepared in four batches, with Eudragit L-100 and S-100 (1:2) by varying drug to polymer ratio and evaluated for the particle size, drug content and in vitro release profile and from the obtained results; one better formulation was selected for further fabrication of pulsatile capsule. Different hydrogel polymers were used as plugs, to maintain a suitable lag period and it was found that the drug release was controlled by the proportion of polymers used. In vitro release studies of pulsatile device revealed that, increasing the hydrophilic polymer content resulted in delayed release of theophylline from microcapsules. The gamma scintigraphic study pointed out the capability of the system to release drug in lower parts of GIT after a programmed lag time for nocturnal asthma. Programmable pulsatile, colon-specific release has been achieved from a capsule device over a 2-24h period, consistent with the demands of chronotherapeutic drug delivery.

  20. A Novel Approach to Flurbiprofen Pulsatile Colonic Release: Formulation and Pharmacokinetics of Double-Compression-Coated Mini-Tablets.

    PubMed

    Vemula, Sateesh Kumar

    2015-12-01

    A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (C max) was 14,677.51 ± 12.16 ng/ml at 3 h T max and pulsatile colonic tablets showed C max = 12,374.67 ± 16.72 ng/ml at 12 h T max. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.

  1. Increasing awareness with recognition of pulsatile tinnitus for nurse practitioners in the primary care setting: A case study.

    PubMed

    Vecchiarelli, Kelly; Amar, Arun Paul; Emanuele, Donna

    2017-09-01

    Pulsatile tinnitus is a whooshing sound heard synchronous with the heartbeat. It is an uncommon symptom affecting fewer than 10% of patients with tinnitus. It often goes unrecognized in the primary care setting. Failure to recognize this symptom can result in a missed or delayed diagnosis of a potentially life-threatening condition known as a dural arteriovenous fistula. The purpose of this case study is to provide a structured approach to the identification of pulsatile tinnitus and provide management recommendations. A case study and review of pertinent literature. Pulsatile tinnitus usually has a vascular treatable cause. A comprehensive history and physical examination will alert the nurse practitioner (NP) when pulsatile tinnitus is present. Auscultation in specific areas of the head can detect audible or objective pulsatile tinnitus. Pulsatile tinnitus that is audible to the examiner is an urgent medical condition requiring immediate consultation and referral. Knowledge of pulsatile tinnitus and awareness of this often treatable condition directs the NP to perform a detailed assessment when patients present with tinnitus, directs appropriate referral for care and treatment, and can reduce the risk of delayed or missed diagnosis. ©2017 American Association of Nurse Practitioners.

  2. Method and Apparatus for Non-Invasive Measurement of Changes in Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    2004-01-01

    A method and apparatus for measuring intracranial pressure. In one embodiment, the method comprises the steps of generating an information signal that comprises components (e.g., pulsatile changes and slow changes) that are related to intracranial pressure and blood pressure, generating a reference signal comprising pulsatile components that are solely related to blood pressure, processing the information and reference signals to determine the pulsatile components of the information signal that have generally the same phase as the pulsatile components of the reference signal, and removing from the information signal the pulsatile components determined to have generally the same phase as the pulsatile components of the reference signal so as to provide a data signal having components wherein substantially all of the components are related to intracranial pressure.

  3. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    PubMed

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection method, which combines the microfluidic chip system and FRET biosensor. This finding may provide new insight into how glucose causes endothelial cell dysfunction, which is the major cause of diabetes-derived complications.

  4. Sigmoid Sinus Diverticulum, Dehiscence, and Venous Sinus Stenosis: Potential Causes of Pulsatile Tinnitus in Patients with Idiopathic Intracranial Hypertension?

    PubMed

    Lansley, J A; Tucker, W; Eriksen, M R; Riordan-Eva, P; Connor, S E J

    2017-09-01

    Pulsatile tinnitus is experienced by most patients with idiopathic intracranial hypertension. The pathophysiology remains uncertain; however, transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence have been proposed as potential etiologies. We aimed to determine whether the prevalence of transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence was increased in patients with idiopathic intracranial hypertension and pulsatile tinnitus relative to those without pulsatile tinnitus and a control group. CT vascular studies of patients with idiopathic intracranial hypertension with pulsatile tinnitus ( n = 42), without pulsatile tinnitus ( n = 37), and controls ( n = 75) were independently reviewed for the presence of severe transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence according to published criteria. The prevalence of transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence in patients with idiopathic intracranial hypertension with pulsatile tinnitus was compared with that in the nonpulsatile tinnitus idiopathic intracranial hypertension group and the control group. Further comparisons included differing degrees of transverse sinus stenosis (50% and 75%), laterality of transverse sinus stenosis/sigmoid sinus diverticulum/dehiscence, and ipsilateral transverse sinus stenosis combined with sigmoid sinus diverticulum/dehiscence. Severe bilateral transverse sinus stenoses were more frequent in patients with idiopathic intracranial hypertension than in controls ( P < .001), but there was no significant association between transverse sinus stenosis and pulsatile tinnitus within the idiopathic intracranial hypertension group. Sigmoid sinus dehiscence (right- or left-sided) was also more common in patients with idiopathic intracranial hypertension compared with controls ( P = .01), but there was no significant association with pulsatile tinnitus within the idiopathic intracranial hypertension group. While our data corroborate previous studies demonstrating increased prevalence of sigmoid sinus diverticulum/dehiscence and transverse sinus stenosis in idiopathic intracranial hypertension, we did not establish an increased prevalence in patients with idiopathic intracranial hypertension with pulsatile tinnitus compared with those without. It is therefore unlikely that these entities represent a direct structural correlate of pulsatile tinnitus in patients with idiopathic intracranial hypertension. © 2017 by American Journal of Neuroradiology.

  5. The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model.

    PubMed

    Bond, M; Pitt, M; Akoh, J; Moxham, T; Hoyle, M; Anderson, R

    2009-08-01

    To review the evidence for the effectiveness and cost-effectiveness of storing kidneys from deceased donors prior to transplantation, using cold static storage solutions or pulsatile hypothermic machine perfusion. Electronic databases were searched in January 2008 and updated in May 2008 for systematic reviews and/or meta-analyses, randomised controlled trials (RCTs), other study designs and ongoing research. Sources included: Cochrane Library, MEDLINE, EMBASE, CINAHL, ISI Web of Knowledge, DARE, NRR, ReFeR, Current Controlled Trials, and (NHS) HTA. Bibliographies of articles were searched for further relevant studies, and the Food and Drugs Administration (FDA) and European Regulatory Agency Medical Device Safety Service websites were searched. Only English language papers were sought. The perfusion machines identified were the LifePort Kidney Transporter (Organ Recovery Systems) and the RM3 Renal Preservation System (Waters Medical Systems). The cold storage solutions reviewed were: University of Wisconsin, ViaSpan; Marshall's hypertonic citrate, Soltran; and Genzyme, Celsior. Each intervention was compared with the others as data permitted. The population was recipients of kidneys from deceased donors. The main outcomes were measures of graft survival, patient survival, delayed graft function (DGF), primary non-function (PNF), discard rates of non-viable kidneys, health-related quality of life and cost-effectiveness. Where data permitted the results of studies were pooled using meta-analysis. A Markov (state transition) model was developed to simulate the main post-transplantation outcomes of kidney graft recipients. Eleven studies were included: three full journal published RCTs, two ongoing RCTs [European Machine Preservation Trial (MPT) and UK Pulsatile Perfusion in Asystolic donor Renal Transplantation (PPART) study], one cohort study, three full journal published retrospective record reviews and two retrospective record reviews published as posters or abstracts only. For LifePort versus ViaSpan, no significant differences were found for DGF, PNF, acute rejection, duration of DGF, creatinine clearance or toxicity, patient survival or graft survival at 6 months, but graft survival was better at 12 months post transplant with machine perfusion (LifePort = 98%, ViaSpan = 94%, p < 0.03). For LifePort versus RM3, all outcomes favoured RM3, although the results may be unreliable. For ViaSpan versus Soltran, there were no significant differences in graft survival for cold ischaemic times up to 36 hours. For ViaSpan versus Celsior, no significant differences were found on any outcome measure. In terms of cost-effectiveness, data from the MPT suggested that machine preservation was cheaper and generated more quality-adjusted life-years (QALYs), while the PPART study data suggested that cold storage was preferable on both counts. The less reliable deterministic outputs of the cohort study suggested that LifePort would be cheaper and would generate more QALYs than Soltran. Sensitivity analyses found that changes to the differential kidney storage costs between comparators have a very low impact on overall net benefit estimates; where differences in effectiveness exist, dialysis costs are important in determining overall net benefit; DGF levels become important only when differences in graft survival are apparent between patients experiencing immediate graft function (IGF) versus DGF; relative impact of differential changes to graft survival for patients experiencing IGF as opposed to DGF depends on the relative proportion of patients experiencing each of these two outcomes. The conclusions drawn for the comparison of machine perfusion with cold storage depend on which trial data are used in the model. Owing to the lack of good research evidence that either ViaSpan or Soltran is better than the other, the cheaper, Soltran, may be preferable. In the absence of a cost-utility analysis, the results of our meta-analysis of the RCTs comparing ViaSpan with Celsior indicate that these cold storage solutions are equivalent. Further RCTs of comparators of interest to allow for appropriate analysis of subgroups and to determine whether either of the two machines under consideration produces better outcomes may be useful. In addition, research is required to: establish the strength and reliability of the presumed causal association between DGF and graft, and patient survival; investigate the utility impacts of renal replacement therapy; determine what the additional cost, survival and QALY impacts are of decreased or increased non-viable kidneys when discarded pre transplantation; and identify a reliable measure for predicting kidney viability from machine perfusion.

  6. Tissue vibration pulsatility for arterial bleeding detection using Doppler ultrasound.

    PubMed

    Xie, Zhiyong; Kim, Eung-Hun; Kim, Yongmin

    2009-01-01

    Trauma is the number one cause of death among Americans between 1 and 44 years old, and exsanguination due to internal bleeding resulting from arterial injuries is a major factor in trauma deaths. We have evaluated the feasibility of using tissue vibration pulsatility in arterial bleeding detection. Eight femoral arteries from four juvenile pigs were punctured transcutaneously with a 6 or 9-French catheter. Also, 11 silicone vessels wrapped with turkey breast were placed in a pulsatile flow phantom and penetrated with an 18-gauge needle. The tissue vibration pulsatility was derived as a ratio of the maximum spectral energy from 200 to 2500 Hz of tissue vibration in systole over a baseline value in diastole. Then, the tissue vibration pulsatility index (TVPI) was defined as the maximum tissue vibration pulsatility value for each experimental condition. Both in vitro and in vivo results showed that the TVPI from injured vessels is significantly higher (p<0.005) than that of intact vessels. In addition, we constructed the 2D map of tissue vibration pulsatility during in vitro studies and found that it could be used for spatial localization of the puncture site. Our preliminary results indicate that the tissue vibration pulsatility may be useful for detecting arterial bleeding and localizing the bleeding site.

  7. Optimum Heart Rate to Minimize Pulsatile External Cardiac Power

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2011-11-01

    The workload on the left ventricle is composed of steady and pulsatile components. Clinical investigations have confirmed that an abnormal pulsatile load plays an important role in the pathogenesis of left ventricular hypertrophy (LVH) and progression of LVH to congestive heart failure (CHF). The pulsatile load is the result of the complex dynamics of wave propagation and reflection in the compliant arterial vasculature. We hypothesize that aortic waves can be optimized to reduce the left ventricular (LV) pulsatile load. We used an in-vitro experimental approach to investigate our hypothesis. A unique hydraulic model was used for in-vitro experiments. This model has physical and dynamical properties similar to the heart-aorta system. Different compliant models of the artificial aorta were used to test the hypothesis under various aortic rigidities. Our results indicate that: i) there is an optimum heart rate that minimizes LV pulsatile power (this is in agreement with our previous computational study); ii) introducing an extra reflection site at the specific location along the aorta creates constructive wave conditions that reduce the LV pulsatile power.

  8. Recent Advancement and Technological Aspects of Pulsatile Drug Delivery System - A Laconic Review.

    PubMed

    Pandit, Vinay; Kumar, Ajay; Ashawat, Mahendra S; Verma, Chander P; Kumar, Pravin

    2017-01-01

    Pulsatile drug delivery system (PDDS) shows potential significance in the field of drug delivery to release the maximum amount of drug at a definite site and at specific time. PDDS are mainly time controlled delivery devices having a definite pause period for drug release, which is not affected by acidity, alkalinity, motility and enzymes present in the gastrointestinal tract. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. The review article, discuss the general concepts, marketed formulations and patents or any other recent advancement in pulsatile release technology. It also highlights on diseases requiring therapy by pulsatile release, various researches on herbal pulsatile formulations and quality control aspects of PDDS. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Heart activity monitoring using 3D hologram based on smartphone.

    PubMed

    Thap, Tharoeun; Heewon Chung; Jinseok Lee

    2016-08-01

    In this paper, we used smartphone to obtained pulsatile signal from a fingertip by illuminating the skin tissue using flashlight and with an on-board camera to record the change of the light intensity reflected from the tissue. The pulsatile signal is produced by analyzing average green component values of the frames taken by the camera and the heart rate is estimated in real time by detecting the pulse peaks. Based on each instant obtained heartbeat, we design a heart animation that beats according to each interval of the heartbeat. At the same time, we made a simple pyramid shaped hologram from a transparent OHP film to show the heart animation acting above the smartphone screen in three-dimensional view. With this application, users can actually monitor their heart activity in 3D rather than just to see the pulsatile signal graphically. The performances were done in two different conditions: under bright and dark environments. The holograms were made based on three different materials: grey transparent film, clear transparent film, and hard black acrylic board; the grey transparent film provided better performance and we achieved satisfactory results regardless of all environments.

  10. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    PubMed

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  11. Blood perfusion construction for infrared face recognition based on bio-heat transfer.

    PubMed

    Xie, Zhihua; Liu, Guodong

    2014-01-01

    To improve the performance of infrared face recognition for time-lapse data, a new construction of blood perfusion is proposed based on bio-heat transfer. Firstly, by quantifying the blood perfusion based on Pennes equation, the thermal information is converted into blood perfusion rate, which is stable facial biological feature of face image. Then, the separability discriminant criterion in Discrete Cosine Transform (DCT) domain is applied to extract the discriminative features of blood perfusion information. Experimental results demonstrate that the features of blood perfusion are more concentrative and discriminative for recognition than those of thermal information. The infrared face recognition based on the proposed blood perfusion is robust and can achieve better recognition performance compared with other state-of-the-art approaches.

  12. The effect of vitamin E and aspirin on the uterine artery blood flow in women with recurrent abortion: A single-blind randomized controlled trial.

    PubMed

    Mesdaghinia, Elaheh; Mohammad-Ebrahimi, Behnaz; Foroozanfard, Fatemeh; Banafshe, Hamid Reza

    2017-10-01

    Recurrent spontaneous abortion has high incidence rate. The etiology is unknown in 30-40%. However high uterine artery resistance is accounted as one of the recurrent abortion reasons. The objective of the current study was to determine the impacts of vitamin E and aspirin on the uterine artery blood flow in women having recurrent abortions due to impaired uterine blood flow. This randomized clinical trial was conducted on 99 women having uterine pulsatility index (PI) more than 2.5 and the history of more than two times abortions. The candidates were categorized into three groups; receiving aspirin, only vitamin E, and aspirin+vitamin E. After 2 months, uterine PIs were compared with each other. All drug regimens caused an enhancement in uterine perfusion with a significant decline in uterine artery PI value. The women receiving vitamin E in accompanied with aspirin had the least mean PI of the uterine artery (p<0.001). The total average PI score of the right and left uterine arteries in groups receiving vitamin E in accompanied with aspirin was lower than the two counterparts significantly (p<0.001). Vitamin E, aspirin and especially their combination are effective in improving uterine artery blood flow in women with recurrent abortion due to impaired uterine blood flow. More well-designed studies are needed to find out whether the enhancement of uterine perfusion may lead to a better pregnancy outcome.

  13. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  14. An in vitro test bench reproducing coronary blood flow signals.

    PubMed

    Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory

    2015-08-07

    It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.

  15. Optimal endothelialisation of a new compliant poly(carbonate-urea)urethane vascular graft with effect of physiological shear stress.

    PubMed

    Salacinski, H J; Tai, N R; Punshon, G; Giudiceandrea, A; Hamilton, G; Seifalian, A M

    2000-10-01

    to define the optimal seeding conditions of a new stress free poly(carbonate-urea)urethane (CPU) graft with compliance similar to that of human artery with honeycomb structure engineered during the manufacturing process to enhance adhesion and growth of endothelial cells. (111)Indium-oxine radiolabeled human umbilical vein endothelial cells (HUVEC) were seeded onto CPU grafts at (a) concentrations from 2-24x10(5)cells/cm(2)and (b) incubated for 0.5, 1, 2, 4 and 6 h. Following incubation, graft segments were subjected to three washing/gamma counting procedures and scanning electron microscopy (SEM). Cell viability was measured using a modified Alamar blue(TM)assay. To test physiological retention a pulsatile flow phantom was used to subject optimally seeded (16x10(5), 4 h) CPU grafts to arterial shear stress for 6 h with real time acquisition of scintigraphic images of seeded grafts using a nuclear medicine gamma camera system. the seeding efficiency of 54+/-13% post three washes was achieved using 16x10(5)cells/cm(2). Similarly in SEM micrographs a seeding density of 16x10(5)cells/cm(2)resulted in a confluent monolayer. Seeded CPU segments incubated for 4 h exhibited significantly higher resistance to wash-off than segments incubated for 30 min (p <0.05). Exposure of seeded grafts to pulsatile shear stress resulted in some cell loss with 67+/-3% of cells adherent following 6 h of perfusion with ongoing metabolic activity. Thus, optimal conditions were 16x10(5)cells/cm(2)at 4 h. the optimal seeding conditions have been defined for "tissue-engineered" vascular graft which allow complete endothelialisation and high cell-to-substrate strength that resists hydrodynamic stress. Copyright 2000 Harcourt Publishers Ltd.

  16. Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus patients.

    PubMed

    Eide, Per K

    2008-11-01

    Data from intracranial pressure (ICP) recordings in patients with hydrocephalus were reviewed to determine whether intracranial pulsatility within the cerebrospinal fluid (CSF) of cerebral ventricles (ICP(LV)) may differ from that within the brain parenchyma (ICP(PAR)), and whether pulsatility may differ between noncommunicating ventricles. The authors retrieved data from recordings previously obtained in 7 patients with hydrocephalus (noncommunicating in 4 and communicating in 3) and shunt failure who received both an external ventricular drainage (EVD) and an ICP sensor as part of surveillance during intensive care. Simultaneous ICP(LV) and ICP(PAR) signals were available in 6 cases, and simultaneous signals from the lateral and fourth ventricles (ICP(LV) and ICP4V, respectively) were recorded in 1 case. The recordings with both signals were parsed into 6-second time windows. Pulsatility was characterized by the wave amplitude and rise time coefficient, and differences in pulsatility between the ICP(LV) and ICP(PAR) signals (6 cases) or ICP(LV) and ICP4V signals (1 case) were determined. There was uneven distribution of intracranial pulsatility in all 7 patients, shown as significantly elevated pulsatility (that is, higher wave amplitudes and rise time coefficients) within the ventricles (ICP(LV)) than within brain parenchyma (ICP(PAR)) in 6 patients, and significantly higher pulsatility in the fourth (ICP4V) than in the lateral (ICP(LV)) ventricles in 1 patient. Differences > or = 1 mm Hg in ICP wave amplitude were found in 0.5-100% (median 9.4%) of observations in the 7 patients (total number of 6-second time windows, 68,242). The present observations demonstrate uneven distribution of intracranial pulsatility in patients with hydrocephalus, higher pulse pressure amplitudes within the ventricular CSF (ICP(LV)) than within the brain parenchyma (ICP(PAR)). This may be one mechanism behind ventricular enlargement in hydrocephalus.

  17. Feasibility of a nickel-metal hydride battery for totally implantable artificial hearts.

    PubMed

    Okamoto, E; Yoshida, T; Fujiyoshi, M; Shimanaka, M; Takeuchi, A; Mitamura, Y; Mikami, T

    1996-01-01

    An implantable rechargeable battery is one of the key technologies for totally implantable artificial hearts. The nickel-metal hydride (Ni-MH) battery is promising for its high energy density of 1.5-2.0 times that of a nickel-cadmium battery. In this study, the effects of pulsatile discharge loads on the operating time and cycle life of Ni-MH batteries at 39 degrees C were studied. Two battery cells (TH-3M, 1,200 mAh, phi 14.5 x 49 mm; Toshiba, Tokyo, Japan) in series were charge/discharge cycled at 39 degrees C using a charge current of 1CA (1,200 mA) and then were fully discharged to 1.0 V/cell under either pulsatile discharge loads, which mimicked a systole (1 A for 0.3 sec) and a diastole (0.4 A for 0.3 sec), or a non pulsatile discharge load equivalent to the average of the pulsatile loads (0.7 A). Each cycle life test was interrupted on the 482nd cycle under pulsatile load, and on the 423rd cycle under non pulsatile load, because of malfunction of each battery charger. The tests showed that the pulsatile discharge cells had significantly (p < 0.001) less operating time (74.0 +/- 7.15 min) throughout the test period (up to 482 days) compared to the cells under equivalent non pulsatile discharge loads (93.7 +/- 7.74 min). The pulsatile-discharged Ni-MH cells provide significantly less operating time than the constantly discharged cells; the Ni-MH battery has an operating time of over 78 min and a cycle life of almost 500 cycles at 39 degrees C. In conclusion, the Ni-MH battery is feasible as an implantable back-up battery for a totally implantable artificial heart system.

  18. Arterial Stiffening Precedes Systolic Hypertension in Diet-induced Obesity

    PubMed Central

    Weisbrod, Robert M.; Shiang, Tina; Sayah, Leona Al; Fry, Jessica L.; Bajpai, Saumendra; Reinhart-King, Cynthia A.; Lob, Heinrich E.; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A.; Seta, Francesca

    2014-01-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs such as the heart, brain and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension, although the mechanisms contributing to hypertension are unknown. Here we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within one month of the initiation of the diet and precedes the development of hypertension by five months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss returned arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause, rather than a consequence of hypertension. PMID:24060894

  19. Arterial stiffening precedes systolic hypertension in diet-induced obesity.

    PubMed

    Weisbrod, Robert M; Shiang, Tina; Al Sayah, Leona; Fry, Jessica L; Bajpai, Saumendra; Reinhart-King, Cynthia A; Lob, Heinrich E; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A; Seta, Francesca

    2013-12-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs, such as the heart, brain, and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension although the mechanisms underlying hypertension are unknown. Here, we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within 1 month of the initiation of the diet and precedes the development of hypertension by 5 months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss resulted in return of arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause rather than a consequence of hypertension.

  20. Early prepubertal ontogeny of pulsatile gonadotropin-releasing hormone (GnRH) secretion: I. Inhibitory autofeedback control through prolyl endopeptidase degradation of GnRH.

    PubMed

    Yamanaka, C; Lebrethon, M C; Vandersmissen, E; Gerard, A; Purnelle, G; Lemaitre, M; Wilk, S; Bourguignon, J P

    1999-10-01

    GnRH[1-5], a subproduct resulting from degradation of GnRH by prolyl endopeptidase (PEP) and endopeptidase 24.15 (EP24.15) was known to account for an inhibitory autofeedback of GnRH secretion through an effect at the N-methyl-D-aspartate (NMDA) receptors. This study aimed at determining the possible role of such a mechanism in the early developmental changes in frequency of pulsatile GnRH secretion. Using retrochiasmatic explants from fetal male rats (day 20-21 of gestation), no GnRH pulses could be observed in vitro, whereas pulses occurred at a mean interval of 86 min from the day of birth onwards. This interval decreased steadily until day 25 (39 min), during the period preceding the onset of puberty. Based on GnRH[1-10] or GnRH[1-9] degradation and GnRH[1-5] generation after incubation with hypothalamic extracts, EP24.15 activity did not change with age, whereas PEP activity was maximal at days 5-10 and decreased subsequently until day 50. These changes were consistent with the ontogenetic variations in PEP messenger RNAs (mRNAs) quantitated using RT-PCR. Using fetal explants, the NMDA-evoked release of GnRH was potentiated in a dose-dependent manner by bacitracin, a competitive PEP inhibitor and the desensitization to the NMDA effect was prevented using 2 mM of bacitracin. At day 5, a higher bacitracin concentration of 20 mM was required for a similar effect. Pulsatile GnRH secretion from fetal explants was not caused to occur using bacitracin or Fmoc-Prolyl-Pyrrolidine-2-nitrile (Fmoc-Pro-PyrrCN), a noncompetitive PEP inhibitor. At postnatal days 5 and 15, a significant acceleration of pulsatility was obtained using 1 microM of Fmoc-Pro-PyrrCN or 2 mM of bacitracin. At 25 and 50 days, a lower bacitracin concentration of 20 microM was effective as well in increasing the frequency of GnRH pulsatility. We conclude that the GnRH inhibitory autofeedback resulting from degradation of the peptide is operational in the fetal hypothalamus but does not explain the absence of pulsatile GnRH secretion at that early age. After birth, PEP activity is high and may account for the low frequency of pulsatility. The potency of that effect decreases before the onset of puberty and may contribute to the acceleration of GnRH pulsatility.

  1. Evidence of second-trimester changes in head biometry and brain perfusion in fetuses with congenital heart disease.

    PubMed

    Masoller, N; Martínez, J M; Gómez, O; Bennasar, M; Crispi, F; Sanz-Cortés, M; Egaña-Ugrinovic, G; Bartrons, J; Puerto, B; Gratacós, E

    2014-08-01

    To evaluate the associations between congenital heart disease (CHD) and head biometry and cerebrovascular blood flow dynamics at the time of diagnosis of CHD in the second trimester of pregnancy. This was a study of 95 consecutive fetuses diagnosed with CHD. At the time of diagnosis, fetal biometry was performed and brain perfusion was assessed by middle cerebral artery pulsatility index (MCA-PI), cerebroplacental ratio (CPR) and fractional moving blood volume (FMBV). The results were compared with those of 95 normal fetuses matched for gestational age. Median gestational age at diagnosis was 22 + 3 (range, 20 + 0 to 23 + 5) weeks. Fetuses with CHD showed significantly lower MCA-PI and CPR Z-scores (-0.23 vs 0.34 and -0.37 vs 0.30, respectively; both P < 0.001) and higher FMBV Z-scores (2.35 vs 0.15; P < 0.001). FMBV > 95(th) percentile was observed in 81.1% of cases as compared with 10.5% in controls (P < 0.001). Moreover, cases showed significantly smaller biparietal diameter (BPD) and head circumference (HC) Z-scores (-1.61 vs -0.43 and -0.89 vs 0.09, respectively; both P < 0.001), with a higher proportion of BPD and HC measurements below the 5(th) percentile compared with controls (51.6% vs 13.7% and 26.3% vs 4.2%, respectively; both P < 0.001). These findings were more pronounced in those cases with types of CHD associated with compromised oxygenated blood delivery to the brain, such as left outflow tract obstruction and transposition of the great arteries. A high proportion of fetuses with CHD have a smaller head and increased brain perfusion already in the second trimester, suggesting an early onset of the mechanisms leading to poorer neurodevelopment later in life. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitton, Michael Bernhard, E-mail: pitton@radiologie.klinik.uni-mainz.de; Schmenger, Patrick; Dueber, Christoph

    Purpose: To investigate pressure and maximum rate of rise of systolic pressure (peak dP/dt) in completely excluded aneurysms and endoleaks to determine the hemodynamic impact of endoleaks. Methods: In mongrel dogs (n =36) experimental aneurysms were created by insertion of a patch (portion of rectus abdomen is muscle sheath) into the infrarenalaorta. In group I (n 18), all aortic branches of the aneurysm were ligated and all aneurysms were completely excluded by stent grafts. Group II (n = 18) consisted of aneurysms with patent aortic side branches that represented sources of endoleaks.One week (n = 12), six weeks (n =more » 12),and six months (n = 12) after stent grafting,hemodynamic measurements were obtained in thrombosed aneurysms and proved endoleaks. Systemic blood pressure and intraaneurysmal pressure were simultaneously measured and the respective peak dP/dt were computed. Results: At the six-month follow-up, the systolic-pressure ratio (intraaneurysmatic pressure: systemic pressure)was significantly increased in endoleaks compared to non-perfused areas(0.879 {+-} 0.042 versus 0.438 {+-} 0.176, p <0.01, group II) or completely excluded aneurysms (0.385 {+-}0.221, group I). Peak dP/dt ratio (intraaneurysmal peak dP/dt: systemic peak dP/dt) was 0.922 {+-} 0.154 in endoleaks, compared to 0.084 {+-} 0.080 in non-perfused areas (group II, p <0.01), and was 0.146 {+-} 0.121 in completely excluded aneurysms (group I). The diastolic-pressure ratio was also increased inendoleaks compared to non-perfused areas (0.929 {+-} 0.088 versus 0.655 {+-} 0.231, p < 0.01, group II) or completely excluded aneurysms (0.641 {+-} 0.278, group I). In excluded aneurysms, pressure exposure declined as the length of the follow-up period increased. Conclusion: Type II endoleaks transmit pulsatile pressure of near systemic level and indicate insufficient treatment result. In contrast, complete endovascular exclusion of aneurysms results in significantly reduced pressure exposure.« less

  3. Normothermic machine perfusion of donor livers without the need for human blood products

    PubMed Central

    Matton, Alix P. M.; Burlage, Laura C.; van Rijn, Rianne; de Vries, Yvonne; Karangwa, Shanice A.; Nijsten, Maarten W.; Gouw, Annette S. H.; Wiersema‐Buist, Janneke; Adelmeijer, Jelle; Westerkamp, Andrie C.; Lisman, Ton

    2018-01-01

    Normothermic machine perfusion (NMP) enables viability assessment of donor livers prior to transplantation. NMP is frequently performed by using human blood products including red blood cells (RBCs) and fresh frozen plasma (FFP). Our aim was to examine the efficacy of a novel machine perfusion solution based on polymerized bovine hemoglobin‐based oxygen carrier (HBOC)‐201. Twenty‐four livers declined for transplantation were transported by using static cold storage. Upon arrival, livers underwent NMP for 6 hours using pressure‐controlled portal and arterial perfusion. A total of 12 livers were perfused using a solution based on RBCs and FFPs (historical cohort), 6 livers with HBOC‐201 and FFPs, and another 6 livers with HBOC‐201 and gelofusine, a gelatin‐based colloid solution. Compared with RBC + FFP perfused livers, livers perfused with HBOC‐201 had significantly higher hepatic adenosine triphosphate content, cumulative bile production, and portal and arterial flows. Biliary secretion of bicarbonate, bilirubin, bile salts, and phospholipids was similar in all 3 groups. The alanine aminotransferase concentration in perfusate was lower in the HBOC‐201–perfused groups. In conclusion, NMP of human donor livers can be performed effectively using HBOC‐201 and gelofusine, eliminating the need for human blood products. Perfusing livers with HBOC‐201 is at least similar to perfusion with RBCs and FFP. Some of the biomarkers of liver function and injury even suggest a possible superiority of an HBOC‐201–based perfusion solution and opens a perspective for further optimization of machine perfusion techniques. Liver Transplantation 24 528–538 2018 AASLD. PMID:29281862

  4. Human endothelial cell responses to cardiovascular inspired pulsatile shear stress

    NASA Astrophysics Data System (ADS)

    Watson, Matthew; Baugh, Lauren; Black, Lauren, III; Kemmerling, Erica

    2016-11-01

    It is well established that hemodynamic shear stress regulates blood vessel structure and the development of vascular pathology. This process can be studied via in vitro models of endothelial cell responses to pulsatile shear stress. In this study, a macro-scale cone and plate viscometer was designed to mimic various shear stress waveforms found in the body and apply these stresses to human endothelial cells. The device was actuated by a PID-controlled DC gear-motor. Cells were exposed to 24 hours of pulsatile shear and then imaged and stained to track their morphology and secretions. These measurements were compared with control groups of cells exposed to constant shear and no shear. The results showed that flow pulsatility influenced levels of secreted proteins such as VE-cadherin and neuroregulin IHC. Cell morphology was also influenced by flow pulsatility; in general cells exposed to pulsatile shear stress developed a higher aspect ratio than cells exposed to no flow but a lower aspect ratio than cells exposed to steady flow.

  5. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study.

    PubMed

    Mitchell, Gary F; van Buchem, Mark A; Sigurdsson, Sigurdur; Gotal, John D; Jonsdottir, Maria K; Kjartansson, Ólafur; Garcia, Melissa; Aspelund, Thor; Harris, Tamara B; Gudnason, Vilmundur; Launer, Lenore J

    2011-11-01

    Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, P<0.001). Carotid pulse pressure, pulsatility index and carotid-femoral pulse wave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, P<0.002). Carotid-femoral pulse wave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, P<0.001), grey matter (-0.079 ± 0.038 SD/SD, P = 0.038) and white matter (-0.128 ± 0.039 SD/SD, P<0.001) volumes. Carotid-femoral pulse wave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, P<0.001), slower processing speed (-0.118 ± 0.033 SD/SD, P<0.001) and worse performance on tests assessing executive function (-0.155 ± 0.041 SD/SD, P<0.001). When magnetic resonance imaging measures (grey and white matter volumes, white matter hyperintensity volumes and prevalent subcortical infarcts) were included in cognitive models, haemodynamic associations were attenuated or no longer significant, consistent with the hypothesis that increased aortic stiffness and excessive flow pulsatility damage the microcirculation, leading to quantifiable tissue damage and reduced cognitive performance. Marked stiffening of the aorta is associated with reduced wave reflection at the interface between carotid and aorta, transmission of excessive flow pulsatility into the brain, microvascular structural brain damage and lower scores in various cognitive domains.

  6. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    PubMed

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  7. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2012-01-01

    The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771

  8. Pulsatility flow around a single cylinder - an experimental model of flow inside an artificial lung

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun; Bull, Joseph L.

    2004-11-01

    Pulsatile flow past a single cylinder is experimentally investigated using particle image velocimetry. This study aims to elucidate the effects of pulstility on the velocity field, which influences the convection-dominated transport within the fluid. The artificial lung device can be connected in parallel or series with the native lungs and may potentially be used as a bridge to transplant or for pulmonary replacement. The artificial lung consists of hollow microfibers through which gas flows and blood flows around. Blood flow through the device is pulsatile because it is driven entirely by the right heart. Steady flow over bluff bodies has been investigated in many contexts, such as heat exchangers. However, few studies have been investigated the effect of pulsatility. The effects of frequency, amplitude of pulsatility, and average flow rate on the formation of vortices after a cylinder are examined. Vortices near the cylinder are found to develop at lower Reynolds number in pulsatile flow than in steady flow. This work is supported by NIH grant R01 HL69420-01.

  9. Transition in Pulsatile Pipe Flow

    NASA Astrophysics Data System (ADS)

    Vlachos, Pavlos; Brindise, Melissa

    2016-11-01

    Transition has been observed to occur in the aorta, and stenotic vessels, where pulsatile flow exists. However, few studies have investigated the characteristics and effects of transition in oscillating or pulsatile flow and none have utilized a physiological waveform. In this work, we explore transition in pipe flow using three pulsatile waveforms which all maintain the same mean and maximum flow rates and range to zero flow, as is physiologically typical. Velocity fields were obtained using planar particle image velocimetry for each pulsatile waveform at six mean Reynolds numbers ranging between 500 and 4000. Turbulent statistics including turbulent kinetic energy (TKE) and Reynolds stresses were computed. Quadrant analysis was used to identify characteristics of the production and dissipation of turbulence. Coherent structures were identified using the λci method. We developed a wavelet-Hilbert time-frequency analysis method to identify high frequency structures and compared these to the coherent structures. The results of this study demonstrate that the different pulsatile waveforms induce different levels of TKE and high frequency structures, suggesting that the rates of acceleration and deceleration influence the onset and development of transition.

  10. Vascular loop in the cerebellopontine angle causing pulsatile tinnitus and headache: a case report

    PubMed Central

    Ramly, NA; Roslenda, AR; Suraya, A; Asma, A

    2014-01-01

    Tinnitus is a common disorder, it can be classified as pulsatile and non-pulsatile or objective and subjective. Pulsatile tinnitus is less common than non-pulsatile and can be due to vascular tumour such as glomus or vascular abnormality. We presented an interesting case of a 30 year-old Malay lady with a two-year history of pulsatile tinnitus which was worsening in three months duration. It was associated with intermittent headache. Clinical examination and tuning fork test were unremarkable. Apart from mild hearing loss at high frequency on the left ear, the pure tone audiogram (PTA) was otherwise normal. In view of the patient’s young age with no risk factor for high frequency loss, a magnetic resonance imaging (MRI) was performed to look for any abnormality in the cerebellopontine angle. It revealed a single vessel looping around the left vestibulocochlear and facial nerves at the cisternal portion, likely a branch of the anteroinferior cerebellar artery (AICA). Literature review on the pathophysiology and treatment option in this condition is discussed. PMID:26417253

  11. Fast diffuse correlation spectroscopy (DCS) for non-invasive measurement of intracranial pressure (ICP) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Farzam, Parisa; Sutin, Jason; Wu, Kuan-Cheng; Zimmermann, Bernhard B.; Tamborini, Davide; Dubb, Jay; Boas, David A.; Franceschini, Maria Angela

    2017-02-01

    Intracranial pressure (ICP) monitoring has a key role in the management of neurosurgical and neurological injuries. Currently, the standard clinical monitoring of ICP requires an invasive transducer into the parenchymal tissue or the brain ventricle, with possibility of complications such as hemorrhage and infection. A non-invasive method for measuring ICP, would be highly preferable, as it would allow clinicians to promptly monitor ICP during transport and allow for monitoring in a larger number of patients. We have introduced diffuse correlation spectroscopy (DCS) as a non-invasive ICP monitor by fast measurement of pulsatile cerebral blood flow (CBF). The method is similar to Transcranial Doppler ultrasound (TCD), which derives ICP from the amplitude of the pulsatile cerebral blood flow velocity, with respect to the amplitude of the pulsatile arterial blood pressure. We believe DCS measurement is superior indicator of ICP than TCD estimation because DCS directly measures blood flow, not blood flow velocity, and the small cortical vessels measured by DCS are more susceptible to transmural pressure changes than the large vessels. For fast DCS measurements to recover pulsatile CBF we have developed a custom high-power long-coherent laser and a strategy for delivering it to the tissue within ANSI standards. We have also developed a custom FPGA-based correlator board, which facilitates DCS data acquisitions at 50-100 Hz. We have tested the feasibility of measuring pulsatile CBF and deriving ICP in two challenging scenarios: humans and rats. SNR is low in human adults due to large optode distances. It is similarly low in rats because the fast heart rate in this setting requires a high repetition rate.

  12. A new imaging technique on strength and phase of pulsatile tissue-motion in brightness-mode ultrasonogram

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Yamada, Masayoshi; Nakamori, Nobuyuki; Kitsunezuka, Yoshiki

    2007-03-01

    A new imaging technique has been developed for observing both strength and phase of pulsatile tissue-motion in a movie of brightness-mode ultrasonogram. The pulsatile tissue-motion is determined by evaluating the heartbeat-frequency component in Fourier transform of a series of pixel value as a function of time at each pixel in a movie of ultrasonogram (640x480pixels/frame, 8bit/pixel, 33ms/frame) taken by a conventional ultrasonograph apparatus (ATL HDI5000). In order to visualize both the strength and the phase of the pulsatile tissue-motion, we propose a pulsatile-phase image that is obtained by superimposition of color gradation proportional to the motion phase on the original ultrasonogram only at which the motion strength exceeds a proper threshold. The pulsatile-phase image obtained from a cranial ultrasonogram of normal neonate clearly reveals that the motion region gives good agreement with the anatomical shape and position of the middle cerebral artery and the corpus callosum. The motion phase is fluctuated with the shape of arteries revealing local obstruction of blood flow. The pulsatile-phase images in the neonates with asphyxia at birth reveal decreases of the motion region and increases of the phase fluctuation due to the weakness and local disturbance of blood flow, which is useful for pediatric diagnosis.

  13. Brain tissue pulsatility mediates cognitive and electrophysiological changes in normal aging: Evidence from ultrasound tissue pulsatility imaging (TPI).

    PubMed

    Angel, Lucie; Bouazzaoui, Badiâa; Isingrini, Michel; Fay, Séverine; Taconnat, Laurence; Vanneste, Sandrine; Ledoux, Moïse; Gissot, Valérie; Hommet, Caroline; Andersson, Fréderic; Barantin, Laurent; Cottier, Jean-Philippe; Pasco, Jérémy; Desmidt, Thomas; Patat, Frédéric; Camus, Vincent; Remenieras, Jean-Pierre

    2018-06-01

    Aging is characterized by a cognitive decline of fluid abilities and is also associated with electrophysiological changes. The vascular hypothesis proposes that brain is sensitive to vascular dysfunction which may accelerate age-related brain modifications and thus explain age-related neurocognitive decline. To test this hypothesis, cognitive performance was measured in 39 healthy participants from 20 to 80 years, using tests assessing inhibition, fluid intelligence, attention and crystallized abilities. Brain functioning associated with attentional abilities was assessed by measuring the P3b ERP component elicited through an auditory oddball paradigm. To assess vascular health, we used an innovative measure of the pulsatility of deep brain tissue, due to variations in cerebral blood flow over the cardiac cycle. Results showed (1) a classical effect of age on fluid neurocognitive measures (inhibition, fluid intelligence, magnitude and latency of the P3b) but not on crystallized measures, (2) that brain pulsatility decreases with advancing age, (3) that brain pulsatility is positively correlated with fluid neurocognitive measures and (4) that brain pulsatility strongly mediated the age-related variance in cognitive performance and the magnitude of the P3b component. The mediating role of the brain pulsatility in age-related effect on neurocognitive measures supports the vascular hypothesis of cognitive aging. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Performance characterization of a rotary centrifugal left ventricular assist device with magnetic suspension.

    PubMed

    Jahanmir, Said; Hunsberger, Andrew Z; Heshmat, Hooshang; Tomaszewski, Michael J; Walton, James F; Weiss, William J; Lukic, Branka; Pae, William E; Zapanta, Conrad M; Khalapyan, Tigran Z

    2008-05-01

    The MiTiHeart (MiTiHeart Corporation, Gaithersburg, MD, USA) left ventricular assist device (LVAD), a third-generation blood pump, is being developed for destination therapy for adult heart failure patients of small to medium frame that are not being served by present pulsatile devices. The pump design is based on a novel, patented, hybrid passive/active magnetic bearing system with backup hydrodynamic thrust bearing and exhibits low power loss, low vibration, and low hemolysis. Performance of the titanium alloy prototype was evaluated in a series of in vitro tests with blood analogue to map out the performance envelop of the pump. The LVAD prototype was implanted in a calf animal model, and the in vivo pump performance was evaluated. The animal's native heart imparted a strong pulsatility to the flow rate. These tests confirmed the efficacy of the MiTiHeart LVAD design and confirmed that the pulsatility does not adversely affect the pump performance.

  15. Induction of ovulation in clomiphene-resistant polycystic ovary syndrome with pulsatile GnRH.

    PubMed

    Tan, S L; Farhi, J; Homburg, R; Jacobs, H S

    1996-08-01

    To determine the efficacy of pulsatile GnRH alone and in combination with clomiphene citrate or gonadotropins in a stepwise approach for inducing ovulation in women with clomiphene-resistant polycystic ovary syndrome (PCOS). Eighty women with clomiphene-resistant anovulatory infertility and PCOS were given subcutaneous pulsatile GnRH (15 micrograms every 90 minutes) using a portable infusion pump. If no follicular development was seen, clomiphene citrate (100 mg/day for 5 days) was given concurrently with the hormone in the next cycle of treatment. Those who still failed to ovulate regularly were treated with combined pulsatile GnRH with intramuscular gonadotropins (one ampule per day for 5-7 days). RESULTS. Sixty-six of 131 (50%) pulsatile GnRH cycles, 94 of 142 (66%) pulsatile GnRH with clomiphene cycles, and 48 of 69 (70%) pulsatile GnRH with gonadotropin cycles were ovulatory. Monofollicular response (one follicle at least 14 mm on the day of ovulation) occurred in 80.6, 83.9, and 53.6% of cycles, and multifollicular response occurred in 4.8, 3.1, and 21.6% of cycles in the three groups, respectively. Mild ovarian hyperstimulation occurred in one of the 342 cycles. The cumulative conception rate was 30% after three cycles, 60% after six cycles, and 73% after nine cycles. The miscarriage rate was 22% (ten of 45 pregnancies), and 35 women (78%) had live births (33 singletons and two sets of twins). The use of subcutaneous pulsatile GnRH alone and in combination with clomiphene citrate or gonadotropins for induction of ovulation in clomiphene-resistant PCOS in a stepwise approach produces a high cumulative conception rate associated with a low rate of multiple pregnancy and ovarian hyperstimulation syndrome.

  16. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

    PubMed Central

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  17. Stent-Assisted Coil Embolization of a Transverse-Sigmoid Sinus Diverticulum Presenting with Pulsatile Tinnitus.

    PubMed

    Li, Baomin; Lv, Xianli; Wu, Zhongxue; Cao, Xiangyu; Wang, Jun; Ge, Aili; Liu, Xinfeng; Li, Sheng

    When tinnitus is pulse-synchronous, a vascular etiology is suggested. We present a case of persistent and troublesome pulsatile tinnitus caused by a transverse-sigmoid sinus diverticulum that was endovascularly treated with stent-assisted coiling. A 39-yearold woman presented with a 4-year history of progressive pulsatile tinnitus involving the right ear. Slight pulsatile bruit was heard on the right mastoid bone by auscultation. Cerebral angiography demonstrated a diverticulum of the transverse-sigmoid sinus. The procedure was performed with an 8F guiding catheter (Cordis, USA) catheterized into the right sigmoid sinus. The diverticulum was completely coiled following deployment of a 5.5 mm-50 mm Leo stent. This patient awakened without any neurological deficit and with immediate resolution of her tinnitus. This case report describes a stent-assisted coil embolization of venous sinus diverticulum, which provides immediate resolution of pulsatile tinnitus.

  18. Hemodynamic effects of intravenous nicardipine in severely pre-eclamptic women with a hypertensive crisis.

    PubMed

    Cornette, J; Buijs, E A B; Duvekot, J J; Herzog, E; Roos-Hesselink, J W; Rizopoulos, D; Meima, M; Steegers, E A P

    2016-01-01

    Nicardipine permits rapid control of blood pressure in women with severe pre-eclampsia (PE) and hypertensive crisis. Our objective was to investigate its maternal and fetal hemodynamic effects. Ten severely pre-eclamptic pregnant women who required intravenous nicardipine for severe hypertension were included in this prospective observational trial. Maternal macrocirculation was assessed by transthoracic echocardiography. Maternal microcirculatory perfusion was examined sublingually with the sidestream dark field imaging technique. Fetal hemodynamics were assessed by Doppler examinations of the uteroplacental and fetal circulations. Maternal cardiac output, total vascular resistance, mitral E/A ratio and capillary heterogeneity index, uterine artery pulsatility index and fetal cerebroplacental ratio were considered primary outcomes. Paired measurements, obtained before administration of nicardipine infusion and after stabilization of blood pressure, were compared. Administration of nicardipine significantly reduced the mean arterial blood pressure (median difference, 26 mmHg; P = 0.002) and total vascular resistance (median difference, 791 dynes × s/cm(5) ; P = 0.002) in all included women. This induced a reflex tachycardia with consequent increase in cardiac output of 1.55 L/min (P  =  0.004). There were no significant changes in the other determinants of maternal or fetal hemodynamic parameters. Nicardipine effectively reduces blood pressure through selective afterload reduction that triggers an increase in cardiac output, without affecting maternal diastolic function, or microcirculatory, uteroplacental or fetal perfusion. This hemodynamic response is uniform and predictable. Fetomaternal cardiovascular profiling can be achieved by combining transthoracic echocardiography with obstetric Doppler. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  19. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes

    PubMed Central

    Satin, Leslie S.; Butler, Peter C.; Ha, Joon; Sherman, Arthur S.

    2015-01-01

    Type 2 diabetes (T2DM) results when increases in beta cell function and/or mass cannot compensate for rising insulin resistance. Numerous studies have documented the longitudinal changes in metabolism that occur during the development of glucose intolerance and lead to T2DM. However, the role of changes in insulin secretion, both amount and temporal pattern has been understudied. Most of the insulin secreted from pancreatic beta cells of the pancreas is released in a pulsatile pattern, which is disrupted in T2DM. Here we review the evidence that changes in beta cell pulsatility occur during the progression from glucose intolerance to T2DM in humans, and contribute significantly to the etiology of the disease. We review the evidence that insulin pulsatility improves the efficacy of secreted insulin on its targets, particularly hepatic glucose production, but also examine evidence that pulsatility alters or is altered by changes in peripheral glucose uptake. Finally, we summarize our current understanding of the biophysical mechanisms responsible for oscillatory insulin secretion. Understanding how insulin pulsatility contributes to normal glucose homeostasis and is altered in metabolic disease states may help improve the treatment of T2DM. PMID:25637831

  20. [Diagnosis and management of pulsatile tinnitus of venous origin].

    PubMed

    Zhang, Yibo; Wang, Wuqing; Dai, Chunfu; Chen, Liang

    2010-03-01

    To discuss the diagnosis and management of pulsatile tinnitus of venous origin. A retrospective study was conducted on 12 patients who were diagnosed with pulsatile tinnitus of venous origin and treated with ligation of internal jugular veins. We reevaluated the evidences of identifying pulsatile tinnitus of venous origin and reviewed the short-term and long-term postoperative effects and complications. We also reviewed associated articles in this report. Seven patients got relief of tinnitus in less than one week after the surgery, while the other 5 patients had no relief. Seven patients were inquired in this study and the other five lost to follow-up. According to the long review (from one to five years postoperatively), two patients who acquired immediate effect got relief of tinnitus, four including complained of no relief and the seventh aggravated into roaring. Three patients who got no immediate relief got no improvement at all. No one in our review complained of any complications. It's assumed that a history of pulsatile tinnitus, alleviation of tinnitus when pressing jugular veins, tinnitus changing with head position or posture and no occupying lesion in temporal CT scan or cranial MRI are inadequate in diagnosing pulsatile tinnitus of venous origin. Vascular imaging is also necessary to exclude other pathological changes like dura arteriovenous fistula, sigmoid diverticulum and so on. CT arteriography and venography are recommended preferentially. Ligation of internal jugular veins is controversial in patients who have no absence of transverse and sigmoid sinus and identified as pulsatile tinnitus of venous origin.

  1. Enteric-coating of pulsatile-release HPC capsules prepared by injection molding.

    PubMed

    Macchi, E; Zema, L; Maroni, A; Gazzaniga, A; Felton, L A

    2015-04-05

    Capsular devices based on hydroxypropyl cellulose (Klucel® LF) intended for pulsatile release were prepared by injection molding (IM). In the present work, the possibility of exploiting such capsules for the development of colonic delivery systems based on a time-dependent approach was evaluated. For this purpose, it was necessary to demonstrate the ability of molded cores to undergo a coating process and that coated systems yield the desired performance (gastric resistance). Although no information was available on the coating of IM substrates, some issues relevant to that of commercially-available capsules are known. Thus, preliminary studies were conducted on molded disks for screening purposes prior to the spray-coating of HPC capsular cores with Eudragit® L 30 D 55. The ability of the polymeric suspension to wet the substrate, spread, start penetrating and initiate hydration/swelling, as well as to provide a gastroresistant barrier was demonstrated. The coating of prototype HPC capsules was carried out successfully, leading to coated systems with good technological properties and able to withstand the acidic medium with no need for sealing at the cap/body joint. Such systems maintained the original pulsatile release performance after dissolution of the enteric film in pH 6.8 fluid. Therefore, they appeared potentially suitable for the development of a colon delivery platform based on a time-dependent approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Fatigue and durability of Nitinol stents.

    PubMed

    Pelton, A R; Schroeder, V; Mitchell, M R; Gong, Xiao-Yan; Barney, M; Robertson, S W

    2008-04-01

    Nitinol self-expanding stents are effective in treating peripheral artery disease, including the superficial femoral, carotid, and renal arteries. However, fracture occurrences of up to 50% have been reported in some stents after one year. These stent fractures are likely due to in vivo cyclic displacements. As such, the cyclic fatigue and durability properties of Nitinol-based endovascular stents are discussed in terms of an engineering-based experimental testing program. In this paper, the combined effects of cardiac pulsatile fatigue and stent-vessel oversizing are evaluated for application to both stents and stent subcomponents. In particular, displacement-controlled fatigue tests were performed on stent-like specimens processed from Nitinol microtubing. Fatigue data were collected with combinations of simulated oversizing conditions and pulsatile cycles that were identified by computer modeling of the stent that mimic in vivo deformation conditions. These data are analyzed with non-linear finite element computations and are illustrated with strain-life and strain-based constant-life diagrams. The utility of this approach is demonstrated in conjunction with 10 million cycle pulsatile fatigue tests of Cordis SMART Control((R)) Nitinol self-expanding stents to calculate fatigue safety factors and thereby predict in vivo fatigue resistance. These results demonstrate the non-linear constant fatigue-life response of Nitinol stents, whereby, contrary to conventional engineering materials, the fatigue life of Nitinol is observed to increase with increasing mean strain.

  3. Aberrant sylvian vein: A newly described cause of pulsatile tinnitus.

    PubMed

    Liu, Zhaohui; Yu, Jingge; Zhao, Pengfei; Zhang, Hanjuan; Wang, Qian; Wang, Zhenchang

    2017-10-01

    We herein report a newly described cause of venous pulsatile tinnitus: protrusion of an aberrant sylvian vein into the tympanum. A 60-year-old woman presented with a 4-month history of objective persistent pulsatile tinnitus in the right ear with no other complaints. The pulsatile tinnitus diminished with rotation of the head to the right side or by compression of the right cervical vascular structures. The frequency and intensity of the tinnitus were 125 Hz and 20 dB HL, respectively. Audiometry and otoscopic examination findings were normal. Radiologic examination showed that the right sylvian vein protruded into the tympanum through the dehiscent anterior cortical plate of the tympanum.

  4. Aortic Wave Dynamics and Its Influence on Left Ventricular Workload

    PubMed Central

    Pahlevan, Niema M.; Gharib, Morteza

    2011-01-01

    The pumping mechanism of the heart is pulsatile, so the heart generates pulsatile flow that enters into the compliant aorta in the form of pressure and flow waves. We hypothesized that there exists a specific heart rate at which the external left ventricular (LV) power is minimized. To test this hypothesis, we used a computational model to explore the effects of heart rate (HR) and aortic rigidity on left ventricular (LV) power requirement. While both mean and pulsatile parts of the pressure play an important role in LV power requirement elevation, at higher rigidities the effect of pulsatility becomes more dominant. For any given aortic rigidity, there exists an optimum HR that minimizes the LV power requirement at a given cardiac output. The optimum HR shifts to higher values as the aorta becomes more rigid. To conclude, there is an optimum condition for aortic waves that minimizes the LV pulsatile load and consequently the total LV workload. PMID:21853075

  5. Pulsatile Hyperglycaemia Induces Vascular Oxidative Stress and GLUT 1 Expression More Potently than Sustained Hyperglycaemia in Rats on High Fat Diet

    PubMed Central

    Rakipovski, Günaj; Lykkesfeldt, Jens; Raun, Kirsten

    2016-01-01

    Introduction Pulsatile hyperglycaemia resulting in oxidative stress may play an important role in the development of macrovascular complications. We investigated the effects of sustained vs. pulsatile hyperglycaemia in insulin resistant rats on markers of oxidative stress, enzyme expression and glucose metabolism in liver and aorta. We hypothesized that liver’s ability to regulate the glucose homeostasis under varying states of hyperglycaemia may indirectly affect oxidative stress status in aorta despite the amount of glucose challenged with. Methods Animals were infused with sustained high (SHG), low (SLG), pulsatile (PLG) glucose or saline (VEH) for 96 h. Oxidative stress status and key regulators of glucose metabolism in liver and aorta were investigated. Results Similar response in plasma lipid oxidation was observed in PLG as in SHG. Likewise, in aorta, PLG and SHG displayed increased expression of glucose transporter 1 (GLUT1), gp-91PHOX and super oxide dismutase (SOD), while only the PLG group showed increased accumulation of oxidative stress and oxidised low density lipoprotein (oxLDL) in aorta. Conclusion Pulsatile hyperglycaemia induced relatively higher levels of oxidative stress systemically and in aorta in particular than overt sustained hyperglycaemia thus supporting the clinical observations that pulsatile hyperglycaemia is an independent risk factor for diabetes related macrovascular complications. PMID:26790104

  6. Pulsatile Hyperglycaemia Induces Vascular Oxidative Stress and GLUT 1 Expression More Potently than Sustained Hyperglycaemia in Rats on High Fat Diet.

    PubMed

    Rakipovski, Günaj; Lykkesfeldt, Jens; Raun, Kirsten

    2016-01-01

    Pulsatile hyperglycaemia resulting in oxidative stress may play an important role in the development of macrovascular complications. We investigated the effects of sustained vs. pulsatile hyperglycaemia in insulin resistant rats on markers of oxidative stress, enzyme expression and glucose metabolism in liver and aorta. We hypothesized that liver's ability to regulate the glucose homeostasis under varying states of hyperglycaemia may indirectly affect oxidative stress status in aorta despite the amount of glucose challenged with. Animals were infused with sustained high (SHG), low (SLG), pulsatile (PLG) glucose or saline (VEH) for 96 h. Oxidative stress status and key regulators of glucose metabolism in liver and aorta were investigated. Similar response in plasma lipid oxidation was observed in PLG as in SHG. Likewise, in aorta, PLG and SHG displayed increased expression of glucose transporter 1 (GLUT1), gp-91PHOX and super oxide dismutase (SOD), while only the PLG group showed increased accumulation of oxidative stress and oxidised low density lipoprotein (oxLDL) in aorta. Pulsatile hyperglycaemia induced relatively higher levels of oxidative stress systemically and in aorta in particular than overt sustained hyperglycaemia thus supporting the clinical observations that pulsatile hyperglycaemia is an independent risk factor for diabetes related macrovascular complications.

  7. Post-stenotic plug-like jet with a vortex ring demonstrated by 4D flow MRI.

    PubMed

    Kim, Guk Bae; Ha, Hojin; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-05-01

    To investigate the details of the flow structure of a plug-like jet that had a vortex ring in pulsatile stenotic phantoms using 4D flow MRI. Pulsatile Newtonian flows in two stenotic phantoms with 50% and 75% reductions in area were scanned by 4D flow MRI. Blood analog working fluid was circulated via the stenotic phantom using a pulsatile pump at a constant pulsating frequency of 1Hz. The velocity and vorticity fields of the plug-like jet with a vortex ring were quantitatively analyzed in the spatial and temporal domains. Pulsatile stenotic flow showed a plug-like jet at the specific stenotic degree of 50% in our pulsatile waveform design. This plug-like jet was found at the decelerating period in the post-stenotic region of 26.4mm (1.2 D). It revealed a vortex ring structure with vorticity strength in the range of ±100s(-1). We observed a plug-like jet with a vortex ring in pulsatile stenotic flow by in vitro visualization using 4D flow MRI. In this plug-like jet, the local fastest flow region occurred at the post-systole phase in the post-stenotic region, which was distinguishable from a typical stenotic jet flow at systole phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Magnetic Resonance Imaging Measurement of Transmission of Arterial Pulsation to the Brain on Propranolol Versus Amlodipine.

    PubMed

    Webb, Alastair J S; Rothwell, Peter M

    2016-06-01

    Cerebral arterial pulsatility is associated with leukoaraiosis and depends on central arterial pulsatility and arterial stiffness. The effect of antihypertensive drugs on transmission of central arterial pulsatility to the cerebral circulation is unknown, partly because of limited methods of assessment. In a technique-development pilot study, 10 healthy volunteers were randomized to crossover treatment with amlodipine and propranolol. At baseline and on each drug, we assessed aortic (Sphygmocor) and middle cerebral artery pulsatility (TCDtranscranial ultrasound). We also performed whole-brain, 3-tesla multiband blood-oxygen level dependent magnetic resonance imaging (multiband factor 6, repetition time=0.43s), concurrent with a novel method of continuous noninvasive blood pressure monitoring. Drug effects on relationships between cardiac cycle variation in blood pressure and blood-oxygen level dependent imaging were determined (fMRI Expert Analysis Tool, fMRIB Software Library [FEAT-FSL]). Aortic pulsatility was similar on amlodipine (27.3 mm Hg) and propranolol (27.9 mm Hg, P diff=0.33), while MCA pulsatility increased nonsignificantly more from baseline on propranolol (+6%; P=0.09) than amlodipine (+1.5%; P=0.58). On magnetic resonance imaging, cardiac frequency blood pressure variations were found to be significantly more strongly associated with blood-oxygen level dependent imaging on propranolol than amlodipine. We piloted a novel method of assessment of arterial pulsatility with concurrent high-frequency blood-oxygen level dependent magnetic resonance imaging and noninvasive blood pressure monitoring. This method was able to identify greater transmission of aortic pulsation on propranolol than amlodipine, which warrants further investigation. © 2016 American Heart Association, Inc.

  9. Biomathematical modeling of pulsatile hormone secretion: a historical perspective.

    PubMed

    Evans, William S; Farhy, Leon S; Johnson, Michael L

    2009-01-01

    Shortly after the recognition of the profound physiological significance of the pulsatile nature of hormone secretion, computer-based modeling techniques were introduced for the identification and characterization of such pulses. Whereas these earlier approaches defined perturbations in hormone concentration-time series, deconvolution procedures were subsequently employed to separate such pulses into their secretion event and clearance components. Stochastic differential equation modeling was also used to define basal and pulsatile hormone secretion. To assess the regulation of individual components within a hormone network, a method that quantitated approximate entropy within hormone concentration-times series was described. To define relationships within coupled hormone systems, methods including cross-correlation and cross-approximate entropy were utilized. To address some of the inherent limitations of these methods, modeling techniques with which to appraise the strength of feedback signaling between and among hormone-secreting components of a network have been developed. Techniques such as dynamic modeling have been utilized to reconstruct dose-response interactions between hormones within coupled systems. A logical extension of these advances will require the development of mathematical methods with which to approximate endocrine networks exhibiting multiple feedback interactions and subsequently reconstruct their parameters based on experimental data for the purpose of testing regulatory hypotheses and estimating alterations in hormone release control mechanisms.

  10. Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model.

    PubMed

    Diana, M; Agnus, V; Halvax, P; Liu, Y-Y; Dallemagne, B; Schlagowski, A-I; Geny, B; Diemunsch, P; Lindner, V; Marescaux, J

    2015-01-01

    Fluorescence videography is a promising technique for assessing bowel perfusion. Fluorescence-based enhanced reality (FLER) is a novel concept, in which a dynamic perfusion cartogram, generated by computer analysis, is superimposed on to real-time laparoscopic images. The aim of this experimental study was to assess the accuracy of FLER in detecting differences in perfusion in a small bowel resection-anastomosis model. A small bowel ischaemic segment was created laparoscopically in 13 pigs. Animals were allocated to having anastomoses performed at either low perfusion (25 per cent; n = 7) or high perfusion (75 per cent; n = 6), as determined by FLER analysis. Capillary lactate levels were measured in blood samples obtained by serosal puncturing in the ischaemic area, resection lines and vascularized areas. Pathological inflammation scoring of the anastomosis was carried out. Lactate levels in the ischaemic area (mean(s.d.) 5·6(2·8) mmol/l) were higher than those in resection lines at 25 per cent perfusion (3·7(1·7) mmol/l; P = 0·010) and 75 per cent perfusion (2·9(1·3) mmol/l; P < 0·001), and higher than levels in vascular zones (2·5(1·0) mmol/l; P < 0·001). Lactate levels in resection lines with 75 per cent perfusion were lower than those in lines with 25 per cent perfusion (P < 0·001), and similar to those in vascular zones (P = 0·188). Levels at resection lines with 25 per cent perfusion were higher than those in vascular zones (P = 0·001). Mean(s.d.) global inflammation scores were higher in the 25 per cent perfusion group compared with the 75 per cent perfusion group for mucosa/submucosa (2·1(0·4) versus 1·2(0·4); P = 0·003) and serosa (1·8(0·4) versus 0·8(0·8); P = 0·014). A ratio of preanastomotic lactate levels in the ischaemic area relative to the resection lines of 2 or less was predictive of a more severe inflammation score. In an experimental model, FLER appeared accurate in discriminating bowel perfusion levels. Surgical relevance Clinical assessment has limited accuracy in evaluating bowel perfusion before anastomosis. Fluorescence videography estimates intestinal perfusion based on the fluorescence intensity of injected fluorophores, which is proportional to bowel vascularization. However, evaluation of fluorescence intensity remains a static and subjective measure. Fluorescence-based enhanced reality (FLER) is a dynamic fluorescence videography technique integrating near-infrared endoscopy and specific software. The software generates a virtual perfusion cartogram based on time to peak fluorescence, which can be superimposed on to real-time laparoscopic images. This experimental study demonstrates the accuracy of FLER in detecting differences in bowel perfusion in a survival model of laparoscopic small bowel resection-anastomosis, based on biochemical and histopathological data. It is concluded that real-time imaging of bowel perfusion is easy to use and accurate, and should be translated into clinical use. © 2015 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  11. Assessing photoplethysmographic imaging performance beyond facial perfusion analysis

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Hughson, Richard L.; Greaves, Danielle K.; Clausi, David A.; Wong, Alexander

    2017-02-01

    Photoplethysmographic imaging (PPGI) systems are relatively new non-contact biophotonic diffuse reflectance systems able to assess arterial pulsations through transient changes in light-tissue interaction. Many PPGI studies have focused on extracting heart rate from the face or hand. Though PPGI systems can be used for widefield imaging of any anatomical area, whole-body investigations are lacking. Here, using a novel PPGI system, coded hemodynamic imaging (CHI), we explored and analyzed the pulsatility at major arterial locations across the whole body, including the neck (carotid artery), arm/wrist (brachial, radial and ulnar arteries), and leg/feet (popliteal and tibial arteries). CHI was positioned 1.5 m from the participant, and diffuse reactance from a broadband tungsten-halogen illumination was filtered using 850{1000 nm bandpass filter for deep tissue penetration. Images were acquired over a highly varying 24-participant sample (11/13 female/male, age 28.7+/-12.4 years, BMI 25.5+/-5.2 kg/m2), and a preliminary case study was performed. B-mode ultrasound images were acquired to validate observations through planar arterial characteristics.

  12. Channeled Scaffolds for Engineering Myocardium with Mechanical Stimulation

    PubMed Central

    Zhang, Ting; Wan, Leo Q.; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2011-01-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) are critically important for engineering functional myocardial tissue. We report the development of chitosan-collagen scaffolds with micro-pores and an array of parallel channels (~200 μm in diameter) that were specifically designed for cardiac tissue engineering with mechanical stimulation. The scaffolds were designed to have the structural and mechanical properties similar to those of the native human heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom-designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1–2 mm thick) consisted of metabolically active cells and started to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stresses promoted cell alignment, elongation, and the expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. PMID:22081518

  13. Channelled scaffolds for engineering myocardium with mechanical stimulation.

    PubMed

    Zhang, Ting; Wan, Leo Q; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2012-10-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) of the heart are important characteristics in the engineering of functional myocardial tissue. This study reports on the development of chitosan-collagen scaffolds with micropores and an array of parallel channels (~ 200 µm in diameter) that were specifically designed for cardiac tissue engineering using mechanical stimulation. The scaffolds were designed to have similar structural and mechanical properties of those of native heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1-2 mm thick) consisted of metabolically active cells that began to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stress promoted cell alignment, elongation, and expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture.

    PubMed

    Charest, Jonathan M; Okamoto, Tatsuya; Kitano, Kentaro; Yasuda, Atsushi; Gilpin, Sarah E; Mathisen, Douglas J; Ott, Harald C

    2015-06-01

    The primary treatment for end-stage lung disease is lung transplantation. However, donor organ shortage remains a major barrier for many patients. In recent years, techniques for maintaining lungs ex vivo for evaluation and short-term (<12 h) resuscitation have come into more widespread use in an attempt to expand the donor pool. In parallel, progress in whole organ engineering has provided the potential perspective of patient derived grafts grown on demand. As both of these strategies advance to more complex interventions for lung repair and regeneration, the need for a long-term organ culture system becomes apparent. Herein we describe a novel clinical scale bioreactor capable of maintaining functional porcine and human lungs for at least 72 h in isolated lung culture (ILC). The fully automated, computer controlled, sterile, closed circuit system enables physiologic pulsatile perfusion and negative pressure ventilation, while gas exchange function, and metabolism can be evaluated. Creation of this stable, biomimetic long-term culture environment will enable advanced interventions in both donor lungs and engineered grafts of human scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Medium voltage therapy for preventing and treating asystole and PEA in ICDs.

    PubMed

    Gilman, Byron L; Brewer, James E; Kroll, Kai; Kroll, Mark W

    2009-01-01

    Sudden cardiac death (SCD) takes up to 500,000 lives each year before a victim can even be treated. To address this the implantable cardioverter defibrillator (ICD) was developed to treat those identified at high risk of SCD. Unfortunately, there are a significant number of cases in which the ICD does not successfully return a victim to normal rhythm and effective perfusion of the blood. The vast majority of cases that are not responsive to the ICD therapy require cardio-pulmonary resuscitation (CPR) according to current resuscitation guidelines. A novel electrical stimulus called medium voltage therapy (MVT) has shown efficacy in producing coronary and carotid blood flow during ventricular fibrillation. This report presents the case that the same stimulus may be effective and feasible for use in ICD patients that do not respond to their ICD therapy, or do not have a rhythm in which, an ICD shock is indicated. The inclusion of MVT technology in implantable devices may be effective in preparing the heart for successful defibrillation or in improving the metabolic condition of the heart to the extent that a pulsatile rhythm may spontaneously develop.

  16. SimLife a new model of simulation using a pulsated revascularized and reventilated cadaver for surgical education.

    PubMed

    Delpech, P O; Danion, J; Oriot, D; Richer, J P; Breque, C; Faure, J P

    2017-02-01

    Alike becoming a pilot requires competences, acquisition of technical skills is essential to become a surgeon. Halsted's theory on surgical education "See one, do one, and teach one" is not currently compatible with the reality of socio-economic constraints of the operating room, the patient's safety demand and the reduction of residents' work hours. In all countries, this brings mandatory to simulation education for surgery resident's training. Many models are available: video trainers or pelvi-trainers, computed simulator, animal models or human cadaver… Human cadaveric dissection has long been used to teach surgical anatomy. Surgery on human cadaveric model brings greatest accuracy to the haptic characteristics of surgical procedures. Learning in an appropriate and realistic simulation context increases the level of acquisition of the residents' skills and reduces stress and anxiety when performing real procedures. We present a technique of perfusion and ventilation of a fresh human cadaver that restores pulsatile circulation and respiratory movements of the model. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. A multiple disk centrifugal pump as a blood flow device.

    PubMed

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  18. Dense concentric circle scanning protocol for measuring pulsatile retinal blood flow in rats with Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tan, Bingyao; Hosseinaee, Zohreh; Bizheva, Kostadinka

    2017-11-01

    The variability in the spatial orientation of retinal blood vessels near the optic nerve head (ONH) results in imprecision of the measured Doppler angle and therefore the pulsatile blood flow (BF), when those parameters are evaluated using Doppler OCT imaging protocols based on dual-concentric circular scans. Here, we utilized a dense concentric circle scanning protocol and evaluated its precision for measuring pulsatile retinal BF in rats for different numbers of the circular scans. An spectral domain optical coherence tomography (SD-OCT) system operating in the 1060-nm spectral range with image acquisition rate of 47,000 A-scans/s was used to acquire concentric circular scans centered at the rat's ONH, with diameters ranging from 0.8 to 1.0 mm. A custom, automatic blood vessel segmentation algorithm was used to track the spatial orientation of the retinal blood vessels in three dimensions, evaluate the spatially dependent Doppler angle and calculate more accurately the axial BF for each major retinal blood vessel. Metrics such as retinal BF, pulsatility index, and resistance index were evaluated for each and all of the major retinal blood vessels. The performance of the proposed dense concentric circle scanning protocols was compared with that of the dual-circle scanning protocol. Results showed a 3.8±2.2 deg difference in the Doppler angle calculation between the two approaches, which resulted in ˜7% difference in the calculated retinal BF.

  19. Comparison of Irrigation Times Using Gravity and High-Pressure Lavage.

    PubMed

    Muscatelli, Stefano; Howe, Andrea; O'Hara, Nathan N; O'Toole, Robert V; Sprague, Sheila A; Slobogean, Gerard P

    2017-05-01

    The benefits of high-pressure pulsatile lavage for open fracture irrigation have been controversial based on conflicting experimental animal research. Recently published data definitively demonstrated that irrigation pressure does not affect the incidence of reoperation for the treatment of open fractures. However, proponents of pulsatile lavage argue a faster irrigation time is an important benefit of the high-pressure treatment. The purpose of this study was to determine the difference in irrigation time between gravity and high-pressure lavage. The experimental setup was designed to mimic clinical practice and compared mean irrigation flow times for high-pressure pulsatile lavage and gravity flow with 2 commonly used tube diameters. Each irrigation setup was tested 5 times at 3 different irrigation bag heights. Analysis of variance and Student's t tests were used to compare the mean flow times of 3 irrigation methods at each height and among the 3 heights for each irrigation method. The mean irrigation flow time in the various experimental models ranged from 161 to 243 seconds. Gravity irrigation with wide tubing was significantly faster than pulsatile lavage or gravity with narrow tubing (P<.001). Increasing irrigation bag height had only a marginal effect on the overall flow times (<9% difference). The difference in mean flow time among the testing techniques was slightly longer than 1 minute, which is unlikely to have a material impact on procedural costs, operating times, and subsequent gains in patient safety. [Orthopedics. 2017; 40(3):e413-e416.]. Copyright 2017, SLACK Incorporated.

  20. [An automatic system controlled by microcontroller for carotid sinus perfusion].

    PubMed

    Yi, X L; Wang, M Y; Fan, Z Z; He, R R

    2001-08-01

    To establish a new method for controlling automatically the carotid perfusion pressure. A cheap practical automatic perfusion unit based on AT89C2051 micro controller was designed. The unit, LDB-M perfusion pump and the carotid sinus of an animal constituted an automatic perfusion system. This system was able to provide ramp and stepwise updown perfusion pattern and has been used in the research of baroreflex. It can insure the precision and reproducibility of perfusion pressure curve, and improve the technical level in corresponding medical field.

  1. Multispectral imaging of organ viability during uterine transplantation surgery

    NASA Astrophysics Data System (ADS)

    Clancy, Neil T.; Saso, Srdjan; Stoyanov, Danail; Sauvage, Vincent; Corless, David J.; Boyd, Michael; Noakes, David E.; Thum, Meen-Yau; Ghaem-Maghami, Sadaf; Smith, J. R.; Elson, Daniel S.

    2014-02-01

    Uterine transplantation surgery has been proposed as a treatment for permanent absolute uterine factor infertility (AUFI) in the case of loss of the uterus. Due to the complexity of the vasculature correct reanastomosis of the blood supply during transplantation surgery is a crucial step to ensure reperfusion and viability of the organ. While techniques such as fluorescent dye imaging have been proposed to visualise perfusion there is no gold standard for intraoperative visualisation of tissue oxygenation. In this paper results from a liquid crystal tuneable filter (LCTF)-based multispectral imaging (MSI) laparoscope are described. The system was used to monitor uterine oxygen saturation (SaO2) before and after transplantation. Results from surgeries on two animal models (rabbits and sheep) are presented. A feature-based registration algorithm was used to correct for misalignment induced by breathing or peristalsis in the tissues of interest prior to analysis. An absorption spectrum was calculated at each spatial pixel location using reflectance data from a reference standard, and the relative contributions from oxy- and deoxyhaemoglobin were calculated using a least squares regression algorithm with non-negativity constraints. Results acquired during animal surgeries show that cornual oxygenation changes are consistent with those observed in point measurements taken using a pulse oximeter, showing reduced SaO2 following reanastomosis. Values obtained using the MSI laparoscope were lower than those taken with the pulse oximeter, which may be due to the latter's use of the pulsatile arterial blood signal. Future work incorporating immunological test results will help to correlate SaO2 levels with surgical outcomes.

  2. Influence of skin type and wavelength on light wave reflectance.

    PubMed

    Fallow, Bennett A; Tarumi, Takashi; Tanaka, Hirofumi

    2013-06-01

    A new application of photoplethysmography (PPG) has emerged recently to provide the possibility of heart rate monitoring without a telemetric chest strap. The aim of this study was to determine if a new device could detect pulsation over a broad range of skin types, and what light wavelength would be most suitable for detecting the signals. A light emitting diode-based PPG system was used to detect changes in pulsatile blood flow on 23 apparently healthy individuals (11 male and 12 female, 20-59 years old) of varying skin types classified according to a questionnaire in combination with digital photographs with a skin type chart. Four different light wavelengths (470, 520, 630, and 880 nm) were tested. Normalized modulation level is calculated as the AC/DC component ratio and represents the change in flow over the underlying constant state of flow or perfusion. In the resting condition, green light wavelength (520 nm) displayed greater modulation (p < 0.001) than all the other wavelengths analyzed regardless of skin types. Type V (dark brown) skin type was significantly lower in modulation than all other skin types. In the exercise condition, both blue (470 nm) and green (520 nm) light wavelengths displayed greater signal-to-noise ratios than red (630 nm) or infrared (880 nm) light wavelengths (p < 0.001). We concluded that a PPG-based device can detect pulsation across all skin types and that a greater resolution was obtained using a green light wavelength at rest and a green or blue light wavelength during exercise.

  3. Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps.

    PubMed

    Ludolph, Ingo; Arkudas, Andreas; Schmitz, Marweh; Boos, Anja M; Taeger, Christian D; Rother, Ulrich; Horch, Raymund E; Beier, Justus P

    2016-10-01

    The aim of this prospective study was to assess the correlation of flap perfusion analysis based on laser-assisted Indocyanine Green (ICG) angiography with combined laser Doppler spectrophotometry in autologous breast reconstruction using free DIEP/ms-TRAM flaps. Between February 2014 and July 2015, 35 free DIEP/ms-TRAM flaps were included in this study. Besides the clinical evaluation of flaps, intraoperative perfusion dynamics were assessed by means of laser-assisted ICG angiography and post-capillary oxygen saturation and relative haemoglobin content (rHb) using combined laser Doppler spectrophotometry. Correlation of the aforementioned parameters was analysed, as well as the impact on flap design and postoperative complications. Flap survival rate was 100%. There were no partial flap losses. In three cases, flap design was based on the angiography, contrary to clinical evaluation and spectrophotometry. The final decision on the inclusion of flap areas was based on the angiographic perfusion pattern. Angiography and spectrophotometry showed a correlation in most of the cases regarding tissue perfusion, post-capillary oxygen saturation and relative haemoglobin content. Laser-assisted ICG angiography is a useful tool for intraoperative evaluation of flap perfusion in autologous breast reconstruction with DIEP/ms-TRAM flaps, especially in decision making in cases where flap perfusion is not clearly assessable by clinical signs and exact determination of well-perfused flap margins is difficult to obtain. It provides an objective real-time analysis of flap perfusion, with high sensitivity for the detection of poorly perfused flap areas. Concerning the topographical mapping of well-perfused flap areas, laser-assisted angiography is superior to combined laser Doppler spectrophotometry. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates.

    PubMed

    Dowd, Jason E; Jubb, Anthea; Kwok, K Ezra; Piret, James M

    2003-05-01

    Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of approximately 5 x 10(6) cells mL(-1). Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell(-1) day(-1). Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized ( approximately 40 mg L(-1)) at 0.2 nL cell(-1) day(-1). The volumetric protein productivity ( approximately 60 mg L(-1) day(-1) was maximized above 0.3 nL cell(-1) day(-1). The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures.

  5. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging

    PubMed Central

    Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian

    2017-01-01

    Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of “true” normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations. PMID:29190788

  6. Pulsatile GnRH Therapy May Restore Hypothalamus-Pituitary-Testis Axis Function in Patients With Congenital Combined Pituitary Hormone Deficiency: A Prospective, Self-Controlled Trial.

    PubMed

    Zheng, Junjie; Mao, Jiangfeng; Xu, Hongli; Wang, Xi; Huang, Bingkun; Liu, Zhaoxiang; Cui, Mingxuan; Xiong, Shuyu; Ma, Wanlu; Min, Le; Kaiser, Ursula B; Nie, Min; Wu, Xueyan

    2017-07-01

    The effectiveness of pulsatile gonadotropin-releasing hormone (GnRH) therapy in patients with congenital combined pituitary hormone deficiency (CCPHD) has not been investigated because of the limited number of patients, as well as these patients' presumed pituitary hypoplasia, poor gonadotrophic cell reserve, and impaired gonadotrophic response to GnRH. To assess the pituitary response to pulsatile GnRH therapy in men with CCPHD. Prospective, self-controlled, 3-month clinical trial. University endocrine clinic. Men with hypogonadotropic hypogonadism caused by CCPHD. Pulsatile GnRH was administered subcutaneously for 3 months. Primary endpoints were total serum testosterone, testicular volume, and luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels. Secondary endpoints included occurrence of spermatogenesis. A total of 40 men with CCPHD completed the study. Of these, 60% (24 of 40) showed a good response to pulsatile GnRH treatment (response group). At 3 months, their LH and FSH levels increased to within the normal range and their testosterone levels increased to 8.67 ± 4.83 nmol/L. Of the patients in the response group, 33.3% (8 of 24) of them achieved spermatogenesis. The remaining 40% (16 of 40) of patients had a poor response to pulsatile GnRH treatment. Magnetic resonance imaging (MRI) did not reveal any correlation between pituitary response and pituitary height and/or integrity of the pituitary stalk. This study suggests that gonadotrophs in patients with CCPHD can exist and be functional-even with MRI evidence of pituitary hypoplasia or dysplasia. Pulsatile GnRH therapy restored pituitary-testis axis function in 60% of patients with CCPHD. These results may directly guide the clinical therapeutic choice. Copyright © 2017 Endocrine Society

  7. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging.

    PubMed

    Ringstad, Geir; Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian

    2017-01-01

    Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations.

  8. Long-term subcutaneous pulsatile low dose LH-RH administration for treatment of infertile men with secondary hypogonadotrophic hypogonadism.

    PubMed

    Skarin, G; Nillius, S J; Wide, L

    1984-01-01

    Chronic pulsatile subcutaneous low dose LH-RH treatment was given to three infertile men with longstanding (2-4 years) secondary hypothalamic pituitary failure. Before the therapy they had very low serum concentrations of gonadotrophins and testosterone. They were impotent and could not produce any ejaculate for sperm analysis. The pulsatile LH-RH treatment, which was continued up to 250 days, was given by means of a small portable automatically-timed infusion pump. Fifty microliter of the LH-RH solution was infused during one min every 90 min. The LH-RH doses were 1, 5 and 20 micrograms. The serum concentrations of the gonadotrophins and testosterone were normalized in the three patients within 10 days of pulsatile low dose LH-RH therapy. Libido and potency returned. The first ejaculates contained no sperms. With continued LH-RH treatment spermatogenesis was induced and normalized. Two of the men fertilized their wives. The pregnancy tests were positive after 181 and 230 days of treatment, respectively. Two healthy girls have been born. Paternity tests were positive. The third man is still receiving pulsatile LH-RH therapy. He has up till now been treated for four months. Chronic pulsatile s.c. low dose LH-RH administration is a very promising new therapy for those hypogonadal men who previously have required human gonadotrophin treatment to restore fertility.

  9. Pulsatile plasma filtration and cell-free DNA amplification using a water-head-driven point-of-care testing chip.

    PubMed

    Lee, Yonghun; Kim, Dong-Min; Li, Zhenglin; Kim, Dong-Eun; Kim, Sung-Jin

    2018-03-13

    We demonstrate a microfiltration chip that separates blood plasma by using water-head-driven pulsatile pressures rather than any external equipment and use it for on-chip amplification of nucleic acids. The chip generates pulsatile pressures to significantly reduce filter clogging without hemolysis, and consists of an oscillator, a plasma-extraction pump, and filter units. The oscillator autonomously converts constant water-head pressure to pulsatile pressure, and the pump uses the pulsatile pressure to extract plasma through the filter. Because the pulsatile pressure can periodically clear blood cells from the filter surface, filter clogging can be effectively reduced. In this way, we achieve plasma extraction with 100% purity and 90% plasma recovery at 15% hematocrit. During a 10 min period, the volume of plasma extracted was 43 μL out of a 243 μL extraction volume at 15% hematocrit. We also studied the influence of the pore size and diameter of the filter, blood loading volume, oscillation period, and hematocrit level on the filtration performance. To demonstrate the utility of our chip for point-of-care testing (POCT) applications, we successfully implemented on-chip amplification of a nucleic acid (miDNA21) in plasma filtered from blood. We expect our chip to be useful not only for POCT applications but also for other bench-top analysis tools using blood plasma.

  10. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  11. Prospective, randomized comparison between pulsatile GnRH therapy and combined gonadotropin (FSH+LH) treatment for ovulation induction in women with hypothalamic amenorrhea and underlying polycystic ovary syndrome.

    PubMed

    Dubourdieu, Sophie; Fréour, Thomas; Dessolle, Lionel; Barrière, Paul

    2013-05-01

    To compare the efficacy of pulsatile GnRH therapy versus combined gonadotropins for ovulation induction in women with both hypothalamic amenorrhoea and polycystic ovarian syndrome (HA/PCOS) according to their current hypothalamic status. This single-centre, prospective, randomized study was conducted in the Nantes University Hospital, France. Thirty consecutive patients were treated for ovulation induction with either pulsatile GnRH therapy or combined gonadotropins (rFSH+rLH). Frequency of adequate ovarian response (mono- or bi-follicular) and clinical pregnancy rate were then compared between both groups. Ovarian response was similar in both groups with comparable frequency of adequate ovarian response (73% vs 60%), but the clinical pregnancy rate was significantly higher in the pulsatile GnRH therapy group than in the combined gonadotropin group (46% vs 0%). HA/PCOS is a specific subgroup of infertile women. Pulsatile GnRH therapy is an effective and safe method of ovulation induction that can be used successfully in these patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Impact of CT perfusion imaging on the assessment of peripheral chronic pulmonary thromboembolism: clinical experience in 62 patients.

    PubMed

    Le Faivre, Julien; Duhamel, Alain; Khung, Suonita; Faivre, Jean-Baptiste; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine

    2016-11-01

    To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. • Dual-energy computed tomography generates standard diagnostic imaging and lung perfusion analysis. • Depiction of CPE on central arteries relies on standard diagnostic imaging. • Detection of peripheral CPE is improved by perfusion imaging.

  13. Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software.

    PubMed

    Ebersberger, Ullrich; Marcus, Roy P; Schoepf, U Joseph; Lo, Gladys G; Wang, Yining; Blanke, Philipp; Geyer, Lucas L; Gray, J Cranston; McQuiston, Andrew D; Cho, Young Jun; Scheuering, Michael; Canstein, Christian; Nikolaou, Konstantin; Hoffmann, Ellen; Bamberg, Fabian

    2014-01-01

    To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. • Myocardial perfusion CT is attractive for comprehensive coronary heart disease assessment. • Traditional image analysis methods are cumbersome and time-consuming. • Automated 3D perfusion software shortens analysis times. • Automated 3D perfusion software increases standardisation of myocardial perfusion CT. • Automated, standardised analysis fosters myocardial perfusion CT integration into clinical practice.

  14. Fluorescence-based enhanced reality (FLER) for real-time estimation of bowel perfusion in minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Diana, Michele

    2016-03-01

    Pre-anastomotic bowel perfusion is a key factor for a successful healing process. Clinical judgment has limited accuracy to evaluate intestinal microperfusion. Fluorescence videography is a promising tool for image-guided intraoperative assessment of the bowel perfusion at the future anastomotic site in the setting of minimally invasive procedures. The standard configuration for fluorescence videography includes a Near-Infrared endoscope able to detect the signal emitted by a fluorescent dye, more frequently Indocyanine Green (ICG), which is administered by intravenous injection. Fluorescence intensity is proportional to the amount of fluorescent dye diffusing in the tissue and consequently is a surrogate marker of tissue perfusion. However, fluorescence intensity alone remains a subjective approach and an integrated computer-based analysis of the over-time evolution of the fluorescence signal is required to obtain quantitative data. We have developed a solution integrating computer-based analysis for intra-operative evaluation of the optimal resection site, based on the bowel perfusion as determined by the dynamic fluorescence intensity. The software can generate a "virtual perfusion cartography", based on the "fluorescence time-to-peak". The virtual perfusion cartography can be overlapped onto real-time laparoscopic images to obtain the Enhanced Reality effect. We have defined this approach FLuorescence-based Enhanced Reality (FLER). This manuscript describes the stepwise development of the FLER concept.

  15. Fatigue and In Vivo Validation of a Peritoneum-Lined Self-Expanding Nitinol Stent-Graft

    PubMed Central

    Bastijanic, Jennifer M.; Etscheidt, Jordan; Sattiraju, Mallika; Bonsignore, Craig; Kopchok, George; White, Rodney; Sarac, Timur P.

    2014-01-01

    Purpose To assess the fatigue and in vivo performance of a new stent-graft incorporating bovine peritoneum lining that is designed for application in peripheral vascular occlusive disease. Methods Bovine peritoneum-lined stent-grafts were subjected to accelerated in vitro pulsatile fatigue and axial/torsional fatigue testing designed to simulate 10 years of physiological strain on the devices. At specified times the devices were evaluated for stent fracture, suture failure, or tissue tearing. Seven dogs underwent bilateral common iliac artery (CIA) balloon angioplasty injury with unilateral placement of the peritoneum-lined stent-graft. Angiography and intravascular ultrasound were performed prior to treatment, after treatment, and prior to sacrifice at 30 days. Vessels were perfusion fixed and histologically evaluated at 5 regions: above stent, proximal stent, mid stent, distal stent, and below stent. Results No evidence of stent, suture, or tissue failure was present during or after pulsatile and axial/torsional fatigue testing. At 30±0.3 days after implantation, all vessels were patent. The average lumen area at explantation across stented vessels was 25.45 mm2. Lumen areas tended to be reduced above (23.57 mm2) and below (24.17 mm2) the stent. Lumen areas were consistent across stented regions at explantation (proximal stent 27.80 mm2, mid stent 25.88 mm2, and distal stent 25.81 mm2). The mean neointimal area in peritoneum-lined stents was 2.02±1.52 mm2, with a neointima:media ratio of 1.03±0.50. These values were significantly lower in the above and below stent areas than in the stented regions, but there was no difference in either measure within the proximal, mid, or distal stent. Conclusion The custom-designed peritoneum-lined stent-graft is promising for clinical peripheral applications due to its ability to resist relevant long-term physiological stresses and outstanding short-term patency rates in canine implantations. PMID:25290804

  16. A comparison of dobutamine and levosimendan on hepatic blood flow in patients with a low cardiac output state after cardiac surgery: a randomised controlled study.

    PubMed

    Alvarez, J; Baluja, A; Selas, S; Otero, P; Rial, M; Veiras, S; Caruezo, V; Taboada, M; Rodriguez, I; Castroagudin, J; Tome, S; Rodriguez, A; Rodriguez, J

    2013-11-01

    Liver dysfunction due to a low cardiac output state after cardiac surgery is associated with a poor prognosis, but whether one inotrope is superior to another in improving hepatic perfusion remains uncertain. This study compared the systemic and hepatic haemodynamic effects of levosimendan to dobutamine in patients with a low cardiac output state (cardiac index < 2.2 l/min/m2) after on-pump cardiac surgery. A total of 25 patients were randomised to receive either an intravenous bolus of levosimendan (12 µg/kg) over 15 minutes, followed by an infusion of 0.2 µg/kg/min for 24 hours, or an infusion of dobutamine 7.5 µg/kg/min for 24 hours and completed the study. The systemic and hepatic haemodynamics at 24 and 48 hours were all better after levosimendan than dobutamine (dobutamine group: cardiac index (l/min/m2)=2.51 [standard deviation ±0.29], 2.40±0.23; portal vein flow (ml/min): 614.0±124.7, 585.9±144.8; pulsatility index: 2.02±0,28, 2.98±0.27 versus the levosimendan group: cardiac index: 3.02± 0.27, 2.98± 0.30; portal vein flow: 723.0± 143.5, 702.9±117.8; pulsatility index: 1.71±0.26, 1.73±0.27). The improvement in portal vein blood flow at 48 hours was significantly better after levosimendan than dobutamine (41% vs. 11% increment from baseline, P<0.05). In addition, there was a significant reduction in hepatic artery resistance after levosimendan but not dobutamine (resistance index reduction 6.5% vs. 0%, P<0.05). In summary, levosimendan can be considered as a selective liver vasodilator and can improve hepatic blood flow through both the hepatic artery and portal venous system, whereas dobutamine can only improve the portal venous blood flow without vasodilating the hepatic artery.

  17. Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.

  18. Blood Perfusion in Human Eyelid Skin Flaps Examined by Laser Speckle Contrast Imaging-Importance of Flap Length and the Use of Diathermy.

    PubMed

    Nguyen, Cu Dinh; Hult, Jenny; Sheikh, Rafi; Tenland, Kajsa; Dahlstrand, Ulf; Lindstedt, Sandra; Malmsjö, Malin

    2017-10-11

    It is well known that blood perfusion is important for the survival of skin flaps. As no study has been conducted to investigate how the blood perfusion in human eyelid skin flaps is affected by the flap length and diathermy, the present study was carried out to investigate these in patients. Fifteen upper eyelids were dissected as part of a blepharoplastic procedure, releasing a 30-mm long piece of skin, while allowing the 5 mm wide distal part of the skin to remain attached, to mimic a skin flap (hereafter called a "skin flap"). Blood perfusion was measured before and after repeated diathermy, using laser speckle contrast imaging. Blood perfusion decreased from the base to the tip of the flap: 5 mm from the base, the perfusion was 69%, at 10 mm it was 40%, at 15 mm it was 20%, and at 20 mm it was only 13% of baseline values. Diathermy further decreased blood perfusion (measured 15 mm from the base) to 13% after applying diathermy for the first time, to 6% after the second and to 4% after the third applications of diathermy. Blood perfusion falls rapidly with distance from the base of skin flaps on the human eyelid, and diathermy reduces blood perfusion even further. Clinically, it may be advised that flaps with a width of 5 mm be no longer than 15 mm (i.e., a width:length ratio of 1:3), and that the use of diathermy should be carefully considered.

  19. Near-infrared imaging of face transplants: are both pedicles necessary?

    PubMed

    Nguyen, John T; Ashitate, Yoshitomo; Venugopal, Vivek; Neacsu, Florin; Kettenring, Frank; Frangioni, John V; Gioux, Sylvain; Lee, Bernard T

    2013-09-01

    Facial transplantation is a complex procedure that corrects severe facial defects due to traumas, burns, and congenital disorders. Although face transplantation has been successfully performed clinically, potential risks include tissue ischemia and necrosis. The vascular supply is typically based on the bilateral neck vessels. As it remains unclear whether perfusion can be based off a single pedicle, this study was designed to assess perfusion patterns of facial transplant allografts using near-infrared (NIR) fluorescence imaging. Upper facial composite tissue allotransplants were created using both carotid artery and external jugular vein pedicles in Yorkshire pigs. A flap validation model was created in n = 2 pigs and a clamp occlusion model was performed in n = 3 pigs. In the clamp occlusion models, sequential clamping of the vessels was performed to assess perfusion. Animals were injected with indocyanine green and imaged with NIR fluorescence. Quantitative metrics were assessed based on fluorescence intensity. With NIR imaging, arterial perforators emitted fluorescence indicating perfusion along the surface of the skin. Isolated clamping of one vascular pedicle showed successful perfusion across the midline based on NIR fluorescence imaging. This perfusion extended into the facial allograft within 60 s and perfused the entire contralateral side within 5 min. Determination of vascular perfusion is important in microsurgical constructs as complications can lead to flap loss. It is still unclear if facial transplants require both pedicles. This initial pilot study using intraoperative NIR fluorescence imaging suggests that facial flap models can be adequately perfused from a single pedicle. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A Study of Normothermic Hemoperfusion of the Porcine Pancreas and Kidney.

    PubMed

    Kuan, Kean Guan; Wee, Mau Nam; Chung, Wen Yuan; Kumar, Rohan; Mees, Soeren Torge; Dennison, Ashley; Maddern, Guy; Trochsler, Markus

    2017-05-01

    Normothermic machine perfusion has enormous potential to improve organ preservation and expand the organ donor pool. It is well established in other organs but not the pancreas, which has especially strict organ acceptance criteria. We established a model of normothermic hemoperfusion of the porcine pancreas with and without addition of the kidney as a dialysis organ. Four pancreases were harvested and perfused for 120 min with autologous whole blood at body temperature, two with parallel perfusion of the kidney and two without. The organs and perfusion circuit were evaluated for gross appearance, pH, histology and perfusion parameters. The organs maintained steadily increasing flow rate and perfusion pressure. Gross appearance of the organs was stable but appeared grossly ischemic toward the end of the perfusion period. Histology demonstrated necrosis centered in acinar tissue but islet cells were preserved. pH was significantly alkalotic toward the end of the perfusion, likely due to pancreatic tissue damage. Addition of the kidney did not result in significant improvement of the acid-base environment in this small series. In conclusion, normothermic perfusion of the pancreas is still in the experimental stages but holds great potential. Further studies to optimize perfusion parameters will significantly improve results. Parallel perfusion of the kidney may facilitate improvement in the acid-base environment. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Effects of laser acupuncture on blood perfusion rate

    NASA Astrophysics Data System (ADS)

    Wang, Xian-ju; Zeng, Chang-chun; Liu, Han-ping; Liu, Song-hao; Liu, Liang-gang

    2006-09-01

    Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.

  2. A novel injection-molded capsular device for oral pulsatile delivery based on swellable/erodible polymers.

    PubMed

    Gazzaniga, Andrea; Cerea, Matteo; Cozzi, Alberto; Foppoli, Anastasia; Maroni, Alessandra; Zema, Lucia

    2011-03-01

    The feasibility of injection molding was explored in the preparation of a novel capsular device for oral pulsatile/delayed delivery based on swellable/erodible polymers. For this purpose, a mold intended to be coupled with a bench-top injection-molding press was designed. This was expected to enable the preparation of matching capsule cap and body items within a single manufacturing cycle and the selection of differing shell thicknesses (300, 600, and 900 μm). Hydroxypropylcellulose (Klucel(®) EF, LF, and GF) was employed as the release-controlling polymer in admixture with polyethylene glycol 1500 (10%, w/w) as the plasticizer. After preliminary trials aimed at the setup of operating conditions, Klucel(®) EF and LF capsule shells with satisfactory technological properties were manufactured. The performance of capsular devices filled with a tracer drug powder was studied by means of a modified USP31 disintegration apparatus. Typical in vitro delayed release patterns were thereby obtained, with lag time increasing as a function of the wall thickness. A good correlation was found between the latter parameter and t (10%), i.e., the time to 10% release, for both polymer grades employed. On the basis of the overall results, the investigated technique was proven suitable for the manufacturing of an innovative pulsatile release platform. © 2011 American Association of Pharmaceutical Scientists

  3. Real time monitoring of pulsatile change in hemoglobin concentrations of cerebral tissue by a portable tissue oximeter with a 10-Hz sampling rate

    NASA Astrophysics Data System (ADS)

    Shiga, Toshikazu; Chihara, Eiichi; Tanabe, Kazuhisa; Tanaka, Yoshifumi; Yamamoto, Katsuyuki

    1998-01-01

    A portable CW tissue oximeter of a 10-Hz sampling rate was developed for examination of pulsatile components of the output signals as a mean of checking the signal reliability during long-term monitoring. Feasible studies were performed on a healthy subject. Changes in Hb and HbO2 signals of cerebral tissue were continuously measured by placing a photoprobe on the forehead during 6-hour sleep. Pulsatile changes in Hb and HbO2 were steadily observed over a whole period of the recording. The phase relation of pulsation in Hb and HbO2 was almost inverse. Not only information for reliable monitoring but also physiological parameters with respect to cerebral circulation and metabolism could be obtained by measuring the pulsatile components.

  4. Real time monitoring of pulsatile change in hemoglobin concentrations of cerebral tissue by a portable tissue oximeter with a 10-Hz sampling rate

    NASA Astrophysics Data System (ADS)

    Shiga, Toshikazu; Chihara, Eiichi; Tanabe, Kazuhisa; Tanaka, Yoshifumi; Yamamoto, Katsuyuki

    1997-12-01

    A portable CW tissue oximeter of a 10-Hz sampling rate was developed for examination of pulsatile components of the output signals as a mean of checking the signal reliability during long-term monitoring. Feasible studies were performed on a healthy subject. Changes in Hb and HbO2 signals of cerebral tissue were continuously measured by placing a photoprobe on the forehead during 6-hour sleep. Pulsatile changes in Hb and HbO2 were steadily observed over a whole period of the recording. The phase relation of pulsation in Hb and HbO2 was almost inverse. Not only information for reliable monitoring but also physiological parameters with respect to cerebral circulation and metabolism could be obtained by measuring the pulsatile components.

  5. Entrainment and thrust augmentation in pulsatile ejector flows

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Bui, T.

    1981-01-01

    This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.

  6. Recent advances in oral pulsatile drug delivery.

    PubMed

    Kalantzi, Lida E; Karavas, Evangelos; Koutris, Efthimios X; Bikiaris, Dimitrios N

    2009-01-01

    Pulsatile drug delivery aims to release drugs on a programmed pattern i.e.: at appropriate time and/or at appropriate site of action. Currently, it is gaining increasing attention as it offers a more sophisticated approach to the traditional sustained drug delivery i.e: a constant amount of drug released per unit time or constant blood levels. Technically, pulsatile drug delivery systems administered via the oral route could be divided into two distinct types, the time controlled delivery systems and the site-specific delivery systems. The simplest pulsatile formulation is a two layer press coated tablet consisted of polymers with different dissolution rates. Homogenicity of the coated barrier is mandatory in order to assure the predictability of the lag time. The disadvantage of such formulation is that the rupture time cannot be always adequately manipulated as it is strongly correlated with the physicochemical properties of the polymer. Gastric retentive systems, systems where the drug is released following a programmed lag phase, chronopharmaceutical drug delivery systems matching human circadian rhythms, multiunit or multilayer systems with various combinations of immediate and sustained-release preparation, are all classified under pulsatile drug delivery systems. On the other hand, site-controlled release is usually controlled by factors such as the pH of the target site, the enzymes present in the intestinal tract and the transit time/pressure of various parts of the intestine. In this review, recent patents on pulsatile drug delivery of oral dosage forms are summarized and discussed.

  7. Using a laser-Doppler flowmetry to measure pulsatile microcirculation on the kidney in rats

    NASA Astrophysics Data System (ADS)

    Jan, Ming-Yie; Chao, Pin-Tsun; Hsu, Tse-Lin; Wang, Yuh-Yin L.; Wang, Wei-Kung

    2001-10-01

    Although Laser Doppler flowmetery (LDF) been extensively used in measurement of microvascular blood flow of different tissues. However, due to some physiological vibrations, fast oscillations of the renal cortical flux (RCF) are hard to be measured. In the study, a commercial 3mW 780nm Laser Doppler flowmetery, with a single fiber and a de-vibration holder, was used to measure the pulsatile RCF in rats. Considering the fast response due to the heart rate of rats, the time constant (TC) was set to 0.05 second and thus the frequency response is up to 20Hz. Furthermore, a calibration standard and a static blood sample were also measured as the references without the pulsatile driving force. In order not to perturb the RCF with tiny momentum, the applying force that the fiber exerted on the renal surface was controlled below 100 dyne. To enhance the signal to noise ratio (SNR), an averaged periodogram was used to estimate the frequency components of the pulsatile microcirculation. It is found that the dominating fast oscillation of RCF is pulsatile and its harmonic components are directly correlated with those of the heartbeat (correlation coefficient =0.999, P<0.001, n=17). The result shows that, in the kidney, the pulsatile RCF is the dominating component of microcirculation oscillation and driven by the fast propagating blood pressure. This technique could be further utilized to analyze the pharmacological effect and hemodynamic parameters on renal function.

  8. Effect of clazosentan, a selective endothelin A receptor antagonist, and tezosentan, a dual endothelin A/B antagonist, on pulsatile shear stress induced constriction of the iliac in the anaesthetized pig.

    PubMed

    Ruane-O'Hora, Therese; Rae, Mark George; Markos, Farouk

    2011-08-01

    1. The effects of changes in mean and pulsatile shear stress on the diameter of the iliac of the anaesthetized pig were investigated in the presence of clazosentan and tezosentan. 2. A total of 17 pigs were used. Mean shear stress was increased by infusing acetylcholine downstream (2-20 μg/min) through the deep femoral artery. Pulsatile shear stress was enhanced first by injecting varying volumes (1-10 mL) of calcium gluconate (stock 10 mg/mL) directly into the left ventricle. Second, by electrical stimulation of the left sympathetic nerves to the heart (1-16 Hz, 4 min duration, supramaximal voltage). 3. An increase in mean shear stress induced a vasodilation that was not altered significantly by the selective endothelin A antagonist clazosentan (10 mg/kg i.v.). Similarly, the vasoconstriction induced by an increase in pulsatile shear stress brought about by either calcium gluconate injections or left sympathetic nerve stimulation was unaffected by clazosentan. However, tezosentan (10 mg/kg i.v.), significantly attenuated the vasoconstriction induced by an increase in pulsatile shear stress. 4. In conclusion, an increase in pulsatile shear stress causes vasoconstriction of the pig iliac artery, which is attenuated by dual endothelin receptor antagonism, but not by specific endothelin A blockade. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  9. Intracranial aneurysmal pulsatility as a new individual criterion for rupture risk evaluation: biomechanical and numeric approach (IRRAs Project).

    PubMed

    Sanchez, M; Ecker, O; Ambard, D; Jourdan, F; Nicoud, F; Mendez, S; Lejeune, J-P; Thines, L; Dufour, H; Brunel, H; Machi, P; Lobotesis, K; Bonafe, A; Costalat, V

    2014-09-01

    The present study follows an experimental work based on the characterization of the biomechanical behavior of the aneurysmal wall and a numerical study where a significant difference in term of volume variation between ruptured and unruptured aneurysm was observed in a specific case. Our study was designed to highlight by means of numeric simulations the correlation between aneurysm sac pulsatility and the risk of rupture through the mechanical properties of the wall. In accordance with previous work suggesting a correlation between the risk of rupture and the material properties of cerebral aneurysms, 12 fluid-structure interaction computations were performed on 12 "patient-specific" cases, corresponding to typical shapes and locations of cerebral aneurysms. The variations of the aneurysmal volume during the cardiac cycle (ΔV) are compared by using wall material characteristics of either degraded or nondegraded tissues. Aneurysms were located on 6 different arteries: middle cerebral artery (4), anterior cerebral artery (3), internal carotid artery (1), vertebral artery (1), ophthalmic artery (1), and basilar artery (1). Aneurysms presented different shapes (uniform or multilobulated) and diastolic volumes (from 18 to 392 mm3). The pulsatility (ΔV/V) was significantly larger for a soft aneurysmal material (average of 26%) than for a stiff material (average of 4%). The difference between ΔV, for each condition, was statistically significant: P=.005. The difference in aneurysmal pulsatility as highlighted in this work might be a relevant patient-specific predictor of aneurysm risk of rupture. © 2014 by American Journal of Neuroradiology.

  10. Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease.

    PubMed

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2017-03-01

    Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Pulsatile release of biomolecules from polydimethylsiloxane (PDMS) chips with hydrolytically degradable seals.

    PubMed

    Intra, Janjira; Glasgow, Justin M; Mai, Hoang Q; Salem, Aliasger K

    2008-05-08

    We demonstrate, for the first time, a robust novel polydimethylsiloxane (PDMS) chip that can provide controlled pulsatile release of DNA based molecules, proteins and oligonucleotides without external stimuli or triggers. The PDMS chip with arrays of wells was constructed by replica molding. Poly(lactic acid-co-glycolic acid) (PLGA) polymer films of varying composition and thickness were used as seals to the wells. The composition, molecular weight and thickness of the PLGA films were all parameters used to control the degradation rate of the seals and therefore the release profiles. Degradation of the films followed the PLGA composition order of 50:50 PLGA>75:25 PLGA>85:15 PLGA at all time-points beyond week 1. Scanning electron microscopy images showed that films were initially smooth, became porous and ruptured as the osmotic pressure pushed the degrading PLGA film outwards. Pulsatile release of DNA was controlled by the composition and thickness of the PLGA used to seal the well. Transfection experiments in a model Human Embryonic Kidney 293 (HEK293) cell line showed that plasmid DNA loaded in the wells was functional after pulsatile release in comparison to control plasmid DNA at all time-points. Thicker films degraded faster than thinner films and could be used to fine-tune the release of DNA over day length periods. Finally the PDMS chip was shown to provide repeated sequential release of CpG oligonucleotides and a model antigen, Ovalbumin (OVA), indicating significant potential for this device for vaccinations or applications that require defined complex release patterns of a variety of chemicals, drugs and biomolecules.

  12. A model to simulate the haemodynamic effects of right heart pulsatile flow after modified Fontan procedure.

    PubMed

    Tamaki, S; Kawazoe, K; Yagihara, T; Abe, T

    1992-02-01

    The effect of pulsatile pulmonary flow after the modified Fontan procedure was examined in a model that simulated the right heart. An inlet overflow tank (preload), axial pulsatile pump, Wind-Kessel model (afterload), and an outlet overflow tank were connected in series. The standard conditions were flow 2.00 l/min with 12 mm Hg preload pressure, 3.0 Wood units resistance, and an outlet overflow tank pressure at 6 mm Hg. The pump rate was set at 80 beats/min. The simulated pulmonary arterial pressure and pulmonary flow waves produced by this model closely resembled those obtained from patients who had undergone the modified Fontan procedure. All variables except the preload were fixed and changes in pulmonary flow were examined at preload pressures of 8, 12, 15, and 17 mm Hg. As the peak pulmonary arterial pressure increased so did pulmonary flow, until it was greater than during the non-pulsatile state. Because the afterload of this model was fixed, this result suggests that there was a concomitant decrease in resistance. This model indicates that pulsatile pulmonary blood flow is likely to have a beneficial effect on the pulmonary circulation after the modified Fontan procedure.

  13. Pulsatile Flow and Gas Transport of Blood over an Array of Cylinders

    NASA Astrophysics Data System (ADS)

    Chan, Kit Yan

    2005-11-01

    In the artificial lung, blood passes through an array of micro-fibers and the gas transfer is strongly dependent on the flow field. The blood flow is unsteady and pulsatile. We have numerically simulated pulsatile flow and gas transfer of blood (modeled as a Casson fluid) over arrays of cylindrical micro-fibers. Oxygen and carbon dioxide are assumed to be in local equilibrium with hemoglobin in blood; and the carbon dioxide facilitated oxygen transport is incorporated into the model by allowing the coupling of carbon dioxide partial pressure and oxygen saturation. The pulsatile flow inputs considered are the sinusoidal and the cardiac waveforms. The squared and staggered arrays of arrangement of the cylinders are considered in this study. Gas transport can be enhanced by: increasing the oscillation frequency; increasing the Reynolds number; increasing the oscillation amplitude; decreasing the void fraction; the use of the cardiac pulsatile input. The overall gas transport is greatly enhanced by the presence of hemoglobin in blood even though the non-Newtonian effect of blood tends to decrease the size and strength of vortices. The pressure drop is also presented as it is an important design parameter confronting the heart.

  14. Spatial probabilistic pulsatility model for enhancing photoplethysmographic imaging systems

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-11-01

    Photoplethysmographic imaging (PPGI) is a widefield noncontact biophotonic technology able to remotely monitor cardiovascular function over anatomical areas. Although spatial context can provide insight into physiologically relevant sampling locations, existing PPGI systems rely on coarse spatial averaging with no anatomical priors for assessing arterial pulsatility. Here, we developed a continuous probabilistic pulsatility model for importance-weighted blood pulse waveform extraction. Using a data-driven approach, the model was constructed using a 23 participant sample with a large demographic variability (11/12 female/male, age 11 to 60 years, BMI 16.4 to 35.1 kg·m-2). Using time-synchronized ground-truth blood pulse waveforms, spatial correlation priors were computed and projected into a coaligned importance-weighted Cartesian space. A modified Parzen-Rosenblatt kernel density estimation method was used to compute the continuous resolution-agnostic probabilistic pulsatility model. The model identified locations that consistently exhibited pulsatility across the sample. Blood pulse waveform signals extracted with the model exhibited significantly stronger temporal correlation (W=35,p<0.01) and spectral SNR (W=31,p<0.01) compared to uniform spatial averaging. Heart rate estimation was in strong agreement with true heart rate [r2=0.9619, error (μ,σ)=(0.52,1.69) bpm].

  15. Polycystic ovarian disease unmasked by pulsatile GnRH therapy in a subgroup of women with hypothalamic amenorrhea.

    PubMed

    Mattle, Verena; Bilgyicildirim, Aysen; Hadziomerovic, Dijana; Ott, Helmut W; Zervomanolakis, Ioannis; Leyendecker, Gerhard; Wildt, Ludwig

    2008-02-01

    To present the observation in six out of 120 women treated with pulsatile GnRH for ovulation induction, who developed hyperandrogenemia and polycystic ovaries during treatment. Clinical observation. Department of Gynecologic Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Austria. A total of 120 women initially diagnosed as suffering from primary or secondary hypothalamic amenorrhea were treated for ovulation induction with pulsatile administration of GnRH for up to 140 days. There was no indication of the presence of polycystic ovaries or hyperandrogenemia before therapy. Pulsatile GnRH therapy using the Zyklomat pump. Ovulatory menstrual cycles. Initially, all patients responded to pulsatile GnRH administration with ovulation and corpus luteum formation. During continuation of treatment, 6 patients developed an increase in LH and LH/FSH ratio as well as a progressive rise in serum T levels resulting in hyperandrogenemia. This was accompanied by the development of polycystic ovaries and cessation of follicular maturation. We conclude from these observations that restoration of normal GnRH stimulation of the pituitary gland can result in the development of hyperandrogenemia and polycystic ovaries, suggesting a pituitary or ovarian defect underlying the pathogenesis of this disorder.

  16. Tissue Doppler Imaging in the evaluation of abdominal aortic pulsatility: a useful tool for the neonatologist.

    PubMed

    Valerio, Enrico; Grison, Alessandra; Capretta, Anna; Golin, Rosanna; Ferrarese, Paola; Bellettato, Massimo

    2017-03-01

    Sonographic cardiac evaluation of newborns with suspected aortic coarctation (AoC) should tend to demonstrate a good phasic and pulsatile flow and the absence of pressure gradient along a normally conformed aortic arch from the modified left parasternal and suprasternal echocardiographic views; these findings, however, may not necessarily rule out a more distal coarctation in the descending aorta. For this reason, the sonographic exam of newborns with suspected AoC should always include a Doppler evaluation of abdominal aortic blood flow from the subcostal view. Occasionally, however, a clearly pulsatile Doppler flow trace in abdominal aorta may be difficult to obtain due to the bad insonation angle existing between the probe and the vessel. In such suboptimal ultrasonic alignment situation, the use of Tissue Doppler Imaging instead of classic Doppler flow imaging may reveal a preserved aortic pulsatility by sampling the aortic wall motion induced by normal flow. We propose to take advantage of the TDI pattern as a surrogate of a normal pulsatile Doppler flow trace in abdominal aorta when the latter is difficult to obtain due to malalignment with the insonated vessel.

  17. Temporal gradients in shear stimulate osteoblastic proliferation via ERK1/2 and retinoblastoma protein

    NASA Technical Reports Server (NTRS)

    Jiang, Guang-Liang; White, Charles R.; Stevens, Hazel Y.; Frangos, John A.

    2002-01-01

    Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.

  18. The Characteristics of Turbulence in Curved Pipes under Highly Pulsatile Flow Conditions

    NASA Astrophysics Data System (ADS)

    Kalpakli, A.; Örlü, R.; Tillmark, N.; Alfredsson, P. Henrik

    High speed stereoscopic particle image velocimetry has been employed to provide unique data from a steady and highly pulsatile turbulent flow at the exit of a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady conditions, the so called "swirl switching" phenomenon, as well as the secondary flow under pulsations have been reconstructed through proper orthogonal decomposition. The present data set constitutes - to the authors' knowledge - the first detailed investigation of a turbulent, pulsatile flow through a pipe bend.

  19. Distinctive features of "chronotherapeutic" and "pulsatile" drug delivery systems negating the practice of their interchangeable terminology.

    PubMed

    Ali, Javed; Baboota, Sanjula; Ahuja, Alka; Saigal, Nitin

    2010-07-01

    The term pulsatile drug delivery has often been used as a synonym to chronotherapeutic drug delivery. This needs to be given a thought as both the drug delivery systems are entirely addressing different needs of the patients as well as the intentions of the formulators being different. Chronotherapeutic systems are based completely on circadian needs and response of the body and the need of the drug to be in its maximum concentrations at a particular time of the day, the fact being supported by endless list of ailments which elicit the related symptoms at a particular time of the day. Considering the formulation approach, one does not find major differences among site-specific chronotherapeutic systems and the basic and more conventional intestinal or colon targeted systems due to the mechanism and the site of landing of drug of both being almost similar even though the intention of the formulator being different. An ideal pulsatile system is the one delivering drug in different pulses with multiple troughs in release profile. The article explores the major differences in between the two systems and highlights the need of using appropriate terminology for these individual and distinct systems catering different needs.

  20. Pulsatile dry cupping in chronic low back pain - a randomized three-armed controlled clinical trial.

    PubMed

    Teut, M; Ullmann, A; Ortiz, M; Rotter, G; Binting, S; Cree, M; Lotz, F; Roll, S; Brinkhaus, B

    2018-04-02

    We aimed to investigate the effectiveness of two different forms of dry pulsatile cupping in patients with chronic low back pain (cLBP) compared to medication on demand only in a three-armed randomized trial. 110 cLBP patients were randomized to regular pulsatile cupping with 8 treatments plus paracetamol on demand (n = 37), minimal cupping with 8 treatments plus paracetamol on demand (n = 36) or the control group with paracetamol on demand only (n = 37). Primary outcome was the pain intensity on a visual analogue scale (VAS, 0-100 mm) after 4 weeks, secondary outcome parameter included VAS pain intensity after 12 weeks, back function as measured with the 'Funktionsfragebogen Hannover Rücken' (FFbH-R) and health related quality of life questionnaire Short form 36 (SF-36) after 4 and 12 weeks. The mean baseline-adjusted VAS after 4 weeks was 34.9 mm (95% CI: 28.7; 41.2) for pulsatile cupping, 40.4 (34.2; 46.7) for minimal cupping and 56.1 (49.8; 62.4) for control group, resulting in statistically significant differences between pulsatile cupping vs. control (21.2 (12.2; 30.1); p < 0.001) and minimal cupping vs. control (15.7 (6.9; 24.4); p = 0.001). After 12 weeks, mean adjusted VAS difference between pulsatile cupping vs. control was 15.1 ((3.1; 27.1); p = 0.014), and between minimal cupping vs. control 11.5 ((- 0.44; 23.4); p = 0.059). Differences of VAS between pulsatile cupping and minimal cupping showed no significant differences after 4 or 12 weeks. Pulsatile cupping was also better (- 5.8 (- 11.5;-0.1); p = 0.045) compared to control for back function after 4 weeks, but not after 12 weeks (- 5.4 (- 11.7;0.8); p = 0.088), pulsatile cupping also showed better improvements on SF-36 physical component scale compared to control at 4 and 12 weeks (- 5.6 (- 9.3;-2.0); p = 0.003; - 6.1 (- 9.9;-2.4); p = 0.002). For back function and quality of life minimal cupping group was not statistically different to control after 4 and 12 weeks. Paracetamol intake did not differ between the groups (cupping vs. control (7.3 (- 0.4;15.0); p = 0.063); minimal cupping vs. control (6.3 (- 2.0;14.5); p = 0.133). Both forms of cupping were effective in cLBP without showing significant differences in direct comparison after four weeks, only pulsatile cupping showed effects compared to control after 12 weeks. The study was registered at ClinicalTrials.gov (identifier: NCT02090686 ).

  1. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion.

    PubMed

    Laing, Richard W; Bhogal, Ricky H; Wallace, Lorraine; Boteon, Yuri; Neil, Desley A H; Smith, Amanda; Stephenson, Barney T F; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F; Afford, Simon C; Mergental, Hynek

    2017-11-01

    Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions while maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity, and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2 extraction ratio 13.75 vs 9.43 % ×10 per gram of tissue, P = 0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species, and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid.

  2. Simulation of blood flow using extended Boltzmann kinetic approach

    NASA Astrophysics Data System (ADS)

    Chen, Caixia; Chen, Hudong; Freed, David; Shock, Richard; Staroselsky, Ilya; Zhang, Raoyang; Ümit Coşkun, A.; Stone, Peter H.; Feldman, Charles L.

    2006-03-01

    Lattice Boltzmann (LB) simulations are conducted to obtain the detailed hydrodynamics in a variety of blood vessel setups, including a prototype stented channel and four human coronary artery geometries based on the images obtained from real patients. For a model of stented flow involving an S-shape stent, a pulsatile flow rate is applied as the inlet boundary condition, and the time- and space-dependent flow field is computed. The LB simulation is found to reproduce the analytical solutions for the velocity profiles and wall shear stress distributions for the pulsatile channel flow. For the coronary arteries, the distributions of wall shear stress, which is important for clinical diagnostic purposes, are in good agreement with the conventional CFD predictions.

  3. Application of a novel particle tracking algorithm in the flow visualization of an artificial abdominal aortic aneurysm.

    PubMed

    Zhang, Yang; Wang, Yuan; He, Wenbo; Yang, Bin

    2014-01-01

    A novel Particle Tracking Velocimetry (PTV) algorithm based on Voronoi Diagram (VD) is proposed and briefed as VD-PTV. The robustness of VD-PTV for pulsatile flow is verified through a test that includes a widely used artificial flow and a classic reference algorithm. The proposed algorithm is then applied to visualize the flow in an artificial abdominal aortic aneurysm included in a pulsatile circulation system that simulates the aortic blood flow in human body. Results show that, large particles tend to gather at the upstream boundary because of the backflow eddies that follow the pulsation. This qualitative description, together with VD-PTV, has laid a foundation for future works that demand high-level quantification.

  4. Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling.

    PubMed

    Ahlgren, André; Wirestam, Ronnie; Petersen, Esben Thade; Ståhlberg, Freddy; Knutsson, Linda

    2014-09-01

    Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion estimation is feasible, and provides a promising tool for decoupling perfusion and tissue volume. Copyright © 2014 John Wiley & Sons, Ltd.

  5. A pulsatile pressure waveform is a sensitive marker for confirming the location of the thoracic epidural space.

    PubMed

    Lennox, Pamela H; Umedaly, Hamed S; Grant, Raymer P; White, S Adrian; Fitzmaurice, Brett G; Evans, Kenneth G

    2006-10-01

    The purpose of this study was to assess the validity of using a pulsatile, pressure waveform transduced from the epidural space through an epidural needle or catheter to confirm correct placement for maximal analgesia and to compare 3 different types of catheters' ability to transduce a waveform. A single-center, prospective, randomized trial. A tertiary-referral hospital. Eighty-one patients undergoing posterolateral thoracotomy who required a thoracic epidural catheter for postoperative pain management. Each epidural needle and each epidural catheter was transduced to determine if there was a pulsatile waveform exhibited. Sensitivity of the pulsatile waveform transduced through an epidural needle to identify correct placement of the epidural needle and the sensitivity of each catheter type to identify placement were compared. In 79 of 81 cases (97.5%), the waveform transduced directly through the epidural needle had a pulsatile characteristic as determined by blinded observers. In a total of 53 of 81 epidural catheters (65.4%), the transduced waveform displayed pulsations. Twenty-four of 27 catheters in group S-P/Sims Portex (Smiths Medical MD, Inc, St Paul, MN) (88.9%) transduced a pulsatile tracing from the epidural space, a significantly greater percentage than in the other 2 groups (p = 0.02). The technique of transducing the pressure waveform from the epidural needle inserted in the epidural space is a sensitive and reliable alternative to other techniques for confirmation of correct epidural catheter placement. The technique is simple, sensitive, and inexpensive and uses equipment available in any operating room.

  6. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.

    PubMed

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-06-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.

  7. Stability of Carotid Artery Under Steady-State and Pulsatile Blood Flow: A Fluid–Structure Interaction Study

    PubMed Central

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-01-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257

  8. Influence of hormonal control on LH pulsatility and secretion in women with classical congenital adrenal hyperplasia.

    PubMed

    Bachelot, Anne; Chakhtoura, Zeina; Plu-Bureau, Geneviève; Coudert, Mathieu; Coussieu, Christiane; Badachi, Yasmina; Dulon, Jérome; Charbit, Beny; Touraine, Philippe

    2012-10-01

    Women with classical congenital adrenal hyperplasia (CAH) exhibit reduced fertility due to several factors including anovulation. This has been attributed to a disturbed gonadotropic axis as in polycystic ovary syndrome (PCOS), but there is no precise evaluation. Our aim was to evaluate the gonadotropic axis and LH pulsatility patterns and to determine factor(s) that could account for the potential abnormality of LH pulsatility. Case/control study. Sixteen CAH women (11 with the salt-wasting form and five with the simple virilizing form), aged from 18 to 40 years, and 16 age-matched women, with regular menstrual cycles (28 ± 3 days), were included. LH pulse patterns over 6 h were determined in patients and controls. No differences were observed between patients and controls in terms of mean LH levels, LH pulse amplitude, or LH frequency. In CAH patients, LH pulsatility patterns were heterogeneous, leading us to perform a clustering analysis of LH data, resulting in a two-cluster partition. Patients in cluster 1 had similar LH pulsatility patterns to the controls. Patients in cluster 2 had: lower LH pulse amplitude and frequency and presented menstrual cycle disturbances more frequently; higher 17-OH progesterone, testosterone, progesterone, and androstenedione levels; and lower FSH levels. LH pulsatility may be normal in CAH women well controlled by hormonal treatment. Undertreatment is responsible for hypogonadotropic hypogonadism, with low LH pulse levels and frequency, but not PCOS. Suppression of progesterone and androgen concentrations during the follicular phase of the menstrual cycle should be a major objective in these patients.

  9. Correlation-based perfusion mapping using time-resolved MR angiography: A feasibility study for patients with suspicions of steno-occlusive craniocervical arteries.

    PubMed

    Nam, Yoonho; Jang, Jinhee; Park, Sonya Youngju; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo

    2018-05-22

    To explore the feasibility of using correlation-based time-delay (CTD) maps produced from time-resolved MR angiography (TRMRA) to diagnose perfusion abnormalities in patients suspected to have steno-occlusive lesions in the craniocervical arteries. Twenty-seven patients who were suspected to have steno-occlusive lesions in the craniocervical arteries underwent both TRMRA and brain single-photon emission computed tomography (SPECT). TRMRA was performed on the supra-aortic area after intravenous injection of a 0.03 mmol/kg gadolinium-based contrast agent. Time-to-peak (TTP) maps and CTD maps of the brain were automatically generated from TRMRA data, and their quality was assessed. Detection of perfusion abnormalities was compared between CTD maps and the time-series maximal intensity projection (MIP) images from TRMRA and TTP maps. Correlation coefficients between quantitative changes in SPECT and parametric maps for the abnormal perfusion areas were calculated. The CTD maps were of significantly superior quality than TTP maps (p < 0.01). For perfusion abnormality detection, CTD maps (kappa 0.84, 95% confidence interval [CI] 0.67-1.00) showed better agreement with SPECT than TTP maps (0.66, 0.46-0.85). For perfusion deficit detection, CTD maps showed higher accuracy (85.2%, 95% CI 66.3-95.8) than MIP images (66.7%, 46-83.5), with marginal significance (p = 0.07). In abnormal perfusion areas, correlation coefficients between SPECT and CTD (r = 0.74, 95% CI 0.34-0.91) were higher than those between SPECT and TTP (r = 0.66, 0.20-0.88). CTD maps generated from TRMRA were of high quality and offered good diagnostic performance for detecting perfusion abnormalities associated with steno-occlusive arterial lesions in the craniocervical area. • Generation of perfusion parametric maps from time-resolved MR angiography is clinically useful. • Correlation-based delay maps can be used to detect perfusion abnormalities associated with steno-occlusive craniocervical arteries. • Estimation of correlation-based delay is robust for low signal-to-noise 4D MR data.

  10. Application of multiple modelling to hyperthermia estimation: reducing the effects of model mismatch.

    PubMed

    Potocki, J K; Tharp, H S

    1993-01-01

    Multiple model estimation is a viable technique for dealing with the spatial perfusion model mismatch associated with hyperthermia dosimetry. Using multiple models, spatial discrimination can be obtained without increasing the number of unknown perfusion zones. Two multiple model estimators based on the extended Kalman filter (EKF) are designed and compared with two EKFs based on single models having greater perfusion zone segmentation. Results given here indicate that multiple modelling is advantageous when the number of thermal sensors is insufficient for convergence of single model estimators having greater perfusion zone segmentation. In situations where sufficient measured outputs exist for greater unknown perfusion parameter estimation, the multiple model estimators and the single model estimators yield equivalent results.

  11. Pulsatile Lavage of Musculoskeletal Wounds Causes Muscle Necrosis and Dystrophic Calcification in a Rat Model.

    PubMed

    Chiaramonti, Alexander M; Robertson, Astor D; Nguyen, Thao P; Jaffe, David E; Hanna, E Lex; Holmes, Robert; Barfield, William R; Fourney, William L; Stains, Joseph P; Pellegrini, Vincent D

    2017-11-01

    Adequate irrigation of open musculoskeletal injuries is considered the standard of care to decrease bacterial load and other contaminants. While the benefit of debris removal compared with the risk of further seeding by high-pressure lavage has been studied, the effects of irrigation on muscle have been infrequently reported. Our aim in the present study was to assess relative damage to muscle by pulsatile lavage compared with bulb-syringe irrigation. In an animal model of heterotopic ossification, 24 Sprague-Dawley rats underwent hindlimb blast amputation via detonation of a submerged explosive, with subsequent through-the-knee surgical amputation proximal to the zone of injury. All wounds were irrigated and underwent primary closure. In 12 of the animals, pulsatile lavage (20 psi [138 kPa]) was used as the irrigation method, and in the other 12 animals, bulb-syringe irrigation was performed. A third group of 6 rats did not undergo the blast procedure but instead underwent surgical incision into the left thigh muscle followed by pulsatile lavage. Serial radiographs of the animals were made to monitor the formation of soft-tissue radiopaque lesions until euthanasia at 6 months. Image-guided muscle biopsies were performed at 8 weeks and 6 months (at euthanasia) on representative animals from each group. Histological analysis was performed with hematoxylin and eosin, alizarin red, and von Kossa staining on interval biopsy and postmortem specimens. All animals managed with pulsatile lavage, with or without blast injury, developed soft-tissue radiopaque lesions, whereas no animal that had bulb-syringe irrigation developed these lesions (p = 0.001). Five of the 12 animals that underwent blast amputation with pulsatile lavage experienced wound complications, whereas no animal in the other 2 groups experienced wound complications (p = 0.014). Radiopaque lesions appeared approximately 10 days postoperatively, increased in density until approximately 16 weeks, then demonstrated signs of variable regression. Histological analysis of interval biopsy and postmortem specimens demonstrated tissue damage with inflammatory cells, cell death, and dystrophic calcification. Pulsatile lavage of musculoskeletal wounds can cause irreversible insult to tissue, resulting in myonecrosis and dystrophic calcification. The benefits and offsetting harm of pulsatile lavage (20 psi) should be considered before its routine use in the management of musculoskeletal wounds.

  12. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Yue, E-mail: yuecao@umich.edu; Department of Radiology, University of Michigan, Ann Arbor, Michigan; Wang Hesheng

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation betweenmore » mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which could aid in individualizing therapy, particularly for patients at risk for liver injury after RT.« less

  13. Influence of sodium valproate on medium-late luteal phase pulsatile LH secretion in normal women.

    PubMed

    Lado Abeal, J; Rey Losada, C; Cabezas Agricola, J M; Cabezas-Cerrato, J

    1994-01-01

    It is not known whether gamma-aminobutyric acid (GABA) is involved in control of pulsatile LH secretion in human beings. Previous work by our group has shown that manipulation of the GABAergic system with sodium valproate does not affect pulsatile LH secretion in normal women in the late follicular phase. However, it has been suggested that steroid levels are critical for the influence of GABA upon hormone secretion; in particular, progesterone has been said to enhance inhibition by GABA. In this work we studied the effect of sodium valproate on pulsatile LH secretion in medium-late luteal phase of normal women. Six normal young women were studied over an 8-hour period in two successive menstrual cycles. On each occasion blood samples were taken every 10 minutes between 1000 and 1800 h. We administered 400 mg of sodium valproate every 8 hours on the 7 days preceding their second cycle and additional 400 mg at 0900 and 1400 h on the day of the study. Ovulation day was estimated by means of serial ovarian ultrasound examinations and confirmed by serum progesterone concentrations. In each cycle, LH, oestradiol and progesterone were determined by radioimmunoassay and sodium valproate by repolarization fluorescence spectrophotometry. The series of LH levels was smoothed for 1-minute sampling periods by means of a spline function and analysed by means of a program developed in our laboratory and written in Fortran 77. The program deconvolved the signal and calculated the pulse area, pulse duration, interpulse interval and number of pulses. LH pulse identification on the deconvolved signals was performed using our own method based on Friedman's non-parametric statistic. The statistical significance of differences between parameters was estimated using the Mann-Whitney test and Wilcoxon signed rank test. There were no significant differences in LH pulse area, pulse duration, interpulse interval or number of pulses with the administration of sodium valproate. Activation of the GABAergic system with sodium valproate had no biologically significant effect on the mid-late luteal phase pulsatile LH secretion in normal women.

  14. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  15. Secondary flow structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2017-11-01

    Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.

  16. Application of a pressure-relieving air compliance chamber in a single-pulsatile extracorporeal life support system: an experimental study.

    PubMed

    Kim, Tae Sik; Sun, Kyung; Lee, Kyu Baek; Lee, Hye Won; Baek, Kwang Je; Park, Sung Young; Son, Ho Sung; Kim, Kwang Taik; Kim, Hyoung Mook

    2004-12-01

    Nonpulsatile blood pumps are mainly used in extracorporeal life support systems. Although pulsating blood flow is known to be physiological, a pulsatile pump is not commonly applied in a circuit with a membrane oxygenator because of damage to the blood cells. The hypothesis that the placement of a pressure-relieving compliance chamber in a circuit might reduce blood cell trauma was tested. An extracorporeal life support circuit was constructed in an acute lung injury model of dogs by oleic acid infusion. The animals were divided into three groups. In group I (n = 6) a nonpulsatile centrifugal pump was used as a control. In group II (n = 4) a single-pulsatile pump was used, and in group III (n = 6) a single-pulsatile pump equipped with a compliance chamber was used. Pump flow was maintained at 1.8-2.0 L/min for 2 h. Hemodynamics and blood gas analyses indicated that the pulsatile groups II and III had better results than the nonpulsatile group I. The plasma-free hemoglobin level, which indicates blood cell trauma, was the lowest in group I and the highest in group II but was significantly decreased in group III. A pressure-relieving compliance chamber could significantly reduce high circuit pressures and blood cell trauma.

  17. Age-specific changes in the regulation of LH-dependent testosterone secretion: assessing responsiveness to varying endogenous gonadotropin output in normal men.

    PubMed

    Liu, Peter Y; Takahashi, Paul Y; Roebuck, Pamela D; Iranmanesh, Ali; Veldhuis, Johannes D

    2005-09-01

    Pulsatile and thus total testosterone (Te) secretion declines in older men, albeit for unknown reasons. Analytical models forecast that aging may reduce the capability of endogenous luteinizing hormone (LH) pulses to stimulate Leydig cell steroidogenesis. This notion has been difficult to test experimentally. The present study used graded doses of a selective gonadotropin releasing hormone (GnRH)-receptor antagonist to yield four distinct strata of pulsatile LH release in each of 18 healthy men ages 23-72 yr. Deconvolution analysis was applied to frequently sampled LH and Te concentration time series to quantitate pulsatile Te secretion over a 16-h interval. Log-linear regression was used to relate pulsatile LH secretion to attendant pulsatile Te secretion (LH-Te drive) across the four stepwise interventions in each subject. Linear regression of the 18 individual estimates of LH-Te feedforward dose-response slopes on age disclosed a strongly negative relationship (r = -0.721, P < 0.001). Accordingly, the present data support the thesis that aging in healthy men attenuates amplitude-dependent LH drive of burst-like Te secretion. The experimental strategy of graded suppression of neuroglandular outflow may have utility in estimating dose-response adaptations in other endocrine systems.

  18. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain.

    PubMed

    Iliff, Jeffrey J; Wang, Minghuan; Zeppenfeld, Douglas M; Venkataraman, Arun; Plog, Benjamin A; Liao, Yonghong; Deane, Rashid; Nedergaard, Maiken

    2013-11-13

    CSF from the subarachnoid space moves rapidly into the brain along paravascular routes surrounding penetrating cerebral arteries, exchanging with brain interstitial fluid (ISF) and facilitating the clearance of interstitial solutes, such as amyloid β, in a pathway that we have termed the "glymphatic" system. Prior reports have suggested that paravascular bulk flow of CSF or ISF may be driven by arterial pulsation. However, cerebral arterial pulsation could not be directly assessed. In the present study, we use in vivo two-photon microscopy in mice to visualize vascular wall pulsatility in penetrating intracortical arteries. We observed that unilateral ligation of the internal carotid artery significantly reduced arterial pulsatility by ~50%, while systemic administration of the adrenergic agonist dobutamine increased pulsatility of penetrating arteries by ~60%. When paravascular CSF-ISF exchange was evaluated in real time using in vivo two-photon and ex vivo fluorescence imaging, we observed that internal carotid artery ligation slowed the rate of paravascular CSF-ISF exchange, while dobutamine increased the rate of paravascular CSF-ISF exchange. These findings demonstrate that cerebral arterial pulsatility is a key driver of paravascular CSF influx into and through the brain parenchyma, and suggest that changes in arterial pulsatility may contribute to accumulation and deposition of toxic solutes, including amyloid β, in the aging brain.

  19. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.

    PubMed

    Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao

    2018-02-01

    Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.

  20. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion

    PubMed Central

    Wallace, Lorraine; Boteon, Yuri; Neil, Desley AH; Smith, Amanda; Stephenson, Barney TF; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F

    2017-01-01

    Background Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions whilst maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Methods Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. Results The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2ER 13.75 vs 9.43 % x105 per gram of tissue, p=0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Conclusion Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid. PMID:28520579

  1. Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning?

    PubMed

    Wei, Zhenglun Alan; Trusty, Phillip M; Tree, Mike; Haggerty, Christopher M; Tang, Elaine; Fogel, Mark; Yoganathan, Ajit P

    2017-01-04

    Cardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame. Nevertheless, pulsatile blood flow is observed in vivo, and its significant impact on numerical simulations has been demonstrated. Therefore, it is imperative to carry out a comprehensive study analyzing the sensitivity of using time-averaged BCs. In this study, sensitivity is evaluated based on the discrepancies between hemodynamic metrics calculated using time-averaged and pulsatile BCs; smaller discrepancies indicate less sensitivity. The current study incorporates a comparison between 3D patient-specific CFD simulations using both the time-averaged and pulsatile BCs for 101 Fontan patients. The sensitivity analysis involves two clinically important hemodynamic metrics: hepatic flow distribution (HFD) and indexed power loss (iPL). Paired demographic group comparisons revealed that HFD sensitivity is significantly different between single and bilateral superior vena cava cohorts but no other demographic discrepancies were observed for HFD or iPL. Multivariate regression analyses show that the best predictors for sensitivity involve flow pulsatilities, time-averaged flow rates, and geometric characteristics of the Fontan connection. These predictors provide patient-specific guidelines to determine the effectiveness of analyzing patient-specific surgical options with time-averaged BCs within a clinical time frame. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Simultaneous detection of landmarks and key-frame in cardiac perfusion MRI using a joint spatial-temporal context model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens

    2011-03-01

    Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.

  3. Dynamic Chest Image Analysis: Evaluation of Model-Based Pulmonary Perfusion Analysis With Pyramid Images

    DTIC Science & Technology

    2001-10-25

    Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for

  4. The Decline in Pulsatile GnRH Release, as Reflected by Circulating LH Concentrations, During the Infant-Juvenile Transition in the Agonadal Male Rhesus Monkey (Macaca mulatta) Is Associated With a Reduction in Kisspeptin Content of KNDy Neurons of the Arcuate Nucleus in the Hypothalamus

    PubMed Central

    Ramaswamy, Suresh; Dwarki, Karthik; Ali, Barkat; Gibbs, Robert B.

    2013-01-01

    Puberty in primates is timed by 2 hypothalamic events: during late infancy a decline in pulsatile GnRH release occurs, leading to a hypogonadotropic state that maintains quiescence of the prepubertal gonad; and in late juvenile development, pulsatile GnRH release is reactivated and puberty initiated, a phase of development that is dependent on kisspeptin signaling. In the present study, we determined whether the arrest of GnRH pulsatility in infancy was associated with a change in kisspeptin expression in the mediobasal hypothalamus (MBH). Kisspeptin was determined using immunohistochemistry in coronal hypothalamic sections from agonadal male rhesus monkeys during early infancy when GnRH release as reflected by circulating LH concentrations was robust and compared with that in juveniles in which GnRH pulsatility was arrested. The distribution of immunopositive kisspeptin neurons in the arcuate nucleus of the MBH of infants was similar to that previously reported for adults. Kisspeptin cell body number was greater in infants compared with juveniles, and at the middle to posterior level of the arcuate nucleus, this developmental difference was statistically significant. Neurokinin B in the MBH exhibited a similar distribution to that of kisspeptin and was colocalized with kisspeptin in approximately 60% of kisspeptin perikarya at both developmental stages. Intensity of GnRH fiber staining in the median eminence was robust at both stages. These findings indicate that the switch that shuts off pulsatile GnRH release during infancy and that guarantees the subsequent quiescence of the prepubertal gonad involves a reduction in a stimulatory kisspeptin tone to the GnRH neuronal network. PMID:23525220

  5. Blood Pressure and Arterial Load After Transcatheter Aortic Valve Replacement for Aortic Stenosis.

    PubMed

    Lindman, Brian R; Otto, Catherine M; Douglas, Pamela S; Hahn, Rebecca T; Elmariah, Sammy; Weissman, Neil J; Stewart, William J; Ayele, Girma M; Zhang, Feifan; Zajarias, Alan; Maniar, Hersh S; Jilaihawi, Hasan; Blackstone, Eugene; Chinnakondepalli, Khaja M; Tuzcu, E Murat; Leon, Martin B; Pibarot, Philippe

    2017-07-01

    After aortic valve replacement, left ventricular afterload is often characterized by the residual valve obstruction. Our objective was to determine whether higher systemic arterial afterload-as reflected in blood pressure, pulsatile and resistive load-is associated with adverse clinical outcomes after transcatheter aortic valve replacement (TAVR). Total, pulsatile, and resistive arterial load were measured in 2141 patients with severe aortic stenosis treated with TAVR in the PARTNER I trial (Placement of Aortic Transcatheter Valve) who had systolic blood pressure (SBP) and an echocardiogram obtained 30 days after TAVR. The primary end point was 30-day to 1-year all-cause mortality. Lower SBP at 30 days after TAVR was associated with higher mortality (20.0% for SBP 100-129 mm Hg versus 12.0% for SBP 130-170 mm Hg; P <0.001). This association remained significant after adjustment, was consistent across subgroups, and confirmed in sensitivity analyses. In adjusted models that included SBP, higher total and pulsatile arterial load were associated with increased mortality ( P <0.001 for all), but resistive load was not. Patients with low 30-day SBP and high pulsatile load had a 3-fold higher mortality than those with high 30-day SBP and low pulsatile load (26.1% versus 8.1%; hazard ratio, 3.62; 95% confidence interval, 2.36-5.55). Even after relief of valve obstruction in patients with aortic stenosis, there is an independent association between post-TAVR blood pressure, systemic arterial load, and mortality. Blood pressure goals in patients with a history of aortic stenosis may need to be redefined. Increased pulsatile arterial load, rather than blood pressure, may be a target for adjunctive medical therapy to improve outcomes after TAVR. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00530894. © 2017 American Heart Association, Inc.

  6. The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: results from ventricular infusion testing.

    PubMed

    Eide, Per Kristian

    2016-12-01

    OBJECTIVE The objective of this study was to examine how pulsatile and static intracranial pressure (ICP) scores correlate with indices of intracranial pressure-volume reserve capacity, i.e., intracranial elastance (ICE) and intracranial compliance (ICC), as determined during ventricular infusion testing. METHODS All patients undergoing ventricular infusion testing and overnight ICP monitoring during the 6-year period from 2007 to 2012 were included in the study. Clinical data were retrieved from a quality registry, and the ventricular infusion pressure data and ICP scores were retrieved from a pressure database. The ICE and ICC (= 1/ICE) were computed during the infusion phase of the infusion test. RESULTS During the period from 2007 to 2012, 82 patients with possible treatment-dependent hydrocephalus underwent ventricular infusion testing within the department of neurosurgery. The infusion tests revealed a highly significant positive correlation between ICE and the pulsatile ICP scores mean wave amplitude (MWA) and rise-time coefficient (RTC), and the static ICP score mean ICP. The ICE was negatively associated with linear measures of ventricular size. The overnight ICP recordings revealed significantly increased MWA (> 4 mm Hg) and RTC (> 20 mm Hg/sec) values in patients with impaired ICC (< 0.5 ml/mm Hg). CONCLUSIONS In this study cohort, there was a significant positive correlation between pulsatile ICP and ICE measured during ventricular infusion testing. In patients with impaired ICC during infusion testing (ICC < 0.5 ml/mm Hg), overnight ICP recordings showed increased pulsatile ICP (MWA > 4 mm Hg, RTC > 20 mm Hg/sec), but not increased mean ICP (< 10-15 mm Hg). The present data support the assumption that pulsatile ICP (MWA and RTC) may serve as substitute markers of pressure-volume reserve capacity, i.e., ICE and ICC.

  7. Does polycystic ovarian morphology influence the response to treatment with pulsatile GnRH in functional hypothalamic amenorrhea?

    PubMed

    Dumont, Agathe; Dewailly, Didier; Plouvier, Pauline; Catteau-Jonard, Sophie; Robin, Geoffroy

    2016-04-29

    Pulsatile GnRH therapy is the gold standard treatment for ovulation induction in women having functional hypothalamic amenorrhea (FHA). The use of pulsatile GnRH therapy in FHA patients with polycystic ovarian morphology (PCOM), called "FHA-PCOM", has been little studied in the literature and results remain contradictory. The aim of this study was to compare the outcomes of pulsatile GnRH therapy for ovulation induction between FHA and "FHA-PCOM" patients in order to search for an eventual impact of PCOM. Retrospective study from August 2002 to June 2015, including 27 patients with FHA and 40 "FHA-PCOM" patients (85 and 104 initiated cycles, respectively) treated by pulsatile GnRH therapy for induction ovulation. The two groups were similar except for markers of PCOM (follicle number per ovary, serum Anti-Müllerian Hormone level and ovarian area), which were significantly higher in patients with "FHA-PCOM". There was no significant difference between the groups concerning the ovarian response: with equivalent doses of GnRH, both groups had similar ovulation (80.8 vs 77.7 %, NS) and excessive response rates (12.5 vs 10.6 %, NS). There was no significant difference in on-going pregnancy rates (26.9 vs 20 % per initiated cycle, NS), as well as in miscarriage, multiple pregnancy or biochemical pregnancy rates. Pulsatile GnRH seems to be a successful and safe method for ovulation induction in "FHA-PCOM" patients. If results were confirmed by prospective studies, GnRH therapy could therefore become a first-line treatment for this specific population, just as it is for women with FHA without PCOM.

  8. White matter hyperintensities in migraine: Clinical significance and central pulsatile hemodynamic correlates.

    PubMed

    Cheng, Chun-Yu; Cheng, Hao-Min; Chen, Shih-Pin; Chung, Chih-Ping; Lin, Yung-Yang; Hu, Han-Hwa; Chen, Chen-Huan; Wang, Shuu-Jiun

    2018-06-01

    Background The role of central pulsatile hemodynamics in the pathogenesis of white matter hyperintensities in migraine patients has not been clarified. Methods Sixty patients with migraine (20-50 years old; women, 68%) without overt vascular risk factors and 30 demographically-matched healthy controls were recruited prospectively. Cerebral white matter hyperintensities volume was determined by T1-weighted magnetic resonance imaging with CUBE-fluid-attenuated-inversion-recovery sequences. Central systolic blood pressure, carotid-femoral pulse wave velocity, and carotid augmentation index were measured by applanation tonometry. Carotid pulsatility index was derived from Doppler ultrasound carotid artery flow analysis. Results Compared to the controls, the migraine patients had higher white matter hyperintensities frequency (odds ratio, 2.75; p = 0.04) and greater mean white matter hyperintensities volume (0.174 vs. 0.049, cm 3 , p = 0.04). Multivariable regression analysis showed that white matter hyperintensities volume in migraine patients was positively associated with central systolic blood pressure ( p = 0.04) and carotid-femoral pulse wave velocity ( p < 0.001), but negatively associated with carotid pulsatility index ( p = 0.04) after controlling for potential confounding factors. The interaction effects observed indicated that the influence of carotid-femoral pulse wave velocity ( p = 0.004) and central systolic blood pressure ( p = 0.03) on white matter hyperintensities formation was greater for the lower-carotid pulsatility index subgroup of migraine patients. White matter hyperintensities volume in migraine patients increased with decreasing carotid pulsatility index and with increasing central systolic blood pressure or carotid-femoral pulse wave velocity. Conclusions White matter hyperintensities are more common in patients with migraine than in healthy controls. Increased aortic stiffness or central systolic blood pressure in the presence of low intracranial artery resistance may predispose patients with migraine to white matter hyperintensities formation.

  9. Uric acid association with pulsatile and steady components of central and peripheral blood pressures.

    PubMed

    Lepeytre, Fanny; Lavoie, Pierre-Luc; Troyanov, Stéphan; Madore, François; Agharazii, Mohsen; Goupil, Rémi

    2018-03-01

    Whether the cardiovascular risk attributed to elevated uric acid levels may be explained by changes in central and peripheral pulsatile and/or steady blood pressure (BP) components remains controversial. In a cross-sectional analysis of normotensive and untreated hypertensive participants of the CARTaGENE populational cohort, we examined the relationship between uric acid, and both pulsatile and steady components of peripheral and central BP, using sex-stratified linear regressions. Of the 20 004 participants, 10 161 individuals without antihypertensive or uric acid-lowering drugs had valid pulse wave analysis and serum uric acid levels. In multivariate analysis, pulsatile components of BP were not associated with uric acid levels, whereas steady components [mean BP (MBP), peripheral and central DBP] were all associated with higher levels of uric acid levels in women and men (all P < 0.001). Furthermore, there was a gradual increase of central SBP (cSBP), DBP and MBP from the lowest to the highest quintiles of uric acid levels but not for MBP-adjusted cSBP. Peripheral and cSBP, which are aggregate measures of pulsatile and steady BP, were also associated with uric acid levels in women (β = 0.063 and 0.072, respectively, both P < 0.001) and men (β = 0.043 and 0.051, both P ≤ 0.003). After further adjustments for MBP to account for the concomitant increase in steady component of BP, SBPs were no longer associated with uric acid levels. Serum uric acid levels appear to be associated with both central and peripheral steady but not pulsatile BP, regardless of sex.

  10. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Tensile Shear Properties of the Friction Stir Lap Welded Joints and Material Flow Mechanism Under Pulsatile Revolutions

    NASA Astrophysics Data System (ADS)

    Hu, Yanying; Liu, Huijie; Du, Shuaishuai

    2018-06-01

    The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.

  12. The effect of acute exercise on pulsatile release of luteinizing hormone in women runners.

    PubMed

    Cumming, D C; Vickovic, M M; Wall, S R; Fluker, M R; Belcastro, A N

    1985-11-01

    Endurance exercise has been associated with reproductive dysfunction. We have previously suggested that pulsatile release of luteinizing hormone is impaired at rest in normal menstruating runners compared with sedentary women. To determine whether acute exercise had any effect on pulsatile release of luteinizing hormone we investigated serum luteinizing hormone levels in six normal menstruating runners at rest and after 60 minutes of running exercise. Exercise induced an increment in circulating luteinizing hormone levels greater than the change in hematocrit. The luteinizing hormone pulse frequency, calculated as the number of luteinizing hormone pulses per 6 hours, was reduced after exercise compared with values obtained at rest. There was no significant difference in pulse amplitude or area under the 6-hour curve between resting and postexercise situations. These data suggest that acute exercise has an inhibitory effect on luteinizing hormone pulsatile release at the hypothalamic level in eumenorrheic runners that is in addition to the previously described effect of training.

  13. Low-pressure sequential compression of lower limbs enhances forearm skin blood flow.

    PubMed

    Amah, Guy; Voicu, Sebastian; Bonnin, Philippe; Kubis, Nathalie

    2016-12-01

    We investigated whether forearm skin blood flow could be improved when a multilayer pulsatile inflatable suit was applied at a low pressure to the lower limbs and abdomen. We hypothesized that a non-invasive purely mechanical stimulation of the lower limbs could induce remote forearm blood flow modifications. The pulsatile suit induced a sequential compartmentalized low compression (65 mmHg), which was synchronized with each diastole of the cardiac cycle with each phase evolving centripetally (lower limbs to abdomen). Modifications of the forearm skin blood flow were continuously recorded by laser Doppler flowmetry (LDF) at baseline and during the pulsatile suit application. Endothelium-dependent and endothelium-independent vasodilations of the forearm skin microcirculation were measured by LDF in response to a local transdermal iontophoretic application of acetylcholine (ACh-test) and to hyperthermia (hyperT- test). Twenty-four healthy volunteers, 12 men and 12 women (43±14 years) were included in the study. LDF responses increased 1) under pulsatile suit (97±106%, p.

  14. Ovulation induction with pulsatile gonadotropin-releasing hormone (GnRH) or gonadotropins in a case of hypothalamic amenorrhea and diabetes insipidus.

    PubMed

    Georgopoulos, N A; Markou, K B; Pappas, A P; Protonatariou, A; Vagenakis, G A; Sykiotis, G P; Dimopoulos, P A; Tzingounis, V A

    2001-12-01

    Hypothalamic amenorrhea is a treatable cause of infertility. Our patient was presented with secondary amenorrhea and diabetes insipidus. Cortisol and prolactin responded normally to a combined insulin tolerance test (ITT) and thyrotropin-releasing hormone (TRH) challenge, while thyroid-stimulating hormone (TSH) response to TRH was diminished, and no response of growth hormone to ITT was detected. Both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels increased following gonadotropin-releasing hormone (GnRH) challenge. No response of LH to clomiphene citrate challenge was detected. Magnetic resonance imaging findings demonstrated a midline mass occupying the inferior hypothalamus, with posterior lobe not visible and thickened pituitary stalk. Ovulation induction was carried out first with combined human menopausal gonadotropins (hMG/LH/FSH) (150 IU/day) and afterwards with pulsatile GnRH (150 ng/kg/pulse). Ovulation was achieved with both pulsatile GnRH and combine gonadotropin therapy. Slightly better results were achieved with the pulsatile GnRH treatment.

  15. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets

    PubMed Central

    Mukhitov, Nikita; Roper, Michael G.; Bertram, Richard

    2016-01-01

    Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal’s ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion. PMID:27788129

  16. Hepatic Blood Perfusion Estimated by Dynamic Contrast-Enhanced Computed Tomography in Pigs Limitations of the Slope Method

    PubMed Central

    Winterdahl, Michael; Sørensen, Michael; Keiding, Susanne; Mortensen, Frank V.; Alstrup, Aage K. O.; Hansen, Søren B.; Munk, Ole L.

    2012-01-01

    Objective To determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates. Materials and Methods Ten anesthetized 40-kg pigs underwent DCE-CT during periods of normocapnia (normal flow), hypocapnia (decreased flow), and hypercapnia (increased flow), which was induced by adjusting the ventilation. Reference blood flows in HA and PV were measured continuously by surgically-placed ultrasound transit-time flowmeters. For each capnic condition, the DCE-CT estimated absolute hepatic blood perfusion from HA and PV were calculated using the slope method and compared with flowmeter based absolute measurements of hepatic perfusions and relative errors were analyzed. Results The relative errors (mean±SEM) of the DCE-CT based perfusion estimates were −21±23% for HA and 81±31% for PV (normocapnia), 9±23% for HA and 92±42% for PV (hypocapnia), and 64±28% for HA and −2±20% for PV (hypercapnia). The mean relative errors for HA were not significantly different from zero during hypo- and normocapnia, and the DCE-CT slope method could detect relative changes in HA perfusion between scans. Infusion of contrast agent led to significantly increased hepatic blood perfusion, which biased the PV perfusion estimates. Conclusions Using the DCE-CT slope method, HA perfusion estimates were accurate at low and normal flow rates whereas PV perfusion estimates were inaccurate and imprecise. At high flow rate, both HA perfusion estimates were significantly biased. PMID:22836307

  17. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    PubMed Central

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  18. The effect of the pulsatile electromagnetic field in children suffering from bronchial asthma.

    PubMed

    Sadlonova, J; Korpas, J; Salat, D; Miko, L; Kudlicka, J

    2003-01-01

    From the bibliography it is well known that pulsatile electromagnetic field has an anti-inflammatory and analgesic effect. It causes vasodilatation, myorelaxation, hyper-production of connective tissue and activation of the cell membrane. Therefore our aim was to study the possible therapeutic effect of pulsatile electromagnetic field in asthmatic children. Forty-two children participating in this study were divided in two groups. The 1st group consisting of 21 children (11 females, 10 males, aged 11.8 +/- 0.4 yr) was treated by pulsatile electromagnetic field and pharmacologically. The 2nd group served as control, consisting also of 21 children (11 females, 10 males, aged 11.7 +/- 0.3 yr) and was treated only pharmacologically. Therapeutic effect of the pulsatile electromagnetic field was assessed on the basis of pulmonary tests performed by means of a Spirometer 100 Handi (Germany). The indexes FVC, IVC, ERV, IRV, FEV1, FEV1/FVC%, MEF75,50,25, PEF, PIF and the changes of the flow-volume loop were also registered. The pulsatile electromagnetic field was applied by means of the device MTU 500H, Therapy System (Brno, Czech Republic) for 5 days, two times daily for 30 minutes (magnetic induction: 3 mT, frequency: 4 Hz as recommended by the manufacturer). The results in children of the 1st group showed an improvement of FVC of about 70 ml, IVC of about 110 ml, FEV1 of about 80 ml, MEF75 of about 30 ml, PEF of about 480 ml, PIF of about 550 ml. The increases of ERV, IRV and FEV1/FVC and decreases of MEF25,50 were statistically insignificant. The results in the 2nd group were less clear. The flow-volume loop showed a mild improvement in 14 children. This improvement in the 2nd group was less significant. The clinical status of children and their mood became better. We believe that the pulsatile electro-magnetotherapy in children suffering from asthma is effective. On the basis of our results we can recommend it as a complementary therapy.

  19. Rapid perfusion quantification using Welch-Satterthwaite approximation and analytical spectral filtering

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.

    2017-02-01

    CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.

  20. In Search of the Optimal Heart Perfusion Ultrasound Imaging Platform.

    PubMed

    Grishenkov, Dmitry; Gonon, Adrian; Janerot-Sjoberg, Birgitta

    2015-09-01

    Quantification of myocardial perfusion by contrast echocardiography remains a challenge. Existing imaging phantoms used to evaluate the performance of ultrasound scanners do not comply with perfusion basics in the myocardium, where perfusion and motion are inherently coupled. To contribute toward an improvement, we developed a contrast echocardiographic perfusion imaging platform based on an isolated rat heart coupled to an ultrasound scanner. Perfusion was assessed by using 3 different types of contrast agents: dextran-based Promiten (Meda AB, Solna, Sweden), phospholipid-shelled SonoVue (Bracco Diagnostics, Inc, Princeton, NJ), and polymer-shelled MB-pH5-RT, developed in-house. The myocardial video intensity was monitored over time from contrast agent administration to peak, and 2 characteristic constants were calculated by using an exponential fit: A, representing capillary volume; and β, representing inflow velocity. Acquired experimental evidence demonstrates that the application of all 3 contrast agents allows sonographic estimation of myocardial perfusion in the isolated rat heart. Video intensity maps show that an increase in contrast concentration increases the late-plateau values, A, mimicking increased capillary volume. Estimated values of the flow, proportional to A × β, increase when the pressure of the perfusate column increases from 80 to 110 cm of water. This finding is in agreement with the true values of the coronary flow increase measured by a flowmeter attached to the aortic cannula. The contrast echocardiographic perfusion imaging platform described holds promise for standardized evaluation and optimization of contrast perfusion ultrasound imaging in which real-time inflow curves at low acoustic power semiquantitatively reflect coronary flow. © 2015 by the American Institute of Ultrasound in Medicine.

  1. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    PubMed

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  2. Application of full field optical studies for pulsatile flow in a carotid artery phantom

    PubMed Central

    Nemati, M.; Loozen, G. B.; van der Wekken, N.; van de Belt, G.; Urbach, H. P.; Bhattacharya, N.; Kenjeres, S.

    2015-01-01

    A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied. PMID:26504652

  3. Arachnoid Cyst in the Middle Cranial Fossa Presenting with Pulsatile Exophthalmos: Case Report and Literature Review

    PubMed Central

    SAITO, Atsushi; KON, Hiroyuki; HARYU, Shinya; MINO, Masaki; SASAKI, Tatsuya; NISHIJIMA, Michiharu

    2014-01-01

    A 20-year-old woman suffered gradual progression of right pulsatile exophthalmos and slight headache. Computed tomography (CT) demonstrated outward and downward displacement of the right globe and an arachnoid cyst in the right middle cranial fossa associated with thinned and anterior protrusion of a bony orbit. Microscopic cystocisternotomy was performed and the cerebrospinal fluid (CSF) inside of the cyst communicated into the carotid cistern and cistern in the posterior cranial fossa. Pulsatile exophthalmos improved immediately after surgery. Arachnoid cyst in the middle cranial fossa presenting with exophthalmos is rare. Microscopic cystocisternotomy might successfully improve CSF flow and relieve exophthalmos. PMID:24305013

  4. Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA

    NASA Astrophysics Data System (ADS)

    Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.

    2017-03-01

    Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.

  5. Obstructive Hydrocephalus Secondary to Enlarged Virchow-Robin Spaces: A Rare Cause of Pulsatile Tinnitus.

    PubMed

    Donaldson, Christopher; Chatha, Gurkirat; Chandra, Ronil V; Goldschlager, Tony

    2017-05-01

    Obstructive hydrocephalus secondary to enlarged Virchow-Robin Spaces (VRS) is a rare entity, with only a few cases reported in the literature. Presenting symptoms vary widely from headaches to dizziness. We report a case of a 31-year-old man who presented with pulsatile tinnitus and magnetic resonance imaging showing obstructive hydrocephalus secondary to tumefactive VRS. After a cerebrospinal fluid diversion procedure in the form of an endoscopic third ventriculostomy, he had almost complete resolution of his symptoms. This is the first case of obstructive hydrocephalus secondary to enlarged VRS, presenting with pulsatile tinnitus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Development and optimization of press coated floating pulsatile drug delivery of sumatriptan succinate.

    PubMed

    Jagdale, Swati C; Pawar, Chandrakala R

    2014-01-01

    Floating pulsatile is combined approach designed according to circadian rhythm to deliver the drug at right time, in right quantity and at right site as per pathophysiological need of disease with prolong gastric residence and lag phase followed by burst release. As the migraine follows circadian rhythm in which headache is more painful at the awakening time, the dosage form should be given during night time to release drug when pain get worsen. Present work deals with formulation and optimization of floating pulsatile tablet of sumatriptan succinate. Core tablet containing crospovidone as superdisintegrant (10%) showed burst release. Lag time was maintained using swellable polymer as polyoxN12K and xanthum gum. 3(2) experimental design was carried out. Developed formulations were evaluated for physical characteristics, in vitro and in vivo study. Optimized batch F2 with concentration of polyox N12K (73.43%) and xanthum gum (26.56%) of total polymer weight showed floating lag time 15±2 sec, drug content 99.58±0.2 %, hardness 6±0.2 Kg/cm(2) and drug release 99.54±2% with pulsatile manner followed lag period of 7±0.1h. In vivo x-ray study confirms prolong gastric residence of system. Programmable pulsatile release has been achieved by formulation F2 which meet demand of chronotherapeutic objective of migraine.

  8. Synchronous activation of gonadotropin-releasing hormone gene transcription and secretion by pulsatile kisspeptin stimulation

    PubMed Central

    Choe, Han Kyoung; Kim, Hee-Dae; Park, Sung Ho; Lee, Han-Woong; Park, Jae-Yong; Seong, Jae Young; Lightman, Stafford L.; Son, Gi Hoon; Kim, Kyungjin

    2013-01-01

    Pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH) is essential for pituitary gonadotrope function. Although the importance of pulsatile GnRH secretion has been recognized for several decades, the mechanisms underlying GnRH pulse generation in hypothalamic neural networks remain elusive. Here, we demonstrate the ultradian rhythm of GnRH gene transcription in single GnRH neurons using cultured hypothalamic slices prepared from transgenic mice expressing a GnRH promoter-driven destabilized luciferase reporter. Although GnRH promoter activity in each GnRH neuron exhibited an ultradian pattern of oscillations with a period of ∼10 h, GnRH neuronal cultures exhibited partially synchronized bursts of GnRH transcriptional activity at ∼2-h intervals. Surprisingly, pulsatile administration of kisspeptin, a potent GnRH secretagogue, evoked dramatic synchronous activation of GnRH gene transcription with robust stimulation of pulsatile GnRH secretion. We also addressed the issue of hierarchical interaction between the circadian and ultradian rhythms by using Bmal1-deficient mice with defective circadian clocks. The circadian molecular oscillator barely affected basal ultradian oscillation of GnRH transcription but was heavily involved in kisspeptin-evoked responses of GnRH neurons. In conclusion, we have clearly shown synchronous bursts of GnRH gene transcription in the hypothalamic GnRH neuronal population in association with episodic neurohormone secretion, thereby providing insight into GnRH pulse generation. PMID:23509283

  9. Differential response of endothelial cells to simvastatin when conditioned with steady, non-reversing pulsatile or oscillating shear stress.

    PubMed

    Rossi, Joanna; Jonak, Paul; Rouleau, Leonie; Danielczak, Lisa; Tardif, Jean-Claude; Leask, Richard L

    2011-01-01

    Few studies have investigated whether fluid mechanics can impair or enhance endothelial cell response to pharmacological agents such as statin drugs. We evaluated and compared Kruppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and thrombomodulin (TM) expression in human abdominal aortic endothelial cells (HAAEC) treated with increasing simvastatin concentrations (0.1, 1 or 10 μM) under static culture and shear stress (steady, non-reversing pulsatile, and oscillating). Simvastatin, steady flow, and non-reversing pulsatile flow each separately upregulated KLF2, eNOS, and TM mRNA. At lower simvastatin concentrations (0.1 and 1 μM), the combination of statin and unidirectional steady or pulsatile flow produced an overall additive increase in mRNA levels. At higher simvastatin concentration (10 μM), a synergistic increase in eNOS and TM mRNA expression was observed. In contrast, oscillating flow impaired KLF2 and TM, but not eNOS expression by simvastatin at 1 μM. A higher simvastatin concentration of 10 μM overcame the inhibitory effect of oscillating flow. Our findings suggest that oscillating shear stress renders the endothelial cells less responsive to simvastatin than cells exposed to unidirectional steady or pulsatile flow. Consequently, the pleiotropic effects of statins in vivo may be less effective in endothelial cells exposed to atheroprone hemodynamics.

  10. ANTONIA perfusion and stroke. A software tool for the multi-purpose analysis of MR perfusion-weighted datasets and quantitative ischemic stroke assessment.

    PubMed

    Forkert, N D; Cheng, B; Kemmling, A; Thomalla, G; Fiehler, J

    2014-01-01

    The objective of this work is to present the software tool ANTONIA, which has been developed to facilitate a quantitative analysis of perfusion-weighted MRI (PWI) datasets in general as well as the subsequent multi-parametric analysis of additional datasets for the specific purpose of acute ischemic stroke patient dataset evaluation. Three different methods for the analysis of DSC or DCE PWI datasets are currently implemented in ANTONIA, which can be case-specifically selected based on the study protocol. These methods comprise a curve fitting method as well as a deconvolution-based and deconvolution-free method integrating a previously defined arterial input function. The perfusion analysis is extended for the purpose of acute ischemic stroke analysis by additional methods that enable an automatic atlas-based selection of the arterial input function, an analysis of the perfusion-diffusion and DWI-FLAIR mismatch as well as segmentation-based volumetric analyses. For reliability evaluation, the described software tool was used by two observers for quantitative analysis of 15 datasets from acute ischemic stroke patients to extract the acute lesion core volume, FLAIR ratio, perfusion-diffusion mismatch volume with manually as well as automatically selected arterial input functions, and follow-up lesion volume. The results of this evaluation revealed that the described software tool leads to highly reproducible results for all parameters if the automatic arterial input function selection method is used. Due to the broad selection of processing methods that are available in the software tool, ANTONIA is especially helpful to support image-based perfusion and acute ischemic stroke research projects.

  11. Patient-individualized boundary conditions for CFD simulations using time-resolved 3D angiography.

    PubMed

    Boegel, Marco; Gehrisch, Sonja; Redel, Thomas; Rohkohl, Christopher; Hoelter, Philip; Doerfler, Arnd; Maier, Andreas; Kowarschik, Markus

    2016-06-01

    Hemodynamic simulations are of increasing interest for the assessment of aneurysmal rupture risk and treatment planning. Achievement of accurate simulation results requires the usage of several patient-individual boundary conditions, such as a geometric model of the vasculature but also individualized inflow conditions. We propose the automatic estimation of various parameters for boundary conditions for computational fluid dynamics (CFD) based on a single 3D rotational angiography scan, also showing contrast agent inflow. First the data are reconstructed, and a patient-specific vessel model can be generated in the usual way. For this work, we optimize the inflow waveform based on two parameters, the mean velocity and pulsatility. We use statistical analysis of the measurable velocity distribution in the vessel segment to estimate the mean velocity. An iterative optimization scheme based on CFD and virtual angiography is utilized to estimate the inflow pulsatility. Furthermore, we present methods to automatically determine the heart rate and synchronize the inflow waveform to the patient's heart beat, based on time-intensity curves extracted from the rotational angiogram. This will result in a patient-individualized inflow velocity curve. The proposed methods were evaluated on two clinical datasets. Based on the vascular geometries, synthetic rotational angiography data was generated to allow a quantitative validation of our approach against ground truth data. We observed an average error of approximately [Formula: see text] for the mean velocity, [Formula: see text] for the pulsatility. The heart rate was estimated very precisely with an average error of about [Formula: see text], which corresponds to about 6 ms error for the duration of one cardiac cycle. Furthermore, a qualitative comparison of measured time-intensity curves from the real data and patient-specific simulated ones shows an excellent match. The presented methods have the potential to accurately estimate patient-specific boundary conditions from a single dedicated rotational scan.

  12. Fast blood flow monitoring in deep tissues with real-time software correlators

    PubMed Central

    Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.

    2016-01-01

    We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588

  13. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    NASA Technical Reports Server (NTRS)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Buxton, Richard Bruce (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  14. A Pulsatile Cardiovascular Computer Model for Teaching Heart-Blood Vessel Interaction.

    ERIC Educational Resources Information Center

    Campbell, Kenneth; And Others

    1982-01-01

    Describes a model which gives realistic predictions of pulsatile pressure, flow, and volume events in the cardiovascular system. Includes computer oriented laboratory exercises for veterinary and graduate students; equations of the dynamic and algebraic models; and a flow chart for the cardiovascular teaching program. (JN)

  15. Posture changes and subfoveal choroidal blood flow.

    PubMed

    Longo, Antonio; Geiser, Martial H; Riva, Charles E

    2004-02-01

    To evaluate the effect of posture change on subfoveal choroidal blood flow (ChBF) in normal volunteers. The pulsatile, nonpulsatile, and mean ChBF were measured with laser Doppler flowmetry in 11 healthy volunteers with a mean age of 32 +/- 13 (SD) years. The posture of the subjects was changed from standing (90 degrees ), to supine (-8 degrees ), and back to standing, with a mechanically driven table. During the whole experimental procedure, ChBF and heart rate (HR) were continuously recorded. After 30 seconds in standing position, the subjects were tilted to supine during approximately 30 seconds. They remained in this position for approximately 2 minutes, after which they were tilted back to the standing position (recovery), where they remained for another approximately 2 minutes. Systemic brachial artery blood pressure (BP) was measured in the baseline, supine, and recovery positions. This procedure was repeated to measure the intraocular pressure (IOP) at the different postures. Mean BP did not change significantly throughout the experimental procedure. As the body was tilted from standing to supine, HR decreased by 16% (P < 0.0004), IOP increased by 29% (P < 0.001), and mean ChBF increased by 11% (P < 0.01). The increase in ChBF was primarily due to an increase in the nonpulsatile component of the blood velocity. Based on previously reported experimental data that indicate that the ocular perfusion pressure increases less than predicted by purely hydrostatic considerations when the body is tilted from the standing to the supine position, the observed increase in ChBF suggests a passive response of the choroidal circulation to the posture change.

  16. Ex-vivo machine perfusion for kidney preservation.

    PubMed

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  17. Tissue distribution of enrofloxacin after intramammary or simulated systemic administration in isolated perfused sheep udders.

    PubMed

    López Cadenas, Cristina; Fernández Martínez, Nélida; Sierra Vega, Matilde; Diez Liébana, Maria J; Gonzalo Orden, Jose M; Sahagún Prieto, Ana M; García Vieitez, Juan J

    2012-11-01

    To determine the tissue distribution of enrofloxacin after intramammary or simulated systemic administration in isolated perfused sheep udders by measuring its concentration at various sample collection sites. 26 udders (obtained following euthanasia) from 26 healthy lactating sheep. For each isolated udder, 1 mammary gland was perfused with warmed, gassed Tyrode solution. Enrofloxacin (1 g of enrofloxacin/5 g of ointment) was administered into the perfused gland via the intramammary route or systemically via the perfusion fluid (equivalent to a dose of 5 mg/kg). Samples of the perfusate were obtained every 30 minutes for 180 minutes; glandular tissue samples were obtained at 2, 4, 6, and 8 cm from the teat base after 180 minutes. The enrofloxacin content of the perfusate and tissue samples was analyzed via high-performance liquid chromatography with UV detection. After intramammary administration, maximun perfusate enrofloxacin concentration was detected at 180 minutes and, at this time, mean tissue enrofloxacin concentration was detected and mean tissue enrofloxacin concentration was 123.80, 54.48, 36.72, and 26.42 μg/g of tissue at 2, 4, 6, and 8 cm from the teat base, respectively. Following systemic administration, perfusate enrofloxacin concentration decreased with time and, at 180 minutes, tissue enrofloxacin concentrations ranged from 40.38 to 35.58 μg/g of tissue. By 180 minutes after administration via the intramammary or systemic route in isolated perfused sheep mammary glands, mean tissue concentration of enrofloxacin was greater than the minimum inhibitory concentration required to inhibit growth of 90% of many common mastitis pathogens in sheep. Use of either route of administration (or in combination) appears suitable for the treatment of acute mastitis in sheep.

  18. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    PubMed

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  19. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    NASA Astrophysics Data System (ADS)

    Krivonogov, Nikolay G.; Efimova, Nataliya Y.; Zavadovsky, Konstantin W.; Lishmanov, Yuri B.

    2016-08-01

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on a side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.

  20. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivonogov, Nikolay G., E-mail: kng@cardio-tomsk.ru; Efimova, Nataliya Y., E-mail: efimova@cardio-tomsk.ru; Zavadovsky, Konstantin W.

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on amore » side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.« less

  1. Dependence of quantitative accuracy of CT perfusion imaging on system parameters

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2017-03-01

    Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.

  2. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    NASA Astrophysics Data System (ADS)

    Kyriacou, P. A.; Shafqat, K.; Pal, S. K.

    2007-10-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse oximeters showed gradual decrease of saturations during induced hypoperfusion which demonstrate the direct relation between blood volumes (PPG amplitudes), arterial vessel stenosis and blood oxygen saturation. The custom made pulse oximeter was found to be more sensitive to SpO2 changes than the commercial pulse oximeter especially at high occluding pressures.

  3. The Dynamics of Agglomerated Ferrofluid in Steady and Pulsatile Flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia; Stewart, Kelley; Vlachos, Pavlos

    2007-11-01

    Magnetic Drug Targeting (MDT) is a promising technique to deliver medication via functionalized magnetic particles to target sites in the treatment of diseases. In this work, the physics of steady and pulsatile flows laden with superparamagnetic nanoparticles in a square channel under the influence of a magnetic field induced by a 0.6 Tesla permanent magnet is studied. Herein, the dynamics of ferrofluid shedding from an initially accumulated mass in water are examined through shadowgraph imaging using two orthogonal cameras. Fundamental differences in the ferrofluid behavior occur between the steady and pulsatile flow cases, as expected. For steady flows, vortex ring shedding is visualized from the mass, and periodic shedding occurs only for moderate mass sizes where the shear forces in the flow interact with the magnetic forces. At Reynolds numbers below 500 with pulsatile flow, suction and roll up of the ferrofluid is seen during the low and moderate periods of flow, followed by the ejection of ferrofluid during high flow. These shadowgraphs illustrate the beauty and richness of ferrofluid dynamics, an understanding of which is instrumental to furthering MDT as an effective drug delivery device.

  4. Recent technologies in pulsatile drug delivery systems

    PubMed Central

    Jain, Deepika; Raturi, Richa; Jain, Vikas; Bansal, Praveen; Singh, Ranjit

    2011-01-01

    Pulsatile drug delivery systems (PDDS) have attracted attraction because of their multiple benefits over conventional dosage forms. They deliver the drug at the right time, at the right site of action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. These systems are designed according to the circadian rhythm of the body, and the drug is released rapidly and completely as a pulse after a lag time. These products follow the sigmoid release profile characterized by a time period. These systems are beneficial for drugs with chronopharmacological behavior, where nocturnal dosing is required, and for drugs that show the first-pass effect. This review covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Marketed technologies, such as PulsincapTM, Diffucaps®, CODAS®, OROS® and PULSYSTM, follow the above mechanism to render a sigmoidal drug release profile. Diseases wherein PDDS are promising include asthma, peptic ulcers, cardiovascular ailments, arthritis and attention deficit syndrome in children and hypercholesterolemia. Pulsatile drug delivery systems have the potential to bring new developments in the therapy of many diseases. PMID:23507727

  5. Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1997-01-01

    It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.

  6. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    PubMed

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  7. RWPV bioreactor mass transport: earth-based and in microgravity

    NASA Technical Reports Server (NTRS)

    Begley, Cynthia M.; Kleis, Stanley J.

    2002-01-01

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels. 2002 Wiley Periodicals, Inc.

  8. RWPV bioreactor mass transport: earth-based and in microgravity.

    PubMed

    Begley, Cynthia M; Kleis, Stanley J

    2002-11-20

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels. 2002 Wiley Periodicals, Inc.

  9. Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza

    2013-01-01

    Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free-breathing 3D acquisitions. PMID:24123058

  10. Kisspeptin and LH pulsatile temporal coupling in PCOS patients.

    PubMed

    Katulski, Krzysztof; Podfigurna, Agnieszka; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Alessandro D

    2018-05-04

    To evaluate the temporal coupling between spontaneous kisspeptin and luteinizing hormone (LH) pulsatile releases in polycystic ovary syndrome (PCOS) patients. We examined 71 patients diagnosed with PCOS. A 2 h pulsatility study was performed to evaluate serum kisspeptin and LH pulse frequency and concentration, sampled every 10 min; baseline follicle-stimulating hormone (FSH), estradiol (E2), prolactin (PRL), cortisol, 17-hydroksy-progesterone (17OHP), testosterone (T), free testosterone index (FTI, and insulin levels were also measured. Detect and Specific Concordance (SC) algorithms were used to evaluate the temporal coupling associations between spontaneous episodic secretion of kisspeptin and LH. All PCOS patients demonstrated LH and kisspeptin pulsatile secretions. When the SC index was calculated across the sample of PCOS patients (n = 71), no temporal coupling was observed between kisspeptin and LH pulses. When PCOS patients were subdivided according to their menstrual cyclicity, oligomenorrheic patients demonstrated elevated kisspeptin pulse frequency. Additionally, the SC index reveled a temporal coupling between kisspeptin and LH secretory peaks only in eumenorrheic patients (n = 30, intermenstrual interval < 45 days). Oligomenorrheic PCOS patients (intermenstrual interval > 45 days) did not demonstrate temporal coupling between kisspeptin and LH secretory peaks. The study of the endogenous kisspeptin and LH pulsatile release revealed the temporal coupling of kisspeptin with LH secretory pulses only in eumenorrheic. This data supports the hypothesis that neuroendocrine impairments in PCOS affect the coupling of kisspeptin with LH pulses and potentially worsen as the disease progresses, becoming unequivocally evident in oligomenorrheic PCOS patients.

  11. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

    PubMed Central

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-01-01

    Background Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. Results The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow. PMID:27298790

  12. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation.

    PubMed

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-06-01

    Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.

  13. Pulsatile pipe flow transition: Flow waveform effects

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  14. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility

    PubMed Central

    2011-01-01

    The maintenance of adequate blood flow to the brain is critical for normal brain function; cerebral blood flow, its regulation and the effect of alteration in this flow with disease have been studied extensively and are very well understood. This flow is not steady, however; the systolic increase in blood pressure over the cardiac cycle causes regular variations in blood flow into and throughout the brain that are synchronous with the heart beat. Because the brain is contained within the fixed skull, these pulsations in flow and pressure are in turn transferred into brain tissue and all of the fluids contained therein including cerebrospinal fluid. While intracranial pulsatility has not been a primary focus of the clinical community, considerable data have accrued over the last sixty years and new applications are emerging to this day. Investigators have found it a useful marker in certain diseases, particularly in hydrocephalus and traumatic brain injury where large changes in intracranial pressure and in the biomechanical properties of the brain can lead to significant changes in pressure and flow pulsatility. In this work, we review the history of intracranial pulsatility beginning with its discovery and early characterization, consider the specific technologies such as transcranial Doppler and phase contrast MRI used to assess various aspects of brain pulsations, and examine the experimental and clinical studies which have used pulsatility to better understand brain function in health and with disease. PMID:21349153

  15. Microbubble transport through a bifurcating vessel network with pulsatile flow.

    PubMed

    Valassis, Doug T; Dodde, Robert E; Esphuniyani, Brijesh; Fowlkes, J Brian; Bull, Joseph L

    2012-02-01

    Motivated by two-phase microfluidics and by the clinical applications of air embolism and a developmental gas embolotherapy technique, experimental and theoretical models of microbubble transport in pulsatile flow are presented. The one-dimensional time-dependent theoretical model is developed from an unsteady Bernoulli equation that has been modified to include viscous and unsteady effects. Results of both experiments and theory show that roll angle (the angle the plane of the bifurcating network makes with the horizontal) is an important contributor to bubble splitting ratio at each bifurcation within the bifurcating network. When compared to corresponding constant flow, pulsatile flow was shown to produce insignificant changes to the overall splitting ratio of the bubble despite the order one Womersley numbers, suggesting that bubble splitting through the vasculature could be modeled adequately with a more modest constant flow model. However, bubble lodging was affected by the flow pulsatility, and the effects of pulsatile flow were evident in the dependence of splitting ratio of bubble length. The ability of bubbles to remain lodged after reaching a steady state in the bifurcations is promising for the effectiveness of gas embolotherapy to occlude blood flow to tumors, and indicates the importance of understanding where lodging will occur in air embolism. The ability to accurately predict the bubble dynamics in unsteady flow within a bifurcating network is demonstrated and suggests the potential for bubbles in microfluidics devices to encode information in both steady and unsteady aspects of their dynamics.

  16. Regulated recovery of pulsatile growth hormone secretion from negative feedback: a preclinical investigation

    PubMed Central

    Bowers, Cyril Y.

    2011-01-01

    Although stimulatory (feedforward) and inhibitory (feedback) dynamics jointly control neurohormone secretion, the factors that supervise feedback restraint are poorly understood. To parse the regulation of growth hormone (GH) escape from negative feedback, 25 healthy men and women were studied eight times each during an experimental GH feedback clamp. The clamp comprised combined bolus infusion of GH or saline and continuous stimulation by saline GH-releasing hormone (GHRH), GHRP-2, or both peptides after randomly ordered supplementation with placebo (both sexes) vs. E2 (estrogen; women) and T (testosterone; men). Endpoints were GH pulsatility and entropy (a model-free measure of feedback quenching). Gender determined recovery of pulsatile GH secretion from negative feedback in all four secretagog regimens (0.003 ≤ P ≤ 0.017 for women>men). Peptidyl secretagog controlled the mass, number, and duration of feedback-inhibited GH secretory bursts (each, P < 0.001). E2/T administration potentiated both pulsatile (P = 0.006) and entropic (P < 0.001) modes of GH recovery. IGF-I positively predicted the escape of GH secretory burst number and mode (P = 0.022), whereas body mass index negatively forecast GH secretory burst number and mass (P = 0.005). The composite of gender, body mass index, E2, IGF-I, and peptidyl secretagog strongly regulates the escape of pulsatile and entropic GH secretion from autonegative feedback. The ensemble factors identified in this preclinical investigation enlarge the dynamic model of GH control in humans. PMID:21795635

  17. Altered neuroendocrine regulation of gonadotropin secretion in women distance runners.

    PubMed

    Veldhuis, J D; Evans, W S; Demers, L M; Thorner, M O; Wakat, D; Rogol, A D

    1985-09-01

    We tested the hypothesis that the neuroendocrine control of gonadotropin secretion is altered in certain women distance runners with secondary amenorrhea. To this end, we quantitated the frequency and amplitude of spontaneous pulsatile LH secretion during a 24-h interval in nine such women. The ability of the pituitary gland to release LH normally was assessed by administration of graded bolus doses of GnRH during the subsequent 8 h. Compared to normally menstruating women, six of nine amenorrheic distance runners had a distinct reduction in spontaneous LH pulse frequency, with one, three, six, five, four, or two pulses per 24 h (normal, 8-15 pulses/24 h). This reduction in LH pulse frequency occurred without any significant alterations in plasma concentrations of estradiol and free testosterone or 24-h integrated serum concentrations of LH, FSH, or PRL. Moreover, in long-distance runners, the capacity of the pituitary gland to release LH was normal or accentuated in response to exogenous pulses of GnRH. In the six women athletes with diminished spontaneous LH pulsatility, acute ovarian responsiveness also was normal, since serum estradiol concentrations increased normally in response to the GnRH-induced LH pulses. Although long-distance runners had significantly lower estimated percent body fat compared to control women, specific changes in pulsatile gonadotropin release did not correlate with degree of body leanness. In summary, certain long-distance runners with secondary amenorrhea or severe oligomenorrhea have unambiguously decreased spontaneous LH pulse frequency with intact pituitary responsiveness to GnRH. This neuroendocrine disturbance may be relevant to exercise-associated amenorrhea, since pulsatile LH release is a prerequisite for cyclic ovarian function. We speculate that such alterations in pulsatile LH release in exercising women reflect an adaptive response of the hypothalamic pulse generator controlling the intermittent GnRH signal to the pituitary gland. The basis for amenorrhea in the remaining runners who have normal pulsatile properties of LH release is not known.

  18. Resistance Training Augments Cerebral Blood Flow Pulsatility: Cross-Sectional Study.

    PubMed

    Nakamura, Nobuhiro; Muraoka, Isao

    2018-06-11

    Increased central arterial stiffness and/or decreased compliance reduces buffer function and increases cerebral blood flow (CBF) pulsatility, which leads to increased cerebral microvascular damage, resulting in the augmentation of the risk of cerebrovascular diseases. Resistance-trained men showed higher central arterial stiffness and lower arterial compliance than age-matched, sedentary men. This study examined the effect of increased central arterial stiffness and/or decreased arterial compliance on CBF pulsatility. The study participants included 31 young healthy men (15 resistance-trained men, aged 21 ± 1 years; and 16 controls, aged 23 ± 1 years). β-Stiffness index and arterial compliance were measured in the right carotid artery as index of central arterial stiffness and compliance, respectively. The pulsatility index (PI) was measured in the middle cerebral artery as index of CBF pulsatility. β-Stiffness index and PI were significantly higher in the resistance-trained group than in the control group (β-stiffness index: 5.3 ± 0.3 vs. 3.5 ± 0.3 a.u., P < 0.05, PI: 0.80 ± 0.02 vs. 0.70 ± 0.02, P < 0.05). The resistance-trained group showed significantly lower arterial compliance than the control group (0.16 ± 0.01 vs. 0.23 ± 0.01 mm2/mm Hg, P < 0.05). Positive and negative correlations were observed between β-stiffness index and PI (r = 0.39, P < 0.05), and between arterial compliance and PI (r = -0.59, P < 0.05), respectively. The resistance-trained group showed higher central arterial stiffness and PI and lower arterial compliance. Central arterial stiffness and arterial compliance were associated with PI. Increased arterial stiffness and decreased arterial compliance with resistance training impair buffer function, resulting in increased CBF pulsatility. Trial Number UMIN000023816 URL: http://www.umin.ac.jp/icdr/index.html Official scientific title of the study: effect of increase arterial stiffness by resistance training on cerebral hemodynamic.

  19. Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.

    PubMed

    Yigit, Berk; Pekkan, Kerem

    2016-01-01

    In Nature, there exist a variety of cardiovascular circulation networks in which the energetic ventricular load has both steady and pulsatile components. Steady load is related to the mean cardiac output (CO) and the haemodynamic resistance of the peripheral vascular system. On the other hand, the pulsatile load is determined by the simultaneous pressure and flow waveforms at the ventricular outlet, which in turn are governed through arterial wave dynamics (transmission) and pulse decay characteristics (windkessel effect). Both the steady and pulsatile contributions of the haemodynamic power load are critical for characterizing/comparing disease states and for predicting the performance of cardiovascular devices. However, haemodynamic performance parameters vary significantly from subject to subject because of body size, heart rate and subject-specific CO. Therefore, a 'normalized' energy dissipation index, as a function of the 'non-dimensional' physical parameters that govern the circulation networks, is needed for comparative/integrative biological studies and clinical decision-making. In this paper, a complete network-independent non-dimensional formulation that incorporates pulsatile flow regimes is developed. Mechanical design variables of cardiovascular flow systems are identified and the Buckingham Pi theorem is formally applied to obtain the corresponding non-dimensional scaling parameter sets. Two scaling approaches are considered to address both the lumped parameter networks and the distributed circulation components. The validity of these non-dimensional number sets is tested extensively through the existing empirical allometric scaling laws of circulation systems. Additional validation studies are performed using a parametric numerical arterial model that represents the transmission and windkessel characteristics, which are adjusted to represent different body sizes and non-dimensional haemodynamic states. Simulations demonstrate that the proposed non-dimensional indices are independent of body size for healthy conditions, but are sensitive to deviations caused by off-design disease states that alter the energetic load. Sensitivity simulations are used to identify the relationship between pulsatile power loss and non-dimensional characteristics, and optimal operational states are computed. © 2016 The Author(s).

  20. Dynamic culturing of cartilage tissue: the significance of hydrostatic pressure.

    PubMed

    Correia, Cristina; Pereira, Ana L; Duarte, Ana R C; Frias, Ana M; Pedro, Adriano J; Oliveira, João T; Sousa, Rui A; Reis, Rui L

    2012-10-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner.

  1. Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps?

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Siemonsen, Susanne; Dalski, Michael; Verleger, Tobias; Kemmling, Andre; Fiehler, Jens

    2014-03-01

    The acute ischemic stroke is a leading cause for death and disability in the industry nations. In case of a present acute ischemic stroke, the prediction of the future tissue outcome is of high interest for the clinicians as it can be used to support therapy decision making. Within this context, it has already been shown that the voxel-wise multi-parametric tissue outcome prediction leads to more promising results compared to single channel perfusion map thresholding. Most previously published multi-parametric predictions employ information from perfusion maps derived from perfusion-weighted MRI together with other image sequences such as diffusion-weighted MRI. However, it remains unclear if the typically calculated perfusion maps used for this purpose really include all valuable information from the PWI dataset for an optimal tissue outcome prediction. To investigate this problem in more detail, two different methods to predict tissue outcome using a k-nearest-neighbor approach were developed in this work and evaluated based on 18 datasets of acute stroke patients with known tissue outcome. The first method integrates apparent diffusion coefficient and perfusion parameter (Tmax, MTT, CBV, CBF) information for the voxel-wise prediction, while the second method employs also apparent diffusion coefficient information but the complete perfusion information in terms of the voxel-wise residue functions instead of the perfusion parameter maps for the voxel-wise prediction. Overall, the comparison of the results of the two prediction methods for the 18 patients using a leave-one-out cross validation revealed no considerable differences. Quantitatively, the parameter-based prediction of tissue outcome led to a mean Dice coefficient of 0.474, while the prediction using the residue functions led to a mean Dice coefficient of 0.461. Thus, it may be concluded from the results of this study that the perfusion parameter maps typically derived from PWI datasets include all valuable perfusion information required for a voxel-based tissue outcome prediction, while the complete analysis of the residue functions does not add further benefits for the voxel-wise tissue outcome prediction and is also computationally more expensive.

  2. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension.

    PubMed

    Chemla, Denis; Castelain, Vincent; Zhu, Kaixian; Papelier, Yves; Creuzé, Nicolas; Hoette, Susana; Parent, Florence; Simonneau, Gérald; Humbert, Marc; Herve, Philippe

    2013-05-01

    The mean pulmonary artery pressure (mPAP) replaces mean systolic ejection pressure (msePAP) in the classic formula of right ventricular stroke work (RVSW) = (mPAP - RAP) × stroke volume, where RAP is mean right atrial pressure. Only the steady work is thus taken into account, not the pulsatile work, whereas pulmonary circulation is highly pulsatile. Our retrospective, high-fidelity pressure study tested the hypothesis that msePAP was proportional to mPAP, and looked at the implications for RVSW. Eleven patients with severe, precapillary pulmonary hypertension (PH) (six patients with idiopathic pulmonary arterial hypertension and five with chronic thromboembolic PH; mPAP = 57 ± 10 mm Hg) were studied at rest and during mild to moderate exercise. Eight non-PH control subjects were also studied at rest (mPAP = 16 ± 2 mm Hg). The msePAP was averaged from end diastole to dicrotic notch. In the full data set (53 pressure-flow points), mPAP ranged from 14 to 99.5 mm Hg, cardiac output from 2.38 to 11.1 L/min, and heart rate from 53 to 163 beats/min. There was a linear relationship between msePAP and mPAP (r² = 0.99). The msePAP matched 1.25 mPAP (bias, -0.5 ± 2.6 mm Hg). Results were similar in the resting non-PH group and in resting and the exercising PH group. This implies that the classic formula markedly underestimates RVSW and that the pulsatile work may be a variable 20% to 55% fraction of RVSW, depending on RAP and mPAP. At rest, RVSW in patients with PH was twice as high as that of the non-PH group (P < .05), but pulsatile work fraction was similar between the two groups (26 ± 4% vs 24 ± 1%) because of the counterbalancing effects of high RAP (11 ± 5 mm Hg vs 4 ± 2 mm Hg), which increases the fraction, and high mPAP, which decreases the fraction. Our study favored the use of an improved formula that takes into account the variable pulsatile work fraction: RVSW = (1.25 mPAP - RAP) × stroke volume. Increased RAP and increased mPAP have opposite effects on the pulsatile work fraction.

  3. Pulsatile gonadotrophin releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome.

    PubMed

    Bayram, N; van Wely, M; van der Veen, F

    2004-01-01

    In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intravenous or subcutaneous route using a portable pump has been used successfully in patients with hypogonadotrophic hypogonadism. Assuming that the results would be similar in women with polycystic ovary syndrome (PCOS), pulsatile GnRH has been used to induce ovulation in these women. Although ovulation and pregnancy have been achieved, the effectiveness of pulsatile GnRH in women with PCOS has not been clearly demonstrated. To assess the effectiveness of pulsatile GnRH administration in women with polycystic ovary syndrome (PCOS), in terms of ongoing pregnancy, ovulation, clinical pregnancy, ovarian hyperstimulation syndrome (OHSS), multiple pregnancy, miscarriage, and multifollicular growth. We searched the Cochrane Menstrual Disorders & Subfertility Group trials register (searched 13 August 2003), the Cochrane Central Register of Controlled Trials (CENTRAL) (Cochrane Library Issue 2, August 2001), MEDLINE (January 1966 to August 2003), EMBASE (January 1985 to August 2003) and reference lists of articles. We also contacted manufacturers and researchers in the field. All relevant published randomised clinical trials were selected for inclusion if treatment consisted of pulsatile GnRH administration versus another treatment for ovulation induction in subfertile women with PCOS. Relevant data were extracted independently by two reviewers (NB, MW). Validity was assessed in terms of method of randomisation, completeness of follow-up, presence or absence of crossover and co-intervention. All trials were screened and analysed for predetermined quality criteria. 2X2 tables were generated for all the relevant outcomes. Odds ratios were generated using the Peto method. Four randomised clinical trials involving 57 women were identified comparing four different treatments: GnRH versus HMG, GnRH and FSH versus FSH, GnRH following pretreatment with GnRH agonist (GnRHa) versus GnRH only, GnRH following pretreatment with GnRHa versus clomiphene citrate. This means that there was only one trial in any one comparison. In two studies, data of pre- and post-crossover were not described separately. All trials were small and of too short duration to show any significant differences in pregnancy results. The odds ratio for ongoing pregnancy, only described in one trial, was 7.5 (95% CI 0.44 to 127) in the comparison GnRH following pretreatment with GnRHa versus GnRH only in favour of the first group. Multiple pregnancies were not seen. Ovarian hyperstimulation syndrome was seen only in women allocated to ovulation induction with HMG. The four trials describing four different comparisons with a short follow up (1 to 3 cycles) were too small to either prove or discard the value of pulsatile GnRH treatment in patients with polycystic ovary syndrome.

  4. Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth.

    PubMed

    Masoller, N; Sanz-CortéS, M; Crispi, F; Gómez, O; Bennasar, M; Egaña-Ugrinovic, G; Bargalló, N; Martínez, J M; Gratacós, E

    2016-01-01

    Fetuses with congenital heart disease (CHD) show evidence of abnormal brain development before birth, which is thought to contribute to adverse neurodevelopment during childhood. Our aim was to evaluate whether brain development in late pregnancy can be predicted by fetal brain Doppler, head biometry and the clinical form of CHD at the time of diagnosis. This was a prospective cohort study including 58 fetuses with CHD, diagnosed at 20-24 weeks' gestation, and 58 normal control fetuses. At the time of diagnosis, we recorded fetal head circumference (HC), biparietal diameter, middle cerebral artery pulsatility index (MCA-PI), cerebroplacental ratio (CPR) and brain perfusion by fractional moving blood volume. We classified cases into one of two clinical types defined by the expected levels (high or low) of placental (well-oxygenated) blood perfusion, according to the anatomical defect. All fetuses underwent subsequent 3T-magnetic resonance imaging (MRI) at 36-38 weeks' gestation. Abnormal prenatal brain development was defined by a composite score including any of the following findings on MRI: total brain volume <  10(th) centile, parietoccipital or cingulate fissure depth <  10(th) centile or abnormal metabolic profile in the frontal lobe. Logistic regression analysis demonstrated that MCA-PI (odds ratio (OR), 12.7; P = 0.01), CPR (OR, 8.7; P = 0.02) and HC (OR, 6.2; P = 0.02) were independent predictors of abnormal neurodevelopment; however, the clinical type of CHD was not. Fetal brain Doppler and head biometry at the time of CHD diagnosis are independent predictors of abnormal brain development at birth, and could be used in future algorithms to improve counseling and targeted interventions. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  5. Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension

    PubMed Central

    Fuchsjäger-Mayrl, G; Wally, B; Rainer, G; Buehl, W; Aggermann, T; Kolodjaschna, J; Weigert, G; Polska, E; Eichler, H-G; Vass, C; Schmetterer, L

    2005-01-01

    Background: There is evidence that perfusion abnormalities of the optic nerve head are involved in the pathogenesis of glaucoma. There is therefore considerable interest in the effects of topical antiglaucoma drugs on ocular blood flow. A study was undertaken to compare the ocular haemodynamic effects of dorzolamide and timolol in patients with primary open angle glaucoma (POAG) or ocular hypertension (OHT). Methods: One hundred and forty patients with POAG or OHT were included in a controlled, randomised, double blind study in two parallel groups; 70 were randomised to receive timolol and 70 to receive dorzolamide for a period of 6 months. Subjects whose intraocular pressure (IOP) did not respond to either of the two drugs were switched to the alternative treatment after 2 weeks. Scanning laser Doppler flowmetry was used to measure blood flow in the temporal neuroretinal rim and the cup of the optic nerve head. Pulsatile choroidal blood flow was assessed using laser interferometric measurement of fundus pulsation amplitude. Results: Five patients did not respond to timolol and were changed to the dorzolamide group, and 18 patients changed from dorzolamide treatment to timolol. The effects of both drugs on IOP and ocular perfusion pressure were comparable. Dorzolamide, but not timolol, increased blood flow in the temporal neuroretinal rim (8.5 (1.6)%, p<0.001 versus timolol) and the cup of the optic nerve head (13.5 (2.5)%, p<0.001 versus timolol), and fundus pulsation amplitude (8.9 (1.3)%, p<0.001 versus timolol). Conclusions: This study indicates augmented blood flow in the optic nerve head and choroid after 6 months of treatment with dorzolamide, but not with timolol. It remains to be established whether this effect can help to reduce visual field loss in patients with glaucoma. PMID:16170119

  6. Comparison of current practices of cardiopulmonary perfusion technology in Iran with American Society of Extracorporeal Technology's standards.

    PubMed

    Faravan, Amir; Mohammadi, Nooredin; Alizadeh Ghavidel, Alireza; Toutounchi, Mohammad Zia; Ghanbari, Ameneh; Mazloomi, Mehran

    2016-01-01

    Standards have a significant role in showing the minimum level of optimal optimum and the expected performance. Since the perfusion technology staffs play an the leading role in providing the quality services to the patients undergoing open heart surgery with cardiopulmonary bypass machine, this study aimed to assess the standards on how Iranian perfusion technology staffs evaluate and manage the patients during the cardiopulmonary bypass process and compare their practice with the recommended standards by American Society of Extracorporeal Technology. In this descriptive study, data was collected from 48 Iranian public hospitals and educational health centers through a researcher-created questionnaire. The data collection questionnaire assessed the standards which are recommended by American Society of Extracorporeal Technology. Findings showed that appropriate measurements were carried out by the perfusion technology staffs to prevent the hemodilution and avoid the blood transfusion and unnecessary blood products, determine the initial dose of heparin based on one of the proposed methods, monitor the anticoagulants based on ACT measurement, and determine the additional doses of heparin during the cardiopulmonary bypass based on ACT or protamine titration. It was done only in 4.2% of hospitals and health centers. Current practices of cardiopulmonary perfusion technology in Iran are inappropriate based on the standards of American Society of Cardiovascular Perfusion. This represents the necessity of authorities' attention to the validation programs and development of the caring standards on one hand and continuous assessment of using these standards on the other hand.

  7. Tumoricidal responses in spontaneous canine neoplasms after extracorporeal perfusion over immobilized protein A.

    PubMed

    Terman, D S

    1981-01-01

    I describe morphologic, histologic, immunohistochemical, and serologic changes in dogs with spontaneous breast adenocarcinoma, squamous cell carcinoma, hemangiopericytoma, and fibrosarcoma after extracorporeal perfusion of plasma over heat-killed and formalin-stabilized Staphylococcus aureus Cowans I (SAC), which was embedded in a membrane filtration system. In 12 dogs with breast adenocarcinoma, tumor necrosis was observed within 12 hours after perfusion; 24 hours after perfusion, multiple visible lesions in 6 of 6 dogs exhibited necrosis, but there was no reaction in uninvolved normal mammary tissue. In 8 dogs, healing of large ulcerated areas of cutaneous tumor was observed within 8 to 18 days after perfusion. Similar tumoricidal responses were observed in dogs with other neoplasms after SAC perfusion. Tumor cell necrosis oserved within 4 hours after extracorporeal perfusion was associated with immunohistochemical deposits of IgG and C'3 and ultrastructural evidence of lytic lesions on tumor cell membranes. No tumoricidal effects were observed after perfusion over Staphylococcus aureus Woods (SAW) (non-protein A bearing) in 3 dogs that previously or subsequently responded to SAC perfusion. No tumoricidal reactions were noted after phlebotomy of up to 50% of plasma volume in 6 tumor-bearing dogs that subsequently responded to SAC perfusion. SAC but not SAW perfusion was followed by increases in circulating tumor associated antibodies (TAA) for up to 48 hours after perfusion. Immune complexes increased after perfusion and remained elevated fo 72 hours. Findings suggest that the acute tumoricial responses are not due to mere removal of circulating immune reactants and may be initiated by TAA that are rendered operational after extracorporeal perfusion over SAC. The rapidity, specificity, and magnitude of the observed tumoricidal effects in various canine neoplastic diseases suggests that this may have potentially broad-based therapeutic and biologic implications for canine neoplasia.

  8. Effect of counter-pulsation control of a pulsatile left ventricular assist device on working load variations of the native heart.

    PubMed

    Choi, Seong Wook; Nam, Kyoung Won; Lim, Ki Moo; Shim, Eun Bo; Won, Yong Soon; Woo, Heung Myong; Kwak, Ho Hyun; Noh, Mi Ryoung; Kim, In Young; Park, Sung Min

    2014-04-03

    When using a pulsatile left ventricular assist device (LVAD), it is important to reduce the cardiac load variations of the native heart because severe cardiac load variations can induce ventricular arrhythmia. In this study, we investigated the effect of counter-pulsation control of the LVAD on the reduction of cardiac load variation. A ventricular electrocardiogram-based counter-pulsation control algorithm for a LVAD was implemented, and the effects of counter-pulsation control of the LVAD on the reduction of the working load variations of the left ventricle were determined in three animal experiments. Deviations of the working load of the left ventricle were reduced by 51.3%, 67.9%, and 71.5% in each case, and the beat-to-beat variation rates in the working load were reduced by 84.8%, 82.7%, and 88.2% in each ease after counter-pulsation control. There were 3 to 12 premature ventricle contractions (PVCs) before counter-pulsation control, but no PVCs were observed during counter-pulsation control. Counter-pulsation control of the pulsatile LVAD can reduce severe cardiac load variations, but the average working load is not markedly affected by application of counter-pulsation control because it is also influenced by temporary cardiac outflow variations. We believe that counter-pulsation control of the LVAD can improve the long-term safety of heart failure patients equipped with LVADs.

  9. Adding an extra dimension to what students see through the light microscope: a lab exercise demonstrating critical analysis for microscopy students.

    PubMed

    Garrill, Ashley

    2011-01-01

    This article describes an undergraduate lab exercise that demonstrates the importance of students thinking critically about what they see through a microscope. The students are given growth data from tip-growing organisms that suggest the cells grow in a pulsatile manner. The students then critique this data in several exercises that incorporate aspects of a problem-based learning approach, envisaging growth not just in two dimensions, but in three dimensions. For some cells, what appears to be pulsatile growth could also be explained by growth at a constant rate up and down in the z-axis. Depending on the diffraction pattern generated by the tip of the cell, this movement in the z-axis could go undetected. This raises the possibility that pulsatile growth seen in some species may be an artifact generated by the limitations of the light microscope. Students were subsequently asked to rate their awareness of the need to think critically about what they see through a microscope, using a scale of 1 (unaware) to 5 (very much aware). Prior to doing the lab exercise, the mean rating was 2.7; this increased to 4.4 after the lab. The students also indicated a likelihood of being more critical in their thinking in other aspects of their biology curriculum.

  10. Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have previously shown that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in...

  11. Evaluation of a high framerate multi-exposure laser speckle contrast imaging setup

    NASA Astrophysics Data System (ADS)

    Hultman, Martin; Fredriksson, Ingemar; Strömberg, Tomas; Larsson, Marcus

    2018-02-01

    We present a first evaluation of a new multi-exposure laser speckle contrast imaging (MELSCI) system for assessing spatial variations in the microcirculatory perfusion. The MELSCI system is based on a 1000 frames per second 1-megapixel camera connected to a field programmable gate arrays (FPGA) capable of producing MELSCI data in realtime. The imaging system is evaluated against a single point laser Doppler flowmetry (LDF) system during occlusionrelease provocations of the arm in five subjects. Perfusion is calculated from MELSCI data using current state-of-the-art inverse models. The analysis displayed a good agreement between measured and modeled data, with an average error below 6%. This strongly indicates that the applied model is capable of accurately describing the MELSCI data and that the acquired data is of high quality. Comparing readings from the occlusion-release provocation showed that the MELSCI perfusion was significantly correlated (R=0.83) to the single point LDF perfusion, clearly outperforming perfusion estimations based on a single exposure time. We conclude that the MELSCI system provides blood flow images of enhanced quality, taking us one step closer to a system that accurately can monitor dynamic changes in skin perfusion over a large area in real-time.

  12. The Influence of Oscillatory Fractions on Mass Transfer of Non-Newtonian Fluid in Wavy-Walled Tubes for Pulsatile Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Donghui; Bian, Yongning

    2018-03-01

    The shape of pipeline structure, fluid medium and flow state have important influence on the heat transfer and mass effect of fluid. In this paper, we investigated the mass transfer behavior of Non-Newtonian fluid CMC solution with 700ppm concentration in five different-sized axisymmetric wave-walled tubes for pulsatile flow. It is revealed that the effect of mass transfer is enhanced with the increase of oscillatory fractions P based on the PIV measurements. Besides, mass transfer rate was measured by the electrochemical method in the larger oscillatory points rate range. It is observed that mass transfer rate increases with the increase in P and reached the maximum mass transfer rate at the most optimal oscillatory fractions P opt. After reaching the optimal oscillatory fractions P opt, the mass transfer rate decreases with increasing P.

  13. Transrectal Doppler sonography of uterine blood flow during the first two weeks after parturition in Simmenthal heifers

    PubMed Central

    Krüger, Lars; Leidl, Stephanie; Bollwein, Heinrich

    2013-01-01

    Transrectal Doppler sonography was used to evaluate uterine blood flow during the first two weeks after parturition in six primiparous Simmental cows. The uterine blood flow was evaluated on the day of parturition (Day 0), once daily from Days 1 to 8 and then every other day until Day 14. Blood flow was quantified by determining the diameter (D), the time-averaged maximum velocity (TAMV), the pulsatility index (PI) and the blood flow volume (BFV) of the uterine arteries ipsilateral and contralateral to the formerly pregnant uterine horn. During the first four days after calving D, TAMV and BFV declined (ipsilateral: TAMV 70%, BFV 87%, contralateral: D 47%, BFV 84%; p < 0.05), while PI increased (ipsilateral 158%, contralateral 100%; p < 0.05) distinctly. Between Days 4 and 14 only the ipsilateral D (12%) and the BFV of both arteries (ipsilateral 5%, contralateral 8%) decreased (p < 0.05). Blood flow variables were very strongly correlated with each other (r > ±0.75, p < 0.05), with negative correlations with PI and positive correlations with all other investigated factors. Overall, this study revealed characteristic changes in uterine perfusion during the first two weeks after parturition in cows that were pronounced during the first four days postpartum. PMID:23820167

  14. Transrectal Doppler sonography of uterine blood flow during the first two weeks after parturition in Simmenthal heifers.

    PubMed

    Heppelmann, Maike; Krüger, Lars; Leidl, Stephanie; Bollwein, Heinrich

    2013-01-01

    Transrectal Doppler sonography was used to evaluate uterine blood flow during the first two weeks after parturition in six primiparous Simmental cows. The uterine blood flow was evaluated on the day of parturition (Day 0), once daily from Days 1 to 8 and then every other day until Day 14. Blood flow was quantified by determining the diameter (D), the time-averaged maximum velocity (TAMV), the pulsatility index (PI) and the blood flow volume (BFV) of the uterine arteries ipsilateral and contralateral to the formerly pregnant uterine horn. During the first four days after calving D, TAMV and BFV declined (ipsilateral: TAMV 70%, BFV 87%, contralateral: D 47%, BFV 84%; p < 0.05), while PI increased (ipsilateral 158%, contralateral 100%; p < 0.05) distinctly. Between Days 4 and 14 only the ipsilateral D (12%) and the BFV of both arteries (ipsilateral 5%, contralateral 8%) decreased (p < 0.05). Blood flow variables were very strongly correlated with each other (r > ±0.75, p < 0.05), with negative correlations with PI and positive correlations with all other investigated factors. Overall, this study revealed characteristic changes in uterine perfusion during the first two weeks after parturition in cows that were pronounced during the first four days postpartum.

  15. Effects of continuous and pulsatile flows generated by ventricular assist devices on renal function and pathology.

    PubMed

    Miyamoto, Takuma; Karimov, Jamshid H; Fukamachi, Kiyotaka

    2018-03-01

    Continuous-flow (CF) left ventricular assist devices (LVADs) are widely used to treat end-stage heart failure. Despite substantial improvement in clinical results, numerous complications remain associated with this technology. Worsening renal function is one, associated with morbidity and mortality in patients supported by CF LVADs. The effects of CF LVAD support on renal function have been investigated since the mid-1990s by many research groups. Area covered: We review the current status of LVAD therapy, experimental results regarding the effects of types of flow generated by LVADs on renal function and pathology, changes in renal function after LVAD implant, the influence of renal function on outcomes, and risk factors for renal dysfunction post implant. This information was obtained through online databases and direct extraction of single studies. Expert commentary: Immediately after CF LVAD implantation, renal function improves temporarily as patients recover from the kidneys' previously low perfusion and congestive state. However, many studies have shown that this initially recovered renal function gradually declines during long-term CF LVAD support. Although it is known that CF LVAD support adversely affects renal function over the long term, just how it does has not yet been clearly defined in terms of clinical symptoms or signs.

  16. Ocular haemodynamic changes after single treatment with photodynamic therapy assessed with non-invasive techniques.

    PubMed

    Maar, Noemi; Pemp, Berthold; Kircher, Karl; Luksch, Alexandra; Weigert, Günther; Polska, Elzbieta; Tittl, Michael; Stur, Michael; Schmetterer, Leopold

    2009-09-01

    To investigate in patients with neovascular age-related macular degeneration (ARMD) the changes in ocular perfusion caused by single treatment with photodynamic therapy (PDT) by different non-invasive methods; to evaluate correlations between relative changes of ocular haemodynamic parameters after PDT among each other and compared to morphological parameters; and to assess this in relation to early changes of visual acuity. 17 consecutive patients with subfoveal choroidal neovascularization (CNV) caused by ARMD scheduled for PDT without previous PDT treatment (four patients with predominantly classic CNV and 13 patients with occult CNV). best-corrected visual acuity (before PDT, 6 and 8 weeks after PDT), fundus photography, fluorescein angiography, haemodynamic measurements with laser Doppler flowmetry (LDF), laser interferometry and ocular blood flow (OBF) tonometry (baseline and 1, 2, 6 and 8 weeks after treatment). choroidal blood flow (CHBF), fundus pulsation amplitude (FPA), pulsatile ocular blood flow (POBF), visual acuity. Changes smaller than 20% were considered clinically irrelevant. Ocular haemodynamic parameters did not change significantly in the follow-up period. Changes of haemodynamic parameters showed no correlation to treatment spot, morphological changes or visual acuity. Changes of visual acuity were comparable to results of earlier studies. Single treatment with PDT did not modify ocular blood flow parameters above 20% as assessed with different non-invasive methods.

  17. Ocular blood flow parameters after pars plana vitrectomy in patients with diabetic retinopathy.

    PubMed

    Krepler, Katharina; Polska, Elzbieta; Wedrich, Andreas; Schmetterer, Leopold

    2003-04-01

    Whereas the anatomic result of vitrectomy in patients with vitreoretinal complications due to diabetes is usually satisfying, the functional outcome is sometimes poor. The authors investigated whether this may be related in part to effects of vitrectomy on ocular perfusion. Ocular hemodynamics were measured before vitrectomy and 1 and 4 weeks postoperatively in 13 consecutive diabetic patients. Pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation amplitude. In addition, mean blood flow velocity and resistive index in the ophthalmic artery, the central retinal artery, and the posterior ciliary arteries were measured with color Doppler imaging. Fundus pulsation amplitude was significantly reduced after surgery as compared to baseline (baseline: 3.7 +/- 1.0 microm; 4 weeks: 3.1 +/- 0.8; P < 0.001). Postoperatively, mean blood flow velocity in the central retinal artery (P = 0.009) and the posterior ciliary arteries (P = 0.0006) was significantly reduced, whereas resistive index was increased in the central retinal artery (P = 0.028) but not in the posterior ciliary arteries. The current data suggest that vitrectomy induces significant reductions in ocular blood flow in patients with diabetic retinopathy. Whether this may affect the visual outcome after vitrectomy or whether this reflects improved retinal oxygenation after vitrectomy remains to be established.

  18. Male sexual behavior contributes to the maintenance of high LH pulsatility in anestrous female goats.

    PubMed

    Vielma, Jesús; Chemineau, Philippe; Poindron, Pascal; Malpaux, Benoît; Delgadillo, José Alberto

    2009-10-01

    The objective of this study was to determine the importance of male sexual behavior in stimulating LH secretion in anovulatory female goats. Two groups of females (n=10 per group) were each exposed to a buck in sexual rest and submitted to natural daylength. In one group, the buck was awake, whereas in the other group, it was sedated to prevent its sexual behavior. Two other groups of goats (n=10 per group) were exposed to sexually active bucks that had been exposed to 2.5 months of long days. In one group, the buck was awake, and in the other group, it was sedated. LH secretion was determined every 15 min from 4 h before introducing the bucks to 8 h after, then every 15 min again from 20 to 24 h after introducing the bucks. The bucks submitted to natural daylength did not stimulate LH secretion (P>0.05), whether they were sedated or not. In contrast, both the awake and the sedated light-treated bucks induced an increase (P<0.05) of LH pulsatility in the first 4 h following their introduction. However, pulsatility remained elevated until 24 h in the females exposed to the light-treated awake buck, whereas in the group with the light-treated sedated buck, pulsatility diminished (P<0.05) after the first 4 h of stimulation by the buck. In conclusion, the sexual behavior of males contributes to the maintenance of a high LH pulsatility up to 24 h after introduction into a group of anovulatory goats.

  19. Numerical solutions of pulsating flow and heat transfer characteristics in a channel with a backward-facing step

    NASA Astrophysics Data System (ADS)

    Valencia, A.; Hinojosa, L.

    The incompressible laminar flow of air and heat transfer in a channel with a backward-facing step is studied for steady cases and for pulsatile inlet conditions. For steady flows the influence of the inlet velocity profile, the height of the step and the Reynolds number on the reattachment length is investigated. A parabolic entrance profile was used for pulsatile flow. It was found with amplitude of oscillation of one by Re=100 that the primary vortex breakdown through one pulsatile cycle. The wall shear rate in the separation zone varied markedly with pulsatile flows and the wall heat transfer remained relatively constant. The time-average pulsatile heat transfer at the walls was greater as with steady flow with the same mean Reynolds number. Zusammenfassung Es wird eine zweidimensionale numerische Untersuchung des instationären Wärmeübergangs und Druckverlustes im laminar durchströmten Spaltkanal mit einer plötzlichen Kanalerweiterung dargelegt und zwar für stationäre und periodische Geschwindigkeitsprofile am Eintritt des Kanals. Für stationäre Strömungen wurden die Form des Eintrittsprofils, die Reynoldszahl und die Kanalerweiterung variiert. Als Lösung der Navier/Stokes-und der Energiegleichungen mit periodischen Randbedingungen resultiert eine oszillierende Strömung, die das Aufplatzen des Primärwirbels in einer Schwingungsperiode zur Folge hat. Der Einfluß dieser Oszillation auf den Wärmeübergang und den Strömungsverlust wurde für die maximale Amplitude und für Re=100 eingehend untersucht.

  20. A Five-Dimensional Mathematical Model for Regional and Global Changes in Cardiac Uptake and Motion

    NASA Astrophysics Data System (ADS)

    Pretorius, P. H.; King, M. A.; Gifford, H. C.

    2004-10-01

    The objective of this work was to simultaneously introduce known regional changes in contraction pattern and perfusion to the existing gated Mathematical Cardiac Torso (MCAT) phantom heart model. We derived a simple integral to calculate the fraction of the ellipsoidal volume that makes up the left ventricle (LV), taking into account the stationary apex and the moving base. After calculating the LV myocardium volume of the existing beating heart model, we employed the property of conservation of mass to manipulate the LV ejection fraction to values ranging between 13.5% and 68.9%. Multiple dynamic heart models that differ in degree of LV wall thickening, base-to-apex motion, and ejection fraction, are thus available for use with the existing MCAT methodology. To introduce more complex regional LV contraction and perfusion patterns, we used composites of dynamic heart models to create a central region with little or no motion or perfusion, surrounded by a region in which the motion and perfusion gradually reverts to normal. To illustrate this methodology, the following gated cardiac acquisitions for different clinical situations were simulated analytically: 1) reduced regional motion and perfusion; 2) same perfusion as in (1) without motion intervention; and 3) washout from the normal and diseased myocardial regions. Both motion and perfusion can change dynamically during a single rotation or multiple rotations of a simulated single-photon emission computed tomography acquisition system.

  1. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents.

    PubMed

    Hsiao, Hao-Ming; Yin, Ming-Ting

    2014-02-01

    Intravascular stenting has emerged as the primary treatment for vascular diseases and has received great attention from the medical community since its introduction two decades ago. The endovascular self-expanding stent is used to treat peripheral artery diseases; however, once implanted, these stents suffer from various cyclic motions caused by pulsatile blood pressure and daily activities. Due to this challenging environment, fatigue performance has become a critical issue for stent design. In this paper, a simple yet intriguing concept of stent design aimed at enhancing pulsatile fatigue life is investigated. The concept of this design is to shift the highly concentrated stresses/strains away from the crown and re-distribute them along the stress-free bar arm by tapering its strut width. Finite element models were developed to evaluate the mechanical integrity and pulsatile fatigue resistance of the stent to various loading conditions. Results show that the fatigue safety factor jumped to 2.5-3.0 times that of the standard stent with constant strut width. This is astonishing considering that the stent profile and scaffolding were not compromised. The findings of this paper provide an excellent approach to the optimization of future stent design to greatly improve stent fatigue performance.

  2. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  3. A durability study of a paracorporeal pulsatile electro-mechanical pneumatic biventricular assist device.

    PubMed

    Choi, Hyuk; Lee, Heung-Man; Nam, Kyoung Won; Choi, Jaesoon; Lee, Jung-Joo; Kim, Ho Chul; Song, Seung Joon; Ahn, Chi Bum; Son, Ho Sung; Lim, Choon Hak; Son, Kuk Hui; Park, Yong Doo; Jeong, Gi Seok; Sun, Kyung

    2011-06-01

    In 2002, the paracorporeal pulsatile electro-mechanical pneumatic ventricular assist device (VAD) began to be developed by the Korea Artificial Organ Center at Korea University under a Health & Medical Technology Research and Development program which finished in 2008. In vitro durability testing was conducted on the paracorporeal pulsatile pneumatic VAD to determine device durability and to evaluate device failures. The 1- and 2-year reliability of the paracorporeal pulsatile pneumatic VAD was shown to be 91.2% and 54.9%, respectively, with an 80% confidence level. Failure modes were analyzed using fault tree analysis, with customized software continuously acquiring data during the test period. After this period, 21 in vivo animal tests were done, with 14 cases of left atrium to left ventricle (LV) inflow cannulation (36Fr)/outflow grafting to descending aorta, and seven cases of apex cannulation of LV to descending aorta (12 mm). The longest postoperative day (182 days) in Korea was recently recorded in in vivo animal testing (bovine, 90 kg, male, 3.5-4.0 L/min flow rate, and 55 bpm). © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. The effect of prenatally administered vaginal progesterone on uterine artery Doppler in asymptomatic twin pregnancies.

    PubMed

    Agra, Isabela K R; Brizot, Maria L; Miyadahira, Mariana Y; Carvalho, Mário H B; Francisco, Rossana P V; Zugaib, Marcelo

    2016-10-01

    This study investigated the influence of vaginal progesterone on uterine circulation in asymptomatic twin gestations. This study was a secondary analysis of a randomized, double-blind, placebo-controlled trial of twin pregnancies exposed to vaginal progesterone or placebo. We included all trial participants who had undergone uterine artery pulsatility index evaluation at the time of randomization. During each ultrasound examination, the uterine artery pulsatility index was evaluated transabdominally. The mean uterine artery pulsatility index between the progesterone and placebo groups were compared for each gestational age, starting between 18 to 34 weeks and 6days and were analyzed at three (Time 1), six (Time 2) and nine (Time 3) weeks after randomization. The final analysis included 128 women in the progesterone group and 122 women in the placebo group. The baseline characteristics were similar in both groups. No difference in the mean uterine artery pulsatility index was observed between the progesterone and placebo groups at each week of gestation or throughout gestation. In twin pregnancies, the use of vaginal progesterone in the second half of pregnancy does not influence uterine circulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells

    PubMed Central

    Baird, Michelle A.; Billington, Neil; Wang, Aibing; Adelstein, Robert S.; Sellers, James R.; Fischer, Robert S.; Waterman, Clare M.

    2017-01-01

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A “pulses” occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell–cell or cell–ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase– or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. PMID:27881665

  6. Comparison of current practices of cardiopulmonary perfusion technology in Iran with American Society of Extracorporeal Technology’s standards

    PubMed Central

    Faravan, Amir; Mohammadi, Nooredin; Alizadeh Ghavidel, Alireza; Toutounchi, Mohammad Zia; Ghanbari, Ameneh; Mazloomi, Mehran

    2016-01-01

    Introduction: Standards have a significant role in showing the minimum level of optimal optimum and the expected performance. Since the perfusion technology staffs play an the leading role in providing the quality services to the patients undergoing open heart surgery with cardiopulmonary bypass machine, this study aimed to assess the standards on how Iranian perfusion technology staffs evaluate and manage the patients during the cardiopulmonary bypass process and compare their practice with the recommended standards by American Society of Extracorporeal Technology. Methods: In this descriptive study, data was collected from 48 Iranian public hospitals and educational health centers through a researcher-created questionnaire. The data collection questionnaire assessed the standards which are recommended by American Society of Extracorporeal Technology. Results: Findings showed that appropriate measurements were carried out by the perfusion technology staffs to prevent the hemodilution and avoid the blood transfusion and unnecessary blood products, determine the initial dose of heparin based on one of the proposed methods, monitor the anticoagulants based on ACT measurement, and determine the additional doses of heparin during the cardiopulmonary bypass based on ACT or protamine titration. It was done only in 4.2% of hospitals and health centers. Conclusion: Current practices of cardiopulmonary perfusion technology in Iran are inappropriate based on the standards of American Society of Cardiovascular Perfusion. This represents the necessity of authorities’ attention to the validation programs and development of the caring standards on one hand and continuous assessment of using these standards on the other hand. PMID:27489600

  7. Split Bregman multicoil accelerated reconstruction technique: A new framework for rapid reconstruction of cardiac perfusion MRI

    PubMed Central

    Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward

    2016-01-01

    Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592

  8. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    NASA Astrophysics Data System (ADS)

    Malik, Ritu; Tondwal, Shailesh; Venkatesh, K. S.; Misra, Amit

    2008-10-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  9. [Ovulation induction by pulsatile GnRH therapy in 2014: literature review and synthesis of current practice].

    PubMed

    Gronier, H; Peigné, M; Catteau-Jonard, S; Dewailly, D; Robin, G

    2014-10-01

    The hypogonadotropic hypogonadism is an easily treatable form of female infertility. The most common cause of hypogonadotropic hypogonadism is functional hypothalamic amenorrhea. The GnRH pump is a simple and effective treatment to restore fertility of patients with hypothalamic amenorrhea: cumulative pregnancy rate is estimated between 70 and 100% after 6 cycles, compared to a low rate of complications and multiple pregnancies. While only 2.8 cycles are on average required to achieve a pregnancy with a pump, this induction of ovulation stays underused in France. The objective of this paper is to propose a practical manual of pulsatile GnRH, in order to improve the accessibility of pulsatile GnRH for patients with hypogonadotropic hypogonadism. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Myocardial perfusion imaging with PET

    PubMed Central

    Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr

    2013-01-01

    PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459

  11. Quantification of myocardial perfusion based on signal intensity of flow sensitized MRI

    NASA Astrophysics Data System (ADS)

    Abeykoon, Sumeda B.

    The quantitative assessment of perfusion is important for early recognition of a variety of heart diseases, determination of disease severity and their cure. In conventional approach of measuring cardiac perfusion by arterial spin labeling, the relative difference in the apparent T1 relaxation times in response to selective and non-selective inversion of blood entering the region of interest is related to perfusion via a two-compartment tissue model. But accurate determination of T1 in small animal hearts is difficult and prone to errors due to long scan times. The purpose of this study is to develop a fast, robust and simple method to quantitatively assess myocardial perfusion using arterial spin labeling. The proposed method is based on signal intensities (SI) of inversion recovery slice-select, non-select and steady-state images. Especially in this method data are acquired at a single inversion time and at short repetition times. This study began by investigating the accuracy of assessment of perfusion using a two compartment system. First, determination of perfusion by T1 and SI were implemented to a simple, two-compartment phantom model. Mathematical model developed for full spin exchange models (in-vivo experiments) by solving a modified Bloch equation was modified to develop mathematical models (T1 and SI) for a phantom (zero spin exchange). The phantom result at different flow rates shows remarkable evidence of accuracy of the two-compartment model and SI, T1 methods: the SI method has less propagation error and less scan time. Next, twelve healthy C57BL/6 mice were scanned for quantitative perfusion assessment and three of them were repeatedly scanned at three different time points for a reproducibility test. The myocardial perfusion of healthy mice obtained by the SI-method, 5.7+/-1.6 ml/g/min, was similar (p=0.38) to that obtained by the conventional T1 method, 5.6+/- 2.3 ml/g/min. The reproducibility of the SI method shows acceptable results: the maximum percentage deviation is about 5%. Then the SI-method was used in comparison to a delayed enhanced method to qualitatively and quantitatively assess perfusion deficits in an ischemia-reperfusion (IR) mouse model. The infarcted region of the perfusion map is comparable to the hyper intense region of the delayed enhanced image of the IR mouse. The SI method also used to record a chronological comparison of perfusion on delta sarcoglycan null (DSG) mice. Perfusion of DSG and wild-type (WT) mice at ages of 12 weeks and 32 weeks were compared and percentage change of perfusion was estimated. The result shows that in DSG mice perfusion changes considerably. Finally, the SI method was implemented on a 3 Tesla Philip scanner by modifying to data acquisition method. The perfusion obtained in this is consistent with literature values but further adjustment of pulse sequence and modification of numerical solution is needed. The most important benefit of the SI method is that it reduces scan time 30%--40% and lessens motion artifacts of images compared to the T1 method. This study demonstrates that the signal intensity-based ASL method is a robust alternative to the conventional T1-method.

  12. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    PubMed

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  13. The association between the pulse pressure gradient at the cranio-cervical junction derived from phase-contrast magnetic resonance imaging and invasively measured pulsatile intracranial pressure in symptomatic patients with Chiari malformation type 1.

    PubMed

    Frič, Radek; Lindstrøm, Erika Kristina; Ringstad, Geir Andre; Mardal, Kent-André; Eide, Per Kristian

    2016-12-01

    In symptomatic Chiari malformation type 1 (CMI), impaired intracranial compliance (ICC) is associated with an increased cranio-spinal pulsatile pressure gradient. Phase-contrast magnetic resonance imaging (MRI) represents a non-invasive modality for the assessment of the pulse pressure gradient at the cranio-cervical junction (CCJ). We wished to explore how the MRI-derived pulse pressure gradient (MRI-dP) compares with invasively measured pulsatile intracranial pressure (ICP) in CMI, and with healthy controls. From phase-contrast MRI of CMI patients and healthy controls, we computed cerebrospinal fluid (CSF) flow velocities and MRI-dP at the CCJ. We assessed bidirectional flow and compared the flow between the anterior and the posterior subarachnoid space at the CCJ. We computed total intracranial volume (ICV), ventricular CSF volume (VV), and posterior cranial fossa volume (PCFV). We analyzed the static and pulsatile ICP scores from overnight monitoring in CMI patients. Five CMI patients and four healthy subjects were included. The CMI group had a significantly larger extent of tonsillar ectopia, smaller PCFV, and a smaller area of CSF in the FM. The pulsatile ICP (mean ICP wave amplitude, MWA) was abnormally increased in 4/5 CMI patients and correlated positively with MRI-dP. However, the MRI-dP as well as the CSF flow velocities did not differ significantly between CMI and healthy subjects. Moreover, bidirectional flow was observed in both CMI as well as healthy subjects, with no significant difference. In symptomatic CMI patients, we found a significant association between the pulse pressure gradient at the CCJ derived from phase-contrast MRI and the pulsatile ICP (MWA) measured invasively. However, the MRI-dP was close to identical in CMI patients and healthy subjects. Moreover, the CSF flow velocities at the CCJ and the occurrence of bidirectional flow were not different in CMI patients and healthy individuals. Further studies are required to determine the diagnostic role of phase-contrast MRI in CMI patients.

  14. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure

    PubMed Central

    Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.

    2012-01-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner. PMID:22559784

  15. Sepsis and Septic Shock Strategies.

    PubMed

    Armstrong, Bracken A; Betzold, Richard D; May, Addison K

    2017-12-01

    Three therapeutic principles most substantially improve organ dysfunction and survival in sepsis: early, appropriate antimicrobial therapy; restoration of adequate cellular perfusion; timely source control. The new definitions of sepsis and septic shock reflect the inadequate sensitivity, specify, and lack of prognostication of systemic inflammatory response syndrome criteria. Sequential (sepsis-related) organ failure assessment more effectively prognosticates in sepsis and critical illness. Inadequate cellular perfusion accelerates injury and reestablishing perfusion limits injury. Multiple organ systems are affected by sepsis and septic shock and an evidence-based multipronged approach to systems-based therapy in critical illness results in improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Vascularized osseous flaps and assessing their bipartate perfusion pattern via intraoperative fluorescence angiography.

    PubMed

    Valerio, Ian; Green, J Marshall; Sacks, Justin M; Thomas, Shane; Sabino, Jennifer; Acarturk, T Oguz

    2015-01-01

    Large segmental bone and composite tissue defects often require vascularized osseous flaps for definitive reconstruction. However, failed osseous flaps due to inadequate perfusion can lead to significant morbidity. Utilization of indocyanine green (ICG) fluorescence angiography has been previously shown to reliably assess soft tissue perfusion. Our group will outline the application of this useful intraoperative tool in evaluating the perfusion of vascularized osseous flaps. A retrospective review was performed to identify those osseous and/or osteocutaneous bone flaps, where ICG angiography was employed. Data analyzed included flap types, success and failure rates, and perfusion-related complications. All osseous flaps were evaluated by ICG angiography to confirm periosteal and endosteal perfusion. Overall 16 osseous free flaps utilizing intraoperative ICG angiography to assess vascularized osseous constructs were performed over a 3-year period. The flaps consisted of the following: nine osteocutaneous fibulas, two osseous-only fibulas, two scapular/parascapular with scapula bone, two quadricep-based muscle flaps, containing a vascularized femoral bone component, and one osteocutaneous fibula revision. All flap reconstructions were successful with the only perfusion-related complication being a case of delayed partial skin flap loss. Intraoperative fluorescence angiography is a useful adjunctive tool that can aid in flap design through angiosome mapping and can also assess flap perfusion, vascular pedicle flow, tissue perfusion before flap harvest, and flap perfusion after flap inset. Our group has successfully extended the application of this intraoperative tool to assess vascularized osseous flaps in an effort to reduce adverse outcomes related to preventable perfusion-related complications. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Li; Bojikian, Karine D.; Xin, Chen; Wen, Joanne C.; Gupta, Divakar; Zhang, Qinqin; Mudumbai, Raghu C.; Johnstone, Murray A.; Chen, Philip P.; Wang, Ruikang K.

    2016-06-01

    Optical coherence tomography angiography (OCTA) has increasingly become a clinically useful technique in ophthalmic imaging. We evaluate the repeatability and reproducibility of blood perfusion in the optic nerve head (ONH) measured using optical microangiography (OMAG)-based OCTA. Ten eyes from 10 healthy volunteers are recruited and scanned three times with a 68-kHz Cirrus HD-OCT 5000-based OMAG prototype system (Carl Zeiss Meditec Inc., Dublin, California) centered at the ONH involving two separate visits within six weeks. Vascular images are generated with OMAG processing by detecting the differences in OCT signals between consecutive B-scans acquired at the same retina location. ONH perfusion is quantified as flux, vessel area density, and normalized flux within the ONH for the prelaminar, lamina cribrosa, and the full ONH. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) are used to evaluate intravisit and intervisit repeatability, and interobserver reproducibility. ONH perfusion measurements show high repeatability [CV≤3.7% (intravisit) and ≤5.2% (intervisit)] and interobserver reproducibility (ICC≤0.966) in all three layers by three metrics. OCTA provides a noninvasive method to visualize and quantify ONH perfusion in human eyes with excellent repeatability and reproducibility, which may add additional insight into ONH perfusion in clinical practice.

  18. Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors.

    PubMed

    Lambrechts, T; Papantoniou, I; Sonnaert, M; Schrooten, J; Aerts, J-M

    2014-10-01

    Online and non-invasive quantification of critical tissue engineering (TE) construct quality attributes in TE bioreactors is indispensable for the cost-effective up-scaling and automation of cellular construct manufacturing. However, appropriate monitoring techniques for cellular constructs in bioreactors are still lacking. This study presents a generic and robust approach to determine cell number and metabolic activity of cell-based TE constructs in perfusion bioreactors based on single oxygen sensor data in dynamic perfusion conditions. A data-based mechanistic modeling technique was used that is able to correlate the number of cells within the scaffold (R(2)  = 0.80) and the metabolic activity of the cells (R(2)  = 0.82) to the dynamics of the oxygen response to step changes in the perfusion rate. This generic non-destructive measurement technique is effective for a large range of cells, from as low as 1.0 × 10(5) cells to potentially multiple millions of cells, and can open-up new possibilities for effective bioprocess monitoring. © 2014 Wiley Periodicals, Inc.

  19. Effects of transdermal testosterone gel or an aromatase inhibitor on serum concentration and pulsatility of growth hormone in older men with age-related low testosterone.

    PubMed

    Dias, Jenny Pena; Veldhuis, Johannes D; Carlson, Olga; Shardell, Michelle; Chia, Chee W; Melvin, Denise; Egan, Josephine M; Basaria, Shehzad

    2017-04-01

    Growth hormone is the major regulator of growth and body composition. Pulsatile GH secretion declines exponentially with age. Testosterone replacement is being increasingly offered to older men with age-related low testosterone. Testosterone administration has been shown to stimulate GH secretion. However, little is known about the effect of testosterone aromatization to estradiol on GH pulsatility and its impact on IGF-1 in older men. This randomized controlled proof-of-concept trial investigated the relative effects of testosterone and estradiol on GH pulsatility and IGF-1 in older men with low testosterone. Thirty-seven men, ≥65years with total testosterone <350ng/dL were randomized to 5g transdermal testosterone gel (TT), 1mg oral aromatase inhibitor (AI) or placebo daily for 12months. Primary outcome was deconvolution and approximate entropy analyses of pulsatile including basal and entropic modes of secretion performed at baseline and 3months. Secondary outcomes included IGF-1 evaluated at baseline, 3 and 6months. At 3months, mean GH and in IGF-1 were similar between the three groups. At 6months, IGF-1 significantly increased by Δ 15.3±10.3ng/ml in the TT-group compared to placebo (P=0.03). Both intervention groups significantly increased GH pulse frequency (TT-group, P=0.04; AI-group, P=0.05) compared to placebo. The GH secretory-burst mode (duration) significantly decreased in the TT-group (P=0.0018) compared to placebo while it remained unchanged in the AI-group (P=0.059). In older men, testosterone increases GH pulse frequency while the aromatization to estradiol is involved in the rise of IGF-1 levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Implantable physiologic controller for left ventricular assist devices with telemetry capability.

    PubMed

    Asgari, Siavash S; Bonde, Pramod

    2014-01-01

    Rotary type left ventricular assist devices have mitigated the problem of durability associated with earlier pulsatile pumps and demonstrated improved survival. However, the compromise is the loss of pulsatility due to continuous flow and retained percutaneous driveline leading to increased mortality and morbidity. Lack of pulsatility is implicated in increased gastrointestinal bleeding, aortic incompetence, and diastolic hypertension. We present a novel, wirelessly powered, ultra-compact, implantable physiologic controller capable of running a left ventricular assist device in a pulsatile mode with wireless power delivery. The schematic of our system was laid out on a circuit board to wirelessly receive power and run a left ventricular assist device with required safety and backup measures. We have embedded an antenna and wireless network for telemetry. Multiple signal processing steps and controlling algorithm were incorporated. The controller was tested in in vitro and in vivo experiments. The controller drove left ventricular assist devices continuously for 2 weeks in an in vitro setup and in vivo without any failure. Our controller is more power efficient than the current Food and Drug Administration-approved left ventricular assist device controllers. When used with electrocardiography synchronization, the controller allowed on-demand customization of operation with instantaneous flow and revolutions per minute changes, resulting in a pulsatile flow with adjustable pulse pressure. Our test results prove the system to be remarkably safe, accurate, and efficient. The unique combination of wireless powering and small footprint makes this system an ideal totally implantable physiologic left ventricular assist device system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  1. Effect of acute high-intensity resistance exercise on optic nerve sheath diameter and ophthalmic artery blood flow pulsatility.

    PubMed

    Lefferts, W K; Hughes, W E; Heffernan, K S

    2015-12-01

    Exertional hypertension associated with acute high-intensity resistance exercise (RE) increases both intravascular and intracranial pressure (ICP), maintaining cerebrovascular transmural pressure. Carotid intravascular pressure pulsatility remains elevated after RE. Whether ICP also remains elevated after acute RE in an attempt to maintain the vessel wall transmural pressure is unknown. Optic nerve sheath diameter (ONSD), a valid proxy of ICP, was measured in 20 participants (6 female; 24 ± 4 yr, 24.2 ± 3.9 kg m(-)(2)) at rest (baseline), following a time-control condition, and following RE (5 sets, 5 repetition maximum bench press, 5 sets 10 repetition maximum biceps curls) using ultrasound. Additionally, intracranial hemodynamic pulsatility index (PI) was assessed in the ophthalmic artery (OA) by using Doppler. Aortic pulse wave velocity (PWV) was obtained from synthesized aortic pressure waveforms obtained via a brachial oscillometric cuff and carotid pulse pressure was measured by using applanation tonometry. Aortic PWV (5.2 ± 0.5-6.0 ± 0.7 m s(-1), P < 0.05) and carotid pulse pressure (45 ± 17-59 ± 19 mm Hg, P < 0.05) were significantly elevated post RE compared with baseline. There were no significant changes in ONSD (5.09 ± 0.7-5.09 ± 0.7 mm, P > 0.05) or OA flow PI (1.35 ± 0.2-1.38 ± 0.3, P > 0.05) following acute RE. In conclusion, during recovery from acute high-intensity RE, there are increases in aortic stiffness and extracranial pressure pulsatility in the absence of changes in ICP and flow pulsatility. These findings may have implications for alterations in cerebral transmural pressure and cerebral aneurysmal wall stress following RE.

  2. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites

    PubMed Central

    Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Background Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. Methods With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)–DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP–DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. Results SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. Conclusion A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings. PMID:29713169

  3. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.

    PubMed

    Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.

  4. Comparison of a low-pressure and a high-pressure pulsatile lavage during débridement for orthopaedic implant infection.

    PubMed

    Muñoz-Mahamud, E; García, S; Bori, G; Martínez-Pastor, J C; Zumbado, J A; Riba, J; Mensa, J; Soriano, A

    2011-09-01

    The aim of our study was to compare the effectiveness of high-pressure pulsatile lavage and low-pressure lavage in patients with an orthopaedic implant infection treated with open débridement followed by antibiotic treatment. Patients with an orthopaedic implant infection requiring open débridement from January 2008 to August 2009 were randomized prospectively to a low-pressure or a high-pressure pulsatile lavage arm. Relevant information about demographics, co-morbidity, type of implant, microbiology data, surgical treatment, and outcome were recorded. Comparison of proportions was made using χ(2) test or Fisher exact test when necessary. The Kaplan-Meier survival method was used to estimate the cumulative probability of treatment failure from open débridement to the last visit. Seventy-nine patients were included. There were no differences between the main characteristics between both groups (p > 0.05). Mean (SD) age of the whole cohort was 70.2 (11.9) years. There were 46 infections on knee prosthesis, 17 on hip prosthesis, 7 on hip hemiarthroplasties and 9 on osteosynthesis devices. There were 69 acute post-surgical infections, 8 acute haematogenous infections and 2 chronic infections. The most common microorganisms isolated were coagulase-negative Staphylococci in 34 cases, Staphylococcus aureus in 26 and Escherichia coli in 19 cases. There were 30 polymicrobial infections. A total of 42 and 37 patients were randomized to a high-pressure pulsatile or a low-pressure lavage, respectively. There was no difference in the success rate between both arms (80.9 vs. 86.5%, p = 0.56). The use of a high-pressure pulsatile lavage during open débridement of implant infections had a similar success rate as a low-pressure lavage.

  5. Tissue engineering of heart valves: in vitro experiences.

    PubMed

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced after pulsatile flow exposure.

  6. [Personal experience in the use of magnetotherapy in diseases of the musculoskeletal system].

    PubMed

    Sadlonova, J; Korpas, J

    1999-12-01

    Therapeutic application of pulsatile electromagnetic field in disorders of motility is recently becoming more frequent. Despite this fact information about the effectiveness of this therapy in the literature are rare. The aim of this study was therefore the treatment of 576 patients who suffered from vertebral syndrome, gonarthritis and coxarthritis. For application of pulsatile electromagnetic field MTU 500H Therapy System was used. Pulsatile electromagnetic field had a frequency valve of 4.5 mT in all studied groups and magnetic induction valve 12.5-18.75 mT in the 1st group. In the 2nd group the intensity was 5.8-7.3 mT and in the 3rd group it was 7.6-11.4 mT. The time of inclination/declination in the 1st group was 20/60 ms, in the 2nd group 40/80 ms and in the 3rd group 40/90 ms. The electromagnetic field was applied during 10 days. In the 1st-3rd day during 20 minutes and in the 4th-10th day during 30 minutes. The therapy was repeated in every patient after 3 months with values of intensity higher by 50%. In the time of pulsatile electro-magnetotherapy the patients were without pharmacotherapy or other physiotherapy. The application of pulsatile electromagnetic field is a very effective therapy of vertebral syndrome, gonarthritis and coxarthritis. The results have shown that the therapy was more effective in patients suffering from gonarthrosis, than in patients with vertebral syndrome and least effective in patients with coxarthosis. Owing to regression of oedema and pain relieve the motility of patients improved. (Tab. 3, Ref. 19.)

  7. The reversibility of reduced cortical vein compliance in normal-pressure hydrocephalus following shunt insertion.

    PubMed

    Bateman, G A

    2003-02-01

    Superficial cortical venous compression secondary to alterations in craniospinal compliance is implicated in the pathogenesis of normal pressure hydrocephalus (NPH). A reduction in the pulsation in the outflow of the cortical veins would be expected to occur following compression of these veins and this has been shown in NPH. If cortical vein compression is a causative factor in NPH, it would be expected that cortical vein compliance as measured by pulsatility would be significantly altered by a curative procedure i.e. shunt tube insertion. My purpose is to compare the blood flow pulsatility characteristics in a group of patients with NPH before and after shunt tube insertion. I initially studied 18 subjects without pathology with MRI flow quantification studies of the cerebral arteries and veins to define the range of normality. The main study involved 18 patients with idiopathic dementia and mild leukoaraiosis who served as controls and seven patients with NPH studied before and after shunt insertion. Arterial, superior sagittal and straight sinus pulsatility was not significantly different between the patients with idiopathic dementia and those NPH patients before or after shunting. Cortical vein pulsatility before shunting in the patients with NPH was 43% lower than in those with idiopathic dementia ( P=0.006). Following shunting, cortical vein pulsatility increased by 186% ( P=0.007). There is thus reduced compliance in cortical veins in NPH which is significantly increased in patients who respond to insertion of a shunt tube. These findings suggest that reversible elevation in cortical vein pressure and reversal of the normal absorption pathway for cerebrospinal fluid may be behind the pathophysiology of NPH.

  8. Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging.

    PubMed

    Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen

    2017-03-01

    Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In-vivo studies of reflectance pulse oximeter sensor

    NASA Astrophysics Data System (ADS)

    Ling, Jian; Takatani, Setsuo; Noon, George P.; Nose, Yukihiko

    1993-08-01

    Reflectance oximetry can offer an advantage of being applicable to any portion of the body. However, the major problem of reflectance oximetry is low pulsatile signal level which prevents prolonged clinical application during extreme situations, such as hypothermia and vasoconstriction. In order to improve the pulsatile signal level of reflectance pulse oximeter and thus its accuracy, three different sensors, with the separation distances (SPD) between light emitting diode (LED) and photodiode being 3, 5, and 7 mm respectively, were studied on nine healthy volunteers. With the increase of the SPD, it was found that both the red (660 nm) and near-infrared (830 nm) pulsatile to average signal ratio (AC/DC) increased, and the standard deviations of (AC/DC)red/(AC/DC)infrared ratio decreased, in spite of the decrease of the absolute signal level. Further clinical studies of 3 mm and 7 mm SPD sensors on seven patients also showed that the (AC/DC)red/(AC/DC)infrared ratio measured by the 7 mm sensor were less disturbed than the 3 mm sensor during the surgery. A theoretical study based on the three-dimensional photon diffusion theory supports the experimental and clinical results. As a conclusion, the 7 mm sensor has the highest signal-to- noise ratio among three different sensors. A new 7 mm SPD reflectance sensor, with the increased number of LEDs around the photodiode, was designed to increase the AC/DC ratio, as well as to increase the absolute signal level.

  10. Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles.

    PubMed

    Liou, Tong-Miin; Li, Yi-Chen; Juan, Wei-Cheng

    2007-01-01

    Both numerical and experimental studies have been performed to characterize the fluid flow inside the lateral aneurysms arising from the curved parent vessels at various angles gamma. The implicit solver was based on the time-dependent Navier-Stokes equations of incompressible laminar flow. Solutions were generated by a cell-center finite-volume method that used second order upwind and second order center flux difference splitting for the convection and diffusion term, respectively. The second order Crank-Nicolson method was used in the time integration term while the SIMPLEC algorithm was adopted to handle the pressure-velocity coupling. Complementarily, the particle tracking velocimetry (PTV) was used to measure the velocity fields. The conditions selected were to simulate an internal carotid artery with a diameter of 5 mm by similarity rules. The values of gamma explored were 0 degrees, 45 degrees, 90 degrees, and 135 degrees. Pulsatile flow with Wormersley number 3.9 and Reynolds numbers varying from 350 to 850 was considered. The computed results are firstly verified by the PTV measured ones. Discussion of the results is in terms of pulsatile main and secondary velocity vector fields, inflow rates into the aneurysm, and the distributions of wall shear stress and static pressure. It is found that among the angles examined gamma=45( composite function) is the riskiest angle from a fluid dynamics point of view and the aneurysmal dome is at risk.

  11. Quantitative photoacoustic assessment of red blood cell aggregation under pulsatile blood flow: experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Bok, Tae-Hoon; Hysi, Eno; Kolios, Michael C.

    2017-03-01

    In the present paper, the optical wavelength dependence on the photoacoustic (PA) assessment of the pulsatile blood flow was investigated by means of the experimental and theoretical approaches analyzing PA radiofrequency spectral parameters such as the spectral slope (SS) and mid-band fit (MBF). For the experimental approach, the pulsatile flow of human whole blood at 60 bpm was imaged using the VevoLAZR system (40-MHz-linear-array probe, 700-900 nm illuminations). For the theoretical approach, a Monte Carlo simulation for the light transmit into a layered tissue phantom and a Green's function based method for the PA wave generation was implemented for illumination wavelengths of 700, 750, 800, 850 and 900 nm. The SS and MBF for the experimental results were compared to theoretical ones as a function of the illumination wavelength. The MBF increased with the optical wavelength in both theory and experiments. This was expected because the MBF is representative of the PA magnitude, and the PA signal from red blood cell (RBC) is dependent on the molar extinction coefficient of oxyhemoglobin. On the other hand, the SS decreased with the wavelength, even though the RBC size (absorber size which is related to the SS) cannot depend on the illumination wavelength. This conflicting result can be interpreted by means of the changes of the fluence pattern for different illumination wavelengths. The SS decrease with the increasing illumination wavelength should be further investigated.

  12. Analysis of high gradient magnetic field effects on distribution of nanoparticles injected into pulsatile blood stream

    NASA Astrophysics Data System (ADS)

    Reza Habibi, Mohammad; Ghassemi, Majid; Hossien Hamedi, Mohammad

    2012-04-01

    Magnetic nanoparticles are widely used in a wide range of applications including data storage materials, pharmaceutical industries as magnetic separation tools, anti-cancer drug carriers and micro valve applications. The purpose of the current study is to investigate the effect of a non-uniform magnetic field on bio-fluid (blood) with magnetic nanoparticles. The effect of particles as well as mass fraction on flow field and volume concentration is investigated. The governing non-linear differential equations, concentration and Navier-stokes are coupled with the magnetic field. To solve these equations, a finite volume based code is developed and utilized. A real pulsatile velocity is utilized as inlet boundary condition. This velocity is extracted from an actual experimental data. Three percent nanoparticles volume concentration, as drug carrier, is steadily injected in an unsteady, pulsatile and non-Newtonian flow. A power law model is considered for the blood viscosity. The results show that during the systole section of the heartbeat when the blood velocity increases, the magnetic nanoparticles near the magnetic source are washed away. This is due to the sudden increase of the hydrodynamic force, which overcomes the magnetic force. The probability of vein blockage increases when the blood velocity reduces during the diastole time. As nanoparticles velocity injection decreases (longer injection time) the wall shear stress (especially near the injection area) decreases and the retention time of the magnetic nanoparticles in the blood flow increases.

  13. Contrast-enhanced 3T MR Perfusion of Musculoskeletal Tumours: T1 Value Heterogeneity Assessment and Evaluation of the Influence of T1 Estimation Methods on Quantitative Parameters.

    PubMed

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Chen, Bailiang; De Verbizier, Jacques; Beaumont, Marine; Badr, Sammy; Cotten, Anne; Blum, Alain

    2017-12-01

    To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. • T1 value variation in musculoskeletal tumours is considerable. • T1 values in muscle and tumours are significantly different. • Patient-specific T1 estimation is needed for comparison of inter-patient perfusion parameters. • Technical variation is higher in permeability than semiquantitative perfusion parameters.

  14. A new device for continuous assessment of gut perfusion: proof of concept on a porcine model of septic shock

    PubMed Central

    2014-01-01

    Introduction We evaluate an innovative device consisting of an enteral feeding tube equipped with a photoplethysmography (PPG) sensor in contact with the duodenal mucosa. This study aims to determine if the PPG signal, composed of a continuous (PDC) and a pulsatile part (PAC), is a reliable method to assess gut perfusion in a porcine model of septic shock. Method Fourteen piglets were anesthetized and mechanically ventilated. They were randomly assigned to two groups: the nonseptic (NS) group received an infusion of Ringer’s lactate solution (RL) alone, the septic (S) group received in addition a suspension of live Pseudomonas aeruginosa. Heart rate (HR), pulse oximetry (SpO2), mean arterial pressure (MAP), cardiac index (CI) and serum lactates were recorded and gut microcirculation (GM) was monitored with a laser Doppler probe applied on the duodenal serosa. PDC and PAC were given by the PPG probe inserted in the duodenum. Data was collected every 15 minutes (t0, t15…) during 150 minutes (t150). After administration of the bacteria suspension (t0), resuscitation maneuvers were performed following a defined algorithm. GM PAC, and PDC were expressed as variation from baseline (GMvar, PACvar, PDCvar). Analysis of variance (ANOVA) with repeated measures was performed to compare hemodynamic variables, with Bonferroni correction as post hoc analysis on t0, t60 and t150. Results One piglet was withdrawn from analysis due to a defective probe. S group (six piglets) received resuscitation therapy while NS group (seven piglets) did not. A significant group effect was found for the all parameters except HR. Post hoc analysis found a significant decrease for GM and PAC at t60. The correlation between PAC, PDC and microcirculatory parameters were as follows: rPACvar-GMvar = 0.496, P <0.001, rPDCvar-GMvar = 0.244; P = 0.002. In the septic group, correlations were as follows: rPAC-lactate = -0.772, P <0.001; rPDC-lactate = -0.681, P <0.01). At the onset of shock, a decrease of PAC, PDC and GM occurred before the alteration of MAP. Conclusions PAC and PDC decreased at the onset of shock and were correlated with GM and lactate. These results confirm that PPG signal reliably reflects the early perfusion alteration of the gut. Further studies should assess the clinical use of this device. PMID:25030376

  15. Decreased Lung Perfusion After Breast/Chest Wall Irradiation: Quantitative Results From a Prospective Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, Adam L., E-mail: adamliss68@gmail.com; Marsh, Robin B.; Kapadia, Nirav S.

    Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanningmore » before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of breast cancer patients for whom attenuation-corrected SPECT/CT scans could be registered directly to RT treatment fields for precise dose estimates.« less

  16. Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance.

    PubMed

    Sammut, Eva C; Villa, Adriana D M; Di Giovine, Gabriella; Dancy, Luke; Bosio, Filippo; Gibbs, Thomas; Jeyabraba, Swarna; Schwenke, Susanne; Williams, Steven E; Marber, Michael; Alfakih, Khaled; Ismail, Tevfik F; Razavi, Reza; Chiribiri, Amedeo

    2018-05-01

    This study sought to evaluate the prognostic usefulness of visual and quantitative perfusion cardiac magnetic resonance (CMR) ischemic burden in an unselected group of patients and to assess the validity of consensus-based ischemic burden thresholds extrapolated from nuclear studies. There are limited data on the prognostic value of assessing myocardial ischemic burden by CMR, and there are none using quantitative perfusion analysis. Patients with suspected coronary artery disease referred for adenosine-stress perfusion CMR were included (n = 395; 70% male; age 58 ± 13 years). The primary endpoint was a composite of cardiovascular death, nonfatal myocardial infarction, aborted sudden death, and revascularization after 90 days. Perfusion scans were assessed visually and with quantitative analysis. Cross-validated Cox regression analysis and net reclassification improvement were used to assess the incremental prognostic value of visual or quantitative perfusion analysis over a baseline clinical model, initially as continuous covariates, then using accepted thresholds of ≥2 segments or ≥10% myocardium. After a median 460 days (interquartile range: 190 to 869 days) follow-up, 52 patients reached the primary endpoint. At 2 years, the addition of ischemic burden was found to increase prognostic value over a baseline model of age, sex, and late gadolinium enhancement (baseline model area under the curve [AUC]: 0.75; visual AUC: 0.84; quantitative AUC: 0.85). Dichotomized quantitative ischemic burden performed better than visual assessment (net reclassification improvement 0.043 vs. 0.003 against baseline model). This study was the first to address the prognostic benefit of quantitative analysis of perfusion CMR and to support the use of consensus-based ischemic burden thresholds by perfusion CMR for prognostic evaluation of patients with suspected coronary artery disease. Quantitative analysis provided incremental prognostic value to visual assessment and established risk factors, potentially representing an important step forward in the translation of quantitative CMR perfusion analysis to the clinical setting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Simulating patient-specific heart shape and motion using SPECT perfusion images with the MCAT phantom

    NASA Astrophysics Data System (ADS)

    Faber, Tracy L.; Garcia, Ernest V.; Lalush, David S.; Segars, W. Paul; Tsui, Benjamin M.

    2001-05-01

    The spline-based Mathematical Cardiac Torso (MCAT) phantom is a realistic software simulation designed to simulate single photon emission computed tomographic (SPECT) data. It incorporates a heart model of known size and shape; thus, it is invaluable for measuring accuracy of acquisition, reconstruction, and post-processing routines. New functionality has been added by replacing the standard heart model with left ventricular (LV) epicaridal and endocardial surface points detected from actual patient SPECT perfusion studies. LV surfaces detected from standard post-processing quantitation programs are converted through interpolation in space and time into new B-spline models. Perfusion abnormalities are added to the model based on results of standard perfusion quantification. The new LV is translated and rotated to fit within existing atria and right ventricular models, which are scaled based on the size of the LV. Simulations were created for five different patients with myocardial infractions who had undergone SPECT perfusion imaging. Shape, size, and motion of the resulting activity map were compared visually to the original SPECT images. In all cases, size, shape and motion of simulated LVs matched well with the original images. Thus, realistic simulations with known physiologic and functional parameters can be created for evaluating efficacy of processing algorithms.

  18. Assessment of Tissue Perfusion Following Conventional Liposuction of Perforator-Based Abdominal Flaps

    PubMed Central

    Saçak, Bülent; Yalçın, Doğuş; Pilancı, Özgür; Tuncer, Fatma Betül; Çelebiler, Özhan

    2017-01-01

    Background The effect of liposuction on the perforators of the lower abdominal wall has been investigated in several studies. There are controversial results in the literature that have primarily demonstrated the number and patency of the perforators. The aim of this study was to determine the effect of liposuction on the perfusion of perforator-based abdominal flaps using a combined laser–Doppler spectrophotometer (O2C, Oxygen to See, LEA Medizintechnik). Methods Nine female patients undergoing classical abdominoplasty were included in the study. Perforators and the perfusion zones of the deep inferior epigastric artery flap were marked on the patient's abdominal wall. Flap perfusion was quantitatively assessed by measuring blood flow, velocity, capillary oxygen saturation, and relative amount of hemoglobin for each zone preoperatively, after tumescent solution infiltration, following elevation of the flap on a single perforator, and after deep and superficial liposuction, respectively. Results The measurements taken after elevation of the flap were not significantly different than measurements taken after the liposuction procedures. Conclusions The liposuction procedure does not significantly alter the perfusion of perforator-based abdominal flaps in the early period. The abdominal tissue discarded in a classic abdominoplasty operation can be raised as a perforator flap and has been demonstrated to be a unique model for clinical research. PMID:28352599

  19. Evaluation of pulsatility index and diameter of the jugular vein and superficial body temperature as physiological indices of temperament in weaned beef calves: relationship with serum cortisol concentrations, rectal temp..

    USDA-ARS?s Scientific Manuscript database

    The relationship between temperament, pulsatility index and diameter of the jugular vein, and body temperature was assessed in Angus crossbred calves (262±24.9 days old). Temperament scores were used to classify calves as calm (n=31), intermediate (n=32), or temperamental (n=28). Blood samples were ...

  20. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  1. Optimization studies on compression coated floating-pulsatile drug delivery of bisoprolol.

    PubMed

    Jagdale, Swati C; Bari, Nilesh A; Kuchekar, Bhanudas S; Chabukswar, Aniruddha R

    2013-01-01

    The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 3² full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55 mg) for Polyox WSR205 and level +1 (65 mg) for Polyox WSR N12K showed lag time of 4 h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4 h in indicating the optimization of the dosage form.

  2. Optimization Studies on Compression Coated Floating-Pulsatile Drug Delivery of Bisoprolol

    PubMed Central

    Jagdale, Swati C.; Bari, Nilesh A.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.

    2013-01-01

    The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 32 full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55 mg) for Polyox WSR205 and level +1 (65 mg) for Polyox WSR N12K showed lag time of 4 h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4 h in indicating the optimization of the dosage form. PMID:24367788

  3. Influence of pulsatile flow on LDL transport in the arterial wall.

    PubMed

    Sun, Nanfeng; Wood, Nigel B; Hughes, Alun D; Thom, Simon A M; Xu, X Yun

    2007-10-01

    The accumulation of low-density lipoprotein (LDL) is one of the important factors in atherogenesis. Two different time scales may influence LDL transport in vivo: (1) LDL transport is coupled to blood flow with a pulse cycle of around 1 s in humans; (2) LDL transport within the arterial wall is mediated by transmural flow in the order of 10(-8) m/s. Most existing models have assumed steady flow conditions and overlooked the interactions between physical phenomena with different time scales. The objective of this study was to investigate the influence of pulsatile flow on LDL transport and examine the validity of steady flow assumption. The effect of pulsatile flow on transmural transport was incorporated by using a lumen-free cyclic (LFC) and a lumen-free time-averaged (LFTA) procedures. It is found that the steady flow simulation predicted a focal distribution in the post-stenotic region, differing from the diffuse distribution pattern produced by the pulsatile flow simulation. The LFTA procedure, in which time-averaged shear-dependent transport properties calculated from instantaneous wall shear stress (WSS) were used, predicted a similar distribution pattern to the LFC simulations. We conclude that the steady flow assumption is inadequate and instantaneous hemodynamic conditions have important influence on LDL transmural transport in arterial geometries with disturbed and complicated flow patterns.

  4. Development of a gastroretentive pulsatile drug delivery platform.

    PubMed

    Thitinan, Sumalee; McConville, Jason T

    2012-04-01

    To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  5. Detecting stripe artifacts in ultrasound images.

    PubMed

    Maciak, Adam; Kier, Christian; Seidel, Günter; Meyer-Wiethe, Karsten; Hofmann, Ulrich G

    2009-10-01

    Brain perfusion diseases such as acute ischemic stroke are detectable through computed tomography (CT)-/magnetic resonance imaging (MRI)-based methods. An alternative approach makes use of ultrasound imaging. In this low-cost bedside method, noise and artifacts degrade the imaging process. Especially stripe artifacts show a similar signal behavior compared to acute stroke or brain perfusion diseases. This document describes how stripe artifacts can be detected and eliminated in ultrasound images obtained through harmonic imaging (HI). On the basis of this new method, both proper identification of areas with critically reduced brain tissue perfusion and classification between brain perfusion defects and ultrasound stripe artifacts are made possible.

  6. Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application.

    PubMed

    Sandberg, M; Zhang, Q; Styf, J; Gerdle, B; Lindberg, L-G

    2005-04-01

    To evaluate a specially developed photoplethysmographic (PPG) technique, using green and near-infrared light sources, for simultaneous non-invasive monitoring of skin and muscle perfusion. Evaluation was based on assessments of changes in blood perfusion to various provocations, such as post-exercise hyperaemia and hyperaemia following the application of liniment. The deep penetrating feature of PPG was investigated by measurement of optical radiation inside the muscle. Simultaneous measurements using ultrasound Doppler and the new PPG application were performed to elucidate differences between the two methods. Specific problems related to the influence of skin temperature on blood flow were highlightened, as well. Following static and dynamic contractions an immediate increase in muscle perfusion was shown, without increase in skin perfusion. Liniment application to the skin induced a rapid increase in skin perfusion, but not in muscle. Both similarities and differences in blood flow measured by Ultrasound Doppler and PPG were demonstrated. The radiant power measured inside the muscle, by use of an optical fibre, showed that the near-infrared light penetrates down to the vascular depth inside the muscle. The results of this study indicate the potentiality of the method for non-invasive measurement of local muscle perfusion, although some considerations still have to be accounted for, such as influence of temperature on blood perfusion.

  7. Computation of ventilation-perfusion ratio with Kr-81m in pulmonary embolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meignan, M.; Simonneau, G.; Oliveira, L.

    1984-02-01

    Diagnostic difficulties occur in pulmonary embolism (PE) during visual analysis of ventilation-perfusion images in matched defects or in chronic obstructive lung disease (COPD). In 44 patients with angiographically confirmed PE and in 40 patients with COPD, the regional ventilation-perfusion ratios (V/Q) were therefore computed using krypton-81m for each perfusion defect, and were displayed in a functional image. In patients with PE and mismatched defects, a high V/Q (1.96) was observed. A V/Q > 1.25 was also found in nine of 11 patients having PE and indeterminate studies (studies with perfusion abnormalities matched by radiographic abnormalities). COPD was characterized by matchedmore » defects and low V/Q. The percentage of patients correctly classified as having PE or COPD increased from 56% when considering the match or mismatched character to 88% when based on a V/Q of 1.25 in the region of the perfusion defect. This quantitative analysis, therefore, seems useful in classifying patients with scintigraphic suspicion of PE.« less

  8. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  9. Normothermic Perfusion in the Assessment and Preservation of Declined Livers Before Transplantation: Hyperoxia and Vasoplegia—Important Lessons From the First 12 Cases

    PubMed Central

    Watson, Christopher J.E.; Kosmoliaptsis, Vasilis; Randle, Lucy V.; Gimson, Alexander E.; Brais, Rebecca; Klinck, John R.; Hamed, Mazin; Tsyben, Anastasia; Butler, Andrew J.

    2017-01-01

    Background A program of normothermic ex situ liver perfusion (NESLiP) was developed to facilitate better assessment and use of marginal livers, while minimizing cold ischemia. Methods Declined marginal livers and those offered for research were evaluated. Normothermic ex situ liver perfusion was performed using an erythrocyte-based perfusate. Viability was assessed with reference to biochemical changes in the perfusate. Results Twelve livers (9 donation after circulatory death [DCD] and 3 from brain-dead donors), median Donor Risk Index 2.15, were subjected to NESLiP for a median 284 minutes (range, 122-530 minutes) after an initial cold storage period of 427 minutes (range, 222-877 minutes). The first 6 livers were perfused at high perfusate oxygen tensions, and the subsequent 6 at near-physiologic oxygen tensions. After transplantation, 5 of the first 6 recipients developed postreperfusion syndrome and 4 had sustained vasoplegia; 1 recipient experienced primary nonfunction in conjunction with a difficult explant. The subsequent 6 liver transplants, with livers perfused at lower oxygen tensions, reperfused uneventfully. Three DCD liver recipients developed cholangiopathy, and this was associated with an inability to produce an alkali bile during NESLiP. Conclusions Normothermic ex situ liver perfusion enabled assessment and transplantation of 12 livers that may otherwise not have been used. Avoidance of hyperoxia during perfusion may prevent postreperfusion syndrome and vasoplegia, and monitoring biliary pH, rather than absolute bile production, may be important in determining the likelihood of posttransplant cholangiopathy. Normothermic ex situ liver perfusion has the potential to increase liver utilization, but more work is required to define factors predicting good outcomes. PMID:28437389

  10. Temporal similarity perfusion mapping: A standardized and model-free method for detecting perfusion deficits in stroke

    PubMed Central

    Song, Sunbin; Luby, Marie; Edwardson, Matthew A.; Brown, Tyler; Shah, Shreyansh; Cox, Robert W.; Saad, Ziad S.; Reynolds, Richard C.; Glen, Daniel R.; Cohen, Leonardo G.; Latour, Lawrence L.

    2017-01-01

    Introduction Interpretation of the extent of perfusion deficits in stroke MRI is highly dependent on the method used for analyzing the perfusion-weighted signal intensity time-series after gadolinium injection. In this study, we introduce a new model-free standardized method of temporal similarity perfusion (TSP) mapping for perfusion deficit detection and test its ability and reliability in acute ischemia. Materials and methods Forty patients with an ischemic stroke or transient ischemic attack were included. Two blinded readers compared real-time generated interactive maps and automatically generated TSP maps to traditional TTP/MTT maps for presence of perfusion deficits. Lesion volumes were compared for volumetric inter-rater reliability, spatial concordance between perfusion deficits and healthy tissue and contrast-to-noise ratio (CNR). Results Perfusion deficits were correctly detected in all patients with acute ischemia. Inter-rater reliability was higher for TSP when compared to TTP/MTT maps and there was a high similarity between the lesion volumes depicted on TSP and TTP/MTT (r(18) = 0.73). The Pearson's correlation between lesions calculated on TSP and traditional maps was high (r(18) = 0.73, p<0.0003), however the effective CNR was greater for TSP compared to TTP (352.3 vs 283.5, t(19) = 2.6, p<0.03.) and MTT (228.3, t(19) = 2.8, p<0.03). Discussion TSP maps provide a reliable and robust model-free method for accurate perfusion deficit detection and improve lesion delineation compared to traditional methods. This simple method is also computationally faster and more easily automated than model-based methods. This method can potentially improve the speed and accuracy in perfusion deficit detection for acute stroke treatment and clinical trial inclusion decision-making. PMID:28973000

  11. Negative pressure ventilation decreases inflammation and lung edema during normothermic ex-vivo lung perfusion.

    PubMed

    Aboelnazar, Nader S; Himmat, Sayed; Hatami, Sanaz; White, Christopher W; Burhani, Mohamad S; Dromparis, Peter; Matsumura, Nobutoshi; Tian, Ganghong; Dyck, Jason R B; Mengel, Michael; Freed, Darren H; Nagendran, Jayan

    2018-04-01

    Normothermic ex-vivo lung perfusion (EVLP) using positive pressure ventilation (PPV) and both acellular and red blood cell (RBC)-based perfusate solutions have increased the rate of donor organ utilization. We sought to determine whether a negative pressure ventilation (NPV) strategy would improve donor lung assessment during EVLP. Thirty-two pig lungs were perfused ex vivo for 12 hours in a normothermic state, and were allocated equally to 4 groups according to the mode of ventilation (positive pressure ventilation [PPV] vs NPV) and perfusate composition (acellular vs RBC). The impact of ventilation strategy on the preservation of 6 unutilized human donor lungs was also evaluated. Physiologic parameters, cytokine profiles, lung injury, bullae and edema formation were compared between treatment groups. Perfused lungs demonstrated acceptable oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiologic parameters. However, there was less generation of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-8) in human and pig lungs perfused, irrespective of perfusate solution used, when comparing NPV with PPV (p < 0.05), and a reduction in bullae formation with an NPV modality (p = 0.02). Pig lungs developed less edema with NPV (p < 0.01), and EVLP using an acellular perfusate solution had greater edema formation, irrespective of ventilation strategy (p = 0.01). Interestingly, human lungs perfused with NPV developed negative edema, or "drying" (p < 0.01), and lower composite acute lung injury (p < 0.01). Utilization of an NPV strategy during extended EVLP is associated with significantly less inflammation, and lung injury, irrespective of perfusate solution composition. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Dynamic perfusion assessment during perforator flap surgery: an up-to-date

    PubMed Central

    MUNTEAN, MAXIMILIAN VLAD; MUNTEAN, VALENTIN; ARDELEAN, FILIP; GEORGESCU, ALEXANDRU

    2015-01-01

    Flap monitoring technology has progressed alongside flap design. The highly variable vascular anatomy and the complexity associated with modern perforator flaps demands dynamic, real-time, intraoperative information about the vessel location, perfusion patterns and flap physiology. Although most surgeons still assess flap perfusion and viability based solely on clinical experience, studies have shown that results may be highly variable and often misleading. Poor judgment of intraoperative perfusion leads to major complications. Employing dynamic perfusion imaging during flap reconstruction has led to a reduced complication rate, lower morbidity, shorter hospital stay, and an overall better result. With the emergence of multiple systems capable of intraoperative flap evaluation, the purpose of this article is to review the two systems that have been widely accepted and are currently used by plastic surgeons: Indocyanine green angiography (ICGA) and dynamic infrared thermography (DIRT). PMID:26609259

  13. Pulmonary vascular volume ratio measured by cardiac computed tomography in children and young adults with congenital heart disease: comparison with lung perfusion scintigraphy.

    PubMed

    Goo, Hyun Woo; Park, Sang Hyub

    2017-11-01

    Lung perfusion scintigraphy is regarded as the gold standard for evaluating differential lung perfusion ratio in congenital heart disease. To compare cardiac CT with lung perfusion scintigraphy for estimated pulmonary vascular volume ratio in patients with congenital heart disease. We included 52 children and young adults (median age 4 years, range 2 months to 28 years; 31 males) with congenital heart disease who underwent cardiac CT and lung perfusion scintigraphy without an interim surgical or transcatheter intervention and within 1 year. We calculated the right and left pulmonary vascular volumes using threshold-based CT volumetry. Then we compared right pulmonary vascular volume percentages at cardiac CT with right lung perfusion percentages at lung perfusion scintigraphy by using paired t-test and Bland-Altman analysis. The right pulmonary vascular volume percentages at cardiac CT (66.3 ± 14.0%) were significantly smaller than the right lung perfusion percentages at lung perfusion scintigraphy (69.1 ± 15.0%; P=0.001). Bland-Altman analysis showed a mean difference of -2.8 ± 5.8% and 95% limits of agreement (-14.1%, 8.5%) between these two variables. Cardiac CT, in a single examination, can offer pulmonary vascular volume ratio in addition to pulmonary artery anatomy essential for evaluating peripheral pulmonary artery stenosis in patients with congenital heart disease. However there is a wide range of agreement between cardiac CT and lung perfusion scintigraphy.

  14. Atlas-derived perfusion correlates of white matter hyperintensities in patients with reduced cardiac output.

    PubMed

    Jefferson, Angela L; Holland, Christopher M; Tate, David F; Csapo, Istvan; Poppas, Athena; Cohen, Ronald A; Guttmann, Charles R G

    2011-01-01

    Reduced cardiac output is associated with increased white matter hyperintensities (WMH) and executive dysfunction in older adults, which may be secondary to relations between systemic and cerebral perfusion. This study preliminarily describes the regional distribution of cerebral WMH in the context of a normal cerebral perfusion atlas and aims to determine if these variables are associated with reduced cardiac output. Thirty-two participants (72 ± 8 years old, 38% female) with cardiovascular risk factors or disease underwent structural MRI acquisition at 1.5T using a standard imaging protocol that included FLAIR sequences. WMH distribution was examined in common anatomical space using voxel-based morphometry and as a function of normal cerebral perfusion patterns by overlaying a single photon emission computed tomography (SPECT) atlas. Doppler echocardiogram data was used to dichotomize the participants on the basis of low (n=9) and normal (n=23) cardiac output. Global WMH count and volume did not differ between the low and normal cardiac output groups; however, atlas-derived SPECT perfusion values in regions of hyperintensities were reduced in the low versus normal cardiac output group (p<0.001). Our preliminary data suggest that participants with low cardiac output have WMH in regions of relatively reduced perfusion, while normal cardiac output participants have WMH in regions with relatively higher regional perfusion. This spatial perfusion distribution difference for areas of WMH may occur in the context of reduced systemic perfusion, which subsequently impacts cerebral perfusion and contributes to subclinical or clinical microvascular damage. Copyright © 2009 Elsevier Inc. All rights reserved.

  15. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    PubMed

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory analysis our results show similar diagnostic accuracy comparing anatomical (AUC 0.86(0.83-0.89)) and functional reference standards (AUC 0.88(0.84-0.90)). Only the per territory analysis sensitivity did not show significant heterogeneity. None of the groups showed signs of publication bias. The clinical value of semi-quantitative and quantitative CMR perfusion analysis remains uncertain due to extensive inter-study heterogeneity and large differences in CMR perfusion acquisition protocols, reference standards, and methods of assessment of myocardial perfusion parameters. For wide spread implementation, standardization of CMR perfusion techniques is essential. CRD42016040176 .

  16. Direct visualization of minimal cerebral capillary flow during retrograde cerebral perfusion: an intravital fluorescence microscopy study in pigs.

    PubMed

    Duebener, Lennart F; Hagino, Ikuo; Schmitt, Katharina; Sakamoto, Takahiko; Stamm, Christof; Zurakowski, David; Schäfers, Hans-Joachim; Jonas, Richard A

    2003-04-01

    Retrograde cerebral perfusion (RCP) is used in some centers during aortic arch surgery for brain protection during hypothermic circulatory arrest. It is still unclear however whether RCP provides adequate microcirculatory blood flow at a capillary level. We used intravital microscopy to directly visualize the cerebral capillary blood flow in a piglet model of RCP. Twelve pigs (weight 9.7 +/- 0.9 kg) were divided into two groups (n = 6 each): deep hypothermic circulatory arrest (DHCA) and RCP. After the creation of a window over the parietal cerebral cortex, pigs underwent 10 minutes of normothermic bypass and 40 minutes of cooling to 15 degrees C on cardiopulmonary bypass ([CPB] pH-stat, hemocrit 30%, pump flow 100 mL x kg(-1) x min(-1)). This was followed by 45 minutes of DHCA and rewarming on CPB to 37 degrees C. In the RCP group the brain was retrogradely perfused (pump flow 30 mL x kg(-1) x min(-1)) during DHCA through the superior vena cava after inferior vena cava occlusion. Plasma was labeled with fluorescein-isothiocyanate-dextran for assessing microvascular diameter and functional capillary density (FCD), defined as total length of erythrocyte-perfused capillaries per observation area. Cerebral tissue oxygenation was determined by nicotinamide adenine dinucleotide hydrogen (NADH) autofluorescence, which increases during tissue ischemia. During normothermic and hypothermic antegrade cerebral perfusion the FCD did not significantly change from base line (97% +/- 14% and 96% +/- 12%, respectively). During retrograde cerebral perfusion the FCD decreased highly significantly to 2% +/- 2% of base line values (p < 0.001). Thus there was no evidence of significant capillary blood flow during retrograde cerebral perfusion. The microvascular diameter of cerebral arterioles that were slowly perfused significantly decreased to 27% +/- 6% of base line levels during RCP. NADH fluorescence progressively and significantly increased during RCP, indicating poorer tissue oxygenation. At the end of retrograde cerebral perfusion there was macroscopic evidence of significant brain edema. RCP does not provide adequate cerebral capillary blood flow and does not prevent cerebral ischemia. Prolonged RCP induces brain edema. However, there might be a role for a short period of RCP to remove air and debris from the cerebral circulation after DHCA because retrograde flow could be detected in cerebral arterioles.

  17. Quantitative 4D Transcatheter Intraarterial Perfusion MR Imaging as a Method to Standardize Angiographic Chemoembolization Endpoints

    PubMed Central

    Jin, Brian; Wang, Dingxin; Lewandowski, Robert J.; Ryu, Robert K.; Sato, Kent T.; Larson, Andrew C.; Salem, Riad; Omary, Reed A.

    2011-01-01

    PURPOSE We aimed to test the hypothesis that subjective angiographic endpoints during transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) exhibit consistency and correlate with objective intraprocedural reductions in tumor perfusion as determined by quantitative four dimensional (4D) transcatheter intraarterial perfusion (TRIP) magnetic resonance (MR) imaging. MATERIALS AND METHODS This prospective study was approved by the institutional review board. Eighteen consecutive patients underwent TACE in a combined MR/interventional radiology (MR-IR) suite. Three board-certified interventional radiologists independently graded the angiographic endpoint of each procedure based on a previously described subjective angiographic chemoembolization endpoint (SACE) scale. A consensus SACE rating was established for each patient. Patients underwent quantitative 4D TRIP-MR imaging immediately before and after TACE, from which mean whole tumor perfusion (Fρ) was calculated. Consistency of SACE ratings between observers was evaluated using the intraclass correlation coefficient (ICC). The relationship between SACE ratings and intraprocedural TRIP-MR imaging perfusion changes was evaluated using Spearman’s rank correlation coefficient. RESULTS The SACE rating scale demonstrated very good consistency among all observers (ICC = 0.80). The consensus SACE rating was significantly correlated with both absolute (r = 0.54, P = 0.022) and percent (r = 0.85, P < 0.001) intraprocedural perfusion reduction. CONCLUSION The SACE rating scale demonstrates very good consistency between raters, and significantly correlates with objectively measured intraprocedural perfusion reductions during TACE. These results support the use of the SACE scale as a standardized alternative method to quantitative 4D TRIP-MR imaging to classify patients based on embolic endpoints of TACE. PMID:22021520

  18. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    NASA Astrophysics Data System (ADS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  19. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction

    NASA Astrophysics Data System (ADS)

    Israel, Jean-Marc; Cabelguen, Jean-Marie; Le Masson, Gwendal; Oliet, Stéphane H.; Ciofi, Philippe

    2014-02-01

    The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-α. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.

  20. Endocrine dynamics during pulsatile GnRH administration in patients with hypothalamic amenorrhea and polycystic ovarian disease.

    PubMed

    Rossmanith, W G; Wirth, U; Benz, R; Wolf, A S

    1989-01-01

    The LH secretory patterns and ovarian endocrine responses have been determined during pulsatile gonadotropin-releasing hormone (GnRH) administration for induction of ovulation in patients with hypothalamic amenorrhea (HA). However, until now these endocrine dynamics during GnRH therapy have not been thoroughly investigated in patients with polycystic ovarian disease (PCOD). Seven patients with HA and 4 patients with PCOD have therefore been studied to determine changes in LH pulsatile activity and in serum sex steroid levels in response to chronic intermittent GnRH stimulation. GnRH was administered intravenously (5-10 micrograms/90 minutes) by means of a portable infusion pump. Blood samples were obtained at 15-minute intervals for 4 hours on the day before the start of GnRH stimulation (control day) and on treatment days 5, 10 and 15. LH was determined in all samples and FSH, serum androgens and estrogens were measured in baseline samples by RIA. While 8 (62%) ovulations and 5 conceptions were observed in 13 treatment cycles in patients with HA, no ovulations were achieved during 9 treatment cycles in patients with PCOD. On the control day significantly (p less than 0.05) higher basal LH and testosterone (T) levels and significantly (p less than 0.05) lower FSH levels were found in the PCOD patients. The LH pulsatile profiles of the PCOD patients showed significantly (p less than 0.05) higher pulse amplitudes and areas under the curve (integrated responses). Pulsatile GnRH administration induced a significant (p less than 0.05) increase in LH pulse amplitudes in both HA and PCOD patients, and also increased (p less than 0.05) the integrated responses in patients with HA. During the GnRH stimulation, the LH interpulse intervals of both HA and PCOD patients were found to be similar to the frequency in which exogenous GnRH was administered. FSH levels rose continuously (p less than 0.001) during stimulation in patients with HA, but remained unchanged in patients with PCOD. In HA patients, T, androstenedione (AD) and estrone (E1) did not change during the GnRH treatment, but estradiol (E2) rose so that the ratios of aromatized estrogens to non-aromatized androgens (E1/AD, E2/T) increased. In contrast, T and AD increased significantly (p less than 0.05 or less) and E2 remained unchanged during stimulations in PCOD patients, which resulted in decreasing ratios of estrogens to androgens. These observations confirm that pulsatile GnRH administration can successfully induce ovulation in patients with HA by restoring the ovarian physiology. The data also demonstrate that pulsatile GnRH administration can influence the LH secretory patterns in PCOD patients.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. Glutathione S-transferase iso-enzymes in perfusate from pumped kidneys are associated with delayed graft function

    PubMed Central

    Hall, Isaac E.; Bhangoo, Ronik S.; Reese, Peter P.; Doshi, Mona D.; Weng, Francis L.; Hong, Kwangik; Lin, Haiqun; Han, Gang; Hasz, Rick D.; Goldstein, Michael J.; Schröppel, Bernd; Parikh, Chirag R.

    2014-01-01

    Accurate and reliable assessment tools are needed in transplantation. The objective of this prospective, multicenter study was to determine the associations of the alpha and pi iso-enzymes of glutathione S-transferase (GST), measured from perfusate solution at the start and end (base and post) of kidney allograft machine perfusion, with subsequent delayed graft function (DGF). We also compared GST iso-enzyme perfusate levels from discarded versus transplanted kidneys. A total of 428 kidneys were linked to outcomes as recorded by the United Network of Organ Sharing. DGF, defined as any dialysis in the first week of transplant, occurred in 141 recipients (32%). Alpha and pi-GST levels significantly increased during machine perfusion. The adjusted relative risks (95% confidence interval) of DGF with each log-unit increase in base and post pi-GST were 1.14 (1.0-1.28) and 1.33 (1.02-1.72), respectively. Alpha-GST was not independently associated with DGF. There were no significant differences in GST values between discarded and transplanted kidneys, though renal resistance was significantly higher in discarded kidneys. We found pi-GST at the end of machine perfusion to be independently associated with DGF. Further studies should elucidate the utility of GST for identifying injured kidneys with regard to organ allocation, discard and recipient management decisions. PMID:24612768

  2. Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair.

    PubMed

    Kassner, Nora; Weis, Meike; Zahn, Katrin; Schaible, Thomas; Schoenberg, Stefan O; Schad, Lothar R; Zöllner, Frank G

    2018-05-01

    To investigate a histogram based approach to characterize the distribution of perfusion in the whole left and right lung by descriptive statistics and to show how histograms could be used to visually explore perfusion defects in two year old children after Congenital Diaphragmatic Hernia (CDH) repair. 28 children (age of 24.2±1.7months; all left sided hernia; 9 after extracorporeal membrane oxygenation therapy) underwent quantitative DCE-MRI of the lung. Segmentations of left and right lung were manually drawn to mask the calculated pulmonary blood flow maps and then to derive histograms for each lung side. Individual and group wise analysis of histograms of left and right lung was performed. Ipsilateral and contralateral lung show significant difference in shape and descriptive statistics derived from the histogram (Wilcoxon signed-rank test, p<0.05) on group wise and individual level. Subgroup analysis (patients with vs without ECMO therapy) showed no significant differences using histogram derived parameters. Histogram analysis can be a valuable tool to characterize and visualize whole lung perfusion of children after CDH repair. It allows for several possibilities to analyze the data, either describing the perfusion differences between the right and left lung but also to explore and visualize localized perfusion patterns in the 3D lung volume. Subgroup analysis will be possible given sufficient sample sizes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Tomographic digital subtraction angiography for lung perfusion estimation in rodents.

    PubMed

    Badea, Cristian T; Hedlund, Laurence W; De Lin, Ming; Mackel, Julie S Boslego; Samei, Ehsan; Johnson, G Allan

    2007-05-01

    In vivo measurements of perfusion present a challenge to existing small animal imaging techniques such as magnetic resonance microscopy, micro computed tomography, micro positron emission tomography, and microSPECT, due to combined requirements for high spatial and temporal resolution. We demonstrate the use of tomographic digital subtraction angiography (TDSA) for estimation of perfusion in small animals. TDSA augments conventional digital subtraction angiography (DSA) by providing three-dimensional spatial information using tomosynthesis algorithms. TDSA is based on the novel paradigm that the same time density curves can be reproduced in a number of consecutive injections of microL volumes of contrast at a series of different angles of rotation. The capabilities of TDSA are established in studies on lung perfusion in rats. Using an imaging system developed in-house, we acquired data for four-dimensional (4D) imaging with temporal resolution of 140 ms, in-plane spatial resolution of 100 microm, and slice thickness on the order of millimeters. Based on a structured experimental approach, we optimized TDSA imaging providing a good trade-off between slice thickness, the number of injections, contrast to noise, and immunity to artifacts. Both DSA and TDSA images were used to create parametric maps of perfusion. TDSA imaging has potential application in a number of areas where functional perfusion measurements in 4D can provide valuable insight into animal models of disease and response to therapeutics.

  4. Cyclic variation of ultrasonic backscattering from porcine whole blood under pulsatile flow

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hong

    1997-10-01

    The cyclic variation of ultrasonic backscattering from blood under pulsatile flow is believed to be related to the change of aggregation state of red cells and is only observed in whole blood. This study was to investigate the phenomenon by an invasive approach which was performed by inserting a 10 MHz catheter mounted transducer into a vessel. For ultrasonic measurement from blood, the most fundamental scheme is the hematocrit dependence. The backscatter maximum location was changed as the blood was stirred or stationary, as well as under steady laminar or turbulent flows. The same trend was also observed under pulsatile flow with 10% to 50% hematocrits in this study, as the backscattering to hematocrit curves were plotted at different times during a flow cycle. When the cyclic variation at 20 beats per minute (BPM) was interpreted in time domain, the enhanced aggregation at the beginning of shearing was observed. At 20 BPM with 40% hematocrit, the amplitude of cyclic variation was reduced when the shear rate was increased and the threshold of 150 s-1 was estimated. The results showed that there was no cyclic variation at 60 BPM. The backscattering was also plotted against the mean flow velocity, which demonstrated the hysteresis loops. The ultrasonic measurements showed that the relationship between the forward and backward paths of the loops were altered as beat rate, hematocrit, and shear rate were varied. Since the pulsatile flow was very complicated, a computational fluid dynamics package, FIDAPTM, was used to compute the shear rate based on the Power Law Model for non-Newtonian fluid viscosity. The non- Newtonian index and consistency in the model were computed from the viscosity to shear rate curves at 10% to 50% hematocrits measured by a cone-plate viscometer. For in vivo measurements, small pigs were used as models. Ultrasonic backscattering measurements were performed in the arteries and veins. The effect of stenosis was also investigated at the site below the renal branch in the artery. The results show that the cyclic variation from whole blood was mediated by the shear rate, hematocrit, beat rate, and fibrinogen concentration.

  5. Modulatory effects of ketamine, risperidone and lamotrigine on resting brain perfusion in healthy human subjects.

    PubMed

    Shcherbinin, Sergey; Doyle, Orla; Zelaya, Fernando O; de Simoni, Sara; Mehta, Mitul A; Schwarz, Adam J

    2015-11-01

    Resting brain perfusion, measured using the MRI-based arterial spin labelling (ASL) technique, is sensitive to detect central effects of single, clinically effective, doses of pharmacological compounds. However, pharmacological interaction experiments, such as the modulation of one drug response in the presence of another, have not been widely investigated using a task-free ASL approach. We assessed the effects of three psychoactive compounds (ketamine, risperidone and lamotrigine), and their interaction, on resting brain perfusion in healthy human volunteers. A multivariate Gaussian process classification (GPC) and more conventional univariate analyses were applied. The four pre-infusion conditions for each subject comprised risperidone, lamotrigine and two placebo sessions. The two placebo conditions enabled us to evaluate the classification performance in a test-retest setting, in addition to its performance in distinguishing the active oral drugs from placebo (direct effect on brain perfusion). The post ketamine- or saline-infusion scans allowed the effect of ketamine, and its interaction with risperidone and lamotrigine, on brain perfusion to be characterised. The pseudo-continuous ASL measurements of perfusion were sensitive to the effects of ketamine infusion and risperidone. The GPC captured consistent changes in perfusion across the group and contextualised the univariate changes with a larger pattern of regions contributing to accurate discrimination of ketamine from placebo. The findings argue against perfusion changes confounding in the previously described evoked BOLD response to ketamine and emphasise the blockade of the NMDA receptor over neuronal glutamate release in determining the perfusion changes induced by ketamine.

  6. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    NASA Astrophysics Data System (ADS)

    Zaunseder, Sebastian; Trumpp, Alexander; Ernst, Hannes; Förster, Michael; Malberg, Hagen

    2018-02-01

    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are influenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.

  7. Quantitative Assessment of Foot Blood Flow by Using Dynamic Volume Perfusion CT Technique: A Feasibility Study.

    PubMed

    Hur, Saebeom; Jae, Hwan Jun; Jang, Yeonggul; Min, Seung-Kee; Min, Sang-Il; Lee, Dong Yeon; Seo, Sang Gyo; Kim, Hyo-Cheol; Chung, Jin Wook; Kim, Kwang Gi; Park, Eun-Ah; Lee, Whal

    2016-04-01

    To demonstrate the feasibility of foot blood flow measurement by using dynamic volume perfusion computed tomographic (CT) technique with the upslope method in an animal experiment and a human study. The human study was approved by the institutional review board, and written informed consent was obtained from all patients. The animal study was approved by the research animal care and use committee. A perfusion CT experiment was first performed by using rabbits. A color-coded perfusion map was reconstructed by using in-house perfusion analysis software based on the upslope method, and the measured blood flow on the map was compared with the reference standard microsphere method by using correlation analysis. A total of 17 perfusion CT sessions were then performed (a) once in five human patients and (b) twice (before and after endovascular revascularization) in six human patients. Perfusion maps of blood flow were reconstructed and analyzed. The Wilcoxon signed rank test was used to prove significant differences in blood flow before and after treatment. The animal experiment demonstrated a strong correlation (R(2) = 0.965) in blood flow between perfusion CT and the microsphere method. Perfusion maps were obtained successfully in 16 human clinical sessions (94%) with the use of 32 mL of contrast medium and an effective radiation dose of 0.31 mSv (k factor for the ankle, 0.0002). The plantar dermis showed the highest blood flow among all anatomic structures of the foot, including muscle, subcutaneous tissue, tendon, and bone. After a successful revascularization procedure, the blood flow of the plantar dermis increased by 153% (P = .031). The interpretations of the color-coded perfusion map correlated well with the clinical and angiographic findings. Perfusion CT could be used to measure foot blood flow in both animals and humans. It can be a useful modality for the diagnosis of peripheral arterial disease by providing quantitative information on foot perfusion status.

  8. Arterial Perfusion Imaging–Defined Subvolume of Intrahepatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hesheng, E-mail: hesheng@umich.edu; Farjam, Reza; Feng, Mary

    2014-05-01

    Purpose: To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression after RT. Methods and Materials: Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective, institutional review board–approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed before RT (pre-RT), after delivering ∼60% of the planned dose (mid-RT) and 1 month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumesmore » with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results: Of the 24 tumors, 6 tumors in 5 patients progressed 5 to 21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors compared with the responsive tumors (P=.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median, −14%; range, −75% to 65%), whereas the progressive tumors had an increase of the subvolumes (median, 57%; range, −7% to 165%) (P=.003). Receiver operating characteristic analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve of 0.90. Conclusion: The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate for response-driven adaptive RT.« less

  9. Measurement of pulsatile motion with millisecond resolution by MRI.

    PubMed

    Souchon, Rémi; Gennisson, Jean-Luc; Tanter, Mickael; Salomir, Rares; Chapelon, Jean-Yves; Rouvière, Olivier

    2012-06-01

    We investigated a technique based on phase-contrast cine MRI combined with deconvolution of the phase shift waveforms to measure rapidly varying pulsatile motion waveforms. The technique does not require steady-state displacement during motion encoding. Simulations and experiments were performed in porcine liver samples in view of a specific application, namely the observation of transient displacements induced by acoustic radiation force. Simulations illustrate the advantages and shortcomings of the methods. For experimental validation, the waveforms were acquired with an ultrafast ultrasound scanner (Supersonic Imagine Aixplorer), and the rates of decay of the waveforms (relaxation time) were compared. With bipolar motion-encoding gradient of 8.4 ms, the method was able to measure displacement waveforms with a temporal resolution of 1 ms over a time course of 40 ms. Reasonable agreement was found between the rate of decay of the waveforms measured in ultrasound (2.8 ms) and in MRI (2.7-3.3 ms). Copyright © 2011 Wiley-Liss, Inc.

  10. Renal Perfusion in Scleroderma Patients Assessed by Microbubble-Based Contrast-Enhanced Ultrasound

    PubMed Central

    Kleinert, Stefan; Roll, Petra; Baumgaertner, Christian; Himsel, Andrea; Mueller, Adelheid; Fleck, Martin; Feuchtenberger, Martin; Jenett, Manfred; Tony, Hans-Peter

    2012-01-01

    Objectives: Renal damage is common in scleroderma. It can occur acutely or chronically. Renal reserve might already be impaired before it can be detected by laboratory findings. Microbubble-based contrast-enhanced ultrasound has been demonstrated to improve blood perfusion imaging in organs. Therefore, we conducted a study to assess renal perfusion in scleroderma patients utilizing this novel technique. Materials and Methodology: Microbubble-based contrast agent was infused and destroyed by using high mechanical index by Siemens Sequoia (curved array, 4.5 MHz). Replenishment was recorded for 8 seconds. Regions of interests (ROI) were analyzed in renal parenchyma, interlobular artery and renal pyramid with quantitative contrast software (CUSQ 1.4, Siemens Acuson, Mountain View, California). Time to maximal Enhancement (TmE), maximal enhancement (mE) and maximal enhancement relative to maximal enhancement of the interlobular artery (mE%A) were calculated for different ROIs. Results: There was a linear correlation between the time to maximal enhancement in the parenchyma and the glomerular filtration rate. However, the other parameters did not reveal significant differences between scleroderma patients and healthy controls. Conclusion: Renal perfusion of scleroderma patients including the glomerular filtration rate can be assessed using microbubble-based contrast media. PMID:22670165

  11. Concurrent hyperthermia estimation schemes based on extended Kalman filtering and reduced-order modelling.

    PubMed

    Potocki, J K; Tharp, H S

    1993-01-01

    The success of treating cancerous tissue with heat depends on the temperature elevation, the amount of tissue elevated to that temperature, and the length of time that the tissue temperature is elevated. In clinical situations the temperature of most of the treated tissue volume is unknown, because only a small number of temperature sensors can be inserted into the tissue. A state space model based on a finite difference approximation of the bioheat transfer equation (BHTE) is developed for identification purposes. A full-order extended Kalman filter (EKF) is designed to estimate both the unknown blood perfusion parameters and the temperature at unmeasured locations. Two reduced-order estimators are designed as computationally less intensive alternatives to the full-order EKF. Simulation results show that the success of the estimation scheme depends strongly on the number and location of the temperature sensors. Superior results occur when a temperature sensor exists in each unknown blood perfusion zone, and the number of sensors is at least as large as the number of unknown perfusion zones. Unacceptable results occur when there are more unknown perfusion parameters than temperature sensors, or when the sensors are placed in locations that do not sample the unknown perfusion information.

  12. Model-based estimation with boundary side information or boundary regularization [cardiac emission CT].

    PubMed

    Chiao, P C; Rogers, W L; Fessler, J A; Clinthorne, N H; Hero, A O

    1994-01-01

    The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (emission computed tomography). They have also reported difficulties with boundary estimation in low contrast and low count rate situations. Here they propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, they introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. They implement boundary regularization through formulating a penalized log-likelihood function. They also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information.

  13. Effects of push/pull perfusion and ultrasonication on the extraction efficiencies of phthalate esters in sports drink samples using on-line hollow-fiber liquid-phase microextraction.

    PubMed

    Chao, Yu-Ying; Lee, Chien-Hung; Chien, Tzu-Yang; Shih, Yu-Hsuan; Lu, Yin-An; Kuo, Ting-Hsuan; Huang, Yeou-Lih

    2013-08-28

    In previous studies, we developed a process, on-line ultrasound-assisted push/pull perfusion hollow-fiber liquid-phase microextraction (UA-PPP-HF-LPME), combining the techniques of push/pull perfusion (PPP) and ultrasonication with hollow-fiber liquid-phase microextraction (HF-LPME), to achieve rapid extraction of acidic phenols from water samples. In this present study, we further evaluated three more-advanced and novel effects of PPP and ultrasonication on the extraction efficiencies of neutral high-molecular-weight phthalate esters (HPAEs) in sports drinks. First, we found that inner-fiber fluid leakage occurs only in push-only perfusion-based and pull-only perfusion-based HF-LPME, but not in the PPP mode. Second, we identified a significant negative interaction between ultrasonication and temperature. Third, we found that the extraction time of the newly proposed system could be shortened by more than 93%. From an investigation of the factors affecting UA-PPP-HF-LPME, we established optimal extraction conditions and achieved acceptable on-line enrichment factors of 92-146 for HPAEs with a sampling time of just 2 min.

  14. In Vitro MRV-based Hemodynamic Study of Complex Helical Flow in a Patient-specific Jugular Model

    NASA Astrophysics Data System (ADS)

    Kefayati, Sarah; Acevedo-Bolton, Gabriel; Haraldsson, Henrik; Saloner, David

    2014-11-01

    Neurointerventional Radiologists are frequently requested to evaluate the venous side of the intracranial circulation for a variety of conditions including: Chronic Cerebrospinal Venous Insufficiency thought to play a role in the development of multiple sclerosis; sigmoid sinus diverticulum which has been linked to the presence of pulsatile tinnitus; and jugular vein distension which is related to cardiac dysfunction. Most approaches to evaluating these conditions rely on structural assessment or two dimensional flow analyses. This study was designed to investigate the highly complex jugular flow conditions using magnetic resonance velocimetry (MRV). A jugular phantom was fabricated based on the geometry of the dominant jugular in a tinnitus patient. Volumetric three-component time-resolved velocity fields were obtained using 4D PC-MRI -with the protocol enabling turbulence acquisition- and the patient-specific pulsatile waveform. Flow was highly complex exhibiting regions of jet, high swirling strength, and strong helical pattern with the core originating from the focal point of the jugular bulb. Specifically, flow was analyzed for helicity and the level of turbulence kinetic energy elevated in the core of helix and distally, in the post-narrowing region.

  15. A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching.

    PubMed

    Jiao, Xiangyu; Sun, Ruijuan; Cheng, Yaya; Li, Fengyu; Du, Xin; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji

    2017-05-19

    Controlled-release systems based on mesoporous silica nanomaterials (MSNs) have drawn great attention owing to their potential biomedical applications. Various switches have been designed to control the release of cargoes through the construction of physical blocking units on the surface of MSNs. However, such physical blockages are limited by poor sealing ability and low biocompatibility, and most of them lack closure ability. Herein, a voltage-responsive controlled-release system was constructed by functionalizing the nanopore of MSNs with ferrocene. The system realized free-blockage controlled release and achieved pulsatile release. The nanopores of the ferrocene-functionalized MSNs were hydrophobic enough to prevent invasion of the solution. Once a suitable voltage was applied, the nanopores became hydrophilic, which was followed by invasion of the solution and the release of the cargos. Moreover, pulsatile release was realized, which avoided unexpected release after the stimulus disappeared. Thus, we believe that our studies provide new insight into highly effective blockage for MSNs. Furthermore, the voltage-responsive release system is expected to find use in electrical stimulation combination therapy and bioelectricity-responsive release. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem

    NASA Astrophysics Data System (ADS)

    Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.

    2017-05-01

    In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.

  17. Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart †.

    PubMed

    Wrobeln, Anna; Schlüter, Klaus D; Linders, Jürgen; Zähres, Manfred; Mayer, Christian; Kirsch, Michael; Ferenz, Katja B

    2017-06-01

    The aim of this study was to prove whether albumin-derived perfluorocarbon-based nanoparticles (capsules) can operate as a novel artificial oxygen carrier in a rat Langendorff-heart perfusion model. Hearts perfused with capsules showed increased left ventricular pressure and rate pressure product compared to hearts perfused with pure Krebs-Henseleit (KH)-buffer. The capsules prevented the myocardium from functional fail when in their absence a noxious ischemia was observed. Capsules did not change rheological properties of KH-buffer and could repeatedly reload with oxygen. This albumin-derived perfluorocarbon-based artificial oxygen carrier preserved the function of rat hearts due to the transport of oxygen in a satisfactory manner. Because of these positive results, the functionality of the applied capsules should be verified in living animals.

  18. Differential and directional effects of perfusion on electrical and thermal conductivities in liver.

    PubMed

    Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L

    2009-01-01

    Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.

  19. Analyzing the value of monitoring duodenal mucosal perfusion using photoplethysmography.

    PubMed

    Fink, Mitchell P

    2014-10-13

    Photoplethysmography (PPG) is a technique that permits noninvasive measurement of changes in the volume of tissues. A novel device uses PPG to assess changes in duodenal mucosal perfusion. When tested in septic piglets, data obtained using this device correlate with the blood lactate concentration and duodenal serosal microvascular blood flow as measured with a laser Doppler flowmeter. This new PPG-based approach for continuously monitoring gut mucosal perfusion warrants further development, leading to prospective clinical trials in patients.

  20. Correlation between acoustic radiation force impulse (ARFI)-based tissue elasticity measurements and perfusion parameters acquired by perfusion CT in cirrhotic livers: a proof of principle.

    PubMed

    Esser, Michael; Bitzer, Michael; Kolb, Manuel; Fritz, Jan; Kurucay, Mustafa; Ruff, Christer; Horger, Marius

    2018-06-13

    To investigate whether liver stiffness measured by acoustic radiation force impulse (ARFI) sonoelastography always correlates with the liver perfusion parameters quantified by perfusion CT in patients with known liver cirrhosis. Sonoelastography and perfusion CT were performed in 50 patients (mean age 65.5; range 45-87 years) with liver cirrhosis, who were classified according to Child-Pugh into class A (30/50, 60%), B (17/50, 34%), and C (3/50, 6%). For standardized ARFI measurements in the left liver lobe at a depth of 4 cm, a convex 6-MHz probe was used. CT examinations were performed using 80 kV, 100 mAs, and 50 ml of iodinated contrast agent injected at 5 ml/s. Using standardized region-of-interest measurements, we quantified arterial, portal venous, and total liver perfusion. There was a significant linear correlation between tissue stiffness and arterial liver perfusion (p = 0.015), and also when limiting the analysis to patients with histology (p = 0.019). In addition, there was a positive correlation between the total blood supply (arterial + portal-venous liver perfusion) to the liver and tissue stiffness (p = 0.001; with histology, p = 0.027). Shear wave velocity increased with higher Child-Pugh stages (p = 0.013). The degree of tissue stiffness in cirrhotic livers correlates expectedly-even if only moderately-with the magnitude of arterial liver perfusion and total liver perfusion. As such, liver elastography remains the leading imaging tool in assessing liver fibrosis.

  1. Point-of-Care Ultrasonography to Assess Portal Vein Pulsatility and the Effect of Inhaled Milrinone and Epoprostenol in Severe Right Ventricular Failure: A Report of 2 Cases.

    PubMed

    Tremblay, Jan-Alexis; Beaubien-Souligny, William; Elmi-Sarabi, Mahsa; Desjardins, Georges; Denault, André Y

    2017-10-15

    This article describes 2 patients with severe acute right ventricular failure causing circulatory shock. Portal vein pulsatility assessed by bedside ultrasonography suggested clinically relevant venous congestion. Management included cardiac preload reduction and combined inhalation of milrinone and epoprostenol to reduce right ventricular afterload. Portal vein ultrasonography may be useful in assessing right ventricular function in the acutely ill patient.

  2. Pulsatile flow and mass transport over an array of cylinders: gas transfer in a cardiac-driven artificial lung.

    PubMed

    Chan, Kit Yan; Fujioka, Hideki; Bartlett, Robert H; Hirschl, Ronald B; Grotberg, James B

    2006-02-01

    The pulsatile flow and gas transport of a Newtonian passive fluid across an array of cylindrical microfibers are numerically investigated. It is related to an implantable, artificial lung where the blood flow is driven by the right heart. The fibers are modeled as either squared or staggered arrays. The pulsatile flow inputs considered in this study are a steady flow with a sinusoidal perturbation and a cardiac flow. The aims of this study are twofold: identifying favorable array geometry/spacing and system conditions that enhance gas transport; and providing pressure drop data that indicate the degree of flow resistance or the demand on the right heart in driving the flow through the fiber bundle. The results show that pulsatile flow improves the gas transfer to the fluid compared to steady flow. The degree of enhancement is found to be significant when the oscillation frequency is large, when the void fraction of the fiber bundle is decreased, and when the Reynolds number is increased; the use of a cardiac flow input can also improve gas transfer. In terms of array geometry, the staggered array gives both a better gas transfer per fiber (for relatively large void fraction) and a smaller pressure drop (for all cases). For most cases shown, an increase in gas transfer is accompanied by a higher pressure drop required to power the flow through the device.

  3. Pulsatile Flow Across a Cylinder--An Investigation of Flow in a Total Artificial Lung

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun

    2005-11-01

    The effect of pulsatility on flow across a single cylinder has been examined experimentally using particle image velocimetry. This work is motivated by the ongoing development of a total artificial lung (TAL), a device which would serve as a bridge to lung transplant. The prototype TAL consists of hollow microfibers through which oxygen-rich gas flows and blood flows around. Flow through the device is provided entirely by right heart and, therefore, is puslatile. The Peclet number of the flow is large and consequently the development of secondary flow affects the resulting gas exchange. The effects of frequency and average flow rate of pulsatile flow around a cylinder were investigated experimentally in a water tunnel and some of the results were compared with preliminary numerical results. Vortices developed behind the cylinder at lower Reynolds numbers in pulsatile flow than steady flow. The results indicate that there are critical values of the Reynolds number between 3 to 5 and Stokes numbers of 0.22, below which vortices were not observed. The findings suggest that higher Stokes and Reynolds numbers within the device could enhance vortex formation. However, this enhanced gas exchange could be at the expense of higher device resistance and increased likelihood of blood trauma. Intelligent TAL design will require consideration of these effects. This work is supported by NIH grant HL69420.

  4. Long-Term Durability Test for the Left Ventricular Assist System EVAHEART under the Physiologic Pulsatile Load.

    PubMed

    Kitano, Tomoya; Iwasaki, Kiyotaka

    The EVAHEART Left Ventricular Assist System (LVAS) was designed for the long-term support of a patient with severe heart failure. It has an original water lubrication system for seal and bearing and wear on these parts was considered one of its critical failure modes. A durability test focusing on wear was designed herein. We developed a mock loop, which generates a physiologic pulsatile flow and is sufficiently durable for a long-term test. The pulsatile load and the low fluid viscosity enable the creation of a severe condition for the mechanical seal. A total of 18 EVAHEART blood pumps completed 2 years of operation under the pulsatile condition without any failure. It indicated the EVAHEART blood pump had a greater than 90% reliability with a 88% confidence level. The test was continued with six blood pumps and achieved an average of 8.6 years, which was longer than the longest clinical use in Japan. The test result showed that no catastrophic, critical, marginal, or minor failures of the blood pump or their symptoms were observed. The seal performance was maintained after the test. Moreover, the surface roughness did not change, which showed any burn or abnormal wear occurred. The original water lubrication system equipped in EVAHEART LVAS prevent severe wear on the seal and the bearing, and it can be used in the bridge to transplant and destination therapy.

  5. Increased Atherosclerosis Correlates with Subjective Tinnitus Severity.

    PubMed

    Yüksel, Fatih; Karataş, Duran; Türkdoğan, Figen Tunalı; Yüksel, Özlem

    2018-03-01

    The aim of the present study was to investigate whether increased intima media thickness was associated with the severity of subjective non-pulsatile tinnitus and hearing loss. Data of the patients who came to Otorhinolaryngology Department of Isparta Government Hospital with subjective non-pulsatile tinnitus complaint, between January 2012 and June 2013, were evaluated retrospectively. A total of 215 patients were included in the present study. Hearing tests, biochemical analysis, tinnitus handicap inventory (THI), visual analogue scale (VAS) and doppler ultrasonography results of the patients were reviewed and recorded. The patients were classified into two groups as those having an increased intima media thickness and those having a normal intima media thickness. The said groups were compared with respect to age, gender, THI, VAS, hearing test findings and lipid values. Moreover, THI and VAS groups were compared with respect to intima-media thickness. In the group having increased intima-media thickness, THI and VAS average, frequency of hypertension, total cholesterol, low density lipoprotein and triglyceride averages and mean frequencies obtained by hearing test were significantly higher. Comparison of THI and VAS groups showed that intima-media thickness was significantly different between those having a mild tinnitus and those having a severe tinnitus. Increased intima-media thickness was associated with the severity of subjective non-pulsatile tinnitus and hearing loss. For this reason, the carotid system should be examined in subjective non-pulsatile tinnitus patients.

  6. Closing in on the Mechanisms of Pulsatile Insulin Secretion.

    PubMed

    Bertram, Richard; Satin, Leslie S; Sherman, Arthur S

    2018-03-01

    Insulin secretion from pancreatic islet β-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca 2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca 2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca 2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets. © 2018 by the American Diabetes Association.

  7. Obesity, growth hormone and exercise.

    PubMed

    Thomas, Gwendolyn A; Kraemer, William J; Comstock, Brett A; Dunn-Lewis, Courtenay; Maresh, Carl M; Volek, Jeff S

    2013-09-01

    Growth hormone (GH) is regulated, suppressed and stimulated by numerous physiological stimuli. However, it is believed that obesity disrupts the physiological and pathological factors that regulate, suppress or stimulate GH release. Pulsatile GH has been potently stimulated in healthy subjects by both aerobic and resistance exercise of the right intensity and duration. GH modulates fuel metabolism, reduces total fat mass and abdominal fat mass, and could be a potent stimulus of lipolysis when administered to obese individuals exogenously. Only pulsatile GH has been shown to augment adipose tissue lipolysis and, therefore, increasing pulsatile GH response may be a therapeutic target. This review discusses the factors that cause secretion of GH, how obesity may alter GH secretion and how both aerobic and resistance exercise stimulates GH, as well as how exercise of a specific intensity may be used as a stimulus for GH release in individuals who are obese. Only five prior studies have investigated exercise as a stimulus of endogenous GH in individuals who are obese. Based on prior literature, resistance exercise may provide a therapeutic target for releasing endogenous GH in individuals who are obese if specific exercise programme variables are utilized. Biological activity of GH indicates that this may be an important precursor to beneficial changes in body fat and lean tissue mass in obese individuals. However, additional research is needed including what molecular GH variants are acutely released and involved at target tissues as a result of different exercise stimuli and what specific exercise programme variables may serve to stimulate GH in individuals who are obese.

  8. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    PubMed

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Clinical results of an organ procurement organization effort to increase utilization of donors after cardiac death.

    PubMed

    Whiting, James F; Delmonico, Francis; Morrissey, Paul; Basadonna, Giacomo; Johnson, Scott; Lewis, W David; Rohrer, Richard; O'Connor, Kevin; Bradley, James; Lovewell, Tammy D; Lipkowitz, George

    2006-05-27

    To stimulate organ donation, an organ procurement organization (OPO)-wide effort was undertaken to increase donors after cardiac death (DCD) over a 5-year period. This included commonality of protocols, pulsatile perfusion of kidneys, centralization of data and a regional allocation variance designed to minimize cold ischemia times and encourage adoption of DCD protocols at transplant centers. In one OPO, eight centers initiated DCD programs in 11 hospitals. A total of 52 DCD donors were procured, increasing from four in 1999 to 21 in 2003. Eleven donors had care withdrawn in the operating room, whereas 41 had care withdrawn in the ICU. In all, 91 patients received renal transplants from these 52 donors (12 kidneys discarded, one double transplant), whereas 5 patients received liver transplants. One-, two-, and three-year kidney graft survival rates were 90%, 90%, and 82%, respectively. Fifty-five percent of patients needed at least one session of hemodialysis postoperatively. Mean recipient hospital length of stay was 11.1+/-6 days. Mean creatinine levels at 3, 6, 12, and 24 months were 1.65, 1.40, 1.41, and 1.40, respectively. DCD donors can be an important source of donor organs and provide excellent overall outcomes. Regional cooperation and a prospectively considered allocation and distribution system are important considerations in stimulating DCD programs.

  10. Digital auscultation of the uterine artery: a measure of uteroplacental perfusion.

    PubMed

    Riknagel, Diana; Dinesen, Birthe; Zimmermann, Henrik; Farlie, Richard; Schmidt, Samuel; Toft, Egon; Struijk, Johannes Jan

    2016-07-01

    This observational study investigated digital auscultation for the purpose of assessing the clinical feasibility of monitoring vascular sounds in pregnancy. The study was performed at the Regional Hospital Viborg, Denmark, and included 29 pregnant women, 10 non-pregnant women and 10 male participants. Digital auscultation was performed with an electronic stethoscope bilaterally near the uterine arteries and correlated to the clinical diagnosis of preeclampsia (PE), intrauterine growth restriction (IUGR) or normal pregnancy in the group of pregnant participants. In the group of non-pregnant participants, digital auscultation was performed as control measurements in the same anatomical positions. The auscultations displayed pulse waveforms comprising systolic and diastolic periods in 20 of the 29 pregnant participants. However, in the non-pregnant and male participants, the pulse waveforms were absent. The pulsatile patterns are thus likely to originate from the arteries in relation to the pregnant uterus. In the participants displaying pulse waveforms, the presence of a dicrotic notch appeared with a sensitivity of 89% and a specificity of 100% in the discrimination of normal pregnancies (n  =  11) from pregnancies with PE or IUGR (n  =  9), (p  <  0.001). This preliminary study shows the potential of identifying vascular complications during pregnancy such as preeclampsia and intrauterine growth restriction. The morphology of the derived pulse contour should be investigated and could be further developed to identify pathophysiology.

  11. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US

    PubMed Central

    Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie

    2011-01-01

    AIM: To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue®. METHODS: The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue® (Bracco, Milan, Italy) and using a Toshiba Aplio® ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging (“Vascular Recognition Imaging”) involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). RESULTS: In vitro, different volumes of SonoVue® were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. CONCLUSION: AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values. PMID:21512654

  12. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US.

    PubMed

    Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie

    2011-03-28

    To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®). The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue(®) (Bracco, Milan, Italy) and using a Toshiba Aplio(®) ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging ("Vascular Recognition Imaging") involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). In vitro, different volumes of SonoVue(®) were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.

  13. Correlation between melphalan pharmacokinetics and hepatic toxicity following hyperthermic isolated liver perfusion for unresectable metastatic disease.

    PubMed

    Mocellin, Simone; Pilati, Pierluigi; Da Pian, Pierpaolo; Forlin, Marco; Corazzina, Susanna; Rossi, Carlo Riccardo; Innocente, Federico; Ori, Carlo; Casara, Dario; Ujka, Francesca; Nitti, Donato; Lise, Mario

    2007-02-01

    In the present work, we report on the results of our pilot study of hyperthermic isolated hepatic perfusion (IHP) with melphalan alone for patients with unresectable metastatic liver tumors refractory to conventional treatments, with particular regard to the correlation between pharmacokinetic findings and hepatic toxicity. Inclusion criteria were unresectable liver metastases, hepatic parenchyma replacement

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jens, Sjoerd, E-mail: s.jens@amc.uva.nl; Marquering, Henk A., E-mail: h.a.marquering@amc.uva.nl; Koelemay, Mark J. W., E-mail: m.j.koelemaij@amc.uva.nl

    ObjectiveTo study the feasibility of 2D perfusion imaging in critical limb ischemia (CLI).Methods/ResultsPerfusion angiography is a new technology which was tested in 18 patients with CLI of the foot. A standardized protocol was used with a catheter placed at the mid-part of the popliteal artery, and a total of 9 cc of non-ionic iodinated contrast material was injected at a rate of 3 cc/sec. The technology is based on early cardiology research where iodinated contrast agents were used for imaging of cardiac perfusion. During the first pass of the contrast, there is a significant diffusion of the contrast agents into the interstitialmore » space, particularly for non-ionic and low-molecular-weight compounds.DiscussionThe original angiography data can be used to make a time–density curve, which represents the actual perfusion of the foot in time. Angiographic perfusion imaging is a post-processing modality for which no extra contrast or radiation is needed. With this technique, it is possible to get more information about the perfusion status and microcirculation of the foot. This is a step toward functional imaging in CLI patients.« less

  15. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.

    PubMed

    Ghalichi, Farzan; Deng, Xiaoyan

    2003-01-01

    The pulsatile blood flow in a partially blocked artery is significantly altered as the flow regime changes through the cardiac cycle. This paper reports on the application of a low-Reynolds turbulence model for computation of physiological pulsatile flow in a healthy and stenosed carotid artery bifurcation. The human carotid artery was chosen since it has received much attention because atherosclerotic lesions are frequently observed. The Wilcox low-Re k-omega turbulence model was used for the simulation since it has proven to be more accurate in describing transition from laminar to turbulent flow. Using the FIDAP finite element code a validation showed very good agreement between experimental and numerical results for a steady laminar to turbulent flow transition as reported in a previous publication by the same authors. Since no experimental or numerical results were available in the literature for a pulsatile and turbulent flow regime, a comparison between laminar and low-Re turbulent calculations was made to further validate the turbulence model. The results of this study showed a very good agreement for velocity profiles and wall shear stress values for this imposed pulsatile laminar flow regime. To explore further the medical aspect, the calculations showed that even in a healthy or non-stenosed artery, small instabilities could be found at least for a portion of the pulse cycle and in different sections. The 40% and 55% diameter reduction stenoses did not significantly change the turbulence characteristics. Further results showed that the presence of 75% stenoses changed the flow properties from laminar to turbulent flow for a good portion of the cardiac pulse. A full 3D simulation with this low-Re-turbulence model, coupled with Doppler ultrasound, can play a significant role in assessing the degree of stenosis for cardiac patients with mild conditions.

  16. The effect of vessel material properties and pulsatile wall motion on the fixation of a proximal stent of an endovascular graft.

    PubMed

    Corbett, T J; Molony, D S; Callanan, A; McGloughlin, T M

    2011-01-01

    Migration is a serious failure mechanism associated with endovascular abdominal aortic aneurysm (AAA) repair (EVAR). The effect of vessel material properties and pulsatile wall motion on stent fixation has not been previously investigated. A proximal stent from a commercially available stent graft was implanted into the proximal neck of silicone rubber abdominal aortic aneurysm models of varying proximal neck stiffness (β=25.39 and 20.44). The stent was then dislodged by placing distal force on the stent struts. The peak force to completely dislodge the stent was measured using a loadcell. Dislodgment was performed at ambient pressure with no flow (NF) and during pulsatile flow (PF) at pressures of 120/80 mmHg and 140/100 mmHg to determine if pulsatile wall motions affected the dislodgement force. An imaging analysis was performed at ambient pressure and at pressures of 120 mmHg and 140 mmHg to investigate diameter changes on the model due to the radial force of the stent and internal pressurisation. Stent displacement forces were ~50% higher in the stiffer model (7.16-8.4 N) than in the more compliant model (3.67-4.21 N). The mean displacement force was significantly reduced by 10.95-12.83% from the case of NF to the case of PF at 120/80 mmHg. A further increase in pressure to 140/120 mmHg had no significant effect on the displacement force. The imaging analysis showed that the diameter in the region of the stent was 0.37 mm greater in the less stiff model at all the pressures which could reduce the fixation of the stent. The results suggest that the fixation of passively fixated aortic stents could be comprised in more compliant walls and that pulsatile motions of the wall can reduce the maximum stent fixation. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Hatzigeorgiou, Vasiliki; Roka, Violeta; Arikidis, Nikos; Oikonomou, Georgia; Andrianopoulos, Konstantinos; Notaras, Ioannis

    2012-10-01

    The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Cardiac-driven Pulsatile Motion of Intracranial Cerebrospinal Fluid Visualized Based on a Correlation Mapping Technique.

    PubMed

    Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki

    2018-04-10

    A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P < 0.01) in the mean correlation coefficient between the young, healthy group and the other two groups. A significant difference (P < 0.05) was also recognized in standard deviation of the correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.

  19. Assessment of foot perfusion in patients with a diabetic foot ulcer.

    PubMed

    Forsythe, Rachael O; Hinchliffe, Robert J

    2016-01-01

    Assessment of foot perfusion is a vital step in the management of patients with diabetic foot ulceration, in order to understand the risk of amputation and likelihood of wound healing. Underlying peripheral artery disease is a common finding in patients with foot ulceration and is associated with poor outcomes. Assessment of foot perfusion should therefore focus on identifying the presence of peripheral artery disease and to subsequently estimate the effect this may have on wound healing. Assessment of perfusion can be difficult because of the often complex, diffuse and distal nature of peripheral artery disease in patients with diabetes, as well as poor collateralisation and heavy vascular calcification. Conventional methods of assessing tissue perfusion in the peripheral circulation may be unreliable in patients with diabetes, and it may therefore be difficult to determine the extent to which poor perfusion contributes to foot ulceration. Anatomical data obtained on cross-sectional imaging is important but must be combined with measurements of tissue perfusion (such as transcutaneous oxygen tension) in order to understand the global and regional perfusion deficit present in a patient with diabetic foot ulceration. Ankle-brachial pressure index is routinely used to screen for peripheral artery disease, but its use in patients with diabetes is limited in the presence of neuropathy and medial arterial calcification. Toe pressure index may be more useful because of the relative sparing of pedal arteries from medial calcification but may not always be possible in patients with ulceration. Fluorescence angiography is a non-invasive technique that can provide rapid quantitative information about regional tissue perfusion; capillaroscopy, iontophoresis and hyperspectral imaging may also be useful in assessing physiological perfusion but are not widely available. There may be a future role for specialized perfusion imaging of these patients, including magnetic resonance imaging techniques, single-photon emission computed tomography and PET-based molecular imaging; however, these novel techniques require further validation and are unlikely to become standard practice in the near future. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Glutathione S-transferase iso-enzymes in perfusate from pumped kidneys are associated with delayed graft function.

    PubMed

    Hall, I E; Bhangoo, R S; Reese, P P; Doshi, M D; Weng, F L; Hong, K; Lin, H; Han, G; Hasz, R D; Goldstein, M J; Schröppel, B; Parikh, C R

    2014-04-01

    Accurate and reliable assessment tools are needed in transplantation. The objective of this prospective, multi-center study was to determine the associations of the alpha and pi iso-enzymes of glutathione S-transferase (GST), measured from perfusate solution at the start and end (base and post) of kidney allograft machine perfusion, with subsequent delayed graft function (DGF). We also compared GST iso-enzyme perfusate levels from discarded versus transplanted kidneys. A total of 428 kidneys were linked to outcomes as recorded by the United Network of Organ Sharing. DGF, defined as any dialysis in the first week of transplant, occurred in 141 recipients (32%). Alpha- and pi-GST levels significantly increased during machine perfusion. The adjusted relative risks (95% confidence interval) of DGF with each log-unit increase in base and post pi-GST were 1.14 (1.0-1.3) and 1.36 (1.1-1.8), respectively. Alpha-GST was not independently associated with DGF. There were no significant differences in GST values between discarded and transplanted kidneys, though renal resistance was significantly higher in discarded kidneys. We found pi-GST at the end of machine perfusion to be independently associated with DGF. Further studies should elucidate the utility of GST for identifying injured kidneys with regard to organ allocation, discard and recipient management decisions. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Hypothermic machine perfusion in kidney transplantation.

    PubMed

    De Deken, Julie; Kocabayoglu, Peri; Moers, Cyril

    2016-06-01

    This article summarizes novel developments in hypothermic machine perfusion (HMP) as an organ preservation modality for kidneys recovered from deceased donors. HMP has undergone a renaissance in recent years. This renewed interest has arisen parallel to a shift in paradigms; not only optimal preservation of an often marginal quality graft is required, but also improved graft function and tools to predict the latter are expected from HMP. The focus of attention in this field is currently drawn to the protection of endothelial integrity by means of additives to the perfusion solution, improvement of the HMP solution, choice of temperature, duration of perfusion, and machine settings. HMP may offer the opportunity to assess aspects of graft viability before transplantation, which can potentially aid preselection of grafts based on characteristics such as perfusate biomarkers, as well as measurement of machine perfusion dynamics parameters. HMP has proven to be beneficial as a kidney preservation method for all types of renal grafts, most notably those retrieved from extended criteria donors. Large numbers of variables during HMP, such as duration, machine settings and additives to the perfusion solution are currently being investigated to improve renal function and graft survival. In addition, the search for biomarkers has become a focus of attention to predict graft function posttransplant.

  2. Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin

    NASA Astrophysics Data System (ADS)

    Chin, Michael S.; Freniere, Brian B.; Lo, Yuan-Chyuan; Saleeby, Jonathan H.; Baker, Stephen P.; Strom, Heather M.; Ignotz, Ronald A.; Lalikos, Janice F.; Fitzgerald, Thomas J.

    2012-02-01

    Studies examining acute oxygenation and perfusion changes in irradiated skin are limited. Hyperspectral imaging (HSI), a method of wide-field, diffuse reflectance spectroscopy, provides noninvasive, quantified measurements of cutaneous oxygenation and perfusion. This study examines whether HSI can assess acute changes in oxygenation and perfusion following irradiation. Skin on both flanks of nude mice (n=20) was exposed to 50 Gy of beta radiation from a strontium-90 source. Hyperspectral images were obtained before irradiation and on selected days for three weeks. Skin reaction assessment was performed concurrently with HSI. Desquamative injury formed in all irradiated areas. Skin reactions were first seen on day 7, with peak formation on day 14, and resolution beginning by day 21. HSI demonstrated increased tissue oxygenation on day 1 before cutaneous changes were observed (p<0.001). Further increases over baseline were seen on day 14, but returned to baseline levels by day 21. For perfusion, similar increases were seen on days 1 and 14. Unlike tissue oxygenation, perfusion was decreased below baseline on day 21 (p<0.002). HSI allows for complete visualization and quantification of tissue oxygenation and perfusion changes in irradiated skin, and may also allow prediction of acute skin reactions based on early changes seen after irradiation.

  3. Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til

    2005-04-01

    Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.

  4. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias.

    PubMed

    Shuttleworth, Trevor J; Thompson, Jill; Munger, R Stephen; Wood, Chris M

    2006-12-01

    We compared in vivo responses of rectal gland secretion to carbonic anhydrase (CA) inhibition (10(-4) mol l(-1) acetazolamide) in volume-loaded dogfish with in vitro responses in an isolated-perfused gland stimulated with 5 x 10(-6) mol l(-1) forskolin and removed from systemic influences. We also measured respiratory gas exchange in the perfused gland, described the acid-base status of the secreted fluid, and determined the relative importance of various extracellular and intracellular acid-base parameters in controlling rectal gland secretion in vitro. In vivo, acetazolamide inhibited Cl(-) secretion and decreased pHi in the rectal gland, but interpretation was confounded by an accompanying systemic respiratory acidosis, which would also have contributed to the inhibition. In the perfused gland, M(CO(2)) and M(O(2)) increased in linear relation to increases in Cl(-) secretion rate. CA inhibition (10(-4) mol l(-1) acetazolamide) had no effect on Cl(-) secretion rate or pHi in the perfused gland, in contrast to in vivo, but caused a transitory 30% inhibition of M(CO(2)) (relative to stable M(O(2))) and elevation in secretion P(CO(2)) effects, which peaked at 2 h and attenuated by 3.5-4 h. Secretion was inhibited by acidosis and stimulated by alkalosis; the relationship between relative Cl(-) secretion rate and pHe was almost identical to that seen in vivo. Experimental manipulations of perfusate pH, P(CO(2)) and HCO(3)(-) concentration, together with measurements of pHi, demonstrated that these responses were most strongly correlated with changes in pHe, and were not related to changes in P(CO(2)), extracellular HCO(3)(-), or intracellular HCO(3)(-) levels, though changes in pHi may also have played a role. The acid-base status of the secreted fluid varied with that of the perfusate, secretion pH remaining about 0.3-0.5 units lower, and changing in concert with pHe rather than pHi; secretion HCO(3)(-) concentrations remained low, even in the face of greatly elevated perfusate HCO(3)(-) concentrations. We conclude that pH effects on rectal gland secretion rate are adaptive, that CA functions to catalyze the hydration of CO(2), thereby maintaining a gradient for diffusive efflux of CO(2) from the working cells, and that differences in response to CA inhibition likely reflect the higher perfusion-to-secretion ratio in vitro than in vivo.

  5. Microprocessor controlled transdermal drug delivery.

    PubMed

    Subramony, J Anand; Sharma, Ashutosh; Phipps, J B

    2006-07-06

    Transdermal drug delivery via iontophoresis is reviewed with special focus on the delivery of lidocaine for local anesthesia and fentanyl for patient controlled acute therapy such as postoperative pain. The role of the microprocessor controller in achieving dosimetry, alternating/reverse polarity, pre-programmed, and sensor-based delivery is highlighted. Unique features such as the use of tactile signaling, telemetry control, and pulsatile waveforms in iontophoretic drug delivery are described briefly.

  6. TH-CD-206-01: Expectation-Maximization Algorithm-Based Tissue Mixture Quantification for Perfusion MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, H; Xing, L; Liang, Z

    Purpose: To investigate the feasibility of estimating the tissue mixture perfusions and quantifying cerebral blood flow change in arterial spin labeled (ASL) perfusion MR images. Methods: The proposed perfusion MR image analysis framework consists of 5 steps: (1) Inhomogeneity correction was performed on the T1- and T2-weighted images, which are available for each studied perfusion MR dataset. (2) We used the publicly available FSL toolbox to strip off the non-brain structures from the T1- and T2-weighted MR images. (3) We applied a multi-spectral tissue-mixture segmentation algorithm on both T1- and T2-structural MR images to roughly estimate the fraction of eachmore » tissue type - white matter, grey matter and cerebral spinal fluid inside each image voxel. (4) The distributions of the three tissue types or tissue mixture across the structural image array are down-sampled and mapped onto the ASL voxel array via a co-registration operation. (5) The presented 4-dimensional expectation-maximization (4D-EM) algorithm takes the down-sampled three tissue type distributions on perfusion image data to generate the perfusion mean, variance and percentage images for each tissue type of interest. Results: Experimental results on three volunteer datasets demonstrated that the multi-spectral tissue-mixture segmentation algorithm was effective to initialize tissue mixtures from T1- and T2-weighted MR images. Compared with the conventional ASL image processing toolbox, the proposed 4D-EM algorithm not only generated comparable perfusion mean images, but also produced perfusion variance and percentage images, which the ASL toolbox cannot obtain. It is observed that the perfusion contribution percentages may not be the same as the corresponding tissue mixture volume fractions estimated in the structural images. Conclusion: A specific application to brain ASL images showed that the presented perfusion image analysis method is promising for detecting subtle changes in tissue perfusions, which is valuable for the early diagnosis of certain brain diseases, e.g. multiple sclerosis.« less

  7. Australian and New Zealand Perfusion Survey: Management and Procedure

    PubMed Central

    Tuble, Sigrid C.; Willcox, Timothy W.; Baker, Robert A.

    2009-01-01

    Abstract: In this report, we will discuss management and procedural aspects of perfusion practice. This report allows us to compare and contrast recent trends and changes in perfusion with historic practices. A survey comprised of 233 single-answer and 12 open-ended questions was sent by e-mail to senior perfusionists or individuals in charge of perfusion in 40 hospital groups. The survey encompasses a review of the perfusion practices for the calendar year of 2003, and respondents were required to answer the survey based on the predominant practice in their institutions. Standard management of routine adult cardiopulmonary bypass (CPB) in 2003 consisted of perfusion strategies that achieved a target temperature of 32.0°C (range, 28.0–35.0°C), a flow index of 2.4 L/min/m2 (range, 1.6–3.0 L/min/m2) during normothermia and 1.8 L/min/m2 (range, 1.2–3.0 L/min/m2) during hypothermia, and a pressure during CPB between 50 (range, 30–65 mmHg) and 70 mmHg (range, 60–95 mmHg). Myocardial protection with blood cardioplegia was used in 77% of the 20,688 CPB cases, whereas in 53% cases, cardiotomy blood was never processed. Pre-operatively, 76% of perfusion groups assessed their patients (21% directly with the patient), and 85% responded that perfusionists performed or participated in a formal pre-bypass checklist. The majority of the perfusion groups used a handwritten perfusion record (62%), 12% used an electronic perfusion record, and 26% used both, whereas more than one half of the groups were involved in quality assurance (79%), incident reporting (74%), audits (62%), research (53%), participating in interdisciplinary meetings (53%), and morbidity and mortality meetings (65%). Only 26% conducted formal perfusion team meetings. This report outlines the status of clinical management and procedural performance for perfusion practices in Australia and New Zealand in 2003. Awareness of these trends will allow perfusionists to assess both individual practices and unit performance. PMID:19681302

  8. A continuous perfusion microplate for cell culture.

    PubMed

    Goral, Vasiliy N; Zhou, Chunfeng; Lai, Fang; Yuen, Po Ki

    2013-03-21

    We describe a 96-well microplate with fluidically connected wells that enables the continuous fluid perfusion between wells without the need for external pumping. A single unit in such a perfusion microplate consists of three wells: a source well, a sample (cell culture) well in the middle and a waste well. Fluid perfusion is achieved using a combination of the hydrostatic pressure generated by different liquid levels in the wells and the fluid wicking through narrow strips of a cellulose membrane connecting the wells. There is an excellent correspondence between the observed perfusion flow dynamics and the flow simulations based on Darcy's Law. Hepatocytes (C3A cells) cultured for 4 days in the perfusion microplate with no media exchange in the cell culture well had the same viability as hepatocytes exposed to a daily exchange of media. EOC 20 cells that require media conditioned by LADMAC cells were shown to be equally viable in the adjacent cell culture well of the perfusion microplate with LADMAC cells cultured in the source well. Tegafur, a prodrug, when added to primary human hepatocytes in the source well, was metabolized into a cytotoxic metabolite that kills colon cancer cells (HCT 116) cultured in the adjacent cell culture well; no toxicity was observed when only medium was in the source well. These results suggest that the perfusion microplate is a useful tool for a variety of cell culture applications with benefits ranging from labor savings to enabling in vivo-like toxicity studies.

  9. TU-CD-BRA-08: Single-Energy Computed Tomography-Based Pulmonary Perfusion Imaging: Proof-Of-Principle in a Canine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, T; Boone, J; Kent, M

    Purpose: Pulmonary perfusion imaging has provided significant insights into pulmonary diseases, and can be useful in radiotherapy. The purpose of this study was to prospectively establish proof-of-principle in a canine model for single-energy CT-based perfusion imaging, which has the potential for widespread clinical implementation. Methods: Single-energy CT perfusion imaging is based on: (1) acquisition of inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast medium, (2) deformable image registration (DIR) of the two CT image data sets, and (3) subtraction of the pre-contrast image from post-contrast image, yielding a map of Hounsfield unit (HU) enhancement. These subtractionmore » image data sets hypothetically represent perfused blood volume, a surrogate for perfusion. In an IACUC-approved clinical trial, we acquired pre- and post-contrast CT scans in the prone posture for six anesthetized, mechanically-ventilated dogs. The elastix algorithm was used for DIR. The registration accuracy was quantified using the target registration errors (TREs) for 50 pulmonary landmarks in each dog. The gradient of HU enhancement between gravity-dependent (ventral) and non-dependent (dorsal) regions was evaluated to quantify the known effect of gravity, i.e., greater perfusion in ventral regions. Results: The lung volume difference between the two scans was 4.3±3.5% on average (range 0.3%–10.1%). DIR demonstrated an average TRE of 0.7±1.0 mm. HU enhancement in lung parenchyma was 34±10 HU on average and varied considerably between individual dogs, indicating the need for improvement of the contrast injection protocol. HU enhancement in ventral (gravity-dependent) regions was found to be greater than in dorsal regions. A population average ventral-to-dorsal gradient of HU enhancement was strong (R{sup 2}=0.94) and statistically significant (p<0.01). Conclusion: This canine study demonstrated relatively accurate DIR and a strong ventral-to-dorsal gradient of HU enhancement, providing proof-of-principle for single-energy CT pulmonary perfusion imaging. This ongoing study will enroll more dogs and investigate the physiological significance. This study was supported by a Philips Healthcare/Radiological Society of North America (RSNA) Research Seed Grant (RSD1458)« less

  10. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database.

    PubMed

    Nakajima, Kenichi; Matsumoto, Naoya; Kasai, Tokuo; Matsuo, Shinro; Kiso, Keisuke; Okuda, Koichi

    2016-04-01

    As a 2-year project of the Japanese Society of Nuclear Medicine working group activity, normal myocardial imaging databases were accumulated and summarized. Stress-rest with gated and non-gated image sets were accumulated for myocardial perfusion imaging and could be used for perfusion defect scoring and normal left ventricular (LV) function analysis. For single-photon emission computed tomography (SPECT) with multi-focal collimator design, databases of supine and prone positions and computed tomography (CT)-based attenuation correction were created. The CT-based correction provided similar perfusion patterns between genders. In phase analysis of gated myocardial perfusion SPECT, a new approach for analyzing dyssynchrony, normal ranges of parameters for phase bandwidth, standard deviation and entropy were determined in four software programs. Although the results were not interchangeable, dependency on gender, ejection fraction and volumes were common characteristics of these parameters. Standardization of (123)I-MIBG sympathetic imaging was performed regarding heart-to-mediastinum ratio (HMR) using a calibration phantom method. The HMRs from any collimator types could be converted to the value with medium-energy comparable collimators. Appropriate quantification based on common normal databases and standard technology could play a pivotal role for clinical practice and researches.

  11. Cardiovascular microbubble transport in vessel bifurcations with pulsatile flow: experimental model and theory

    NASA Astrophysics Data System (ADS)

    Valassis, Doug; Dodde, Robert; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph

    2008-11-01

    The behavior of long gas bubbles suspended in liquid flowing through successive bifurcations was investigated experimentally and theoretically as a model of cardiovascular bubble transport in gas embolotherapy. In this developmental cancer therapy, perflurocarbon droplets are vaporized in the vasculature and travel through a bifurcating network of vessels before lodging. The homogeneity of tumor necrosis is directly correlated with the transport and lodging of the emboli. An experimental model was used to explore the effects of flow pulsatility, frequency, gravity, and bifurcation roll angle on bubble splitting and lodging. At a bifurcation roll angle of 45-degrees, the most distinct difference in splitting ratios between three physiologic frequencies (1, 1.5, 2 Hz) was observed. As roll angle increased, lodged bubble volume in the first generation channel increased while bubble volume beyond the second bifurcation proportionately decreased. A corresponding time-dependent one-dimensional theoretical model was also developed. The results elucidate the effects of pulsatile flow and suggest the potential of gas embolotherapy to occlude blood flow to tumors.

  12. Effects of pacing magnitudes and forms on bistability width in a modeled ventricular tissue

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodong; Liu, Xuemei; Zheng, Lixian; Mi, Yuanyuan; Qian, Yu

    2013-07-01

    Bistability in periodically paced cardiac tissue is relevant to cardiac arrhythmias and its control. In the present paper, one-dimensional tissue of the phase I Luo-Rudy model is numerically investigated. The effects of various parameters of pacing signals on bistability width are studied. The following conclusions are obtained: (i) Pacing can be classified into two types: pulsatile and sinusoidal types. Pulsatile pacing reduces bistability width as its magnitude is increased. Sinusoidal pacing increases the width as its amplitude is increased. (ii) In a pacing period the hyperpolarizing part plays a more important role than the depolarizing part. Variations of the hyperpolarizing ratio in a period evidently change the width of bistability and its variation tendency. (iii) A dynamical mechanism is proposed to qualitatively explain the phenomena, which reveals the reason for the different effects of pulsatile and sinusoidal pacing on bistability. The methods for changing bistability width by external pacing may help control arrhythmias in cardiology.

  13. Pulsatile crizotinib treatment for brain metastasis in a patient with non-small-cell lung cancer.

    PubMed

    Wang, S; Chen, J; Xie, Z; Xia, L; Luo, W; Li, J; Li, Q; Yang, Z

    2017-10-01

    Anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) is a distinct subtype with patients showing peculiar clinicopathological features and dramatic responses to the ALK tyrosine kinase inhibitor crizotinib. Patients with this cancer variant have a dismal prognosis and limited treatment options when it has progressed to intracranial metastasis because of inadequate drug penetration into the central nervous system (CNS). Factors associated with response to TKI therapy have been reported to include pharmacokinetic and biodynamic resistance phenomena. In our NSCLC patient with multiple intracranial metastases, we administered high-dose pulsatile crizotinib therapy (1000 mg/d) on a one-day-on/one-day-off basis. A significant central nervous system (CNS) response was achieved, and time to neurological progression was prolonged to 6 months. High-dose pulsatile therapy may be an effective dosing strategy for crizotinib in NSCLC showing progression to metastasis in the brain. © 2017 John Wiley & Sons Ltd.

  14. Computational solution of the velocity and wall shear stress distribution inside a left carotid artery under pulsatile flow conditions

    NASA Astrophysics Data System (ADS)

    Arslan, Nurullah; Turmuş, Hakan

    2014-08-01

    Stroke is still one of the leading causes for death after heart diseases and cancer in all over the world. Strokes happen because an artery that carries blood uphill from the heart to the head is clogged. Most of the time, as with heart attacks, the problem is atherosclerosis, hardening of the arteries, calcified buildup of fatty deposits on the vessel wall. In this study, the fluid dynamic simulations were done in a left carotid bifurcation under the pulsatile flow conditions computationally. Pulsatile flow waveform is given in the paper. In vivo geometry and boundary conditions were obtained from a patient who has stenosis located at external carotid artery (ECA) and internal carotid artery (ICA) of his common carotid artery (CCA). The location of critical flow fields such as low wall shear stress (WSS), stagnation regions and separation regions were detected near the highly stenosed region and at branching region.

  15. Pulsatile flow in ventricular catheters for hydrocephalus

    NASA Astrophysics Data System (ADS)

    Giménez, Á.; Galarza, M.; Thomale, U.; Schuhmann, M. U.; Valero, J.; Amigó, J. M.

    2017-05-01

    The obstruction of ventricular catheters (VCs) is a major problem in the standard treatment of hydrocephalus, the flow pattern of the cerebrospinal fluid (CSF) being one important factor thereof. As a first approach to this problem, some of the authors studied previously the CSF flow through VCs under time-independent boundary conditions by means of computational fluid dynamics in three-dimensional models. This allowed us to derive a few basic principles which led to designs with improved flow patterns regarding the obstruction problem. However, the flow of the CSF has actually a pulsatile nature because of the heart beating and blood flow. To address this fact, here we extend our previous computational study to models with oscillatory boundary conditions. The new results will be compared with the results for constant flows and discussed. It turns out that the corrections due to the pulsatility of the CSF are quantitatively small, which reinforces our previous findings and conclusions. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  16. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Marco H.M., E-mail: marco.janssen@maastro.nl; Aerts, Hugo J.W.L.; Buijsen, Jeroen

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) andmore » transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG uptake demonstrated with higher levels of perfusion than regions with a relatively low FDG-uptake. Early after hypofractionated RT, stable FDG uptake levels were found, whereas tumor perfusion was found to significantly increase.« less

  17. Evaluation of Microvascular Perfusion and Resuscitation after Severe Injury.

    PubMed

    Lee, Yann-Leei L; Simmons, Jon D; Gillespie, Mark N; Alvarez, Diego F; Gonzalez, Richard P; Brevard, Sidney B; Frotan, Mohammad A; Schneider, Andrew M; Richards, William O

    2015-12-01

    Achieving adequate perfusion is a key goal of treatment in severe trauma; however, tissue perfusion has classically been measured by indirect means. Direct visualization of capillary flow has been applied in sepsis, but application of this technology to the trauma population has been limited. The purpose of this investigation was to compare the efficacy of standard indirect measures of perfusion to direct imaging of the sublingual microcirculatory flow during trauma resuscitation. Patients with injury severity scores >15 were serially examined using a handheld sidestream dark-field video microscope. In addition, measurements were also made from healthy volunteers. The De Backer score, a morphometric capillary density score, and total vessel density (TVD) as cumulative vessel area within the image, were calculated using Automated Vascular Analysis (AVA3.0) software. These indices were compared against clinical and laboratory parameters of organ function and systemic metabolic status as well as mortality. Twenty severely injured patients had lower TVD (X = 14.6 ± 0.22 vs 17.66 ± 0.51) and De Backer scores (X = 9.62 ± 0.16 vs 11.55 ± 0.37) compared with healthy controls. These scores best correlated with serum lactate (TVD R(2) = 0.525, De Backer R(2) = 0.576, P < 0.05). Mean arterial pressure, heart rate, oxygen saturation, pH, bicarbonate, base deficit, hematocrit, and coagulation parameters correlated poorly with both TVD and De Backer score. Direct measurement of sublingual microvascular perfusion is technically feasible in trauma patients, and seems to provide real-time assessment of microcirculatory perfusion. This study suggests that in severe trauma, many indirect measurements of perfusion do not correlate with microvascular perfusion. However, visualized perfusion deficiencies do reflect a shift toward anaerobic metabolism.

  18. Pancreas transplants: Evaluation using perfusion scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuni, C.C.; du Cret, R.P.; Boudreau, R.J.

    1989-07-01

    To determine the value of scintigraphic perfusion studies in evaluating pancreas transplant patients, we reviewed 56 of these studies in 22 patients who had 27 transplants. Seventeen patients underwent two or more studies. The perfusion studies were performed with 20 mCi (740 MBq) of 99mTc-DTPA injected as a bolus followed by eight to 16 serial 2-sec images and a 500,000-count immediate static image. Images were evaluated for (1) the time and intensity of pancreatic peak radioactivity relative to the time and intensity of the iliac arterial peak; (2) relative pancreatic to iliac arterial intensity on the static image; and (3)more » size, homogeneity, and definition of the pancreas. Clinical diagnoses at the time of scintigraphy of normal function (n = 36), rejection (n = 13), pancreatitis (n = 6), or arterial thrombosis (n = 1) were based on insulin requirement, urine amylase, serum glucose, serum amylase, response to therapy, cultures, CT, MR, sonography, scintigraphy with 67Ga or 111In-WBCs, percutaneous drainage results, angiography, surgery, and pathologic examination of resected transplants. Three 99mTc-DTPA perfusion studies showed no pancreatic perfusion, four showed decreasing perfusion on serial studies, and five showed progressive loss of definition of the pancreas on serial studies. Of the three patients with no detectable perfusion, one had a normally functioning transplant, one had arterial thrombosis with transplant infarction, and one had severe rejection with minimal function. Decreasing perfusion was associated with rejection in three patients and pancreatitis in one. Decreasing definition was seen in four patients with rejection and one with pancreatitis. We conclude that perfusion scintigraphy is useful, primarily when performed serially, although nonspecific for evaluating pancreas transplants.« less

  19. Impact of variant pancreatic arterial anatomy and overlap in regional perfusion on the interpretation of selective arterial calcium stimulation with hepatic venous sampling for preoperative localization of occult insulinoma.

    PubMed

    Thompson, Scott M; Vella, Adrian; Service, F John; Grant, Clive S; Thompson, Geoffrey B; Andrews, James C

    2015-07-01

    To determine the impact of variant pancreatic arterial anatomy and overlap in regional perfusion on the interpretation of selective arterial calcium stimulation (SACST) with hepatic venous sampling for preoperative localization of occult insulinoma. An institutional review board-approved retrospective review was undertaken of 42 patients with surgically confirmed, occult insulinoma who underwent SACST from January 1996 to March 2014. Location of the insulinoma was predicted initially based on the biochemical results of SACST alone according to Doppman's criteria. Pancreatic arteriograms were reviewed blinded to the biochemical results and the regional perfusion of each artery assessed. The anatomic and perfusion data were combined with the biochemical results to make a second prediction and compared with the surgical findings. The biochemical results were positive in 1, 2, and 3 arterial distributions in 73.8%, 21.4%, and 4.8% of patients, respectively. The celiac trunk and superior mesenteric artery (SMA) anatomy were aberrant in 38.1% and 35.7% of patients, respectively. Clinically significant variations included dorsal pancreatic artery replaced to SMA (21.4%) and celiac stenosis (4.8%). Significant variation and overlap in regional pancreatic perfusion was observed, particularly for the SMA. Sensitivity for insulinoma localization was 54.8% (diagnostic arteriography), 73.8% (biochemical data), 88.1% (biochemical, anatomic, perfusion data), and 92.8% (arteriographic, biochemical, anatomic, perfusion data). Careful review of the pancreatic arterial anatomy and regional perfusion is critical for correct interpretation of the biochemical results of SACST and improves the sensitivity of localization for occult insulinoma, particularly in the presence of pancreatic arterial variants or overlap in regional perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells.

    PubMed

    Baird, Michelle A; Billington, Neil; Wang, Aibing; Adelstein, Robert S; Sellers, James R; Fischer, Robert S; Waterman, Clare M

    2017-01-15

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. © 2017 Baird et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Validation of a stereo camera system to quantify brain deformation due to breathing and pulsatility.

    PubMed

    Faria, Carlos; Sadowsky, Ofri; Bicho, Estela; Ferrigno, Giancarlo; Joskowicz, Leo; Shoham, Moshe; Vivanti, Refael; De Momi, Elena

    2014-11-01

    A new stereo vision system is presented to quantify brain shift and pulsatility in open-skull neurosurgeries. The system is endowed with hardware and software synchronous image acquisition with timestamp embedding in the captured images, a brain surface oriented feature detection, and a tracking subroutine robust to occlusions and outliers. A validation experiment for the stereo vision system was conducted against a gold-standard optical tracking system, Optotrak CERTUS. A static and dynamic analysis of the stereo camera tracking error was performed tracking a customized object in different positions, orientations, linear, and angular speeds. The system is able to detect an immobile object position and orientation with a maximum error of 0.5 mm and 1.6° in all depth of field, and tracking a moving object until 3 mm/s with a median error of 0.5 mm. Three stereo video acquisitions were recorded from a patient, immediately after the craniotomy. The cortical pulsatile motion was captured and is represented in the time and frequency domain. The amplitude of motion of the cloud of features' center of mass was inferior to 0.8 mm. Three distinct peaks are identified in the fast Fourier transform analysis related to the sympathovagal balance, breathing, and blood pressure with 0.03-0.05, 0.2, and 1 Hz, respectively. The stereo vision system presented is a precise and robust system to measure brain shift and pulsatility with an accuracy superior to other reported systems.

  2. LONG-TERM MECHANICAL CIRCULATORY SUPPORT (DESTINATION THERAPY): ON TRACK TO COMPETE WITH HEART TRANSPLANTATIO?

    PubMed Central

    Kirklin, James K.; Naftel, David C.; Pagani, Francis D.; Kormos, Robert L.; Stevenson, Lynne; Miller, Marissa; Young, James B.

    2012-01-01

    Objective(s) Average two-year survival following cardiac transplantation is approximately 80%. The evolution and subsequent approval of larger pulsatile and, more recently, continuous flow mechanical circulatory support (MCS) technology for destination therapy (DT) offers the potential for triage of some patients awaiting cardiac transplantation to DT. Methods The National Heart, Lung and Blood Institute Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) is a national multi-institutional study of chronic mechanical circulatory support. Between June 2006 and December 2011, 127 pulsatile and 1160 continuous flow pumps (24% of total primary LVADs) carried an initial strategy of DT therapy. Results By multivariable analysis, risk factors (p<0.05) for mortality following DT included older age, larger body mass index, history of cancer, history of cardiac surgery, INTERMACS level I (cardiogenic shock), dialysis, increased BUN, use of a pulsatile flow device and use of a RVAD. Among continuous flow LVAD patients who were not in cardiogenic shock, a particularly favorable survival was associated with no cancer, patients not in cardiogenic shock, and BUN < 50, resulting in one and two year survival of 88 and 80%. Conclusions 1) Evolution from pulsatile to continuous flow technology has dramatically improved one and two year survival; 2) Destination Therapy is not appropriate for patients with rapid hemodynamic deterioration; or severe right ventricular failure 4) Important subsets of continuous flow DT patients now enjoy survival which is competitive with heart transplantation out to about two years. PMID:22795459

  3. Development and evaluation of endurance test system for ventricular assist devices.

    PubMed

    Sumikura, Hirohito; Homma, Akihiko; Ohnuma, Kentaro; Taenaka, Yoshiyuki; Takewa, Yoshiaki; Mukaibayashi, Hiroshi; Katano, Kazuo; Tatsumi, Eisuke

    2013-06-01

    We developed a novel endurance test system that can arbitrarily set various circulatory conditions and has durability and stability for long-term continuous evaluation of ventricular assist devices (VADs), and we evaluated its fundamental performance and prolonged durability and stability. The circulation circuit of the present endurance test system consisted of a pulsatile pump with a small closed chamber (SCC), a closed chamber, a reservoir and an electromagnetic proportional valve. Two duckbill valves were mounted in the inlet and outlet of the pulsatile pump. The features of the circulation circuit are as follows: (1) the components of the circulation circuit consist of optimized industrial devices, giving durability; (2) the pulsatile pump can change the heart rate and stroke length (SL), as well as its compliance using the SCC. Therefore, the endurance test system can quantitatively reproduce various circulatory conditions. The range of reproducible circulatory conditions in the endurance test circuit was examined in terms of fundamental performance. Additionally, continuous operation for 6 months was performed in order to evaluate the durability and stability. The circulation circuit was able to set up a wide range of pressure and total flow conditions using the SCC and adjusting the pulsatile pump SL. The long-term continuous operation test demonstrated that stable, continuous operation for 6 months was possible without leakage or industrial device failure. The newly developed endurance test system demonstrated a wide range of reproducible circulatory conditions, durability and stability, and is a promising approach for evaluating the basic characteristics of VADs.

  4. Design and evaluation of a dry coated drug delivery system with floating-pulsatile release.

    PubMed

    Zou, Hao; Jiang, Xuetao; Kong, Lingshan; Gao, Shen

    2008-01-01

    The objective of this work was to develop and evaluate a floating-pulsatile drug delivery system intended for chronopharmacotherapy. Floating-pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. To overcome limitations of various approaches for imparting buoyancy, we generated the system which consisted of three different parts, a core tablet, containing the active ingredient, an erodible outer shell and a top cover buoyant layer. The dry coated tablet consists in a drug-containing core, coated by a hydrophilic erodible polymer which is responsible for a lag phase in the onset of pulsatile release. The buoyant layer, prepared with Methocel K4M, Carbopol 934P and sodium bicarbonate, provides buoyancy to increase the retention of the oral dosage form in the stomach. The effect of the hydrophilic erodible polymer characteristics on the lag time and drug release was investigated. Developed formulations were evaluated for their buoyancy, dissolution and pharmacokinetic, as well gamma-scintigraphically. The results showed that a certain lag time before the drug released generally due to the erosion of the dry coated layer. Floating time was controlled by the quantity and composition of the buoyant layer. Both pharmacokinetic and gamma-scintigraphic data point out the capability of the system of prolonged residence of the tablets in the stomach and releasing drugs after a programmed lag time. (c) 2007 Wiley-Liss, Inc.

  5. Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning.

    PubMed

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C

    2013-05-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    PubMed Central

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  7. An In Vitro Perfusion System to Enhance Outflow Studies in Mouse Eyes

    PubMed Central

    Kizhatil, Krishnakumar; Chlebowski, Arthur; Tolman, Nicholas G.; Freeburg, Nelson F.; Ryan, Margaret M.; Shaw, Nicholas N.; Kokini, Alexander D. M.; Marchant, Jeffrey K.; John, Simon W. M.

    2016-01-01

    Purpose The molecular mechanisms controlling aqueous humor (AQH) outflow and IOP need much further definition. The mouse is a powerful system for characterizing the mechanistic basis of AQH outflow. To enhance outflow studies in mice, we developed a perfusion system that is based on human anterior chamber perfusion culture systems. Our mouse system permits previously impractical experiments. Methods We engineered a computer-controlled, pump-based perfusion system with a platform for mounting whole dissected mouse eyes (minus lens and iris, ∼45% of drainage tissue is perfused). We tested the system's ability to monitor outflow and tested the effects of the outflow-elevating drug, Y27632, a rho-associated protein kinase (ROCK) inhibitor. Finally, we tested the system's ability to detect genetically determined decreases in outflow by determining if deficiency of the candidate genes Nos3 and Cav1 alter outflow. Results Using our system, the outflow facility (C) of C57BL/6J mouse eyes was found to range between 7.7 and 10.4 nl/minutes/mm Hg (corrected for whole eye). Our system readily detected a 74.4% Y27632-induced increase in C. The NOS3 inhibitor L-NG-nitroarginine methyl ester (L-NAME) and a Nos3 null mutation reduced C by 28.3% and 35.8%, respectively. Similarly, in Cav1 null eyes C was reduced by 47.8%. Conclusions We engineered a unique perfusion system that can accurately measure changes in C. We then used the system to show that NOS3 and CAV1 are key components of mechanism(s) controlling outflow. PMID:27701632

  8. Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers.

    PubMed

    Alford, Sara K; van Beek, Edwin J R; McLennan, Geoffrey; Hoffman, Eric A

    2010-04-20

    Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.

  9. The effect of supine exercise on the distribution of regional pulmonary blood flow measured using proton MRI

    PubMed Central

    Hall, E. T.; Sá, R. C.; Holverda, S.; Arai, T. J.; Dubowitz, D. J.; Theilmann, R. J.; Prisk, G. K.

    2013-01-01

    The Zone model of pulmonary perfusion predicts that exercise reduces perfusion heterogeneity because increased vascular pressure redistributes flow to gravitationally nondependent lung, and causes dilation and recruitment of blood vessels. However, during exercise in animals, perfusion heterogeneity as measured by the relative dispersion (RD, SD/mean) is not significantly decreased. We evaluated the effect of exercise on pulmonary perfusion in six healthy supine humans using magnetic resonance imaging (MRI). Data were acquired at rest, while exercising (∼27% of maximal oxygen consumption) using a MRI-compatible ergometer, and in recovery. Images were acquired in most of the right lung in the sagittal plane at functional residual capacity, using a 1.5-T MR scanner equipped with a torso coil. Perfusion was measured using arterial spin labeling (ASL-FAIRER) and regional proton density using a fast multiecho gradient-echo sequence. Perfusion images were corrected for coil-based signal heterogeneity, large conduit vessels removed and quantified (in ml·min−1·ml−1) (perfusion), and also normalized for density and quantified (in ml·min−1·g−1) (density-normalized perfusion, DNP) accounting for tissue redistribution. DNP increased during exercise (11.1 ± 3.5 rest, 18.8 ± 2.3 exercise, 13.2 ± 2.2 recovery, ml·min−1·g−1, P < 0.0001), and the increase was largest in nondependent lung (110 ± 61% increase in nondependent, 63 ± 35% in mid, 70 ± 33% in dependent, P < 0.005). The RD of perfusion decreased with exercise (0.93 ± 0.21 rest, 0.73 ± 0.13 exercise, 0.94 ± 0.18 recovery, P < 0.005). The RD of DNP showed a similar trend (0.82 ± 0.14 rest, 0.75 ± 0.09 exercise, 0.81 ± 0.10 recovery, P = 0.13). In conclusion, in contrast to animal studies, in supine humans, mild exercise decreased perfusion heterogeneity, consistent with Zone model predictions. PMID:24356515

  10. Changes in body temperature of the unanaesthetized monkey produced by sodium and calcium ions perfused through the cerebral ventricles

    PubMed Central

    Myers, R. D.; Veale, W. L.; Yaksh, T. L.

    1971-01-01

    1. In the unanaesthetized Rhesus monkey, solutions containing sodium, calcium, potassium or magnesium in excess of the normal concentration of extracellular fluid were perfused from a lateral to the fourth ventricle through chronically implanted cannulae. 2. Sodium (11·0-88·0 mM in excess of the physiological concentration) perfused through the ventricles, caused an immediate rise in body temperature which was accompanied by vasoconstriction, piloerection and shivering. The latency of the hyperthermia was related directly to the rate of perfusion and the concentration of sodium, whereas the magnitude of the response depended upon the concentration only. When the perfusion was terminated, shivering ceased and the temperature of the monkey returned to the base line level. 3. When calcium ions were perfused in concentrations 2·5-47·9 mM in excess of that of extracellular fluid, a fall in the temperature of the animal occurred. The magnitude of the decreases depended upon the concentration of calcium in the perfusion fluid. Vasodilatation, sedation and a reduction in withdrawal reflexes accompanied the calcium-induced hypothermia. After the perfusion ended, the temperature continued to fall until the monkey began to shiver and vasoconstriction was observed in many skin areas. 4. The perfusion through the cerebral ventricles with modified Krebs solution alone or with the Krebs solution which contained potassium or magnesium ions in concentrations five to ten times normal had virtually no effect on the temperature of the monkey. 5. Since the temperature of the monkey was unchanged as long as the physiological ratio of sodium to calcium in the perfusion fluid remained constant, we conclude that the balance between these two essential cations within the brain stem could determine the neural mechanism whereby the set-point for body temperature of the primate is established. PMID:4999638

  11. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those twomore » CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t-test. Results: The mean TRE (and standard deviation) was 0.6 ± 0.7 mm (smaller than the voxel dimension) for DIR between pre contrast and postcontrast end-inspiratory CT image data sets. No singularities were observed in the displacement vector fields. The mean HU enhancement (and standard deviation) was 37.3 ± 10.5 HU for normal lung subjects and 30.7 ± 13.5 HU for diseased lung subjects. Spatial heterogeneity of regional perfusion was found to be higher for diseased lung subjects than for normal lung subjects, i.e., a mean coefficient of variation of 2.06 vs 1.59 (p = 0.07). The average gravitationally directed gradient was strong and significant (R{sup 2} = 0.99, p < 0.01) for normal lung dogs, whereas it was moderate and nonsignificant (R{sup 2} = 0.61, p = 0.12) for diseased lung dogs. Conclusions: This canine study demonstrated the accuracy of DIR with subvoxel TREs on average, higher spatial heterogeneity of regional perfusion for diseased lung subjects than for normal lung subjects, and a strong gravitationally directed gradient for normal lung subjects, providing proof-of-principle for single-energy CT pulmonary perfusion imaging. Further studies such as comparison with other perfusion imaging modalities will be necessary to validate the physiological significance.« less

  12. Steps for the autologous ex vivo perfused porcine liver-kidney experiment.

    PubMed

    Chung, Wen Yuan; Eltweri, Amar M; Isherwood, John; Haqq, Jonathan; Ong, Seok Ling; Gravante, Gianpiero; Lloyd, David M; Metcalfe, Matthew S; Dennison, Ashley R

    2013-12-18

    The use of ex vivo perfused models can mimic the physiological conditions of the liver for short periods, but to maintain normal homeostasis for an extended perfusion period is challenging. We have added the kidney to our previous ex vivo perfused liver experiment model to reproduce a more accurate physiological state for prolonged experiments without using live animals. Five intact livers and kidneys were retrieved post-mortem from sacrificed pigs on different days and perfused for a minimum of 6 hr. Hourly arterial blood gases were obtained to analyze pH, lactate, glucose and renal parameters. The primary endpoint was to investigate the effect of adding one kidney to the model on the acid base balance, glucose, and electrolyte levels. The result of this liver-kidney experiment was compared to the results of five previous liver only perfusion models. In summary, with the addition of one kidney to the ex vivo liver circuit, hyperglycemia and metabolic acidosis were improved. In addition this model reproduces the physiological and metabolic responses of the liver sufficiently accurately to obviate the need for the use of live animals. The ex vivo liver-kidney perfusion model can be used as an alternative method in organ specific studies. It provides a disconnection from numerous systemic influences and allows specific and accurate adjustments of arterial and venous pressures and flow.

  13. The role of T1 perfusion-based classification in magnetic resonance-guided high-intensity focused ultrasound ablation of uterine fibroids.

    PubMed

    Keserci, Bilgin; Duc, Nguyen Minh

    2017-12-01

    To comparatively evaluate the role of magnetic resonance (MR) T1 perfusion-based time-signal intensity (SI) curves of fibroid tissue and the myometrium in classification of fibroids for predicting treatment outcomes of high-intensity focused ultrasound (HIFU) treatment. The fibroids of 74 women who underwent MR-HIFU treatment were classified into group A (time-SI curve of fibroid lower than that of the myometrium) and group B (time-SI curve of fibroid equal to or higher than that of the myometrium). Non-perfused volume (NPV) ratios immediately after treatment and fibroid volume reduction ratios and symptom severity scores (SSS) at the 6-month follow-up were retrospectively assessed. The immediate NPV ratios in groups A and B were 95.3 ± 6.3% (n = 62) and 63.8 ± 11% (n = 12), respectively. At the 6-month follow-up, the fibroid volume reduction ratios in groups A and B were 0.52 ± 0.14 (n = 50) and 0.07 ± 0.14 (n = 11), with the corresponding improvement in mean transformed SSS being 0.86 ± 0.14 and 0.19 ± 0.3, respectively. No serious adverse effects were reported. Our novel classification method could play an important role in classifying fibroids for predicting the immediate outcomes of HIFU treatment. • MRI is an important modality for outcome prediction in HIFU treatment • Patient selection is a significant factor for achieving high NPV ratio • NPV ratio is very strongly correlated with T1 perfusion-based classification • T1 perfusion-based classification is a strong predictor of treatment outcome.

  14. Treatment of idiopathic hypogonadotropic hypogonadism in men with luteinizing hormone-releasing hormone: a comparison of treatment with daily injections and with the pulsatile infusion pump.

    PubMed

    Shargil, A A

    1987-03-01

    Thirty husbands in childless couples, aged 24 to 35 years, were treated with luteinizing hormone-releasing hormone (LH-RH) for idiopathic hypogonadotropic hypogonadism (IHH) of peripubertal (incomplete) type. They were azoospermic or oligospermic, with less than 1.5 X 10(6)/ml nonmotile spermatozoa. The diagnosis of IHH was based on clinical and laboratory features and testicular biopsy specimen study and was further supported by results of stimulation tests and gonadotropin-releasing hormone (GnRH) test. Two treatment modalities were used: subcutaneous injections of 500 micrograms LH-RH twice daily; and perpetual subcutaneous injection, via portable infusion pump, of 25 ng/kg LH-RH, at 90-minute intervals. Two patients required a short second period of pulsatile treatment to cause a second pregnancy of their spouses. The pump proved to yield better results, compared with intermittent injections, in respect to endocrine responses, spermatogenesis, and fertility capacity. Normal levels of luteinizing hormone and follicle-stimulating hormone were reached in 2 to 3 weeks and normal testosterone levels in 8 to 10 weeks from the start of treatment. Sperm counts rose to greater than 60 X 10(6)/ml viable spermatozoa with less than 15% of abnormal forms in 3 to 5 months, and the wives conceived. Of a total of 18 deliveries of healthy infants, 12 offspring were identified genetically with their fathers. Four women were still pregnant at the conclusion of the study. The pump was well tolerated, without special operational problems to the patients. Pulsatile treatment is therefore recommended in the treatment of well-diagnosed and carefully selected cases of incomplete IHH.

  15. A novel decision tree approach based on transcranial Doppler sonography to screen for blunt cervical vascular injuries.

    PubMed

    Purvis, Dianna; Aldaghlas, Tayseer; Trickey, Amber W; Rizzo, Anne; Sikdar, Siddhartha

    2013-06-01

    Early detection and treatment of blunt cervical vascular injuries prevent adverse neurologic sequelae. Current screening criteria can miss up to 22% of these injuries. The study objective was to investigate bedside transcranial Doppler sonography for detecting blunt cervical vascular injuries in trauma patients using a novel decision tree approach. This prospective pilot study was conducted at a level I trauma center. Patients undergoing computed tomographic angiography for suspected blunt cervical vascular injuries were studied with transcranial Doppler sonography. Extracranial and intracranial vasculatures were examined with a portable power M-mode transcranial Doppler unit. The middle cerebral artery mean flow velocity, pulsatility index, and their asymmetries were used to quantify flow patterns and develop an injury decision tree screening protocol. Student t tests validated associations between injuries and transcranial Doppler predictive measures. We evaluated 27 trauma patients with 13 injuries. Single vertebral artery injuries were most common (38.5%), followed by single internal carotid artery injuries (30%). Compared to patients without injuries, mean flow velocity asymmetry was higher for single internal carotid artery (P = .003) and single vertebral artery (P = .004) injuries. Similarly, pulsatility index asymmetry was higher in single internal carotid artery (P = .015) and single vertebral artery (P = .042) injuries, whereas the lowest pulsatility index was elevated for bilateral vertebral artery injuries (P = .006). The decision tree yielded 92% specificity, 93% sensitivity, and 93% correct classifications. In this pilot feasibility study, transcranial Doppler measures were significantly associated with the blunt cervical vascular injury status, suggesting that transcranial Doppler sonography might be a viable bedside screening tool for trauma. Patient-specific hemodynamic information from transcranial Doppler assessment has the potential to alter patient care pathways to improve outcomes.

  16. Carotid flow pulsatility is higher in women with greater decrement in gait speed during multi-tasking.

    PubMed

    Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael

    2017-05-01

    Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p <0.01). Tertiles were formed based on the percent change in gait speed for each condition. No vascular parameters differed across tertiles for DT. In contrast, carotid flow pulsatility (1.85±0.43 vs. 1.47±0.42, p=0.02) and resistance (0.75±0.07 vs. 0.68±0.07, p=0.01) indices were higher in women with more decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Application of a Simplified Method for Estimating Perfusion Derived from Diffusion-Weighted MR Imaging in Glioma Grading.

    PubMed

    Cao, Mengqiu; Suo, Shiteng; Han, Xu; Jin, Ke; Sun, Yawen; Wang, Yao; Ding, Weina; Qu, Jianxun; Zhang, Xiaohua; Zhou, Yan

    2017-01-01

    Purpose : To evaluate the feasibility of a simplified method based on diffusion-weighted imaging (DWI) acquired with three b -values to measure tissue perfusion linked to microcirculation, to validate it against from perfusion-related parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging, and to investigate its utility to differentiate low- from high-grade gliomas. Materials and Methods : The prospective study was approved by the local institutional review board and written informed consent was obtained from all patients. From May 2016 and May 2017, 50 patients confirmed with glioma were assessed with multi- b -value DWI and DCE MR imaging at 3.0 T. Besides conventional apparent diffusion coefficient (ADC 0,1000 ) map, perfusion-related parametric maps for IVIM-derived perfusion fraction ( f ) and pseudodiffusion coefficient (D*), DCE MR imaging-derived pharmacokinetic metrics, including K trans , v e and v p , as well as a metric named simplified perfusion fraction (SPF), were generated. Correlation between perfusion-related parameters was analyzed by using the Spearman rank correlation. All imaging parameters were compared between the low-grade ( n = 19) and high-grade ( n = 31) groups by using the Mann-Whitney U test. The diagnostic performance for tumor grading was evaluated with receiver operating characteristic (ROC) analysis. Results : SPF showed strong correlation with IVIM-derived f and D* ( ρ = 0.732 and 0.716, respectively; both P < 0.001). Compared with f , SPF was more correlated with DCE MR imaging-derived K trans ( ρ = 0.607; P < 0.001) and v p ( ρ = 0.397; P = 0.004). Among all parameters, SPF achieved the highest accuracy for differentiating low- from high-grade gliomas, with an area under the ROC curve value of 0.942, which was significantly higher than that of ADC 0,1000 ( P = 0.004). By using SPF as a discriminative index, the diagnostic sensitivity and specificity were 87.1% and 94.7%, respectively, at the optimal cut-off value of 19.26%. Conclusion : The simplified method to measure tissue perfusion based on DWI by using three b -values may be helpful to differentiate low- from high-grade gliomas. SPF may serve as a valuable alternative to measure tumor perfusion in gliomas in a noninvasive, convenient and efficient way.

  18. Reproducibility of Lobar Perfusion and Ventilation Quantification Using SPECT/CT Segmentation Software in Lung Cancer Patients.

    PubMed

    Provost, Karine; Leblond, Antoine; Gauthier-Lemire, Annie; Filion, Édith; Bahig, Houda; Lord, Martin

    2017-09-01

    Planar perfusion scintigraphy with 99m Tc-labeled macroaggregated albumin is often used for pretherapy quantification of regional lung perfusion in lung cancer patients, particularly those with poor respiratory function. However, subdividing lung parenchyma into rectangular regions of interest, as done on planar images, is a poor reflection of true lobar anatomy. New tridimensional methods using SPECT and SPECT/CT have been introduced, including semiautomatic lung segmentation software. The present study evaluated inter- and intraobserver agreement on quantification using SPECT/CT software and compared the results for regional lung contribution obtained with SPECT/CT and planar scintigraphy. Methods: Thirty lung cancer patients underwent ventilation-perfusion scintigraphy with 99m Tc-macroaggregated albumin and 99m Tc-Technegas. The regional lung contribution to perfusion and ventilation was measured on both planar scintigraphy and SPECT/CT using semiautomatic lung segmentation software by 2 observers. Interobserver and intraobserver agreement for the SPECT/CT software was assessed using the intraclass correlation coefficient, Bland-Altman plots, and absolute differences in measurements. Measurements from planar and tridimensional methods were compared using the paired-sample t test and mean absolute differences. Results: Intraclass correlation coefficients were in the excellent range (above 0.9) for both interobserver and intraobserver agreement using the SPECT/CT software. Bland-Altman analyses showed very narrow limits of agreement. Absolute differences were below 2.0% in 96% of both interobserver and intraobserver measurements. There was a statistically significant difference between planar and SPECT/CT methods ( P < 0.001) for quantification of perfusion and ventilation for all right lung lobes, with a maximal mean absolute difference of 20.7% for the right middle lobe. There was no statistically significant difference in quantification of perfusion and ventilation for the left lung lobes using either method; however, absolute differences reached 12.0%. The total right and left lung contributions were similar for the two methods, with a mean difference of 1.2% for perfusion and 2.0% for ventilation. Conclusion: Quantification of regional lung perfusion and ventilation using SPECT/CT-based lung segmentation software is highly reproducible. This tridimensional method yields statistically significant differences in measurements for right lung lobes when compared with planar scintigraphy. We recommend that SPECT/CT-based quantification be used for all lung cancer patients undergoing pretherapy evaluation of regional lung function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  19. Decreased Regional Cerebral Perfusion in Moderate-Severe Obstructive Sleep Apnoea during Wakefulness.

    PubMed

    Innes, Carrie R H; Kelly, Paul T; Hlavac, Michael; Melzer, Tracy R; Jones, Richard D

    2015-05-01

    To investigate gray matter volume and concentration and cerebral perfusion in people with untreated obstructive sleep apnea (OSA) while awake. Voxel-based morphometry to quantify gray matter concentration and volume. Arterial spin labeling perfusion imaging to quantify cerebral perfusion. Lying supine in a 3-T magnetic resonance imaging scanner in the early afternoon. 19 people with OSA (6 females, 13 males; mean age 56.7 y, range 41-70; mean AHI 18.5, range 5.2-52.8) and 19 controls (13 females, 6 males; mean age: 50.0 y, range 41-81). N/A. There were no differences in regional gray matter concentration or volume between participants with OSA and controls. Neither was there any difference in regional perfusion between controls and people with mild OSA (n = 11). However, compared to controls, participants with moderate-severe OSA (n = 8) had decreased perfusion (while awake) in three clusters. The largest cluster incorporated, bilaterally, the paracingulate gyrus, anterior cingulate gyrus, and subcallosal cortex, and the left putamen and left frontal orbital cortex. The second cluster was right-lateralized, incorporating the posterior temporal fusiform cortex, parahippocampal gyrus, and hippocampus. The third cluster was located in the right thalamus. There is decreased regional perfusion during wakefulness in participants with moderate-severe obstructive sleep apnea, and these are in brain regions which have shown decreased regional gray matter volume in previous studies in people with severe OSA. Thus, we hypothesize that cerebral perfusion changes are evident before (and possibly underlie) future structural changes. © 2015 Associated Professional Sleep Societies, LLC.

  20. Alteration of cerebral perfusion in patients with idiopathic normal pressure hydrocephalus measured by 3D perfusion weighted magnetic resonance imaging.

    PubMed

    Walter, Christof; Hertel, F; Naumann, E; Mörsdorf, M

    2005-12-01

    It is controversial whether alteration of cerebral perfusion plays an important role in the pathophysiology of patients with idiopathic normal pressure hydrocephalus (NPH) and can help to predict the outcome after shunt surgery. 28 patients with suspected NPH were examined clinically (Homburg Hydrocephalus Scale, walking test, incontinence protocol) and by 3D dynamic susceptibility based perfusion weighted magnetic resonance imaging (PWI-MRI) before and after cerebrospinal fluid release (spinal tap test, STT). The perfusion parameters (negative integral (NI), time of arrival (T0), time to peak (TTP), mean transit time, and the difference TTP-T0 were analysed. Three different groups of patients were identified preoperatively: In group 1 seven patients showed an increase in the cerebral perfusion and a clinical improvement after STT. The second group (9 patients) also revealed an increase of the cerebral perfusion, but no significant alteration of the clinical assessment could be found. In the third group neither the cerebral perfusion nor the clinical assessment changed. 14 of the 16 patients (group 1 and 2) were examined three months after shunt placement. 11 patients showed a good or excellent result, 2 patients revealed a fair assessment, and only 1 patient had transiently improved. No patient was downgraded after shunting. In the patient group 1 and 2 the NI increased significantly (effect size: 34%), whereas in group 3 no significant alteration of NI was observed. PWI-MRI improves the prediction of outcome after shunt placement in patients with NPH and can offer new insights into the pathophysiology.

  1. Entropy as an indicator of cerebral perfusion in patients with increased intracranial pressure.

    PubMed

    Khan, James; Mariappan, Ramamani; Venkatraghavan, Lashmi

    2014-07-01

    Changes in electroencephalogram (EEG) patterns correlate well with changes in cerebral perfusion pressure (CPP) and hence entropy and bispectral index values may also correlate with CPP. To highlight the potential application of entropy, an EEG-based anesthetic depth monitor, on indicating cerebral perfusion in patients with increased intracranial pressure (ICP), we report two cases of emergency neurosurgical procedure in patients with raised ICP where anesthesia was titrated to entropy values and the entropy values suddenly increased after cranial decompression, reflecting the increase in CPP. Maintaining systemic blood pressure in order to maintain the CPP is the anesthetic goal while managing patients with raised ICP. EEG-based anesthetic depth monitors may hold valuable information on guiding anesthetic management in patients with decreased CPP for better neurological outcome.

  2. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures.

    PubMed

    Suntornnond, Ratima; Tan, Edgar Yong Sheng; An, Jia; Chua, Chee Kai

    2017-12-04

    Vascularization is one major obstacle in bioprinting and tissue engineering. In order to create thick tissues or organs that can function like original body parts, the presence of a perfusable vascular system is essential. However, it is challenging to bioprint a hydrogel-based three-dimensional vasculature-like structure in a single step. In this paper, we report a new hydrogel-based composite that offers impressive printability, shape integrity, and biocompatibility for 3D bioprinting of a perfusable complex vasculature-like structure. The hydrogel composite can be used on a non-liquid platform and is printable at human body temperature. Moreover, the hydrogel composite supports both cell proliferation and cell differentiation. Our results represent a potentially new vascularization strategy for 3D bioprinting and tissue engineering.

  3. Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging

    PubMed Central

    Beaton, L.; Mazzaferri, J.; Lalonde, F.; Hidalgo-Aguirre, M.; Descovich, D.; Lesk, M. R.; Costantino, S.

    2015-01-01

    We have developed a novel optical approach to determine pulsatile ocular volume changes using automated segmentation of the choroid, which, together with Dynamic Contour Tonometry (DCT) measurements of intraocular pressure (IOP), allows estimation of the ocular rigidity (OR) coefficient. Spectral Domain Optical Coherence Tomography (OCT) videos were acquired with Enhanced Depth Imaging (EDI) at 7Hz during ~50 seconds at the fundus. A novel segmentation algorithm based on graph search with an edge-probability weighting scheme was developed to measure choroidal thickness (CT) at each frame. Global ocular volume fluctuations were derived from frame-to-frame CT variations using an approximate eye model. Immediately after imaging, IOP and ocular pulse amplitude (OPA) were measured using DCT. OR was calculated from these peak pressure and volume changes. Our automated segmentation algorithm provides the first non-invasive method for determining ocular volume change due to pulsatile choroidal filling, and the estimation of the OR constant. Future applications of this method offer an important avenue to understanding the biomechanical basis of ocular pathophysiology. PMID:26137373

  4. Bioimpedance Harmonic Analysis as a Diagnostic Tool to Assess Regional Circulation and Neural Activity

    NASA Astrophysics Data System (ADS)

    Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.

    2013-04-01

    The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.

  5. SPH simulations of WBC adhesion to the endothelium: the role of haemodynamics and endothelial binding kinetics.

    PubMed

    Gholami, Babak; Comerford, Andrew; Ellero, Marco

    2015-11-01

    A multiscale Lagrangian particle solver introduced in our previous work is extended to model physiologically realistic near-wall cell dynamics. Three-dimensional simulation of particle trajectories is combined with realistic receptor-ligand adhesion behaviour to cover full cell interactions in the vicinity of the endothelium. The selected stochastic adhesion model, which is based on a Monte Carlo acceptance-rejection method, fits in our Lagrangian framework and does not compromise performance. Additionally, appropriate inflow/outflow boundary conditions are implemented for our SPH solver to enable realistic pulsatile flow simulation. The model is tested against in-vitro data from a 3D geometry with a stenosis and sudden expansion. In both steady and pulsatile flow conditions, results show close agreement with the experimental ones. Furthermore we demonstrate, in agreement with experimental observations, that haemodynamics alone does not account for adhesion of white blood cells, in this case U937 monocytic human cells. Our findings suggest that the current framework is fully capable of modelling cell dynamics in large arteries in a realistic and efficient manner.

  6. Control volume based hydrocephalus research

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Voorhees, Abram; Wei, Timothy

    2008-11-01

    Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.

  7. [ARTCEREB irrigation and perfusion solution for cerebrospinal surgery: pharmacological assessment using human astrocytes exposed to test solutions].

    PubMed

    Nishimura, Masuhiro; Doi, Kazuhisa; Enomoto, Riyo; Lee, Eibai; Naito, Shinsaku; Yamauchi, Aiko

    2009-09-01

    ARTCEREB irrigation and perfusion solution (Artcereb) is a preparation intended for the irrigation and perfusion of the cerebral ventricles, and it is therefore important to evaluate the effects of Artcereb on brain cells. In vitro assessment of the effects of Artcereb in cell cultures of human fetal astrocytes was conducted in comparison with normal saline and lactated Ringer's solution. The effects of exposure to Artcereb were evaluated based on microscopic images of the mitochondria stained with rhodamine 123. The effects of exposure to Artcereb on cell function were also evaluated by quantitative analysis of mitochondrial activity based on rhodamine 123 and (3)H-thymidine incorporation. Morphological changes in nuclear structure were also evaluated. The results of the present study showed that cell function in cell cultures of human astrocytes was relatively unaffected by exposure to Artcereb as compared with normal saline or lactated Ringer's solution, suggesting that Artcereb has less effect on brain cells than normal saline or lactated Ringer's solution when used for the irrigation or perfusion of the cerebral ventricles.

  8. Measurement of myocardial perfusion and infarction size using computer-aided diagnosis system for myocardial contrast echocardiography.

    PubMed

    Du, Guo-Qing; Xue, Jing-Yi; Guo, Yanhui; Chen, Shuang; Du, Pei; Wu, Yan; Wang, Yu-Hang; Zong, Li-Qiu; Tian, Jia-Wei

    2015-09-01

    Proper evaluation of myocardial microvascular perfusion and assessment of infarct size is critical for clinicians. We have developed a novel computer-aided diagnosis (CAD) approach for myocardial contrast echocardiography (MCE) to measure myocardial perfusion and infarct size. Rabbits underwent 15 min of coronary occlusion followed by reperfusion (group I, n = 15) or 60 min of coronary occlusion followed by reperfusion (group II, n = 15). Myocardial contrast echocardiography was performed before and 7 d after ischemia/reperfusion, and images were analyzed with the CAD system on the basis of eliminating particle swarm optimization clustering analysis. The myocardium was quickly and accurately detected using contrast-enhanced images, myocardial perfusion was quantitatively calibrated and a color-coded map calibrated by contrast intensity and automatically produced by the CAD system was used to outline the infarction region. Calibrated contrast intensity was significantly lower in infarct regions than in non-infarct regions, allowing differentiation of abnormal and normal myocardial perfusion. Receiver operating characteristic curve analysis documented that -54-pixel contrast intensity was an optimal cutoff point for the identification of infarcted myocardium with a sensitivity of 95.45% and specificity of 87.50%. Infarct sizes obtained using myocardial perfusion defect analysis of original contrast images and the contrast intensity-based color-coded map in computerized images were compared with infarct sizes measured using triphenyltetrazolium chloride staining. Use of the proposed CAD approach provided observers with more information. The infarct sizes obtained with myocardial perfusion defect analysis, the contrast intensity-based color-coded map and triphenyltetrazolium chloride staining were 23.72 ± 8.41%, 21.77 ± 7.8% and 18.21 ± 4.40% (% left ventricle) respectively (p > 0.05), indicating that computerized myocardial contrast echocardiography can accurately measure infarct size. On the basis of the results, we believe the CAD method can quickly and automatically measure myocardial perfusion and infarct size and will, it is hoped, be very helpful in clinical therapeutics. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT.

    PubMed

    Pelgrim, Gert Jan; Dorrius, Monique; Xie, Xueqian; den Dekker, Martijn A M; Schoepf, U Joseph; Henzler, Thomas; Oudkerk, Matthijs; Vliegenthart, Rozemarijn

    2015-12-01

    To determine the diagnostic performance of computed tomography (CT) perfusion techniques for the detection of functionally relevant coronary artery disease (CAD) in comparison to reference standards, including invasive coronary angiography (ICA), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). PubMed, Web of Knowledge and Embase were searched from January 1, 1998 until July 1, 2014. The search yielded 9475 articles. After duplicate removal, 6041 were screened on title and abstract. The resulting 276 articles were independently analyzed in full-text by two reviewers, and included if the inclusion criteria were met. The articles reporting diagnostic parameters including true positive, true negative, false positive and false negative were subsequently evaluated for the meta-analysis. Results were pooled according to CT perfusion technique, namely snapshot techniques: single-phase rest, single-phase stress, single-phase dual-energy stress and combined coronary CT angiography [rest] and single-phase stress, as well the dynamic technique: dynamic stress CT perfusion. Twenty-two articles were included in the meta-analysis (1507 subjects). Pooled per-patient sensitivity and specificity of single-phase rest CT compared to rest SPECT were 89% (95% confidence interval [CI], 82-94%) and 88% (95% CI, 78-94%), respectively. Vessel-based sensitivity and specificity of single-phase stress CT compared to ICA-based >70% stenosis were 82% (95% CI, 64-92%) and 78% (95% CI, 61-89%). Segment-based sensitivity and specificity of single-phase dual-energy stress CT in comparison to stress MRI were 75% (95% CI, 60-85%) and 95% (95% CI, 80-99%). Segment-based sensitivity and specificity of dynamic stress CT perfusion compared to stress SPECT were 77% (95% CI, 67-85) and 89% (95% CI, 78-95%). For combined coronary CT angiography and single-phase stress CT, vessel-based sensitivity and specificity in comparison to ICA-based >50% stenosis were 84% (95% CI, 67-93%) and 93% (95% CI, 89-96%). This meta-analysis shows considerable variation in techniques and reference standards for CT of myocardial blood supply. While CT seems sensitive and specific for evaluation of hemodynamically relevant CAD, studies so far are limited in size. Standardization of myocardial perfusion CT technique is essential. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Pulsatile luteinising hormone releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome.

    PubMed

    Bayram, N; van Wely, M; Vandekerckhove, P; Lilford, R; van Der Veen, F

    2000-01-01

    In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intra-venous or subcutaneous route using a portable pump has been used successfully in patients with hypogonadotrophic hypogonadism. Assuming that the results would be similar in polycystic ovary syndrome (PCOS), pulsatile GnRH has been used to induce ovulation in patients with PCOS. But, although ovulation and pregnancy has been achieved, the use of pulsatile GnRH in PCOS patients is controversial. To assess the effectiveness of pulsatile GnRH administration in women with clomiphene-resistant polycystic ovary syndrome (PCOS), in terms of ovulation induction, pregnancy, miscarriage, multiple pregnancy and ovarian hyperstimulation syndrome (OHSS). The search strategy of the Menstrual Disorders and Subfertility review group was used to identify all relevant trials. Please see Review Group details. All relevant published RCTs were selected. Non-randomised controlled trials were eligible for inclusion if treatment consisted of GnRH administration versus another treatment to induce ovulation in subfertile women with PCOS. A computerised MEDLINE and EMBASE search was used to identify randomised and non randomised controlled trials. The reference lists of all studies found were checked for relevant articles. One RCT (Bringer 1985a) and one abstract (Coelingh 1983) were identified this way. Relevant data were extracted independently by two reviewers (NB, MW). Validity was assessed in terms of method of randomization, completeness of follow-up, presence or absence of cross-over and co-intervention. All trials were screened and analysed for predetermined quality criteria. 2X2 tables were generated for all the relevant outcomes. Odds ratios were generated using the Peto modified Mantel-Haenszel technique. Three RCTs and one non-randomised comparative trial were identified comparing four different treatments: GnRH versus HMG, GnRH following GnRHa pre-treatment versus no pre-treatment, GnRH and FSH versus FSH, and GnRH following GnRHa pre-treatment versus GnRH following oral contraceptive pre-treatment. This means that there was only one trial in any one comparison. In the first two studies, data of pre- and post-cross-over were not described separately. Therefore, these results could not be included in the MetaView analysis. The odds ratio for ovulation rate was 16 (95 % CI: 1.1-239) in the study comparing GnRH and FSH with FSH. When GnRH after GnRHa pre-treatment was compared with GnRH after oral contraceptive pre-treatment, an odds ratio of 7.5 (95 % CI: 1.2-46) was obtained. All trials were small and of too short duration to show any significance in pregnancy results. Per study only one to four pregnancies occurred. Multiple pregnancies were not seen. OHSS was seen only in the patients stimulated with HMG. The four trials describing four different comparisons with a short follow up (1 to 3 cycles) were too small to either prove or discard the value of pulsatile GnRH treatment in patients with polycystic ovary syndrome.

  11. Optimization of Spiral-Based Pulse Sequences for First Pass Myocardial Perfusion Imaging

    PubMed Central

    Salerno, Michael; Sica, Christopher T.; Kramer, Christopher M.; Meyer, Craig H.

    2010-01-01

    While spiral trajectories have multiple attractive features such as their isotropic resolution, acquisition efficiency, and robustness to motion, there has been limited application of these techniques to first pass perfusion imaging because of potential off-resonance and inconsistent data artifacts. Spiral trajectories may also be less sensitive to dark-rim artifacts (DRA) that are caused, at least in part, by cardiac motion. By careful consideration of the spiral trajectory readout duration, flip angle strategy, and image reconstruction strategy, spiral artifacts can be abated to create high quality first pass myocardial perfusion images with high SNR. The goal of this paper was to design interleaved spiral pulse sequences for first-pass myocardial perfusion imaging, and to evaluate them clinically for image quality and the presence of dark-rim, blurring, and dropout artifacts. PMID:21590802

  12. Transesophageal Doppler measurement of renal arterial blood flow velocities and indices in children.

    PubMed

    Zabala, Luis; Ullah, Sana; Pierce, Carol D'Ann; Gautam, Nischal K; Schmitz, Michael L; Sachdeva, Ritu; Craychee, Judith A; Harrison, Dale; Killebrew, Pamela; Bornemeier, Renee A; Prodhan, Parthak

    2012-06-01

    Doppler-derived renal blood flow indices have been used to assess renal pathologies. However, transesophageal ultrasonography (TEE) has not been previously used to assess these renal variables in pediatric patients. In this study, we (a) assessed whether TEE allows adequate visualization of the renal parenchyma and renal artery, and (b) evaluated the concordance of TEE Doppler-derived renal blood flow measurements/indices compared with a standard transabdominal renal ultrasound (TAU) in children. This prospective cohort study enrolled 28 healthy children between the ages of 1 and 17 years without known renal dysfunction who were undergoing atrial septal defect device closure in the cardiac catheterization laboratory. TEE was used to obtain Doppler renal artery blood velocities (peak systolic velocity, end-diastolic velocity, mean diastolic velocity, resistive index, and pulsatility index), and these values were compared with measurements obtained by TAU. Concordance correlation coefficient (CCC) was used to determine clinically significant agreement between the 2 methods. The Bland-Altman plots were used to determine whether these 2 methods agree sufficiently to be used interchangeably. Statistical significance was accepted at P ≤ 0.05. Obtaining 2-dimensional images of kidney parenchyma and Doppler-derived measurements using TEE in children is feasible. There was statistically significant agreement between the 2 methods for all measurements. The CCC between the 2 imaging techniques was 0.91 for the pulsatility index and 0.66 for the resistive index. These coefficients were sensitive to outliers. When the highest and lowest data points were removed from the analysis, the CCC between the 2 imaging techniques was 0.62 for the pulsatility index and 0.50 for the resistive index. The 95% confidence interval (CI) for pulsatility index was 0.35 to 0.98 and for resistive index was 0.21 to 0.89. The Bland-Altman plots indicate good agreement between the 2 methods; for the pulsatility index, the limits of agreement were -0.80 to 0.53. The correlation of the size of the measurement and the mean difference in methods (-0.14; 95% CI = -0.28, 0.01) was not statistically significant (r = 0.31, P = 0.17). For the resistive index, the limits of agreement were -0.22 to 0.12. The correlation of the size of the measurement and the mean difference in methods (-0.05; 95% CI = -0.09, -0.01) was not statistically significant (r = 0.10, P = 0.65). This study confirms the feasibility of obtaining 2-dimensional images of kidney parenchyma and Doppler-derived measurements using TEE in children. Angle-independent TEE Doppler-derived indices show significant concordance with those derived by TAU. Further studies are required to assess whether this correlation holds true in the presence of renal pathology. This technique has the potential to help modulate intraoperative interventions based on their impact on renal variables and may prove helpful in the perioperative period for children at risk of acute kidney injury.

  13. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    PubMed

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  14. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    PubMed Central

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  15. Development of a microimpedance pump for pulsatile flow transport - Part : Flow characteristics of the microimpedance pump. Part 2: A systematic study of steady and pulsatile transport in microscale cavities

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Derek

    Microfluidics offers an effective means to carry out a wide range of transport processes within a controlled microenvironment by drawing on the benefits imparted by increasing surface area to volume ratio at the microscale. Critical to the impact of microfluidics on integrated devices in the fields of bioengineering and biomedicine is the ability to transport fluids and biomolecules effectively particularly at the size scales involved. In this context a bio-inspired pumping mechanism, the valveless impedance pump, was explored for applications in microfluidics ranging from micro total analysis systems to microchannel cooling. Adhering to the basic principles of the impedance pump mechanism, pumps have been constructed at a variety of size scales from a few centimeters to a few hundred microns. The micro impedance pump is valveless, bidirectional, and can be constructed simply from a wide range of materials. Depending on the size of the pump flow rates range from nL/min to mL/min and pressures can be generated that exceed 20 kPa. Another benefit of the impedance pump is the pulsatile flow output which can be used in the context of microfluidic applications to enhance transport at low Reynolds numbers as well as metering in drug delivery. Pulsatile flow was therefore investigated as a method of augmenting transport in microfluidic systems. Micro PIV was used to study the affect of both steady and pulsatile flows on transport at low Reynolds number was examined in microscale rectangular cavities. Ventilation of the cavity contents was examined in terms of the residence time or average time a particle remains in the cavity region. Lagrangian coherent structures (LCS) were applied to empirical velocity fields to determine the impact of unsteadiness on time dependent boundaries to fluid transport present in the flow. Experimental results show that there are both frequencies which are beneficial and detrimental to cavity ventilation as well as certain frequencies which more evenly distribute particles originating in the cavity throughout the freestream.

  16. Relationship between Aortic Compliance and Impact of Cerebral Blood Flow Fluctuation to Dynamic Orthostatic Challenge in Endurance Athletes.

    PubMed

    Tomoto, Tsubasa; Imai, Tomoko; Ogoh, Shigehiko; Maeda, Seiji; Sugawara, Jun

    2018-01-01

    Aorta effectively buffers cardiac pulsatile fluctuation generated from the left ventricular (LV) which could be a mechanical force to high blood flow and low-resistance end-organs such as the brain. A dynamic orthostatic challenge may evoke substantial cardiac pulsatile fluctuation via the transient increases in venous return and stroke volume (SV). Particularly, this response may be greater in endurance-trained athletes (ET) who exhibit LV eccentric remodeling. The aim of this study was to determine the contribution of aortic compliance to the response of cerebral blood flow fluctuation to dynamic orthostatic challenge in ET and age-matched sedentary (SED) young healthy men. ET ( n = 10) and SED ( n = 10) underwent lower body negative pressure (LBNP) (-30 mmHg for 4 min) stimulation and release the pressure that initiates a rapid regain of limited venous return and consequent increase in SV. The recovery responses of central and middle cerebral arterial (MCA) hemodynamics from the release of LBNP (~15 s) were evaluated. SV (via Modeflow method) and pulsatile and systolic MCA (via transcranial Doppler) normalized by mean MCA velocity (MCAv) significantly increased after the cessation of LBNP in both groups. ET exhibited the higher ratio of SV to aortic pulse pressure (SV/ Ao PP), an index of aortic compliance, at the baseline compared with SED ( P < 0.01). Following the LBNP release, SV was significantly increased in SED by 14 ± 7% (mean ± SD) and more in ET by 30 ± 15%; nevertheless, normalized pulsatile, systolic, and diastolic MCAv remained constant in both groups. These results might be attributed to the concomitant with the increase in aortic compliance assessed by SV/ Ao PP. Importantly, the increase in SV/ Ao PP following the LBNP release was greater in ET than in SED ( P < 0.01), and significantly correlated with the baseline SV/ Ao PP ( r = 0.636, P < 0.01). These results suggest that the aortic compliance in the endurance athletes is able to accommodate the additional SV and buffer the potential increase in pulsatility at end-organs such as the brain.

  17. [Effectiveness and safety of atosiban vs. pulsatile administration of fenoterol in the treatment of preterm labour].

    PubMed

    Nonnenmacher, A; Hopp, H; Dudenhausen, J

    2009-10-01

    The aim of this study was to compare the efficacy and side effects of atosiban with those of fenoterol (pulsatile administration) for acute tocolysis. A prospective, open-label, randomised controlled trial was performed. Patients in preterm labour at 24+0 to 33+6 weeks of gestation were randomised to receive atosiban (A) or fenoterol (F) pulsatile administration. Primary outcome was the arrest of preterm labour. The proportion of woman remaining undelivered at 48 hours (86.3% atosiban group and 79.6% fenoterol group) and at 7 days (78.4% vs. 66.7%) was comparable. The incidence of maternal cardiovascular side effects was lower in the atosiban group (4% vs. 78%, p=0.0). Tocolysis was terminated as a result of maternal adverse effects in the fenoterol group (9%). Fetal tachycardia was lower in the atosiban group (2% vs. 22%). The mean duration of tocolytic administration was lower in the atosiban group (19 h vs. 24.5 h, p<0.05). The adverse effects in the pulsatile administration of fenoterol for short duration were only dependent on the initial dosage for the arrest of preterm labour. Neonatal outcome were similar between the treatment groups and were rather related to the gestational age not to the tocolytic agent. Atosiban was comparable in clinical effectiveness and was associated with fewer maternal and fetal adverse effects, so that fenoterol cannot be recommended. Completion of tocolytic therapy 12 hours after arrest of preterm labour is effective and associated with a short mean duration. Georg Thieme Verlag KG Stuttgart-New York.

  18. [Pulsatile total cavopulmonary shunt for hypoplastic right heart syndrome with abnormal systemic venous return--a case report].

    PubMed

    Oiwa, H; Kawauchi, M; Chikada, M; Yagyu, K; Kotsuka, Y; Furuse, A

    1995-01-01

    A pulsatile total cavopulmonary shunt was successfully performed on a 5-year-old girl with hypoplastic right heart syndrome associated with abnormal systemic venous return; at the same time, modified mitral valve replacement was performed for mitral regurgitation. The right atrium, tricuspid valve and right ventricle were all extremely dimunitive. The diameter of the tricuspid valve was 50% of normal and the volume of the right ventricle was 8.6% of normal. In addition, there were severe subpumonary stenosis, a restrictive ventricular septal defect (VSD) and an atrial septal defect (ASD). The bilateral superior venae cavae (SVCs) and the hepatic vein drained to the left atrium, and the inferior vena cava was infrahepatically interrupted with a hemiazygos connection to the left superior vena cava. At the operation, each SVC was anastomosed end-to-side to each branch of the pulmonary artery (PA). The restrictive ventricular septal defect and stenotic subpulmonary lesion were left. The diameter of the ASD was reduced from 12 mm to 7 mm. The main PA was neither divided nor banded. The pulsatile blood flow from the left heart to the PA was regurated by a native restrictive VSD and stenotic subpulmonary lesion, and that from the right heart via the ASD was limited by reducing the size of the ASD. These described anatomic arrangements produced adequate antegrade pulsatile flow in the PA, which might prevent the development of pulmonary arteriovenous fistulae and, besides permit transfer of drainage of the hepatic vein from the left to the right atrium via the ASD in future.

  19. Acute impact of drinking coffee on the cerebral and systemic vasculature.

    PubMed

    Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko

    2017-05-01

    Previous studies have suggested that the risk of ischemic stroke increases immediately after drinking coffee. Indeed, drinking coffee, that is, caffeine, acutely increases arterial stiffness as well as blood pressure and peripheral vascular resistance. On the other hand, it has been reported that arterial stiffening is associated with elevation in the pulsatility index (PI) of cerebral blood flow (CBF), which increases the risk of brain disease. However, the effect of drinking coffee on the PI of the CBF and its interaction with arterial stiffness remain unknown. Against this background, we hypothesized that an acute increase in arterial stiffness induced by drinking coffee augments cerebral pulsatile stress. To test this hypothesis, in 10 healthy young men we examined the effects of drinking coffee on the PI of middle cerebral artery blood velocity (MCAv) and brachial-ankle pulse wave velocity (baPWV) as indices of cerebral pulsatile stress and arterial stiffness, respectively. Mean arterial blood pressure and baPWV were higher ( P  < 0.01 and P  = 0.02), whereas mean MCA V and mean cerebrovascular conductance index were lower upon drinking coffee ( P  = 0.02 and P  < 0.01) compared with a placebo (decaffeinated coffee). However, there was no difference in the PI of MCAv between drinking coffee and the placebo condition. These findings suggest that drinking coffee does not increase cerebral pulsatile stress acutely despite an elevation in arterial stiffness in the systemic circulation. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Clinical spectrum of patients with erosion of the inner ear by jugular bulb abnormalities.

    PubMed

    Friedmann, David R; Le, B Thuy; Pramanik, Bidyut K; Lalwani, Anil K

    2010-02-01

    Anatomic variants of the jugular bulb (JB) are common; however, abnormalities such as large high riding JB and JB diverticulum (JBD) are uncommon. Rarely, the abnormal JB may erode into the inner ear. The goal of our study is to report a large series of patients with symptomatic JB erosion into the inner ear. Retrospective review in an academic medical center. Eleven patients with JB abnormality eroding into the inner ear were identified on computed tomography (CT) scan of the temporal bone. Age at presentation was from 5 years to 82 years with six males and five females. The large JB or JBD eroded into the vestibular aqueduct (n = 9) or the posterior semicircular canal (n = 4). The official radiology report usually identified the JB abnormality; however, erosion into these structures by the JB was not mentioned in all but one case. All patients were symptomatic with five having conductive hearing loss (CHL) and three complaining of pulsatile tinnitus. Those with pulsatile tinnitus and four of five with CHL had erosion into the vestibular aqueduct. Vestibular evoked myogenic potential (VEMP) findings in three of six patients were consistent with dehiscence of the inner ear. High riding large JB or JBD can erode into the inner ear and may be associated with CHL and/or pulsatile tinnitus. CT scan is diagnostic and should be examined specifically for these lesions. As patients with pulsatile tinnitus may initially undergo a magnetic resonance imaging scan, identification of JB abnormality should prompt CT scan or VEMP testing to evaluate for inner ear erosion.

  1. Automatic segmentation and co-registration of gated CT angiography datasets: measuring abdominal aortic pulsatility

    NASA Astrophysics Data System (ADS)

    Wentz, Robert; Manduca, Armando; Fletcher, J. G.; Siddiki, Hassan; Shields, Raymond C.; Vrtiska, Terri; Spencer, Garrett; Primak, Andrew N.; Zhang, Jie; Nielson, Theresa; McCollough, Cynthia; Yu, Lifeng

    2007-03-01

    Purpose: To develop robust, novel segmentation and co-registration software to analyze temporally overlapping CT angiography datasets, with an aim to permit automated measurement of regional aortic pulsatility in patients with abdominal aortic aneurysms. Methods: We perform retrospective gated CT angiography in patients with abdominal aortic aneurysms. Multiple, temporally overlapping, time-resolved CT angiography datasets are reconstructed over the cardiac cycle, with aortic segmentation performed using a priori anatomic assumptions for the aorta and heart. Visual quality assessment is performed following automatic segmentation with manual editing. Following subsequent centerline generation, centerlines are cross-registered across phases, with internal validation of co-registration performed by examining registration at the regions of greatest diameter change (i.e. when the second derivative is maximal). Results: We have performed gated CT angiography in 60 patients. Automatic seed placement is successful in 79% of datasets, requiring either no editing (70%) or minimal editing (less than 1 minute; 12%). Causes of error include segmentation into adjacent, high-attenuating, nonvascular tissues; small segmentation errors associated with calcified plaque; and segmentation of non-renal, small paralumbar arteries. Internal validation of cross-registration demonstrates appropriate registration in our patient population. In general, we observed that aortic pulsatility can vary along the course of the abdominal aorta. Pulsation can also vary within an aneurysm as well as between aneurysms, but the clinical significance of these findings remain unknown. Conclusions: Visualization of large vessel pulsatility is possible using ECG-gated CT angiography, partial scan reconstruction, automatic segmentation, centerline generation, and coregistration of temporally resolved datasets.

  2. Modelling of temperature and perfusion during scalp cooling

    NASA Astrophysics Data System (ADS)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  3. Comparison of microdialysis sampling perfusion fluid components on the foreign body reaction in rat subcutaneous tissue.

    PubMed

    Keeler, Geoffrey D; Durdik, Jeannine M; Stenken, Julie A

    2014-06-16

    Microdialysis sampling is a commonly used technique for collecting solutes from the extracellular space of tissues in laboratory animals and humans. Large molecular weight solutes can be collected using high molecular weight cutoff (MWCO) membranes (100kDa or greater). High MWCO membranes require addition of high molecular weight dextrans or albumin to the perfusion fluid to prevent fluid loss via ultrafiltration. While these perfusion fluid additives are commonly used during microdialysis sampling, the tissue response to the loss of these compounds across the membrane is poorly understood. Tissue reactions to implanted microdialysis sampling probes containing different microdialysis perfusion fluids were compared over a 7-day time period in rats. The base perfusion fluid was Ringer's solution supplemented with either bovine serum albumin (BSA), rat serum albumin (RSA), Dextran-70, or Dextran-500. A significant inflammatory response to Dextran-70 was observed. No differences in the tissue response between BSA and RSA were observed. Among these agents, the BSA, RSA, and Dextran-500 produced a significantly reduced inflammatory response compared to the Dextran-70. This work demonstrates that use of Dextran-70 in microdialysis sampling perfusion fluids should be eliminated and replaced with Dextran-500 or other alternatives. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. SNR and functional sensitivity of BOLD and perfusion-based fMRI using arterial spin labeling with spiral SENSE at 3 T.

    PubMed

    Perthen, Joanna E; Bydder, Mark; Restom, Khaled; Liu, Thomas T

    2008-05-01

    Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perfusion-based fMRI data was investigated. Dual-echo arterial spin labeling data were acquired on five subjects using sensitivity encoding (SENSE), at reduction factors (R) of 1, 2 and 3. Direct recording of cardiac and respiratory activity during data acquisition enabled the retrospective removal of physiological noise. The temporal SNR of the perfusion time series closely followed the thermal noise prediction of a radicalR loss in SNR as the readout window was shortened, with temporal SNR values (relative to the R=1 data) of 0.72 and 0.56 for the R=2 and R=3 data, respectively, after accounting for physiological noise. However, the BOLD temporal SNR decreased more slowly than predicted even after accounting for physiological noise, with relative temporal SNR values of 0.80 and 0.63 for the R=2 and R=3 data, respectively. Spectral analysis revealed that the BOLD trends were dominated by low-frequency fluctuations, which were not dominant in the perfusion data due to signal processing differences. The functional sensitivity, assessed using mean F values over activated regions of interest (ROIs), followed the temporal SNR trends for the BOLD data. However, results for the perfusion data were more dependent on the threshold used for ROI selection, most likely due to the inherently low SNR of functional perfusion data.

  5. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydhorst, Jared H., E-mail: jared.strydhorst@gmail.com; Ruddy, Terrence D.; Wells, R. Glenn

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolutemore » uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.« less

  6. Modeling of Tracer Transport Delays for Improved Quantification of Regional Pulmonary 18F-FDG Kinetics, Vascular Transit Times, and Perfusion

    PubMed Central

    Wellman, Tyler J.; Winkler, Tilo; Vidal Melo, Marcos F.

    2015-01-01

    18F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary 18F-FDG kinetics do not account for delays in 18F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of 18F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic 18F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n=6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. 13NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of 18F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0–13.6s, averaging 6.4±2.9s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on 13NN-PET (R2=0.92, p<0.001). By incorporating local vascular transports delays, this model of pulmonary 18F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation. PMID:25940652

  7. Induction of ovulation with subcutaneous pulsatile gonadotropin-releasing hormone: correlation with body weight and other parameters.

    PubMed

    Thomas, A K; Mander, J; Hale, J; Walstab, J; Forrest, M S

    1989-05-01

    We treated 21 anovulatory infertile patients with subcutaneous pulsatile gonadotropin-releasing hormone (GnRH) administered via a syringe pump. Response to treatment was assessed by urinary estrogen excretion and ultrasound measurement of follicular growth. Ten patients ovulated and 8 subsequently conceived, for a total of 10 pregnancies. Human chorionic gonadotropin (hCG) was not administered routinely, but two patients required hCG to induce follicular rupture. The majority of the patients who conceived had a body mass index (BMI) of less than 21 and a luteinizing hormone (LH)/follicle-stimulating hormone ratio of less than 1. Conversely, those patients with either elevated BMI or LH or both generally failed to respond satisfactorily to this treatment. It is suggested that pulsatile GnRH is most likely to succeed in inducing ovulation if the BMI is less than 21 and the LH is normal, but is unlikely to be successful if there is both an elevated LH and a BMI of greater than 25. Between these two extremes, the response is variable and a therapeutic trial may be appropriate.

  8. Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI

    PubMed Central

    Zhong, Xiaodong; Meyer, Craig H.; Schlesinger, David J.; Sheehan, Jason P.; Epstein, Frederick H.; Larner, James M.; Benedict, Stanley H.; Read, Paul W.; Sheng, Ke; Cai, Jing

    2009-01-01

    Cardiac-synchronized brain motion is well documented, but the accurate measurement of such motion on the pixel-by-pixel basis has been hampered by the lack of proper imaging technique. In this article, the authors present the implementation of an autotracking spiral cine displacement-encoded stimulation echo (DENSE) magnetic resonance imaging (MRI) technique for the measurement of pulsatile brain motion during the cardiac cycle. Displacement-encoded dynamic MR images of three healthy volunteers were acquired throughout the cardiac cycle using the spiral cine-DENSE pulse sequence gated to the R wave of an electrocardiogram. Pixelwise Lagrangian displacement maps were computed, and 2D displacement as a function of time was determined for selected regions of interests. Different intracranial structures exhibited characteristic motion amplitude, direction, and pattern throughout the cardiac cycle. Time-resolved displacement curves revealed the pathway of pulsatile motion from brain stem to peripheral brain lobes. These preliminary results demonstrated that the spiral cine-DENSE MRI technique can be used to measure cardiac-synchronized pulsatile brain motion on the pixel-by-pixel basis with high temporal∕spatial resolution and sensitivity. PMID:19746774

  9. Induction of pulsatile secretion of leptin in horses following thyroidectomy.

    PubMed

    Buff, Preston R; Messer, Nat T; Cogswell, Andria M; Wilson, David A; Johnson, Philip J; Keisler, Duane H; Ganjam, Venkataseshu K

    2007-02-01

    Endocrine characteristics of Quarter Horse-type mares were determined during a 68 h feed deprivation and again in the same mares following surgical thyroidectomy (THX). A crossover experimental design was implemented, in which mares received brome hay available ad libitum (FED) or were food deprived (RES) for 68 h. Blood samples were collected every 20 min for 48 h, beginning 20 h after the onset of food deprivation. Concentrations of triiodothyronine and thyroxine were undetectable post-THX. Plasma concentrations of thyrotropin were greater post-THX versus pre-THX (P<0 x 001). Plasma concentrations of leptin were greater in the THX FED group than in the THX RES group (P<0 x 01). The existence of leptin pulse secretion was found only in post-THX compared with the same horses pre-THX (P=0 x 02). We theorize that non-pulsatile secretion of leptin may have contributed to the survival of this species, as it evolved in the regions of seasonal availability of food. Lack of pulsatile secretion of leptin may contribute to the accumulation of energy stores by modulating leptin sensitivity.

  10. Functional hypothalamic amenorrhea: current view on neuroendocrine aberrations.

    PubMed

    Meczekalski, Blazej; Podfigurna-Stopa, Agnieszka; Warenik-Szymankiewicz, Alina; Genazzani, Andrea Riccardo

    2008-01-01

    Functional hypothalamic amenorrhea (FHA) is defined as a non-organic and reversible disorder in which the impairment of gonadotropin-releasing hormone (GnRH) pulsatile secretion plays a key role. There are main three types of FHA: stress-related amenorrhea, weight loss-related amenorrhea and exercise-related amenorrhea. The spectrum of GnRH-luteinizing hormone (LH) disturbances in FHA is very broad and includes lower mean frequency of LH pulses, complete absence of LH pulsatility, normal-appearing secretion pattern and higher mean frequency of LH pulses. Precise mechanisms underlying the pathophysiology of FHA are very complex and unclear. Numerous neuropeptides, neurotransmitters and neurosteroids play important roles in the physiological regulation of GnRH pulsatile secretion and there is evidence that different neuropeptides may be involved in the pathophysiology of FHA. Particular attention is paid to such substances as allopregnanolone, neuropeptide Y, corticotropin-releasing hormone, leptin, ghrelin and beta-endorphin. Some studies reveal significant changes in these mentioned substances in patients with FHA. There are also speculations about use some of these substances or their antagonists in the treatment of FHA.

  11. Gonadotropin-releasing hormone for infertility in women with primary hypothalamic amenorrhea. Toward a more-interventional approach.

    PubMed

    Kesrouani, A; Abdallah, M A; Attieh, E; Abboud, J; Atallah, D; Makhoul, C

    2001-01-01

    To assess the effectiveness of a protocol of pulsatile gonadotropin releasing-hormone (GnRH) in treating infertility in women with primary hypothalamic amenorrhea. Retrospective analysis of 44 cycles treated at an infertility center. Twenty-four patients with primary hypothalamic amenorrhea were treated intravenously with pulsatile GnRH using 5 micrograms per bolus every 90 minutes. Ultrasound monitoring and cervical assessment by Insler's scoring system allowed timed injection of human chorionic gonadotropin (hCG) and intrauterine insemination if needed. Luteal support was provided with hCG. The ovulation rate was 95% with the 5-microgram dose. A single follicle was produced in 91% of cycles. The overall pregnancy rate per ovulatory cycle was 45%, and the pregnancy rate per patient was 83%. In patients treated previously with exogenous gonadotropins, poor results were observed. Only one case of mild overstimulation was reported. Pulsatile GnRH is an effective and safe method of treating infertility in women with primary hypothalamic amenorrhea, thus simulating normal ovulation; however, more-interventional management, including the qualitative estrogenic response, may lead to optimal results and increase the pregnancy rate.

  12. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Plesniak, Michael W.

    2017-11-01

    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  13. High-cut characteristics of the baroreflex neural arc preserve baroreflex gain against pulsatile pressure.

    PubMed

    Kawada, Toru; Zheng, Can; Yanagiya, Yusuke; Uemura, Kazunori; Miyamoto, Tadayoshi; Inagaki, Masashi; Shishido, Toshiaki; Sugimachi, Masaru; Sunagawa, Kenji

    2002-03-01

    A transfer function from baroreceptor pressure input to sympathetic nerve activity (SNA) shows derivative characteristics in the frequency range below 0.8 Hz in rabbits. These derivative characteristics contribute to a quick and stable arterial pressure (AP) regulation. However, if the derivative characteristics hold up to heart rate frequency, the pulsatile pressure input will yield a markedly augmented SNA signal. Such a signal would saturate the baroreflex signal transduction, thereby disabling the baroreflex regulation of AP. We hypothesized that the transfer gain at heart rate frequency would be much smaller than that predicted from extrapolating the derivative characteristics. In anesthetized rabbits (n = 6), we estimated the neural arc transfer function in the frequency range up to 10 Hz. The transfer gain was lost at a rate of -20 dB/decade when the input frequency exceeded 0.8 Hz. A numerical simulation indicated that the high-cut characteristics above 0.8 Hz were effective to attenuate the pulsatile signal and preserve the open-loop gain when the baroreflex dynamic range was finite.

  14. High-order numerical simulations of pulsatile flow in a curved artery model

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Liang, Chunlei; Plesniak, Michael W.

    2016-11-01

    Cardiovascular flows are pulsatile, incompressible and occur in complex geometries with compliant walls. Together, these factors can produce an environment that can affect the progression of cardiovascular disease by altering wall shear stresses. Unstructured high-order CFD methods are well suited for capturing unsteady vortex-dominated viscous flows, and these methods provide high accuracy for similar cost as low-order methods. We use an in-house three-dimensional flux reconstruction Navier-Stokes solver to simulate secondary flows and vortical structures within a rigid 180-degree curved artery model under pulsatile flow of a Newtonian blood-analog fluid. Our simulations use a physiological flowrate waveform taken from the carotid artery. We are particularly interested in the dynamics during the deceleration phase of the waveform, where we observe the deformed-Dean, Dean, Lyne and Wall vortices. Our numerical results reveal the complex nature of these vortices both in space and time and their effect on overall wall shear stress. Numerical results agree with and complement experimental results obtained in our laboratory using particle image velocimetry. Supported by the GW Center for Biomimetics and Bioinspired Engineering.

  15. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  16. Perfusion in Rat Brain at 7 T with Arterial Spin Labeling Using FAIR-TrueFISP and QUIPSS

    PubMed Central

    Esparza-Coss, Emilio; Wosik, Jarek; Narayana, Ponnada A.

    2010-01-01

    Measurement of perfusion in longitudinal studies allows for the assessment of tissue integrity and the detection of subtle pathologies. In this work, the feasibility of measuring brain perfusion in rats with high spatial resolution using arterial spin labeling (ASL) is reported. A flow sensitive alternating recovery (FAIR) sequence, coupled with a balanced gradient fast imaging with steady state precession (TrueFISP) readout section was used to minimize ghosting and geometric distortions, while achieving high SNR. The quantitative imaging of perfusion using a single subtraction (QUIPSS) method was implemented to address the effects of variable transit delays between the labeling of spins and their arrival at the imaging slice. Studies in six rats at 7 T showed good perfusion contrast with minimal geometric distortion. The measured blood flow values of 152.5 ± 6.3 ml/100g/min in gray matter and 72.3 ± 14.0 ml/100g/min in white matter are in good agreement with previously reported values based on autoradiography, considered to be the gold standard. PMID:20299174

  17. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT.

    PubMed

    Isola, A A; Schmitt, H; van Stevendaal, U; Begemann, P G; Coulon, P; Boussel, L; Grass, M

    2011-09-21

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  18. Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.

    PubMed

    Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2010-11-01

    Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.

  19. A novel coronary active perfusion system using a conventional intra-aortic balloon pump for off-pump coronary artery bypass grafting.

    PubMed

    Kiuchi, Ryuta; Tomita, Shigeyuki; Yamaguchi, Shojiro; Nishida, Yuji; Ohtake, Hiroshi; Nakamura, Hiroyuki; Watanabe, Go

    2014-07-01

    It is important for coronary active perfusion systems to avoid myocardial ischemia during off-pump coronary artery bypass grafting. We have developed a new concept for a perfusion system to pump blood based on changes in helium gas volume. This system uses a conventional intra-aortic balloon pump to activate the perfusion pump. Our study used basic and animal experiments to investigate the most suitable system for coronary perfusion using this new concept. A conventional intra-aortic balloon pump was used to supply power. A device for perfusion was developed with a balloon placed inside a stiff syringe barrel. The device was connected to the helium gas line of the intra-aortic balloon pump. Changes in flow with changes in augmentation level were noted when volumes outside and within the balloon were changed. Six pigs with occlusion of the left anterior descending artery were used for system validation, with monitoring to identify changes in hemodynamics and cardiac enzyme levels. In the basic experiment, an 80-mL outside volume and 3.0-mL inner volume resulted in the greatest percentage change in flow rate with respect to changes in augmentation. In the animal experiment, the new coronary active perfusion system prevented myocardial ischemia during coronary occlusion. We clarified the most suitable method for our new coronary active perfusion system. Using this system, safe anastomosis was consistently performed in animal experiments. Clinically, off-pump coronary artery bypass may potentially be performed more safely and easily using this new system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  20. Is liver perfusion CT reproducible? A study on intra- and interobserver agreement of normal hepatic haemodynamic parameters obtained with two different software packages.

    PubMed

    Bretas, Elisa Almeida Sathler; Torres, Ulysses S; Torres, Lucas Rios; Bekhor, Daniel; Saito Filho, Celso Fernando; Racy, Douglas Jorge; Faggioni, Lorenzo; D'Ippolito, Giuseppe

    2017-10-01

    To evaluate the agreement between the measurements of perfusion CT parameters in normal livers by using two different software packages. This retrospective study was based on 78 liver perfusion CT examinations acquired for detecting suspected liver metastasis. Patients with any morphological or functional hepatic abnormalities were excluded. The final analysis included 37 patients (59.7 ± 14.9 y). Two readers (1 and 2) independently measured perfusion parameters using different software packages from two major manufacturers (A and B). Arterial perfusion (AP) and portal perfusion (PP) were determined using the dual-input vascular one-compartmental model. Inter-reader agreement for each package and intrareader agreement between both packages were assessed with intraclass correlation coefficients (ICC) and Bland-Altman statistics. Inter-reader agreement was substantial for AP using software A (ICC = 0.82) and B (ICC = 0.85-0.86), fair for PP using software A (ICC = 0.44) and fair to moderate for PP using software B (ICC = 0.56-0.77). Intrareader agreement between software A and B ranged from slight to moderate (ICC = 0.32-0.62) for readers 1 and 2 considering the AP parameters, and from fair to moderate (ICC = 0.40-0.69) for readers 1 and 2 considering the PP parameters. At best there was only moderate agreement between both software packages, resulting in some uncertainty and suboptimal reproducibility. Advances in knowledge: Software-dependent factors may contribute to variance in perfusion measurements, demanding further technical improvements. AP measurements seem to be the most reproducible parameter to be adopted when evaluating liver perfusion CT.

  1. Successful Dual Kidney Transplantation After Hypothermic Oxygenated Perfusion of Discarded Human Kidneys

    PubMed Central

    Ravaioli, Matteo; De Pace, Vanessa; Comai, Giorgia; Busutti, Marco; Gaudio, Massimo Del; Amaduzzi, Annalisa; Cucchetti, Alessandro; Siniscalchi, Antonio; La Manna, Gaetano; D’Errico, Antonietta A.D.; Pinna, Antonio Daniele

    2017-01-01

    Patient: Female, 58 Final Diagnosis: Nephroangiosclerosis Symptoms: Renal failure Medication: — Clinical Procedure: Resuscitation of grafts by hypothermic oxygenated perfusion Specialty: Transplantology Objective: Challenging differential diagnosis Background: The recovery of discarded human kidneys has increased in recent years and impels to use of unconventional organ preservation strategies that improve graft function. We report the first case of human kidneys histologically discarded and transplanted after hypothermic oxygenated perfusion (HOPE). Case Report: Marginal kidneys from a 78-year-old woman with brain death were declined by Italian transplant centers due to biopsy score (right kidney: 6; left kidney: 7). We recovered and preserved both kidneys through HOPE and we revaluated their use for transplantation by means of perfusion parameters. The right kidney was perfused for 1 h 20 min and the left kidney for 2 h 30 min. During organ perfusion, the renal flow increased progressively. We observed an increase of 34% for the left kidney (median flow 52 ml/min) and 50% for the right kidney (median flow 24 ml/min). Both kidneys had low perfusate’s lactate levels. We used perfusion parameters as important determinants of the organ discard. Based on our previous organ perfusion experience, the increase of renal flow and the low level of lactate following 1 h of HOPE lead us to declare both kidneys as appropriate for dual kidney transplantation (DKT). No complications were reported during the transplant and in the post-transplant hospital stay. The recipient had immediate graft function and serum creatinine value of 0.95 mg/dL at 3 months post-transplant. Conclusions: HOPE provides added information in the organ selection process and may improve graft quality of marginal kidneys. PMID:28928357

  2. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease.

    PubMed

    Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; De Carli, Fabrizio; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Morbelli, Silvia; Abruzzese, Giovanni; Sambuceti, Gianmario; Rodriguez, Guido

    2011-12-01

    Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naïve, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD.

  3. Estimation of the minimum permeability coefficient in rats for perfusion-limited tissue distribution in whole-body physiologically-based pharmacokinetics.

    PubMed

    Jeong, Yoo-Seong; Yim, Chang-Soon; Ryu, Heon-Min; Noh, Chi-Kyoung; Song, Yoo-Kyung; Chung, Suk-Jae

    2017-06-01

    The objective of the current study was to determine the minimum permeability coefficient, P, needed for perfusion-limited distribution in PBPK. Two expanded kinetic models, containing both permeability and perfusion terms for the rate of tissue distribution, were considered: The resulting equations could be simplified to perfusion-limited distribution depending on tissue permeability. Integration plot analyses were carried out with theophylline in 11 typical tissues to determine their apparent distributional clearances and the model-dependent permeabilities of the tissues. Effective surface areas were calculated for 11 tissues from the tissue permeabilities of theophylline and its PAMPA P. Tissue permeabilities of other drugs were then estimated from their PAMPA P and the effective surface area of the tissues. The differences between the observed and predicted concentrations, as expressed by the sum of squared log differences with the present models were at least comparable to or less than the values obtained using the traditional perfusion-limited distribution model for 24 compounds with diverse PAMPA P values. These observations suggest that the use of a combination of the proposed models, PAMPA P and the effective surface area can be used to reasonably predict the pharmacokinetics of 22 out of 24 model compounds, and is potentially applicable to calculating the kinetics for other drugs. Assuming that the fractional distribution parameter of 80% of the perfusion rate is a reasonable threshold for perfusion-limited distribution in PBPK, our theoretical prediction indicates that the pharmacokinetics of drugs having an apparent PAMPA P of 1×10 -6 cm/s or more will follow the traditional perfusion-limited distribution in PBPK for major tissues in the body. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. TH-CD-206-07: Determination of Patient-Specific Myocardial Mass at Risk Using Computed Tomography Angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, L; Ziemer, B; Malkasian, S

    Purpose: To evaluate the accuracy of a patient-specific coronary perfusion territory assignment algorithm that uses CT angiography (CTA) and a minimum-cost-path approach to assign coronary perfusion territories on a voxel-by-voxel basis for determination of myocardial mass at risk. Methods: Intravenous (IV) contrast (370 mg/mL iodine, 25 mL, 7 mL/s) was injected centrally into five swine (35–45 kg) and CTA was performed using a 320-slice CT scanner at 100 kVp and 200 mA. Additionally, a 4F catheter was advanced into the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) and contrast (30 mg/mL iodine, 10 mL, 1.5more » mL/s) was directly injected into each coronary artery for isolation of reference coronary perfusion territories. Semiautomatic myocardial segmentation of the CTA data was then performed and the centerlines of the LAD, LCX, and RCA were digitally extracted through image processing. Individual coronary perfusion territories were then assigned using a minimum-cost-path approach, and were quantitatively compared to the reference coronary perfusion territories. Results: The results of the coronary perfusion territory assignment algorithm were in good agreement with the reference coronary perfusion territories. The average volumetric assignment error from mitral orifice to apex was 5.5 ± 1.1%, corresponding to 2.1 ± 0.7 grams of myocardial mass misassigned for each coronary perfusion territory. Conclusion: The results indicate that accurate coronary perfusion territory assignment is possible on a voxel-by-voxel basis using CTA data and an assignment algorithm based on a minimum-cost-path approach. Thus, the technique can potentially be used to accurately determine patient-specific myocardial mass at risk distal to a coronary stenosis, improving coronary lesion assessment and treatment. Conflict of Interest (only if applicable): Grant funding from Toshiba America Medical Systems.« less

  5. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    PubMed

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P < 1 × 10(-6)) and oxygen bioavailability (Spearman's correlation coefficient = -0.60; P < 0.0001) correlated significantly with TRBF, whereas medullary perfusion and oxygen bioavailability did not correlate with TRBF. Our results demonstrate expected changes given the pharmacologically induced changes in renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  6. Correlation between ocular pulse amplitude measured by dynamic contour tonometer and colour Doppler flow imaging of the arteric retrobulbar vessels.

    PubMed

    Marjanović, Ivan; Mijajlović, Milija; Covicković-Sternić, Nadezda; Kontić, Djordje; Hentova-Senćanić, Paraskeva; Marković, Vujica; Bozić, Marija

    2011-01-01

    An altered perfusion of the optic nerve head has been proposed as a pathogenic factor in glaucoma. The aim of this study was to evaluate the correlation between ocular pulse amplitude (OPA), measured by Dynamic contour tonometer (DCT) and colour Doppler imaging (CDI) of the arteric retrobulbar vessels. Twenty patients older than 50 years were examined, and divided into two equal groups. The first group comprised of patients with normal tension glaucoma treated with topical antiglaucomatous therapy, and the second group included patients with ocular hypertension and glaucoma suspicious without any antiglaucomatous therapy. Ocular pulse amplitude (OPA) was measured with DCT. CDI was also performed. We measured haemodynamic parameters of the internal carotid artery (ICA), ophthalmic artery (OA), central retinal artery (CRA), and posterior ciliary arteries (PCA). Peak systolic (PSV), end-diastolic (EDV) velocities were measured, and resistance index (RI) and pulsatility index (PI) were calculated. Correlation with OPA showed indirect servitude in the RI of the ICA, RI and PI of the CRA, in the first group; and in the PSV and EDV of the ICA, in the RI and PI of the OA, EDV and RI of the CRA, and RI of the PCA, in the second group Increase of OPA was mostly followed by the increase of the parameters (PSV, EDV, RI, and PI) of the arteric retrobulbar vessels in the first group; in the second group, increase of OPA was in almost 50% of parameters followed by their decrease.

  7. Effect of TNF-alpha blockade on coagulopathy and endothelial cell activation in xenoperfused porcine kidneys.

    PubMed

    Ramackers, Wolf; Klose, Johannes; Tiede, Andreas; Werwitzke, Sonja; Rataj, Dennis; Friedrich, Lars; Johanning, Kai; Vondran, Florian W R; Bergmann, Sabine; Schuettler, Wolfgang; Bockmeyer, Clemens Luitpold; Becker, Jan Ulrich; Klempnauer, Jürgen; Winkler, Michael

    2015-01-01

    Following pig-to-primate kidney transplantation, endothelial cell activation and xenogenic activation of the recipient's coagulation eventually leading to organ dysfunction and microthrombosis can be observed. In this study, we examined the effect of a TNF-receptor fusion protein (TNF-RFP) on endothelial cell activation and coagulopathy utilizing an appropriate ex vivo perfusion system. Using an ex vivo perfusion circuit based on C1-Inhibitor (C1-Inh) and low-dose heparin administration, we have analyzed consumptive coagulopathy following contact of human blood with porcine endothelium. Porcine kidneys were recovered following in situ cold perfusion with Histidine-tryptophan-ketoglutarate (HTK) organ preservation solution and were immediately connected to a perfusion circuit utilizing freshly drawn pooled porcine or human AB blood. The experiments were performed in three individual groups: autologous perfusion (n = 5), xenogenic perfusion without any further pharmacological intervention (n = 10), or with addition of TNF-RFP (n = 5). After perfusion, tissue samples were obtained for real-time PCR and immunohistological analyses. Endothelial cell activation was assessed by measuring the expression levels of E-selectin, ICAM-1, and VCAM-1. Kidney survival during organ perfusion with human blood, C1-Inh, and heparin, but without any further pharmacological intervention was 126 ± 78 min. Coagulopathy was observed with significantly elevated concentrations of D-dimer and thrombin-antithrombin complex (TAT), resulting in the formation of multiple microthrombi. Endothelial cell activation was pronounced, as shown by increased expression of E-selectin and VCAM-1. In contrast, pharmacological intervention with TNF-RFP prolonged organ survival to 240 ± 0 min (max. perfusion time; no difference to autologous control). Formation of microthrombi was slightly reduced, although not significantly, if compared to the xenogenic control. D-dimer and TAT were elevated at similar levels to the xenogenic control experiments. In contrast, endothelial cell activation, as shown by real-time PCR, was significantly reduced in the TNF-RFP group. We conclude that although coagulopathy was not affected, TNF-RFP is able to suppress inflammation occurring after xenoperfusion in this ex vivo perfusion model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy

    PubMed Central

    Milstein, Dan M.J.; Ince, Can; Gisbertz, Suzanne S.; Boateng, Kofi B.; Geerts, Bart F.; Hollmann, Markus W.; van Berge Henegouwen, Mark I.; Veelo, Denise P.

    2016-01-01

    Abstract Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs. Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2). Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05). It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements between different investigators. LSCI provides spatial and temporal information on the location of adequate tissue perfusion and may thus be an important aid in optimizing surgical and anesthesiological procedures for strategically selecting anastomotic site in patients undergoing esophagectomy with GTR. PMID:27336874

  9. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy.

    PubMed

    Milstein, Dan M J; Ince, Can; Gisbertz, Suzanne S; Boateng, Kofi B; Geerts, Bart F; Hollmann, Markus W; van Berge Henegouwen, Mark I; Veelo, Denise P

    2016-06-01

    Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs.Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2).Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05).It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements between different investigators. LSCI provides spatial and temporal information on the location of adequate tissue perfusion and may thus be an important aid in optimizing surgical and anesthesiological procedures for strategically selecting anastomotic site in patients undergoing esophagectomy with GTR.

  10. Fully quantitative pixel-wise analysis of cardiovascular magnetic resonance perfusion improves discrimination of dark rim artifact from perfusion defects associated with epicardial coronary stenosis.

    PubMed

    Ta, Allison D; Hsu, Li-Yueh; Conn, Hannah M; Winkler, Susanne; Greve, Anders M; Shanbhag, Sujata M; Chen, Marcus Y; Patricia Bandettini, W; Arai, Andrew E

    2018-03-08

    Dark rim artifacts in first-pass cardiovascular magnetic resonance (CMR) perfusion images can mimic perfusion defects and affect diagnostic accuracy for coronary artery disease (CAD). We evaluated whether quantitative myocardial blood flow (MBF) can differentiate dark rim artifacts from true perfusion defects in CMR perfusion. Regadenoson perfusion CMR was performed at 1.5 T in 76 patients. Significant CAD was defined by quantitative invasive coronary angiography (QCA) ≥ 50% diameter stenosis. Non-significant CAD (NonCAD) was defined as stenosis by QCA < 50% diameter stenosis or computed tomographic coronary angiography (CTA) < 30% in all major epicardial arteries. Dark rim artifacts had study specific and guideline-based definitions for comparison purposes. MBF was quantified at the pixel-level and sector-level. In a NonCAD subgroup with dark rim artifacts, stress MBF was lower in the subendocardial than midmyocardial and epicardial layers (2.17 ± 0.61 vs. 3.06 ± 0.75 vs. 3.24 ± 0.80 mL/min/g, both p < 0.001) and was also 30% lower than in remote regions (2.17 ± 0.61 vs. 2.83 ± 0.67 mL/min/g, p < 0.001). However, subendocardial stress MBF in dark rim artifacts was 37-56% higher than in true perfusion defects (2.17 ± 0.61 vs. 0.95 ± 0.43 mL/min/g, p < 0.001). Absolute stress MBF differentiated CAD from NonCAD with an accuracy ranging from 86 to 89% (all p < 0.001) using pixel-level analyses. Similar results were seen at a sector level. Quantitative stress MBF is lower in dark rim artifacts than remote myocardium but significantly higher than in true perfusion defects. If confirmed in larger series, this approach may aid the interpretation of clinical stress perfusion exams. ClinicalTrials.gov Identifier: NCT00027170 ; first posted 11/28/2001; updated 11/27/2017.

  11. Locally optimal extracellular stimulation for chaotic desynchronization of neural populations.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2014-10-01

    We use optimal control theory to design a methodology to find locally optimal stimuli for desynchronization of a model of neurons with extracellular stimulation. This methodology yields stimuli which lead to positive Lyapunov exponents, and hence desynchronizes a neural population. We analyze this methodology in the presence of interneuron coupling to make predictions about the strength of stimulation required to overcome synchronizing effects of coupling. This methodology suggests a powerful alternative to pulsatile stimuli for deep brain stimulation as it uses less energy than pulsatile stimuli, and could eliminate the time consuming tuning process.

  12. Rapid Response to High-Dose, Pulsatile Erlotinib in Afatinib-Refractory Leptomeningeal Carcinomatosis from Adenocarcinoma of the Lung: A Case Report.

    PubMed

    Fan, Frank S

    2016-01-01

    Leptomeningeal carcinomatosis occurred in an old female patient who was on a standard dose of afatinib for the treatment of her non-small cell lung cancer harboring an epidermal growth factor receptor gene mutation sensitive to tyrosine kinase inhibitors when extracranial lesions were still under control. Shifting to high-dose, pulsatile erlotinib dramatically saved her from the devastating condition in a very short period of time. Inadequate afatinib concentration in cerebrospinal fluid is reasonably suspected, and there is a call for clinical trials testing high-dose afatinib in leptomeningeal carcinomatosis.

  13. Silk screen based dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells.

    PubMed

    Kamthan, Shweta; Gomes, James; Roychoudhury, Pradip K

    2014-08-01

    Spin-filters have been primarily used for producing therapeutic proteins from mammalian cells. However, disposability and/or high filter clogging of the existing spin-filter systems affect the process economy and productivity. Hence, to address these drawbacks a reusable dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells was designed. Two non-woven Bombyx mori silk layers were used as filter screen; the outer layer was conducive to cell attachment whilst the inner was non-conducive. Adherent cells can be cultured either in suspended mode using its inner single module or as monolayer of cells using its dual concentric module. We achieved 30 % higher urokinase productivity as compared to the stainless-steel spin-filter during perfusion experiments of adherent human kidney cells in suspended mode. This was due to the hydrophobic and negatively-charged silk screen that allows clog-free perfusion culture for prolonged periods.

  14. The use of hemoglobin solutions in kidney perfusions.

    PubMed

    Daniels, F H; McCabe, R E; Leonard, E F

    1984-01-01

    Solutions of hemoglobin have often been considered for both hypothermic and normothermic perfusion of isolated kidneys. This paper considers basic issues, preparative techniques, and the viscosity of hemoglobin solutions, as well as the demands made by the kidney on a perfusate. The natural system of oxygen transport in higher animals is complex, and its perturbation to produce convenient hemoglobin-based renal perfusates produces numerous problems. The desirable effect of 2,3-diphosphoglycerate is not easily maintained in a perfusate, but its inclusion can be avoided by appropriate choice of species donating hemoglobin. Hemoglobin tetramer in free solution may dissociate and be lost by glomerular filtration. Ferric hemoglobin, the dominant form at redox equilibrium, is useless for oxygen transport; the ferrous form is maintained in the erythrocyte by reducing metabolites and, under normothermic conditions, the ferrous to ferric conversion is slow but significant. Methods for lysis of erythrocytes and removal of their stroma are discussed; reduction of ferric hemoglobin by chemical agents and electrolysis are considered in detail; and means for adjusting concentration and solute background are presented. The need for carbonic anhydrase in hemoglobin solutions used as perfusates is shown and methods for its provision are discussed. A review of viscometric data for hemoglobin solutions is provided to which original data are added. Hemoglobin solutions show a temperature-independent intrinsic viscosity, according to Einstein's theory for a molecule of 23 A radius. The O2 and CO2 transport requirements of renal perfusates are analyzed comprehensively. The normothermic kidney has an unusual respiration pattern, requiring an amount of oxygen that is not fixed but, rather, proportional to the total blood flow rate. In canines the average arterio-venous O2 content difference found by many investigators is 2.14 vol%; the corresponding CO2 value is 2.47 vol%; and the respiratory quotient is greater than unity. Wide limits of PO2, but not P CO2 in perfusate, appear allowable. A final section evaluates hemoglobin solutions as both normothermic and hypothermic renal perfusates from the viewpoints of blood gas chemistry, urinary loss, oncotic pressure, fatty acid carrying capacity, viscosity, and the need for functions usually attributed to platelets. It is concluded, overall, that perfusates containing free hemoglobin have only a limited role to play in renal perfusion.

  15. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    PubMed

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  < 0.05 considered as significant. Perfusate flow remained constant in the Constant flow group, but was more than halved during hypothermia in the Constant PPA group concomitant with a more fold increase in PVR. In the Constant flow group, Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the Constant flow group and between the groups at cessation of the experiments. In hypothermic rat lungs perfused at constant flow, fluid filtration coefficient per gram P LW and B/P ratio increased more than 10-fold concerted by increased hemoconcentration, but the changes were less in hypothermic lungs perfused at constant PPA.

  16. A Technique to Perfuse Cadavers that Extends the Useful Life of Fresh Tissues: The Duke Experience

    ERIC Educational Resources Information Center

    Messmer, Caroline; Kellogg, Ryan T.; Zhang, Yixin; Baiak, Andresa; Leiweke, Clinton; Marcus, Jeffrey R.; Levin, L. Scott; Zenn, Michael R.; Erdmann, Detlev

    2010-01-01

    The demand for laboratory-based teaching and training is increasing worldwide as medical training and education confront the pressures of shorter training time and rising costs. This article presents a cost-effective perfusion technique that extends the useful life of fresh tissue. Refrigerated cadavers are preserved in their natural state for up…

  17. Influence of temperature and relative humidity conditions on the pan coating of hydroxypropyl cellulose molded capsules.

    PubMed

    Macchi, Elena; Zema, Lucia; Pandey, Preetanshu; Gazzaniga, Andrea; Felton, Linda A

    2016-03-01

    In a previous study, hydroxypropyl cellulose (HPC)-based capsular shells prepared by injection molding and intended for pulsatile release were successfully coated with 10mg/cm(2) Eudragit® L film. The suitability of HPC capsules for the development of a colon delivery platform based on a time dependent approach was demonstrated. In the present work, data logging devices (PyroButton®) were used to monitor the microenvironmental conditions, i.e. temperature (T) and relative humidity (RH), during coating processes performed under different spray rates (1.2, 2.5 and 5.5g/min). As HPC-based capsules present special features, a preliminary study was conducted on commercially available gelatin capsules for comparison purposes. By means of PyroButton data-loggers it was possible to acquire information about the impact of the effective T and RH conditions experienced by HPC substrates during the process on the technological properties and release performance of the coated systems. The use of increasing spray rates seemed to promote a tendency of the HPC shells to slightly swell at the beginning of the spraying process; moreover, capsules coated under spray rates of 1.2 and 2.5g/min showed the desired release performance, i.e. ability to withstand the acidic media followed by the pulsatile release expected for uncoated capsules. Preliminary stability studies seemed to show that coating conditions might also influence the release performance of the system upon storage. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New "Gold Standard"?

    PubMed

    Capoccia, Massimo

    2016-12-12

    The impact of left ventricular assist devices (LVADs) for the treatment of advanced heart failure has played a significant role as a bridge to transplant and more recently as a long-term solution for non-eligible candidates. Continuous flow left ventricular assist devices (CF-LVADs), based on axial and centrifugal design, are currently the most popular devices in view of their smaller size, increased reliability and higher durability compared to pulsatile flow left ventricular assist devices (PF-LVADs). The trend towards their use is increasing. Therefore, it has become mandatory to understand the physics and the mathematics behind their mode of operation for appropriate device selection and simulation set up. For this purpose, this review covers some of these aspects. Although very successful and technologically advanced, they have been associated with complications such as pump thrombosis, haemolysis, aortic regurgitation, gastro-intestinal bleeding and arterio-venous malformations. There is perception that the reduced arterial pulsatility may be responsible for these complications. A flow modulation control approach is currently being investigated in order to generate pulsatility in rotary blood pumps. Thrombus formation remains the most feared complication that can affect clinical outcome. The development of a preoperative strategy aimed at the reduction of complications and patient-device suitability may be appropriate. Patient-specific modelling based on 3D reconstruction from CT-scan combined with computational fluid dynamic studies is an attractive solution in order to identify potential areas of stagnation or challenging anatomy that could be addressed to achieve the desired outcome. The HeartMate II (axial) and the HeartWare HVAD (centrifugal) rotary blood pumps have been now used worldwide with proven outcome. The HeartMate III (centrifugal) is now emerging as the new promising device with encouraging preliminary results. There are now enough pumps on the market: it is time to focus on the complications in order to achieve the full potential and selling-point of this type of technology for the treatment of the increasing heart failure patient population.

  19. PO2 modulation of paraquat-induced microvascular injury in isolated dog lungs.

    PubMed

    Shibamoto, T; Taylor, A E; Parker, J C

    1990-05-01

    We determined the effects of paraquat (PQ) concentrations ranging from 10(-3) to 10(-2) M and three levels of venous PO2 [hypoxia (41 +/- 3 Torr), normoxia (147 +/- 8 Torr), and hyperoxia (444 +/- 17 Torr)] in the presence of 4 x 10(-3) M PQ on microvascular permeability in isolated blood-perfused dog lungs. Capillary filtration coefficient (Kf,c) increased and isogravimetric capillary pressure (Pc,i) decreased 3 h after perfusion with 10(-2) M PQ (n = 7) and 5 h after perfusion with 4 x 10(-3) M PQ (n = 6) but not with 10(-3) M PQ (n = 4). In hyperoxic lungs perfused with 4 x 10(-3) M PQ, Kf,c increased to nine times the base-line value 5 h after PQ [0.15 +/- 0.01 to 1.35 +/- 0.25 (SE) ml.min-1.cmH2O-1.100 g-1]. Pc,i significantly decreased from a base-line value of 9.4 +/- 0.2 to 7.1 +/- 0.4 cmH2O at 3 h. In hypoxic lungs perfused with 4 x 10(-3) M PQ (n = 5), Pc,i and Kf,c changes were not significantly different from those in normoxic lungs treated with PQ. Thus both hyperoxia and an increased dose of PQ shortened the latent period and increased the severity of the PQ-induced microvascular permeability lesion, but hypoxia failed to prevent the PQ damage.

  20. Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo non-human primate eyes

    NASA Astrophysics Data System (ADS)

    Li, Peng; Reif, Roberto; Zhi, Zhongwei; An, Lin; Martin, Elizabeth; Shen, Tueng T.; Johnstone, Murray; Wang, Ruikang K.

    2013-03-01

    Purpose. It is suspected that the abnormalities of aqueous outflow pump composed of trabecular meshwork (TM) and Schlemm's canal (SC) results in the increased outflow resistance and then elevated intraocular pressure (IOP) in initial glaucoma. In order to explore the casual mechanism and the early diagnosis of glaucoma, the dynamic characterizations of aqueous outflow pump were explored. Methods. As a functional extension of optical coherence tomography (OCT), tissue Doppler OCT (tissue-DOCT) method capable of measuring the slow tissue movement was developed. The tissue-DOCT imaging was conducted on the corneo-scleral limbus of 4 monkey eyes. The eye was mounted in an anterior segment holder, together with a perfusion system to control the mean IOP and to induce the cyclic IOP transients with amplitude 3 mm Hg at frequency 1 pulse/second. IOP was monitored on-line by a pressure transducer. Tissue-DOCT data and pressure data were recorded simultaneously. The IOP-transient induced Doppler velocity, displacement and strain rate of TM and the normalized area of SC were quantified at 7 different mean IOPs (5, 8, 10, 20, 30, 40, 50 mm Hg). Results. The outflow system, including TM, SC and CCs, was visualized in the micro-structural imaging. The IOP-transient induced pulsatile TM movement and SC deformation were detected and quantified by tissue-DOCT. The TM movement was depth-dependent and the largest movement was located in the area closest to SC endothelium (SCE). Both the pulsations of TM and SC were found to be synchronous with the IOP pulse wave. At 8 mm Hg IOP, the global TM movement was around 0.65μm during one IOP transient. As IOP elevated, a gradual attenuation of TM movement and SC deformation was observed. Conclusions. The observed pulsation of TM and SC induced by the pulsatile IOP transients was in good agreement with the predicated role of TM and SC acting as a biomechanical pump (pumping aqueous from anterior chamber into SC and from SC into CCs) in the aqueous outflow system. As the IOP elevated, the attenuated pulsation amplitude of the aqueous outflow pump indicated the failure of the mechanical pump and the increase of aqueous outflow resistance. The promising results revealed the potential of using the proposed tissue-DOCT for diagnosis and associated therapeutic guidance of the initial and progressive glaucoma process by monitoring the pulsation of the outflow pump.

Top