Science.gov

Sample records for pulsating tube flow

  1. Total-pressure-tube averaging in pulsating flows.

    NASA Technical Reports Server (NTRS)

    Krause, L. N.

    1973-01-01

    A number of total-pressure tubes were tested in a nonsteady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. The tests were performed at a pressure level of 1 bar, for Mach numbers up to near 1, and frequencies up to 3 kHz. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonances which further increased the indicated pressure were encountered within the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure, and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles.

  2. Influence of a pulsating flow on the transfer of heat from cylinders and finned tubes

    NASA Astrophysics Data System (ADS)

    Perwaiz, J.; Base, T. E.

    The effect of pulsations in the flow on forced convective heat transfer coefficients around a circular cylinder and a finned tube is studied. Convection measurement experiments were performed to determine the rate of heat transfer (average Nusselt numbers) from a circular cylinder and a finned tube in a pulsating crossflow. The experiments were performed using the unsteady flow inducer wind tunnel, which had facility for generating time-dependent flow. The forced convective heat transfer in steady crossflows was checked for both the circular cylinder and the finned tube to validate the experimental techniques and apparatus. The findings indicate the dependence of heat transfer on the dimensionless frequency of the crossflow. Specifically, at higher mean flows there is considerable discrepancy between the Nusselt number for steady flows and the Nusselt number for unsteady flows with the same mean flow value. The effects on the variation in the heat transfer must be carefully taken into account in the design and analysis of thermal systems exposed to pulsating flows.

  3. An experimental investigation of heat transfer in a spiral-coil tube with pulsating turbulent water flow

    NASA Astrophysics Data System (ADS)

    Kharvani, H. Ramezani; Doshmanziari, F. Ilami; Zohir, A. E.; Jalali-Vahid, D.

    2015-10-01

    In this study, in order to increase the heat transfer rate in a spiral-coil tube by an active method, a rotating ball valve was mounted downstream/upstream of the spiral-coil tube and used as a pulse generator. Influence of pulsation on heat transfer in the spiral-coil tube was experimentally investigated. Cold water was used as a working fluid inside the spiral-coil that was immersed horizontally in a hot water reservoir tank. The Average temperature of the hot water bath was kept constant at 60 °C to establish a uniform temperature. All experiments for both pulsator locations (upstream and downstream pulsation) were performed at fixed pulsation amplitude. Reynolds number was ranged from 6220 to 16,300 while pulsation frequency was varied from 0 to 20 Hz. It can be clearly observed from heat transfer results that the overall average heat transfer coefficient was enhanced up to 26 % for pulsating flow compared to steady flow without pulsation at all pulsation frequencies. It is also clear that the relative overall average heat transfer coefficient is strongly affected by Reynolds number. Finally, it was obtained that the upstream pulsation heat transfer coefficient has better heat transfer results than the corresponding ones of downstream pulsation in the studied range of Reynolds number.

  4. An experimental investigation of heat transfer in a spiral-coil tube with pulsating turbulent water flow

    NASA Astrophysics Data System (ADS)

    Kharvani, H. Ramezani; Doshmanziari, F. Ilami; Zohir, A. E.; Jalali-Vahid, D.

    2016-09-01

    In this study, in order to increase the heat transfer rate in a spiral-coil tube by an active method, a rotating ball valve was mounted downstream/upstream of the spiral-coil tube and used as a pulse generator. Influence of pulsation on heat transfer in the spiral-coil tube was experimentally investigated. Cold water was used as a working fluid inside the spiral-coil that was immersed horizontally in a hot water reservoir tank. The Average temperature of the hot water bath was kept constant at 60 °C to establish a uniform temperature. All experiments for both pulsator locations (upstream and downstream pulsation) were performed at fixed pulsation amplitude. Reynolds number was ranged from 6220 to 16,300 while pulsation frequency was varied from 0 to 20 Hz. It can be clearly observed from heat transfer results that the overall average heat transfer coefficient was enhanced up to 26 % for pulsating flow compared to steady flow without pulsation at all pulsation frequencies. It is also clear that the relative overall average heat transfer coefficient is strongly affected by Reynolds number. Finally, it was obtained that the upstream pulsation heat transfer coefficient has better heat transfer results than the corresponding ones of downstream pulsation in the studied range of Reynolds number.

  5. Characteristics of heat transfer and flow of Al2O3/water nanofluid in a spiral-coil tube for turbulent pulsating flow

    NASA Astrophysics Data System (ADS)

    Doshmanziari, F. Ilami; Zohir, A. E.; Kharvani, H. Ramezani; Jalali-Vahid, D.; Kadivar, M. R.

    2016-07-01

    In the past two decades, enhancement of heat transfer characteristics of original fluid using nanofluids has been proposed by a large number of researchers. In this paper, an experimental study was carried out to investigate effect of pulsation on heat transfer of fluid flow inside a spiral-coil tube. In order to perform the experiments, a hot water reservoir tank was prepared and the spiral-coil was immersed horizontally inside the tank. Average temperature of the hot water bath was kept constant at 60 °C to establish a quiescent region of uniform temperature. The experiments were conducted in turbulent flow regime using distilled water and Al2O3/water nanofluid at 0.5, 1, and 1.5 % particle volume concentration. Results showed that overall heat transfer coefficient of the base fluid flow increases by using nanofluid or pulsation into the base fluid flow up to 14 %. Heat transfer results also indicated that combination of the nanofluid and the pulsation into the fluid flow can increase significantly the overall heat transfer coefficient up to 23 %.

  6. Understanding thermo-fluidic characteristics of a glass tube closed loop pulsating heat pipe: flow patterns and fluid oscillations

    NASA Astrophysics Data System (ADS)

    Karthikeyan, V. K.; Ramachandran, K.; Pillai, B. C.; Brusly Solomon, A.

    2015-12-01

    An experimental program has been carried out to understand the thermo-fluidic characterization of deionized (DI) water charged closed loop pulsating heat pipe (CLPHP) with flow patterns and fluid oscillations. The CLPHP is examined under vertical and horizontal heating modes with varying heat power. The flow patterns along with fluid oscillations are correlated with thermal performance of the CLPHP. Further, the CLPHP with copper oxide nanofluid study is carried out to understand operational behavior of the device. Fast Fourier frequencies, average frequency of the internal fluid temperature are investigated. Several important features of CLPHP operation are identified by the visual study.

  7. Total pressure averaging in pulsating flows

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Dudzinski, T. J.; Johnson, R. C.

    1972-01-01

    A number of total-pressure tubes were tested in a non-steady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonance which further increased the indicated pressure was encountered within the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure, and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles. The experiments were performed at a pressure level of 1 bar, for Mach number up to near 1, and frequencies up to 3 kHz.

  8. Study on blood flow pulsation using laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Chen, Yu; Preza, Chrysanthe; Tang, Cha-Min

    2011-03-01

    Laser speckle contrast imaging (LSCI) is becoming an established method for full-field imaging of blood flow dynamics in animal models. Blood flow pulsation originated from heart beat affects blood flow measurement results of LSCI and it is considered as major physiology noise source for most biomedical applications. But in some biomedical applications, the details of the pulsation process might provide useful information for disease diagnostics. In this study, we investigated the ability as well as the limitation of LSCI in monitoring flow pulsation in phantom study. Both intralipid (2% - 5%) and human whole blood samples are used in phantom study. A syringe pump is controlled by a computer-programmable motor controller and liquid phantom is pushed through a 400 μm ID capillary tube by the pump at different pulsation patterns, varied in frequency (1-7 Hz), valley-to-peak ratio (10%-50%), acceleration/deceleration rate, etc. Speckle contrast images are acquired at 15-30 frames-per-seconds. Our results show: (1) it is very hard for LSCI to pick up signals from high frequency pulsation (5-7 Hz), which is close to the heart back frequency of rats. This might be caused by the nature of fluid dynamics of blood during pulsation. LSCI might not work well for animal models in detecting pulsation. (2) With low frequency pulsation (1 Hz, close to human normal pulsation rate), our experimental results shows from most pulsation patterns, LSCI could catch the fine details of the blood flow change in a cycle. LSCI might be used for studying human blood flow pulsation.

  9. Convective heat transfer characteristics of laminar pulsating pipe air flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  10. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Warnecke, Sascha; Hof, Bjoern; Avila, Marc

    2014-11-01

    We report an experimental investigation of the transition to turbulence in a pulsating pipe flow. This flow is a prototype of various pulsating flows in both nature and engineering, such as in the cardiovascular system where the onset of turbulence is often possibly related to various diseases (e.g., the formation of aneurysms). The experiments are carried out in a straight rigid pipe using water with a sinusoidal modulation of the flow rate. The governing parameters, Reynolds number, Womersley number α (dimensionless pulsating frequency) and the pulsating amplitude A, cover a wide range 3 < α < 23 and 0 < A < 1 . To characterize the transition to turbulence, we determine how the characteristic lifetime of turbulent spots (/puffs) are affected by the pulsation. While at high pulsation frequencies (α > 12) lifetimes of turbulent spots are entirely unaffected by the pulsation, at lower frequencies they are substantially affected. With decreasing frequency much larger Reynolds numbers are needed to obtain spots of the same characteristic lifetime. Hence at low frequency transition is delayed significantly. In addition the effect of the pulsation amplitude on the transition delay is quantified. Duo Xu would like to acknowledge the support from Humboldt Foundation.

  11. Some spectral and pulsation characteristics of the horizontal flow of a gas-liquid suspension

    NASA Astrophysics Data System (ADS)

    Krokovnyi, P. M.

    1980-02-01

    In the experiments described, the turbulence characteristics of a two-phase gas-liquid pipe flow were studied, using a 6 m long, 19-mm-diam tube. The inlet temperature of the suspension was maintained at 25 C. The friction energy spectra and the relative intensity of the friction pulsations were measured. The spectral and pulsation characteristics were obtained by an electrodiffusion technique which provided reliable data on the pulsations of the wall shear stress.

  12. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Hof, Bjorn; Warnecke, Sascha; Xu, Duo

    2013-11-01

    We report an experimental study of the transition to turbulence in a pulsating pipe flow the most important example of pulsating flows is the cardiovascular system where the onset of fluctuations and turbulence can be a possible cause for various diseases such as the formation of aneurysms. The present study is limited to a straight rigid pipe, sinusoidal modulation of the flow rate and a Newtonian fluid. The dimensionless parameters (Womersley and Reynolds numbers) were chosen to include the parameter range encountered in larger arteries. We observe that at large frequencies the critical point for the onset of turbulence remains completely unaffected by pulsation for all amplitudes investigated (up to 40%). However for smaller frequencies (Womersley numbers below 10) the critical point considerably increases. Furthermore we investigate how the transition scenario is affected for a fixed frequency and increasing amplitudes (approaching oscillatory flow).

  13. An experimental investigation of heat transfer to pulsating pipe air flow with different amplitudes

    NASA Astrophysics Data System (ADS)

    Zohir, A. E.; Habib, M. A.; Attya, A. M.; Eid, A. I.

    2006-05-01

    Heat transfer characteristics to both laminar and turbulent pulsating pipe flows under different conditions of Reynolds number, pulsation frequency, pulsator location and tube diameter were experimentally investigated. The tube wall of uniform heat flux condition was considered for both cases. Reynolds number varied from 750 to 12,320 while the frequency of pulsation ranged from 1 to 10 Hz. With locating the pulsator upstream of the inlet of the test section tube, results showed an increase in heat transfer rate due to pulsation by as much as 30% with flow Reynolds number of 1,643 and pulsation frequency of 1 Hz, depending on the upstream location of the pulsator valve. Closer the valve to the tested section inlet, the better improvement in the heat transfer coefficient is achieved. Upon comparing the heat transfer results of the upstream and the downstream pulsation, at Reynolds number of 1,366 and 1,643, low values of the relative mean Nusselt number were obtained with the upstream pulsation. Comparing the heat transfer results of the two studied test sections tubes for Reynolds number range from 8,000 to 12,000 and pulsation frequency range from 1.0 to 10 Hz showed that more improvement in heat transfer rate was observed with a larger tube diameter. For Reynolds number ranging from 8,000 to 12,000 and pulsation frequency of 10 Hz, an improvement in the relative mean Nusselt number of about 50% was obtained at Reynolds number of 8,000 for the large test section diameter of 50 mm. While, for the small test section diameter of 15 mm, at same conditions of Reynolds number and frequency, a reduction in the relative mean Nusselt number of up to 10% was obtained.

  14. A statistical method for draft tube pressure pulsation analysis

    NASA Astrophysics Data System (ADS)

    Doerfler, P. K.; Ruchonnet, N.

    2012-11-01

    Draft tube pressure pulsation (DTPP) in Francis turbines is composed of various components originating from different physical phenomena. These components may be separated because they differ by their spatial relationships and by their propagation mechanism. The first step for such an analysis was to distinguish between so-called synchronous and asynchronous pulsations; only approximately periodic phenomena could be described in this manner. However, less regular pulsations are always present, and these become important when turbines have to operate in the far off-design range, in particular at very low load. The statistical method described here permits to separate the stochastic (random) component from the two traditional 'regular' components. It works in connection with the standard technique of model testing with several pressure signals measured in draft tube cone. The difference between the individual signals and the averaged pressure signal, together with the coherence between the individual pressure signals is used for analysis. An example reveals that a generalized, non-periodic version of the asynchronous pulsation is important at low load.

  15. Theoretical and experimental investigations of flow pulsation effects in Coriolis mass flowmeters

    NASA Astrophysics Data System (ADS)

    Svete, A.; Kutin, J.; Bobovnik, G.; Bajsić, I.

    2015-09-01

    An understanding of the effects of flow pulsations on the dynamic behavior of Coriolis flowmeters is very important for their further development. In order to determine the phase difference between the vibrational signals, which represents the basic measurement effect of Coriolis flowmeters, there are many methods that include the proper filtering of all the signal components, except those with frequencies close to the drive frequency. Therefore, an understanding of the phenomenon of exciting the meter at its first natural frequency is very important. The results of a simple, linear, two-degree-of-freedom, lumped-parameter, dynamic model of a flowmeter show that the flow pulsations can degrade the accuracy of such a flowmeter as a result of indirect excitations of the measuring tube at the first natural frequency through the second-order perturbations by means of the Coriolis forces induced in pulsating flow conditions. In order to experimentally investigate these flow pulsation effects, a prototype of a straight-tube Coriolis mass flowmeter was developed to enable the processing of the response signals logged directly from the flow tube's sensors with the dual quadrature demodulation method, and therefore to provide the information available within the phase-difference data. The experimental results show that the flow pulsations upset the meter at its first natural frequency indirectly, as well as directly at the frequency of the pulsations due to the geometric imperfections of the measuring tube.

  16. Flow induced pulsations in pipe systems

    NASA Astrophysics Data System (ADS)

    Bruggeman, Jan Cornelis

    1987-12-01

    The aeroacoustic behavior of a low Mach number, high Reynolds number flow through a pipe with closed side branches was investigated. Sound is generated by coherent structures of concentrated vorticity formed periodically in the separated flow in the T-shaped junctions of side branches and the main pipe. The case of moderate pulsation amplitudes was investigated. It appears that the vortical flow in a T-joint is an aeroacoustic source of constant strength when acoustic energy losses due to radiation and friction are small but not negligible. When acoustic energy losses due to radiation and friction are negligible, the nonlinear character of vortex damping is the amplitude limiting mechanism. It is stressed that aeroacoustic sources should not be neglected in studies of the response of a piping lay-out with flow to, e.g., the pulsating output of a compressor.

  17. Determination of discharge during pulsating flow

    USGS Publications Warehouse

    Thompson, T.H.

    1968-01-01

    Pulsating flow in an open channel is a manifestation of unstable-flow conditions in which a series of translatory waves of perceptible magnitude develops and moves rapidly downstream. Pulsating flow is a matter of concern in the design and operation of steep-gradient channels. If it should occur at high stages in a channel designed for stable flow, the capacity of the channel may be inadequate at a discharge that is much smaller than that for which the channel was designed. If the overriding translatory wave carries an appreciable part of the total flow, conventional stream-gaging procedures cannot be used to determine the discharge; neither the conventional instrumentation nor conventional methodology is adequate. A method of determining the discharge during pulsating flow was tested in the Santa Anita Wash flood control channel in Arcadia, Calif., April 16, 1965. Observations of the dimensions and velocities of translatory waves were made during a period of controlled reservoir releases of about 100, 200, and 300 cfs (cubic feet per second). The method of computing discharge was based on (1) computation of the discharge in the overriding waves and (2) computation of the discharge in the shallow-depth, or overrun, part of the flow. Satisfactory results were obtained by this method. However, the procedure used-separating the flow into two components and then treating the shallow-depth component as though it were steady--has no theoretical basis. It is simply an expedient for use until laboratory investigation can provide a satisfactory analytical solution to the problem of computing discharge during pulsating flow. Sixteen months prior to the test in Santa Anita Wash, a robot camera had been designed .and programmed to obtain the data needed to compute discharge by the method described above. The photographic equipment had been installed in Haines Creek flood control channel in Los Angeles, Calif., but it had not been completely tested because of the infrequency of

  18. Experimental and Theoretical Studies of Pulsating Turbulent Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kingston, G. C.

    1975-01-01

    The objective of this investigation was to study the effects of small amplitude sinusoidal pulsations on fully developed turbulent flow in a tube from both experimental and theoretical viewpoints. Theoretical models for the macroscopic behavior of pulsating turbulent tube flow were developed for the two cases of very low and very high pulsation frequencies. The models are based on assumptions of quasi-steady and frozen eddy viscosity flow behavior, respectively. The models successfully predict unsteady velocity profiles, thereby supporting the currently proposed definitions of frequency regimes in pulsating turbulent flow. Experimental measurements were made of the time-dependent pressure drop and velocity profiles over the range of frequency-to-Reynolds number ratios from 0.0095 to 0.24. The two macroscopic models developed in this study predict unsteady velocity profiles which are in moderately good agreement with the experiments in their respective frequency regimes, and a previously developed quasi-steady model is found to predict experimental velocity profiles well in both the quasisteady and the frozen eddy viscosity frequency regimes. The effect of flow pulsations on the dissipation of turbulence energy in the vicinity of the wall was measured in the lower transition frequency regime. The long-time averaged dissipation was observed to be unchanged from the steady flow dissipation, within the accuracy of the experiment. A theoretical model of the periodic viscous sublayer was also developed and applied to pulsating flow in a tube, in order to investigate the effects of flow pulsations on the rate of production of turbulence in the region of the wall. The periodic viscous sublayer model predicts sublayer growth periods in steady flow which agree with the published experimental data. When the model is applied to pulsating flow, the response of the sublayer growth period falls into three frequency regimes, the parameters of which are in approximate agreement

  19. Heat transfer coefficients for drying in pulsating flows

    SciTech Connect

    Fraenkel, S.L.

    1998-05-01

    Pulsating flows generated by a Rijke type combustor are studied for drying of grains and food particles. It is assumed that the velocity fluctuations are the main factor in the enhancement of the drying process. The heat transfer coefficients for drying in vibrating beds are utilized to estimate the heat transfer coefficients of fixed beds in pulsating and permeating flows and are compared to the steady flow heat transfer coefficients obtained for solid porous bodies, after perturbing the main flow. The cases considered are compared to the convective heat transfer coefficients employed in non-pulsating drying.

  20. Flow and mixing characteristics of an elevated pulsating transverse jet

    NASA Astrophysics Data System (ADS)

    Huang, Rong F.; Hsu, Ching M.

    2012-01-01

    Flow-evolution processes as well as the penetration, spread, and dispersion characteristics of elevated pulsating transverse jets were studied experimentally in a wind tunnel. Jet pulsations were induced by means of acoustic excitation. Streak pictures of the smoke-flow patterns, illuminated by a laser-light sheet in the median plane, were recorded by a high-speed digital camera. A hot-wire anemometer was used to digitize instantaneous velocities of instabilities in the flow. Penetration height and spread width were obtained through a binary edge identification technique. Tracer-gas concentrations were measured to provide information on jet dispersions and trajectories. Three characteristic flow modes (synchronized flapping jet, transition, and synchronized shear-layer vortices) were identified in the domain of the jet-to-crossflow momentum-flux ratio and the excitation Strouhal number. At low excitation Strouhal numbers, the jet column near the tube exit flapped back-and-forth periodically at the excitation frequency and induced large up-down motions of the deflected jet. The penetration, spread, and dispersion of the jet increased drastically compared with the non-excited jet because the up-down oscillating motions of the deflected jet transformed the axial momentum into oscillating lateral momentum. Forcing the jet into the transition and synchronized shear-layer vortices regimes caused the vortices to appear along the upwind shear layer of the deflected jet. Under these conditions, the penetration, spread, and dispersion of the jet presented insignificant increases because the entrainment effect induced by the shear-layer vortices was not as large as that produced by the jet oscillating motions in the synchronized flapping jet regime.

  1. Heat transfer characteristics of pulsated turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Said, S. A. M.; Al-Farayedhi, A. A.; Al-Dini, S. A.; Asghar, A.; Gbadebo, S. A.

    Heat Transfer characteristics of pulsated turbulent pipe flow under different conditions of pulsation frequency, amplitude and Reynolds number were experimentally investigated. The pipe wall was kept at uniform heat flux. Reynolds number was varied from 5000 to 29 000 while frequency of pulsation ranged from 1 to 8 Hz. The results show an enhancement in the local Nusselt number at the entrance region. The rate of enhancement decreased as Re increased. Reduction of heat transfer coefficient was observed at higher frequencies and the effect of pulsation is found to be significant at high Reynolds number. It can be concluded that the effect of pulsation on the mean Nusselt numbers is insignificant at low values of Reynolds number.

  2. The Effects of Pulsating Flow on Eruption Column Dynamics

    NASA Astrophysics Data System (ADS)

    Black, T.; Dufek, J.; Benage, M. C.

    2015-12-01

    Pulsating flow, at frequencies ranging from 10-2 to 101 Hz, has been recorded in explosive eruptions through video, thermal imagery, and infrasonic and seismic data. Such pulsating flow can be generated from instabilities in bubbly magma, and from granular instabilities in post-fragmentation conduit flow. Variable fluxes of gas and particles at the vent can alter entrainment conditions, and consequently affect eruption column stability. However, volcanic eruption models typically assume steady flow from the vent, and regime diagrams of eruption column stability are based on such steady flow assumptions. Using Eulerian-Eulerian multiphase numerical simulations of eruption columns with both steady and pulsating sources, we compared the relative behavior of steady and pulsed columns across a range of pulse frequencies and mass fluxes at the vent (mass flux is time-averaged for pulsating cases). Preliminary results suggest that pulsating flow increases air entrainment into the column relative to steady flow for otherwise constant eruption conditions, and that entrainment increases with decreasing pulse frequency. Increased entrainment at low frequency implies that low-frequency pulsed columns are more buoyant and potentially more stable than their steady counterparts, for a given mass flux. This effect disrupts the steady flow-based understanding of eruption column stability regimes and may be a factor to consider for future assessment of volcanic hazards and interpreting mass flux conditions from deposits.

  3. CFD simulation of pulsation noise in a small centrifugal compressor with volute and resonance tube

    NASA Astrophysics Data System (ADS)

    Wakaki, Daich; Sakuka, Yuta; Inokuchi, Yuzo; Ueda, Kosuke; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2015-02-01

    The rotational frequency tone noise emitted from the automobile turbocharger is called the pulsation noise. The cause of the pulsation noise is not fully understood, but is considered to be due to some manufacturing errors, which is called the mistuning. The effects of the mistuning of the impeller blade on the noise field inside the flow passage of the compressor are numerically investigated. Here, the flow passage includes the volute and duct located downstream of the compressor impeller. Our numerical approach is found to successfully capture the wavelength of the pulsation noise at given rotational speeds by the comparison with the experiments. One of the significant findings is that the noise field of the pulsation noise in the duct is highly one-dimensional although the flow fields are highly three-dimensional.

  4. Draft tube pressure pulsation predictions in Francis turbines with transient Computational Fluid Dynamics methodology

    NASA Astrophysics Data System (ADS)

    Melot, M.; Nennemann, B.; Désy, N.

    2014-03-01

    An automatic Computational Fluid Dynamics (CFD) procedure that aims at predicting Draft Tube Pressure Pulsations (DTPP) at part load is presented. After a brief review of the physics involved, a description of the transient numerical setup is given. Next, the paper describes a post processing technique, namely the separation of pressure signals into synchronous, asynchronous and random pulsations. Combining the CFD calculation with the post-processing technique allows the quantification of the potential excitation of the mechanical system during the design phase. Consequently it provides the hydraulic designer with a tool to specifically target DTPP and thus helps in the development of more robust designs for part load operation of turbines.

  5. The pulsating laminar flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Valueva, E. P.; Purdin, M. S.

    2015-11-01

    The finite difference method is used to solve the task of the developed pulsating laminar flow in a rectangular channel. The optimum of the difference scheme parameters was determined. Data on the amplitude and phase of the longitudinal velocity oscillations, the hydraulic and friction drag coefficients, the shear stress on the wall have been obtained. Using the dimensionless value of the frequency pulsations two characteristic regimes — the quasisteady-state regime and the high-frequency regime have been identified. In the quasi-steady-state regime, the values of all hydrodynamic quantities at each instant of time correspond to the velocity value averaged over the cross section at a given moment of time. It is shown that in the high-frequency regime, the dependences on the dimensionless oscillation frequency of oscillating components of hydrodynamic quantities are identical for rectilinear channels with a different cross-sectional form (round pipe, flat and a rectangular channels). The effect of the aspect ratio of the rectangular channel sides channel on the pulsating flow dynamics has been analyzed.

  6. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  7. Flow Visualization Study of a Pulsating Respiratory Assist Catheter

    PubMed Central

    Budilarto, Stephanus G.; Frankowski, Brian J.; Hattler, Brack G.; Federspiel, William J.

    2007-01-01

    Our group is currently developing an intravenous respiratory assist device that uses a centrally located pulsatile balloon within a hollow fiber bundle to enhance gas exchange rate via active mixing mechanism. We tested the hypothesis that the nonsymmetric inflation and deflation of the balloon lead to both nonuniform balloon‐generated secondary flow and nonuniform gas exchange rate in the fiber bundle. The respiratory catheter was placed in a 1‐in. internal diameter rigid test section of an in vitro flow loop (3 L/min deionized water). Particle image velocimetry (PIV), which was used to map the velocity vector field in the lateral cross‐section, showed that the balloon pulsation generated a nonuniform fluid flow surrounding the respiratory assist catheter. PIV was also used to characterize the fiber bundle movement, which was induced by the balloon pulsation. Gas permeability coefficient of the device was evaluated by using both the fluid velocity and the relative velocity between the fluid and the fiber bundle. The highest difference in the gas permeability coefficient predicted by using the relative velocity was about 17% to 23% (angular direction), which was more uniform than the 49% to 59% variation predicted by using the fluid velocity. The movement of the fiber bundle was responsible for reducing the variation in the fluid velocity passing through the bundle and for minimizing the nonuniformity of the gas permeability coefficient of the respiratory assist catheter. PMID:16340349

  8. Carreau model for oscillatory blood flow in a tube

    NASA Astrophysics Data System (ADS)

    Tabakova, S.; Nikolova, E.; Radev, St.

    2014-11-01

    The analysis of the blood flow dynamics (hemodynamics) in tubes is crucial when investigating the rupture of different types of aneurysms. The blood viscosity nonlinear dependence on the flow shear rate creates complicated manifestations of the blood pulsations. Although a great number of studies exists, experimental and numerical, this phenomenon is still not very well understood. The aim of the present work is to propose a numerical model of the oscillatory blood flow in a tube on the basis of the Carreau model of the blood viscosity (nonlinear model with respect to the shear rate). The obtained results for the flow velocity and tangential stress on the tube wall are compared well with other authors' results.

  9. Turbulent flow and heat transfer in rotating channels and tubes

    NASA Astrophysics Data System (ADS)

    Mitiakov, V. Y.; Petropavlovskii, R. R.; Ris, V. V.; Smirnov, E. M.; Smirnov, S. A.

    This document is a reduction of the author's experimental results on turbulent flow characteristics and heat transfer in rotating channels whose axes are parallel to the plane of rotation. Substantial dissimilarities of longitudinal velocity field profile and pulsational characteristics are caused by effects of stabilization and destabilization and secondary flow production. Local heat transfer coefficients vary over the perimeter of the tube section connecting detected flow peculiarities. It is shown that the increase in rotational intensity caused an increase in the relative dissimilarity of the local heat transfer coefficients and increased their mean value.

  10. Nonsteady Flow in Capillary Tubes

    NASA Astrophysics Data System (ADS)

    Hara, Ayako

    2000-03-01

    Surface phenomena in the field of electron devices and the problem of how long. It takes plants to absorb water during their growth in hydroponic cultivation is attraching the attention of riseachers. However, the related study of non-steady flow in capillary tubes has a number of issues that require investigation. In response to this situation, we made attempted to assess nonsteady fiow in capillary tubes, the liquid rise time and other issues, using a motion equation that takes factors including the friction force of the tube and the surface tension into consideration.

  11. Lattice Boltzmann Simulation of One Particle Migrating in a Pulsating Flow in Microvessel

    NASA Astrophysics Data System (ADS)

    Qiu, Bing; Tan, Hui-Li; Li, Hua-Bing

    2011-10-01

    A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel. The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segré—Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segré—Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segré—Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.

  12. Results mixed from pulsating flow tests of orifice-plate meters

    SciTech Connect

    Arasi, J.A. )

    1992-10-05

    This paper reports that laboratory tests on several commercially available orifice-plate meters for use in pulsating flow indicate that none yields acceptable accuracy. These tests suggested, however, that if the objective of monitoring pulsating flow is to indicate or quantify pulsation magnitudes for comparisons, then at least two instruments are acceptable. Use of such meters, particularly in low flow rate gathering systems, can be a viable alternative to attempting to reduce the intensity (amplitude and frequency) of pulsation by expensive installation and maintenance of chokes and bottles. Phillips Petroleum Co. set out to find a meter that would be sensitive enough to measure pulsating hydrocarbon flows with acceptable accuracy using the orifice plate. Several orifice measurement systems were simultaneously investigated at the Southwest Research Institute, San Antonio (SwRI).

  13. Mass flow and its pulsation measurements in supersonic wing wake

    NASA Astrophysics Data System (ADS)

    Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.

    2016-10-01

    The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.

  14. Heat transfer from a fully-developed pulsating flow in a curved pipe

    NASA Astrophysics Data System (ADS)

    Chung, Jae Hwa; Hyun, Jae Min

    1994-01-01

    Numerical studies are made of the flow and heat transfer characteristics of a fully-developed pulsating flow in a strongly curved pipe. Emphasis is placed on delineating the effects of the Reynolds number, and pulsation amplitude and frequency. By using a toroidal coordinate system, the complete, time-dependent incompressible Navier-Stokes equations are formulated. The peripherally-uniform temperature condition is imposed on the pipe wall. Particular attention is given to heat transfer properties over substantially extended parameter ranges of the Reynolds number Re and the Womersley number Wo. Use is made of a well-established numerical solution procedure, with minor amendments. The computed results on the flow field are in close agreement with the existing data in the overlapping parameter ranges. The spatial distributions of axial and secondary flows are depicted. The time variations of flow structure are displayed. The numerical results on the spatial and temporal variations of the thermal field are presented. The circumferential profiles of local Nusselt number are plotted at selected instants. When Wo is small, the time- and space-averaged Nusselt numbers, bar-Nu(sub w), is lower for a pulsating flow than for a corresponding non-pulsating flow. At moderate and high Wo, however, the difference in bar-Nu(sub w) between a pulsating and a non-pulsating flow is insignificant.

  15. Effect on the flow and heat transfer characteristics for sinusoidal pulsating laminar flow in a heated square cylinder

    NASA Astrophysics Data System (ADS)

    Yu, Jiu-Yang; Lin, Wei; Zheng, Xiao-Tao

    2014-06-01

    Two-dimensional numerical simulation is performed to understand the effect of flow pulsation on the flow and heat transfer from a heated square cylinder at Re = 100. Numerical calculations are carried out by using a finite volume method based on the pressure-implicit with splitting of operators algorithm in a collocated grid. The effects of flow pulsation amplitude (0.2 ≤ A ≤ 0.8) and frequency (0 ≤ f p ≤ 20 Hz) on the detailed kinematics of flow (streamlines, vorticity patterns), the macroscopic parameters (drag coefficient, vortex shedding frequency) and heat transfer enhancement are presented in detail. The Strouhal number of vortices shedding, drag coefficient for non-pulsating flow are compared with the previously published data, and good agreement is found. The lock-on phenomenon is observed for a square cylinder in the present flow pulsation. When the pulsating frequency is within the lock-on regime, time averaged drag coefficient and heat transfer from the square cylinder is substantially augmented, and when the pulsating frequency in about the natural vortex shedding frequency, the heat transfer is also substantially enhanced. In addition, the influence of the pulsating amplitude on the time averaged drag coefficient, heat transfer enhancement and lock-on occurrence is discussed in detail.

  16. Effects of pulsation on separated flow and heat transfer in enlarged channel

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Hiroyuki; Kai, Tomonori; Munekata, Mizue; Ohba, Hideki

    2011-03-01

    Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper. The expansion ratio and aspect ratio of the channel are 2.0 and 16.0, respectively. Reynolds number of the flow is 200 and it is over the critical Reynolds number. Over the critical Reynolds number, the flow in the symmetric channel becomes asymmetric and deflects to one side of the walls. Effects of the pulsating fluctuation at the inlet upon the flow in the channel are investigated. It is clarified that the inlet flow with a pulsating fluctuation of Strouhal number 0.05 and 0.10 strongly affects on the flow in the channel, and heat transfer on the walls is enhanced, especially on the wall surface covered with long separation bubble. On the other hand, the pulsation of St = 0.0125 oscillates the shear layer more weakly than that of St = 0.05, 0.10 and the enhancement of heat transfer is smaller, though some vortices are shed from the vicinity of the side wall near the reattachment region. The oscillation of the main flow calms down gradually as the Strouhal number of the pulsation increases over 0.10. The influence of pulsation of St = 0.20 on the flow is restricted in the near downstream of the step, and heat transfer on the walls is almost similar to that of the steady flow in the channel.

  17. Siphon flows in isolated magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Thomas, John H.

    1988-01-01

    The paper considers steady siphon flows in isolated thin magnetic flux tubes surrounded by field-free gas, with plasma beta greater than or equal to 1, appropriate for conditions in the solar photosphere. The cross-sectional area of the flux tube varies along the tube in response to pressure changes induced by the siphon flow. Consideration is also given to steady isothermal siphon flows in arched magnetic flux tubes in a stratified atmosphere. Applications of the results to intense magnetic flux tubes in the solar photosphere and to the photospheric Evershed flow in a sunspot penumbra are addressed.

  18. On Flow Stagnation in a Tube Radiator

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Chao, David F.; Sankovic, John M.; Zhang, Nengli

    2007-01-01

    An analysis of the physical process for occurrence of flow stagnation in a space tube-radiator is performed and the mechanism and mathematic description for the flow stagnation are presented. Two causes for pressure drop unbalance between tubes of the radiator are identified: non-uniform cooling environment and different local flow resistances between the tubes. This analysis provides a theoretical basis for experimental simulations of the flow stagnation in a ground-based lab as well as two suggested methods to experimentally simulate flow stagnation. Criteria for the flow stagnation, depending on the viscosity data regressive polynomial, are derived from the extreme condition of the pressure drop in colder tubes. A preliminary numerical calculation is conducted for a space tube-radiator model which confirms the physical and mathematical analyses. The prediction by the criteria for flow stagnation in the tube-radiator model coincides with the numerical calculation result.

  19. Investigation of the mixed flow turbine performance under inlet pulsating flow conditions

    NASA Astrophysics Data System (ADS)

    Hamel, Mohammed; Abidat, Miloud; Litim, Sid Ali

    2012-03-01

    Turbochargers are widely used in Diesel engines as a means of increasing the output power. Most of them are fitted with radial or mixed flow turbines. In applications where high boost pressure is required, radial turbines are replaced by mixed flow turbines which can achieve a maximum efficiency at a lower value of blade speed to isentropic expansion velocity ratio than the usual 0.7 (for radial turbines). This study, performed with the ANSYS-CFX software, presents a numerical performance prediction of a mixed flow turbine under inlet pulsating flow conditions. In addition, the influence of the pulse frequency is studied and the numerical results are compared with those of a one-dimensional model and experimental data.

  20. Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model.

    PubMed

    Bilston, Lynne E; Fletcher, David F; Brodbelt, Andrew R; Stoodley, Marcus A

    2003-08-01

    This study was conducted to determine whether local arterial pulsations are sufficient to cause cerebrospinal fluid (CSF) flow along perivascular spaces (PVS) within the spinal cord. A theoretical model of the perivascular space surrounding a "typical" small artery was analysed using computational fluid dynamics. Systolic pulsations were modelled as travelling waves on the arterial wall. The effects of wave geometry and variable pressure conditions on fluid flow were investigated. Arterial pulsations induce fluid movement in the PVS in the direction of arterial wave travel. Perivascular flow continues even in the presence of adverse pressure gradients of a few kilopascals. Flow rates are greater with increasing pulse wave velocities and arterial deformation, as both an absolute amplitude and as a proportion of the PVS. The model suggests that arterial pulsations are sufficient to cause fluid flow in the perivascular space even against modest adverse pressure gradients. Local increases in flow in this perivascular pumping mechanism or reduction in outflow may be important in the etiology of syringomyelia.

  1. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  2. Siphon flows in isolated magnetic flux tubes. II. Adiabatic flows

    SciTech Connect

    Montesinos, B.; Thomas, J.H.

    1989-02-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point. 15 references.

  3. Numerical study of unsteady convective heat transfer in pulsating duct flows

    NASA Astrophysics Data System (ADS)

    Stosic, N.; Hanjalic, K.

    Numerical study results are presented for hydrodynamic parameters and heat transfer in a periodic gas flow, within a circular pipe in which flow oscillations were generated by pressure variation at one of the pipe ends. A comparison of experimental and numerical results has demonstrated satisfactory agreement, as well as the significant augmentation of the heat transfer coefficient under those resonant conditions in which the flow pulsation incitement frequencies correspond to the natural frequencies of the duct.

  4. An experimental study of pressure losses in pulsatile flows through rigid and pulsating stenosis.

    PubMed

    Rabinovitz, R; Degani, D; Gutfinger, C; Milo, S

    1984-11-01

    The time-dependent pressure curves of a pulsatile flow across rigid and pulsating stenoses were investigated experimentally in a laboratory simulator of the outflow tract of the heart right ventricle. The experiments were performed within the range of physiological conditions of frequency and flow rate. The experimental setup consisted of a closed flow system which was operated by a pulsatile pump, and a test chamber which enabled checking different modes of stenosis. Rigid constrictions were simulated by means of axisymmetric blunt-ended annular plugs with moderate-to-severe area reductions. The pulsating stenosis consisted of a short starling resistor device operated by a pulsating external pressure which was synchronized by the pulsatile flow. It was found that the shape of the time-dependent pressure curve upstream of the stenosis was different in the case of rigid stenosis than in the pulsating one. Potential clinical applications of the work may relate to diagnosis of the type of stenosis in the congenital heart disease known as Tetralogy of Fallot. PMID:6513525

  5. Study on transient local entropy generation in pulsating fully developed laminar flow through an externally heated pipe

    NASA Astrophysics Data System (ADS)

    Yapıcı, Hüseyin; Kayataş, Nesrin; Baştürk, Gamze; Kahraman, Nafiz

    2006-11-01

    This study presents the investigation of transient local entropy generation rate in pulsating fully developed laminar flow through an externally heated pipe. The flow inlet to the pipe is considered as pulsating at a constant period and amplitude (only the velocity oscillates). The simulations are extended to include different pulsating flow cases (sinusoidal flow, step flow, and saw-down flow). To determine the effects of the mean velocity, the period and the amplitude of the pulsating flow on the entropy generation rate, the pulsating flow is examined for various cases of these parameters. Two-dimensional flow and temperature fields are computed numerically with the help of the fluent computational fluid dynamics (CFD) code. In addition to this CFD code, a computer program has been developed to calculate numerically the entropy generation and other thermodynamic parameters by using the results of the calculations performed for the flow and temperature fields. In all investigated cases, the irreversibility due to the heat transfer dominates. The step flow constitutes the highest temperature (about 919 K) and generates the highest total entropy rate (about 0.033 W/K) within the pipe. The results of this study indicate that in the considered situations, the inverse of square of temperature (1/ T 2) is more dominant on the entropy generation than the temperature gradients, and that the increase of the mean velocity of the pulsating flow has an adverse effect on the ratio of the useful energy transfer rate to irreversibility rate.

  6. Average Nusselt number correlation in the thermal entrance region of steady and pulsating turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Gbadebo, S. A.; Said, S. A. M.; Habib, M. A.

    Empirical correlation has been developed for local and average Nusselt numbers in the thermal entrance region of steady and pulsating turbulent air-flows in a pipe. The correlation was based on experimental data obtained from experiment carried out on a pipe heated under uniform heat flux conditions. The rate of flow was periodically varied at frequencies ranging from 1Hz to 13Hz while the average Reynolds number varied from 6400 to 42000.

  7. Pressure and velocity field measurements of pulsating flow in a square channel y-junction

    NASA Astrophysics Data System (ADS)

    Pastuhoff, Markus; Kalpakli, Athanasia; Alfredsson, P. Henrik

    2013-11-01

    The pressure and velocity fields in a y-junction of a square (40 × 40 mm2) cross-section channel were investigated during pulsating flow. One of the sides of the channel was covered with fast responding pressure sensitive paint (PSP) whereas the velocity field at the channel center parallel to the PSP surface was measured using particle image velocimetry (PIV). The flow conditions, in terms of mass flow rate and pulsation frequency, were selected to resemble the flow inside an exhaust manifold of a small internal combustion engine, although the gas was at room temperature. The mass flow was varied between 10 and 130 g/s with pulsations between 0 and 80 Hz. For both the PSP and the PIV measurements images were acquired unsynchronized to the pulses using a high-speed camera and phase averages were formed a posteriori. The use of PSP together with PIV demonstrates how the two techniques can be used to verify and complement each other, PIV excelling at the lower mass flow rates and PSP at the higher. It is shown that the signal-to-noise ratio for PSP at low velocities can be enhanced using a technique based on singular value decomposition.

  8. Pulsating electrolyte flow in a full vanadium redox battery

    NASA Astrophysics Data System (ADS)

    Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.

    2015-10-01

    Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.

  9. Reduced order model of draft tube flow

    NASA Astrophysics Data System (ADS)

    Rudolf, P.; Štefan, D.

    2014-03-01

    Swirling flow with compact coherent structures is very good candidate for proper orthogonal decomposition (POD), i.e. for decomposition into eigenmodes, which are the cornerstones of the flow field. Present paper focuses on POD of steady flows, which correspond to different operating points of Francis turbine draft tube flow. Set of eigenmodes is built using a limited number of snapshots from computational simulations. Resulting reduced order model (ROM) describes whole operating range of the draft tube. ROM enables to interpolate in between the operating points exploiting the knowledge about significance of particular eigenmodes and thus reconstruct the velocity field in any operating point within the given range. Practical example, which employs axisymmetric simulations of the draft tube flow, illustrates accuracy of ROM in regions without vortex breakdown together with need for higher resolution of the snapshot database close to location of sudden flow changes (e.g. vortex breakdown). ROM based on POD interpolation is very suitable tool for insight into flow physics of the draft tube flows (especially energy transfers in between different operating points), for supply of data for subsequent stability analysis or as an initialization database for advanced flow simulations.

  10. Heat transfer in pulsating laminar flow in a pipe - A constant wall temperature

    NASA Astrophysics Data System (ADS)

    Kita, Y.; Hirose, K.; Hayashi, T.

    1982-02-01

    An analytical model of heat transfer in a pulsating laminar pipe flow with a constant wall temperature is presented. Governing equations for the velocity profile and the wall shear stress are defined and the temperature field is studied for an instantaneous Nusselt number. Cases of steady and unsteady temperature fields are considered, along with the heat flux in the unsteady state, and a ratio for the Nusselt number in the steady state to that in the pulsating flow is obtained. A method for deriving the instantaneous pipe friction factor is demonstrated and the range of the pressure-gradient amplitudes is determined. Finally, conditions are formulated in which the temperature field, including the heat flux, at the wall are equal to that of the steady state.

  11. Siphon flows in isolated magnetic flux tubes. IV - Critical flows with standing tube shocks

    SciTech Connect

    Thomas, J.H.; Montesinos, B. Mees Observatory, NY Oxford, University )

    1991-07-01

    Critical siphon flows in arched, isolated magnetic flux tubes are studied within the thin flux tube approximation, with a view toward applications to intense magnetic flux concentrations in the solar photosphere. The results of calculations of the strength and position of the standing tube shock in the supercritical downstream branch of a critical siphon flow are presented, as are calculations of the flow variables all along the flux tube and the equilibrium path of the flux tube in the surrounding atmosphere. It is suggested that arched magnetic flux tubes, with magnetic field strength increased by a siphon flow, may be associated with some of the intense, discrete magnetic elements observed in the solar photosphere. 37 refs.

  12. Siphon flows in isolated magnetic flux tubes. IV - Critical flows with standing tube shocks

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1991-01-01

    Critical siphon flows in arched, isolated magnetic flux tubes are studied within the thin flux tube approximation, with a view toward applications to intense magnetic flux concentrations in the solar photosphere. The results of calculations of the strength and position of the standing tube shock in the supercritical downstream branch of a critical siphon flow are presented, as are calculations of the flow variables all along the flux tube and the equilibrium path of the flux tube in the surrounding atmosphere. It is suggested that arched magnetic flux tubes, with magnetic field strength increased by a siphon flow, may be associated with some of the intense, discrete magnetic elements observed in the solar photosphere.

  13. Effect of flow pulsation on mass transport in a cathode channel of polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Han, Hun Sik; Kim, Yun Ho; Kim, Seo Young; Hyun, Jae Min

    2012-09-01

    An experimental and theoretical study on the cathode flow pulsation in a polymer electrolyte membrane (PEM) fuel cell is performed. A 10-cell PEM fuel cell stack with open-air cathode channels is employed to investigate the effects of the cathode flow pulsation on the overall performance. The polarization and corresponding power curves obtained show that both the limiting current density and the maximum power density are substantially enhanced when the pulsating component is added to the cathode mainstream flow. The flow pulsation at Re = 77 provides the maximum increment of 40% and 35.5% in the limiting current density and in the maximum power density, respectively. The enhancement of the overall performance is more pronounced at low Reynolds numbers. Also, the theoretical mass transport analysis in the pulsating cathode flow channel is carried out to verify the present experimental results. The momentum and species conservation equations are analytically solved, and the effective time-averaged dispersion coefficient is defined to account for the enhanced mass transport by the flow pulsation. Comprehensive analytical solutions show that the effect of the relevant parameters is in well accordance with the experimental results.

  14. A search for p-mode pulsations in white dwarf stars using the Berkeley Visible Imaging Tube detector

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.; Welsh, B. Y.; Koen, C.; Gulbis, A. A. S.; Kotze, M. M.

    2014-01-01

    We present high-speed photometry (resolution 0.1 s) obtained during the commissioning of the Berkely Visible Imaging Tube system on the Southern African Large Telescope (SALT). The observations were an attempt to search for very rapid p-mode oscillations in white dwarf stars and included three DA stars known to be g-mode pulsators (ZZ Cet, HK Cet and AF Pic), one other DA star (WD 1056-384) not known to be variable and one AM Cvn star (HP Lib). No evidence was found for any variations greater than about 1 mmag in amplitude (˜0.1 per cent) at frequencies in excess of 60 mHz (periods <17 s) in any of the target stars, though several previously known g-mode frequencies were recovered.

  15. Incompressible viscous flow in tubes with occlusions

    NASA Astrophysics Data System (ADS)

    Huang, Huaxiong

    Viscous, incompressible flow in tubes with partial occlusion is investigated using numerical and experimental procedures. The study is related to the problem of atherosclerosis, one of the most common diseases of the circulatory system. One of the computational difficulties in solving the incompressible Navier-Stokes equations is the lack of pressure or vorticity boundary conditions. A finite difference approach, referred to as the interior constraint (IC) method, is proposed to resolve this difficulty. As a general numerical method, it is formulated for both the stream function-vorticity and primitive (physical) variable formulations. The procedure is explained using a one dimensional model with extensive numerical tests presented for two dimensional cases, including flow in a driven cavity and flow over a backward facing step. Results are obtained with second-order accuracy. Next, the IC method is applied to flow in a tube with an occlusion, which is used as the model for blood flow in stenosed arteries in the study of the pathology of atherosclerosis. Numerical results are obtained for both steady and pulsatile flows. Results are compared with those of SIMPLE, one of the commercially available numerical algorithms. The pulsatile flow study revealed several interesting new features. It suggested that the high shear stress is not likely to initiate atherosclerosis lesions. The recirculation region, which is a prominent feature of the unsteady flow, is more likely to cause the initiation and development of the disease. Experimental measurements for steady flow complement the numerical study and show qualitative agreement.

  16. Investigation of the effect of external periodic flow pulsation on a cylinder wake using linear stability analysis

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Papadakis, George

    2011-09-01

    The aim of this paper is to investigate the receptivity of cylinder wake to external periodic flow pulsation at low Reynolds number using linear stability analysis. The inlet flow pulsation appears as a forcing term in the linearised equation set. The full non-linear N-S equations as well as the linearised set for small perturbations around the time-averaged flow are solved using an in-house finite volume solver. The results are first validated against reference data for growth rate and frequency of the most unstable eigenmode for flow past a fixed cylinder with steady base flow at various Reynolds numbers. A special numerical technique is developed to separate the components of the solution in the wake that vary with the natural shedding frequency and the external pulsating frequency. The developed approach requires temporal integration over one period of vortex shedding and solution of a 4×4 linear system at every cell of the domain. The results show that both cross-stream and streamwise velocity components in the near cylinder region are strongly affected by flow pulsation, and its effect is spatially localised in the near wake. Increasing the pulsation frequency reduces the spatial extent within which pulsation plays an important role. A symmetric shedding pattern is established and at every period of external pulsation, two pairs of symmetric vortices are shed from the top and bottom of the cylinder. The width of the wake periodically widens and narrows, which is similar to "wake breathing" observed in a streamwise oscillating cylinder.

  17. An Experimental Investigation of Flow Across Tube Banks

    NASA Technical Reports Server (NTRS)

    Brevoort, M.J.; Tifford, A.N.

    1942-01-01

    Flow across tube banks was investigated by surveys of total dynamic and static pressure by visualization of the flow through the use of titanium tetrachloride smoke, by thermocouple surveys of heated tubes, and by hot-wire surveys of both heated and unheated tubes. It was found that turbulence increased as the depth of the bank increased and that the broad wake behind each tube affected flow over the succeeding tubes.

  18. Predictions of fully developed pulsating flow with the aid of low-Reynolds number turbulence models

    NASA Astrophysics Data System (ADS)

    Bartosik, A. S.; Sobocinski, R.; Wanik, A. J.

    Four low-Reynolds-number turbulence models are studied to investigate the fully developed pulsating turbulent flow of an incompressible Newtonian fluid in a circular pipe. In these models, the Reynolds stress is related to the local velocity gradient by the turbulent viscosity, and the turbulent viscosity is determined using modeled transport equations for the kinetic energy of turbulence and its dissipation rate. The models of Launder and Sharma (1974) and Chien (1982) are found to perform better than those of Hassid and Poreh (1978 and 1975).

  19. The large-scale pulsation effect in a vortex-type turbulent flow

    NASA Astrophysics Data System (ADS)

    Paukov, Iu. N.; Poroshin, Iu. V.

    1989-06-01

    A physical analogy between the amplification mechanism of vortex disturbances in the atmosphere and the occurrence of self-oscillations in a confined vortex-type turbulent flow is established. The increment of vortex instability in a centrifugal atomizer is determined, and used to calculate the characteristic time of evolution of this instability (about 0.001 sec). It is shown that the pulsational operating mode of a vortex chamber with a nozzle can be viewed as a series of individual amplifying acts with respect to single vortices.

  20. Some spectral and pulsation characteristics of a horizontal gas-liquid stream

    NASA Astrophysics Data System (ADS)

    Krokovnyi, P. M.

    1980-07-01

    In the experiments described, the turbulence characteristics of a two-phase gas-liquid pipe flow were studied, using a 6 m long, 19-mm-diam tube. The inlet temperature of the suspension was maintained at 25 C. The friction energy spectra and the relative intensity of the friction pulsations were measured. The spectral and pulsation characteristics were obtained by an electrodiffusion technique which provided reliable data on the pulsations of the wall shear stress.

  1. The effect of pressure pulsations and vibrations on fully developed pipe flow

    NASA Astrophysics Data System (ADS)

    Barnett, D. O.

    1981-08-01

    An analysis is presented of the effect of longitudinal pressure pulsations or vibrations on the velocity distribution in laminar or turbulent fully developed pipe flow. Specifically, the Reynolds equations are formulated in a noninertial reference frame so that the influence of pressure pulsations, vibrations, or a combined pressure and vibrational oscillation can be obtained from a single solution. For axisymmetric developed flow of a constant property (incompressible) fluid, the radial and circumferential momentum equations can be solved and the axial momentum equation is linearized so that the velocity field can be obtained as the sum of a steady and a time-dependent component. By obtaining a solution for the case where the pressure (or amplitude of vibration) varies sinusoidally, one obtains the solution for disturbances of arbitrary waveform through a Fourier series expansion of the disturbance. Results are presented that show that the velocity field is dependent upon the mean flow Reynolds number, a vibrational Reynolds number, and the amplitude of the forcing function. In general, the fluid response to differing waveforms is similar to that obtained for simple harmonic oscillations with respect to the various parameters explored.

  2. Numerical Investigation Of Nonlinear Waves Connected To Blood Flow In An Elastic Tube With Variable Radius

    NASA Astrophysics Data System (ADS)

    Dimitrova, Zlatinka I.

    2015-12-01

    We investigate flow of incompressible fluid in a cylindrical tube with elastic walls. The radius of the tube may change along its length. The discussed problem is connected to the fluid-structure interaction in large human arteries and especially to nonlinear effects. The long-wave approximation is applied to solve model equations. The obtained model Korteweg-deVries equation possessing a variable coefficient is reduced to a nonlinear dynamical system of three first order differential equations. The low probability of a solitary wave arising is shown. Periodic wave solutions of the model system of equations are studied and it is shown that the waves, that are consequence of the irregular heart pulsations may be modelled by a sequence of parts of such periodic wave solutions.

  3. Effects of vacuum level and pulsation rate on milk ejection and milk flow traits in Tunisian dairy camels (Camelus dromedarius).

    PubMed

    Atigui, Moufida; Marnet, Pierre-Guy; Barmat, Ahmed; Khorchani, Touhami; Hammadi, Mohamed

    2015-01-01

    This work aims to compare the effects of milking at two vacuum levels (38 and 48 kPa) and three pulsation rates (60, 90, and 120 cpm) on milk production and milk flow characteristics. Six multiparous Maghrebi camels in late lactation and once daily milked were used. The best combination of setting for camel's milking was high vacuum and low pulsation rate (48 kPa/60 cpm). Milk yield and average and peak milk flow rate were the highest, while milking time was the shortest using this combination of setting (3.05 ± 0.30 kg, 1.52 ± 0.21 kg/min, 2.52 ± 0.21 kg/min, and 3.32 ± 0.31 min, respectively). Lower vacuum level lengthened milking time by more than 100 % and was not sufficient to extract milk correctly (1.69 to 2.48 times less milk yield harvested), suggesting a negative interaction with the stimulatory effect of pulsation. Higher pulsation rates did not better stimulate the camels and induced more bimodality and lower milk flow rates. Animal characteristics and liner/claw design affect machine milking and further investigations must be carried out to verify their effects and to study long-term effect of high vacuum level on udder health and teat condition.

  4. Visualization of entry flow separation for oscillating flow in tubes

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang; Simon, Terence W.

    1992-01-01

    Neutrally buoyant helium-filled soap bubbles with laser illumination are used to document entry flow separation for oscillating flow in tubes. For a symmetric entry case, the size of the separation zone appears to mildly depend on Reynolds number in the acceleration phase, but is roughly Reynolds number independent in the deceleration phase. For the asymmetric entry case, the separation zone was larger and appeared to grow somewhat during the deceleration phase. The separation zones for both entry geometry cases remain relatively small throughout the cycle. This is different from what would be observed in all-laminar, oscillator flows and is probably due to the high turbulence of the flow, particularly during the deceleration phase of the cycle.

  5. Experimental investigation of flow and heating in a resonance tube

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Back, L. H.

    1979-01-01

    Experiments have been performed to determine the basic mechanism of heating in resonance tubes of square section with constant area excited by underexpanded jet flows. The jet flow between the nozzle exit and the tube inlet plays a key role in the performance of a resonance tube. A detailed and systematic investigation of the unsteady complex shock structure in this part of the flow region has led to a better understanding of the fundamental mechanisms associated with the gas heating in such tubes. A study of the effects of tube location in relation to free-jet shock location (without the presence of the resonance tube) has shed further light on the underlying mechanism of sustained oscillations of the flow in a resonance tube.

  6. Mass Transfer in a Rigid Tube With Pulsatile Flow and Constant Wall Concentration

    PubMed Central

    Moschandreou, T. E.; Ellis, C. G.; Goldman, D.

    2011-01-01

    An approximate-analytical solution method is presented for the problem of mass transfer in a rigid tube with pulsatile flow. For the case of constant wall concentration, it is shown that the generalized integral transform (GIT) method can be used to obtain a solution in terms of a perturbation expansion, where the coefficients of each term are given by a system of coupled ordinary differential equations. Truncating the system at some large value of the parameter N, an approximate solution for the system is obtained for the first term in the perturbation expansion, and the GIT-based solution is verified by comparison to a numerical solution. The GIT approximate-analytical solution indicates that for small to moderate nondimensional frequencies for any distance from the inlet of the tube, there is a positive peak in the bulk concentration C1b due to pulsation, thereby, producing a higher mass transfer mixing efficiency in the tube. As we further increase the frequency, the positive peak is followed by a negative peak in the time-averaged bulk concentration and then the bulk concentration C1b oscillates and dampens to zero. Initially, for small frequencies the relative Sherwood number is negative indicating that the effect of pulsation tends to reduce mass transfer. There is a band of frequencies, where the relative Sherwood number is positive indicating that the effect of pulsation tends to increase mass transfer. The positive peak in bulk concentration corresponds to a matching of the phase of the pulsatile velocity and the concentration, respectively, where the unique maximum of both occur for certain time in the cycle. The oscillatory component of concentration is also determined radially in the tube where the concentration develops first near the wall of the tube, and the lobes of the concentration curves increase with increasing distance downstream until the concentration becomes fully developed. The GIT method proves to be a working approach to solve the first

  7. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  8. CHARACTERIZING PULSATING MIXING OF SLURRIES

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.

    2007-12-01

    This paper describes the physical properties for defining the operation of a pulse jet mixing system. Pulse jet mixing operates with no moving parts located in the vessel to be mixed. Pulse tubes submerged in the vessel provide a pulsating flow due to a controlled combination of applied pressure to expel the fluid from the pulse tube nozzle followed by suction to refill the pulse tube through the same nozzle. For mixing slurries nondimensional parameters to define mixing operation include slurry properties, geometric properties and operational parameters. Primary parameters include jet Reynolds number and Froude number; alternate parameters may include particle Galileo number, particle Reynolds number, settling velocity ratio, and hindered settling velocity ratio. Rating metrics for system performance include just suspended velocity, concentration distribution as a function of elevation, and blend time.

  9. Flow-induced vibration of tubes in crossflow

    SciTech Connect

    Chen, S.S.; Zhu, S.; Cai, Y.

    1995-12-31

    This paper presents an unsteady-flow theory for flow-induced vibration of tubes in crossflow. It includes a general description of motion-dependent fluid forces, characteristics of fluid-force coefficients, and mathematical models. Detailed results are presented for the constrained mode in the life direction for various tube arrangements.

  10. Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinis, Benjamin

    1989-01-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  11. An experimental study of pulsatile flow through compliant tubes

    NASA Astrophysics Data System (ADS)

    Sturgeon, Victoria; Savas, Omer; Saloner, David

    2006-11-01

    An experimental investigation is made into transitional behaviors and instability of oscillatory input flows through elastic tubes, a problem with applications to hemodynamics and flows in the pulmonary system. Sinusoidal input flow is driven through a compliant silicone model in a series of experiments to investigate the effects of wall motion. A novel mechanism allows active control and feedback over the pressure on the tube exterior. By comparing the pressure within and outside of the tube and modifying the exterior pressure accordingly, the tube is inflated in a controlled manner without altering the input flow. In these experiments, the tube wall is deformed sinusoidally with an amplitude of approximately ten percent of its radius. Experiments are conducted using varying values of the parameters α= a √φν and β= δx √φν where a is the tube radius, φ the angular velocity of the input flow, ν the kinematic viscosity, and δx the cross-stream averaged periodic displacement of a fluid particle undergoing pulsatile motion. For a given α, it is found that indications of conditional turbulence appear in this flow through elastic tubes at far lower values of β - and thus at lower amplitudes of oscillation - than are reported in the literature for flows through rigid tubing.

  12. Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation

    SciTech Connect

    Vezeridis, Peter S.; Chen Qian . E-mail: j.kleinnulend@vumc.nl

    2006-09-29

    Osteocytes are thought to orchestrate bone remodeling, but it is unclear exactly how osteocytes influence neighboring bone cells. Here, we tested whether osteocytes, osteoblasts, and periosteal fibroblasts subjected to pulsating fluid flow (PFF) produce soluble factors that modulate the proliferation and differentiation of cultured osteoblasts and periosteal fibroblasts. We found that osteocyte PFF conditioned medium (CM) inhibited bone cell proliferation, and osteocytes produced the strongest inhibition of proliferation compared to osteoblasts and periosteal fibroblasts. The nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) attenuated the inhibitory effects of osteocyte PFF CM, suggesting that a change in NO release is at least partially responsible for the inhibitory effects of osteocyte PFF CM. Furthermore, osteocyte PFF CM stimulated osteoblast differentiation measured as increased alkaline phosphatase activity, and L-NAME decreased the stimulatory effects of osteocyte PFF CM on osteoblast differentiation. We conclude that osteocytes subjected to PFF inhibit proliferation but stimulate differentiation of osteoblasts in vitro via soluble factors and that the release of these soluble factors was at least partially dependent on the activation of a NO pathway in osteocytes in response to PFF. Thus, the osteocyte appears to be more responsive to PFF than the osteoblast or periosteal fibroblast with respect to the production of soluble signaling molecules affecting osteoblast proliferation and differentiation.

  13. Flow and heat transfer of petal shaped double tube

    NASA Astrophysics Data System (ADS)

    Shakouchi, Toshihiko; Kawashima, Yuki; Tsujimoto, Koichi; Ando, Toshitake

    2014-06-01

    In this study, the flow and heat transfer characteristics of petal-shaped double tube with 6 petals are examined experimentally for a compact heat exchanger. As results, the heat transfer rate, Q, of the 6 petal shaped double tube (6-p tube) is much larger than that, Qp, of conventional circular double tube in all Reynolds number Rein,h (where, the reference length is hydraulic diameter) ranges. For example, at Rein,h =(0.5~1.0)× 104 it is about 4 times of Qp. The heat transfer enhancement of 6-p tube is by the increase of heat transfer area, wetting perimeter, and a highly fluctuating flow, and Q of the 6-p tube can be expressed by Q [kW/m] = 0.54Rein,h + 2245.

  14. Electrodynamic pulsator

    SciTech Connect

    Myslinski, A.; Semeniuk, B.; Kasprzycka-Guttman, T. . Dept. of Chemistry)

    1993-11-01

    An electrodynamic pulsator, designed for the reciprocation of liquids in an pulsed extractor, is described. Application of the pulsator is illustrated by its performance in connection with a laboratory packed column used for extraction of citric acid from aqueous solutions by cyclohexanone. A schematic of the pulsator is shown. This pulsator was designed to avoid the indirect, stepwise, mechanical regulation systems used in pulsed extractors which employ an external device such as a piston pump.

  15. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    PubMed

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  16. Test flow disturbances in an expansion tube

    NASA Technical Reports Server (NTRS)

    Paull, A.; Stalker, R. J.

    1992-01-01

    The operation of an expansion tube is investigated theoretically with emphasis on the factors that have limited the utility of the expansion tube in the past. It is shown why the window of steady test conditions is narrow and how this window can be expanded so that these facilities can be used in a variety of hypersonic research. The theoretical predictions are supported by centerline Pitot pressure measurements using air as the test gas.

  17. Flow pulsation in the near-wall layer of impinging jets

    NASA Astrophysics Data System (ADS)

    Tesař, V.

    2013-04-01

    Pulsation of impinging jets promises to become a useful way towards achieving the highest possible rate of passive scalar convective transport between fluid and a wall. Author investigated experimentally steady and pulsated impingement by hot-wire anemometer traversing along a radial line at a small height above the impingement wall. The data have shown two conspicuous local maxima of fluctuation intensity. In an attempt to reach understanding of these phenomena, numerical flowfield computations were also made, fitted to the experimental conditions. Despite simplification (isotropic handling of unsteadiness, eddies computed as Reynolds-type phase averages) the synergetic approach (experiment & computation) revealed interesting correlation and resulted in useful interpretations of the old problem of the off-axis extremes - and also brings new views on their behaviour in the pulsating jet case.

  18. Reevaluation of compressible-flow Preston tube calibrations

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1977-01-01

    Revised zero-pressure-gradient, adiabatic wall skin-friction-balance data covering a Mach number range from 1.6 to 4.6 led to a reevaluation of existing compressible flow Preston tube calibration equations.

  19. A numerical investigation of the effects of flow pulsations over a cylinder on dynamic forces and heat transfer

    NASA Astrophysics Data System (ADS)

    D'herde, Eric J.

    Flow over a fixed circular cylinder is a fundamental fluid mechanics problem that involves a simple geometry; yet, as the Reynolds number is incremented, increasingly complex flow patterns emerge. Most notably, when the Reynolds number exceeds a value of about 46, a Benard-von Karman vortex street pattern appears. It is associated with a characteristic natural vortex shedding frequency. The objectives of this study are to numerically investigate the effects of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the dynamic forces acting on a fixed circular cylinder, on the flow regimes behind the cylinder, and on heat transfer between the cylinder and surrounding fluid. Sinusoidal free-stream pulsations with velocity amplitude Av values of 25%, 50% and 75% that of the mean free-stream velocity, and selected frequencies in the range of one fourth the natural shedding frequency fs to five times fs were considered. Of particular interest, is the interaction between forced pulsating frequencies and the natural vortex shedding frequency. At frequencies close to the natural frequency, and to twice the natural frequency, sudden reductions in the mean value of the drag coefficient are observed, as the imposed frequency increases. These sudden reductions are accompanied by complex changes in flow regimes and vortex shedding patterns. The complexity of flow regimes as a function of the imposed pulsation variables was compiled into a frequency-amplitude map. This original map enables one to correlate changes in flow regimes to both dynamic forces and heat transfer characteristics. No net mean drag reduction was observed in the range of dimensionless amplitudes and frequencies considered, at a Reynolds number of 100. Local heat transfer enhancements of up to 86% were achieved for a specific frequency-amplitude pair. A particular finding is the appearance, for a narrow range of frequencies, of a non-zero mean lift coefficient, despite the overall

  20. A Computational Study for the Utilization of Jet Pulsations in Gas Turbine Film Cooling and Flow Control

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga V.

    2012-01-01

    This report is the second part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part is NASA/CR-2012-217415. The third part is NASA/CR-2012-217417. Jets have been utilized in various turbomachinery applications in order to improve gas turbines performance. Jet pulsation is a promising technique because of the reduction in the amount of air removed from compressor. In this work two areas of pulsed jets applications were computationally investigated using the commercial code Fluent (ANSYS, Inc.); the first one is film cooling of High Pressure Turbine (HPT) blades and second one is flow separation control over Low Pressure Turbine (LPT) airfoil using Vortex Generator Jets (VGJ). Using pulsed jets for film cooling purposes can help to improve the effectiveness and thus allow higher turbine inlet temperature. Effects of the film hole geometry, blowing ratio and density ratio of the jet, pulsation frequency and duty cycle of blowing on the film cooling effectiveness were investigated. As for the low-pressure turbine (LPT) stages, the boundary layer separation on the suction side of airfoils can occur due to strong adverse pressure gradients. The problem is exacerbated as airfoil loading is increased. Active flow control could provide a means for minimizing separation under conditions where it is most severe (low Reynolds number), without causing additional losses under other conditions (high Reynolds number). The effects of the jet geometry, blowing ratio, density ratio, pulsation frequency and duty cycle on the size of the separated region were examined in this work. The results from Reynolds Averaged Navier-Stokes and Large Eddy Simulation computational approaches were compared with the experimental data.

  1. Superhydrophobic copper tubes with possible flow enhancement and drag reduction.

    PubMed

    Shirtcliffe, Neil J; McHale, Glen; Newton, Michael I; Zhang, Yong

    2009-06-01

    The transport of a Newtonian liquid through a smooth pipe or tube is dominated by the frictional drag on the liquid against the walls. The resistance to flow against a solid can, however, be reduced by introducing a layer of gas at or near the boundary between the solid and liquid. This can occur by the vaporization of liquid at a surface at a temperature above the Leidenfrost point, by a cushion of air (e.g. below a hovercraft), or by producing bubbles at the interface. These methods require a continuous energy input, but a more recent discovery is the possibility of using a superhydrophobic surface. Most reported research uses small sections of lithographically patterned surfaces and rarely considers pressure differences or varying flow rates. In this work we present a method for creating a uniform superhydrophobic nanoribbon layer on the inside of round copper tubes of millimetric internal radius. Two types of experiments are described, with the first involving a simultaneous comparison of four tubes with different surface finishes (as received, as received with hydrophobic coating, nanoribbon, and nanoribbon with a hydrophobic coating) under constant flow rate conditions using water and water-glycerol mixtures. The results show that the superhydrophobic nanoribbon with a hydrophobic coating surface finish allows greater flow at low pressure differences but that the effect disappears as the pressure at the inlet of the tube is increased. The second experiment is a simple visual demonstration of the low-pressure behavior using two nominally identical tubes in terms of length and cross-section, but with one tube possessing a superhydrophobic internal surface finish. In this experiment a reservoir is allowed to feed the two tubes with open ends via a T-piece and it is observed that, once flow commences, it preferentially occurs down the superhydrophobic tube. PMID:20355928

  2. Driver gas flow with fluctuations. [shock tube turbulent bursts

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; Jones, W. R.; Santiago, J.

    1980-01-01

    A shock tube's driver gas can apparently provide flow with turbulent bursts. The fluctuations are interpreted using a boundary layer model of contact surface flow and results form a kinetic theory of turbulence. With this, a lower limit of 4 on the ratio of maximum to minimum turbulent intensities in contact surface instabilities has been estimated.

  3. Numerical simulation of transient hypervelocity flow in an expansion tube

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1992-01-01

    Several numerical simulations of the transient flow of helium in an expansion tube are presented. The aim of the exercise is to provide further information on the operational problems of the NASA Langley expansion tube. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite-volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in the experiments. In particular, the discontinuity in the tube diameter at the primary diaphragm station introduced a transverse perturbation to the expanding driver gas, and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either 'small-amplitude' noise possibly introduced during shock compression or 'large-amplitude' noise associated with the passage of the reflected head of the unsteady expansion.

  4. Detection of Anisotropic Pulsating Flow and Its Velocity-Fluctuation Rate in Fertilized Bird Eggs by NMR Microimaging

    NASA Astrophysics Data System (ADS)

    Görke, U.; Kimmich, R.; Weis, J.

    1996-06-01

    Coherent and incoherent flows in fertilized quail and bantam eggs have been studied with the aid of NMR microimaging techniques in the course of incubation until the end of the sixth day. The methods employed were multiplane tagging NMR imaging and a NMR gradient-echo imaging pulse sequence supplemented by bipolar gradient pulses in the coherence-evolution interval. The latter technique is suited for recording of velocity maps as well as for localizing of regions with enhanced echo attenuation by incoherent motions. Slight coherent displacements in the middle of the upper part of the egg white were found after the fourth day of incubation with the aid of both pulse schemes. The maximum velocity was estimated to be 1 mm/s. More pronounced effects revealed themselves in the examination of incoherent motions. After the same time of incubation and in a somewhat more restricted area of the upper part of the egg white, distinct motions could be localized consistently with either technique. It is shown that these motions are directed to and from the yolk. Furthermore, the analysis of the time fluctuations of the local signals with the aid of a Fourier transformation showed that the flow is largely of a pulsating nature. The pulsation frequency was found to be 0.4 Hz.

  5. Viscous effects in tube flow initiated by an expansion wave

    NASA Technical Reports Server (NTRS)

    Tong, K.-O.; Russell, D. A.

    1977-01-01

    An examination is made of the effect of the turbulent boundary layer on the uniformity of the flow initiated by a nonsteady expansion wave traveling in a long, constant-area tube. Closed-form expressions for the flow perturbations first are obtained from the linearized equations of motion. Measured static pressure histories for both lowand high-tube Mach numbers are used for comparison. Detailed discussions of the limitations of the linearized model and its extension to high-tube Mach numbers are given. Agreement is shown between a modified version of the linearized model and the experimental results. A model of viscous nonsteady pipe flow is used to explain the nonlinear pressure decay observed at very large length-to-diameter ratios.

  6. Vortex tubes in turbulent flows: Identification, representation, reconstruction

    NASA Technical Reports Server (NTRS)

    Banks, David C.; Singer, Bart A.

    1994-01-01

    In many cases the structure of a fluid flow is well-characterized by its vortices, especially for the purpose of visualization. In this paper we present a new algorithm for identifying vortices in complex flows. The algorithm produces a skeleton line along the center of a vortex by using a two-step predictor-corrector scheme. The vorticity vector field serves as the predictor and the pressure gradient (in the perpendicular plane) serves as the corrector. We describe an economical description of the vortex tube's cross-section: a 5-term truncated Fourier series is generally sufficient, and it compresses the representation of the flow by a factor of 4000 or more. We reconstruct the vortex tubes as generalized cylinders, providing a polygonal mesh suitable for display on a graphics workstation. We show how the reconstructed geometry of vortex tubes can be enhanced to help visualize helical motion in a static image.

  7. Experimental research on heat transfer of pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yan, Li

    2008-06-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  8. Numerical simulation of transient hypervelocity flow in an expansion tube

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1992-01-01

    Several numerical simulations of the transient flow of helium in an expansion tube are presented in an effort to identify some of the basic mechanisms which cause the noisy test flows seen in experiments. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in experiments. In particular, the discontinuity in tube diameter of the primary diaphragm station introduced a transverse perturbation to the expanding driver gas and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either small amplitude, low frequency noise possibly introduced during shock compression or large amplitude, high frequency noise associated with the passage of the reflected head of the unsteady expansion.

  9. Unsteady turbulent shear flow in shock tube discontinuities

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; Ramaiah, R.; Lin, I.

    1981-01-01

    A pressure-ruptured shock tube and an arc driven shock tube, have been used to study the evolution of turbulent fluctuations at contact surfaces with N2O4-2NO2 mixtures and at ionizing shock fronts in argon. The study has focused on point density diagnostics derived from crossed light beam correlations and electric probes. Turbulent bursts are found for which dynamical and spectral analyses suggest a particle-like evolution of fluctuation segments with a unique and characteristic frequency, independent of flow history and overall flow conditions.

  10. Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow

    NASA Astrophysics Data System (ADS)

    Müller, A.; Dreyer, M.; Andreini, N.; Avellan, F.

    2013-04-01

    Hydraulic machines play an increasingly important role in providing a secondary energy reserve for the integration of renewable energy sources in the existing power grid. This requires a significant extension of their usual operating range, involving the presence of cavitating flow regimes in the draft tube. At overload conditions, the self-sustained oscillation of a large cavity at the runner outlet, called vortex rope, generates violent periodic pressure pulsations. In an effort to better understand the nature of this unstable behavior and its interaction with the surrounding hydraulic and mechanical system, the flow leaving the runner is investigated by means of particle image velocimetry. The measurements are performed in the draft tube cone of a reduced scale model of a Francis turbine. A cost-effective method for the in-house production of fluorescent seeding material is developed and described, based on off-the-shelf polyamide particles and Rhodamine B dye. Velocity profiles are obtained at three streamwise positions in the draft tube cone, and the corresponding discharge variation in presence of the vortex rope is calculated. The results suggest that 5-10 % of the discharge in the draft tube cone is passing inside the vortex rope.

  11. Computations of Axisymmetric Flows in Hypersonic Shock Tubes

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Wilson, Gregory J.

    1995-01-01

    A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.

  12. Numerical computation of transient coaxial entry tube flows

    NASA Technical Reports Server (NTRS)

    Wieber, P. R.; Dewitt, K. J.

    1976-01-01

    A numerical program was developed to compute transient laminar flows in two dimensions including multicomponent mixing and chemical reaction. The program can compute both incompressible flows and compressible flows at all speeds, and it is applied to describe transient and steady state solutions for low subsonic, coaxial entry, tue flows. Single component, nonreacting flows comprise most of the solutions, but one steady state solution is presented for trace concentration constituents engaging in a second order reaction. Numerical stability was obtained by adding at each calculation point a correction for numerical diffusion errors caused by truncation of the Taylor series used to finite difference the conservation equations. Transient computations were made for fluids initially at rest, then subjected to step velocity inputs that were uniform across each region of the entry plane and were held constant throughout the computation period. For center tube to annulus velocity ratios of 0.5 and 2.0, the bulk fluid in the tube initially moved in plug flow, but strong radial flows developed near the injection plane which moved the fluid into the high shear region between the jets and away from the tube wall.

  13. An Experimental Investigation of Fluid Flow and Heating in Various Resonance Tube Modes

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Back, L. H.; Roschke, E. J.; Pathasarathy, S. P.

    1976-01-01

    Experiments have been performed to study resonance phenomena in tubes excited by underexpanded jet flows. This investigation comprised the following: Study of the various resonance tube modes under a wide range of nozzle pressure, spacing between nozzle and tube mouth, and different tube length; the effects of these modes on the endwall pressure and gas temperature; flow visualization of both jet and tube flows by spark shadowgraph technique; and measurement of wave speed inside the tube by the laser-schlieren techniques. An extensive study of the free-jet flow was undertaken to explain important aspects of various modes of operation of resonance tube flows.

  14. Flow in tubes of non-circular cross-sections

    NASA Astrophysics Data System (ADS)

    Quadir, Raushan Ara

    Laminar, viscous, incompressible flow in tubes of noncircular cross sections is investigated. The specific aims of the investigation are (1) to look at the problems of both developing flow and fully developed flow, (2) to consider noncircular cross sections in a more systematic manner than has been done in the past, and (3) to develop a relatively simple finite element technique for producing accurate numerical solutions of flow in tubes of fairly arbitrary cross sections. Fully developed flow in tubes is governed by a Poisson type equation for the mainstream velocity. Both analytical and numerical solutions are considered. The cross sections studied include elliptic and rectangular cross sections of different aspect ratios, some triangular cross sections, and a series of crescent-shaped cross sections. The physical characteristics of the flow are examined in a systematic manner in order to determine how these characteristics are affected by certain geometrical features of the cross section. Solutions fall into three basic categories depending on the shape of the cross section. In the first category, which includes circular and elliptic cross sections, solutions are possible in closed form. In the second, including rectangular and some triangular cross sections, solutions are in the form of infinite series. In the third, including cross sections of more complicated or irregular shapes, only numerical solutions are possible. Results of calculations of velocity profiles, flow rate, pumping power, and friction factor are presented in a way which can be useful for engineering applications. In numerical studies of both developing and fully developed flow finite element techniques are used. Results are obtained for tubes of rectangular and elliptic cross sections of different aspect ratios, for tubes of crescent-shaped cross sections, and a tube whose cross section is an oval of Cassini. For fully developed flow, results are compared with the corresponding exact

  15. Flow in Tubes of Non-Circular Cross-Sections

    NASA Astrophysics Data System (ADS)

    Quadir, Raushan Ara

    In this thesis steady, laminar, viscous, incompressible flow in tubes of non-circular cross sections is investigated. The specific aims of the investigation are (a) to look at the problems of both developing flow and fully developed flow, (b) to consider non-circular cross sections in a more systematic manner than has been done in the past, and (c) to develop a relatively simple finite element technique for producing accurate numerical solutions of flow in tubes of fairly arbitrary cross sections. Fully developed flow in tubes is governed by a Poisson type equation for the mainstream velocity. Both analytical and numerical solutions are considered. The cross sections studied include elliptic and rectangular cross sections of different aspect ratios, some triangular cross sections, and a series of crescent-shaped cross sections. The physical characteristics of the flow are examined in a systematic manner in order to determine how these characteristics are affected by certain geometrical features of the cross section. Solutions fall into three basic categories depending on the shape of the cross section. In the first category, which includes circular and elliptic cross sections, solutions are possible in closed form. In the second, including rectangular and some triangular cross sections, solutions are in the form of infinite series. In the third, including cross sections of more complicated or irregular shapes, only numerical solutions are possible. Results of calculations of velocity profiles, flow rate, pumping power, and friction factor are presented in a way which can be useful for engineering applications. In numerical studies of both developing and fully developed flow finite element techniques are used. Results are obtained for tubes of rectangular and elliptic cross sections of different aspect ratios, for tubes of crescent -shaped cross sections and a tube whose cross section is an oval of Cassini. For fully developed flow, results are compared with the

  16. Flow tube used to cool solar-pumped laser

    NASA Technical Reports Server (NTRS)

    1968-01-01

    A flow tube has been designed and constructed to provide two major functions in the application of a laser beam for transmission of both sound and video. It maintains the YAG laser at the proper operating temperature of 300 degrees K under solar pumping conditions, and it serves as a pump cavity for the laser crystal.

  17. Heat transfer to blood flow in a small tube.

    PubMed

    Wang, C Y

    2008-04-01

    Blood flow in a small tube (30-1000 mum) can be successfully modeled by the two-fluid model. The fully developed, constant heat flux convective heat transfer problem is studied. The velocity and temperature profiles are determined in closed form. Formulas for friction-factor-Reynolds number product, axial temperature gradient, and Nusselt number are found.

  18. RAPID COMMUNICATION Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.

    2010-12-01

    Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.

  19. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    PubMed

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    reactive gas in a given reaction mixture. We have developed a tube-in-tube reactor device consisting of a pair of concentric capillaries in which pressurized gas permeates through an inner Teflon AF-2400 tube and reacts with dissolved substrate within a liquid phase that flows within a second gas impermeable tube. This Account examines our efforts toward the development of a simple, unified methodology for the processing of gaseous reagents in flow by way of development of a tube-in-tube reactor device and applications to key C-C, C-N, and C-O bond forming and hydrogenation reactions. We further describe the application to multistep reactions using solid-supported reagents and extend the technology to processes utilizing multiple gas reagents. A key feature of our work is the development of computer-aided imaging techniques to allow automated in-line monitoring of gas concentration and stoichiometry in real time. We anticipate that this Account will illustrate the convenience and benefits of membrane tube-in-tube reactor technology to improve and concomitantly broaden the scope of gas/liquid/solid reactions in organic synthesis.

  20. Evaluation of compressible-flow Preston tube calibrations

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1973-01-01

    An experimental and analytical study has been made of the accuracy of various Preston tube calibration equations to determine local skin friction in two-dimensional supersonic and low-hypersonic flows. Experimental Preston tube calibration data from the present and previous studies were used to evaluate the calibration equations. The maximum value of the calibration parameters of the present data is more than an order of magnitude larger than that previously obtained; thereby, the evaluation of the various calibration equations is facilitated. The Preston tube technique was found to be very inaccurate in the low range of the calibration parameters. Above this range, there was a steady increase in accuracy with increasing values of the calibration parameters. No critical maximum tube diameter was found even with tubes about twice as large as the theoretical maximum allowable diameter. Of the two forms of the calibration equation previously existing, the logarithmic laws gave more accurate results than the power laws over an extended range of the calibration parameters in supersonic adiabatic flow.

  1. Modeling expiratory flow from excised tracheal tube laws.

    PubMed

    Aljuri, N; Freitag, L; Venegas, J G

    1999-11-01

    Flow limitation during forced exhalation and gas trapping during high-frequency ventilation are affected by upstream viscous losses and by the relationship between transmural pressure (Ptm) and cross-sectional area (A(tr)) of the airways, i.e., tube law (TL). Our objective was to test the validity of a simple lumped-parameter model of expiratory flow limitation, including the measured TL, static pressure recovery, and upstream viscous losses. To accomplish this objective, we assessed the TLs of various excised animal tracheae in controlled conditions of quasi-static (no flow) and steady forced expiratory flow. A(tr) was measured from digitized images of inner tracheal walls delineated by transillumination at an axial location defining the minimal area during forced expiratory flow. Tracheal TLs followed closely the exponential form proposed by Shapiro (A. H. Shapiro. J. Biomech. Eng. 99: 126-147, 1977) for elastic tubes: Ptm = K(p) [(A(tr)/A(tr0))(-n) - 1], where A(tr0) is A(tr) at Ptm = 0 and K(p) is a parametric factor related to the stiffness of the tube wall. Using these TLs, we found that the simple model of expiratory flow limitation described well the experimental data. Independent of upstream resistance, all tracheae with an exponent n < 2 experienced flow limitation, whereas a trachea with n > 2 did not. Upstream viscous losses, as expected, reduced maximal expiratory flow. The TL measured under steady-flow conditions was stiffer than that measured under expiratory no-flow conditions, only if a significant static pressure recovery from the choke point to atmosphere was assumed in the measurement.

  2. Choked flow mechanism of HFC-134a flowing through short-tube orifices

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2011-02-15

    This paper is a continuation of the author's previous work. New experimental data on the occurrence of choked flow phenomenon and mass flow rate of HFC-134a inside short-tube orifices under choked flow condition are presented. Short-tube orifices diameters ranging from 0.406 mm to 0.686 mm with lengths ranging from 1 mm to 3 mm which can be applied to a miniature vapour-compression refrigeration system are examined. The experimental results indicated that the occurrence of choked flow phenomena inside short-tube orifices is different from that obtained from short-tube orifice diameters of greater than 1 mm, which are typically used in air-conditioner. The beginning of choked flow is dependent on the downstream pressure, degree of subcooling, and length-to-diameter ratio. Under choked flow condition, the mass flow rate is greatly varied with the short-tube orifice dimension, but it is slightly affected by the operating conditions. A correlation of mass flow rate through short-tube orifices is proposed in terms of the dimensionless parameters. The predicted results show good agreement with experimental data with a mean deviation of 4.69%. (author) transfer coefficient was also proposed. (author)

  3. Properties of a constricted-tube air-flow levitator

    NASA Technical Reports Server (NTRS)

    Rush, J. E.; Stephens, W. K.; Ethridge, E. C.

    1982-01-01

    The properties of a constricted-tube gas flow levitator first developed by Berge et al. (1981) have been investigated experimentally in order to predict its behavior in a gravity-free environment and at elevated temperatures. The levitator consists of a constricted (quartz) tube fed at one end by a source of heated air or gas. A spherical sample is positioned by the air stream on the downstream side of the constriction, where it can be melted and resolidified without touching the tube. It is shown experimentally that the kinematic viscosity is the important fluid parameter for operation in thermal equilibrium at high temperatures. If air is heated from room temperature to 1200 C, the kinematic viscosity increases by a factor of 14. To maintain a given value of the Reynolds number, the flow rate would have to be increased by the same factor for a specific geometry of tube and sample. Thus, to maintain stable equilibrium, the flow rate should be increased as the air or other gas is heated. The other stability problem discussed is associated with changes in the shape of a cylindrical sample as it melts.

  4. Axisymmetric Time-Dependent Computations of Expansion Tube Flow

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    The goal of this work is to add insight about the flow within expansion tubes by using computational fluid dynamics. This is accomplished by comparing the results of axisymmetric numerical simulations with finite-rate chemistry to data from the HYPULSE expansion tube facility which was previously the NASA Langley expansion tube. The numerical simulations begin at the opening of the primary diaphragm and compute the flow throughout the whole facility and, thus, are able to follow and assess the effect of many of the flow features created during operation of the facility. One particular issue that will be investigated is the effect of boundary layer formation in the acceleration tube on the test gas volume and test gas conditions. Both laminar and turbulent boundary layers will be implemented. The effect of momentary shock reflection off the secondary diaphragm will also be investigated. There is concern that such a reflection will stagnate the test gas and create high levels of dissociated molecules. This is particularly important in propulsion experiments where a freestream composition different from flight conditions may influence ignition and burning data. Several different models of diaphragm rupture will be implemented in order to help understand the importance of this issue.

  5. Flow-induced vibrations-1987

    SciTech Connect

    Au-Yang, M.K.; Chen, S.S.

    1987-01-01

    This book contains 20 selections. Some of the titles are: Acoustic resonance in heat exchanger tube bundles--Part 1. Physical nature of the phenomenon; Theoretical and experimental studies on heat exchanger U-bend tube bundle vibration characteristics; Experimental model analysis of metallic pipeline conveying fluid; Leakage flow-induced vibration of an eccentric tube-in-tube slip joint; and A study on the vibrations of pipelines caused by internal pulsating flows.

  6. Flow and heat transfer enhancement in tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  7. Steady flow through a curved tube with wavy walls

    NASA Astrophysics Data System (ADS)

    Peterson, Sean D.

    2010-02-01

    The problem of fully developed steady flow of an incompressible Newtonian fluid through a mildly curved tube with wavy walls of small amplitude-to-wavelength ratio around the tube circumference is solved via a perturbation solution. Dean's original solution for tubes with circular cross-section is used as the foundation to solve the current regular perturbation problem. In general, the wavy walls are found to mitigate the effect of a given term in Dean's expansion. For instance, the first order effect of the wavy walls is to reduce the strength of the secondary flow vortices and minimize the reduction of the volumetric flow rate caused by the curvature. A related effect is a general reduction in the average axial and circumferential wall shear stresses. The local wall shear stress, however, increases at the points of maximum incursion of the protrusions into the flow and decreases in the valleys between the protuberances. The general form of the solution for an arbitrary number of protuberances is presented to first order in the geometric perturbation and to fourth order in the Dean number.

  8. Siphon flows in isolated magnetic flux tubes. V - Radiative flows with variable ionization

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1993-01-01

    Steady siphon flows in arched isolated magnetic flux tubes in the solar atmosphere are calculated here including radiative transfer between the flux tube and its surrounding and variable ionization of the flowing gas. It is shown that the behavior of a siphon flow is strongly determined by the degree of radiative coupling between the flux tube and its surroundings in the superadiabatic layer just below the solar surface. Critical siphon flows with adiabatic tube shocks in the downstream leg are calculated, illustrating the radiative relaxation of the temperature jump downstream of the shock. For flows in arched flux tubes reaching up to the temperature minimum, where the opacity is low, the gas inside the flux tube is much cooler than the surrounding atmosphere at the top of the arch. It is suggested that gas cooled by siphon flows contribute to the cool component of the solar atmosphere at the height of the temperature minimum implied by observations of the infrared CO bands at 4.6 and 2.3 microns.

  9. Flow separation in a straight draft tube, particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Maciel, Y.; Ciocan, G. D.; Deschênes, C.

    2014-03-01

    As part of the BulbT project, led by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University), the efficiency and power break off in a bulb turbine has been investigated. Previous investigations correlated the break off to draft tube losses. Tuft visualizations confirmed the emergence of a flow separation zone at the wall of the diffuser. Opening the guide vanes tends to extend the recirculation zone. The flow separations were investigated with two-dimensional and two-component particle image velocimetry (PIV) measurements designed based on the information collected from tuft visualizations. Investigations were done for a high opening blade angle with a N11 of 170 rpm, at best efficiency point and at two points with a higher Q11. The second operating point is inside the efficiency curve break off and the last operating point corresponds to a lower efficiency and a larger recirculation region in the draft tube. The PIV measurements were made near the wall with two cameras in order to capture two measurement planes simultaneously. The instantaneous velocity fields were acquired at eight different planes. Two planes located near the bottom wall were parallel to the generatrix of the conical part of the diffuser, while two other bottom planes diverged more from the draft tube axis than the cone generatrix. The last four planes were located on the draft tube side and diverged more from the draft tube axis than the cone generatrix. By combining the results from the various planes, the separation zone is characterized using pseudo-streamlines of the mean velocity fields, maps of the Reynolds stresses and maps of the reverse-flow parameter. The analysis provides an estimation of the separation zone size, shape and unsteady character, and their evolution with the guide vanes opening.

  10. Numerical simulations of the flow in the HYPULSE expansion tube

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Sussman, Myles A.; Bakos, Robert J.

    1995-01-01

    Axisymmetric numerical simulations with finite-rate chemistry are presented for two operating conditions in the HYPULSE expansion tube. The operating gas for these two cases is nitrogen and the computations are compared to experimental data. One test condition is at a total enthalpy of 15.2 MJ/Kg and a relatively low static pressure of 2 kPa. This case is characterized by a laminar boundary layer and significant chemical nonequilibrium in the acceleration gas. The second test condition is at a total enthalpy of 10.2 MJ/Kg and a static pressure of 38 kPa and is characterized by a turbulent boundary layer. For both cases, the time-varying test gas pressure predicted by the simulations is in good agreement with experimental data. The computations are also found to be in good agreement with Mirels' correlations for shock tube flow. It is shown that the nonuniformity of the test gas observed in the HYPULSE expansion tube is strongly linked to the boundary layer thickness. The turbulent flow investigated has a larger boundary layer and greater test gas nonuniformity. In order to investigate possibilities of improving expansion tube flow quality by reducing the boundary layer thickness, parametric studies showing the effect of density and turbulent transition point on the test conditions are also presented. Although an increase in the expansion tube operating pressure level would reduce the boundary layer thickness, the simulations indicate that the reduction would be less than what is predicted by flat plate boundary layer correlations.

  11. Study of spectral characteristics of radiation from a thermal wake of a pulsating optical discharge in a supersonic air flow

    NASA Astrophysics Data System (ADS)

    Malov, A. N.; Orishich, A. M.; Terent'eva, Ya S.

    2015-10-01

    The spectral characteristics of the thermal wake of a pulsating optical discharge (POD) in a supersonic air flow are studied. The POD is stimulated by radiation of a mechanically Q-switched, repetitively pulsed CO2 laser with a pulse repetition rate of 7 - 150 kHz and a power up to 4.5 kW. The flow is produced by means of the supersonic aerodynamic MAU-M setup having a conic nozzle with a critical cross-section size of 50 mm, the Mach number being 1.3 - 1.6. We describe in detail the system of optical diagnostics that allows the detection of the spectrum of the weak thermal wake glow against the background of high-power POD radiation. The glow of the thermal wake is due to the emission of light by atoms and ions of nitrogen and oxygen, carried by the flow in the form of hot low-density gas clouds (caverns). The wavelengths of the thermal wake emission and the data on the transitions, corresponding to the spectral lines are presented.

  12. Heat transfer research on supercritical water flow upward in tube

    SciTech Connect

    Li, H. B.; Yang, J.; Gu, H. Y.; Zhao, M.; Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y.

    2012-07-01

    The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)

  13. Holographic flow visualization at the Langley Expansion Tube

    NASA Technical Reports Server (NTRS)

    Goad, W. K.; Burner, A. W.

    1981-01-01

    A holographic system used for flow visualization at the Langley Expansion Tube is described. A ruby laser which can be singly or doubly pulsed during the short run time of less than 300 microns is used as the light source. With holography, sensitivity adjustments can be optimized after a run instead of before a run as with conventional flow visualization techniques. This results in an increased reliability of the flow visualization available for the study of real-gas effects on flow about models. Holographic techniques such as single-plate schlieren and shadowgraph, two plate interferometry, double pulse interferometry for perfect infinite-fringe interferograms, and double-pulse interferometry used to examine changes in the flow over a short time period are described and examples presented.

  14. Nonperiodic eddy pulsations

    USGS Publications Warehouse

    Rubin, David M.; McDonald, Richard R.

    1995-01-01

    Recirculating flow in lateral separation eddies is typically weaker than main stem flow and provides an effective environment for trapping sediment. Observations of recirculating flow and sedimentary structures demonstrate that eddies pulsate in size and in flow velocity even when main stem flow is steady. Time series measurements of flow velocity and location of the reattachment point indicate that these pulsations are nonperiodic. Nonperiodic flow in the lee of a channel margin constriction is grossly different from the periodic flow in the lee of a cylinder that is isolated in a flow. Our experiments demonstrate that placing a flow-parallel plate adjacent to a cylinder is sufficient to cause the leeside flow to change from a periodic sequence of vortices to a nonperiodically pulsating lateral separation eddy, even if flow conditions are otherwise unchanged. Two processes cause the leeside flow to become nonperiodic when the plate is added. First, vortices that are shed from the cylinder deform and become irregular as they impact the plate or interfere with remnants of other vortices near the reattachment point. Second, these deformed vortices and other flow structures are recirculated in the lateral separation eddy, thereby influencing the future state (pressure and momentum distribution) of the recirculating flow. The vortex deformation process was confirmed experimentally by documenting spatial differences in leeside flow; vortex shedding that is evident near the separation point is undetectable near the reattachment point. Nonlinear forecasting techniques were used in an attempt to distinguish among several possible kinds of nonperiodic flows. The computational techniques were unable to demonstrate that any of the nonperiodic flows result from low-dimensional nonlinear processes.

  15. Draft tube flow phenomena across the bulb turbine hill chart

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Fraser, R.; Maciel, Y.; Aeschlimann, V.; Deschênes, C.

    2014-03-01

    In the framework of the BulbT project launched by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University) in 2011, an intensive campaign to identify flow phenomena in the draft tube of a model bulb turbine has been done. A special focus was put on the draft tube component since it has a particular importance for recuperation in low head turbines. Particular operating points were chosen to analyse flow phenomena in this component. For each of these operating points, power, efficiency and pressure were measured following the IEC 60193 standard. Visualizations, unsteady wall pressure and efficiency measurements were performed in this component. The unsteady wall pressure was monitored at seven locations in the draft tube. The frequency content of each pressure signal was analyzed in order to characterize the flow phenomena across the efficiency hill chart. Visualizations were recorded with a high speed camera using tufts and cavitation bubbles as markers. The predominant detected phenomena were mapped and categorized in relation to the efficiency hill charts obtained for three runner blade openings. At partial load, the vortex rope was detected and characterized. An inflection in the partial load efficiency curves was found to be related to complex vortex rope instabilities. For overload conditions, the efficiency curves present a sharp drop after the best efficiency point, corresponding to an inflection on the power curves. This break off is more severe towards the highest blade openings. It is correlated to a flow separation at the wall of the draft tube. Also, due to the separation occurring in these conditions, a hysteresis effect was observed on the efficiency curves.

  16. Siphon flows in isolated magnetic flux tubes. III - The equilibrium path of the flux-tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1990-01-01

    It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere.

  17. Siphon flows in isolated magnetic flux tubes. III. The equilibrium path of the flux-tube arch

    SciTech Connect

    Thomas, J.H.; Montesinos, B. C.E. Kenneth Mees Observatory, NY Oxford Univ. )

    1990-08-01

    It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere. 19 refs.

  18. Transitional flow in thin tubes for space station freedom radiator

    NASA Technical Reports Server (NTRS)

    Loney, Patrick; Ibrahim, Mounir

    1995-01-01

    A two dimensional finite volume method is used to predict the film coefficients in the transitional flow region (laminar or turbulent) for the radiator panel tubes. The code used to perform this analysis is CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is then used to augment a Sinda85 model that predicts overall performance of the radiator. A final comparison is drawn between the results generated with a Sinda85 model using the Sinda85 provided transition region heat transfer correlations and the Sinda85 model using the CAST generated data.

  19. Siphon flows in isolated magnetic flux tubes. 3. The equilibrium path of the flux tube arch. Annual report, 1989

    SciTech Connect

    Thomas, J.H.; Montesinis, B.

    1989-09-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  20. Background noise measurements from jet exit vanes designed to reduced flow pulsations in an open-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Martin, R. M.

    1985-01-01

    Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.

  1. Bubble Dynamical Behavior and Flow Boiling Characteristics of Slug Flow in Hairpin Tubes

    NASA Astrophysics Data System (ADS)

    Meng, M.; Peng, X. F.

    2010-03-01

    A series of experiments was conducted to investigate the flow boiling of R141b in hairpin tubes. A focus was addressed on visually observing flow boiling and two-phase flow in U-turn bends of a vertical upward hairpin tube with inner diameter of 6 mm at liquid velocities of 0.098, 0.147 and 0.196 m/s and heat fluxes in the range of 6191 W/m2 to 24763 W/m2, respectively. The bend could break up large vapor slugs in two ways, bubble tail fracture and bubble rupture, which induced significant effects on local heat and mass transfer. Under certain experimental conditions, small bubbles formed in the bend could not coalesce to be large vapor slugs but accumulate to form a unique flow pattern and greatly release thermal non-equilibrium in the rest part of hairpin the tube.

  2. Particle seeding flow system for horizontal shock tube

    SciTech Connect

    Johnston, Stephen; Garcia, Nicolas J.; Martinez, Adam A.; Orlicz, Gregory C.; Prestridge, Katherine P.

    2012-08-01

    The Extreme Fluids Team in P-23, Physics Division, studies fluid dynamics at high speeds using high resolution diagnostics. The unsteady forces on a particle driven by a shock wave are not well understood, and they are difficult to model. A horizontal shock tube (HST) is being modified to collect data about the behavior of particles accelerated by shocks. The HST has been used previously for studies of Richtmyer-Meshkov instability using Planar Laser-Induced Fluorescence (PLIF) as well as Particle Image Velocimetry (PIV), diagnostics that measure density and velocity. The purpose of our project is to design a flow system that will introduce particles into the HST. The requirements for this particle flow system (PFS) are that it be non-intrusive, be able to introduce either solid or liquid particles, have an exhaust capability, not interfere with existing diagnostics, and couple with the existing HST components. In addition, the particles must flow through the tube in a uniform way. We met these design criteria by first drawing the existing shock tube and diagnostics and doing an initial design of the ducts for the PFS. We then estimated the losses through the particle flow system from friction and researched possible fans that could be used to drive the particles. Finally, the most challenging component of the design was the coupling to the HST. If we used large inlets, the shock would lose strength as it passed by the inlet, so we designed a novel coupling inlet and outlet that minimize the losses to the shock wave. Our design was reviewed by the Extreme Fluids Team, and it is now being manufactured and built based upon our technical drawings.

  3. The flow of human blood through capillary tubes.

    PubMed Central

    Sirs, J A

    1991-01-01

    1. The current interpretation of in vivo blood flow is mainly based on the Hagen-Poiseuille equation, although blood is not a Newtonian fluid. In this paper, experimental pressure-flow curves of blood are explained on the basis that the viscosity of the blood is the sum of two components, a Newtonian viscosity term, N, and an anomalous viscosity term equal to A/(B + D), where A and B are constants, and D the shear rate. 2. To a first approximation, blood flow in capillary tubes, comparable to that in vivo, can be deduced if the applied pressure in Poiseuille's equation is reduced by an effective back-pressure, p, equal to 8Al/3R, where l is the length of the capillary tube, and R its radius. 3. The theory explains the progressive change, from a parabolic velocity profile in large vessels, to a flattened profile in small vessels, as observed in vivo. 4. Experimental evidence is given that p is proportional to the length, and increases with decrease of R. The effect of the anomalous viscosity coefficient A was studied by varying the haematocrit, fibrinogen level, erythrocyte flexibility and temperature. 5. As the tube bore is decreased, the Fahraeus-Lindqvist effect decreases N, but this is offset by an increase of the anomalous component, A. This results, at lower pressures, in an increase of the effective blood viscosity in small vessels and of the peripheral resistance, and, at higher pressures, in a decrease of the effective blood viscosity. 5. Blood flow is proportional to the radius to the power n, where n is a variable that increases with increase of A and decrease of the applied pressure. PMID:1798043

  4. Flow synthesis using gaseous ammonia in a Teflon AF-2400 tube-in-tube reactor: Paal-Knorr pyrrole formation and gas concentration measurement by inline flow titration.

    PubMed

    Cranwell, Philippa B; O'Brien, Matthew; Browne, Duncan L; Koos, Peter; Polyzos, Anastasios; Peña-López, Miguel; Ley, Steven V

    2012-08-14

    Using a simple and accessible Teflon AF-2400 based tube-in-tube reactor, a series of pyrroles were synthesised in flow using the Paal-Knorr reaction of 1,4-diketones with gaseous ammonia. An inline flow titration technique allowed measurement of the ammonia concentration and its relationship to residence time and temperature.

  5. Micro-flow separation system using an open capillary tube that works under laminar flow conditions.

    PubMed

    Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2009-02-01

    A micro-flow separation system was developed using an open capillary, fused-silica or polyethylene tube, and an aqueous-organic mixture (water-acetonitrile-ethyl acetate mixture) as a carrier solution. A model analyte solution containing 2,6-naphthalenedisulfonic acid and 1-naphthol was injected into the capillary tube by a gravity method. The analyte solution was subsequently delivered through the capillary tube with the carrier solution by a micro-syringe pump; the system worked under laminar flow conditions. The analytes were separated through the capillary tube and detected on-capillary by an absorption detector. 2,6-Naphthalenedisulfonic acid and 1-naphthol were detected in this order with a carrier solution of water-acetonitrile-ethyl acetate (15:3:2 volume ratio), while they were detected in the reverse order with a carrier solution of water-acetonitrile-ethyl acetate (2:5:9 volume ratio) using a fused-silica capillary tube. Similar separation behavior, i.e., that the elution times of the analytes could be easily reversed by changing the component ratio of the solvents in the carrier solution, was observed with a polyethylene capillary tube.

  6. Sieve Tube Geometry in Relation to Phloem Flow

    PubMed Central

    Mullendore, Daniel L.; Windt, Carel W.; Van As, Henk; Knoblauch, Michael

    2010-01-01

    Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube–specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms. PMID:20354199

  7. [Numerical simulations of pulsating flow in intracranial blood vessels with aneurysms using Lattice Boltzmann methods].

    PubMed

    Beronov, Kamen N; Durst, Franz

    2005-01-01

    A major prerequisite for successful planning and control of the medical treatment of blood vessels with stenoses or aneurysms is the detailed knowledge of the individual situation in the damaged vessels. Modern tomography methods provide good spatial resolution, so that vessel walls as well as prostheses can be easily and rapidly identified. However, the mechanical loads of the walls remain largely unknown. In the past few years, tomography data have been used for spatial and temporal simulations of the blood flow in such vessels and to predict the mechanical loads of the vessel walls. The methodologies used so far, however, involve elaborate grid generation and simulation steps, most often relying on commercial software suited for engineering projects. These require specific knowledge and experience in mechanics and numerical simulation, and are therefore inappropriate for clinical applications. It is now shown, by example of an intracranial aneurysm, that employing a Lattice Boltzmann method for the flow simulation allows to avoid all mentioned drawbacks and to simulate blood flows in a fast and simple way that is also appropriate for clinical use. The practical relevance of such simulations will be enhanced by a better understanding of the correlations between pathology and specific mechanical loads. The paper discusses also some aspects of fluid mechanics that are relevant for the study of aneurysms.

  8. The ALE Discontinuous Galerkin Method for the Simulatio of Air Flow Through Pulsating Human Vocal Folds

    NASA Astrophysics Data System (ADS)

    Feistauer, Miloslav; Kučera, Václav; Prokopová, Jaroslav; Horáček, Jaromír

    2010-09-01

    The aim of this work is the simulation of viscous compressible flows in human vocal folds during phonation. The computational domain is a bounded subset of IR2, whose geometry mimics the shape of the human larynx. During phonation, parts of the solid impermeable walls are moving in a prescribed manner, thus simulating the opening and closing of the vocal chords. As the governing equations we take the compressible Navier-Stokes equations in ALE form. Space semidiscretization is carried out by the discontinuous Galerkin method combined with a linearized semi-implicit approach. Numerical experiments are performed with the resulting scheme.

  9. INVESTIGATION ON THE OSCILLATING GAS FLOW ALONG AN INERTANCE TUBE BY EXPERIMENTAL AND CFD METHODS

    SciTech Connect

    Chen Houlei; Zhao Miguang; Yang Luwei; Cai Jinghui; Hong Guotong; Liang Jingtao

    2010-04-09

    To investigate the oscillating gas flow along an inertance tube used in pulse tube coolers, a CFD model is set up for FLUENT and an experimental measuring cell is designed and optimized by CFD results. Some characteristics of oscillating flow are demonstrated and discussed. Then, the flow status along an inertance tube is measured by the optimized measuring cell. The experimental results validate the simulating results.

  10. Advances in flowing afterglow and selected-ion flow tube techniques

    NASA Astrophysics Data System (ADS)

    Squires, Robert R.

    1992-09-01

    New developments in flowing afterglow and selected-ion flow tube (SIFT) techniques are briefly reviewed. Particular emphasis is given to the new chemical and physical information that can be obtained with use of the tandem flowing afterglow-triple quadrupole apparatus developed in the author's laboratory. Several outstanding recent achievements in the design and utilization of flowing afterglow and SIFT instruments in other laboratories are briefly highlighted that illustrate the power and flexibility of flow-tube-based methods. These include isotope tracer experiments with the tandem flowing afterglow-SIFT instrument in Boulder, studies of large molecular cluster ions with the variable temperature facility at Penn State, and gas-phase metal ion reactions with the laser ablation/fast flow reactor in Madison. Recent applications of the flowing afterglow-triple quadrupole instrument in our laboratory have made use of collision-induced dissociation (CID) as a tool for synthesizing novel ions and for obtaining new thermo-chemical information from threshold energy measurements. Collision-induced decar☐ylation of organic car☐ylate ions provides access to a variety of unusual and highly basic carbanions that cannot be generated with conventional ion sources. The formation and properties of saturated alkyl ions and studies of gas-phase reactions of the methyl anion are briefly described. We have developed a new method for carrying out "preparative CID" in a flowing afterglow with use of a mini-drift tube; some recent applications of this new ion source are presented. Measurement of CID thresholds for simple cleavage reactions of thermalized ions can provide accurate measures of bond strengths, gas-phase acidities and basicities, and heats of formation for ions and reactive neutral species. Applications of this approach in the thermochemical characterization of carbenes, benzynes and biradicals are described. Future prospects for the continued development of flow

  11. Hypervelocity flows of argon produced in a free piston driven expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J.; Stalker, R. J.

    1992-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes. Test section measurements of pitot pressure, static pressure, and flat plate heat transfer rates are used to confirm the presence of quasi-steady flow, and comparisons are made with predictions for the equilibrium flow of an ideal, ionizing, monatomic gas. The results of this work indicate that expansion tubes can be used to generate quasi-steady hypersonic flows in argon at speeds in excess of Earth orbital velocity.

  12. Controlling methods of a newly developed extra aortic counter-pulsation device using shape memory alloy fibers.

    PubMed

    Hashem, Mohamed O; Yamada, A; Tsuboko, Y; Muira, H; Homma, D; Shiraishi, Y; Yambe, T

    2013-01-01

    Diastolic counter-pulsation has been used to provide circulatory augmentation for short term cardiac support. The success of intra-aortic balloon pump (IABP) therapy has generated interest in long term counter-pulsation strategies to treat heart failure patients. The authors have been developing a totally implantable extra aortic pulsation device for the circulatory support of heart failure patients, using 150 µm Ni-Ti anisotropic shape memory alloy (SMA) fibers. These fibers contract by Joule heating with an electric current supply. The special features of our design are as follow: non blood contacting, extra aortic pulsation function synchronizing with the native heart, a wrapping mechanical structure for the aorta in order to achieve its assistance as the aortomyoplsty and the extra aortic balloon pump. The device consisted of rubber silicone wall plates, serially connected for radial contraction. We examined the contractile function of the device, as well as it controlling methods; the phase delay parameter and the pulse width modulation, in a systemic mock circulatory system, with a pneumatically driven silicone left ventricle model, arterial rubber tubing, a peripheral resistance unit, and a venous reservoir. The device was secured around the aortic tubing with a counter-pulsation mode of 1:4 against the heartbeat. Pressure and flow waveforms were measured at the aortic outflow, as well as its driving condition of the contraction phase width and the phase delay. The device achieved its variable phase control for co-pulsation or counter-pulsation modes by changing the phase delay of the SMA fibers. Peak diastolic pressure significantly augmented, mean flow increased (p<0.05) according to the pulse width modulation. Therefore the newly developed extra aortic counter-pulsation device using SMA fibers, through it controlling methods indicated its promising alternative extra aortic approach for non-blood contacting cardiovascular circulatory support.

  13. Automated library synthesis of cyclopropyl boronic esters employing diazomethane in a tube-in-tube flow reactor.

    PubMed

    Koolman, Hannes F; Kantor, Stanislaw; Bogdan, Andrew R; Wang, Ying; Pan, Jeffrey Y; Djuric, Stevan W

    2016-07-01

    The efficient synthesis of cyclopropyl boronic esters in library format using a diazomethane flow reactor has been achieved. A pivotal component of the system is a fully automated tube-in-tube reactor allowing for safe handling of hazardous diazomethane on repeated small scale and for the generation of larger quantities of product. The setup enables the repeated execution of Pd-catalyzed cyclopropanation reactions without compromising its operation over time. PMID:27314279

  14. Tube-in-tube reactor as a useful tool for homo- and heterogeneous olefin metathesis under continuous flow mode.

    PubMed

    Skowerski, Krzysztof; Czarnocki, Stefan J; Knapkiewicz, Paweł

    2014-02-01

    A tube-in-tube reactor was successfully applied in homo- and heterogeneous olefin metathesis reactions under continuous flow mode. It was shown that the efficient removal of ethylene facilitated by connection of the reactor with a vacuum pump significantly improves the outcome of metathesis reactions. The beneficial aspects of this approach are most apparent in reactions performed at low concentration, such as macrocyclization reactions. The established system allows achievement of both improved yield and selectivity, and is ideal for industrial applications.

  15. Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation

    SciTech Connect

    You, S.; Yun, G.S.; Bellan, P.M.

    2005-07-22

    Highly collimated, plasma-filled magnetic-flux tubes are frequently observed on galactic, stellar, and laboratory scales. We propose that a single, universal magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic-flux tubes are ubiquitous. Experimental evidence from carefully diagnosed laboratory simulations of astrophysical jets confirms this assertion and is reported here. The magnetohydrodynamic process pumps plasma into a magnetic-flux tube and the stagnation of the resulting flow causes this flux tube to become collimated.

  16. Dynamic and stagnating plasma flow leading to magnetic-flux-tube collimation.

    PubMed

    You, S; Yun, G S; Bellan, P M

    2005-07-22

    Highly collimated, plasma-filled magnetic-flux tubes are frequently observed on galactic, stellar, and laboratory scales. We propose that a single, universal magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic-flux tubes are ubiquitous. Experimental evidence from carefully diagnosed laboratory simulations of astrophysical jets confirms this assertion and is reported here. The magnetohydrodynamic process pumps plasma into a magnetic-flux tube and the stagnation of the resulting flow causes this flux tube to become collimated.

  17. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  18. Flow of superfluid helium in tubes with heated walls

    NASA Technical Reports Server (NTRS)

    Snyder, H. A.; Mord, A. J.

    1991-01-01

    The equations for superfluid helium flowing through a straight tube with heated walls are integrated. The model equations are based on those of Landau as modified for superfluid turbulence by Gorter and Mellink (1949). The model is implemented by the program SUPERFLOW which runs on a personal computer. The effect of the heating level on the mass flux, the energy flux, and the pressure and temperature profiles is investigated. The four types of profiles which occur without sidewall heating are also found with heated walls. The progression through these four types is shown to depend primarily on the dimensionless parameter, defined previously to characterize the unheated profiles, and a dimensionless ratio of heat fluxes. The pressure and temperature maxima which rise well above the boundary values increase significantly with sidewall heating. Approximate design equations for estimating the mass flux and the profiles are presented. The physical basis of the results is discussed. These results are useful in the design of optimal cooling loops and other superfluid flow systems.

  19. Surface reaction and pore diffusion in flow-tube reactors

    NASA Technical Reports Server (NTRS)

    Keyser, Leon F.; Moore, Steven B.; Leu, Ming-Taun

    1991-01-01

    The interaction of gas diffusion with surface reaction in porous solids is discussed and applied specifically to heterogeneous rate measurements in flow-tube reactors. External diffusion to the outer surface of a reactive solid, internal diffusion within the pores, surface reaction, and laminar flow are considered. A procedure is developed to correct observed surface rate constants for the interaction of these processes. Measured surface areas and bulk densities are used to construct a semiempirical model for porous diffusion in vapor-formed HNO3-H2O ices which are used to simulate polar stratospheric cloud surfaces. The model is tested experimentally by varying the thickness of these ices from about 15 to 120 microns. The results are consistent with the model predictions and show that the HNO3-H2O ices used are highly porous, and the internal surface must be considered in calculating kinetic parameters from observed loss rates. The best fit of the data yields a tortuosity factor of 3.3 +/-1.1 for the ice substrates.

  20. Pulsation effects on orifice measurement

    SciTech Connect

    Doelling, C. )

    1992-02-01

    The natural gas transmission industry has historically relied on the orifice as the contractual standard for custody transfer. The simplicity, reliability, low maintenance, rangeability (afforded by changing plate beta ratios) and repeatability of the orifice, together with reliable secondary systems, has dispelled flow measurement replacement attempts. While an influx of other meter types has occurred in recent years, the dominance of orifice meters dictate that any serious attempt at improved gas measurement accuracy must emphasize all phases of orifice meter installation. This paper reports on unsteady flow (pulsation) which can compromise orifice system accuracy. Instruments and error calculations for pulsation are reviewed.

  1. Study on flow instability and countermeasure in a draft tube with swirling flow

    NASA Astrophysics Data System (ADS)

    Nakashima, T.; Matsuzaka, R.; Miyagawa, K.; Yonezawa, K.; Tsujimoto, Y.

    2014-03-01

    The swirling flow in the draft tube of a Francis turbine can cause the flow instability and the cavitation surge and has a larger influence on hydraulic power operating system. In this paper, the cavitating flow with swirling flow in the diffuser was studied by the draft tube component experiment, the model Francis turbine experiment and the numerical simulation. In the component experiment, several types of fluctuations were observed, including the cavitation surge and the vortex rope behaviour by the swirling flow. While the cavitation surge and the vortex rope behaviour were suppressed by the aeration into the diffuser, the loss coefficient in the diffuser increased by the aeration. In the model turbine test the aeration decreased the efficiency of the model turbine by several percent. In the numerical simulation, the cavitating flow was studied using Scale-Adaptive Simulation (SAS) with particular emphasis on understanding the unsteady characteristics of the vortex rope structure. The generation and evolution of the vortex rope structures have been investigated throughout the diffuser using the iso-surface of vapor volume fraction. The pressure fluctuation in the diffuser by numerical simulation confirmed the cavitation surge observed in the experiment. Finally, this pressure fluctuation of the cavitation surge was examined and interpreted by CFD.

  2. Columbia University flow instability experimental program: Volume 3. Single tube parallel flow tests

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-06-01

    The coolant in the Savannah River Site (SRS) production nuclear reactor assemblies is circulated as a subcooled liquid under normal operating conditions. This coolant is evenly distributed throughout multiple annular flow channels with a uniform pressure profile across each coolant flow channel. During the postulated Loss of Coolant Accident (LOCA), which is initiated by a hypothetical guillotine pipe break, the coolant flow through the reactor assemblies is significantly reduced. The flow reduction and accompanying power reduction (after shutdown is initiated) occur in the first 1--2 seconds of the LOCA. This portion of the LOCA is referred to as the Flow Instability phase. A series of down flow experiments have been conducted on three different size single tubes. The objective of these experiments was to determine the effect of a parallel flow path on the occurrence of flow instability. In all cases, it has been shown that the point of flow instability (OFI) determined under controlled flow operation does not change when operating in a controlled pressure drop mode (parallel path operation).

  3. The effect of asymmetric heating on flow stability and heat transfer for flow in a vertical tube

    SciTech Connect

    Tappan, C.H.

    1987-11-01

    This study presents experimental results of combined free and forced convection heat transfer in a vertical tube with a circumferentially nonuniform constant wall heat flux. The effect of an asymmetric wall heat flux on flow stability and on the rate of heat transfer for water flowing downward in a vertical tube was investigated. Experimental results were used to develop two stability maps which identify various flow regimes, corresponding to different thermal and hydraulic conditions. Heat transfer coefficients were also determined. Experimental results in the present investigation were compared to those with uniform heating in horizontal and vertical tube flow situations discussed in the literature. 23 refs., 12 figs., 1 tab.

  4. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Hazwan bin; Katanoda, Hiroshi; Morita, Hiromitsu

    2015-02-01

    In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

  5. Internal thermal coupling in direct-flow coaxial vacuum tube collectors

    SciTech Connect

    Glembin, J.; Rockendorf, G.; Scheuren, J.

    2010-07-15

    This investigation covers the impact of low flow rates on the efficiency of coaxial vacuum tube collectors. Measurements show an efficiency reduction of 10% if reducing the flow rate from 78 kg/m{sup 2} h to 31 kg/m{sup 2} h for a collector group with 60 parallel vacuum tubes with a coaxial flow conduit at one-sided connection. For a more profound understanding a model of the coaxial tube was developed which defines the main energy fluxes including the internal thermal coupling. The tube simulations show a non-linear temperature profile along the tube with the maximum temperature in the outer pipe. Due to heat transfer to the entering flow this maximum is not located at the fluid outlet. The non-linearity increases with decreasing flow rates. The experimentally determined flow distribution allows simulating the measured collector array. The simulation results confirm the efficiency decrease at low flow rates. The flow distribution has a further impact on efficiency reduction, but even at an ideal uniform flow, a considerable efficiency reduction at low flow rates is to be expected. As a consequence, low flow rates should be prevented for coaxial tube collectors, thus restricting the possible operation conditions. The effect of constructional modifications like diameter or material variations is presented. Finally the additional impact of a coaxial manifold design is discussed. (author)

  6. Shear thinning effects on blood flow in straight and curved tubes

    NASA Astrophysics Data System (ADS)

    Cherry, Erica M.; Eaton, John K.

    2013-07-01

    Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.

  7. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    SciTech Connect

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    Dispersion in porous media flows has been the subject of much experimental, theoretical and numerical study. Here we consider a wavy-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media, where constrictions represent pore throats and expansions pore bodies. A theoretical model for effective (macroscopic) longitudinal dispersion in this system has been developed by volume averaging the microscale velocity field. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re = 449 for which unsteady flow was observed. Dispersion values were computed using both the volume averaging solution and a random walk particle tracking method, and results of the two methods were shown to be consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for the low-Re, Stokes flow regime. In the steady inertial regime we observe an power-law increase in effective longitudinal dispersion (DL) with Re, consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). For the unsteady case (Re = 449), the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion.

  8. Uncertainty Analysis of the Grazing Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  9. Flow of Supercritical Hydrogen in a Uniformly Heated Circular Tube

    NASA Technical Reports Server (NTRS)

    Youn, B.; Mills, A. F.

    1993-01-01

    Turbulent flow of supercritical hydrogen through a uniformly heated circular tube has been investigated using numerical methods, for the range of 4 x 10(exp 5) less than Re less than 3 x 10(exp 6), 5 less than or equal to q(sub W) less than or equal to 10 MW/sq m, 30 less than or equal to T(sub in) less than or equal to 90 K, and 5 less than or equal to P(sub in) less than or equal to 15 MPa. The purpose is to validate a turbulence model and calculation method for the design of active cooling systems of hydrogen-fueled hypersonic aircraft, where the hydrogen fuel a used as coolant. The PHOENICS software package was used for the computations, which required special provision for evaluation of the thermophysical properties of the supercritical hydrogen, and a low Reynolds number form of the k-epsilon turbulence model. Pressure drop and heat transfer data were compared with experiment and existing correlations and good agreement was demonstrated. For the pressure range considered here a "thermal spike" was observed and shown to be due to the secondary peak in specific heat, rather than the primary peak.

  10. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  11. Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Ling, Xiang; Peng, Hao

    2015-01-01

    In this paper, flow and heat transfer performances of the tubes with internal longitudinal fins in Exhaust Gas Recirculation (EGR ) cooler were investigated by three-dimension computation and experiment . Each test tube was a single-pipe structure, without inner tube. Three-dimension computation was performed to determine the thermal characteristics difference between the two kinds of tubes, that is, the tube with an inner solid staff as a blocked structure and the tube without the blocked structure. The effects of fin width and fin height on heat transfer and flow are examined. For proving the validity of numerical method, the calculated results were compared with corresponding experimental data. The tube-side friction factor and heat transfer coefficient were examined. As a result, the maximum deviations between the numerical results and the experimental data are approximately 5.4 % for friction factor and 8.6 % for heat transfer coefficient, respectively. It is found that two types of internally finned tubes enhance significantly heat transfer. The heat transfer of the tube with blocked structure is better, while the pressure drop of the tube without blocked structure is lower. The comprehensive performance of the unblocked tube is better to applied in EGR cooler.

  12. Flow distribution analysis on the cooling tube network of ITER thermal shield

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O.; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-01

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  13. Flow distribution analysis on the cooling tube network of ITER thermal shield

    SciTech Connect

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-29

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  14. Avoiding leakage flow-induced vibration by a tube-in-tube slip joint

    SciTech Connect

    Mulcahy, T.M.

    1985-01-01

    Parameters and operating conditions (a stability map) were determined for which a specific slip-joint design did not cause self-excited lateral vibration of the two cantilevered, telescoping tubes forming the joint. The joint design featured a localized annular constriction. Flowrate, modal damping, tube engagement length, and eccentric positioning were among the parameters tested. Interestingly, all self-excited vibrations could be avoided by following a simple design rule: place constrictions only at the downstream end of the annular region between the tubes. Also, overall modal damping decreased with increased flowrate, at least initially, for upstream constrictions while the damping increased for downstream constrictions.

  15. Avoiding leakage flow-induced vibration by a tube-in-tube slip joint

    SciTech Connect

    Mulcahy, T.M.

    1984-10-01

    Parameters and operating conditions (a stability map) were determined for which a specific slip-joint design did not cause self-excited lateral vibration of the two cantilevered, telescoping tubes forming the joint. The joint design featured a localized annular constriction. Flowrate, modal damping, tube engagement length, and eccentric positioning were among the parameters tested. Interestingly, all self-excited vibrations could be avoided by following a simple design rule: place constrictions only at the downstream end of the annular region between the tubes. Also, overall modal damping decreased with increased flowrate, at least initially, for upstream constrictions while the damping increased for downstream constrictions.

  16. Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk

    2016-07-01

    Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.

  17. Stability of the flow in a soft tube deformed due to an applied pressure gradient.

    PubMed

    Verma, M K S; Kumaran, V

    2015-04-01

    A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran [J. Fluid Mech. 705, 322 (2012)]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude. PMID:25974574

  18. Stability of the flow in a soft tube deformed due to an applied pressure gradient

    NASA Astrophysics Data System (ADS)

    Verma, M. K. S.; Kumaran, V.

    2015-04-01

    A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran [J. Fluid Mech. 705, 322 (2012), 10.1017/jfm.2011.55]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude.

  19. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  20. Self-induced flow and heat transfer in a rotating tube

    SciTech Connect

    Gilham, S.; Ivey, P.C.; Owen, J.M. Cranfield Inst. of Technology, United Kingdom Bath Univ. )

    1993-03-01

    Self-induced flow occurs when a tube, with one end open and the other sealed, is rotated about its axis: fluid flows along the axis towards the sealed end and returns in an annular layer on the cylindrical wall. Numerical solutions of the Navier-Stokes and energy equations have been obtained for laminar flow, and the Reynolds analogy has been used to provide theoretical correlations for the average Nusselt numbers on the end wall of the tube. Heat transfer measurements have been made in a rotating-tube rig, and the measured Nusselt numbers are, in the main, in good agreement with the computed values. 18 refs.

  1. Tube-in-tube reactor as a useful tool for homo- and heterogeneous olefin metathesis under continuous flow mode.

    PubMed

    Skowerski, Krzysztof; Czarnocki, Stefan J; Knapkiewicz, Paweł

    2014-02-01

    A tube-in-tube reactor was successfully applied in homo- and heterogeneous olefin metathesis reactions under continuous flow mode. It was shown that the efficient removal of ethylene facilitated by connection of the reactor with a vacuum pump significantly improves the outcome of metathesis reactions. The beneficial aspects of this approach are most apparent in reactions performed at low concentration, such as macrocyclization reactions. The established system allows achievement of both improved yield and selectivity, and is ideal for industrial applications. PMID:24167003

  2. Experimental investigation of turbulent flow in smooth and longitudinal grooved tubes

    NASA Technical Reports Server (NTRS)

    Nitschke, P.

    1984-01-01

    Turbulent flow in tubes with and without longitudinal grooves is examined. The discovery of fine grooves forming a sort of streamline pattern on the body of sharks led to the expectation that the grooves on a surface reduce the momentum change, and thus the drag. To test this thesis, drag law, velocity profile and the profile of the velocity fluctuation were determined. Results show that for moderate Reynolds numbers the drag coefficient for grooved tubes is about 3 percent smaller than that of the smooth tubes. At higher Reynolds numbers, however, the drag coefficient for grooved tubes becomes larger than that for smooth tubes. No significant differences in the velocity profiles between grooved tubes and smooth tubes are found.

  3. Dissipative heating effects and end corrections for viscous Newtonian flow in high shear capillary tube viscometry

    NASA Technical Reports Server (NTRS)

    Jakobsen, J.; Winer, W. O.

    1974-01-01

    The effect of dissipation heating on the apparent viscosity measured in capillary tube viscometry is described in this paper. Conditions of low Reynolds number and high shear are assumed. End corrections to the tube flow are incorporated. The flow curves show decreasing apparent viscosity when the shear stress increases. The configuration of the flow curves plotted in logarithmic presentation are found to be identical for fluids with Newtonian behavior. Convection is the predominant mechanism in removal of the heat in short capillary tube. The estimated upper bound for the shear stress obtainable in short length capillary tubes appears to be of the order of magnitude of 10 MPa limited primarily by the pressure drop associated with the constant end correction from the flat ended inlet and exit of the tube.

  4. Evaporation characteristics of R22 flowing inside a corrugated tube. [Tubes with indented spiral turbulence promoter

    SciTech Connect

    Hinton, D.L. ); Conklin, J.C.; Vineyard, E.A. )

    1992-01-01

    Because heat exchanger thermal performance has a direct influence on the overall cycle performance of vapor-compression refrigeration machinery, enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. As part of a larger program investigating nonazeotropic refrigerant mixtures for replacement of chlorofluorocarbon compounds, we investigated the performance of R22 (chlorodifluoromethane) in conventional smooth tubes and enhanced heat transfer tube geometries as a base case. This paper presents the results of this initial investigation for a smooth tube and a tube with a commonly available enhanced heat transfer surface, called corrugated or spirally indented. We investigated the evaporating heat transfer and pressure drop characteristics in an experimental apparatus consisting of a variable-speed compressor and two sets of counterflow concentric-tube heat exchangers having both smooth and corrugated enhanced tubeside surfaces. The refrigerant circulates inside the central tube and water circulates in the annulus. The measured pressure drop and the heat transfer coefficient for the evaporation of the R22 are presented as a function of heat flux, quality, and mass flux for both heat transfer surfaces. Both the heat transfer coefficient and the pressure drop of the corrugated surface are higher than those of the smooth surface at any given refrigerant condition. The heat transfer enhancement is most notable at low mass qualities.

  5. Direct numerical simulation of transitional flow in a staggered tube bundle

    NASA Astrophysics Data System (ADS)

    Linton, D.; Thornber, B.

    2016-02-01

    A series of Direct Numerical Simulations (DNS) of the flow through a staggered tube bundle has been performed over the range 1030 ≤ Rem ≤ 5572 to capture the flow transition that occurs at the matrix transition point of Rem ≈ 3000. The matrix transition is the point at which a second frequency becomes prominent in tube bundles. To date, this is the highest published Reynolds number at which a DNS has been performed on cross-flow over a tube bundle. This study describes the flow behaviour in terms of: the mean flow field, Strouhal numbers, vortex shedding, 3-D flow features, and turbulence properties. These results support the hypothesis that the transition in the vortex shedding behaviour at Rem ≈ 3000 is similar to that which occurs in single cylinder flow at the equivalent Reynolds number. The visualisations presented also demonstrate the nature of the shedding mechanisms before and after the matrix transition point.

  6. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    NASA Astrophysics Data System (ADS)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    In this work, we consider a sinusoidal-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re=449 for which unsteady flow was observed. The longitudinal dispersion observed for the flow was computed using a random walk particle tracking method, and this was compared to the longitudinal dispersion predicted from a volume-averaged macroscopic mass balance using the method of volume averaging; the results of the two methods were consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for both the low-Re, Stokes flow regime and for values of Re representing the steady inertial regime. In the steady inertial regime, a power-law increase in the effective longitudinal dispersion (DL) with Re was found, and this is consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). One unsteady (but non-turbulent) flow case (Re=449) was also examined. For this case, the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion. The observed tailing was further explored through analysis of concentration skewness (third moment) and its assymptotic convergence to conventional advection-dispersion behavior (skewness = 0). The method of volume averaging was

  7. Association of consecutive Pi2-Ps6 band pulsations with earthward fast flows in the plasma sheet in response to IMF variations

    NASA Astrophysics Data System (ADS)

    Cheng, Ching-Chang; Mann, Ian R.; Baumjohann, Wolfgang

    2014-05-01

    On 11 March 2009, the H component had four consecutive bay-like variations accompanied by positive and negative deflections in the D component across the Atlantic like those affected by the substorm current wedge formation. A train of pulsations with a frequency range 2-10 mHz (referred to as Pi2-Ps6 band), sensed by Time History of Events and Macroscale Interactions during Substorms (THEMIS)/Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) magnetometers, had clearly three consecutive Pi2s followed by a Ps6 at low latitudes, but first Pi2 and then Ps6 at high latitudes mixed with large-amplitude Ps6 at midlatitudes. The geostationary orbit magnetometers sensed similar magnetic perturbations. THEMIS probes first observed earthward fast flows, magnetic dipolarizations, and modulated energetic particle fluxes at ~ XGSM -9.2 RE, then at ~ XGSM -7.5 RE for Pi2 and at ~ XGSM -18.0 RE only for Ps6. They appeared during a very quiet period for northward interplanetary magnetic field (IMF) with a clock angle variation of low to high and then low. The H spectrum shows two harmonic frequencies ~2-4 mHz and ~8-10 mHz but the D spectrum one dominant frequency ~2-4 mHz. Pi2 can result from a combination of fast magnetospheric and plasmaspheric cavity resonances and Ps6 from a fast magnetospheric cavity resonance. The surface waves at the interface separating braking earthward fast flows from the ambient plasma convection region could lead to large-amplitude Ps6 at midlatitudes. Hence, consecutive Pi2-Ps6 band pulsations can be associated with earthward fast flows in the plasma sheet, expectedly driven by magnetotail reconnection, respectively, in the near-Earth region and the distant Earth one in response to IMF variations as in the two-neutral-point model.

  8. Lava Tube Flow Models at Alba Patera, Mars: Topographic Constraints on Eruption Rates

    NASA Technical Reports Server (NTRS)

    Riedel, S. J.; Sakimoto, S. E. H.; Bradley, B. A.; DeWet, A.

    2001-01-01

    Alba Patera has some of the longest lava tubes over some of the shallowest slopes on Mars. We use Mars Orbiter Laser Altimeter (MOLA) topography to model eruption rates for several Alba Patera lava tubes and compare them within Alba and with flows from other martian volcanic regions. Additional information is contained in the original extended abstract.

  9. Evaporation characteristics of R22 flowing inside a corrugated tube

    SciTech Connect

    Hinton, D.L.; Conklin, J.C.; Vineyard, E.A.

    1992-07-01

    Because heat exchanger thermal performance has a direct influence on the overall cycle performance of vapor-compression refrigeration machinery, enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. As part of a larger program investigating nonazeotropic refrigerant mixtures for replacement of chlorofluorocarbon compounds, we investigated the performance of R22 (chlorodifluoromethane) in conventional smooth tubes and enhanced heat transfer tube geometries as a base case. This paper presents the results of this initial investigation for a smooth tube and a tube with a commonly available enhanced heat transfer surface, called corrugated or spirally indented. We investigated the evaporating heat transfer and pressure drop characteristics in an experimental apparatus consisting of a variable-speed compressor and two sets of counterflow concentric-tube heat exchangers having both smooth and corrugated enhanced tubeside surfaces. The refrigerant circulates inside the central tube and water circulates in the annulus. The measured pressure drop and the heat transfer coefficient for the evaporation of the R22 are presented as a function of heat flux, quality, and mass flux for both heat transfer surfaces. Both the heat transfer coefficient and the pressure drop of the corrugated surface are higher than those of the smooth surface at any given refrigerant condition. The heat transfer enhancement is most notable at low mass qualities.

  10. Experimental study of the instability of laminar flow in a tube with deformable walls

    NASA Astrophysics Data System (ADS)

    Neelamegam, R.; Shankar, V.

    2015-02-01

    The onset of instability of laminar flow in a tube with deformable walls is studied experimentally in order to characterize how the onset is affected by the elastic (shear) modulus of the deformable wall. To this end, rectangular blocks of polydimethylsiloxane (PDMS) gels of different shear moduli are fabricated with a cylindrical hole (of diameter 1.65 mm) in which the fluid (water) flow occurs due to an imposed pressure difference. The shear moduli of the PDMS gels were in the range of 21 - 608 kPa. When fluid flows through the deformable tube, we find that the tube radius changes slowly as a function of distance along the flow, and this change is a function of Reynolds number (Re). The pressure drop between the two ends of the tube is measured, and the friction factor is calculated from this pressure drop. The friction factor vs. Re data shows that the expected laminar flow relation (f = 64/Re) for flow in a rigid tube is seen in a deformable tube at lower Re, but there is a deviation from this relation at Re < 2000. We identify the Re at which the deviation occurs as the Reynolds number at which the laminar flow in the deformable tube becomes unstable. This transition Reynolds number is as low as 500 for the 21 kPa PDMS gel, the softest gel studied in this work, and this value is much lower than the critical Reynolds number (˜2000) for transition in a rigid tube. The onset of the transition is also independently corroborated using a dye-stream visualization method, and the transition Reynolds number obtained with this method agrees well with the Reynolds number at which there is a deviation in the friction-factor data from the laminar relation. This transition in a deformable tube which happens at Reynolds number much lower than 2000 could be potentially exploited in improving mixing in microscale devices.

  11. TWO-PHASE FLOW OF TWO HFC REFRIGERANT MIXTURES THROUGH SHORT-TUBE ORIFICES

    EPA Science Inventory

    The report gives results of an experimental investigation to develop an acceptable flow model for short tube orifice expansion devices used in heat pumps. The refrigerants investigated were two hydrofluorocarbon (HFC) mixtures considered hydrochlorofluorocarbon (HCFC)-22 replacem...

  12. Velocity and shear rate estimates of some non-Newtonian oscillatory flows in tubes

    NASA Astrophysics Data System (ADS)

    Kutev, N.; Tabakova, S.; Radev, S.

    2016-10-01

    The two-dimensional Newtonian and non-Newtonian (Carreau viscosity model used) oscillatory flows in straight tubes are studied theoretically and numerically. The corresponding analytical solution of the Newtonian flow and the numerical solution of the Carreau viscosity model flow show differences in velocity and shear rate. Some estimates for the velocity and shear rate differences are theoretically proved. As numerical examples the blood flow in different type of arteries and the polymer flow in pipes are considered.

  13. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy.

    PubMed

    Min, Kyung Jay; Yoon, Soo Han; Kang, Jae-Kyu

    2011-06-01

    Many theories have been postulated to date regarding the mechanisms involved in the absorption of the intracranial arterial blood flow energy in the intracranial space, but it is as yet nor clearly defined. The blood flow energy that is transmitted from the heart formulates the cerebrospinal fluid (CSF) pulsatile flow, and is known to constitute the major energy of the CSF flow, while the bulk flow carries only small energy. The intracranial space that is enclosed in a solid cranium and is an isolate system as in the Monroe-Kellie doctrine, and the authors propose to re-analyze the Monroe-Kellie doctrine concept in terms of energy transfer and dissipation of the Windkessel effect. We propose that the large blood flow energy that initiates in the heart is transferred in order of precedence to the arteries, arterioles, brain parenchyma, and finally to CSF within the cranium, in which the energy is confined and unable to be transferred, so that the final transfer of energy to the CSF pulsatile flow is self-dissipated in terms of direction and chronology in CSF pulsatile flow. In order for the CSF pulsatile flow that is transferred from arterial blood flow energy to be dissipated in the intracranial space, this cannot be explained with bulk flow energy in any perspective, since the pulsatile flow kinetic energy is greater than the bulk flow kinetic energy by at least a 100-fold. The pulsatile flow energy within the closed intracranial space cannot be transferred and is confined, as postulated by the Monroe-Kellie doctrine, and therefore the authors propound that the pulsatile flow dissipates by itself. The dissipation of the CSF pulsatile flow kinetic energy will be in all directions in a diffuse and random manner, and is offset by the CSF flow energy vector due to the CSF mixing process. Such energy dissipation will lead to maintenance of low CSF flow energy, which will result in maintaining low intracranial pressure (ICP), and sufficient brain perfusion. It is our

  14. CFD simulation of the gas flow in a pulse tube cryocooler with two pulse tubes

    NASA Astrophysics Data System (ADS)

    Yin, C. L.

    2015-12-01

    In this paper, in order to instruct the next optimization work, a two-dimension Computational Fluid Dynamics (CFD) model is developed to simulate temperature distribution and velocity distribution of oscillating fluid in the DPTC by individual phase-shifting. It is found that the axial temperature distribution of regenerator is generally uniform and the temperatures near the center at the same cross setion of two pulse tubes are obviously higher than their near wall temperatures. The wall temperature difference about 0-7 K exists between the two pulse tubes. The velocity distribution near the center of the regenerator is uniform and there is obvious injection stream coming at the center of the pulse tubes from the hot end. The formation reason of temperature distribution and velocity distribution is explained.

  15. Effects of temporally varying inlet conditions on flow and particle deposition in the small bronchial tubes.

    PubMed

    Soni, Bela; Thompson, David

    2012-09-01

    The laminar flow in the small bronchial tubes is quite complex because of the presence of vortex-dominated, secondary flows. Factors contributing to this complexity are the unsteady nature of the inhale-exhale breathing cycle and the geometrical characteristics of the bronchial tubes. To investigate unsteady effects on flows and particle transport, unsteady inhalation flows at a 30-respiration-per-minute frequency, corresponding to a moderate activity level, were simulated for a three-generation, asymmetric, planar bronchial tube model. Ten-micron diameter water droplets were introduced at the inlet at different times during inhalation to develop particle destination maps. The differences in the flow fields and destination maps obtained at the unsteady peak flow and the comparable steady-state inflow condition were minimal. However, particles released at equivalent instantaneous off-peak inflow conditions produced different destination maps. The differences were attributed to the temporal variations of the fluid velocities and history effects.

  16. Riemannian geometry of twisted magnetic flux tubes in almost helical plasma flows

    SciTech Connect

    Garcia de Andrade, L.C.

    2006-02-15

    Riemannian geometry of curves applied recently by Ricca [Fluid Dyn. Res 36, 319 (2005)] in the case of inflectional disequilibrium of twisted magnetic flux tubes is used here to compute the magnetic helicity force-free field case. Here the application of Lorentz force-free to the magnetic flux tube in tokamaks allows one to obtain an equation that generalizes the cylindrical tokamak equation by a term that contains the curvature of the magnetic flux tube. Another example of the use of the magnetic flux tube is done by taking the electron magnetohydrodynamics (MHD) fluid model (EMHD) of plasma physics that allows one to compute the velocity of the fluid in helical and almost helical flows in terms of the Frenet torsion of thin magnetic flux tubes. The cases of straight and curved twisted tubes are examined. Second-order effects on the Frenet torsion arise on the poloidal component of the magnetic field, while curvature effects appear in the toroidal component. The magnetic fields are computed in terms of the penetration depth used in superconductors. The ratio between poloidal and toroidal components of the magnetic field depends on the torsion and curvature of the magnetic flux tube. It is shown that the rotation of the almost helical plasma flow contributes to the twist of the magnetic flux tube through the total Frenet torsion along the tube.

  17. Methods for numerical study of tube bundle vibrations in cross-flows

    NASA Astrophysics Data System (ADS)

    Longatte, E.; Bendjeddou, Z.; Souli, M.

    2003-11-01

    In many industrial applications, mechanical structures like heat exchanger tube bundles are subjected to complex flows causing possible vibrations and damage. Part of fluid forces are coupled with tube motion and the so-called fluid-elastic forces can affect the structure dynamic behaviour generating possible instabilities and leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics, numerical simulation of flow-induced vibrations is now practicable for industrial purposes. The present paper is devoted to the numerical identification of fluid-elastic effects affecting tube bundle motion in presence of fluid at rest and one-phase cross-flows. What is the numerical process? When fluid-elastic effects are not significant and are restricted to added mass effects, there is no strong coupling between structure and fluid motions. The structure displacement is not supposed to affect flow patterns. Thus it is possible to solve flow and structure problems separately by using a fixed nonmoving mesh for the fluid dynamic computation. Power spectral density and time record of lift and drag forces acting on tube bundles can be computed numerically by using an unsteady fluid computation involving for example a large Eddy simulation. Fluid force spectra or time record can then be introduced as inlet conditions into the structure code providing the tube dynamic response generated by flow. Such a computation is not possible in presence of strong flow structure coupling. When fluid-elastic effects cannot be neglected, in presence of tube bundles subjected to cross-flows for example, a coupling between flow and structure computations is required. Appropriate numerical methods are investigated in the present work. The purpose is to be able to provide a numerical

  18. Experimental investigation of the draft tube inlet flow of a bulb turbine

    NASA Astrophysics Data System (ADS)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  19. Investigation of an innovative method for DC flow suppression of double-inlet pulse tube coolers

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Luo, E. C.; Wu, Z. H.; Dai, W.; Zhu, S. L.

    2007-05-01

    The use of double-inlet mode in the pulse tube cooler opens up a possibility of DC flow circulating around the regenerator and the pulse tube. The DC flow sometimes deteriorates the performance of the cryocooler because such a steady flow adds an unwanted thermal load to the cold heat exchanger. It seems that this problem is still not well solved although a lot of effort has been made. Here we introduce a membrane-barrier method for DC flow suppression in double-inlet pulse tube coolers. An elastic membrane is installed between the pulse tube cooler inlet and the double-inlet valve to break the closed-loop flow path of DC flow. The membrane is acoustically transparent, but would block the DC flow completely. Thus the DC flow is thoroughly suppressed and the merit of double-inlet mode is remained. With this method, a temperature reduction of tens of Kelvin was obtained in our single-stage pulse tube cooler and the lowest temperature reached 29.8 K.

  20. Three-dimensional collapse and steady flow in thick-walled flexible tubes

    NASA Astrophysics Data System (ADS)

    Marzo, A.; Luo, X. Y.; Bertram, C. D.

    2005-08-01

    Three-dimensional collapse of and steady flow through finite-length elastic tubes are studied numerically. The Navier-Stokes equations coupled with large, nonlinear deformation of the elastic wall are solved by using the finite-element software, FIDAP. Three-dimensional solid elements are used for the elastic wall, allowing us to specify any wall thickness required. Plane-strain results for the cross-sectional shape of thinner-walled tubes are validated by comparison with published numerical data. Three-dimensional results for flow through finite-thickness tubes are in excellent agreement with published numerical results based on thin-shell elements, and are used to show the effects of varying wall thickness. Finally, the computational predictions are compared with experimental pressure area relationships for thick-walled tubes. The simulations confirm a previously neglected experimental finding, that the Young wavespeed can be lower between buckling and osculation for thick tubes than for thinner ones.

  1. Pressure drop and temperature rise in He II flow in round tubes, Venturi flowmeters and valves

    NASA Technical Reports Server (NTRS)

    Walstrom, P. L.; Maddocks, J. R.

    1988-01-01

    Pressure drops in highly turbulent He II flow were measured in round tubes, valves, and Venturi flowmeters. Results are in good agreement with single-phase flow correlations for classical fluids. The temperature rise in flow in a round tube was measured, and found to agree well with predictions for isenthalpic expansion. Cavitation was observed in the venturis under conditions of low back pressure and high flow rate. Metastable superheating of the helium at the venturi throat was observed before the helium made a transition to saturation pressure.

  2. Evaluation of hydro-mechanical pulsation for rocket injector research

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew B.

    The Propulsion Research Center at the University of Alabama in Huntsville has designed and built a hydro-mechanical pulsator to simulate the pressure fluctuations created by high frequency combustion instability. The pressure response characteristics were evaluated in an atmospheric test rig using filtered de-ionized water as the working fluid. The outlet of the pulsator was connected to a swirl injector post to provide downstream flow resistance. Previous low pressure and mass flow experimental data revealed a complex relationship between the control parameters and the pulsation response. For each test, the average mass flow rates of the waste water, water lost through the seals, and injector mass flow rates are measured. A dynamic pressure transducer at the pulsator exit measures and records the pressure waveform. Pulsation magnitude, reliability, repeatability, pulsation effects, and detailed variable control are examined. The data shows the pulsator is capable of generating 30% pulsation at 1575 Hz input. The repeatability of the pulsator is questionable because the standard deviations exceeded 40% of the average. The detailed data obtained during this research provides is sufficient to develop a pulsator tuning procedure for future applications.

  3. Effects of tangential velocity distribution on flow stability in a draft tube

    NASA Astrophysics Data System (ADS)

    Dou, Huashu; Niu, Lin; Cao, Shuliang

    2014-10-01

    Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability. Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube. It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section. Thus, the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity. However, the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.

  4. Investigation of an anomalous flow condition of the Langley pilot model expansion tube

    NASA Technical Reports Server (NTRS)

    Friesen, W. J.

    1974-01-01

    Free-stream flow velocity measurements were made in the Langley pilot model expansion tube during the test flow interval. During this interval, an anomalous dip in pitot pressure occurs for the expansion tube operating conditions employed. Within the test flow interval, the main conclusions reached from comparison of the measured flow velocity, pitot pressure, and tube wall pressure are: the variations which occur in velocity and wall pressure are small compared with the variations in pitot pressure; a corresponding dip in the derived flow density is associated with the dip in pitot pressure; and the value of the average density over the interval, which results from the expansion from the shocked intermediate chamber condition, is approximately one-half of the value that can result from only an isentropic process.

  5. An experimental study of fluidelastic instability and draf force on a tube in two-phase cross flow

    SciTech Connect

    Joo, Youngcheol

    1994-12-31

    Two-phase cross flow over heat exchanger tubes creates vibrations which contribute greatly to the wear on the tubes. Fluidelastic instability is a major mechanism by which tubes can fail. In this work, the fluidelastic instability of a tube placed in an array subjected to two-phase cross flow has been studied. For the determination of fluidelastic instability, a triangular tube array was used. The tubes were made of acrylic and were 2.2 cm or 2.37 cm in diameter and 20 cm in length. Eighteen tubes and 4 half tubes formed 5 rows with a pitch to diameter ratio of 1.4. All of the tubes except the test tube were rigidly supported at the text section wall. The test tube was flexibly supported with two cantilever beams. By installing cantilever beams horizontally and vertically, drag and lift direction tube vibration were studied. Parameters of tube mass, structural stiffness, natural frequency, and pitch to diameter ratio were varied. The drag coefficients on a rigidly held tube in an array subjected to two-phase cross flow were measured. The tube in an array was located at displaced positions as well as at the normal position in order to study the variation of fluid force as the tube vibrates. In the experiments, gap Reynolds numbers up to 1 x 10{sup 5} were obtained, while void fraction was varied from zero to 0.5. The drag coefficients in two-phase flow are much higher than those in single phase flow. The ratio of two-phase to single phase drag coefficient decreases as Reynolds number increases. The drag coefficient on a tube in an array increases as the tube is displaced in the direction of flow. The drag coefficient increases rapidly when the tube is displaced more than a certain critical distance.

  6. Kinetic theory and turbulent discontinuities. [shock tube flow

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; I, L.; Li, Y.; Ramaian, R.; Santigo, J. P.

    1981-01-01

    Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities.

  7. Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique

    SciTech Connect

    Huisseune, H.; Willockx, A.; De Paepe, M.; T'Joen, C.; De Jaeger, P.

    2010-11-15

    Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

  8. Condensation of refrigerants flowing inside smooth and corrugated tubes

    SciTech Connect

    Hinton, D.L.; Conklin, J.C.; Vineyard, E.A.

    1995-07-01

    Because heat exchanger thermal performance has a direct fluence on the overall cycle performance of vapor-compression refrigeration machinery,enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. We investigated R-22 and a nonazeotropic refrigerant mixture (NARM) of 75% R-143a and 25% R-124 (by mass) to study their thermal performance in a condenser made of conventional smooth tubes and another condenser made of corrugated, or spirally indented, tubes. We investigated the condensing heat transfer and pressure drop characteristics in an experimental test loop model of a domestic beat pump system employing a variable speed compressor. The refrigerant circulates inside the central tube and the water circulates in the annulus. At refrigerant mass fluxes of approximately 275--300 kg/m{sup 2}s, the measured irreversible pressure drop of the corrugated surface was 23% higher than that of the smooth surface for the R-22. At refrigerant mass fluxes of 350-370 kg/m{sup 2}s, the irreversible pressure drop of the corrugated surface was 36% higher than that of the smooth surface for the NARM. The average heat transfer coefficient for the corrugated surface for R-22 was roughly 40% higher than that for the smooth tube surface at refrigerant mass fluxes of 275--295 kg/m{sup 2}s. The average heat transfer coefficient for the corrugated surface for the NARM was typically 70% higher than that for the smooth tube surface at refrigerant mass fluxes of 340--385 kg/m{sup 2}s.

  9. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  10. Shellside flow-induced tube vibration in typical heat exchanger configurations: Overview of a research program

    NASA Astrophysics Data System (ADS)

    Halle, H.; Chenoweth, J. M.; Wambsganss, M. W.

    A comprehensive research program is being conducted to develop the necessary criteria to assist designers and operators of shell-and-tube heat exchangers to avoid detrimental flow-induced tube vibration. This paper presents an overview of the insights gained from shellside water-flow testing on a horizontal, industrial-sized test exchanger that can be configured in many ways using interchangeable tube bundles and replaceable nozzles. Nearly 50 different configurations have been tested representing various combinations of triangular, square, rotated-triangular, and rotated-square tubefield layouts; odd and even numbers of crosspasses; and both single- and double-segmental baffles with different cut sizes and orientations. The results are generally consistent with analytical relationships that predict tube vibration response by the combined reinforcing effect of the vibration mode shape and flow velocity distribution. An understanding of the vibration and instability performance is facilitated by recognizing that the excitation is induced by three separate, though sometimes interacting, flow conditions. These are the crossflows that generate classic fluidelastic instabilities in the interior of the tube bundle, the entrance and exit bundle flow from and into the shell nozzles, and the localized high velocity bypass and leakage stream flows. The implications to design and/or possible field remedies to avoid vibration problems are discussed.

  11. Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube

    NASA Astrophysics Data System (ADS)

    Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo

    Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.

  12. Development of a compact laminar flow heat exchanger with stainless steel micro-tubes

    NASA Astrophysics Data System (ADS)

    Saji, N.; Nagai, S.; Tsuchiya, K.; Asakura, H.; Obata, M.

    2001-05-01

    The present paper describes the design concept and manufacturing of a new compact laminar flow heat exchanger with stainless-steel micro-tubes for helium refrigerators. In the temperature range of less than 20 K, aluminum plate fin type heat exchangers exhibit a remarkable fall of performance characteristics as a compact heat exchanger. We presented in a previous paper that some compact heat exchangers with good performance in the temperature range of less than 4 K are required for a subcooled He II refrigerator cycle to be worked with 3He turbo-compressors (F. Doty, et al., A new look at the closed brayton cycle, Proceedings, IECEC-90 Reno, NV, 1991, p. 116). For this requirement, we developed a micro-tube strip counter flow type heat exchanger, which consists of 12 elements with a total of 4800 stainless steel micro-tubes. Each element is formed with 400 tubes and a newly developed vacuum brazing method was applied for the bonding to the side plate. Each tube has an inner diameter of 0.5 mm, an outer diameter of 0.7 mm and is 310 mm long. We developed a cladding plate with two layers of gold brazing sheet sandwiched inside. In aerodynamic and thermal design of the element, the laminar flow conditions were adopted for the flows of inner and outer tubes to keep a high heat transfer rate and a low pressure loss.

  13. Pulsating incinerator hearth

    SciTech Connect

    Basic, J.N. Sr.

    1984-10-09

    A pulsating hearth for an incinerator wherein the hearth is suspended on a fixed frame for movement in a limited short arc to urge random size particles burning in a pile on the hearth in a predetermined path intermittently across the surface of the heart. Movement is imparted to the hearth in periodic pulses preferably by inflating sets of air bags mounted on the frame, which stroke the hearth to move it a short distance from an initial position and jar it against the frame, thus impelling the burning particles a short distance by inertia and concurrently stoking the burning pile upon each stroke, and then returning the hearth to its initial position. The hearth may also have a plurality of nozzles connected to a source of air for delivering gently flowing air to the burning pile on the hearth.

  14. Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube.

    PubMed

    Maqbool, K; Shaheen, S; Mann, A B

    2016-01-01

    The present study investigated the cilia induced flow of MHD Jeffrey fluid through an inclined tube. This study is carried out under the assumptions of long wavelength and low Reynolds number approximations. Exact solutions for the velocity profile, pressure rise, pressure gradient, volume flow rate and stream function are obtained. Effects of pertinent physical parameters on the computational results are presented graphically. PMID:27610298

  15. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    ERIC Educational Resources Information Center

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  16. Pressure drop and pumping power for fluid flow through round tubes

    NASA Technical Reports Server (NTRS)

    Jelinek, D.

    1973-01-01

    Program, written for Hewlett-Packard 9100A electronic desk computer provides convenient and immediate solution to problem of calculating pressure drop and fluid pumping power for flow through round tubes. Program was designed specifically for steady-state analysis and assumes laminar flow.

  17. Use of the choke point in the prediction of flow limitation in elastic tubes.

    PubMed

    Dawson, S V; Elliott, E A

    1980-08-01

    Work on flow limitation in elastic tubes of the body first relied on simple descriptions and intuitive modeling. Mathematical modeling led to the identification of a wave speed mechanism analogous to that of hydraulic flow in sluices and in supersonic nozzles. The basic pulse wave governs in the fluid-filled elastic tube. How this wave speed depends on the pressure-area characteristic of the tube is reviewed, and the determination of maximum flow rates for a given head, as in frictionless flow, is cited. The analysis of flow limitation for significant friction is briefly sketched, and the apparent paradox for viscous dominated flow still involving wave speed is resolved. Example applications include an analysis of density dependence of flow limitations, an exploration of implications concerning area and elastic modules at choke point for expiratory flow data is outlined, and predictions of flow from pressure-area characteristics are made. A summary of how airway system properties affect flow rates is given. Some of the difficulties of using flow data to infer airway properties are cited.

  18. One-to-few and one-to-many branching tube flows

    NASA Astrophysics Data System (ADS)

    Smith, F. T.; Jones, M. A.

    2000-11-01

    Branching tube flows are examined, for one mother to two, three or more daughter tubes. The case of many daughters (abrupt multi-branching) models blood flow through an arteriovenous malformation in the brain, while that of very few daughters (gradual branching) applies elsewhere in physiology and surgical grafting, as well as other applications including industrial ones. Theory and computation are presented for two- and three-dimensional motions, under the viscous and inviscid effects of small changes in mass flux between the daughter tubes, area expansion and turning of the flow. Specific configurations for which flow solutions are obtained are (a) with two large daughters, (b) with one small daughter/side branch, and (c) with multiple small daughters.

  19. Numerical simulation of pressure pulsations in Francis turbines

    NASA Astrophysics Data System (ADS)

    Magnoli, M. V.; Schilling, R.

    2012-11-01

    In the last decades, hydraulic turbines have experienced the increase of their power density and the extension of their operating range, leading the fluid and mechanical dynamic effects to become significantly more pronounced. The understanding of the transient fluid flow and of the associated unsteady effects is essential for the reduction of the pressure pulsation level and improvement of the machine dynamic behaviour. In this study, the instationary fluid flow through the complete turbine was numerically calculated for an existing Francis machine with high specific speed. The hybrid turbulence models DES (detached eddy simulation) and SAS (scale adaptive simulation) allowed the accurate simulation of complex dynamic flow effects, such as the rotor-stator-interaction and the draft tube instabilities. Different operating conditions, as full load, part load, higher part load and deep part load, were successfully simulated and showed very tight agreement with the experimental results from the model tests. The transient pressure field history, obtained from the CFD (computational fluid dynamics) simulation and stored for each time step, was used as input for the full instationary FEA (finite element analysis) of turbine components. The assessment of the machine dynamic motion also offered the possibility to contribute to the understanding of the pressure pulsation effects and to further increase the turbine stability. This research project was developed at the Institute of Fluid Mechanics of the TU München.

  20. Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.

    PubMed

    Felderhof, B U

    2012-04-28

    The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional. PMID:22559504

  1. Analysis of DC gas flow in GM type double inlet pulse tube refrigerators

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Nogawa, Masafumi; Inoue, Tatsuo

    2009-02-01

    In a GM type double inlet pulse tube refrigerator, a DC gas flow is an intrinsic phenomenon. It is important to understand the characteristics of the DC gas flow. In this paper, the relation between the DC gas flow, valve operating time intervals, and flow patterns in the bypass of the GM type double inlet pulse tube refrigerator is studied with a numerical simulation when a symmetric bypass is used. The governing equations of the numerical simulation based on the nodal analysis are discretized with an implicit finite volume method. The simulation result shows that the valve opening angle difference is the main parameter having influence on the DC gas flow, and the effect depends on the flow patterns in the bypass.

  2. Unsteady entrance flow development in a straight tube.

    PubMed

    He, X; Ku, D N

    1994-08-01

    The entrance conditions for pulsatile flow are important in the understanding blood flow out of the heart and in developing regions at branches. The pulsatile entrance flow was solved using a spectral element simulation of the full unsteady Navier-Stokes equations. A mean Reynolds number of 200 and a range of Womersley parameters from 1.8 to 12.5 was used for a sinusoidal inlet flow waveform 1 + sin (omega t). Variations in the entrance length were observed during the pulsatile cycle. The amplitude of the entrance length variation decreased with an increase in the Womersley parameter. The phase lag between the entrance length and the inlet flow waveform increased for Womersley parameter alpha up to 5.0 and decreased for alpha larger than 5.0. For low alpha, the maximum entrance length during pulsatile flow was approximately the same as the steady entrance length for the peak flow. For high varies; is directly proportional to, the pulsatile entrance length was more uniform during the cycle and tended to the entrance length for the mean flow. The wall shear rate reached its far downstream value after only about half of the entrance length and also exhibited a dependence on alpha. The results quantify the entrance conditions typically encountered in studies of the arterial system. PMID:7799639

  3. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray, or segregated flow

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.

    2015-08-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].

  4. VFLOW2D - A Vorte-Based Code for Computing Flow Over Elastically Supported Tubes and Tube Arrays

    SciTech Connect

    WOLFE,WALTER P.; STRICKLAND,JAMES H.; HOMICZ,GREGORY F.; GOSSLER,ALBERT A.

    2000-10-11

    A numerical flow model is developed to simulate two-dimensional fluid flow past immersed, elastically supported tube arrays. This work is motivated by the objective of predicting forces and motion associated with both deep-water drilling and production risers in the oil industry. This work has other engineering applications including simulation of flow past tubular heat exchangers or submarine-towed sensor arrays and the flow about parachute ribbons. In the present work, a vortex method is used for solving the unsteady flow field. This method demonstrates inherent advantages over more conventional grid-based computational fluid dynamics. The vortex method is non-iterative, does not require artificial viscosity for stability, displays minimal numerical diffusion, can easily treat moving boundaries, and allows a greatly reduced computational domain since vorticity occupies only a small fraction of the fluid volume. A gridless approach is used in the flow sufficiently distant from surfaces. A Lagrangian remap scheme is used near surfaces to calculate diffusion and convection of vorticity. A fast multipole technique is utilized for efficient calculation of velocity from the vorticity field. The ability of the method to correctly predict lift and drag forces on simple stationary geometries over a broad range of Reynolds numbers is presented.

  5. Modeling Fluid Flows in Distensible Tubes for Applications in Hemodynamics

    NASA Astrophysics Data System (ADS)

    Descovich, X.; Pontrelli, G.; Melchionna, S.; Succi, S.; Wassertheurer, S.

    2013-05-01

    We present a lattice Boltzmann (LB) model for the simulation of hemodynamic flows in the presence of compliant walls. The new scheme is based on the use of a continuous bounce-back boundary condition, as combined with a dynamic constitutive relation between the flow pressure at the wall and the resulting wall deformation. The method is demonstrated for the case of two-dimensional (axisymmetric) pulsatile flows, showing clear evidence of elastic wave propagation of the wall perturbation in response to the fluid pressure. The extension of the present two-dimensional axisymmetric formulation to more general three-dimensional geometries is currently under investigation.

  6. Vibration of a tube bundle in two-phase Freon cross-flow

    SciTech Connect

    Pettigrew, M.J.; Taylor, C.E.; Jong, J.H.; Currie, I.G.

    1995-11-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. The U-bend region of nuclear steam generators is a prime example. Testing in two-phase flow simulated by air-water provides useful results inexpensively. However, two-phase flow parameters, in particular surface tension and density ratio, are considerably different in air-water than in steam-water. A reasonable compromise is testing in liquid-vapor Freon, which is much closer to steam-water while much simpler experimentally. This paper presents the first results of a series of tests on the vibration behavior of tube bundles subjected to two-phase Freon cross-flow. A rotated triangular tube bundle of tube-to-diameter ratio of 1.5 was tested over a broad range of void fractions and mass fluxes. Fluidelastic instability, random turbulence excitation, and damping were investigated. Well-defined fluidelastic instabilities were observed in continuous two-phase flow regimes. However, intermittent two-phase flow regimes had a dramatic effect on fluidelastic instability. Generally, random turbulence excitation forces are much lower in Freon than in air-water. Damping is very dependent on void fraction, as expected.

  7. Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow

    SciTech Connect

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2004-07-01

    This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

  8. Flow properties in expansion tube with helium, argon, air, and CO2

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1974-01-01

    Test flow velocities from 5 to 7 km/sec were generated in a 6-in. expansion tube using helium, argon, air, and CO2 test gases. Pitot pressure profiles across the flow at the test section are presented for the four test gases, and measured flow quantities are compared to computer predicted values. Comparison of predicted and measured flow quantities suggests the expansion to be near thermochemical equilibrium for all test gases and implies the existence of a totally reflected shock at the secondary diaphragm. Argon, air, and CO2 flows were observed to attenuate while traversing the acceleration section, whereas no attenuation was observed for helium.

  9. Free-stream temperature, density, and pressure measurements in an expansion tube flow

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.

    1973-01-01

    An experimental study was conducted to determine test-flow conditions in the Langley pilot model expansion tube. Measurements of temperature, density, wall pressure, pitot pressure, and shock and interface velocities were compared with theoretical calculations based on various models of the flow cycle. The vibrational temperature and integrated density of the molecular oxygen component of the flow were measured by use of vacuum ultraviolet absorption techniques. These measurements indicate both the presence and possible degree of nonequilibrium in the flow. Data are compared with several simplified models of the flow cycle, and data trends are discussed.

  10. Flow Rate Driven by Peristaltic Movement in Plasmodial Tube of Physarum Polycephalum

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroyasu; Nakagaki, Toshiyuki

    2008-07-01

    We report a theoretical analysis of protoplasmic streaming driven by peristaltic movement in an elastic tube of an amoeba-like organism. The Plasmodium of Physarum polycephalum, a true slime mold, is a large amoeboid organism that adopts a sheet-like form with a tubular network. The network extends throughout the Plasmodium and enables the transport and circulation of chemical signals and nutrients. This tubular flow is driven by periodically propagating waves of active contraction of the tube cortex, a process known as peristaltic movement. We derive the relationship between the phase velocity of the contraction wave and the flow rate, and we discuss the physiological implications of this relationship.

  11. Laminar flow studies of a low-temperature space radiator model using D-shaped tubes

    NASA Technical Reports Server (NTRS)

    Cintula, T. C.; Prok, G. M.; Johnston, D. B.

    1972-01-01

    Test results of a low-temperature space radiator model are presented. Radiator performance is evaluated with a low-thermal-conductivity fluid in laminar flow in D-shaped cross-section tubes. The test covered a Reynolds number range from 50 to 4500 and a fluid temperature range from 294 to 414 K (70 to 286 F). For low-temperature radiators, the fluid-to-surface temperature differential was predominately influenced by fluid temperature in laminar flow. Heat transfer and pressure drop for the radiator tube could be predicted within engineering accuracy from existing correlations.

  12. Blood flow in small tubes: quantifying the transition to the non-continuum regime

    PubMed Central

    Lei, Huan; Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2013-01-01

    In small vessels blood is usually treated as a Newtonian fluid down to diameters of ~200 μm. We investigate the flow of red blood cell (RBC) suspensions driven through small tubes (diameters 10–150 μm) in the range marking the transition from arterioles and venules to the largest capillary vessels. The results of the simulations combined with previous simulations of uniform shear flow and experimental data show that for diameters less than ~100 μm the suspension’s stress cannot be described as a continuum, even a heterogeneous one. We employ the dissipative particle dynamics (DPD) model, which has been successfully used to predict human blood bulk viscosity in homogeneous shear flow. In tube flow the cross-stream stress gradient induces an inhomogeneous distribution of RBCs featuring a centreline cell density peak, and a cell-free layer (CFL) next to the wall. For a neutrally buoyant suspension the imposed linear shear-stress distribution together with the differentiable velocity distribution allow the calculation of the local viscosity across the tube section. The viscosity across the section as a function of the strain rate is found to be essentially independent of tube size for the larger diameters and is determined by the local haematocrit (H) and shear rate. Other RBC properties such as asphericity, deformation, and cell-flow orientation exhibit similar dependence for the larger tube diameters. As the tube size decreases below ~100 μm in diameter, the viscosity in the central region departs from the large-tube similarity function of the shear rate, since H increases significantly towards the centreline. The dependence of shear stress on tube size, in addition to the expected local shear rate and local haematocrit, implies that blood flow in small tubes cannot be described as a heterogeneous continuum. Based on the analysis of the DPD simulations and on available experimental results, we propose a simple velocity-slip model that can be used in

  13. Experimental study on heat transfer to supercritical water flowing through tubes

    SciTech Connect

    Zhao, M.; Gu, H.; Cheng, X.

    2012-07-01

    A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2}) and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)

  14. Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.

    PubMed

    Li, Xuan; Xiao, Xufeng; Cao, Li

    2016-12-01

    Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well. PMID:27529137

  15. A Hands-on Exercise in Building Darcy Tubes to Improve Student Understanding of Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Smith, J. A.

    2012-12-01

    Teaching undergraduate students about sustainability typically includes discussions of water resources and the flow of groundwater in aquifers. Understanding the flow of groundwater is a fundamental step for students, but one that can easily get mired in equations (e.g., Darcy's Law). In an effort to transform Darcy's Law, which describes flow of fluid through a porous medium, from an abstract concept to a hands-on experiment, I had undergraduate students build working "Darcy tubes" and calculate hydraulic conductivity during a three-hour lab period. At the beginning of the lab period, I presented the students with the materials: three pairs of plastic soda bottles with straight sides, glass tubing, pantyhose (for screens), rubber hosing, sieved sand in three grain sizes (1-2 mm, 0.5-1.0 mm, and 0.25-0.5 mm), and various types of tape and adhesive. After we discussed the basic design of a Darcy tube (inlet and outlet, with two piezometers), the students went to work. Real-time problem-solving was an integral (and exciting) part of the exercise. Within two hours, they had built three Darcy tubes, each filled with a different sand size. The students determined the cross-sectional area of each tube (A) and the distance between the two piezometers (L). We then ran the experiments, using tinted water so that we could more easily tell when the sand in the tubes was saturated. We measured discharge (Q) through the tube and marked the height of the water in each piezometer to calculate difference in hydraulic head (Δh). With the data we had collected, the students were able to calculate hydraulic conductivity (K) using a simple form of Darcy's Law: Q = -KA (Δh/L). Despite the simplicity of the Darcy tubes, the students' K values were reasonable for the sediment types that we used. Student comments on the Darcy tube exercise were overwhelmingly positive. The Darcy tubes could be used in a subsequent lab period for exploration of more advanced concepts, such as

  16. The Effects of Glucose Therapy Agents-Apple Juice, Orange Juice, and Cola-on Enteral Tube Flow and Patency.

    PubMed

    Steinberg, Daphna J; Montreuil, Jasmine; Santoro, Andrea L; Zettas, Antonia; Lowe, Julia

    2016-06-01

    To develop evidence-based hypoglycemia treatment protocols in patients receiving total enteral nutrition, this study determined the effect on enteral tube flow of glucose therapy agents: apple juice, orange juice, and cola, and it also examined the effects of tube type and feed type with these glucose therapy agents. For this study, 12 gastrostomy tubes (6 polyethylene and 6 silicone) were set at 50 mL/h. Each feeding set was filled with Isosource HN with fibre or Novasource Renal. Each tube was irrigated with 1 glucose therapy agent, providing approximately 20 g of carbohydrate every 4 h. Flow-rate measurements were collected at 2 h intervals. The results showed that the glucose therapy agent choice affected flow rates: apple juice and cola had higher average flow rates than orange juice (P = 0.01). A significant difference was found between tube type and enteral formula: polyethylene tubes had higher average flow rates than silicone tubes (P < 0.0001), and Isosource HN with fibre had higher flow rates than Novasource Renal (P = 0.01). We concluded that apple juice and cola have less tube clogging potential than orange juice, and thus may be considered as primary treatment options for hypoglycemia in enterally fed patients. Polyethylene tubes and Isosource HN with fibre were less likely to clog than silicone tubes and Novasource Renal.

  17. Influence of Acute Jugular Vein Compression on the Cerebral Blood Flow Velocity, Pial Artery Pulsation and Width of Subarachnoid Space in Humans

    PubMed Central

    Frydrychowski, Andrzej F.; Winklewski, Pawel J.; Guminski, Wojciech

    2012-01-01

    Purpose The aim of this study was to assess the effect of acute bilateral jugular vein compression on: (1) pial artery pulsation (cc-TQ); (2) cerebral blood flow velocity (CBFV); (3) peripheral blood pressure; and (4) possible relations between mentioned parameters. Methods Experiments were performed on a group of 32 healthy 19–30 years old male subjects. cc-TQ and the subarachnoid width (sas-TQ) were measured using near-infrared transillumination/backscattering sounding (NIR-T/BSS), CBFV in the left anterior cerebral artery using transcranial Doppler, blood pressure was measured using Finapres, while end-tidal CO2 was measured using medical gas analyser. Bilateral jugular vein compression was achieved with the use of a sphygmomanometer held on the neck of the participant and pumped at the pressure of 40 mmHg, and was performed in the bend-over (BOPT) and swayed to the back (initial) position. Results In the first group (n = 10) during BOPT, sas-TQ and pulse pressure (PP) decreased (−17.6% and −17.9%, respectively) and CBFV increased (+35.0%), while cc-TQ did not change (+1.91%). In the second group, in the initial position (n = 22) cc-TQ and CBFV increased (106.6% and 20.1%, respectively), while sas-TQ and PP decreases were not statistically significant (−15.5% and −9.0%, respectively). End-tidal CO2 remained stable during BOPT and venous compression in both groups. Significant interdependence between changes in cc-TQ and PP after bilateral jugular vein compression in the initial position was found (r = −0.74). Conclusions Acute bilateral jugular venous insufficiency leads to hyperkinetic cerebral circulation characterised by augmented pial artery pulsation and CBFV and direct transmission of PP into the brain microcirculation. The Windkessel effect with impaired jugular outflow and more likely increased intracranial pressure is described. This study clarifies the potential mechanism linking jugular outflow insufficiency with arterial small

  18. Visualization of oscillating flow in a double-inlet pulse tube refrigerator with a diaphragm inserted in a bypass-tube

    NASA Astrophysics Data System (ADS)

    Shiraishi, Masao; Murakami, Masahide

    2012-07-01

    The double-inlet pulse tube refrigerator that has a diaphragm inserted in a bypass-tube, which enabled it to transmit a pressure oscillation whereas to obstruct a DC gas flow, was manufactured and tested. The oscillating flow behavior inside of the refrigerator was studied by using a smoke-wire flow visualization technique. It was found that if the diaphragm was optimized, the performance would be improved more than that of the refrigerator with a bypass valve due to the increase in the P-V work of the gas and the decrease in the convective heat loss caused by a secondary flow.

  19. Numerical study of shock tube flows with homogeneous and heterogeneous condensations in rarefaction wave

    NASA Astrophysics Data System (ADS)

    Nagao, Junji; Matsuo, Shigeru; Setoguchi, Toshiaki; Kim, Heuy Dong

    2010-08-01

    Shock tubes are devices in which the state of a gas is changed suddenly from one uniform state to another by the passage of shock and expansion waves. In the theory of ideal shock tube flow, it is customarily assumed that the unsteady expansion and shock waves generated by diaphragm rupture are a perfectly centered plane wave. However, such waves are generally not centered, or may not even by plane in practice. In the present research, the time-dependent behavior of homogeneous and heterogeneous condensation of moist air in the shock tube is investigated by using a computational fluid dynamics work. Further, the numerical and experimental studies were carried out in order to investigate the effect of the diaphragm rupture process on the flow characteristics of expansion and shock waves generated near the diaphragm.

  20. Thermochemical Nonequilibrium Analysis of Oxygen in Shock Tube Flows

    NASA Astrophysics Data System (ADS)

    Neitzel, Kevin; Kim, Jae Gang; Boyd, Iain D.

    The successful development of hypersonic vehicles requires a detailed knowledge of the flow physics around the vehicle. The physics knowledge and modeling confidence drives the development of the major vehicle flight systems including the thermal protection system and flight control system. Specifically, an understanding of the thermochemical nonequilibrium behavior is crucial for this flight regime. The hypersonic flight regime involves an extremely high level of energy so a small error in the modeling of the energy processes can result in drastic changes in the vehicle design, including prohibitive design requirements. This emphasizes the need for a deep understanding of the underlying flow phenomena and molecular energy transfer processes in order to adequately design a hypersonic vehicle computationally.

  1. Hydrodynamic chromatography using flow of a highly concentrated dextran solution through a coiled tube.

    PubMed

    Miyagawa, Yoichi; Morisada, Shintaro; Ohto, Keisuke; Hidetaka, Kawakita

    2016-08-01

    Separation of colloidal particles in non-Newtonian fluid is important in food engineering. Using hydrodynamic chromatography, colloidal particles and starch granules originating from corn were individually injected into dextran solutions (Mw 2,000,000g/mol) flowing through a coiled tube for efficient size separation. Rheological properties of dextran solutions ranging from 50 to 250g/L were determined, revealing pseudoplastic fluid behavior. Velocity profiles for dextran solution flow in coiled tubes were obtained from rheological power law parameters. Suspensions of colloidal particles of diameters 1.0 and 20μm were individually injected into the dextran flows, demonstrating that dextran solutions at high concentration separated colloidal particles. Starch granules were separated by size using a dextran solution flow (250g/L). Thus, we expect to obtain efficient separation of colloidal particles in foods using highly concentrated dextran solutions. PMID:27112856

  2. Evidence for siphon flows with shocks in solar magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Degenhardt, D.; Solanki, S. K.; Montesinos, B.; Thomas, J. H.

    1993-01-01

    We synthesize profiles of the infrared line Fe I 15648.5 A (g = 3) for a recently developed theoretical model of siphon flows along photospheric magnetic loops. The synthesized line profiles are compared with the observations from which Rueedi et al. (1992) deduced the presence of such flows across the neutral line of an active region plage. This comparison supports the interpretation of Rueedi et al. (1992). It also suggests that the average footpoint separation of the observed loops carrying the siphon flow is 8-15 sec and that the siphon flow experiences a standing tube shock in the downstream leg near the top of the arch.

  3. Influence of the gas-flow Reynolds number on a plasma column in a glass tube

    SciTech Connect

    Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup

    2013-08-15

    Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.

  4. The transfer of heat by self-induced flow in a rotating tube

    SciTech Connect

    Gilham, S. ); Ivey, P.C. . School of Mechanical Engineering); Owen, J.M. . School of Mechanical Engineering)

    1994-04-01

    This paper provides a review of recently published research on self-induced flow and heat transfer in a rotating tube, together with additional theoretical work on heat transfer to the cylindrical wall of the tube. Earlier work has shown that self-induced flow can occur when a tube, with one end open and the other sealed, is rotated about its axis: Fluid flows along the axis toward the sealed end and returns in an annular layer on the cylindrical wall. The flow and heat transfer on the end wall are similar to those associated with the so-called free disk, and measured velocity distributions in the tube and Nusselt numbers for the end wall are in good agreement with those computed from numerical solutions of the Navier-Stokes and energy equations. The Reynolds analogy is used in this paper to provide a correlation for the computed Nusselt numbers for the cylindrical wall, and design correlations are provided to enable the results to be applied to anti-icing systems for the nose bullets of aero-engines.

  5. Flow field for an underexpanded, supersonic nozzle exhausting into an expansive launch tube

    NASA Technical Reports Server (NTRS)

    Morris, R. R.; Bertin, J. J.; Batson, J. L.

    1976-01-01

    Static pressure distributions along the launcher wall and pitot pressure measurements from the annular region between the rocket and the launcher were made as an underexpanded supersonic nozzle exhausted into an expansive launch tube. The flow remained supersonic along the entire length of the launcher for all nozzle locations studied.

  6. Uniformity of Ludwieg tube flows. [temperature variations behind nonsteady expansion wave

    NASA Technical Reports Server (NTRS)

    Russell, D. A.; Knoke, G. S.; Wai, J. C.

    1975-01-01

    Pressure and speed of sound measurements are used to obtain averaged gas properties in a Ludwieg combustion tube in which the gas is burned just prior to use. Absorption of a laser beam in the exit flow is used to check the predicted temperature uniformity. The burning process and the heat transfer to the cold walls are modeled. Interferograms of Ludwieg tube boundary layers are utilized to develop a new semiempirical boundary layer expression referred to as the integral density thickness, which is then applied to a recently developed linearized analysis of the effects of this layer. Pressure-time histories are determined for a wide range of tube flow Mach number and aspect ratio. Viscous and nonviscous effects are considered. It is shown that although the influence of the integral density thickness on the flow can be large, a modified linear theory can be used to estimate the effects for arbitrary tube flow Mach number and values of the aspect ratio that include cases where the boundary layers have merged.

  7. A model of plasma membrane flow and cytosis regulation in growing pollen tubes.

    PubMed

    Chavarría-Krauser, Andrés; Yejie, Du

    2011-09-21

    A model of cytosis regulation in growing pollen tubes is developed and simulations presented. The authors address the question on the minimal assumptions needed to describe the pattern of exocytosis and endocytosis reported recently by experimental biologists. Biological implications of the model are also treated. Concepts of flow and conservation of membrane material are used to pose an equation system, which describes the movement of plasma membrane in the tip of growing pollen tubes. After obtaining the central equations, relations describing the rates of endocytosis and exocytosis are proposed. Two cytosis receptors (for exocytosis and endocytosis), which have different recycling rates and activation times, suffice to describe a stable growing tube. Simulations show a very good spatial separation between endocytosis and exocytosis, in which separation is shown to depend strongly on exocytic vesicle delivery. In accordance to measurements, most vesicles in the clear zone are predicted to be endocytic. Membrane flow is essential to maintain cell polarity, and bi-directional flow seems to be a natural consequence of the proposed mechanism. For the first time, a model addressing plasma membrane flow and cytosis regulation were posed. Therefore, it represents a missing piece in an integrative model of pollen tube growth, in which cell wall mechanics, hydrodynamic fluxes and regulation mechanisms are combined. PMID:21703278

  8. The use of temperature programmable flow tubes for the study of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Khalizov, A.; Sloan, J. J.

    2003-04-01

    In order to understand the response of atmospheric aerosols to changes they encounter in the natural atmosphere, it is usually necessary to observe models of these aerosol systems under carefully controlled laboratory conditions. This is particularly difficult for the condensed phase, for which agglomeration, gas-particle exchange and gravitational settling affect the composition and limit the observation time. Traditionally, studies of this kind have been carried out in large static chambers and flow tubes. While large chambers provide relatively long observations times, they afford the experimenter less direct control over the environment of the particles. Flow tubes, on the other hand provide very precise control of the experimental conditions, but a much shorter contact time. We have used temperature programmable flow tubes for the past decade to study the composition, size and phase changes that occur when aerosols are exposed to variations in the temperature and composition of the surrounding atmosphere. In many cases, our measurements also yield accurate rate constants for the nucleation of solids in liquid droplets. In this presentation, we will illustrate the capabilities of this method using results obtained from a new temperature programmable flow tube recently built in our laboratory.

  9. Ear tube insertion

    MedlinePlus

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  10. How rapidly oscillating collapsible tubes extract energy from a viscous mean flow

    NASA Astrophysics Data System (ADS)

    Heil, Matthias; Waters, Sarah L.

    We present a combined theoretical and computational analysis of three-dimensional unsteady finite-Reynolds-number flows in collapsible tubes whose walls perform prescribed high-frequency oscillations which resemble those typically observed in experiments with a Starling resistor. Following an analysis of the flow fields, we investigate the system's overall energy budget and establish the critical Reynolds number, Recrit, at which the wall begins to extract energy from the flow. We conjecture that Recrit corresponds to the Reynolds number beyond which collapsible tubes are capable of performing sustained self-excited oscillations. Our computations suggest a simple functional relationship between Recrit and the system parameters, and we present a scaling argument to explain this observation. Finally, we demonstrate that, within the framework of the instability mechanism analysed here, self-excited oscillations of collapsible tubes are much more likely to develop from steady-state configurations in which the tube is buckled non-axisymmetrically, rather than from axisymmetric steady states, which is in agreement with experimental observations.

  11. Application of program LAURA to perfect gas shock tube flows: A parametric study

    NASA Technical Reports Server (NTRS)

    Mitterer, K. F.; Mitcheltree, R. A.; Gnoffo, P. A.

    1992-01-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) was originally developed to solve steady-flow problems. The desire to validate the algorithm with shock tube experimental data motivated the development of a time-accurate version of the LAURA code. The current work presents a test of the Algorithm. Computational results are compared with the exact solution for a simple shock tube case. The parameters examined are Courant number, relaxation sweeps, grid spacing, and the inviscid relaxation factor. The results of the study indicate that LAURA is capable of producing accurate solutions when appropriate values are used for each parameter.

  12. Modelling complex draft-tube flows using near-wall turbulence closures

    SciTech Connect

    Ventikos, Y.; Sotiropoulos, F.; Patel, V.C.

    1996-12-31

    This paper presents a finite-volume method for simulating flows through complex hydroturbine draft-tube configurations using near-wall turbulence closures. The method employs the artificial-compressibility pressure-velocity coupling approach in conjunction with multigrid acceleration for fast convergence on very fine grids. Calculations are carried out for a draft tube with two downstream piers on a computational mesh consisting of 1.2x10{sup 6} nodes. Comparisons of the computed results with measurements demonstrate the ability of the method to capture most experimental trends with reasonable accuracy. Calculated three-dimensional particle traces reveal very complex flow features in the vicinity of the piers, including horse-shoe longitudinal vortices and and regions of flow reversal.

  13. Properties of Longitudinal Flux Tube Waves. III; Wave Propagation in Solar and Stellar Wind Flows

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2004-01-01

    We discuss the analytic properties of longitudinal tube waves taking into account ambient wind flows. This is an extension of the studies of Papers I and II, which assumed a mean flow speed of zero and also dealt with a simplified horizontal pressure balance. Applications include the study of longitudinal flux tube waves in stars with significant mass loss and heating and dynamics of plumes in the solar wind. Slow magnetosonic waves, also called longitudinal waves, have been observed in solar plumes and are likely an important source of heating. We show that the inclusion of ambient wind flows considerably alters the limiting shock strength as well as the energy damping length of waves.

  14. Properties of Longitudinal Flux Tube Waves. III; Wave Propagation in Solar and Stellar Wind FLows

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2004-01-01

    We discuss the analytic properties of longitudinal tube waves taking into account ambient wind flows. This is an extension of the studies of Papers I and II, which assumed a mean flow speed of zero and also dealt with a simplified horizontal pressure balance. Applications include the study of longitudinal flux tube waves in stars with significant mass loss and the heating and dynamics of plumes in the solar wind. Slow magnetosonic waves, also called longitudinal waves, have been observed in solar plumes and are likely an important source of heating. We show that the inclusion of ambient wind flows considerably alters the limiting shock strength as well as the energy damping length of the waves.

  15. Pulsating Heat pipe Only for Space (PHOS): results of the REXUS 18 sounding rocket campaign

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Manzoni, M.; Marengo, M.

    2015-11-01

    Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.

  16. PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.

    2015-09-01

    In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.

  17. Visualization of longitudinal vortex flow in an enhanced heat transfer tube

    SciTech Connect

    Li, Xiao-wei; Yan, Huan; Meng, Ji-an; Li, Zhi-xin

    2007-05-15

    Longitudinal vortex flow was visualized in an enlarged DDIR tube (discrete double inclined ribs on the inner surface). The experiments were conducted in a water tunnel using dye injection. Two kinds of ribs with different widths were investigated. The visualizations showed counter rotating longitudinal vortex pairs formed by the discrete double inclined ribs. The vortex intensity increased with increasing Reynolds numbers while the length over which the vortices were observed along the flow direction decreased with increasing Reynolds numbers for Re = 1000-2000. The vortex intensity and vortex flow length were also strongly affected by the rib dimensions. (author)

  18. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (a) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (b) evaluated at ''in-service'' loads at service temperatures and environments. In this 12th quarter of performance, program activities are concluded for Task 2 and continuing for Tasks 3, 4 and

  19. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.

    PubMed

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K

    2012-08-01

    This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 μA and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications.

  20. Transition of oscillatory flow in tubes - An empirical model for application to Stirling engines

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Ibrahim, M.; Kannapareddy, M.; Johnson, T.; Friedman, G.

    1992-01-01

    Attention is given to an empirical model for transition to turbulence in oscillatory flows in straight tubes. Designed after a correlation for transition of a boundary layer on a flat plate, the model yields the laminar flow momentum thickness Reynolds number that must be met before transition to turbulence will occur. The transition point is located by comparing this to the actual momentum thickness Reynolds number. A scheme is proposed for estimating the momentum thickness Reynolds number in terms of the position within the cycle, the maximum value of the diameter Reynolds within the cycle, Re(max), and the dimensionless frequency, Valensi number. Results from an experimental study of oscillatory flow in a tube are employed to develop the model. When the flow is determined to be turbulent, it is proposed that a fully-developed, steady flow friction coefficient be applied. When the flow is laminar, the assumption of fully developed flow cannot be made; thus, a method is suggested for estimating the friction factor.

  1. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray or segregated flow

    NASA Astrophysics Data System (ADS)

    Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis

    2015-11-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').

  2. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes.

    PubMed

    Sasmito, Agus Pulung; Kurnia, Jundika Candra; Mujumdar, Arun Sadashiv

    2011-05-09

    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance.

  3. Characteristics of Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Mann, I. R.; Samara, M.; Michell, R.

    2013-12-01

    We have investigated the spatiotemporal characteristics of pulsating auroral patches observed with an all-sky imager located at Poker Flat, Alaska. Pulsating aurora often covers the entire sky with intermixed large and small-scale patches that vary in intensity or disappear and reappear on different time scales and timings. The broad definition of pulsating aurora covers patches and bands from tens to several tens of km which have a quasi-periodic temporal variation from 1 s to tens of seconds. In this paper we examine >15 patches from different events. We analyze all-sky movies (557.7 nm, 3.31 Hz) with a simple, yet robust, technique that allows us to determine the scale size dependent variability of the >15 individual patches. A spatial 2D Fourier Transform is used to separate the aurora into different horizontal scale sizes, and by correlating each patch for all image separations and available scale sizes smaller than the patch itself, we reveal what scale sizes are pulsating and their variability. The patches are found to be persistent, meaning that we can follow them for typically 5 minutes. The period of the pulsations is often remarkably variable and it seems that only certain scale sizes pulsate (typically the size of the patch). The patches drift with the background ExB plasma drift indicating that the magnetospheric source mechanism drifts with the field lines.

  4. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  5. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  6. Tandem GM Type-Pulse Tube Refrigerator with Novel Rotary Valve and Bypass Valve Mechanism

    NASA Astrophysics Data System (ADS)

    Jung, J.; Jeong, S.; Kwon, Y.; Sohn, M.

    2006-04-01

    A single-stage tandem pulse tube refrigerator has been fabricated, which is driven by two pulsating pressures of opposite phase. The refrigerator is designed as the first stage machine of a 4 K pulse tube refrigerator using a recuperator as the second stage regenerator. In this tandem configuration, two pressure pulsations are generated by a single GM-cryocooler compressor. Two identical pulse tube refrigerators are operated with a novel rotary valve that can supply high and low pressures simultaneously. The pressure measurement at the regenerator inlets of the pulse tube refrigerators confirmed the proper pressure wave of two pulsating pressures in opposite phase. Detrimental DC-flow characteristic of double-inlet GM-type pulse tube refrigerator has been suppressed by the newly designed bypass valve mechanism. This new bypass valve set has one more extra degree of freedom than usual ones to eliminate DC-flow easily. This paper describes a novel feature of the bypass valve set and its performance in the experiment. The two twin pulse tube refrigerators in a tandem mode respectively reached 35 K at no load.

  7. Investigation of Flow Nonuniformities in a Large 50 K Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Lewis, M. A.; Taylor, R. P.; Radebaugh, R.; Garaway, I.; Bradley, P. E.

    2010-04-01

    A single-stage pulse tube cryocooler was optimized to provide 50 W of net refrigeration power at 50 K when driven by a pressure oscillator that can produce up to 2.8 kW of acoustic power at 60 Hz. The cryocooler was designed with the ability to provide rapid cooldown. The rapid cooling technique makes use of a resonant phenomenon in the inertance tube and reservoir system to decrease the flow impedance and thereby increase the acoustic power and refrigeration power in the system when the cold end is near room temperature. Initial experimental data produced no-load temperatures of about 100 K and showed large azimuthal non-uniformities in temperature profiles around the center plane of both the regenerator and the pulse tube. Inadequate diffusion bonding in the initial aftercooler resulted in non-uniform temperatures in the aftercooler and regenerator warm end where temperatures were as high as 350 K. Jetting into the pulse tube through both the warm and cold heat exchangers also contributed to the poor performance. This paper discusses the performance after an improved aftercooler and pulse tube modifications are added. The steps taken to eliminate the non-uniformities and their effect on the cooler performance are discussed.

  8. Investigation of the flow field inside flat-plate collector tube using PIV technique

    SciTech Connect

    Sookdeo, Steven; Siddiqui, Kamran

    2010-06-15

    The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)

  9. A numerical investigation of the 3-D flow in shell and tube heat exchangers

    SciTech Connect

    Prithiviraj, M.; Andrews, M.J.

    1996-12-31

    A three-dimensional computer program for simulation of the flow and heat transfer inside Shell and Tube Heat Exchangers has been developed. The simulation of shell and tube heat exchangers is based on a distributed resistance method that uses a modified two equation {kappa}-{epsilon} turbulence model along with non-equilibrium wall functions. Volume porosities and non-homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Sub-models are described for baffle-shell and baffle-tube leakage, shellside and tubeside heat transfer, with geometry generators for tubes, baffles, and nozzle inlets and outlets. The sub-models in HEATX use parameters that have not been altered from their published values. Computed heat transfer and pressure drop are compared with experimental data from the Delaware project (Bell, 1963). Numerically computed pressure drops are also compared for different baffle cuts, and different number of baffles with the experiments of Halle et al. (1984) which were performed in an industrial sized heat exchanger at Argonne National Labs. Discussion of the results is given with particular reference to global and local properties such as pressure drop, temperature variation, and heat transfer coefficients. Good agreement is obtained between the experiments and HEATX computations for the shellside pressure drop and outlet temperatures for the shellside and tubeside streams.

  10. The Flow and Pressure Relationships in Different Tubes Commonly Used for Semi-occluded Vocal Tract Exercises.

    PubMed

    Amarante Andrade, Pedro; Wistbacka, Greta; Larsson, Hans; Södersten, Maria; Hammarberg, Britta; Simberg, Susanna; Švec, Jan G; Granqvist, Svante

    2016-01-01

    This experimental study investigated the back pressure (P(back)) versus flow (U) relationship for 10 different tubes commonly used for semi-occluded vocal tract exercises, that is, eight straws of different lengths and diameters, a resonance tube, and a silicone tube similar to a Lax Vox tube. All tubes were assessed with the free end in air. The resonance tube and silicone tube were further assessed with the free end under water at the depths from 1 to 7 cm in steps of 1 cm. The results showed that relative changes in the diameter of straws affect P(back) considerably more compared with the same amount of relative change in length. Additionally, once tubes are submerged into water, P(back) needs to overcome the pressure generated by the water depth before flow can start. Under this condition, only a small increase in P(back) was observed as the flow was increased. Therefore, the wider tubes submerged into water produced an almost constant P(back) determined by the water depth, whereas the thinner straws in air produced relatively large changes to P(back) as flow was changed. These differences may be taken advantage of when customizing exercises for different users and diagnoses and optimizing the therapy outcome.

  11. Numerical analysis of the steam flow field in shell and tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Bartoszewicz, Jarosław; Bogusławski, Leon

    2016-06-01

    In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ɛ, RNG k-ɛ, Wilcox k-ω, Chen-Kim k-ɛ, and Lam-Bremhorst k-ɛ. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.

  12. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each of the

  13. Experimental perfect-gas study of expansion-tube flow characteristics

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Miller, C. G., III

    1978-01-01

    Results of an experimental investigation of expansion tube flow characteristics performed with helium test gas and acceleration gas are presented. The use of helium, eliminates complex real gas chemistry in the comparison of measured and predicted flow quantities. The driver gas was unheated helium at a nominal pressure of 33 MN sq m. The quiescent test gas pressure and quiescent acceleration gas pressure were varied from 0.7 to 50 kN/sq m and from 2.5 to 53 N/sq m, respectively. The effects of tube-wall boundary layer growth and finite secondary diaphragm opening time were examined through the variation of the quiescent gas pressures and secondary diaphragm thickness. Optimum operating conditions for helium test gas were also defined.

  14. A quiet-flow Ludwieg tube for experimental study of high speed boundary layer transition

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1992-01-01

    A new low Reynolds number quiet-flow Ludwieg tube facility, now under construction, is briefly described, and its advantages outlined. The facility is characterized by good optical access and may be particularly useful for the development of optical instrumentation for the generation and measurement of instability waves. Initial research plans also include work on hot-wire instrumentation, wave generation techniques, roughness and receptivity effects, and suction distribution effects.

  15. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    SciTech Connect

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  16. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2005-06-27

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  17. Investigation of coherent structures generated by acoustic tube in turbulent flow separation control

    NASA Astrophysics Data System (ADS)

    Ma, Xingyu; Geisler, Reinhard; Agocs, Janos; Schröder, Andreas

    2015-02-01

    An acoustic tube was designed in order to control the turbulent flow separation downstream of a backward-facing step. The Reynolds number based on the free-stream velocity and the step height was Re h = 2.0 × 104. As an active flow control device, the acoustic tube generated periodic pressure perturbations at a frequency of f a = 100 Hz, which was close to the most amplified frequency of the shedding instability of the turbulent shear layer. Spanwise vortices rolled up due to the perturbations. 2D-2C particle image velocimetry was used to measure separated shear layer and the reattachment area downstream of the BFS. The flow control results show that the acoustic tube can suppress recirculation regions behind the step and reduce the reattachment length by 43.7 %. The roll-up and pairing processes of the vortices lead to an increase in the total Reynolds shear stress. The coherent structures are extracted by proper orthogonal decomposition and represented by two pairs of modes, of which the coherence is analyzed by the corresponding coefficients. Both the primary and secondary series of vortices are reconstructed as traveling waves with the fundamental frequency f a and the overtone frequency 2 f a, respectively.

  18. On the use of the periodicity condition in cross-flow tube

    NASA Astrophysics Data System (ADS)

    Beladjine, Boumedienne; Aounallah, Mohammed; Belkadi, Mustapha; Aadjlout, Lahouari; Imine, Omar

    2015-05-01

    This paper presents the results of measurements and numerical predictions of turbulent cross-flow through an in-line 7×7 bundle configuration with a constant transverse and longitudinal pitch-to-diameter ratio of 1.44. The experiments are conducted to measure the pressure around tubes, using DPS differential pressure scanner with air flow, in square channel at a Reynolds number of 35000 based on the gap velocity and the tube diameter. The commercial ANSYS FLUENT is used to solve the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations. The primary aim of the present study is to search for a turbulent model that could serve as an engineering design tool at a relatively low computational cost. The performances of the Spalart-Allmaras, the RNG k-ɛ, the Shear Stress Transport k-ω and the second moment closure RSM models are evaluated by comparing their simulation results against experimental data. The second objective is to verify the validity of the periodicity assumption taken account in the most previous numerical works by considering the filled bundle geometry. The CFD results show that the Spalart-Allmaras model on the fine mesh are comparable to the experiments while the periodicity statement did not produce consistently the flow behavior in the 7×7 tube bundle configuration.

  19. Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube

    NASA Astrophysics Data System (ADS)

    Halpern, David; Grotberg, James B.

    2003-10-01

    In this paper, the stability of core annular flows consisting of two immiscible fluids in a cylindrical tube with circular cross-section is examined. Such flows are important in a wide range of industrial and biomedical applications. For example, in secondary oil recovery, water is pumped into the well to displace the remaining oil. It is also of relevance in the lung, where a thin liquid film coats the inner surface of the small airways of the lungs. In both cases, the flow is influenced by a surface-tension instability, which may induce the breakup of the core fluid into short plugs, reducing the efficiency of the oil recovery, or blocking the passage of air in the lung thus inducing airway closure. We consider the stability of a thin film coating the inner surface of a rigid cylindrical tube with the less viscous fluid in the core. For thick enough films, the Rayleigh instability forms a liquid bulge that can grow to eventually create a plug blocking the tube. The analysis explores the effect of an oscillatory core flow on the interfacial dynamics and particularly the nonlinear stabilization of the bulge. The oscillatory core flow exerts tangential and normal stresses on the interface between the two fluids that are simplified by uncoupling the core and film analyses in the thin-film high-frequency limit of the governing equations. Lubrication theory is used to derive a nonlinear evolution equation for the position of the air liquid interface which includes the effects of the core flow. It is shown that the core flow can prevent plug formation of the more viscous film layer by nonlinear saturation of the capillary instability. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stoke and shear turn around. To be successful, the leading film thickness ahead of the bulge must be smaller than the

  20. A quiet flow Ludwieg tube for study of transition in compressible boundary layers: Design and feasibility

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1990-01-01

    Since Ludwieg tubes have been around for many years, and NASA has already established the feasibility of creating quiet-flow wind tunnels, the major question addressed was the cost of the proposed facility. Cost estimates were obtained for major system components, and new designs which allowed fabrication at lower cost were developed. A large fraction of the facility cost comes from the fabrication of the highly polished quiet-flow supersonic nozzle. Methods for the design of this nozzle were studied at length in an attempt to find an effective but less expensive design. Progress was sufficient to show that a quality facility can be fabricated at a reasonable cost.

  1. Numerical simulation of transient inviscid gas flows in a shock tube

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.; Lombard, C. K.; Nagaraj, N.; Bershader, D.

    1985-01-01

    Time-dependent upwind high resolution schemes for solving the Euler equations were developed and applied to simulate 1-D and 2-D transient inviscid gas flows in a shock tube. Using obstacles of different geometries, a series of calculations were carried out to investigate the transient complex shock-wave diffraction phenomena. Shock-wave and objects interactions with shock Mach-number Ms ranging from 2 to 20 were considered. Comparison with analytical and available experimental results indicate good agreement. Display of detailed flow structures including multiple Mach shocks, slip surfaces, and vortex are also given.

  2. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  3. Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect

    SciTech Connect

    Kalashnik, M. V. Visheratin, K. N.

    2008-04-15

    A theoretical analysis of cyclostrophic adjustment is presented; i.e., adjustment to balance between pressure gradient and centrifugal force in axisymmetric flow of an inviscid gas is examined. The solution to the problem is represented as the sum of a time-independent (balanced) and time-dependent (wave) components. It is shown that the wave component of the flow in an unbounded domain decays with time, and the corresponding solution reduces to the balanced component. In a bounded domain, the balanced flow component exists against the background of undamped acoustic waves. It is found that the balanced flow is thermally stratified at Mach numbers close to unity, with a substantial decrease in gas temperature (to between -50 and -100 deg. C) in the axial region. This finding, combined with the results of special experiments, is used to explain the Ranque-Hilsch vortex tube effect.

  4. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low.

  5. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Two phase and gaseous choked flow data for fluid nitrogen were obtained for a test section which was a long constant area duct of 16 200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two-phase homogeneous equilibrium choking flow model which includes wall fraction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data reasonably well, but about 15 percent low.

  6. Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect

    NASA Astrophysics Data System (ADS)

    Kalashnik, M. V.; Visheratin, K. N.

    2008-04-01

    A theoretical analysis of cyclostrophic adjustment is presented; i.e., adjustment to balance between pressure gradient and centrifugal force in axisymmetric flow of an inviscid gas is examined. The solution to the problem is represented as the sum of a time-independent (balanced) and time-dependent (wave) components. It is shown that the wave component of the flow in an unbounded domain decays with time, and the corresponding solution reduces to the balanced component. In a bounded domain, the balanced flow component exists against the background of undamped acoustic waves. It is found that the balanced flow is thermally stratified at Mach numbers close to unity, with a substantial decrease in gas temperature (to between -50 and -100°C) in the axial region. This finding, combined with the results of special experiments, is used to explain the Ranque-Hilsch vortex tube effect.

  7. Design and Operation of a Cryogenic Nitrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Diego Fonseca, Luis; Miller, Franklin; Pfotenhauer, John

    2015-12-01

    We report the design, experimental setup and successful test results using an innovative passive cooling system called a “Pulsating Heat Pipe” (PHP) operating at temperatures ranging from 77 K to 80 K and using nitrogen as the working fluid. PHPs, which transfer heat by two phase flow mechanisms through a closed loop tubing have the advantage that no electrical pumps are needed to drive the fluid flow. In addition, PHPs have an advantage over copper straps and thermal conductors since they are lighter in weight, exhibit lower temperature gradients and have higher heat transfer rates. PHPs consist of an evaporator section, thermally anchored to a solid, where heat is received at the saturation temperature where the liquid portion of the two-phase flow evaporates, and a condenser where heat is rejected at the saturation temperature where the vapor is condensed. The condenser section in our experiment has been thermally interfaced to a CT cryocooler from SunPower that has a cooling capacity of 10 W at 77 K. Alternating regions of liquid slugs and small vapor plugs fill the capillary tubing, with the vapor regions contracting in the condenser section and expanding in the evaporator section due to an electric heater that will generate heat loads up to 10 W. This volumetric expansion and contraction provides the oscillatory flow of the fluid throughout the capillary tubing thereby transferring heat from one end to the other. The thermal performance and temperature characteristics of the PHP will be correlated as a function of average condenser temperature, PHP fill liquid ratio, and evaporator heat load. The experimental data show that the heat transfer between the evaporator and condenser sections can produce an effective thermal conductivity up to 35000 W/m-K at a 3.5 W heat load.

  8. Convective heat transfer in foams under laminar flow in pipes and tube bundles

    PubMed Central

    Attia, Joseph A.; McKinley, Ian M.; Moreno-Magana, David; Pilon, Laurent

    2014-01-01

    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux. PMID:25552745

  9. Combustor with two stage primary fuel tube with concentric members and flow regulating

    DOEpatents

    Parker, David Marchant; Whidden, Graydon Lane; Zolyomi, Wendel

    1999-01-01

    A combustor for a gas turbine having a centrally located fuel nozzle and inner, middle and outer concentric cylindrical liners, the inner liner enclosing a primary combustion zone. The combustor has an air inlet that forms two passages for pre-mixing primary fuel and air to be supplied to the primary combustion zone. Each of the pre-mixing passages has a circumferential array of swirl vanes. A plurality of primary fuel tube assemblies extend through both pre-mixing passages, with each primary fuel tube assembly located between a pair of swirl vanes. Each primary fuel tube assembly is comprised of two tubular members. The first member supplies fuel to the first pre-mixing passage, while the second member, which extends through the first member, supplies fuel to the second pre-mixing passage. An annular fuel manifold is divided into first and second chambers by a circumferentially extending baffle. The proximal end of the first member is attached to the manifold itself while the proximal end of the second member is attached to the baffle. The distal end of the first member is attached directly to the second member at around its mid-point. The inlets of the first and second members are in flow communication with the first and second manifold chambers, respectively. Control valves separately regulate the flow of fuel to the two chambers and, therefore, to the two members of the fuel tube assemblies, thereby allowing the flow of fuel to the first and second pre-mixing passages to be separately controlled.

  10. Numerical study of chemical reactions in a surface microdischarge tube with mist flow based on experiment

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Nishiyama, H.

    2014-03-01

    Recently, a water treatment method of spraying solution into a discharge region has been developed and shows high energy efficiency. In this study, a simulation model of a water treatment method using a surface microdischarge (SMD) tube with mist flow is proposed for further understanding the detailed chemical reactions. Our model has three phases (plasma, gas and liquid) and three simulation steps. The carrier gas is humid air including 2% or 3% water vapour. The chemical species diffusion characteristics in the SMD tube and the concentrations in a droplet are clarified in a wide pH interval. The simulation results show that the chemical species generated on the SMD tube inner wall are diffused to the central axis and dissolved into fine droplets. Especially, OH radicals dissolve into droplets a few mm away from the SMD tube wall because of acidification of the droplets. Furthermore, the hydrogen peroxide density, which is the most important indicator of a radical reaction in water, is influenced by the initial solution pH. This pH dependence results from ozone self-decomposition in water.

  11. Le couplage pulsation-convection.

    NASA Astrophysics Data System (ADS)

    Poyet, J.-P.

    Contents: Quelques problèmes Boussinesq bien definis. Les théories de couplage pulsation radiale-convection. Quelques pas dans le domaine du couplage des pulsations non radiales avec la convection. Conclusion.

  12. Stellar Pulsation: an Overview

    NASA Astrophysics Data System (ADS)

    Kurtz, D. W.

    2006-04-01

    Twenty-five hundred years ago the Pythagorean Brotherhood invented the idea of the Music of the Spheres. That idea languished in scientific thought from the time of Kepler 400 years ago, until the 1970s when real sounds were found and recognised in the sun and stars. Stars pulsate both with sound waves in pressure modes and in gravity modes with buoyancy as the restoring force. Those pulsations allow us literally to see inside the stars to know their interiors. Oscillations in 1-D and 2-D are introduced here, leading to 3-D descriptions of the changing shapes of pulsating star. Some properties of pressure modes and gravity modes are explained, and a simple explanation of asteroseismology is given. Some selected cases illustrate amazing discoveries from our new ability to see inside the stars.

  13. Stellar pulsation: an overview

    NASA Astrophysics Data System (ADS)

    Kurtz, D. W.

    2006-01-01

    Twenty-five hundred years ago the Pythagorean Brotherhood invented the idea of the Music of the Spheres. That idea languished in scientific thought from the time of Kepler 400 years ago, until the 1970s when real sounds were found and recognised in the sun and stars. Stars pulsate both with sound waves in pressure modes and in gravity modes with buoyancy as the restoring force. Those pulsations allow us literally to see inside the stars to know their interiors. Oscillations in 1-D and 2-D are introduced here, leading to 3-D descriptions of the changing shapes of pulsating star. Some properties of pressure modes and gravity modes are explained, and a simple explanation of asteroseismology is given. Some selected cases illustrate amazing discoveries from our new ability to see inside the stars.

  14. The development of asymmetry for oscillatory flow within a tube containing sharp edge periodic baffles

    NASA Astrophysics Data System (ADS)

    Zheng, Mingzhi; Li, Jie; Mackley, M. R.; Tao, Jianjun

    2007-11-01

    This paper investigates the evolution of asymmetric patterns for oscillatory flow in a baffled tube. A numerical simulation for three-dimensional flows in an axisymmetric geometry was developed and compared with experimental results obtained using particle image velocimetry (PIV). Sharp edged baffles were used for both numerical simulations and experiments. From the numerical simulation, a stability map of the flow symmetry was obtained as a function of Reynold-Strouhal numbers. The simulations show that for all Strouhal numbers, the flow was axisymmetric at Reynolds numbers less than 100 and asymmetric at Reynolds numbers larger than 225. The flow was less stable to asymmetric disturbances at small or large Strouhal numbers when compared to St =1.0. In particular, the flow in the region St <0.5 and Re >100 was asymmetric. Two mechanisms for vortex instability transition into three dimensions has been identified. At small Strouhal numbers, the primary mechanism is a shear (Kelvin-Helmholtz) instability. At larger Strouhal numbers, the axisymmetry of the flow is broken because of the collision of travelling eddies that have been shed from opposite baffles. The numerical results are in general in agreement quantitatively with the experimental observations and both experiment and simulation assist in understanding the development of unsteadiness in periodic reversing flows.

  15. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    SciTech Connect

    Yuann, R Y; Schrock, V E; Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  16. Condensation of Forced Convection Two-Phase Flow in a Miniature Tube

    NASA Technical Reports Server (NTRS)

    Begg, E.; Faghri, A.; Krustalev, D.

    1999-01-01

    A physical/mathematical model of annular film condensation at the inlet of a miniature tube has been developed. In the model, the liquid flow is coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and leads to the conclusion that there is complete condensation at a certain distance from the condenser inlet. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads and that this is a special case of a more general condensation regime with two-phase bubbly flow downstream of the initial annular film condensation region. Observations from the flow visualization experiment confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in a small diameter (3.25 mm) circular tube condenser.

  17. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  18. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2005-11-23

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in crossrolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to

  19. Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube

    SciTech Connect

    Aroonrat, Kanit; Wongwises, Somchai

    2011-01-15

    Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

  20. Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-10-01

    An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.

  1. Mixed convection laminar flow and heat transfer of liquids in horizontal internally finned tubes

    SciTech Connect

    Shome, B.

    1998-01-01

    Energy and material savings, as well as economic incentives, have led to concentrated efforts over the past several decades in the field of heat transfer enhancement to produce more efficient and compact heat exchangers. Internally finned tubes are widely used for heat transfer enhancement, particularly in chemical process and petroleum industries. A finned tube heat exchanger with optimum geometry could offer 35--40% increase in heat duty for equal pumping power and size over a smooth tube heat exchanger or a comparable decrease in the heat exchanger size for a given heat duty. Developing mixed convection flow in internally finned tubes with variable viscosity was numerically investigated for a fin geometry range of 8 {le} N {le} 24, 0.1 {le} H {le} 0.3 and an operating condition range of 50 {le} Pr{sub in} {le} 1,250, 0 {le} Ra{sub in} {le} 10{sup 7}, and 0 {le} q{sub w}d/k{sub in} {le} 2,000. The numerical model was validated by comparison with existing numerical and experimental data. Internal finning was found to produce a complex two-cell, buoyancy-induced vortex structure. The results show that coring (retarded velocity in the interfin region) leads to poor heat transfer performance of tubes with large numbers of fins or with tall fins. The overall results indicated that large enhancement in the heat transfer can be obtained in the entrance region. Furthermore, variable viscosity effects are seen to have a pronounced effect on the friction factor and Nusselt number predictions.

  2. The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water

    NASA Astrophysics Data System (ADS)

    Desai, Sandeep Rangrao; Pavitran, Sampat

    2016-07-01

    Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited

  3. KELVIN-HELMHOLTZ INSTABILITY IN CORONAL MAGNETIC FLUX TUBES DUE TO AZIMUTHAL SHEAR FLOWS

    SciTech Connect

    Soler, R.; Terradas, J.; Oliver, R.; Ballester, J. L.; Goossens, M.

    2010-04-01

    Transverse oscillations of coronal loops are often observed and have been theoretically interpreted as kink magnetohydrodynamic (MHD) modes. Numerical simulations by Terradas et al. suggest that shear flows generated at the loop boundary during kink oscillations could give rise to a Kelvin-Helmholtz instability (KHI). Here, we investigate the linear stage of the KHI in a cylindrical magnetic flux tube in the presence of azimuthal shear motions. We consider the basic, linearized MHD equations in the beta = 0 approximation and apply them to a straight and homogeneous cylindrical flux tube model embedded in a coronal environment. Azimuthal shear flows with a sharp jump of the velocity at the cylinder boundary are included in the model. We obtain an analytical expression for the dispersion relation of the unstable MHD modes supported by the configuration, and compute analytical approximations of the critical velocity shear and the KHI growth rate in the thin tube limit. A parametric study of the KHI growth rates is performed by numerically solving the full dispersion relation. We find that fluting-like modes can develop a KHI in timescales comparable to the period of kink oscillations of the flux tube. The KHI growth rates increase with the value of the azimuthal wavenumber and decrease with the longitudinal wavenumber. However, the presence of a small azimuthal component of the magnetic field can suppress the KHI. Azimuthal motions related to kink oscillations of untwisted coronal loops may trigger a KHI, but this phenomenon has not been observed to date. We propose that the azimuthal component of the magnetic field is responsible for suppressing the KHI in a stable coronal loop. The required twist is small enough to prevent the development of the pinch instability.

  4. Performance model of metallic concentric tube recuperator with counter flow arrangement

    NASA Astrophysics Data System (ADS)

    Sharma, Harshdeep; Kumar, Anoop; Goel, Varun

    2010-03-01

    A performance model for counter flow arrangement in concentric tube recuperator that can be used to utilize the waste heat in the temperature range of 900-1,400°C is presented. The arrangement consists of metallic tubular inner and outer concentric shell with a small annular gap between two concentric shells. Flue gases pass through the inner shell while air passes through the annular gap in the reverse direction (counter flow arrangement). The height of the recuperator is divided into elements and an energy balance is performed on each elemental height. Results give necessary information about surface, gas and air temperature distribution, and the influence of operating conditions on recuperator performance. The recuperative effectiveness is found to be increased with increasing inlet gas temperature and decreased with increasing fuel flow rate. The present model accounts for all heat transfer processes pertinent to a counterflow radiation recuperator and provide a valuable tool for performance considerations.

  5. Enhancement of critical heat flux in tubes using staged tangential flow injection: (Progress report)

    SciTech Connect

    Dhir, V.K.

    1987-01-01

    Experimental studies of the enhancement in single and two phase heat transfer from tubes subjected to tangential flow injection have been continuing. Investigations using water as the test liquid have been focused on: single phase heat transfer coefficients; two phase heat transfer coefficients under subcooled boiling conditions; subcooled critical heat fluxes; and modeling of the enhancement under swirl flow conditions. With tangential injection up to four fold increase in the average heat transfer coefficient has been observed. During subcooled boiling the enhancement is relatively small. However swirl induced centripetal force increases vapor escape velocity and as a result higher critical heat fluxes can be accommodated. In the range of flow parameters studied up to 40% enhancement in critical heat flux has been observed with single stage injection. This enhancement is slightly less than that obtained with Freon-113. The mechanistic reasons for this observation are currently being investigated.

  6. Benefit of pulsation in soft corals.

    PubMed

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-05-28

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral-water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral's photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral's resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis-respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes.

  7. Benefit of pulsation in soft corals

    PubMed Central

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-01-01

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral–water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral’s photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral’s resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis–respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes. PMID:23610420

  8. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  9. New pulsating casing collar to improve cementing quality

    SciTech Connect

    Chen, P.; He, K.; Wu, J.

    1998-12-31

    This paper presents the design and test results of a new pulsating casing collar which improves cementing quality. The new pulsating casing collar (PCC) is designed according to the Helmholtz oscillator to generate a pulsating jet flow by self-excitation in the cementing process. By placing this new pulsating casing collar at the bottom of casing string, the generated pulsating jet flow transmits vibrating pressure waves up through the annulus and helps remove drilling mud in the annulus. It can therefore improve cementing quality, especially when eccentric annulus exists due to casing eccentricity where the mud is difficult to remove. The new pulsating casing collar consists of a top nozzle, a resonant chamber, and a bottom nozzle. It can be manufactured easily and is easy to use in the field. It has been tested in Jianghan oil-field, P.R. China. The field-test results support the theoretical analysis and laboratory test, and the cementing quality is shown greatly improved by using the new pulsating casing collar.

  10. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    PubMed

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.

  11. Flow-establishment times for blunt bodies in an expansion tube

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Moore, J. A.

    1975-01-01

    Flow establishment results are presented as obtained from shock standoff distance, pressure, and heat transfer measurements in the Langley expansion tube. The models tested were flat-faced cylinders with varying radius and a sphere with a constant radius, and they were positioned at the acceleration section exit and tested in the open jet at zero angle of attack. The experimental results were obtained as spinoff from various studies using helium, air, and CO2 test gases at freestream velocities in the range 5-7 km/sec. Time histories of shock detachment distance illustrate that the shock formation about the smaller-radii flat-faced cylinders and the sphere is symmetrical, whereas a complex, asymmetric formation is observed for the larger-radii cylinders. Flow is shown to establish more readily about the sphere than a flat-faced cylinder of the same diameter. A quasi-steady flow exists about relatively large blunt models during two-thirds of the approximate 250-microsec expansion tube test period.

  12. The Numerical Simulation of Liquid-Vapor Stratified Flow in Horizontal Metal-Foam Tubes.

    PubMed

    Wang, Jingxuan; Wang, Yueshe; Chen, Zhengwei; Chen, Kaituo; Li, Bing

    2015-04-01

    In this paper, a boiling stratified flow model in a metal-foam tube is proposed. First, based on Branuer non-equilibrium gas-liquid interface model, a force balance on the gas-liquid interface in metal-foam is calculated. The shape of the interface of upper gas phase and lower liquid phase in metal foam tube is obtained. As for the lower liquid phase, the energy conservation equations of liquid and metal foam are formulated, which account for porosity and fiber diameter of foam on the basis of non-local thermal equilibrium model (NTEM), respectively. Therefore, a profile of temperature difference between liquid and metal foam can be obtained. For the upper gas phase, an empirical correlation developed by other researchers is utilized to obtain temperature difference between gas phase and solid wall. In addition, the variation of the Reynolds number with increasing mass quality along the flow direction is acquired. Ultimately, an average circumference heat transfer coefficient is calculated. The results of circumference heat transfer coefficient agree well with available experimental data, showing the prediction of the proposed stratified flow model is feasible. The reason resulting in discrepancies between the prediction and experiment data is also illustrated. PMID:26353555

  13. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    SciTech Connect

    Bianchi, J.C.

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen's work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille's solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  14. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    SciTech Connect

    Bianchi, J.C.

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen`s work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille`s solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  15. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    PubMed

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids. PMID:26593731

  16. Discharge flow tube with LIF and mass spectrometry detection. A method to study atmospherically important reactions

    NASA Astrophysics Data System (ADS)

    Cabañas, B.; Baeza, M. T.; Martín, P.; Salgado, S.; Villanueva, F.; Monedero, E.; Martínez, E.

    The Atmospheric Chemistry is determined mainly by some degradation processes, such as photolysis or oxidation reactions. In the last case, three speceies play a key role in atmospheric processes: nitrate radical (NO3), hydroxil radical (OH) and ozone (O3). In this way, the most of organic compounds emitted to the Atmosphere are chemically removed by day-time reaction with OH and by reaction with NO3 radical at night-time [1]. The experimental techniques used in order to study atmospheric processes, characterised y their fastness, could be classified in absolute and relative ones [2]. Among absolute techniques flow tube is one of the most used in the study of NO3 reactions. The discharge flow system consists of a tube connected to a pump, through which reactant gases are introduced using a movable injector working in general at pressure near to one torr. The nitrate radial generated by the reaction between flourine atoms and nitric acid is monitoring by laser induced fluorescence (L.I.F.), exciting the (0-0) 2Egets2A'2 transition pumping with λ=662 nm radiation from a dye laser. The products generated in the studied reactions are detected and identified by a mass spectrometer with electronic ionisation. Up to now, in this laboratory the reactions of the nitrate radical with different atmospheric pollutants: alquens, terpens, aldehydes and heterocyclic compounds have been studied in the system described below. However, both laser induced fluorescence spectroscopy and flow tube are techniques have been shown useful in astrophysical studies [3,4,5].

  17. Influence of tube-entrance configuration on average heat-transfer coefficients and friction factors for air flowing in an Inconel tube

    NASA Technical Reports Server (NTRS)

    Lowdermilk, Warren H; Grele, Milton D

    1950-01-01

    A heat-transfer investigation was conducted with air flowing through an electrically heated Inconel tube having either a long-approach or a right-angle-edge entrance, an inside diameter of 0.402 inch, and a length of 24 inches over a range of Reynolds numbers up to 375,000 and average inside-tube-wall temperatures up to 2000 degrees R. Good correlation of heat-transfer data was obtained for both entrances, which substantiates work previously reported. A fair correlation of friction data was obtained for both entrances. The entrance configuration had little effect on the average heat-transfer and friction coefficients.

  18. Experimental and numerical investigation of unsteady behavior of cavitating vortices in draft tube of low specific speed Francis turbine

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Tani, K.; Okamoto, N.

    2014-03-01

    At both partial and full load of Francis turbines, the unsteady behavior of cavitating draft tube vortices occurs and leads to undesirable matters such as power house vibration, noise and power swing in some cases. This paper presents the investigation of the interaction between the flow pattern at runner outlet and the unsteady behavior of cavitating vortices in draft tube with experimental and numerical approaches. On the experimental research, the pressure pulsation in the draft tube is measured and the unsteady behavior of cavitating vortices is taken pictures with a high speed camera in the model test. On the numerical research, by Computational Fluid Dynamics (CFD) adopting a two-phase unsteady analysis, the analysis domain from the guide vane to the draft tube is carried out for investigating the interaction between the runner outlet flow and the vortex pattern. The pressure pulsation at the upper draft tube and the unsteady behavior of cavitating vortices obtained from CFD results are similar to those obtained in the model test. Detailed analysis of CFD results at overload indicates the repeat of expansion and contraction of cavitating vortices, which were shaped helical vortices with opposite direction of runner rotation, and the corresponding flow pattern in every time step of the pressure pulsations.

  19. Dual tube, counter-flow heat exchange for turkey barns. First quarterly report

    SciTech Connect

    Not Available

    1982-12-01

    A prototype of the dual tube, counter-flow heat exchanger for turkey barns is presently built and installed in a turkey barn at Molly Creek Turkey Farm, Swanville, Minnesota. Phase 1 of the project selecting cooperator barn, and taking survey information, is now complete. Drawing existing barn for the design, is now complete; building test model is now complete; and building of prorotype is almost completed. The prototype is now ready for final items, testing and monitoring equipment installed, and to actually run under working conditions.

  20. Experimental investigation of forced convective boiling flow instabilities in horizontal helically coiled tubes

    NASA Astrophysics Data System (ADS)

    Guo, L. J.; Feng, Z. P.; Chen, X. J.; Thomas, N. H.

    1996-07-01

    An experimental investigation is described for the characteristics of convective boiling flow instabilities in horizontally helically coiled tubes using a steam-water two-phase closed circulation test loop at pressure from 0.5 MPa to 3.5 MPa. Three kinds of oscillation are reported: density waves; pressure drop excursions; thermal fluctuations. We describe their dependence on main system parameters such as system pressure, mass flowrate, inlet subcooling, compressible volume and heat flux. Utilising the experimental data together with conservation constraints, a dimensionless correlation is proposed for the occurrence of density waves.

  1. Theoretical research of helium pulsating heat pipe under steady state conditions

    NASA Astrophysics Data System (ADS)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  2. Levitating spherical particle in a slightly tapered tube at low Reynolds numbers: application to the low-flow rate rotameters.

    PubMed

    Champmartin, S; Ambari, A; Chhabra, R P

    2012-12-01

    In this study, a theoretical framework is developed to predict the equilibrium conditions of a non-neutrally buoyant sphere placed in a vertical conical tube as encountered in liquid rotameters. The analysis presented herein is applicable for a sphere heavier than the surrounding fluid, situated on the axis of a slightly tapered tube. The sphere is subject to the laminar flow conditions with the Reynolds numbers ranging between the Stokes type regimes up to values corresponding to slightly inertial regimes. In this work, we assume that the aperture angle of the tube is small and that the drag force is mainly due to the dissipation located in the gap between the tube and the sphere. Under these conditions, it is possible to consider the tube as locally cylindrical and we can use the results previously obtained for the correction factor of the Stokes force on a sphere subject to a Poiseuille flow in a tube of constant cross-section. We obtain an equation relating the flow rate to the vertical position of the sphere in the tube and the validity of this analysis is demonstrated by applying it to a commercially available rotameter. The present study provides a simple but sound theoretical method to calibrate such flowmeters.

  3. Levitating spherical particle in a slightly tapered tube at low Reynolds numbers: Application to the low-flow rate rotameters

    NASA Astrophysics Data System (ADS)

    Champmartin, S.; Ambari, A.; Chhabra, R. P.

    2012-12-01

    In this study, a theoretical framework is developed to predict the equilibrium conditions of a non-neutrally buoyant sphere placed in a vertical conical tube as encountered in liquid rotameters. The analysis presented herein is applicable for a sphere heavier than the surrounding fluid, situated on the axis of a slightly tapered tube. The sphere is subject to the laminar flow conditions with the Reynolds numbers ranging between the Stokes type regimes up to values corresponding to slightly inertial regimes. In this work, we assume that the aperture angle of the tube is small and that the drag force is mainly due to the dissipation located in the gap between the tube and the sphere. Under these conditions, it is possible to consider the tube as locally cylindrical and we can use the results previously obtained for the correction factor of the Stokes force on a sphere subject to a Poiseuille flow in a tube of constant cross-section. We obtain an equation relating the flow rate to the vertical position of the sphere in the tube and the validity of this analysis is demonstrated by applying it to a commercially available rotameter. The present study provides a simple but sound theoretical method to calibrate such flowmeters.

  4. Levitating spherical particle in a slightly tapered tube at low Reynolds numbers: application to the low-flow rate rotameters.

    PubMed

    Champmartin, S; Ambari, A; Chhabra, R P

    2012-12-01

    In this study, a theoretical framework is developed to predict the equilibrium conditions of a non-neutrally buoyant sphere placed in a vertical conical tube as encountered in liquid rotameters. The analysis presented herein is applicable for a sphere heavier than the surrounding fluid, situated on the axis of a slightly tapered tube. The sphere is subject to the laminar flow conditions with the Reynolds numbers ranging between the Stokes type regimes up to values corresponding to slightly inertial regimes. In this work, we assume that the aperture angle of the tube is small and that the drag force is mainly due to the dissipation located in the gap between the tube and the sphere. Under these conditions, it is possible to consider the tube as locally cylindrical and we can use the results previously obtained for the correction factor of the Stokes force on a sphere subject to a Poiseuille flow in a tube of constant cross-section. We obtain an equation relating the flow rate to the vertical position of the sphere in the tube and the validity of this analysis is demonstrated by applying it to a commercially available rotameter. The present study provides a simple but sound theoretical method to calibrate such flowmeters. PMID:23278022

  5. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes for Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-04-10

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (2) evaluated at ''in-service'' loads at service temperatures and environments. This research program is being conducted in collaboration with the DOE's Oak Ridge National Laboratory and the vested

  6. Circumventing Imprecise Geometric Information and Development of a Unified Modeling Technique for Various Flow Regimes in Capillary Tubes

    NASA Astrophysics Data System (ADS)

    Abbasi, Bahman

    2012-11-01

    Owing to their manufacturability and reliability, capillary tubes are the most common expansion devices in household refrigerators. Therefore, investigating flow properties in the capillary tubes is of immense appeal in the said business. The models to predict pressure drop in two-phase internal flows invariably rely upon highly precise geometric information. The manner in which capillary tubes are manufactured makes them highly susceptible to geometric imprecisions, which renders geometry-based models unreliable to the point of obsoleteness. Aware of the issue, manufacturers categorize capillary tubes based on Nitrogen flow rate through them. This categorization method presents an opportunity to substitute geometric details with Nitrogen flow data as the basis for customized models. The simulation tools developed by implementation of this technique have the singular advantage of being applicable across flow regimes. Thus the error-prone process of identifying compatible correlations is eliminated. Equally importantly, compressibility and chocking effects can be incorporated in the same model. The outcome is a standalone correlation that provides accurate predictions, regardless of any particular fluid or flow regime. Thereby, exploratory investigations for capillary tube design and optimization are greatly simplified. Bahman Abbasi, Ph.D., is Lead Advanced Systems Engineer at General Electric Appliances in Louisville, KY. He conducts research projects across disciplines in the household refrigeration industry.

  7. Experimental investigation of a bioartificial capsule flowing in a narrow tube

    NASA Astrophysics Data System (ADS)

    Risso, Frédéric; Collé-Paillot, Fabienne; Zagzoule, Mokhtar

    This work is an experimental study of the motion and deformation of a bioartificial capsule flowing in a tube of 4 mm diameter. The capsules, initially designed for medical applications, are droplets of salt water surrounded by a thin polymeric membrane. They are immersed in a very viscous Newtonian silicone oil that flows through a tube in the Stokes regime. The properties of the capsules were carefully determined. Two previous experimental papers were devoted to their characterization by osmotic swelling and compression between two plates. The present work also provides a series of tests that allows an accurate definition of the experimental model under investigation. The capsules are buoyant and initially quasi-spherical. Nevertheless, buoyancy and small departures from sphericity are shown to have no significant effects, provided the flowing velocity is large enough for the viscous stress to become predominant. The capsules are also initially slightly over-inflated, but there is no mass transfer through the membrane during the present experiments. Their volume therefore remains constant. The membrane can be described as an elastic two-dimensional material, the elastic moduli of which are independent of the deformation. Far from the tube ends, the capsule reaches a steady state that depends on two parameters: the capillary number, Ca; and the ratio of the radius of the capsule to that of the tube, a/R. The capillary number, which compares the hydrodynamic stresses to the elastic tensions in the membrane, was varied between 0 and 0.125. The radius ratio, which measures the magnitude of the confinement, was varied from 0.75 to 0.95. In the range investigated, the membrane material always remains in the elastic domain. At fixed a/R, the capsule is stretched in the axial direction when Ca is increased. The process of deformation involves two main stages. At small to moderate Ca, the lateral dimension of the capsule decreases whereas its axial length increases. The

  8. A numerical procedure for simulation of Fanno flows of refrigerants or refrigerant mixtures in capillary tubes

    SciTech Connect

    Chung, M.

    1998-12-31

    An ordinary differential equation (ODE), particularly suitable for numerical simulations of Fanno flows in capillary tubes, is derived by combining the conservation equations. Taking pressure as the independent variable, better control over design variables is achieved and the singularities involved in the choked flows can be avoided. For refrigerants without temperature glide, such as pure refrigerants or azeotropic refrigerant mixtures, the single ODE can be easily integrated if the saturation thermodynamic properties are given. For nonazeotropic refrigerant mixtures (NARMs), iteration in the temperature glide zone is required. As an alternative procedure for the iteration, a system of two ODEs is derived by taking thermodynamic relations into account. The system of ODE is not only in a numerically efficient form but also reveals important physics regarding choking. Sample numerical results for ternary NARM R-407C are presented to show the performance of the proposed procedures.

  9. Numerical modeling of flow in the Francis-99 turbine with Reynolds stress model and detached eddy simulation method

    NASA Astrophysics Data System (ADS)

    Minakov, A. V.; Sentyabov, A. V.; Platonov, D. V.; Dekterev, A. A.; Gavrilov, A. A.

    2015-01-01

    The paper presents numerical simulation of flow in Francis-99 water turbine under three operation modes: part load, best efficiency point and high load. Calculations were performed by means of Reynolds stress model and detached eddy simulation based on k-omega SST model. The paper focuses on the flows in the draft tube. The calculated mean velocity components in the draft tube are in close agreement with experimental results. Calculated r.m.s velocity components agree with experimental pulsations qualitatively.

  10. Axial creeping flow in the gap between a rigid cylinder and a concentric elastic tube

    NASA Astrophysics Data System (ADS)

    Elbaz, S. B.; Gat, A. D.

    2016-11-01

    We examine transient axial creeping flow in the annular gap between a rigid cylinder and a concentric elastic tube. The gap is initially filled with a thin fluid layer. The study focuses on viscous-elastic time-scales for which the rate of solid deformation is of the same order-of-magnitude as the velocity of the fluid. We employ an elastic shell model and the lubrication approximation to obtain a forced nonlinear diffusion equation governing the viscous-elastic interaction. In the case of an advancing liquid front into a configuration with a negligible film layer (compared with the radial deformation of the elastic tube), the governing equation degenerates into a forced porous medium equation, for which several closed-form solutions are presented. In the case where the initial film layer is non-negligible, self-similarity is used to devise propagation laws for a pressure driven liquid front. When advancing external forces are applied on the tube, the formation of dipole structures is shown to dominate the initial stages of the induced flow and deformation regimes. These are variants of the dipole solution of the porous medium equation. Finally, since the rate of pressure propagation decreases with the height of the liquid film, we show that isolated moving deformation patterns can be created and superimposed to generate a moving wave-like deformation field. The presented interaction between viscosity and elasticity may be applied to fields such as soft-robotics and micro-scale or larger swimmers by allowing for the time-dependent control of an axisymmetric compliant boundary.

  11. Numerical simulation of swirling flow in complex hydroturbine draft tube using unsteady statistical turbulence models

    SciTech Connect

    Paik, Joongcheol; Sotiropoulos, Fotis; Sale, Michael J

    2005-06-01

    A numerical method is developed for carrying out unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and detached-eddy simulations (DESs) in complex 3D geometries. The method is applied to simulate incompressible swirling flow in a typical hydroturbine draft tube, which consists of a strongly curved 90 degree elbow and two piers. The governing equations are solved with a second-order-accurate, finite-volume, dual-time-stepping artificial compressibility approach for a Reynolds number of 1.1 million on a mesh with 1.8 million nodes. The geometrical complexities of the draft tube are handled using domain decomposition with overset (chimera) grids. Numerical simulations show that unsteady statistical turbulence models can capture very complex 3D flow phenomena dominated by geometry-induced, large-scale instabilities and unsteady coherent structures such as the onset of vortex breakdown and the formation of the unsteady rope vortex downstream of the turbine runner. Both URANS and DES appear to yield the general shape and magnitude of mean velocity profiles in reasonable agreement with measurements. Significant discrepancies among the DES and URANS predictions of the turbulence statistics are also observed in the straight downstream diffuser.

  12. Correlation for the Prediction of Flow Boiling Heat Transfer in Small Diameter Tubes

    NASA Astrophysics Data System (ADS)

    Miyata, Kazushi; Mori, Hideo; Hamamoto, Yoshinori

    The objective of the present study is to develop a correlation applicable to a prediction of an axially local heat transfer coefficient in flow boiling within small diameter tubes. From experimental data of authors obtained previously, it was found that, for the accurate prediction of the heat transfer in small diameter tubes, it was necessary to evaluate precisely the contribution of evaporation heat transfer of thin liquid film around vapor plugs in slug flow, adding to the forced convection heat transfer and nucleate boiling heat transfer. There are, however, only conventional heat transfer correlations which consider any two of the three contributions; forced convection and nucleate boiling in most cases. In this study, a new correlation considering all of three contributions was developed based on data of R 410A by authors and data of other Freons, water and CO2 by other researchers. In the new correlation, the liquid film evaporation heat transfer is evaluated using liquid film thickness correlated with the Capillary number, the forced convection heat transfer is calculated by use of the Dittus-Boelter correlation and the Lockhart-Martinelli parameter, and the nucleate boiling heat transfer is predicted from the Stephan-Abdelsalam correlation with the suppression factor. The new correlation showed higher prediction performance compared with conventional heat transfer correlations.

  13. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  14. An experimental study of subcooled choked flow through steam generator tube cracks

    NASA Astrophysics Data System (ADS)

    Vadlamani, Ram Anand

    The Work conducted in this Research involved the simulation of Pressurized Water Reactor Conditions of Steam Generators to study the complex phenomenon of Subcooled Choked Flow or two-phase critical flow that occurs when water leaks from the primary side of a steam generator into the secondary side, thus making it highly relevant to Reactor Safety and Probabilistic Risk assessment methods. Slits of small L/D ratio were manufactured and tested on the Facility for Leak Rate Testing at pressures (6.89 MPa) and high temperatures (280°C) relevant to Pressurized Water Reactors over a range of subcooling. Small flow channel length was used (1.3mm) equivalent to steam generator tube thickness with the study of a variety of geometries with differences in surface roughness. Unique to literature, the samples had very small L/Ds and the study was a controlled parametric study of choked flow. The effect of L/D was examined, compared to recent studies conducted at Purdue University by Wolf and Revankar while contrasting with others in literature. Analytical models were applied highlighting the importance of non-equilibrium effects and contrasted with other studies of different L/Ds. RELAP5, a well developed code widely utilized in industry was studied to analyze its predictive capabilities and conditions for best estimate. L/D effects on mass fluxes were studied and it was observed that mass fluxes were affected to a very small degree by subcooling.

  15. The effect of surfactant on counter-current gas-liquid flows in vertical tubes

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Matar, Omar; Markides, Christos

    2015-11-01

    Counter-current gas-liquid flows in vertical tubes are often accompanied by flow reversal. This so-called ``flooding'' phenomenon could occur for at least a part of the liquid phase from a counter-current to a co-current state, against the action of gravity. This phenomenon is of central importance to the oil-and-gas and nuclear industries, and has received considerable attention experimentally. The large majority of the previous work in this area, however, has considered the case of pure fluids, in the absence of additives; the latter are used frequently in industry in an attempt to control the onset of various flow regimes with little understanding of the mechanisms underlying their influence on the interfacial dynamics. In this study, we address this issue by investigating the dynamics of flooding in the presence of surfactants in a 4 m long, 32.4 mm nominal bore polymethyl methacrylate test section using high-speed shadowgraphy, and axial-view imaging. The system parameters include the superficial gas and liquid velocities, and surfactant concentration. We show that the presence of surfactant can have a dramatic effect on the flow structures and the onset of flooding. The mechanisms responsible for these phenomena are analysed. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  16. Numerical modeling of the shock tube flow fields before and during ignition delay time experiments at practical conditions

    NASA Astrophysics Data System (ADS)

    Lamnaouer, Mouna

    An axi-symmetric shock-tube model has been developed to simulate the shock-wave propagation and reflection in both non-reactive and reactive flows. Simulations were performed for the full shock-tube geometry of the high-pressure shock tube facility at Texas A&M University. Computations were carried out in the CFD solver FLUENT based on the finite volume approach and the AUSM+ flux differencing scheme. Adaptive mesh refinement (AMR) algorithm was applied to the time-dependent flow fields to accurately capture and resolve the shock and contact discontinuities as well as the very fine scales associated with the viscous and reactive effects. A conjugate heat transfer model has been incorporated which enhanced the credibility of the simulations. The multi-dimensional, time-dependent numerical simulations resolved all of the relevant scales, ranging from the size of the system to the reaction zone scale. The robustness of the numerical model and the accuracy of the simulations were assessed through validation with the analytical ideal shock-tube theory and experimental data. The numerical method is first applied to the problem of axi-symmetric inviscid flow then viscous effects are incorporated through viscous modeling. The non-idealities in the shock tube have been investigated and quantified, notably the non-ideal transient behavior in the shock tube nozzle section, heat transfer effects from the hot gas to the shock tube side walls, the reflected shock/boundary layer interactions or what is known as bifurcation, and the contact surface/bifurcation interaction resulting into driver gas contamination. The non-reactive model is shown to be capable of accurately simulating the shock and expansion wave propagations and reflections as well as the flow non-uniformities behind the reflected shock wave. Both the inviscid and the viscous non-reactive models provided a baseline for the combustion model which involves elementary chemical reactions and requires the coupling of the

  17. Influence of Hydraulic Design on Stability and on Pressure Pulsations in Francis Turbines at Overload, Part Load and Deep Part Load based on Numerical Simulations and Experimental Model Test Results

    NASA Astrophysics Data System (ADS)

    Magnoli, M. V.; Maiwald, M.

    2014-03-01

    Francis turbines have been running more and more frequently in part load conditions, in order to satisfy the new market requirements for more dynamic and flexible energy generation, ancillary services and grid regulation. The turbines should be able to be operated for longer durations with flows below the optimum point, going from part load to deep part load and even speed-no-load. These operating conditions are characterised by important unsteady flow phenomena taking place at the draft tube cone and in the runner channels, in the respective cases of part load and deep part load. The current expectations are that new Francis turbines present appropriate hydraulic stability and moderate pressure pulsations at overload, part load, deep part load and speed-no-load with high efficiency levels at normal operating range. This study presents series of investigations performed by Voith Hydro with the objective to improve the hydraulic stability of Francis turbines at overload, part load and deep part load, reduce pressure pulsations and enlarge the know-how about the transient fluid flow through the turbine at these challenging conditions. Model test measurements showed that distinct runner designs were able to influence the pressure pulsation level in the machine. Extensive experimental investigations focused on the runner deflector geometry, on runner features and how they could reduce the pressure oscillation level. The impact of design variants and machine configurations on the vortex rope at the draft tube cone at overload and part load and on the runner channel vortex at deep part load were experimentally observed and evaluated based on the measured pressure pulsation amplitudes. Numerical investigations were employed for improving the understanding of such dynamic fluid flow effects. As example for the design and experimental investigations, model test observations and pressure pulsation curves for Francis machines in mid specific speed range, around nqopt = 50 min

  18. Mass flow measurement of gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter

    NASA Astrophysics Data System (ADS)

    Sun, Zhiqiang

    2010-05-01

    Development of effective techniques for gas-liquid two-phase flow measurement is of interest to both academic research and industrial applications. This paper presents a novel approach to the measurement of the mass flow rate of homogeneous gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter. The Venturi tube and the vortex flowmeter were mounted in the same pipeline with a spacing interval of ten times the pipe's inner diameter. A measurement correlation was established based on the differential pressure generated across the Venturi tube and the frequency extracted from the vortex flowmeter signal. Experiments were conducted on a vertical upward gas-liquid two-phase flow rig under the bubble flow pattern, with the air mass flow rate from 0.2 × 10-3 to 3.2 × 10-3 kg s-1, the water mass flow rate from 3.3 to 5.2 kg s-1 and the volumetric void fraction from 0.004 to 0.246. The results show that the relative errors of the correlation for the mixture mass flow rate measurement were within ±5%, and the maximum standard deviation of the relative errors was 2.0%. This method provides a simple and practical solution to the mass flow measurement of homogeneous gas-liquid bubble flows.

  19. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2016-06-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  20. Large-eddy simulation of turbulent flows around a fin-tube heat exchanger enclosed by a compartment

    NASA Astrophysics Data System (ADS)

    Son, Changkeun; Song, Simon; Lee, Jeesoo; Kang, Seongwon

    2014-11-01

    The main objective of the present study is to analyze heat transfer and flow characteristics of a heat exchanger in an industrial application using high-fidelity simulation techniques. Large-eddy simulations (LES) were performed to investigate the turbulent flows around a fin-tube heat exchanger enclosed by a compartment. The complex geometry of the compartment poses a difficulty in a simulation as the local Re number is about two orders of different magnitude, and generates various scales of the 3-D vortices and complex flow patterns. Careful tests with both grid resolution and turbulent inflow boundary condition were performed in order to compare our results to the measured data from a MRV experiment as well as the results from RANS simulations. From interaction of the flow structures such as the 3-D vortices, a few interesting flow phenomena were observed which are different from a plain fin-tube heat exchanger, such as helical flows and a jet stream observed behind the fin-tube region. Also, performance of the heat exchanger was analyzed using the data from plain fin-tube heat exchangers. Based on this analysis, a numerical technique for heat exchanger was devised and tested to show a possibility of reducing the computational cost significantly, using a porous media model.

  1. Numerical heat and mass transfer analysis of a cross-flow indirect evaporative cooler with plates and flat tubes

    NASA Astrophysics Data System (ADS)

    Chua, K. J.; Xu, J.; Cui, X.; Ng, K. C.; Islam, M. R.

    2016-09-01

    In this study the performance of an indirect evaporative cooling system (IECS) of cross-flow configuration is numerically investigated. Considering the variation of water film temperature along the flowing path and the wettability of the wet channel, a two-dimensional theoretical model is developed to comprehensively describe the heat and mass transfer process involved in the system. After comparing the simulation results with available experimental data from literature, the deviation within ±5 % proves the accuracy and reliability of the proposed mathematical model. The simulation results of the plate type IECS indicate that the important parameters, such as dimension of plates, air properties, and surface wettability play a great effect on the cooling performance. The investigation of flow pattern shows that cross-flow configuration of primary air with counter-flow of secondary air and water film has a better cooling performance than that of the parallel-flow pattern. Furthermore, the performance of a novel flat tube working as the separating medium is numerically investigated. Simulation results for this novel geometry indicate that the tube number, tube long axis and short axis length as well as tube length remarkably affect its cooling performance.

  2. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    SciTech Connect

    Ye, Ting; Phan-Thien, Nhan Khoo, Boo Cheong; Lim, Chwee Teck

    2014-11-15

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.

  3. Prototyping of Poly(dimethylsiloxane) Interfaces for Flow Gating, Reagent Mixing, and Tubing Connection in Capillary Electrophoresis

    PubMed Central

    Zhang, Qiyang; Gong, Maojun

    2014-01-01

    Integrated microfluidic systems coupled with electrophoretic separations have broad application in biological and chemical analysis. Interfaces for the connection of various functional parts play a major role in the performance of a system. Here we developed a rapid prototyping method to fabricate monolithic poly(dimethylsiloxane) (PDMS) Interfaces for flow-gated injection, online reagent mixing, and tube-to-tube connection in an integrated capillary electrophoresis (CE) system. The basic idea was based on the properties of PDMS: elasticity, transparency, and suitability for prototyping. The molds for these interfaces were prepared by using commercially available stainless steel wires and nylon lines or silica capillaries. A steel wire was inserted through the diameter of a nylon line and a cross format was obtained as the mold for PDMS casting of flow gates and 4-way mixers. These interfaces accommodated tubing connection through PDMS elasticity and provided easy visual trouble shooting. The flow gate used smaller channel diameters thus reducing flow rate by 25 fold for effective gating compared with mechanically machined counterparts. Both PDMS mixers and the tube-to-tube connectors could minimize the sample dead volume by using an appropriate capillary configuration. As a whole, the prototyped PDMS interfaces are reusable, inexpensive, convenient for connection, and robust when integrated with the CE detection system. Therefore, these interfaces could see potential applications in CE and CE-coupled systems. PMID:24331370

  4. Columbia University flow instability experimental program: Volume 7. Single tube tests, critical heat flux test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    This report deals with critical heat flux (CHF) measurements in vertical down flow of water at low pressures in a round Inconel tube, 96 inches long and 0.62 inch inside diameter. A total of 28 CHF points were obtained. These data were found to correlate linearly with the single variable q, defined as the heat flux required to raise the enthalpy from the inlet value to the saturation value. These results were compared to the published results of Swedish investigators for vertical upflow of water at low pressures in round tubes of similar diameters and various lengths. The parameter q depends on the inlet enthalpy and is a nonlocal variable, thus this correlation is nonlocal unless the coefficients depend upon tube length in a particular prescribed manner. For the low pressure Swedish data, the coefficients are practically independent of length and hence the correlation is nonlocal. In the present investigation only one length was employed, so it is not possible to determine whether the correlation for these data is local or nonlocal, although there is reason to believe that it is local. The same correlation was applied to a large data base (thousands of CHF points) compiled from the published data of a number of groups and found to apply, with reasonable accuracy over a wide range of conditions, yielding sometimes local and sometimes nonlocal correlations. The basic philosophy of data analysis here was not to generate a single correlation which would reproduce all data, but to search for correlations which apply adequately over some range and which might have some mechanistic significance. The tentative conclusion is that at least two mechanisms appear operative, leading to two types of correlations, one local, the other nonlocal.

  5. Numerical study of the transient flow in the driven tube and the nozzle section of a shock tunnel

    NASA Technical Reports Server (NTRS)

    Tokarcik-Polsky, Susan; Cambier, Jean-Luc

    1993-01-01

    The initial flow in a shock tunnel was examined numerically using computational fluid dynamics (CFD). A finite-volume total variation diminishing (TVD) scheme was used to calculate the transient flow in a shock tunnel. Both viscous and inviscid, chemically nonreacting flows were studied. The study consisted of two parts, the first dealt with the transient flow in the driven-tube/nozzle interface region (inviscid calculations). The effects of varying the geometry in this region was examined. The second part of the study examined the transient flow in the nozzle (viscous calculations). The results were compared to experimental data.

  6. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    NASA Astrophysics Data System (ADS)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  7. Experimental Studies on Carbon Dioxide Flow Boiling Heat Transfer Coefficient in Horizontal Smooth Tube

    NASA Astrophysics Data System (ADS)

    Hashimoto, Katsumi; Kiyotani, Akihiro; Sasaki, Naoe

    The CO2 heat pump water heater ”ECO CUTE” which was commercialized in 2001 has a high potential for energy conservation and greenhouse abatement. The most important element apparatus is always the evaporator in order to develop smaller and higher performance equipment. In this paper, an experimental study has been conducted to measure the pure CO2 flow boiling heat transfer coefficient (99.999 % purity, without oil) in a horizontal smooth tube (outer diameter 6 mm, thickness 0.4 mm). The measured mean heat transfer coefficients are compared with calculated value with using previous experimental heat transfer correlation equations. These two values are different from each other. Mean heat transfer coefficients are measured with varying mass velocity, pressure and heat transfer lengths. The tube length is varied to 3.0 m, 4.0 m and 5.0 m, to distinguish the influence of mass velocity and that of heat flux to the heat transfer coefficient. The test conditions were: CO2 mass velocity from about 150 to about 700 kg⁄(m2s) (heat flux from about 10 to about 40 kW⁄m2), quality at inlet of test section is 0.17, CO2 super heat at outlet of test section is 5 K and saturation temperature of CO2 ranges from 0 to 10 °C. As a result, it has been understood that heat flux has a greater influence on the heat transfer coefficient.

  8. Measurement of the flow properties within a copper tube containing a deflagrating explosive

    SciTech Connect

    Hill, Larry G; Morris, John S; Jackson, Scott I

    2009-01-01

    We report on the propagation of deflagration waves in the high explosive (HE) PBX 9501 (95 wt % HMX, 5 wt% binder). Our test configuration, which we call the def1agration cylinder test (DFCT), is fashioned after the detonation cylinder test (DTCT) that is used to calibrate the JWL detonation product equation of state (EOS). In the DFCT, the HE is heated to a uniform slightly subcritical temperature, and is ignited at one end by a hot wire. For some configurations and initial conditions, we observe a quasi-steady wave that flares the tube into a funnel shape, stretching it to the point of rupture. This behavior is qualitatively like the DTCT, such that, by invoking certain additional approximations that we discuss, its behavior can be analyzed by the same methods. We employ an analysis proposed by G.I. Taylor to infer the pressure-volume curve for the burning, expanding flow. By comparing this result to the EOS of HMX product gas alone. we infer that only {approx}20 wt% of the HMX has burned at tube rupture. This result confirms pre-existing observations about the role of convective burning in HMX cookoff explosions.

  9. The Effect of Compressibility on the Pressure Reading of a Prandtl Pitot Tube at Subsonic Flow Velocity

    NASA Technical Reports Server (NTRS)

    Walchner, O

    1939-01-01

    Errors arising from yawed flow were also determined up to 20 degrees angle of attack. In axial flow, the Prandtl pitot tube begins at w/a approx. = 0.8 to give an incorrect static pressure reading, while it records the tank pressure correctly, as anticipated, up to sonic velocity. Owing to the compressibility of the air, the Prandtl pitot tube manifests compression shocks when the air speed approaches velocity of sound. This affects the pressure reading of the instrument. Because of the increasing importance of high speed in aviation, this compressibility effect is investigated in detail.

  10. Film stability in a vertical rotating tube with a core-gas flow.

    NASA Technical Reports Server (NTRS)

    Sarma, G. S. R.; Lu, P. C.; Ostrach, S.

    1971-01-01

    The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.

  11. Numerical and experimental visualization of reverse flow in an inclined isothermal tube

    SciTech Connect

    Mare, Thierry; Voicu, Ionut; Miriel, Jacques

    2005-10-01

    Combined forced and free convection in the entrance region of tubes occurs in many engineering installations such as heat exchangers, nuclear reactors, solar collectors, etc. The secondary flow induced by the buoyancy force and its effects on the hydrodynamic and thermal fields have therefore been investigated both experimentally and numerically. The present study considers the three dimensional developing laminar flow of water with constant viscosity and conductivity in an isothermal pipe inclined of 60{sup o} from horizontal. At first, the elliptical partial differential equations modelling mixed convection, have been numerically solved using a control volume based finite difference solver for Re=90, Pr=7 and Gr=3.3x10{sup 5}. The axial evolution of the velocity and fluid temperature profiles has shown that the upstream diffusion has an important effect near the inlet of the heating region. The shape and size of the region with negative velocities are detailed. Secondly, an experimental set up is described. The techniques used are based on PIV technology employing micrometer Nylon particles placed in a laser light-sheet and results are recorded by using a CDD camera. Analysed pictures have confirmed the existence of the reverse flow region in accordance with numerical results as obtained for an inclination of 60{sup o}.

  12. Structural isomers of C2N(+) - A selected-ion flow tube study

    NASA Technical Reports Server (NTRS)

    Knight, J. S.; Petrie, S. A. H.; Freeman, C. G.; Mcewan, M. J.; Mclean, A. D.

    1988-01-01

    Reactivities of the structural isomers CCN(+) and CNC(+) were examined in a selected-ion flow tube at 300 + or - 5 K. The less reactive CNC(+) isomer was identified as the product of the reactions of C(+) + HCN and C(+) + C2N2; in these reactions only CNC(+) can be produced because of energy constraints. Rate coefficients and branching ratios are reported for the reactions of each isomer with H2, CH4, NH3, H2O, C2H2, HCN, N2, O2, N2O, and CO2. Ab initio calculations are presented for CCN(+) and CNC(+); a saddle point for the reaction CCN(+) yielding CNC(+) is calculated to be 195 kJ/mol above CNC(+). The results provide evidence that the more reactive CCN(+) isomer is unlikely to be present in measurable densities in interstellar clouds.

  13. Structural isomers of C2N+: a selected-ion flow tube study.

    PubMed

    Knight, J S; Petrie, S A; Freeman, C G; McEwan, M J; McLean, A D; DeFrees, D J

    1988-01-01

    Reactivities of the structural isomers CCN+ and CNC+ were examined in a selected-ion flow tube at 300 +/- 5 K. The less reactive CNC+ isomer was identified as the product of the reactions of C(+) + HCN and C(+) + C2N2; in these reactions only CNC+ can be produced because of energy constraints. Rate coefficients and branching ratios are reported for the reactions of each isomer with H2, CH4, NH3, H2O, C2H2, HCN, N2, O2, N2O, and CO2. Ab initio calculations are presented for CCN+ and CNC+; a saddle point for the reaction CCN+ --> CNC+ is calculated to be 195 kJ mol-1 above the CNC+. The results provide evidence that the more reactive CCN+ isomer is unlikely to be present in measurable densities in interstellar clouds.

  14. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.

    PubMed

    Smith, David; Španěl, Patrik

    2016-06-01

    This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis. PMID:27212131

  15. Diurnal variations on a plasmaspheric flux tube - Light ion flows and F region temperature enhancements

    NASA Technical Reports Server (NTRS)

    Guiter, S. M.; Gombosi, T. I.; Rasmussen, C. E.

    1991-01-01

    The paper concentrates on the diurnal variations on a plasmaspheric flux tube modeled using a time-dependent multispecies one-stream interhemispheric model for plasma flows. The model takes into account the effects of ionization, charge exchange, recombination, collisions, heat conduction, and allows for external heat sources. The simulation is done for June solstice conditions during solar minimum. Focus is placed on the presence of large downward H(+) velocities at about 320-km altitude in the winter (southern) hemisphere, in early morning when the summer hemisphere is sunlit but the winter hemisphere is dark. In addition, an upward H(+) flux is seen in the Southern Hemisphere at altitudes above 2000 km when the sun rises in the northern end.

  16. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.

    PubMed

    Smith, David; Španěl, Patrik

    2016-06-01

    This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.

  17. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  18. Analysis of heat transfer and fluid flow through a spirally fluted tube using a porous substrate approach

    SciTech Connect

    Srinivasan, V.; Vafai, K.; Christensen, R.N. )

    1994-08-01

    An innovative approach was opted for modeling the flow and heat transfer through spirally fluted tubes. The model divided the flow domain into two regions. The flutes were modeled as a porous substrate with direction-dependent permeabilities. This enabled modeling the swirl component in the fluted tube. The properties of the porous substrate such as its thickness, porosity, and ratio of the direction-dependent permeabilities were obtained from the geometry of the fluted tube. Experimental data on laminar Nusselt numbers and friction factors for different types of fluted tubes representing a broad range of flute geometry were available. Experimental data from a few of the tubes tested were used to propose a relationship between the permeability of the porous substrate and the flute parameters, particularly the flute spacing. The governing equations were discretized using the Finite Element Method. The model was verified and applied to the other tubes in the test matrix. Very good agreement was found between the numerical predictions and the experimental data. 20 refs., 13 figs., 4 tabs.

  19. Influence of Reynolds number on coalescence of droplets with particle in flow through a tube at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Muraoka, Masahiro; Yatagawa, Yuta; Kumagai, Yuki

    2016-07-01

    The coalescence of droplets in flow through a tube at low Reynolds number is potentially useful for different purposes including the handling of fluids, control of chemical reaction, and in drug delivery systems. The phenomenon is also the basis for analyzing the flow of multiphase fluids through porous media such as in enhanced oil recovery and the breaking of emulsions in porous coalescers. With regard to examples of studies on the creeping motion of droplets in a flow through a tube, Hetsroni G. et al.[1] theoretically examined the motion of a spherical droplet or bubble with small d/D, where d is the undeformed diameter of the droplet or bubble, and D is the tube diameter. Higdon J.J.L. and Muldowney G.P. [2] numerically obtained the resistance functions for a spherical particle, droplet, and bubble. Olbricht, W.L. and Kung D.M.[3] and Aul R.W. and Olbricht, W.L.[4] mainly investigated the coalescence time of droplets. Aul R.W. and Olbricht W.L. proposed a semi-theoretical formula of the coalescence time. Based on the formula by them, Muraoka, M. et al.[5] proposed other semi-theoretical formulas of the coalescence time in terms of the resistance experienced by the liquid droplet in creeping flow through a tube. The latter formulas take the eccentricity of the following droplets into consideration. In the present study, a glass tube of inner diameter 2.0mm, outer diameter 7.0mm, and length 1500 mm was used as the test tube. Silicon oil with a kinematic viscosity of 3000cSt was employed as the test fluid of the droplet. A mixture of glycerol and pure water was used as the surrounding fluid of the creeping flow through a tube. A large volumetric syringe pump was used to maintain steady flow through the tube at a designated average velocity. The test tube was immersed in temperature-controlled water contained in a tank to maintain constant temperature of the system. The droplets were injected into the test tube. The behaviors of the droplets were monitored by a

  20. Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Kim, Seok; Lee, Sang Joon

    2009-02-01

    Digital micro holographic particle tracking velocimetry (HPTV) was used to measure the three-dimensional (3D) velocity field of a laminar flow in a curved micro-tube with a circular cross-section. The micro HPTV system consists of a high-speed camera and a single laser with an acoustic optical modulator (AOM) chopper. We obtained the temporal evolution of the instantaneous velocity field of water flow within curved micro-tubes with inner diameters of 100 and 300 μm. The 3D mean velocity-field distribution was obtained quantitatively by statistically averaging the instantaneous velocity fields. At low Dean numbers ( De), a secondary flow was not generated in the curved tube; however, with increasing Dean number a secondary flow consisting of two large-scale counter-rotating vortices arose due to enhanced centrifugal force. To reveal the flow characteristics at high Dean numbers, the trajectories of fluid particles were evaluated experimentally from the 3D velocity-field data measured using the HPTV technique. The present experimental results, especially the 3D particle trajectories, are likely to be helpful in understanding mixing phenomena in curved sections of various 3D curved micro-tubes or micro-channels, as well as in the design of such structures.

  1. Experimental studies of pulsatile flows through compliant tubes undergoing forced wall motion: Applications to hemodynamics and stability

    NASA Astrophysics Data System (ADS)

    Sturgeon, Victoria Carolyn Savedge

    An experimental investigation is made into the effects of forced wall motion on hemodynamic simulations and into transitional behaviors and instability of oscillatory input flows through elastic tubes. A novel mechanism allows active control and feedback over the pressure on the tube exterior. By comparing the pressure within and outside the tube and modifying the exterior pressure accordingly, the tube is inflated in a controlled manner without altering the input flow. Thus, both input flow rate and wall motion waveforms may be specified for a single experiment. Two distinct experimental series were performed: the first examined the effects of wall motion on physiological flows in regions prone to atherosclerosis, and the second series examined the effects of wall motion on transitional behaviors in oscillatory flows. In both cases, particle image velocimetry (PIV) was used to obtain quantitative velocity data from the flow field. For the first of these experimental series, the flow rate and arterial wall motion are replicated for two physiological regions that are particularly susceptible to atherosclerotic deposits: the abdominal aorta and the coronary arteries. Wall shear stress, cross-sectional velocity profiles, and energy spectra are used to analyze the flow fields and address questions of the effects of accurate wall motion simulation, the possibility of transitional behaviors in these physiological settings, and the hemodynamic effects of implanted stents. Flows through the coronary arteries were characterized by a low value of the Sexl-Womersley parameter a=rnn , where r is the tube radius, n the angular velocity of the input flow, and nu the kinematic viscosity. Because of this low periodicity, the cross-sectional velocity profiles were found to be nearly parabolic throughout the waveform, and wall motion affected the amplitude of the cross-sectional profiles but had little effect on the shape. In contrast, flows in the abdominal aorta occur at a much

  2. Computational astrophysics: Pulsating stars

    NASA Astrophysics Data System (ADS)

    Davis, C. G.

    The field of computational astrophysics in pulsating star studies has grown considerably since the advent of the computer. Initially calculations were done on the IBM 704 with 32K of memory and now we use the CRAY YMP computers with considerably more memory. Our early studies were for models of pulsating stars using a 1D Lagrangian hydrodynamic code (SPEC) with radiation diffusion. The radiative transfer was treated in the equilibrium diffusion approximation and the hydrodynamics was done utilizing the approximation of artificial viscosity. The early calculations took many hours of 704 CPU time. Early in 1965 we decided to improve on the usual treatment of the radiative transfer used in our codes by utilizing the method of moments, the so-called variable Eddington approximation. In this approximation the material energy field is uncoupled from the radiation energy field and the angular dependence is introduced through the Eddington factor. A multigroup frequency dependent method may also be applied. The Eddington factor is determined by snapshots of the stars structure utilizing a y-line approximation. The full radiative transfer approximation appears necessary in order to understand the light curves for W Virginia stars and may be important for the light curves of RR Lyrae stars. A detailed radiative transfer method does not appear to be necessary for the understanding of Cepheid light curves. A recent improvement to our models for pulsating stars is in the use of an adaptive mesh scheme to resolve the sharp features in the nonlinear hydrodynamic structure. From these improved structures, better analysis of the radius, velocity, and light curves could be obtained.

  3. Steady and transient forced convection heat transfer for water flowing in small tubes with exponentially increasing heat inputs

    NASA Astrophysics Data System (ADS)

    Shibahara, M.; Fukuda, K.; Liu, Q. S.; Hata, K.

    2016-06-01

    Steady and transient heat transfer coefficients for water flowing in small tubes with exponentially increasing heat inputs were measured. Platinum tubes with inner diameters of 1.0 and 2.0 mm were used as test tubes, which were mounted vertically in the experimental water loop. In the experiment, the upward flow velocity ranged from 2 to 16 m/s, and the corresponding Reynolds numbers ranged from 4.77 × 103 to 9.16 × 104 at the inlet liquid temperatures ranged from 298 to 343 K. The heat generation rate exponentially increased with the function. The period of the heat generation rate ranged from 24 ms to 17.5 s. Experimental results indicate that steady heat transfer coefficients decreased with the increase in the inner diameter of the small tube. Moreover, the ratio of bulk viscosity to near-wall viscosity of water increased with the rise in surface temperature of the vertical tube. From the experimental data, correlations of steady-state heat transfer for inner diameters of 1.0 and 2.0 mm were obtained. The heat transfer coefficient increased with decreasing the period of the heat generation rate as the flow velocity decreased. Moreover, the Nusselt number under the transient condition was affected by the Fourier number and the Reynolds number.

  4. OGLE and pulsating stars

    NASA Astrophysics Data System (ADS)

    Udalski, A.

    2016-05-01

    OGLE-IV is currently one of the largest sky variability surveys worldwide, focused on the densest stellar regions of the sky. The survey covers over 3000 square degrees and monitors regularly over a billion sources. The main targets include the inner Galactic bulge and the Magellanic System. Supplementary shallower Galaxy Variability Survey covers the extended Galactic bulge and 2/3 of the whole Galactic disk. The current status, prospects, and the latest results of the OGLE-IV survey focused on pulsating stars, in particular RR Lyrae variables, are presented.

  5. Pulsation driving and convection

    NASA Astrophysics Data System (ADS)

    Antoci, Victoria

    2015-08-01

    Convection in stellar envelopes affects not only the stellar structure, but has a strong impact on different astrophysical processes, such as dynamo-generated magnetic fields, stellar activity and transport of angular momentum. Solar and stellar observations from ground and space have shown that the turbulent convective motion can also drive global oscillations in many type of stars, allowing to study stellar interiors at different evolutionary stages. In this talk I will concentrate on the influence of convection on the driving of stochastic and coherent pulsations across the Hertzsprung-Russell diagram and give an overview of recent studies.

  6. The analysis of two-dimensional two-phase flow in horizontal heated tube bundles using drift flux model

    NASA Astrophysics Data System (ADS)

    Yang, Ruichang; Zheng, Rongchuan; Wang, Yanwu

    This paper presents the experimental study and numerical simulation of two-dimensional two-phase flow in horizontal heated tube bundles. In the experiments, two advanced measuring systems with a single-fibre optical probe and a tri-fibre-optical-probe were developed to measure respectively the local void fraction and vapor bubble velocities among the heated tube bundles. In accordance with the internal circulation characteristics of two-phase flow in the tube bundles, a mathematical model of two-dimensional two-phase low Reynolds number turbulent flow based on the modified drift flux model and the numerical simulation method to analyze the two-phase flow structures have been developed. The modified drift flux model in which both the acceleration by gravity and the acceleration of the average volumetric flow are taken into account for the calculation of the drift velocities enables its application to the analysis of multi-dimensional two-phase flow. In the analysis the distributions of the vapor-phase velocity, liquid-phase velocity and void fraction were numerically obtained by using the modified drift flux model and conventional drift flux model respectively and compared with the experimental results. The numerical analysis results by using the modified drift flux model agree reasonably well with the experimental investigation. It is confirmed that the modified drift flux model has the capability of correctly simulating the two-dimensional two-phase flow.

  7. Storing of Extracts in Polypropylene Microcentrifuge Tubes Yields Contaminant Peak During Ultra-flow Liquid Chromatographic Analysis

    PubMed Central

    Kshirsagar, Parthraj R.; Hegde, Harsha; Pai, Sandeep R.

    2016-01-01

    Background and Aim: This study was designed to understand the effect of storage in polypropylene microcentrifuge tubes and glass vials during ultra-flow liquid chromatographic (UFLC) analysis. Materials and Methods: One ml of methanol was placed in polypropylene microcentrifuge tubes (PP material, Autoclavable) and glass vials (Borosilicate) separately for 1, 2, 4, 8, 10, 20, 40, and 80 days intervals stored at −4°C. Results: Contaminant peak was detected in methanol stored in polypropylene microcentrifuge tubes using UFLC analysis. The contaminant peak detected was prominent, sharp detectable at 9.176 ± 0.138 min on a Waters 250–4.6 mm, 4 μ, Nova-Pak C18 column with mobile phase consisting of methanol:water (70:30). Conclusion: It was evident from the study that long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peak. Further, this may mislead in future reporting an unnatural compound by researchers. SUMMARY Long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peakContamination peak with higher area under the curve (609993) was obtained in ultra-flow liquid chromatographic run for methanol stored in PP microcentrifuge tubesContamination peak was detected at retention time 9.113 min with a lambda max of 220.38 nm and 300 mAU intensity on the given chromatographic conditionsGlass vials serve better option over PP microcentrifuge tubes for storing biological samples. Abbreviations used: UFLC: Ultra Flow Liquid Chromatography; LC: Liquid Chromatography; MS: Mass spectrometry; AUC: Area Under Curve. PMID:27563216

  8. Columbia University Flow Instability Experimental Program, Volume 1. Single tube uniformly heated tests: Part 1, Technical discussion

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-01-01

    An experimental program has been conducted to investigate flow instability in circular tubes under vertical down-flow conditions. The test section L/D ratio range was 86 to 270. The maximum test section surface heat flux was one million Btu/hr-ft{sup 2}. Over 1700 data points were obtained. The effect of flowrate, inlet temperature, exit pressure, and heat flux on the initiation of flow instability was determined. In addition, the data was used to evaluate various methods of predicting the onset of flow instability. Using the measured wall temperatures, surface temperatures and heat transfer coefficients have been obtained. Correlations for the heat transfer coefficient along the tube under both single and two phase conditions were developed.

  9. Dehumidification: Prediction of Condensate Flow Rate for Plate-Fin Tube Heat Exchangers Using the Latent j Factor

    SciTech Connect

    Baxter, V.D.; Chen, D.T.; Conklin, J.C.

    1999-03-15

    Condensate flow rate is an important factor in designing dehumidifiers or evaporators. In this paper, the latentj fimtor is used to analyze the dehumidification performance of two plate-fin tube heat exchangers. This latent j factor, analogous to the total j factor, is a flmction of the mass transfa coefllcient, the volumetric air flow rate, and the Schmidt number. This latent j factor did predict condensate flow rate more directly and accurately than any other sensiblej factor method. The Iatentj factor has been used in the present study because the sensible j factor correlations presented in the literature failed to predict the condensate flow rate at high Reynolds numbers. Results show that the latent j i%ctor em be simply correlated as a fhnction of the Reynolds number based on the tube outside diameter and number of rows of the heat exchanger.

  10. Dependency of the Reynolds number on the water flow through the perforated tube

    NASA Astrophysics Data System (ADS)

    Závodný, Zdenko; Bereznai, Jozef; Urban, František

    2016-06-01

    Safe and effective loading of nuclear reactor fuel assemblies demands qualitative and quantitative analysis of the relationship between the coolant temperature in the fuel assembly outlet, measured by the thermocouple, and the mean coolant temperature profile in the thermocouple plane position. It is not possible to perform the analysis directly in the reactor, so it is carried out using measurements on the physical model, and the CFD fuel assembly coolant flow models. The CFD models have to be verified and validated in line with the temperature and velocity profile obtained from the measurements of the cooling water flowing in the physical model of the fuel assembly. Simplified physical model with perforated central tube and its validated CFD model serve to design of the second physical model of the fuel assembly of the nuclear reactor VVER 440. Physical model will be manufactured and installed in the laboratory of the Institute of Energy Machines, Faculty of Mechanical Engineering of the Slovak University of Technology in Bratislava.

  11. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  12. AEROSOL NUCLEATION AND GROWTH DURING LAMINAR TUBE FLOW: MAXIMUM SATURATIONS AND NUCLEATION RATES. (R827354C008)

    EPA Science Inventory

    An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...

  13. Computational fluid dynamic modelling of the effect of ventilation mode and tracheal tube position on air flow in the large airways.

    PubMed

    Lumb, A B; Burns, A D; Figueroa Rosette, J A; Gradzik, K B; Ingham, D B; Pourkashanian, M

    2015-05-01

    We have used computational fluid dynamic modelling to study the effects of tracheal tube size and position on regional gas flow in the large airways. Using a three-dimensional mathematical model, we simulated flow with and without a tracheal tube, replicating both physiological and artificial breathing. Ventilation through a tracheal tube increased proportional flow to the left lung from 39.5% with no tube to 43.1-47.2%, depending on tube position. Ventilation mode and tube distance from the carina had no effect on flow. Lateral displacement and deflection of the tube increased ventilation to the ipsilateral lung; for example, when deflected 10° to the left of centre, flow to the left lung increased from 43.8 to 53.7%. Because of the small diameter of a tracheal tube relative to the trachea, gas exits a tube at high velocity such that regional ventilation may be affected by changes in the position and angle of the tube. PMID:25581493

  14. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  15. a Numerical Study of Unsteady Fluid Flow in In-Line and Staggered Tube Banks

    NASA Astrophysics Data System (ADS)

    Beale, S. B.; Spalding, D. B.

    1999-08-01

    This paper is concerned with the results of numerical calculations for transient flow in in-line-square and rotated-square tube banks with a pitch-to-diameter ratio of 2:1, in the Reynolds number range of 30-3000. Transient-periodic behaviour is induced by the consideration of two or more modules, with a sinusoidal span-wise perturbation being applied in the upstream module. There is a triode-like effect, whereby the downstream response to the stimulus is amplified, and there is a net gain in the crosswise flow component. When an appropriate feedback mechanism is provided, a stable transient behaviour is obtained, with alternate vortices being shed from each cylinder. Flow visualization studies of the results of the calculations are presented together with quantitative details of pressure drop, lift, drag and heat transfer. For the staggered bank, a wake-switching or Coanda effect was observed as the serpentine-shaped wake attached to alternate sides of the downstream cylinder. The induced response is independent of the amplitude and frequency of the applied disturbance, including the case of spontaneous behaviour with no excitation mechanism. For the in-line case where each cylinder is in the shadow of the previous one, the motion is less pronounced; however, a shear-layer instability associated with the alternating spin of shed vortices was observed. In this case, the response was found to be somewhat dependent on the frequency of the applied disturbance, and a transient motion could not be induced spontaneously in the absence of an explicit feedback mechanism. Calculated Strouhal numbers were in fair agreement with experimental data: for the staggered geometry, they had values of between 0.26 and 0.35, or from -21 to +6% higher than measured values, while for the in-line geometry, the Strouhal numbers ranged between 0.09 and 0.12, or about 20-40% lower than experimental values.

  16. Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle -- Part 2: R-134a

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    2000-07-01

    Local, experimental heat transfer coefficients have been obtained for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-134a data with a structured enhanced boiling tube are available. This tube has reentrant cavities designed for higher saturation pressure of refrigerants. The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual evaporator bundle. Both heat flux, 2,607 to 10,427 Btu/h{center_dot}f{sup 2} (8,224 to 32,893 W/m{sup 2}), and oil content, 0--12% (by weight), are varied; the mass flux is not an independent variable but determined by the heat flux. Local tube and bulk fluid temperatures are measured directly, by thermocouples, to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature setpoint (taken at the top of the tube bundle) is 40 F (4.4 C).

  17. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  18. An investigation into pulsating aurora

    NASA Astrophysics Data System (ADS)

    Williams, John Denis

    2002-01-01

    On March 13, 1997 a sounding rocket equipped to study pulsating aurora was launched into the recovery phase of a small magnetic substorm. The launch originated from Poker Flat, Alaska and moved northward, reaching a apogee of 385 km and crossing field lines from L = 5.6 to L = 8. This sounding rocket was the first to have instruments designed to measure the upgoing and downgoing electron precipitation in the region over a pulsating auroral event. Nine pulsations were observed during the course of the 10 minute flight. This dissertation discusses the design, fabrication and calibration of the particle detection instruments, which include solid state telescopes (SST's) and an electrostatic analyzer (ESA). Observations led to an inferred parallel electric field above the rocket, the first time such a field had been associated with pulsating aurora. The data showed that there were no pulsations for electrons with energies less than 5 keV for pitch-angles between 22° and 90° but pulsations were seen for electrons from 5 keV down to 1 keV for field aligned precipitating electrons and for all upgoing electrons. Furthermore, the greatest change between background and pulsation occurred for electrons between 10 and 20 keV with pitch-angles between 50° and 90°. Observations also showed anomolous pitch-angle distributions, with larger than expected fluxes of high energy electrons leaving the ionosphere. Also missing from the data is evidence of either velocity dispersed arrival of electrons or 3 Hz oscillations. The data analysis of the measurements provided many new insights into pulsating aurora and has raised questions about the source of the pulsating mechanism and the mechanism itself. The data are compared to three current theoretical models and we find that they cannot adequately describe the observations. Other models are discussed and also discarded as being unable to explain all of the observations.

  19. Numerical Study of Enhanced Heat Transfer and Flow of Water-glycol Mixture in Transversely Ribbed Circular Tubes

    NASA Astrophysics Data System (ADS)

    Zhao, H. X.; Han, J. T.; Yu, Z. T.; Shao, L.; Wang, M. X.

    2010-03-01

    The enhanced heat transfer and flow of water-glycol mixture in transversely ribbed circular tubes was numerically investigated with a 2D axisymmetric model. A pitch long section was chosen and periodic flow with isothermal surface condition within this tube section was computed with Fluent 6.2. The mean friction factor and heat transfer data are obtained. The influence of different rib height and rib pitch on the enhanced heat transfer and flow behavior was studied. The friction factor was well correlated with e/d, p/d and Re with one equation. No critical e/d, which exists for air, was found and the correlation of Nusselt number with Re, e/d, p/d cannot be correlated with similar equations used for air. This could be due to the uncertainty in computation and further experiments are needed to examine this.

  20. Solute uptake through the walls of a pulsating channel

    NASA Astrophysics Data System (ADS)

    Waters, S. L.

    2001-04-01

    We investigate the uptake of a passive solute through the walls of a pulsating, fluid-filled channel into an adjacent medium in which the solute diffuses and is consumed at a constant rate. One end of the channel is open to well-mixed fluid containing the solute. The channel walls oscillate periodically in time and this prescribed motion generates steady streaming within the channel. We determine how this flow enhances the overall solute consumption (i.e. the flux of solute into the channel), the solute dispersion along the channel and the quantity of solute in the adjacent medium. The solute disperses in the channel due to the interaction between advection and transverse diffusion. The time-mean solute distribution throughout the channel and the medium is determined for a wide range of parameters. The results are applied to a new surgical technique used to treat patients with severe coronary artery disease, in which narrow tubes are created within ischemic heart muscle in an attempt to reperfuse the area directly with oxygenated blood.

  1. "Virtual injector" flow tube method for measuring relative rates kinetics of gas-phase and aerosol species.

    PubMed

    Renbaum-Wolff, Lindsay; Smith, Geoffrey D

    2012-06-28

    A new method for measuring gas-phase and aerosol reaction kinetics is described in which the gas flow, itself, acts as a "virtual injector" continuously increasing the contact time in analogy to conventional movable-injector kinetics techniques. In this method a laser is directed down the length of a flow tube, instantly initiating reaction by photodissociation of a precursor species at every point throughout the flow tube. Key tropospheric reactants such as OH, Cl, NO(3), and O(3) can be generated with nearly uniform concentrations along the length of the flow tube in this manner using 355 nm radiation from the third harmonic of a Nd:YAG laser. As the flow travels down the flow tube, both the gas-phase and particle-phase species react with the photogenerated radicals or O(3) for increasingly longer time before exiting and being detected. The advantages of this method are that (1) any wall loss of gas-phase and particle species is automatically accounted for, (2) the reactions are conducted under nearly pseudo-first-order conditions, (3) the progress of the reaction is followed as a continuous function of reaction time instead of reactant concentration, (4) data collection is quick with an entire decay trace being collected in as little as 1 min, (5) relative rates of several species can be measured simultaneously, and (6) bimolecular rate constants at least as small as k = 10(-17) (cm(3)/molecule)/s, or aerosol uptake coefficients at least as small as γ = 10(-4), can be measured. Using the virtual injector technique with an aerosol chemical ionization mass spectrometer (CIMS) as a detector, examples of gas-phase relative rates and uptake by oleic acid particles are given for OH, Cl, NO(3), and O(3) reactions with most agreeing to within 20% of published values, where available.

  2. An experimental investigation of flow patterns and liquid entrainment in a horizontal-tube evaporator

    NASA Astrophysics Data System (ADS)

    Barnhart, John Steven

    An experimental study of two-phase flow patterns and droplet entrainment in a horizontal-tube evaporator was conducted. Measurements were made with serpentine aluminum and glass evaporators with geometries typical of those used for domestic refrigeration. The refrigerant in the majority of tests was R134a, which will replace R12 for refrigeration and automotive air-conditioning in 1995. The phenomenon of primary interest was the nonequilibrium transport of droplets within superheated vapor at the evaporator exit. Of particular concern were substantial variations in the liquid rate with time, and corresponding fluctuations in exit temperature. These variations are due to the formation of slugs which rapidly transport a surplus of liquid toward the exit. A flow loop was constructed to circulate oil-free refrigerant through the evaporator under widely varying conditions. Liquid carry over (expressed as a dimensionless entrained mass fraction, EMF) was measured as a function of inlet quality, heat flux, mass flux, and exit superheat. A laser-based phase/Doppler particle analyzer was used to measure droplet diameters and velocities at the evaporator exit. Tests with three refrigerants over wide ranges of operating conditions revealed time-averaged EMF's of no more than 0.1 percent. Analysis of variance showed exit superheat to have the strongest effect, followed by mass flux, inlet quality, and heat flux. Time-averaged EMF's varied with operating conditions by several orders of magnitude, decreasing with increasing superheat level (due to lower entrainment rates near the exit and more rapid droplet vaporization) and mass flux and inlet quality (due to reduced slug formation). The incidence of slug flow and its effect on evaporator exit conditions were documented in time-resolved experiments, using techniques such as auto- and cross-correlation and Fourier transform. Time-resolved EMF's as high as one percent were observed, as well as sharp reductions in exit superheat

  3. Modeling of pulsating heat pipes.

    SciTech Connect

    Givler, Richard C.; Martinez, Mario J.

    2009-08-01

    This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. The physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.

  4. Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences

    SciTech Connect

    Jackson, J. D.

    2012-07-01

    Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimes fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)

  5. Ground Observations of ULF Pulsations During Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lessard, M.; Jones, S.; Engebretson, M.

    2008-12-01

    The ROPA (Rocket Observations of Pulsating Aurora) sounding rocket was launched northward from Poker Flat, crossing the poleward boundary of a region of pulsating aurora. In association with ground support (incoherent scatter radar, ULF search-coil magnetometer, fluxgate magnetometer, and all sky imager), pulsating auroral signatures have been observed on the ground and in space. During or before the periods of pulsating aurora, the observations of ULF waves revealed two signatures. A narrow band signal, which exhibits an abrupt onset and a rising tone from 0.1 to 0.3 Hz over the course of an hour or two, precedes the pulsating aurora in 4 of 5 events studied but is not observed in the 5th event. Following the narrow band signature, or possibly beginning while the narrow band signal is still observed, broad band waves (characterized by noisy spectral structure) are observed that are strongly modulated (in all of the events) with a period on the order of 10 15 minutes. In this presentation, we discuss the nature of these waves such as polarization (predominantly right handed). Some of the events show double band spectral signatures where the upper ones rise and lower ones fall with periodic spectral signatures (4 - 5 min) and harmonic structures. It is also discussed how they are generated and what role they might play in pulsating aurora.

  6. Secondary flow morphologies due to model stent-induced perturbations in a 180° curved tube during systolic deceleration

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-03-01

    Morphological changes in secondary flow structures due to a stent model were investigated under physiological inflow conditions. The stent model was inserted upstream of a 180° curved tube artery model. A carotid artery flow rate with its characteristic systolic and diastolic phases was supplied by a pump to drive a blood-analog working fluid. Phase-averaged, two-component, two-dimensional (2C-2D) particle image velocimeter measurements revealed the changing morphologies of these secondary flow structures. Continuous wavelet transforms provided an enhanced means to detect coherent secondary flow structures in this bio-inspired experimental study. A two-dimensional Ricker wavelet was used, and the optimal wavelet scale was determined using Shannon entropy as a measure of randomness in the wavelet-transformed vorticity fields. Planar secondary flow vortical structures at the 90° location in the curved tube were observed to exhibit distinct spatio-temporal characteristics different than the baseline flow without the stent. Flow patterns observed at the systolic peak comprised of early Lyne-type, along with a deformed Dean-type pair of ordered, coherent, high-circulation and counter-rotating vortical structures. Systolic deceleration was marked by the breakdown of large-scale coherent vortices into multiple, disordered, low-circulation, coherent vortical structures, indicating new transitional secondary flow morphologies. These multi-scale secondary flow morphologies arise due to the combination of imbalances in centrifugal and pressure forces, and stent-induced flow perturbations. The detailed flow physics associated with the formation of Dean and Lyne vortices are described in previous publications that have been cited in the manuscript. The secondary flow structures reported here are driven by similar fundamental mechanisms, but additionally contain more complicated effects, such as asymmetry and multiple strengths, that cannot be predicted from simple theories.

  7. On the features, successes and challenges of selected ion flow tube mass spectrometry.

    PubMed

    Spanel, Patrik; Smith, David

    2013-01-01

    The major features of the selected ion flow tube mass spectrometry (SIFT-MS) analytical method that was conceived and designed for the analysis, in real time, of air obviating sample collections into bags or extraction by pre-concentration of trace compounds onto surfaces are reviewed. The unique analytical capabilities of SIFT-MS for ambient analysis are stressed that allow quantification of volatile organic and inorganic compounds directly from the measurement of physical parameters without the need for regular instrumental calibration using internal or external standards. Then, emphasis is placed on the challenging real-time accurate analysis of single exhalations of humid breath, which is now achieved and readily facilitates wider applications of SIFT-MS in other fields where trace gas analysis has value. The quality of the data obtained by SIFT-MS is illustrated by the quantification of some exhaled breath metabolites that are of immediate relevance to physiology and medicine, including that of hydrogen cyanide in the breath of patients with cystic fibrosis. The current status of SIFT-MS is revealed by a form of a strengths, weakness, opportunities and threats (SWOT) analysis intended to present an objective view of this analytical technique and the likely way forward towards its further development and application. PMID:24575622

  8. Determination of olive oil oxidative status by selected ion flow tube mass spectrometry.

    PubMed

    Davis, Brett M; McEwan, Murray J

    2007-05-01

    The emergence of primary and secondary oxidation products in New Zealand extra virgin olive oil during accelerated thermal oxidation was measured and correlated with the concentrations of 13 headspace volatile compounds measured by selected ion flow tube mass spectrometry (SIFT-MS). SIFT-MS is a mass spectrometric technique that permits qualitative and absolute quantitative measurements to be made from whole air, headspace, or breath samples in real-time down to several parts per billion (ppb). It is well-suited to high-throughput analysis of headspace samples. Propanal, hexanal, and acetone were found at high concentrations in a rancid standard oil, while propanal, acetone, and acetic acid showed marked increases with oxidation time for the oils used in this study. A partial least-squares (PLS) regression model was constructed, which allowed the prediction of peroxide values (PV) for three separate oxidized oils. Sensory rancidity was also measured, although the correlations of headspace volatile compounds with sensory rancidity score were less satisfactory, and too few results were available for the construction of a PLS regression model. A fast (approximately 1 min), reliable method for prediction of olive oil PVs by SIFT-MS was developed.

  9. 3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Jang, Jiin-Yuh

    2005-05-01

    Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.

  10. Numerical simulation of fluid flow and heat transfer in enhanced copper tube

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Zhen, T.; Kadir, A. K.

    2013-06-01

    Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.

  11. Fluid structure interaction modelling for the vibration of tube bundles, part I: analysis of the fluid flow in a tube bundle

    SciTech Connect

    Desbonnets, Quentin; Broc, Daniel

    2012-07-01

    It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier

  12. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  13. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Hussain, Alamin; Fsadni, Andrew M.

    2016-03-01

    Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  14. Experimental and numerical investigations of flow structure and momentum transport in a turbulent buoyancy-driven flow inside a tilted tube

    NASA Astrophysics Data System (ADS)

    Znaien, J.; Hallez, Y.; Moisy, F.; Magnaudet, J.; Hulin, J. P.; Salin, D.; Hinch, E. J.

    2009-11-01

    Buoyancy-driven turbulent mixing of fluids of slightly different densities [At=Δρ/(2⟨ρ⟩)=1.15×10-2] in a long circular tube tilted at an angle θ=15° from the vertical is studied at the local scale, both experimentally from particle image velocimetry and laser induced fluorescence measurements in the vertical diametrical plane and numerically throughout the tube using direct numerical simulation. In a given cross section of the tube, the axial mean velocity and the mean concentration both vary linearly with the crosswise distance z from the tube axis in the central 70% of the diameter. A small crosswise velocity component is detected in the measurement plane and is found to result from a four-cell mean secondary flow associated with a nonzero streamwise component of the vorticity. In the central region of the tube cross section, the intensities of the three turbulent velocity fluctuations are found to be strongly different, that of the streamwise fluctuation being more than twice larger than that of the spanwise fluctuation which itself is about 50% larger than that of the crosswise fluctuation. This marked anisotropy indicates that the turbulent structure is close to that observed in homogeneous turbulent shear flows. Still in the central region, the turbulent shear stress dominates over the viscous stress and reaches a maximum on the tube axis. Its crosswise variation is approximately accounted for by a mixing length whose value is about one-tenth of the tube diameter. The momentum exchange in the core of the cross section takes place between its lower and higher density parts and there is no net momentum exchange between the core and the near-wall regions. A sizable part of this transfer is due both to the mean secondary flow and to the spanwise turbulent shear stress. Near-wall regions located beyond the location of the extrema of the axial velocity (|z|≳0.36 d) are dominated by viscous stresses which transfer momentum toward (from) the wall near the

  15. Effect of Some Factors on Critical Condition of Ice Formation for Flowing Supercooled Organic Water Solution in Cooled Circular Tube

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Miyahara, Satoshi; Takeya, Kengo

    Supercooling characteristics of three kinds of organic water solutions (D-Sorbitol, Glycerol, Glucose) in a forced flow were investigated experimentally. The critical condition of ice nucleation in a cooled circular tube was examined for concentration of water solution and cooling temperature under various Reynolds numbers. It was found that the flow velocity and cooling temperature conditions in a laminar flow region. However, in a turbulent flow region, the critical degree of supercooling was influenced by the flow velocity and cooling temperature. As a result, non-dimensional correlation equations for the critical condition of ice formation were derived in the laminar and turbulent flow region as a function of some non-dimensional parameters. While the ice making efficiency of D-Sorbitol water solution was measured under various Reynolds numbers and cooling temperature conditions on the stable supercooling condition. The ice making efficiency of supercooled organic water solution was influenced by the degree of the supercooling based on the mixed organic water solution temperature at the outlet of the inner tube.

  16. Toward non-Newtonian effects on secondary flow structures in a 180 degree bent tube model for curved arteries

    NASA Astrophysics Data System (ADS)

    van Wyk, Stevin; Prahl Wittberg, Lisa; Fuchs, Laszlo; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    The purpose of this study is to investigate the development of vortical flow structures of blood like fluids in a 180 degree tube bend, analogous to the aortic arch. Cardiovascular diseases are localized to regions of curvature in the arterial tree. The pathology of atherogenesis is widely considered an inflammatory response, hypothesized to be modulated by the interplay between Wall Shear Stress (WSS) variations and particulate transport mechanisms from the bulk fluid core to the near wall. The WSS is determined by the local flow characteristics as well as the rheological properties of the blood, which in turn are dependent on the bulk secondary flows. In this work, the time dependent fluid flow under various physiological flow conditions are investigated both experimentally and numerically. A Newtonian blood analog fluid model is considered in both studies to validate both methods and thereby study flow structure development during steady as well as pulsatile conditions. Particle image velocimetry (2C - 2D PIV) is used to acquire velocity field data from an acrylic tube bend. The numerical study is extended to consider the non-Newtonian properties of blood according to an empirical model to identify the relative importance of the non-Newtonian behavior. The studies show complex Dean and Lyne vortex interaction that are enhanced with increasing peak Reynolds numbers.

  17. Columbia University flow instability experimental program: Volume 2. Single tube uniformly heated tests -- Part 2: Uncertainty analysis and data

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-05-01

    In June 1988, Savannah River Laboratory requested that the Heat Transfer Research Facility modify the flow excursion program, which had been in progress since November 1987, to include testing of single tubes in vertical down-flow over a range of length to diameter (L/D) ratios of 100 to 500. The impetus for the request was the desire to obtain experimental data as quickly as possible for code development work. In July 1988, HTRF submitted a proposal to SRL indicating that by modifying a facility already under construction the data could be obtained within three to four months. In January 1990, HTFR issued report CU-HTRF-T4, part 1. This report contained the technical discussion of the results from the single tube uniformly heated tests. The present report is part 2 of CU-HTRF-T4 which contains further discussion of the uncertainty analysis and the complete set of data.

  18. Flow and cold heat-storage characteristics of phase-change emulsion in a coiled double-tube heat exchanger

    SciTech Connect

    Inaba, H.; Morita, S.

    1995-05-01

    This paper dealt with the flow and cold heat-storage characteristics of the oil (tetradecane, C{sub 14}H{sub 30}, freezing point 278.9 K)/water emulsion as a latent heat-storage material having a low melting point. A coiled double-tube heat exchanger was used for the cold heat storage experiment. The pressure drop, the heat transfer coefficient, and the finishing time of cold heat storage in the coiled tube were measured as experimental parameters. It was understood that the flow behavior of the emulsion as a non-Newtonian fluid had an important role in the present cold heat storage. The useful nondimensional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient, and the cold heat storage time were derived in terms of modified Dean number and heat capacity ratio. 11 refs., 13 figs., 1 tab.

  19. 3-D solution of flow in an infinite square array of circular tubes by using boundary-fitted coordinate system

    SciTech Connect

    Chen, B.C.J.; Chien, T.H.; Sha, W.T.; Kim, J.H.

    1982-01-01

    Heat transfer and fluid flow over circular tubes have wide applications in the design of heat exchangers and nuclear reactors. However, it is often difficult to accurately calculate the detailed velocity and temperature distributions of the flow because of the complex geometry involved in the analysis, and a lack of an appropriate coordinate system for the analysis. Boundary conditions on the surfaces of the tubes are often interpolated. This interpolation process introduces inaccuracy. To overcome this difficulty, the present study used the technique of the boundary-fitted coordinate system. In this technique, all the physical boundaries are transformed into constant coordinate lines in the transformed coordinates. Therefore, the boundary conditions can be specified on the grid points without interpolation.

  20. Fabrication of carbon nano-tubes decorated with ultra fine superparamagnetic nano-particles under continuous flow conditions.

    PubMed

    Chin, Suk Fun; Iyer, K Swaminathan; Raston, Colin L

    2008-03-01

    Ultra fine (2-3 nm) magnetite (Fe(3)O(4)) nano-particles are uniformly deposited on single-walled carbon nano-tubes (SWCNTs) pre-functionalised with carboxylic acid groups using microwave radiation. The deposition process involves chemical precipitation associated with continuous flow spinning disc processing (SDP), as a rapid, environmentally friendly approach which is readily scalable for large scale synthesis. The resulting decorated SWCNTs are superparamagnetic with specific saturated magnetization of 30 emu g(-1). PMID:18305862

  1. Sunspots and the physics of magnetic flux tubes. IV - Aerodynamic lift on a thin cylinder in convective flows

    NASA Technical Reports Server (NTRS)

    Tsinganos, K. C.

    1979-01-01

    The aerodynamic lift exerted on a long circular cylinder immersed in a convective flow pattern in an ideal fluid is calculated to establish the equilibrium position of the cylinder. The calculations establish the surprising result that the cylinder is pushed out the upwellings and the downdrafts of the convective cell, into a location midway between them. The implications for the intense magnetic flux tubes in the convection beneath the surface of the sun are considered.

  2. Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS).

    PubMed

    Storer, Malina K; Hibbard-Melles, Kim; Davis, Brett; Scotter, Jenny

    2011-10-01

    Selected ion flow tube-mass spectrometry has been used to measure the volatile compounds occurring in the headspace of urine samples inoculated with common urinary tract infection (UTI)-causing microbes Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterococcus faecalis, or Candida albicans. This technique has the potential to offer rapid and simple diagnosis of the causative agent of UTIs.

  3. Detection of pulsation effects on turbine meters by pulse period modulation measurements

    SciTech Connect

    McKee, R.J.

    1995-12-31

    The objective of the research described in this paper is to evaluate the pulse period modulation method as a potential approach for meeting the gas industries needs for detection of pulsation effects on turbine meters at field installations. Research has been conducted as part of the Gas Research Institute Metering Research Program in response to knowledge that pulsation causes over registration of flow in some cases while not causing any errors in other apparently similar pulsating conditions. Operators need to be able to detect when pulsation is causing significant errors. Methods of detection based on existing theory rely on measuring velocity modulation which is not practical at typical natural gas metering sites. The proposed new method replaces velocity modulation measurements with a monitoring of pulse period modulations that are related to rotor speed changes that result from pulsating flow. Test results indicate that for the tested turbine meters there is an approximate relationship between period modulation and velocity modulation in which period modulation increases as pulsation induced error increases. There are unavoidable uncertainties in quantifying pulse period modulation such that an accurate determination of pulsation effects from period modulation can not be made. However, the presence of a significant error due to pulsation can be detected as a change in the pulse period modulation level.

  4. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  5. Ensemble phase averaging equations for multiphase flows in porous media, part I: the bundle-of-tubes model

    SciTech Connect

    Yang, Dali; Zhang, Duan; Currier, Robert

    2008-01-01

    A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy's law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy's law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang 2009). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.

  6. Spectral peculiarities of turbulent pulsations of submerged water jets

    NASA Astrophysics Data System (ADS)

    Znamenskaya, I. A.; Koroteeva, E. Yu.; Novinskaya, A. M.; Sysoev, N. N.

    2016-07-01

    The spectra of turbulent jet temperature pulsations at 1-40 Hz frequencies have been experimentally studied based on high-speed thermography of the water boundary layer: the region where an impact jet interacts with a surface transparent to IR radiation, as well as the near-wall region where two submerged jets interact in a disc-shaped tee-joint. It has been indicated that the slopes of the spectra of impact submerged jet turbulent pulsations are close to-5/3 and a double inertial interval exists in a quasi-2D turbulent flow that is formed when two jets mix.

  7. Design and Evaluation of Modifications to the NASA Langley Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Parrott, Tony L.; Smith, Charles D.

    2004-01-01

    The need to minimize fan noise radiation from commercial aircraft engine nacelles continues to provide an impetus for developing new acoustic liner concepts. If the full value of such concepts is to be attained, an understanding of grazing flow effects is crucial. Because of this need for improved understanding of grazing flow effects, the NASA Langley Research Center Liner Physics Group has invested a large effort over the past decade into the development of a 2-D finite element method that characterizes wave propagation through a lined duct. The original test section in the Langley Grazing IncidenceTube was used to acquire data needed for implementation of this finite element method. This test section employed a stepper motor-driven axial-traversing bar, embedded in the wall opposite the test liner, to position a flush-mounted microphone at pre-selected locations. Complex acoustic pressure data acquired with this traversing microphone were used to educe the acoustic impedance of test liners using this 2-D finite element method and a local optimization technique. Results acquired in this facility have been extensively reported, and were compared with corresponding results from various U.S. aeroacoustics laboratories in the late 1990 s. Impedance data comparisons acquired from this multi-laboratory study suggested that it would be valuable to incorporate more realistic 3-D aeroacoustic effects into the impedance eduction methodology. This paper provides a description of modifications that have been implemented to facilitate studies of 3-D effects. The two key features of the modified test section are (1) the replacement of the traversing bar and its flush-mounted microphone with an array of 95 fixed-location microphones that are flush-mounted in all four walls of the duct, and (2) the inclusion of a suction device to modify the boundary layer upstream of the lined portion of the duct. The initial results achieved with the modified test section are provided in this

  8. Fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin lengths

    NASA Astrophysics Data System (ADS)

    Grabski, Jakub Krzysztof; Kołodziej, Jan Adam

    2016-06-01

    In the paper an analysis of fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin length is conducted. Nonlinear momentum equation of a power-law fluid flow and nonlinear energy equation are solved using the Picard iteration method. Then on each iteration step the solution of inhomogeneous equation consists of two parts: the general solution and the particular solution. Firstly the particular solution is obtained by interpolation of the inhomogeneous term by means of the radial basis functions and monomials. Then the general solution is obtained using the method of fundamental solutions and by fulfilling boundary conditions.

  9. An experimental study of gas-liquid slug flow in vertical and inclined tubes using high speed motion analyzer

    SciTech Connect

    Xia, G.; Zhou, F.; Hu, M.

    1996-12-31

    Experimental investigation was carried out for gas-liquid slug flow in vertical and inclined tubes. The non-invasive measurements of the gas-liquid slug flow were taken by using the EKTAPRO 1000 High Speed Motion Analyzer. The present paper has obtained the information on the velocity of the Taylor bubble, the size distribution of the dispersed bubbles in the liquid slugs and some characteristics of the liquid film around the Taylor bubble. The experimental results are in good agreement with the available data.

  10. Numerical assessment of a novel concept for mitigating the unsteady pressure pulsations associated to decelerating swirling flow with precessing helical vortex

    NASA Astrophysics Data System (ADS)

    Tanasa, Constantin; Susan-Resiga, Romeo; Muntean, Sebastian; Stuparu, Adrian; Bosioc, Alin; Ciocan, Tiberiu

    2015-12-01

    Decelerated swirling flows in conical diffusers can develop self-induced instabilities for some configurations of incoming flow. As a result, an upstream steady and axis-symmetrical flow becomes unsteady and three-dimensional with associated pressure fluctuations that hinder the operation of tubomachines. This paper introduces a new approach for mitigating the swirling flow instabilities using a diaphragm into the cone. As a result, the severe flow deceleration is diminished, taming the precessing helical vortex and its associated pressure fluctuations. A full three-dimensional unsteady numerical study is performed for swirling flow apparatus developed at the Politehnica University of Timisoara. Fourier spectra corresponding to unsteady numerical data acquired without and with diaphragm are compared in several locations displaced along to the element of the cone in order to assess the novel concept. It is clearly revealed that the diaphragm mitigates the unsteadiness effects associated to the swirling flow with precessing helical vortex in the conical diffuser. The novel concept paves the way towards a new passive control technique.

  11. Structure of Black Aurora Associated With Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Kenward, D. R.; Fritz, B.; Lessard, M.; Fernandes, P. A.; Blandin, M.

    2015-12-01

    Morphological behavior of black aurora as it relates to pulsating aurora is investigated by examining a collection of ground-based observations from January 2007 in support of the ROPA rocket campaign. Images were sampled from video recorded by a Xybion intensified camera (30 fps) at Poker Flat Research Range, AK. The primary observations of black aurora were observed during the substorm recovery phase and separate patches of pulsating aurora as well as pulsating aurora from diffuse aurora. In these observations the black aurora forms an apparent firm boundary between the auroral forms in a new behavior that is in contrast with previously reported observations. Also presented for the first time are black curls in conjunction with pulsating aurora. Curl structures that indicate shear plasma flows in the ionosphere may be used as a proxy for converging/diverging electric fields in and above the ionosphere. This new subset of black auroral behavior may provide visual evidence of black aurora as an ionospheric feedback mechanism as related to pulsating aurora.

  12. Ultra-low-frequency magnetic pulsations in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.

    1990-01-01

    Spacecraft observations have shown that geomagnetic pulsations originating in magnetospheric processes, in spite of their small amplitude on the ground, have amplitudes in space relative to the local magnetic field of 5-10 percent and occasionally up to about 50 percent. It is noted that by studying geomagnetic pulsations, a detailed comparison can be made between plasma physics theory and observations that are not possible in laboratory experiments. Also geomagnetic pulsations play a role in magnetospheric dynamics and energy transport, and their study forms an integral part of enhancing the knowledge of the magnetosphere. The importance of spacecraft observations are discussed and attention is given to such topics as waves in the magnetosphere, field-line resonances, the quantitative analysis of a dipole field, plasma instabilities, and energy flow.

  13. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus

    SciTech Connect

    Wagshul, M.; Smith, S.; Wagshul, M.; McAllister, J.P.; Rashid, S.; Li, J.; Egnor, M.R.; Walker, M.L.; Yu, M.; Smith, S.D.; Zhang, G.; Chen, J.J.; Beneveniste, H.

    2009-03-01

    In communicating hydrocephalus (CH), explanations for the symptoms and clear-cut effective treatments remain elusive. Pulsatile flow through the cerebral aqueduct is often significantly elevated, but a clear link between abnormal pulsations and ventriculomegaly has yet to be identified. We sought to demonstrate measurement of pulsatile aqueductal flow of CSF in the rat, and to characterize the temporal changes in CSF pulsations in a new model of CH. Hydrocephalus was induced by injection of kaolin into the basal cisterns of adult rats (n = 18). Ventricular volume and aqueductal pulsations were measured on a 9.4 T MRI over a one month period. Half of the animals developed ventricular dilation, with increased ventricular volume and pulsations as early as one day post-induction, and marked chronic elevations compared to intact controls (volume: 130.15 {+-} 83.21 {mu}l vs. 15.52 {+-} 2.00 {mu}l; pulsations: 114.51 nl {+-} 106.29 vs. 0.72 {+-} 0.13 nl). Similar to the clinical presentation, the relationship between ventricular size and pulsations was quite variable. However, the pulsation time-course revealed two distinct sub-types of hydrocephalic animals: those with markedly elevated pulsations which persisted over time, and those with mildly elevated pulsations which returned to near normal levels after one week. These groups were associated with severe and mild ventriculomegaly respectively. Thus, aqueductal flow can be measured in the rat using high-field MRI and basal cistern-induced CH is associated with an immediate change in CSF pulsatility. At the same time, our results highlight the complex nature of aqueductal pulsation and its relationship to ventricular dilation.

  14. On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed

    NASA Technical Reports Server (NTRS)

    Sandbaek, Onulf; Leer, Egil; Hansteen, Viggo H.

    1994-01-01

    A one-fluid solar wind model is used to investigate some relations between coronal heating, the flux tube divergence near the Sun, and the solar wind proton flux and flow speed. The effects of energy addition to the supersonic region of the flow are also studied. We allow for a mechanical energy flux that heats the corona, and an Alfven wave energy flux that adds energy, mainly to the supersonic flow, both as momentum and as heat. We find that the mechanical energy flux determines the solar wind mass flux, and in order to keep an almost constant proton flux at the orbit of Earth with changing flow geometry, that the mechanical energy flux must vary linearly with the magnetic field in the inner corona. This thermally driven wind generally has a low asymptotic flow speed. When Alfven waves are added to the thermally driven flow, the asymptotic flow speed is increased and is determined by the ratio of the Alfven wave and the mechanical energy fluxes at the coronal base. Flow speeds characteristic of recurrent high-speed solar wind streams can be obtained only when the Alfven wave energy flux, deposited in the supersonic flow, is larger than the mechanical energy flux heating the corona.

  15. A study of pressure drop in a Capillary tube-viscometer for a two-phase flow

    SciTech Connect

    Ohene, F.; Livingston, C.; Matthews, C.; Rhone, Y.

    1995-09-01

    The analysis of pipeline transportation of highly concentrated suspensions such as coal-water slurries, can exhibit several flow characteristics depending on the concentration and the physical parameters of the dispersed phase. Experiments were conducted for coal-water slurries flows in a series of horizontal capillary tubes of diameters 0.8, 1.5 and 3.0 mm and 100 mm in length, in order to investigate the effect of concentration, pressure drop, and the transitional Reynolds number from laminar to turbulent flow in a homogeneous slurry. The solid concentration was varied from 15% to 63% in 0.1% xanthum gum solution. Pressure drop and the volume flow measurement were made using HVA-6 Capillary viscometer. The Reynolds numbers obtained were found to be dependent on the slurry concentration and the viscosity of the slurry mixture, but independent of the capillary diameter.

  16. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    SciTech Connect

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  17. Pulsating Star Mystery Solved

    NASA Astrophysics Data System (ADS)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  18. High latitude pulsating aurorae revisited

    SciTech Connect

    Wu, Q.; Rosenberg, T.J. )

    1992-01-03

    Dayside auroral pulsations (10-40 s periods) have been studied for different levels of geomagnetic disturbance with N{sub 2}{sup +} 427.8 nm emission data obtained at South Pole station, Antarctica ({minus}74.2{degree} MLAT). The occurrence distribution exhibits a single peak at magnetic noon under geomagnetically quiet conditions (0 {le} Kp < 1). With increased Kp, the distribution shifts to earlier times, the peak occurring at 1000-1030 MLT for 1 {le} Kp < 4. At these higher Kp levels a secondary occurrence peak is evident in the afternoon sector between 1400 and 1600 MLT, occurring earlier as Kp increases. These results are compared with those obtained separately for pre-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Davis, northern and southern hemisphere sites at approximately the same magnetic latitude as South Pole. South Pole and Ny Alesund observe morning peaks at the same time and with a similar lack of Kp dependence; South Pole and Davis observe afternoon peaks with similar Kp dependence, though the peak occurs earlier at Davis. In contrast to the results from the earlier studies, the South Pole observations show larger pulsation amplitudes in the morning sector and significantly higher occurrence rates overall.

  19. [Bachelard and the mathematical pulsation].

    PubMed

    Guitart, René

    2015-01-01

    The working mathematician knows a specific gesture named « mathematical pulsation », a necessary creative moving in diagrams of thoughts and interpretations of mathematical writings. In this perspective the fact of being an object is definitely undecided, and related to the game of relations. The purpose of this paper today is to construct this pulsation, starting from the epistemology of Bachelard, concerning mathematics as well as mathematical physics. On the way, we recover links between ideas of Bachelard and more recent specific propositions by Gilles Ch-let, Charles Alunni, or René Guitart. Also are used authors like Jacques Lacan, Arthur Koestler, Alfred N. Whitehead, Charles S. Peirce. We conclude that the mathematical work consists with pulsative moving in the space of diagrams; we claim that this view is well compatible with the Bachelard's analysis of scientific knowledge: the intellectual or formal mathematical data preceeds the empirical objects, and in some sense these objects result from the pulsative gestures of the thinkers. So we finish with a categorical scheme of the pulsation.

  20. [Bachelard and the mathematical pulsation].

    PubMed

    Guitart, René

    2015-01-01

    The working mathematician knows a specific gesture named « mathematical pulsation », a necessary creative moving in diagrams of thoughts and interpretations of mathematical writings. In this perspective the fact of being an object is definitely undecided, and related to the game of relations. The purpose of this paper today is to construct this pulsation, starting from the epistemology of Bachelard, concerning mathematics as well as mathematical physics. On the way, we recover links between ideas of Bachelard and more recent specific propositions by Gilles Ch-let, Charles Alunni, or René Guitart. Also are used authors like Jacques Lacan, Arthur Koestler, Alfred N. Whitehead, Charles S. Peirce. We conclude that the mathematical work consists with pulsative moving in the space of diagrams; we claim that this view is well compatible with the Bachelard's analysis of scientific knowledge: the intellectual or formal mathematical data preceeds the empirical objects, and in some sense these objects result from the pulsative gestures of the thinkers. So we finish with a categorical scheme of the pulsation. PMID:26223414

  1. The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube

    SciTech Connect

    Deendarlianto; Ousaka, Akiharu; Indarto; Kariyasaki, Akira; Lucas, Dirk; Vallee, Christophe; Vierow, Karen; Hogan, Kevin

    2010-10-15

    The purpose of the present study is to investigate the effects of surface tension on flooding phenomena in counter-current two-phase flow in an inclined tube. Previous studies by other researchers have shown that surface tension has a stabilizing effect on the falling liquid film under certain conditions and a destabilizing or unclear trend under other conditions. Experimental results are reported herein for air-water systems in which a surfactant has been added to vary the liquid surface tension without altering other liquid properties. The flooding section is a tube of 16 mm in inner diameter and 1.1 m length, inclined at 30-60 from horizontal. The flooding mechanisms were observed by using two high-speed video cameras and by measuring the time variation of liquid hold-up along the test tube. The results show that effects of surface tension are significant. The gas velocity needed to induce flooding is lower for a lower surface tension. There was no upward motion of the air-water interfacial waves upon flooding occurrence, even for lower a surface tension. Observations on the liquid film behavior after flooding occurred suggest that the entrainment of liquid droplets plays an important role in the upward transport of liquid. Finally, an empirical correlation for flooding velocities is proposed that includes functional dependencies on surface tension and tube inclination. (author)

  2. Radial Stellar Pulsation and Three-dimensional Convection. I. Numerical Methods and Adiabatic Test Cases

    NASA Astrophysics Data System (ADS)

    Geroux, Chris M.; Deupree, Robert G.

    2011-04-01

    We are developing a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light and velocity curves. Previous two-dimensional calculations were prevented from doing this because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We remove this difficulty by defining our coordinate system flow algorithm to require that the mass in a spherical shell remains constant throughout the pulsation cycle. We perform adiabatic test calculations to show that large amplitude solutions repeat over more than 150 pulsation periods. We also verify that the computational method conserves the peak kinetic energy per period, as must be true for adiabatic pulsation models.

  3. RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. I. NUMERICAL METHODS AND ADIABATIC TEST CASES

    SciTech Connect

    Geroux, Chris M.; Deupree, Robert G.

    2011-04-10

    We are developing a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light and velocity curves. Previous two-dimensional calculations were prevented from doing this because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We remove this difficulty by defining our coordinate system flow algorithm to require that the mass in a spherical shell remains constant throughout the pulsation cycle. We perform adiabatic test calculations to show that large amplitude solutions repeat over more than 150 pulsation periods. We also verify that the computational method conserves the peak kinetic energy per period, as must be true for adiabatic pulsation models.

  4. Pulsating aurora: The importance of the ionosphere

    SciTech Connect

    Stenbaek-Nielsen, H.C.

    1980-05-01

    A number of different, but mainly optical, observations made in pulsating auroras are presented. These observations indicate that active ionospheric processes are likely to play an important role in causing and/or modifying pulsating aurora.

  5. Channel and tube flow features associated with the Twin Craters Lava Flow, Zuni-Bandera Volcanic Field, NM: Insights into similar features on Mars

    NASA Astrophysics Data System (ADS)

    Samuels, R.; deWet, A.; Bleacher, J. E.; von Meerscheidt, H. C.; Hamilton, C.; Garry, W. B.

    2013-12-01

    The Zuni-Bandera Volcanic Field lies near the center of the Jemez lineament that extends from central Arizona to northeastern New Mexico. The Jemez lineament is a result of rifting in the Earth's crust and is associated with volcanic activity that spans the last 16 Ma. The youngest volcanic activity associated with the lineament includes basaltic lava that was erupted 3 ka ago to form the McCartys Flow. The Twin Craters flow is moderately older (18.0 ka), but it also well-preserved and provides an ideal location to investigate volcanic processes and landforms. In this study, we combined detailed field observations and mapping with remote sensing to better understand variations in morphology along the transport system of the flow . The Twin Craters flow is characterized as an aā and tube-fed pāhoehoe flow with braided or branching tubes and channels; and associated aā and pāhoehoe break-outs. It is possible that the variations in morphology along the same transport structure might be related to pre-flow slope, which might have also been variable along flow. Shatter ring features are thought to be related to changes in eruption rate, and therefore, local flux through the system. However, over-pressurization of the tube might also be related to changes in local discharge rate associated with the ponding and release of lava within the transport system that may be due to interactions between the lava and obstacles along the flow's path (see Mallonee et al., this meeting). Many of these features are similar to features present in the Tharsis Montes region of Mars and particularly on the southern apron of Ascraeus Mons. The detailed description of the morphology of the Twin Craters Lava Flow and the understanding of the emplacement mechanisms will be crucial in identifying the processes that formed the Ascraeus flows and channels. This will aid in determining if the lava surface textures are directly related to eruption conditions or if they have been significantly

  6. The limit of the film extraction technique for annular two-phase flow in a small tube

    SciTech Connect

    Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.

    1999-07-01

    The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In the experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirely from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.

  7. The limit of the film extraction technique for annular two-phase flow in a small tube

    SciTech Connect

    Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.

    1999-07-01

    The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et. al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In these experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirely from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.

  8. Heat Transfer Enhancement in a Helically Coiled Tube with Al2O3/WATER Nanofluid Under Laminar Flow Condition

    NASA Astrophysics Data System (ADS)

    Kumar, P. C. Mukesh; Kumar, J.; Suresh, S.; Babu, K. Praveen

    2012-10-01

    In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 < De < 2700, and 5200 < Re < 8600 under laminar flow condition and counter flow configuration. These enhancements are due to higher thermal conductivity of nanofluid while increasing particle volume concentration and Brownian motion of nanoparticles. It is studied that there is no negative impact on formation of secondary flow and mixing of fluid when nanofluid passes through the helically coiled tube.

  9. Liquid-Nitrogen Test for Blocked Tubes

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.

    1984-01-01

    Nondestructive test identifies obstructed tube in array of parallel tubes. Trickle of liquid nitrogen allowed to flow through tube array until array accumulates substantial formation of frost from moisture in air. Flow stopped and warm air introduced into inlet manifold to heat tubes in array. Tubes still frosted after others defrosted identified as obstructed tubes. Applications include inspection of flow systems having parallel legs.

  10. The effects that changes in the diaphragm aperture have on the resulting shock tube flow

    NASA Astrophysics Data System (ADS)

    Houas, L.; Biamino, L.; Mariani, C.; Igra, O.; Jourdan, G.; Massol, A.

    2012-07-01

    In a conventional shock tube, the driver and the driven sections have similar (if not identical) cross-sectional area and the diaphragm opened area, upon rupturing, is practically equal to the tube cross-sectional area. Such geometry results in generating a well-formed shock wave in the tube's driven section. The present experimental work checks the effects that changes in the diaphragm ruptured area have on the generated shock and rarefaction waves. Experiments were conducted in an 80 mm by 80 mm cross section shock tube generating incident shock waves having Mach numbers within the range from 1.06 to 1.25. In each run, pressure histories were recorded along the driven and the driver sections of the shock tube. The recorded pressures reveal that progressive reduction in the diaphragm open space resulted in a weaker shock and both longer time and distance until the compression waves generated close to the diaphragm coalesces into a shock wave. In addition, reducing the open space of the diaphragm resulted in a significant slow down in the high pressure reduction prevailing in the driver section.

  11. Results of 500-hour superheater/intermediate temperature airheater tube corrosion tests in the MHD coal fired flow facility

    SciTech Connect

    White, M.K.; Li, M.

    1991-05-01

    Corrosion data have been obtained for tubes, (austenitic steels, carbon steels, and intermediate chromium steels), exposed to conditions representative of superheater and intermediate temperature air heater components for 500 hours in a proof-of-concept magnetohydrodynamics MHD coal fired flow facility (MHD CFFF). The tubes, coated with K{sub 2}SO{sub 4}-rich deposits, developed oxide surface scales which were not protective against intergranular sulfur penetration of the subsurface metal. Corrosion rates derived from scale thickness and intergranular corrosion depth measurements are reported, along with scale morphologies and compositions. The implications of the results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions. 4 refs., 27 figs., 6 tabs.

  12. Numerical investigation of forced convection of nano fluid flow in horizontal U-longitudinal finned tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.

    2015-11-01

    A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.

  13. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  14. A Mathematical Model for the Flow of a Casson Fluid due to Metachronal Beating of Cilia in a Tube

    PubMed Central

    Siddiqui, A. M.; Farooq, A. A.; Rana, M. A.

    2015-01-01

    A mathematical model is developed to study the transport mechanism of a Casson fluid flow inspired by the metachronal coordination between the beating cilia in a cylindrical tube. A two-dimensional system of nonlinear equations governing the flow problem is formulated by using axisymmetric cylindrical coordinates and then simplified by employing the long wavelength and low Reynolds number assumptions. Exact solutions are derived for the velocity components, the axial pressure gradient, and the stream function. However, the expressions for the pressure rise and the volume flow rate are evaluated numerically. The features of the flow characteristics such as pumping and trapping are illustrated and discussed with the help of graphs. It is observed that the volume flow rate is influenced significantly by the width of plug flow region Hp as well as the cilia length parameter ε. The analysis is also applied and compared with the estimated value of the volume flow rate of epididymal fluid in the ductus efferentes of the human male reproductive tract. PMID:25789334

  15. A mathematical model for the flow of a Casson fluid due to metachronal beating of cilia in a tube.

    PubMed

    Siddiqui, A M; Farooq, A A; Rana, M A

    2015-01-01

    A mathematical model is developed to study the transport mechanism of a Casson fluid flow inspired by the metachronal coordination between the beating cilia in a cylindrical tube. A two-dimensional system of nonlinear equations governing the flow problem is formulated by using axisymmetric cylindrical coordinates and then simplified by employing the long wavelength and low Reynolds number assumptions. Exact solutions are derived for the velocity components, the axial pressure gradient, and the stream function. However, the expressions for the pressure rise and the volume flow rate are evaluated numerically. The features of the flow characteristics such as pumping and trapping are illustrated and discussed with the help of graphs. It is observed that the volume flow rate is influenced significantly by the width of plug flow region H p as well as the cilia length parameter ε. The analysis is also applied and compared with the estimated value of the volume flow rate of epididymal fluid in the ductus efferentes of the human male reproductive tract. PMID:25789334

  16. The dynamical role of vortex tubes and sheets in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Pirozzoli, Sergio

    2009-11-01

    Vortex sheets and tubes are extracted from DNS of a canonical compressible boundary layer, and their dynamical contribution analyzed by means of a non-local analysis based on the solution of the Poisson equation for the vector potential. The results show non-negligible contribution of vortex sheets to the wall layer dynamics, especially in the inner layer. The statistical relationship between tubes and sheets is also analyzed by means of conditional average fields extracted from a DNS database. The results support strong association between the two types of coherent structures, and indicate that vortex tubes are mainly produced upon roll-up of vortex sheets (as in the hairpin vortex paradigm), or interact causing the ejection of near-wall vorticity, or generate sheets of streamwise vorticity through a rubbing effect caused by the no-slip condition.

  17. An experimental study of the flow of LPG as refrigerant inside an adiabatic helical coiled capillary tube in vapour compression refrigeration system

    NASA Astrophysics Data System (ADS)

    Punia, Sanjeev Singh; Singh, Jagdev

    2015-11-01

    This paper presents an experimental investigation for the flow of liquefied petroleum gas (LPG) as a refrigerant inside an adiabatic helically coiled capillary tube in vapour compression refrigeration system. The effect of various geometric parameters and operating conditions like capillary tube inner diameter, length of capillary tube, coil diameter and different inlet subcoolings on the mass flow rate of LPG through the helical coiled capillary tube geometry has been investigated. It has been established that the coil diameter significantly influences the mass flow rate of LPG through the adiabatic helical capillary tube. It has been concluded that the effect of coiling of capillary tube reduces the mass flow rate by 5-12 % as compared to those of the straight capillary tube operating under similar conditions. The data obtained from the experiments are analyzed and a dimensionless correlation has been developed. The proposed correlation predicts that more than 90 % of experimental data which is in agreement with measured data in an error band of ±10 %.

  18. Flow structure of natural dehumidification over a horizontal finned-tube

    NASA Astrophysics Data System (ADS)

    Hirbodi, Kamran; Yaghoubi, Mahmood

    2016-08-01

    In the present study, structure of water drops formation, growth, coalescence and departure over a horizontal finned-tube during natural dehumidification is investigated experimentally. Starting time of repelling the drops as well as heat transfer rate and the rate of dripping condensates in quasi-steady-state conditions are presented. Furthermore, cold airflow pattern around the horizontal finned-tube is visualized by using smoke generation scheme during natural dehumidification process. The finned-tube has a length of 300 mm, and inner and outer fin diameters, fin thickness and fin spacing are 25.4, 56, 0.4 and 2 mm, respectively. The tests are conducted in an insulated control room with dimensions of 5.8 m × 3 m × 4 m. Ambient air temperature, relative humidity and fin base temperature are selected from 25 to 35 °C, from 40 to 70 % and from 4 to 8 °C, respectively. Observations show that natural condensation from humid air over the test case is completely dropwise. Droplets only form on the edge of the fin and lateral fin surfaces remain almost dry. Dehumidification process over the tested finned-tube is divided into four stages; nucleation, formation, growth and departure of drops. It is also observed that the condensate inundation leaves the tube bottom in the form of droplets. Smoke visualization depicts that humid airflows downward around the cold finned-tube surface without noticeable turbulence and separation in the initial stages of dehumidification process. But the airflow has some disturbances in the intermediate stage and especially during drop departure on the edge of the fins.

  19. Empirical correlations for the modeling of R-134a flow through adiabatic capillary tubes

    SciTech Connect

    Melo, C.; Neto, C.B.; Silva Ferreira, R.T. da

    1999-07-01

    This paper presents the results of an experimental study on capillary tubes commonly used as an expansion device in household refrigerators and freezers. The experiments were performed with the hydrofluorocarbon R-134a at different condensing pressures and levels of subcooling. The pressure and temperature profiles along the capillary tubes were measured in each test run. The data set was then used to evaluate the suitability of some equations previously reported in the literature for the single-phase friction factor, the underpressure of vaporization, and the entrance contraction loss factor. Correlations for the average and local two-phase friction factors were also developed based on the measured data.

  20. Experimental investigation of inclination effect on subcritical and supercritical water flows heat transfer in an internally ribbed tube

    NASA Astrophysics Data System (ADS)

    Taklifi, Alireza; Akhavan-Behabadi, Mohammad Ali; Hanafizadeh, Pedram; Aliabadi, Abbas

    2016-06-01

    The effect of various inclination angles on heat transfer of water at subcritical and supercritical operating pressures is investigated experimentally. The test section was a SA213T12 steel six-headed internally ribbed tube with minimum inner diameter of 19.5 mm. The operating test pressures were 15, 21.5, 22.5, 25 and 28 MPa, the mass flux was 800 kg/m2 s and the heat flux was 400 kW/m2. To keep the mass flux to heat flux ratio equal to 2 kg/kJ. These operating conditions covered subcritical, near critical and supercritical water flows and also refers to low mass flux conditions. The inclination angles were 5, 20, 30, 45 and 90 (vertical) degrees respecting to horizontal plane. The heat flux was kept constant along the test tube by controlling of electric heating. As a result the inner wall temperature and convective heat transfer coefficient variations with respect to heated length and bulk enthalpy of fluid were considered in order to study the heat transfer characteristics of various flows at different inclinations. The corresponding correlation for heat transfer coefficient was developed which is applicable for wide range of inclination angles. The heat transfer enhancement was obvious for inclination angles other than 90°, however, this effect was more obvious in 5° and 20° in some operating conditions. It was also concluded that the effect of inclination on heat transfer of water was more considerable in subcritical flow conditions than supercritical ones. Also, it was observed that angle of 20° seems to be the best for subcritical flows from heat transfer point of view, but for supercritical flows 5 or 45 seem to be more advantageous. These differences could be related to different heat transfer mechanisms of subcritical and supercritical flows.

  1. Theoretical considerations on the validity of the Stewart-Hamilton principle in measuring cycle-averaged flows via histogram of indicator in the pulsating compartment.

    PubMed

    Eterović, D; Dujić, Z

    1994-02-01

    It has been heuristically shown that the Stewart-Hamilton principle, adapted to external counting observables of system indicator histogram, A(t), its cycle-averaged equilibrium count rate, A(equ), and indicator volume of distribution in the body, V(body), is F/V(body) = A(equ)/integral of o infinity A(t)dt, where F is the cycle-averaged cardiac output. Since the method lacks the theoretical plausibility, it remained unclear whether it is an approximation and what conditions warrant its usability. This paper presents an exact derivation of the above equation. To fulfill it the generalizations of the stationary theory of indicator kinetics were set up that allowed for the conditions of pulsatile flows and volumes and the dependence of the distribution of transit times of indicator on the phase of the cardiac cycle. The assumptions utilized were that the tracer enters the compartment well mixed and convectively carried by the blood in concentrations that do not vary in the single cycle to a material extent. The method yields the cardiac output, even when the flow to a compartment is only a part of it, provided that the fraction of indicator that traversed the system equals the fraction of cardiac output that perfuses the compartment. It was shown that, when applied to a regurgitant ventricle, the method obtains the forward flow and that separate application of the method to each of the ventricles provides the theoretical basis for evaluation of the central-circulatory shunts. PMID:8177163

  2. Flow and Chemistry Pulsations, Monterey: Implications for Stress Transient Modulations of Hydrologic and Geochemical Systems in the Greater San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Fueri, E.; Hilton, D. R.

    2005-12-01

    Submarine fluid venting at continental shelf and slope regions has been recognized over the past ten years as an important, yet under-studied process in marine science. Seeps are now known to be a general feature of the hydrogeology of many tectonically active continental margins. The eastern Pacific margin is characterized by a variety of tectonic settings (i.e. convergent and strike-slip) where active venting of fluids and gases has been documented. Reports include vents off Alaska, Costa Rica, Monterey Bay, Eel River basin, and Heceta Bay, OR. Indications of seismic tremor, linked to hydrologic transience in the offshore regions of subduction zones have recently been published elsewhere (see Brown et al, EPSL 2005). We now address here the varying nature of submarine fluid discharges in a San Andreas strike-slip setting. A key element of the proposed work is the combined multidisciplinary measurement of fluid flow, seep temperatures, and dissolved noble gases and chemistry of the Monterey seep sites at Extrovert Cliff. The seeps are situated close to several active strike-slip faults including the Monterey and San Gregorio fault zones. Initial results of 2 week deployments in 2004 of flow meters at Extravert Cliff indicated high flow rates and elevated seep temperatures that vary by as much as a factor of 2 on diurnal time scales with subtle changes over longer periods (>2 weeks). There are also indicative chemical signals of deeply sourced fluids that vary widely with time that show the following signals: 1) Elevated abundances of both mantle derived Helium (3He) as well as 4He and 40Ar of radiogenic crustal relevant trace element components; 2) Altered fluid chemistry (including, Ca Mg, Li and B); 3) The fluid temperature, flow rates, and gas chemistry, in particular, vary with time. We have both long-term and sub-diurnal variations in flow and temperature as well as the 3He/4He ratios, helium concentration, CO2 concentration and d13C values perhaps influenced

  3. Radial diffusion and penetration of gas molecules and aerosol particles through laminar flow reactors, denuders, and sampling tubes.

    PubMed

    Knopf, Daniel A; Pöschl, Ulrich; Shiraiwa, Manabu

    2015-04-01

    Flow reactors, denuders, and sampling tubes are essential tools for many applications in analytical and physical chemistry and engineering. We derive a new method for determining radial diffusion effects and the penetration or transmission of gas molecules and aerosol particles through cylindrical tubes under laminar flow conditions using explicit analytical equations. In contrast to the traditional Brown method [Brown, R. L. J. Res. Natl. Bur. Stand. (U. S.) 1978, 83, 1-8] and CKD method (Cooney, D. O.; Kim, S. S.; Davis, E. J. Chem. Eng. Sci. 1974, 29, 1731-1738), the new approximation developed in this study (known as the KPS method) does not require interpolation or numerical techniques. The KPS method agrees well with the CKD method under all experimental conditions and also with the Brown method at low Sherwood numbers. At high Sherwood numbers corresponding to high uptake on the wall, flow entry effects become relevant and are considered in the KPS and CKD methods but not in the Brown method. The practical applicability of the KPS method is demonstrated by analysis of measurement data from experimental studies of rapid OH, intermediate NO3, and slow O3 uptake on various organic substrates. The KPS method also allows determination of the penetration of aerosol particles through a tube, using a single equation to cover both the limiting cases of high and low deposition described by Gormley and Kennedy (Proc. R. Ir. Acad., Sect. A. 1949, 52A, 163-169). We demonstrate that the treatment of gas and particle diffusion converges in the KPS method, thus facilitating prediction of diffusional loss and penetration of gases and particles, analysis of chemical kinetics data, and design of fluid reactors, denuders, and sampling lines. PMID:25744622

  4. The Evolution of North-South Aligned Auroral Forms into Auroral Torch Structures : The Generation of Omega Bands and Ps6 Pulsations via Flow Bursts.

    SciTech Connect

    Henderson, M. G.; Kepko, L.; Spence, H. E.; Connors, M.; Sigwarth, J. B.; Frank, L. A.; Singer, H. J.; Yumoto, K.

    2002-01-01

    Although auroral torch structures and omega bands have been observed and studied for decades, a satisfactory understanding of how they form has yet to be achieved. Using global auroral imager data, we show conclusively that the equatorward moving north-south (NS) aligned auroral forms that are ejected episodically from the poleward boundary can evolve directly into torch structures which contribute to a well-defined omega-band form. And that as a consequence, omega bands can be produced as a direct result of earthward-directed bursty bulk flows (BBFs).

  5. Experimental and theoretical studies of isothermal upward gas-liquid flows in vertical tubes

    SciTech Connect

    Fernandes, R.C.

    1981-01-01

    In two-phase flow technolgy, two important problems exist which must be solved as a function of the various physical and system parameters associated with the phenomenon, and which stand as prerequisites for proper modelling of two-phase processes: Prediction of the flow pattern under existing operating conditions and prediction of the holdup for each given flow pattern. Modelling studies of steady isothermal upward gas-liquid flows in vertical pipes, at low pressures, were undertaken. Experimental data on liquid holdup over a wide range of flow rates were taken for all observed flow patterns-bubbly, slug, churn, and annular - by means of a specially designed Quick-Closing Valves System. This technique also allowed the detection of a unique phenomenon occurring in the form of fast-flowing slugs of gas-liquid mixture, in both the churn and annular flow patterns, which was called the lump phenomenon. The lump holdup was measured and a qualitative theory regarding the nature, formation and propagation of these structures was proposed. A photographic method was applied to the slug flow pattern in order to determine both the rise velocity and length of Taylor bubbles and liquid slugs characteristic of this flow regime. Assisted by the measured data, flow pattern-based physical models were developed for predicting holdup of bubbly flows and the detailed structure of slug flows. The latter was accomplished by means of a fairly complete analysis which enabled the prediction of several variables of interest such as void fractions, velocities, film thicknesses and the length ratio between Taylor bubbles and liquid slugs. The average holdup for churn flow was predicted by directly applying the slug flow model to that flow pattern. A simplified framework for calculating the holdup in annular flows was also proposed. The comparison between theory and experiment showed that for bubbly, slug and churn flows the predicted results are in good agreement with the data.

  6. Selected ion flow tube-mass spectrometry for online monitoring of submerged fermentations: a case study of sourdough fermentation.

    PubMed

    Van Kerrebroeck, Simon; Vercammen, Joeri; Wuyts, Roel; De Vuyst, Luc

    2015-01-28

    Selected ion flow tube-mass spectrometry (SIFT-MS) has recently gained interest as an alternative method to traditional GC-MS for the detection of targeted volatile sample compounds, due to its ease of use, its speed and sensitivity, and its potential for real-time quantification. The feasibility of this technique was demonstrated using the case of the production of ethanol during sourdough fermentation. The potential of SIFT-MS as an online monitoring device for food fermentations was further demonstrated by the detection of acetoin in certain sourdough fermentations. This allowed discrimination between sourdough fermentation processes and illustrated the importance of real-time monitoring of food fermentations.

  7. NASA Ames's electric arc-driven shock tube facility and research on nonequilibrium phenomena in low density hypersonic flows

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.

    1992-01-01

    Basic requirements for a ground test facility simulating low density hypersonic flows are discussed. Such facilities should be able to produce shock velocities in the range of 10-17 km/sec in an initial pressure of 0.010 to 0.050 Torr. The facility should be equipped with diagnostics systems to be able to measure the emitted radiation, characteristic temperatures and populations in various energy levels. In the light of these requirements, NASA Ames's electric arc-driven low density shock tube facility is described and available experimental diagnostics systems and computational tools are discussed.

  8. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer.

    PubMed

    Akbar, Noreen Sher; Raza, M; Ellahi, R

    2016-07-01

    The peristaltic flow of a copper oxide water fluid investigates the effects of heat generation and magnetic field in permeable tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. It is found that pressure gradient is reduce with enhancement of particle concentration and velocity profile is upturn, beside it is observed that temperature increases as more volume fraction of copper oxide. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon. PMID:27208518

  9. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube.

    PubMed

    Sobh, Ayman M

    2013-10-01

    In this article, the influence of heat and mass transfer on peristaltic transport of a couple stress fluid in a uniform tube with slip conditions on the wall is studied. The problem can model the blood flow in living creatures. Under long wavelength approximation and zero Reynolds number, exact solutions for the axial velocity component, pressure gradient, and both temperature and concentration fields are derived. The pressure rise is computed numerically and explained graphically. Moreover, effects of various physical parameters of the problem on temperature distribution, concentration field, and trapping are studied and discussed graphically.

  10. Full Field Scalar Measurements in a Pulsating Helium Jet using Rainbow Schlieren Deflectometry

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap S.

    2000-01-01

    The flow structure of a pulsating helium jet was investigated using quantitative rainbow schlieren deflectometry. The operating parameters included the tube inside diameter, the jet Reynolds number and the jet Richardson number. The jet structure was characterized by the frequency spectrum, temporal evolution of the oscillations and mean and root-mean-square profiles of the species mole fraction, which in this case, was helium. Experiments were conducted using a variable nozzle facility. Angular deflection data were obtained using rainbow schlieren deflectometry across full field of color images taken at a temporal resolution of 60Hz. The flicker cycle was analyzed by instantaneous rainbow schlieren images, contour plots of deflection angle and helium mole fraction placed sequentially in time. Two observe the flow downstream, the tube was lowered with respect to the optical setup and images were taken at different axial planes. In this way, the laminar, transition and turbulent regions of the jet flow were observed. Abel inversion algorithm was utilized to reconstruct the refractive index field from the measurements of the beam deflection angle. The concentration field was then generated from the refractive index field. The phenomenon of vortex initiation and propagation in the flicker cycle was described by correlating the ray deflection angle and concentration contour plots. Experiments in the flickering jet reveal global oscillation in the flow field. The effect of jet exit Reynolds number and jet Richardson number on the flickering frequency was analyzed. The effect of jet Richardson number was more pronounced than that of the jet exit Reynolds number. The flow field was studies quantitatively in terms of temporal evolution and statistical description of helium mole fraction.

  11. Mathematical Evaluation of Steady, Laminar Flow by the Use of Continuous-Wave (cw) Doppler and Pitot Tube System.

    NASA Astrophysics Data System (ADS)

    Sharif, Malek Mansoor

    Investigation, as to the usefulness of spectral analysis of the acoustical signal from the Doppler ultrasonic flowmeter, is being conducted. The hypothesis was that both hematocrit ((')H) and pressure head (H) influence the amplitude of the spectrum (A). Experiments were designed to: (a) evaluate their roles on amplitude; (b) derive the associated functional relationship. Preliminary experiments revealed that: (a) the accuracy of our Doppler flowmeter was satisfactory; (b) the relative weight of (')H on flow velocity was twice that of H. A pitot tube system whose bent tube component was capable of radial movement was developed to measure the instantaneous blood velocity. The bent tube was moved across the lumen of the vessel in steps of 0.1 mm, and particle velocity was measured at each sampling point. The distribution of velocity was parabolic and the agreement between experimental data and the second degree polynomial fit was good ((xi) = .94). An array of small bent tubes, each placed successively deeper within the lumen of the rubber tubing and connected to a small syringe, was constructed to measure the particle profile. The profile was parabolic and (')H, as a function of radius, was expressible in terms of a second degree polynomial. To determine the dependency of ultrasonic energy backscattering on hematocrit, Doppler signals were recorded, digitized, and frequency resolved via the fast Fourier transform for hematocrits ranging from 4.5% to 46.5%. The amplitude corresponding to each given hematocrit was calculated by evaluating the area under the curve fitted to the transformed data. A((')H) was found to be a linear function of hematocrit. A generalized Doppler amplitude function A(H,(')H) was also derived. It was hypothesized that blood viscosity ((mu)) is an exponential function of hematocrit, that is, (mu) = A exp (B(.)(')H). Experimental results using a Falling ball type viscosimeter supported the theory with a high correlation between the data and the

  12. Laboratory measurements in a turbulent, swirling flow. [measurement of soot inside a flame-tube burner

    NASA Technical Reports Server (NTRS)

    Hoult, D. P.

    1979-01-01

    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant.

  13. Operator splitting approach applied to oscillatory flow and heat transfer in a tube

    NASA Astrophysics Data System (ADS)

    Widura, R.; Lehn, M.; Muralidhar, K.; Scherer, R.

    2008-02-01

    The method of operator splitting is applied to an advection-diffusion model as it occurs in a pulse tube. Firstly, the governing equations of the simplified model are studied and the mathematical description is derived. Then the splitting approach is used to separate the advection and the diffusion part. Now it turns out that the advective part can be solved analytically and therefore the computational cost are reduced and the accuracy is increased. It is shown that the method can model an effect called Taylor dispersion. Applying a domain decomposition strategy, the solution process can be decoupled, reducing the numerical cost even more. This procedure allows to study the relevant parameters within the model with the goal to maximize the amount of energy stored within the tube wall. As a measure of efficiency, the amount of energy transferred between the fluid phase and the wall is chosen.

  14. Numerical investigation on boiling flow of liquid nitrogen in a vertical tube using bubble number density approach

    NASA Astrophysics Data System (ADS)

    Shao, Xuefeng; Li, Xiangdong; Wang, Rongshun

    2016-04-01

    An average bubble number density (ABND) model was formulated and numerically resolved for the subcooled flow boiling of liquid nitrogen. The effects of bubble coalescence and breakup were taken into account. Some new closure correlations describing bubble nucleation and departure on the heating surface were selected as well. For the purpose of comparison, flow boiling of liquid nitrogen was also numerically simulated using a modified two-fluid model. The results show that the simulations performed by using the ABND model achieve encouraging improvement in accuracy in predicting heat flux and wall temperature of a vertical tube. Moreover, the influence of the bubble coalescence and breakup is shown to be great on predicting overall pressure beyond the transition point.

  15. Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes.

    PubMed

    Bianco, Vincenzo; Nardini, Sergio; Manca, Oronzio

    2011-03-24

    In this article, developing turbulent forced convection flow of a water-Al2O3 nanofluid in a square tube, subjected to constant and uniform wall heat flux, is numerically investigated. The mixture model is employed to simulate the nanofluid flow and the investigation is accomplished for particles size equal to 38 nm.An entropy generation analysis is also proposed in order to find the optimal working condition for the given geometry under given boundary conditions. A simple analytical procedure is proposed to evaluate the entropy generation and its results are compared with the numerical calculations, showing a very good agreement.A comparison of the resulting Nusselt numbers with experimental correlations available in literature is accomplished. To minimize entropy generation, the optimal Reynolds number is determined.

  16. Magnetic resonance measurement of fluid dynamics and transport in tube flow of a near-critical fluid

    NASA Astrophysics Data System (ADS)

    Bray, Joshua M.; Rassi, Erik M.; Seymour, Joseph D.; Codd, Sarah L.

    2014-07-01

    An ability to predict fluid dynamics and transport in supercritical fluids is essential for optimization of applications such as carbon sequestration, enhanced oil recovery, "green" solvents, and supercritical coolant systems. While much has been done to model supercritical velocity distributions, experimental characterization is sparse, owing in part to a high sensitivity to perturbation by measurement probes. Magnetic resonance (MR) techniques, however, detect signal noninvasively from the fluid molecules and thereby overcome this obstacle to measurement. MR velocity maps and propagators (i.e., probability density functions of displacement) were acquired of a flowing fluid in several regimes about the critical point, providing quantitative data on the transport and fluid dynamics in the system. Hexafluoroethane (C2F6) was pumped at 0.5 ml/min in a cylindrical tube through an MR system, and propagators as well as velocity maps were measured at temperatures and pressures below, near, and above the critical values. It was observed that flow of C2F6 with thermodynamic properties far above or below the critical point had the Poiseuille flow distribution of an incompressible Newtonian fluid. Flows with thermodynamic properties near the critical point exhibit complex flow distributions impacted by buoyancy and viscous forces. The approach to steady state was also observed and found to take the longest near the critical point, but once it was reached, the dynamics were stable and reproducible. These data provide insight into the interplay between the critical phase transition thermodynamics and the fluid dynamics, which control transport processes.

  17. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    SciTech Connect

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A.; Pedder, Randall E.; Taormina, Christopher R.

    2015-08-15

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H{sub 3}O{sup +}, but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re{sup +} with O{sub 2} proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re{sub 2}{sup 2+} is found to charge transfer with O{sub 2} at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba{sup +}, which is reacted with N{sub 2}O to create BaO{sup +}, and we find a rate constant that agrees with the literature.

  18. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus.

    PubMed

    Melko, Joshua J; Ard, Shaun G; Shuman, Nicholas S; Pedder, Randall E; Taormina, Christopher R; Viggiano, Albert A

    2015-08-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H3O(+), but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re(+) with O2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re2(2+) is found to charge transfer with O2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba(+), which is reacted with N2O to create BaO(+), and we find a rate constant that agrees with the literature. PMID:26329209

  19. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    NASA Astrophysics Data System (ADS)

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Pedder, Randall E.; Taormina, Christopher R.; Viggiano, Albert A.

    2015-08-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H3O+, but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re+ with O2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re22+ is found to charge transfer with O2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba+, which is reacted with N2O to create BaO+, and we find a rate constant that agrees with the literature.

  20. Large-scale coordinated observations of Pc5 pulsation events

    NASA Astrophysics Data System (ADS)

    Mtumela, Zolile; Walker, Anthony D. M.; Stephenson, Judy A. E.; Kosch, Michael J.

    2016-09-01

    HF (high-frequency) radars belonging to SuperDARN (Super Dual Auroral Radar Network) receive backscatter over substantial fields of view which, when combined, allow for simultaneous returns over extensive regions of the polar caps and midlatitudes. This makes them ideal instruments for the observation of pulsations in the Pc5 (1-5 mHz) frequency band. Relatively few pulsation events observed by multiple radars have been reported in the literature. Here we describe observations of three such events which extend over more than 120° of magnetic longitude in the Northern Hemisphere and one of which is also detected in the Southern Hemisphere. All three events show characteristics of field line resonances. In one case the pulsation has also been observed by magnetometers under or near the radar fields of view. The extensive longitudinal coverage allows accurate determination of azimuthal wave numbers. These are at the upper end of the lower values associated with external sources such as those in the solar wind. Such sources imply antisunward flow. However, the azimuthal wave number is negative, implying westward propagation at magnetic local times on both sides of noon, as would be expected from drift-bounce resonance with positive particles. Quiet conditions and a very low ring current during the events argue against this. The identification of the source of pulsations from a number of different mechanisms remains a problem of interest.

  1. A numerical analysis of three-dimensional turbulent fluid flow and heat transfer in plate-fin and tube heat exchangers

    SciTech Connect

    Jang, Jiin-Yuh; Chang, Wen-Jen; Lin, Min-Sheng

    1996-12-31

    Fluid flow and heat transfer over a multi-row (1-5 rows) plate-fin and tube heat exchanger are studied numerically. Flow is incompressible, three-dimensional and turbulent. The effects of tube arrangements and tube row numbers are investigated in detail for the Reynolds number ReH (based on the fin spacing H) ranging from 2000 to 10000. The effects of turbulence are simulated by the k-{epsilon} turbulence model. Stream and isothermal lines through the whole tube bank, local and average Nusselt number and pressure coefficient in the streamwise direction are presented. The numerical results for the average heat transfer coefficient agree well with the previously published experimental data.

  2. Flow through collapsible tubes at low Reynolds numbers. Applicability of the waterfall model.

    PubMed

    Lyon, C K; Scott, J B; Wang, C Y

    1980-07-01

    The applicability of the waterfall model was tested using the Starling resistor and different viscosities of fluids to vary the Reynolds number. The waterfall model proved adequate to describe flow in the Starling resistor model only at very low Reynolds numbers (Reynolds number less than 1). Blood flow characterized by such low Reynolds numbers occurs only in the microvasculature. Thus, it is inappropriate to apply the waterfall model indiscriminately to flow through large collapsible veins.

  3. Optical noninvasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2005-04-01

    Time-resolved detection and analysis of skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. Single- and multiple-channel PPG concepts are discussed. Simultaneous data flow from several locations on the human body allows us to study heartbeat pulse-wave propagation in real time and to evaluate vascular resistance. Portable single-, dual-, and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The prototype devices have been clinically studied, and their potential for monitoring heart arrhythmias, drug-efficiency tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions has been confirmed.

  4. A novel 1D/2D model for simulating conjugate heat transfer applied to flow boiling in tubes with external fins

    NASA Astrophysics Data System (ADS)

    Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena

    2014-09-01

    This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.

  5. A novel 1D/2D model for simulating conjugate heat transfer applied to flow boiling in tubes with external fins

    NASA Astrophysics Data System (ADS)

    Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena

    2015-04-01

    This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.

  6. Chaotic pulsations in stellar models

    SciTech Connect

    Buchler, J.R. )

    1990-12-01

    The irregular behavior of large-amplitude pulsating stars undergoing radial oscillations is examined theoretically, with a focus on hydrodynamic simulations of the W Virginis population II Cepheids (stars which show both regular and RV Tau characteristics). Sequences of models are constructed as one-parameter families (with luminosity, mass, and composition fixed and Teff as the control parameter) and analyzed to derive a systematic map of the bifurcation set; i.e., of the possible types of pulsations. The results are presented graphically, and it is shown that both cascades of period doubling (via destabilization of an overtone through a half-integer-type resonance) and tangent bifurcation are possible routes to chaos in these systems, depending on the stellar parameters. The general robustness of the chaotic behavior and the existence of a 'chaotic blue edge' in stellar-parameter space are demonstrated. 55 refs.

  7. Auroral pulsations from ionospheric winds

    NASA Technical Reports Server (NTRS)

    Nakada, M. P.

    1989-01-01

    The possibility that auroral pulsations are due to oscillatory electrical circuits in the ionosphere that are driven by the negative resistance of jet stream winds is examined. For the condenser plates, the highly conducting surfaces above the edges of the jet stream are postulated. The dielectric constant of the plasma between the plates is quite large. The current that is driven perpendicular to and by the jet stream closes along the plates and through Pedersen currents in the F region above the stream. This closed loop gives the inductance and resistance for the circuit. Periods of oscillation for this circuit appear to be in the range of Pc 1 to Pc 3. In accord with observations, this circuit appears to be able to limit the brightness of pulsations.

  8. Pulsating bead-based assay.

    PubMed

    Thompson, Jason A; Bau, Haim H

    2011-04-15

    In recent years, there has been a growing interest in using porous microbeads such as agarose beads as solid supports to bind target molecules from complex fluid samples. Porous beads have large surface area to volume ratios and high receptor concentrations, and they facilitate relatively high sensitivity detection and multiplexing. Unfortunately, to take full advantage of the porous beads' attributes, long incubation times are needed due to the relatively slow mass transfer of target molecules from the exterior solution into the beads' interior. To accelerate the mass transfer process, we propose a novel assay in which functionalized porous beads are periodically compressed and expanded. Preliminary experiments were carried out to compare the performance of the pulsating beads with that of conventional, nonpulsating beads. These experiments indicate that the pulsating beads significantly accelerate binding rates with minimal increase in nonspecific binding. Thus, pulsing has the potential of significantly reducing assay time.

  9. Radial Stellar Pulsation and Three-dimensional Convection. II. Two-dimensional Convection in Full Amplitude Radial Pulsation

    NASA Astrophysics Data System (ADS)

    Geroux, Chris M.; Deupree, Robert G.

    2013-07-01

    We have developed a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and radial pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light curves. Previous multi-dimensional calculations were prevented from reaching full amplitude because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We have removed this difficulty by defining our radial coordinate flow algorithm to require that the mass in a spherical shell remain constant for every time step throughout the pulsation cycle. We have used our new code to perform two-dimensional (2D) simulations of the interaction of radial pulsation and convection. We have made comparisons between light curves from our 2D convective simulations with observed light curves and find that our 2D simulated light curves are better able to match the observed light curve shape near the red edge of the RR Lyrae instability strip than light curves from previous one-dimensional time-dependent convective models.

  10. RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. II. TWO-DIMENSIONAL CONVECTION IN FULL AMPLITUDE RADIAL PULSATION

    SciTech Connect

    Geroux, Chris M.; Deupree, Robert G.

    2013-07-10

    We have developed a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and radial pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light curves. Previous multi-dimensional calculations were prevented from reaching full amplitude because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We have removed this difficulty by defining our radial coordinate flow algorithm to require that the mass in a spherical shell remain constant for every time step throughout the pulsation cycle. We have used our new code to perform two-dimensional (2D) simulations of the interaction of radial pulsation and convection. We have made comparisons between light curves from our 2D convective simulations with observed light curves and find that our 2D simulated light curves are better able to match the observed light curve shape near the red edge of the RR Lyrae instability strip than light curves from previous one-dimensional time-dependent convective models.

  11. Pulsating Helium Atmosphere White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith; Montgomery, Michael H.; Bischoff-Kim, Agnes; Shipman, Harry; Nitta, Atsuko; Whole Earth Telescope Collaboration

    2015-08-01

    The overwhelming majority of all stars currently on the main sequence as well as those from earlier generations will or have ended their stellar lives as white dwarf stars. White dwarfs are rich forensic laboratories linking the history and future evolution of our Galaxy. Their structure and atmospheric composition provide evidence of how the progenitors lived, how they evolved, and how they died. This information reveals details of processes governing the behavior of contemporary main sequence stars. Combined with their distribution in luminosity/temperature, white dwarfs strongly constrain models of galactic and cosmological evolution.GD358 is among the brightest (mv =13.7) and best studied of the pulsating white dwarfs. This helium atmoshere pulsator (DBV) has an extensive photometric database spanning 30 years, including nine multisite Whole Earth Telescope campaigns. GD358 exhibits a range of behaviors, from drastic changes in excited pulsation modes to variable multiplet splittings. We use GD358 as a template for an examination of the DBV class, combining photometric results with recent COS spectroscopy. The results present new questions concerning DB formation and evolution.

  12. Pulsating Hot Subdwarfs in Omega Centauri

    NASA Astrophysics Data System (ADS)

    Randall, S. K.; Calamida, A.; Fontaine, G.; Monelli, M.; Bono, G.; Alonso, M. L.; Van Grootel, V.; Brassard, P.; Chayer, P.; Catelan, M.; Littlefair, S.; Dhillon, V. S.; Marsh, T. R.

    2016-06-01

    We recently discovered the first globular cluster hot subdwarf pulsators in Omega Centauri (ω Cen). These stars were initially thought to belong to the class of rapidly pulsating subdwarf B stars, which are well established among the field star population and have become showcases for asteroseismology. However, our spectroscopic analysis revealed the ω Cen variables to be significantly hotter than expected, indicating that they form a new class of subdwarf O pulsators clustered around 50 000 K, not known among the field star population. Non-adiabatic pulsation modelling suggests that the driver for the pulsations occurs via the same iron opacity mechanism that is at work in the rapidly pulsating subdwarf B stars.

  13. The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes

    SciTech Connect

    Marsden, S.S. Jr.; Tyran, Craig K.

    1986-01-21

    For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wet steam quality.

  14. The morphology of displays of pulsating auroras.

    NASA Technical Reports Server (NTRS)

    Cresswell, G. R.

    1972-01-01

    An auroral substorm generates displays of pulsating auroras in ways which show a dependence upon both local time and latitude relative to the auroral oval. For several hours after midnight pulsating auroras can be observed in the wake of poleward expansions or within equatorward spreading diffuse envelopes of meridional extent of several hundred kilometers. As the dawn meridian is approached the displays of pulsating auroras tend increasingly to be comprised of distinct eastward drifting patches easily recorded by all-sky cameras.

  15. Very high temperature laminar flow of a gas through the entrance region of a cooled tube - Numerical calculations and experimental results.

    NASA Technical Reports Server (NTRS)

    Back, L. H.

    1972-01-01

    The laminar flow equations in differential form are solved numerically on a digital computer for flow of a very high temperature gas through the entrance region of an externally cooled tube. The solution method is described and calculations are carried out in conjunction with experimental measurements. The agreement with experiment is good, with the result indicating relatively large energy and momentum losses in the highly cooled flows considered where the pressure is nearly uniform along the flow and the core flow becomes non-adiabatic a few diameters downstream of the inlet. The effects of a large range of Reynolds number and Mach number (viscous dissipation) are also investigated.

  16. Investigations of unsteady flow in the draft tube of the pump- turbine model using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Kaznacheev, A.; Kuznetsov, I.

    2014-03-01

    The measurements and video observation of unsteady flow in the draft tube cone of the pump-turbine model were conducted in the Laboratory of Water Turbines, property of OJSC "Power machines" - "LMZ". The prototype head was about 250 m. The experiments were performed for the turbine mode of operation. Measurements were taken for the unit speed value n11 corresponding to rated head in the generating mode of operation, for a wide range of guide vanes openings at loads ranging from partial to maximum value. The researches of the velocity field in function of the Thoma number were carried out in some operating conditions. The mean values and RMS deviations of the velocity components were the results of laser measurements. The curves of the intensity of the vortex versus the guide vane opening and the Thoma number were plotted. The energy velocity spectra were presented for the points at which the most pronounced frequency precession of the helical axial vortex was observed. Video recording and laser Doppler anemometry were made in the operating conditions of the developed cavitation. Based on the results of video observations and energy spectra obtained via LDA, vortex frequencies were determined i.e. the frequencies of the vortex precession under the runner in the draft tube cone.

  17. Average patterns of precipitation and plasma flow in the plasma sheet flux tubes during steady magnetospheric convection

    NASA Technical Reports Server (NTRS)

    Sergeev, V. A.; Lennartsson, W.; Pellinen, R.; Vallinkoski, M.; Fedorova, N. I.

    1990-01-01

    Average patterns of plasma drifts and auroral precipitation in the nightside auroral zone were constructed during a steady magnetospheric convection (SMC) event on February 19, 1978. By comparing these patterns with the measurements in the midtail plasma sheet made by ISEE-1, and using the corresponding magnetic field model, the following features are inferred: (1) the concentration of the earthward convection in the midnight portion of the plasma sheet (convection jet); (2) the depleted plasma energy content of the flux tubes in the convection jet region; and (3) the Region-1 field-aligned currents generated in the midtail plasma sheet. It is argued that these three elements are mutually consistent features appearing in the process of ionosphere-magnetosphere interaction during SMC periods. These configurational characteristics resemble the corresponding features of substorm expansions (enhanced convection and 'dipolarized' magnetic field within the substorm current wedge) and appear to play the same role in regulating the plasma flow in the flux tubes connected to the plasma sheet.

  18. Experimental investigation of heat transfer and pressure drop of turbulent flow inside tube with inserted helical coils

    NASA Astrophysics Data System (ADS)

    Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.; Ali, R. K.

    2016-08-01

    The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime in the range of Reynolds number of 14,400 ≤ Re ≤ 42,900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio of 0.044 ≤ e/d ≤ 0.133 and coil pitch ratio of 1 ≤ p/d ≤ 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6 %) and (100.1-128 %) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re. The maximum deviation between correlated and experimental values for Nusselt number and friction factor are ±5 and ±6 %, respectively.

  19. Heat Transfer Enhancement of Laminar Nanofluids Flow in a Circular Tube Fitted with Parabolic-Cut Twisted Tape Inserts

    PubMed Central

    Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055

  20. Heat transfer enhancement of laminar nanofluids flow in a circular tube fitted with parabolic-cut twisted tape inserts.

    PubMed

    Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape.

  1. Heat transfer enhancement of laminar nanofluids flow in a circular tube fitted with parabolic-cut twisted tape inserts.

    PubMed

    Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055

  2. Laboratory studies of interaction between trace gases and sulphuric acid or sulphate aerosols using flow-tube reactors

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun

    Stratospheric ozone provides a protective shield for humanity and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical models for the calculation of ozone balance frequently used gas-phase reactions alone in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions is needed to understand this significant natural event owing to the anthropogenic emission of chlorofluorocarbons. In this review I will briefly discuss the experimental techniques for the research of heterogeneous chemistry carried out in our laboratory. These experimental instruments include flow-tube reactors, an electron-impact ionization mass spectrometer, a chemical ionization mass spectrometer and a scanning mobility particle spectrometer. Numerous measurements of uptake coefficient (or reaction probability) and solubility of trace gases in liquid sulphuric acid have been performed under the ambient conditions in the upper troposphere and lower stratosphere, mainly 190-250 K and 40-80 wt% of H

  3. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    DOE PAGES

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ– ground state of the OH+ and OD+ cations have been extractedmore » and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.« less

  4. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-28

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X{sup 3}Σ{sup −} ground state of the OH{sup +} and OD{sup +} cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  5. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  6. Sunspots and the physics of magnetic flux tubes. VI - Convective propulsion. VII - Heat flow in a convective downdraft

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    The effect of negative aerodynamic drag in an ideal fluid subject to convective instability is considered. It is shown that a cylinder moving in such a fluid is propelled forward in its motion by the convective forces and that the characteristic acceleration time is comparable to the onset time of convective motions in the fluid. It is suggested that convective propulsion plays an important role in the dynamics of flux tubes extending through the surface of the sun. The suppression of the upward heat flow in a Boussinesq convective cell with free upper and lower boundaries by a downdraft is then analyzed. Application to the solar convection zone indicates that downdrafts of 1 to 2 km/s at depths of 1000 to 4000 km beneath the visible surface of the sun are sufficient to reduce the upward heat flux to a small fraction of the ambient value.

  7. Anisotropic steady-flow hydrodynamic parameters of microporous media applied to pulse tube and Stirling cryocooler regenerators

    NASA Astrophysics Data System (ADS)

    Clearman, W. M.; Cha, J. S.; Ghiaasiaan, S. M.; Kirkconnell, C. S.

    2008-03-01

    The hydrodynamic parameters associated with steady longitudinal and lateral (radial) flow of helium in several widely-used pulse tube and Stirling cryocooler regenerator fillers were measured and correlated in this investigation. Pressure drops in test sections packed with regenerator fillers were experimentally measured. Computational fluid dynamics (CFD) models of the regenerator test sections and their vicinities were developed and simulations were performed in which the regenerator test sections were modeled as porous media. By iterative repetition of the simulations, the longitudinal and radial permeability and Forchheimer inertial coefficients were determined such that they would lead to agreement between experimental measurements and the simulations. The regenerator fillers included 325 and 400 mesh stainless steel screens, stainless steel metal foam, sintered 400 mesh stainless steel screens, and a stack of micromachined perforated plates. The hydrodynamic response of the regenerator fillers were also correlated as friction factors. The results confirm that the aforementioned regenerator fillers are anisotropic.

  8. Analytical investigation of fully developed laminar flow in tubes with heat transfer with fluid properties variable along the radius

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G

    1951-01-01

    Relations were analytically obtained for the prediction of radial distributions of velocity and temperature for fully developed laminar flow of gases and of liquid metals in tubes with fluid properties variable along the radius. The relations are applicable to both heating and cooling of the fluid. By use of the relations for velocity and temperature distributions, relations were obtained among Nusselt number, friction parameter, and ratio of wall to bulk temperature. The Nusselt number and friction parameter were found to be independent of Reynolds number and Prandtl number. The effects of ratio of wall to bulk temperature on Nusselt number and friction parameter could be eliminated by evaluating the fluid properties at specified temperatures in the fluid.

  9. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    NASA Astrophysics Data System (ADS)

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-01

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ- ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  10. A comparison of measured and predicted test flow in an expansion tube with air and oxygen test gases

    NASA Technical Reports Server (NTRS)

    Aaggard, K. V.; Goad, W. K.

    1975-01-01

    Simultaneous time-resolved measurements of temperature, density, pitot pressure, and wall pressure in both air and O2 test gases were obtained in the Langley pilot model expansion tube. These tests show nonequilibrium chemical and vibrational relaxation significantly affect the test-flow condition. The use of an electromagnetic device to preopen the secondary diaphragm before the arrival of the primary shock wave resulted in an improvement in the agreement between the measured pitot pressure and the value inferred from measured density and interface velocity. Boundary-layer splitter plates used to reduce the wall boundary layer show that this disagreement in the measured and inferred pitot pressures is not a result of boundary-layer effects.

  11. Cyclic Concentration Measurements for Characterizing Pulsating Flow

    SciTech Connect

    Bamberger, Judith A.

    2013-07-07

    Slurry mixed in vessels via pulse jet mixers has a periodic, rather than steady, concentration profile. Measurements of local concentration taken at the center of the tank at a range of elevations within the mixed region were analyzed to obtain a greater understanding of how the periodic pulse jet mixing cycle affects the local concentration. Data were obtained at the critical suspension velocity, when all solids are suspended at the end of the pulse. The data at a range of solids loadings are analyzed to observe the effect of solids concentration during the suspension and settling portions of the mixing cycle.

  12. Counter-current flow in a vertical to horizontal tube with obstructions

    SciTech Connect

    Tye, P.; Matuszkiewicz, A.; Teyssedou, A.

    1995-09-01

    This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.

  13. Lava Flows and Lava Tubes: What They Are, How They Form (DVD)

    NASA Astrophysics Data System (ADS)

    Garcia, Michael O.

    This DVD is a treat for volcanologists, Earth scientists, and others who are curious about volcanoes. Beautiful photography of lava flows from the current eruption of Kilauea Volcano in Hawaii is explained by volcanologist Ken Hon, a noted authority on the formation of lava flow fields. Hon and Gansecki are with the Geology Department at the University of Hawaii at Hilo, which provides them with close proximity to document the wonders and changing personality of the ongoing Pu'u'O'o eruption. They are assisted by volcanologist Jenda Johnson.

  14. Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi

    1992-01-01

    The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.

  15. An investigation of a model of the flow pattern transition mechanism in relation to the identification of annular flow of R134a in a vertical tube using various void fraction models and flow regime maps

    SciTech Connect

    Dalkilic, A.S.; Wongwises, S.

    2010-09-15

    In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m{sup -2} s{sup -1}. The condensing temperatures are between 40 and 50 C; heat fluxes are between 12.65 and 66.61 kW m{sup -2}. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions. (author)

  16. Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1997-01-01

    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemistry parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory.

  17. Pressure pulsation in roller pumps: a validated lumped parameter model.

    PubMed

    Moscato, Francesco; Colacino, Francesco M; Arabia, Maurizio; Danieli, Guido A

    2008-11-01

    During open-heart surgery roller pumps are often used to keep the circulation of blood through the patient body. They present numerous key features, but they suffer from several limitations: (a) they normally deliver uncontrolled pulsatile inlet and outlet pressure; (b) blood damage appears to be more than that encountered with centrifugal pumps. A lumped parameter mathematical model of a roller pump (Sarns 7000, Terumo CVS, Ann Arbor, MI, USA) was developed to dynamically simulate pressures at the pump inlet and outlet in order to clarify the uncontrolled pulsation mechanism. Inlet and outlet pressures obtained by the mathematical model have been compared with those measured in various operating conditions: different rollers' rotating speed, different tube occlusion rates, and different clamping degree at the pump inlet and outlet. Model results agree with measured pressure waveforms, whose oscillations are generated by the tube compression/release mechanism during the rollers' engaging and disengaging phases. Average Euclidean Error (AEE) was 20mmHg and 33mmHg for inlet and outlet pressure estimates, respectively. The normalized AEE never exceeded 0.16. The developed model can be exploited for designing roller pumps with improved performances aimed at reducing the undesired pressure pulsation.

  18. Functional Changes of Diaphragm Type Shunt Valves Induced by Pressure Pulsation

    NASA Astrophysics Data System (ADS)

    Lee, Chong-Sun; Suh, Chang-Min; Ra, Young-Shin

    Shunt valves used to treat patients with hydrocephalus were tested to investigate influence of pressure pulsation on their flow control characteristics. Our focus was on flow dynamic and functional changes of the small and thin diaphragms in the valves that serve as the main flow control mechanism and are made from silicone elastomer. Firstly, pressure-flow control curves were compared under pulsed and steady flow (without pulsation) conditions. Secondly, functional changes of the valves were tested after a long-term continuous pulsation with a peristaltic pump. Thirdly, flushing procedures selectively conducted by neurosurgeons were simulated with a fingertip pressed on the dome of the valves. As 20cc/hr of flow rate was adjusted at a constant pressure, application of 40mmH2O of pressure pulse increased flow rate through shunt valves more than 60%. As a 90cm length silicone catheter was connected to the valve outlet, increase in the flow rate was substantially reduced to 17.5%. Pressure-flow control characteristics of some valves showed significant changes after twenty-eight days of pressure pulsation at 1.0 Hz under 50.0cc/hr of flow rate. Flushing simulation resulted in temporary decrease in the pressure level. It took three hours to fully recover the normal pressure-flow control characteristics after the flushing. Our results suggest that shunt valves with a thin elastic diaphragm as the main flow control mechanism are sensitive to intracranial pressure pulsation or pressure spikes enough to change their pressure-flow control characteristics.

  19. Plasmasphere pulsations observed simultaneously by midlatitude SuperDARN radars, ground magnetometers and THEMIS spacecraft during an auroral substorm

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Shi, X.; Baker, J. B. H.; Frissell, N. A.; Hartinger, M.; Liu, J.

    2015-12-01

    We present simultaneous ground and space-based observations of ultra-low frequency (ULF) pulsations which occurred during an auroral substorm on September 25th, 2014. Expansion phase onset began at 06:04 UT at which time three midlatitude SuperDARN radars observed strong pulsations in the Pi2 frequency range with peak to peak amplitude reaching as high as 1km/s. Similar pulsations occurred during a later auroral intensification which started at 06:20 UT. Both sets of pulsations were detected in a region of radar backscatter located inside the subauroral polarization stream (SAPS) equatorward of the auroral oval specified by THEMIS all sky imagers and inside the midlatitude density trough as mapped by GPS/TEC measurements. The amplitude of the pulsations was large enough to reverse the direction of the SAPS flow from westward to eastward. Similar pulsations were detected by electric field instrument aboard the THEMIS probe D located inside the plasmasphere. Simultaneous observations from several low-latitude ground magnetometers (some located on the dayside) further illustrate the global nature of the pulsations and suggest they may have been associated with a plasmaspheric cavity resonance (PCR). Pulsed tailward plasma flow observed by THEMIS probe E at the geosynchronous orbit suggests that the compressional energy to generate the PCR was from the Bursty Bulk Flows (BBFs) braking against the magnetospheric dipolar region.

  20. A quiet flow Ludwieg tube for study of transition in compressible boundary layers: Design and feasibility

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1991-01-01

    Laminar-turbulent transition in high speed boundary layers is a complicated problem which is still poorly understood, partly because of experimental ambiguities caused by operating in noisy wind tunnels. The NASA Langley experience with quiet tunnel design has been used to design a quiet flow tunnel which can be constructed less expensively. Fabrication techniques have been investigated, and inviscid, boundary layer, and stability computer codes have been adapted for use in the nozzle design. Construction of such a facility seems feasible, at a reasonable cost. Two facilities have been proposed: a large one, with a quiet flow region large enough to study the end of transition, and a smaller and less expensive one, capable of studying low Reynolds number issues such as receptivity. Funding for either facility remains to be obtained, although key facility elements have been obtained and are being integrated into the existing Purdue supersonic facilities.

  1. A quiet-flow Ludwieg tube for experimental study of high speed boundary layer transition

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1991-01-01

    Laminar-turbulent transition in high speed boundary layers is a complicated problem which is still poorly understood, partly because of experimental ambiguities caused by operating in noisy wind tunnels. The NASA Langley experience with quiet tunnel design has been used to design a quiet flow tunnel which can be constructed less expensively. Fabrication techniques have been investigated, and inviscid, boundary layer, and stability computer codes have been adapted for use in the nozzle design. Construction of such a facility seems feasible, at a reasonable cost. Two facilities have been proposed: a large one, with a quiet flow region large enough to study the end of transition, and a smaller and less expensive one, capable of studying low Reynolds number issues such as receptivity. Funding for either facility remains to be obtained, although key facility elements have been obtained and are being integrated into the existing Purdue supersonic facilities.

  2. Effect of boundary absorption in dispersion in Casson fluid flow in a tube.

    PubMed

    Nagarani, P; Sarojamma, G; Jayaraman, G

    2004-05-01

    The combined effect of yield stress and irreversible boundary reaction on dispersion process in a Casson fluid flowing in a conduit (pipe/channel) is studied using the generalized dispersion model proposed by Sankarasubramanian and Gill (Sankarasubramanian, R., and W. N. Gill. Proc. R. Soc. London, Ser. A 333:115-132, 1973). The study describes the development of dispersive transport following the injection of a tracer in terms of the three effective transport coefficients, viz., exchange, convection, and dispersion coefficients. The exchange coefficient does not depend on yield stress but the convection and dispersion coefficients depend on yield stress or equivalently plug flow region. For large times, when the plug flow radius is one-tenth of pipe radius, the convective coefficient is reduced by 0.41 times of the corresponding value for a Newtonian fluid at equivalent wall absorption parameter; in channel case the reduction is by 39%. It is seen that the asymptotic dispersion coefficient decreases with increase in wall absorption parameter and yield stress of the fluid. When the plug radius in pipe (channel) is 0.1, depending upon the values of wall absorption parameter, say (0.01-100) the reduction factor in dispersion coefficient is in the range (0.1-0.3) in comparison to the values of the Newtonian case. The results reduce to those of Sankarasubramanian and Gill (Sankarasubramanian, R., and W. N. Gill. Proc. R. Soc. London, Ser. A 333:115-132, 1973) when there is no yield stress for the pipe flow analysis and to those of Dash et al. (Dash, R. K., G. Jayaraman, and K. N. Mehta. Ann. Biomed. Eng. 28:373-385, 2000) when there is no interphase mass transfer. The study can be used as a starting first approximation solution for studying the dispersion in the cardiovascular system.

  3. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    SciTech Connect

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F.

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  4. Effect of poly(aspartic acid) on calcium phosphate removal from stainless steel tubing under turbulent flow conditions

    NASA Astrophysics Data System (ADS)

    Littlejohn, Felicia

    Calcium phosphate deposition causes cleaning problems in a number of situations including water treatment, dairy processing, and dental applications. This problem is exacerbated by the limited choices of cleaning chemicals that meet environmental regulations. To promote the development of biodegradable, non-toxic alternatives, this research examines the removal of calcium phosphate deposits consisting of brushite (dicalcium phosphate dihydrate; DCPD) and a mixture of hydroxyapatite (HAP) and DCPD from stainless steel in the presence of poly(aspartic acid) and its sodium salt (PASP). The effects of solvent pH, PASP concentration, and flow rate on the calcium phosphate removal rates are measured from stainless steel tubing under turbulent flow conditions using a solid scintillation detection technique. A mechanistic evaluation of the cleaning data in the absence of PASP indicates that DCPD removal is dominated by shear while HAP/DCPD deposit removal is limited by a combination of mass transfer and interfacial processes. Although the removal mechanisms differ, the results conclusively show that PASP promotes calcium phosphate removal under conditions that favor calcium sequestration in both cases. An in-depth study of DCPD removal in the presence of PASP reveals that this additive is most effective under conditions where calcium sequestration and phosphate protonation occur simultaneously.

  5. Self-organized criticality in a two-dimensional cellular automaton model of a magnetic flux tube with background flow

    NASA Astrophysics Data System (ADS)

    Dănilă, B.; Harko, T.; Mocanu, G.

    2015-11-01

    We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.

  6. Analyses of exergy efficiency for forced convection heat transfer in a tube with CNT nanofluid under laminar flow conditions

    NASA Astrophysics Data System (ADS)

    Hazbehian, Mohammad; Mohammadiun, Mohammad; Maddah, Heydar; Alizadeh, Mostafa

    2016-09-01

    In the present study, the theoretical and experimental results of the second law analysis on the performance of a uniform heat flux tube using are presented in the laminar flow regime. For this purpose, carbon nanotube/water nanofluids is considered as the base fluid. The experimental investigations were undertaken in the Reynolds number range from 800 to 2600, volume concentrations of 0.1-1 %. Results are verified with well-known correlations. The focus will be on the entrance region under the laminar flow conditions for SWCNT nanofluid. The results showed that the Nu number increased about 90-270 % with the enhancement of nanoparticles volume concentration compared to water. The enhancement was particularly significant in the entrance region. Based on the exergy analysis, the results show that exergetic heat transfer effectiveness is increased by 22-67 % employing nanofluids. The exergetic efficiency is increase with increase in nanoparticles concentration. On the other hand, exergy loss was reduced by 23-43 % employing nanofluids as a heat transfer medium with comparing to conventional fluid. In addition, the empirical correlation for exergetic efficiency has also been developed. The consequential results obtained from the correlation are found to be in good agreement with the experimental results within ±5 % variation.

  7. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, S. P.; Zhou, L. J.; Wang, Z. W.

    2014-03-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency.

  8. Flow cytometry immunophenotyping in integrated diagnostics of patients with newly diagnosed cytopenia: one tube 10-color 14-antibody screening panel and 3-tube extensive panel for detection of MDS-related features.

    PubMed

    Porwit, A; Rajab, A

    2015-05-01

    Acute leukemia, myelodysplastic syndromes (MDS), myeloproliferative neoplasms and lymphomas are the most prevalent diagnoses in adults presenting with new onset cytopenia. Here, we describe two 10-color panels of surface markers (screening and comprehensive panel) applied at the Flow Cytometry Laboratory, University Health Network, Toronto, ON, Canada. A 10-color flow cytometry is applied using the stain-lyse-wash sample preparation method. In patients with <10% blasts and no clear involvement by hematological malignancy based on cytomorphological evaluation of bone marrow (BM) smear, the recently published one-tube 10-color 14-antibody screening panel is applied. This panel allows detection of major B- and T-cell abnormalities, enumeration of cells in blast region (CD45 dim), and gives insight into myeloid BM compartment, including calculation of four-parameter score for MDS-related abnormalities. In patients who present with ≥10 - <20% blasts in blood or BM smears, a comprehensive three-tube panel of surface markers is used up front. The analysis is focused on the detection of abnormal antigen expression patterns not seen in normal/reactive BM, according to the guidelines developed by International/European LeukemiaNet Working Group for Flow Cytometry in MDS. In patients with ≥20% blasts, an additional tube is added to allow the detection of cytoplasmic markers necessary to diagnose mixed phenotype acute leukemia.

  9. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  10. A Hybrid Vortex Method for Two-Dimensional Flow Over Tube Bundles

    SciTech Connect

    Strickland, J.H.; Wolfe, W.P.

    1998-11-13

    A hybrid vortex method is presented for computing flows about objects that accurately resolves the boundary layer details while keeping the number of free vortices at a reasonable level. The method uses a wall layer model close to the body surface and discrete vortex blobs in the free wake. Details of the wall layer implementation are presented, and results of sample calculations are compared with known analytical solutions and with calculations from other vortex codes. These results show that the computed boundary layer details are accurate to approximately 0.3 percent of analytical solutions while using three orders of magnitude fewer vortices than other vortex simulations.

  11. Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1998-01-01

    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemical parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the third year. Additional details concerning the projects listed in the statement of work were described in our original proposal.

  12. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  13. A Planet Found by Pulsations

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-10-01

    Searching for planets around very hot stars is much more challenging than looking around cool stars. For this reason, the recent discovery of a planet around a main-sequence A star is an important find both because of its unique position near the stars habitable zone, and because of the way in which the planet was discovered.Challenges in VariabilityIn the past three decades, weve discovered thousands of exoplanets yet most of them have been found around cool stars (like M dwarfs) or moderate stars (like G stars like our Sun). Very few of the planets that weve found orbit hot stars; in fact, weve only discovered ~20 planets orbiting the very hot, main-sequence A stars.The instability strip, indicated on an H-R diagram. Stellar classification types are listed across the bottom of the diagram. Many main-sequence A stars reside in the instability strip. [Rursus]Why is this? We dont expect that main-sequence A stars host fewer planets than cooler stars. Instead, its primarily because the two main techniques that we use to find planets namely, transits and radial velocity cant be used as effectively on the main-sequence A stars that are most likely to host planets, because the luminosities of these stars are often variable.These stars can lie on whats known as the classical instability strip in the Herzsprung-Russell diagram. Such variable stars pulsate due to changes in the ionization state of atoms deep in their interiors, which causes the stars to puff up and then collapse back inward. For variable main-sequence A stars, the periods for these pulsations can be several to several tens of times per day.These very pulsations that make transits and radial-velocity measurements so difficult, however, can potentially be used to detect planets in a different way. Led by Simon Murphy (University of Sydney, Australia and Aarhus University, Denmark), a team of scientists has recently detected the first planet ever to be discovered around a main-sequence A star from the timing

  14. An experimental investigation of pressure drop of aqueous foam in laminar tube flow

    NASA Astrophysics Data System (ADS)

    Blackwell, B. F.; Sobolik, K. B.

    1987-04-01

    This report is the first of two detailing pressure-drop and heat-transfer measurements made at the Foam Flow Heat Transfer Loop. The work was motivated by a desire to extend the application of aqueous foam from petroleum drilling to geothermal drilling. Pressure-drop measurements are detailed in this report; a forthcoming report (SAND85-1922) will describe the heat-transfer measurements. The pressure change across a 2.4-m (8-ft) length of the 2.588-cm (1.019-in.) ID test section was measured for liquid volume fractions between 0.05 and 0.35 and average velocities between 0.12 and 0.80 m/s (0.4 and 2.6 ft/s). The resulting pressure-drop/flow-rate data were correlated to a theoretical model for a Bingham plastic. Simple expressions for the dynamic viscosity and the yield stress as a function of liquid volume fraction were estimated.

  15. A study of the pulsation driving mechanism in pulsating combustors

    NASA Astrophysics Data System (ADS)

    Goldman, Y.; Timnat, Y. M.

    Experiments performed in a facility consisting of a Schmidt-type pulsating combustor, in which high-speed photographs were taken and pressure, temperature and gas composition measured, showed that the air supply conditions at the inlet and the volume of the combustor strongly influence the oscillation frequency. From the measurements, the existence of two separate regions, one containing cold air and the other containing fuel-rich gas, was found, and a pressure-volume diagram was drawn, showing the effect of chemical energy release and heat supply during the compression stroke and differentiating it from the expansion. A model of the interaction between the cyclic combustion process and the acoustic oscillations of the gas volume within the chamber and the tail-pipe is presented. The conditions for chemical energy release that result in high-pressure amplitude are described.

  16. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  17. A computational model of wall shear and residence time of particles conveyed by steady flow in a curved tube

    NASA Astrophysics Data System (ADS)

    Thiriet, M.; Graham, J. M. R.; Issa, R. I.

    1993-01-01

    A finite-volume model of steady flow of an incompressible viscous fluid has been carried out in a smooth rigid 90° bend of circular cross-section. The inlet boundary conditions for laminar flow are either an entry Poiseuille regime or a constant injection velocity for a range of Dean number 140 leq De leq 430. A numerical test of turbulent flow was performed for De sim 22 100 with a flat velocity profile at the model entry. The lower the role played by the viscous forces, the larger the distance necessary to set an outer shift of the peak axial velocity. The axial velocity of laminar flow depends not only on the value of the Dean number, but also on separate effects of the Reynolds number and of the tube curvature. The larger the laminar boundary layer at the bend inlet, the nearer from the entry the bend segment where the strongest secondary motion is located. With increasing Reynolds number, the secondary flow develops over a longer bend region and the wall shear rises. Upstream and downstream effect of the bend on the shear stress, as well as flow disturbances induced by very small curvature, were observed. The residence time of conveyed particles is enhanced by the presence of a curved section in the conduit with respect to a straight pipe only at the inner edge of the straight section located downstream from the bend. When the Reynolds number rises, the flow regime remaining laminar, the residence time is smaller in the whole pipe. However for turbulent flow, the residence time, which has much smaller values, takes its highest values in the exit straight section. Les équations de conservation de la masse et de la quantité de mouvement ont été résolues pour un écoulement stationnaire d'un fluide incompressible visqueux dans un coude (angle de 90°), de parois lisses et rigides et de section droite uniforme et circulaire, par la méthode des volumes finis. Les conditions limites en entrée pour l'écoulement laminaire sont soit un profil parabolique, soit

  18. Shock shapes on blunt bodies in hypersonic-hypervelocity helium, air, and CO2 flows, and calibration results in Langley 6-inch expansion tube

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1975-01-01

    Shock shape results for flat-faced cylinders, spheres, and spherically blunted cones in various test gases, along with preliminary results from a calibration study performed in the Langley 6-inch expansion tube are presented. Free-stream velocities from 5 to 7 km/sec are generated at hypersonic conditions with helium, air, and CO2, resulting in normal shock density ratios from 4 to 19. Ideal-gas shock shape predictions, in which an effective ratio of specific heats is used as input, are compared with the measured results. The effect of model diameter is examined to provide insight to the thermochemical state of the flow in the shock layer. The regime for which equilibrium exists in the shock layer for the present air and CO2 test conditions is defined. Test core flow quality, test repeatability, and comparison of measured and predicted expansion-tube flow quantities are discussed.

  19. Development, construction, and use of pneumometric tubes for measurement of steam flow in the steam lines of PVG-1000 at NPP

    SciTech Connect

    Gorbunov, Yu. S.; Ageev, A. G.; Vasil'eva, R. V.; Korol'kov, B. M.

    2007-05-15

    A system for the direct measurement of steam flow in steam lines after a steam generator, which utilizes a special design of pneumometric tubes and a computing unit that accounts for variation in steam pressure, has been developed to improve the quality of water-level regulation in the steam generators of VVER-1000 power-generating units in the stationary and transitional modes. The advantage of the pneumometric tubes consists in their structural simplicity, high erosion resistance, and absence of irrevocable losses during measurement of steam flow. A similar measurement system is used at foreign NPP. The measurement system in question has been placed in experimental service at the No. 3 unit of the Balakovo NPP, and has demonstrated its worthiness. This measurement system can also be used to determine steam flow in the steam lines of NPP units with VVER-1000 and VVER-440 reactors, and PBMK-1000 power-generating units.

  20. Nonlinear Analysis of Pulsating White Dwarf Lightcurves

    NASA Astrophysics Data System (ADS)

    Provencal, J. L.; Montgomery, M. H.; Shipman, H.; WET TEam

    2015-06-01

    Convection remains one of the largest sources of theoretical uncertainty in our understanding of stellar physics. For example, Bergeron (1995) show that basic parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed convective parameterization. This is compelling, since we use our knowledge of these basic parameters to calibrate white dwarf cooling sequences, provide detailed estimates for the ages of individual white dwarfs, and determine the age of the Galactic disk. The Whole Earth Telescope (WET) is engaged in a long term project to empirically calibrate the physical properties of convection in pulsating white dwarfs by combining asteroseismology and analysis of nonlinear light curves. Nonsinusoidal distortions, in the form of narrow peaks and wider valleys, are observed in many pulsating white dwarf light curves. These are a reflection of the local depth of the convection zone, a value which varies during a pulsation cycle. Applying asteroseismology and convective light curve fitting to a wide sample of pulsating white dwarfs provides an empirical map of how the convective response time (the convection zone “depth”) varies as a function of effective temperature, and this can be compared with theoretical models, both MLT and hydrodynamic. This project has resulted in a large database of white dwarf lightcurves and pulsation frequencies. We present current results for DA and DB pulsators, and provide a few examples of interesting pulsation behavior seen along the way.