Sample records for pulse amplification system

  1. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  2. Monolithic polarization maintaining fiber chirped pulse amplification (CPA) system for high energy femtosecond pulse generation at 1.03 µm.

    PubMed

    Kim, Kyungbum; Peng, Xiang; Lee, Wangkuen; Gee, Sangyoun; Mielke, Michael; Luo, Tao; Pan, Lei; Wang, Qing; Jiang, Shibin

    2015-02-23

    A monolithic polarization maintaining fiber chirped pulse amplification system with 25 cm Yb(3+)-doped high efficiency media fiber that generates 62 µJ sub-400 fs pulses with 25 W at 1.03 µm has recently been demonstrated.

  3. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  4. Active frequency matching in stimulated Brillouin amplification for production of a 2.4  J, 200  ps laser pulse.

    PubMed

    Yuan, Hang; Wang, Yulei; Lu, Zhiwei; Zheng, Zhenxing

    2018-02-01

    A frequency matching Brillouin amplification in high-power solid-state laser systems is proposed. The energy extraction efficiency could be maintained at a high level in a non-collinear Brillouin amplification structure using an exact Stokes frequency shift. Laser pulses having a width of 200 ps and energy of 2.4 J were produced. This method can be used to transfer energy from a long pulse to a short pulse through a high-power solid-state laser system.

  5. Divided-pulse nonlinear amplification and simultaneous compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Qiang; Zhang, Qingshan; Sun, Tingting

    2015-03-09

    We report on a fiber laser system delivering 122 fs pulse duration and 600 mW average power at 1560 nm by the interplay between divided pulse amplification and nonlinear pulse compression. A small-core double-clad erbium-doped fiber with anomalous dispersion carries out the pulse amplification and simultaneously compresses the laser pulses such that a separate compressor is no longer necessary. A numeric simulation reveals the existence of an optimum fiber length for producing transform-limited pulses. Furthermore, frequency doubling to 780 nm with 240 mW average power and 98 fs pulse duration is achieved by using a periodically poled lithium niobate crystal at roommore » temperature.« less

  6. OPCPA front end and contrast optimization for the OMEGA EP kilojoule, picosecond laser

    DOE PAGES

    Dorrer, C.; Consentino, A.; Irwin, D.; ...

    2015-09-01

    OMEGA EP is a large-scale laser system that combines optical parametric amplification and solid-state laser amplification on two beamlines to deliver high-intensity, high-energy optical pulses. The temporal contrast of the output pulse is limited by the front-end parametric fluorescence and other features that are specific to parametric amplification. The impact of the two-crystal parametric preamplifier, pump-intensity noise, and pump-signal timing is experimentally studied. The implementation of a parametric amplifier pumped by a short pump pulse before stretching, further amplification, and recompression to enhance the temporal contrast of the high-energy short pulse is described.

  7. Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification.

    PubMed

    Hays, Greg R; Gaul, Erhard W; Martinez, Mikael D; Ditmire, Todd

    2007-07-20

    We have investigated two novel laser glasses in an effort to generate high-energy, broad-spectrum pulses from a chirped-pulse amplification Nd:glass laser. Both glasses have significantly broader spectra (>38 nm FWHM) than currently available Nd:phosphate and Nd:silicate glasses. We present calculations for small signal pulse amplification to simulate spectral gain narrowing. The technique of spectral shaping using mixed-glass architecture with an optical parametric chirped-pulse amplification front end is evaluated. Our modeling shows that amplified pulses with energies exceeding 10 kJ with sufficient bandwidth to achieve 120 fs pulsewidths are achievable with the use of the new laser glasses. With further development of current technologies, a laser system could be scaled to generate one exawatt in peak power.

  8. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    PubMed

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  9. High contrast research in the Nd:glass laser system based on optical parametric amplification temporal cleaning device

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoming; Leng, Yuxin; Sui, Zhan; Li, Yanyan; Zhang, Zongxin; Xu, Yi; Guo, Xiaoyang; Liu, Yanqi; Li, Ruxin; Xu, Zhizhan

    2014-02-01

    We demonstrate high amplified spontaneous emission (ASE) contrast pulses in a Nd:glass laser system based on the hybrid double chirped pulse amplification (double CPA) scheme. By an OPA temporal cleaning device, ~100 uJ/46 fs/ 1011 clean pulses are generated and amplified in the next Nd:glass laser. After compressor, >150 mJ/~0.5 ps/1 Hz pulses can be obtained. The ASE temporal contrast of amplified pulses is ~1011 with energy gain ~2.5×104 in the Nd:glass amplifiers.

  10. Pulse transmission receiver with higher-order time derivative pulse generator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-12

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  11. Generation and parametric amplification of broadband chirped pulses in the near-infrared

    NASA Astrophysics Data System (ADS)

    Marcinkevičiūtė, A.; Michailovas, K.; Butkus, R.

    2018-05-01

    We demonstrate generation and optical parametric amplification of broadband chirped pulses in the range of 1.8- 2 . 5 μm. The setup is built around Ti:sapphire oscillator as a seed source and 1 kHz Nd:YAG laser system as a pump source. Visible broadband seed pulses are temporally stretched and amplified in a non-collinear optical parametric amplifier before being mixed with fundamental harmonic of the pump laser. Difference frequency generation between positively-chirped broadband pulses centered at 0 . 7 μm and non-chirped narrowband pulses at 1064 nm produces negatively-chirped wide spectral bandwidth pulses in the infrared. After subsequent parametric amplification, pulses with more than 0.5 mJ energy were obtained with spectral bandwidth supporting transform-limited pulse durations as short as 23 fs.

  12. Influence of chirp on laser-pulse amplification in Brillouin backscattering schemes

    NASA Astrophysics Data System (ADS)

    Lehmann, Goetz; Schluck, Friedrich; Spatschek, Karl-Heinz

    2015-11-01

    Plasma-based amplification of laser pulses is currently discussed as a key component for the next generation of high-intensity laser systems, possibly enabling the generation of ultra-short pulses in the exawatt-zetawatt regime. In these scenarios the energy of a long pump pulse (several ps to ns of duration) is transferred to a short seed pulse via a plasma oscillation. Weakly- and strongly-coupled (sc) Brillouin backscattering have been identified as potential candidates for robust amplification scenarios. With the help of three-wave interaction models, we investigate the influence of a chirp of the pump beam on the seed amplification. We show that chirp can mitigate deleterious spontaneous Raman backscattering of the pump off noise and that at the same time the amplification dynamics due to Brillouin scattering is still intact. For the experimentally very interesting case of sc-Brillouin we find a dependence of the efficiency on the sign of the chirp. Funding provided by project B10 of SFB TR18 of the Deutsche Forschungsgemeinschaft (DFG).

  13. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOEpatents

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  14. Dual sub-picosecond and sub-nanosecond laser system

    NASA Astrophysics Data System (ADS)

    Xie, Xinglong; Liu, Fengqiao; Yang, Jingxin; Yang, Xin; Li, Meirong; Xue, Zhiling; Gao, Qi; Guan, Fuyi; Zhang, Weiqing; Huang, Guanlong; Zhuang, Yifei; Han, Aimei; Lin, Zunqi

    2003-11-01

    A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 10^(5) : 1, filling factor ~>52.7%. Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.

  15. Multi-mJ energy extraction using Yb-fiber based coherent pulse stacking amplification of fs pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruppe, John M.; Pei, Hanzhang; Chen, Siyun; Sheikhsofla, Morteza; Wilcox, Russell B.; Nees, John A.; Galvanauskas, Almantas

    2017-03-01

    We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10's of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited 300 fs duration using a standard diffraction-grating pulse compressor.

  16. High power, high contrast hybrid femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Dabu, Razvan

    2017-06-01

    For many research applications a very high laser intensity of more than 1022 W/cm2 in the focused beam is required. If a laser intensity of about 1011W/cm2 is reached on the target before the main laser pulse, the generated pre-plasma disturbs the experiment. High power femtosecond lasers must be tightly focused to get high intensity and in the same time must have a high enough intensity contrast of the temporally compressed amplified pulses. Reaching an intensity contrast in the range of 1012 represents a challenging task for a Ti:sapphire CPA laser. Hybrid femtosecond lasers combine optical parametric chirped pulsed amplification (OPCPA) in nonlinear crystals with the chirped pulse amplification (CPA) in laser active media. OPCPA provides large amplification spectral bandwidth and improves the intensity contrast of the amplified pulses. A key feature of these systems consists in the adaptation of the parametric amplification phase-matching bandwidth of nonlinear crystals to the spectral gain bandwidth of laser amplifying Ti:sapphire crystals. OPCPA in BBO crystals up to mJ energy level in the laser Front-End, followed by CPA up to ten/hundred Joules in large aperture Ti:sapphire crystals, represents a suitable solution for PW-class femtosecond lasers. The configuration and expected output beam characteristics of the hybrid amplification 2 × 10 PW ELI-NP laser are described.

  17. High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control.

    PubMed

    Zinkstok, R Th; Witte, S; Hogervorst, W; Eikema, K S E

    2005-01-01

    Phase-stable parametric chirped-pulse amplification of ultrashort pulses from a carrier-envelope phase-stabilized mode-locked Ti:sapphire oscillator (11.0 fs) to 0.25 mJ/pulse at 1 kHz is demonstrated. Compression with a grating compressor and a LCD shaper yields near-Fourier-limited 11.8-fs pulses with an energy of 0.12 mJ. The amplifier is pumped by 532-nm pulses from a synchronized mode-locked laser, Nd:YAG amplifier system. This approach is shown to be promising for the next generation of ultrafast amplifiers aimed at producing terawatt-level phase-controlled few-cycle laser pulses.

  18. Gain-phase modulation in chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Gao, Gan; Meng, Yuan; Fu, Xing; Gong, Mali

    2017-10-01

    The cross-modulation between the gain and chirped phase in chirped-pulse amplification (CPA) is theoretically and experimentally demonstrated. We propose a gain-phase coupled nonlinear Schrödinger equation (GPC-NLSE) for solving chirped-pulse propagation in a nonlinear gain medium involved in the gain-phase modulation (GPM) process. With the GPC-NLSE, the space-time-frequency-dependent gain, chirped phase, pulse, and spectrum evolutions can be precisely calculated. Moreover, a short-length high-gain Yb-doped fiber CPA experiment is presented in which a self-steepening distortion of the seed pulse is automatically compensated after amplification. This phenomenon can be explained by the GPM theory whereas conventional models cannot. The experimental results for the temporal and spectral intensities show excellent agreement with our theory. Our GPM theory paves the way for further investigations of the finer structures of the pulse and spectrum in CPA systems.

  19. Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-μm pulses using a mixed phase matching scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Guibao; Wandel, Scott F.; Jovanovic, Igor, E-mail: ijovanovic@psu.edu

    2014-02-15

    We describe the production of 2.2-mJ, ∼6 optical-cycle-long mid-infrared laser pulses with a carrier wavelength of 2.05 μm in a two-stage β-BaB{sub 2}O{sub 4} nondegenerate optical parametric amplifier design with a mixed phase matching scheme, which is pumped by a standard Ti:sapphire chirped-pulse amplification system. It is demonstrated that relatively high pulse energies, short pulse durations, high stability, and excellent beam profiles can be obtained using this simple approach, even without the use of optical parametric chirped-pulse amplification.

  20. All-Fiber, Directly Chirped Laser Source for Chirped-Pulse-Amplification

    NASA Astrophysics Data System (ADS)

    Xin, Ran

    Chirped-pulse-amplification (CPA) technology is widely used to produce ultra-short optical pulses (sub picosecond to femtoseconds) with high pulse energy. A chirped pulse laser source with flexible dispersion control is highly desirable as a CPA seed. This thesis presents an all-fiber, directly chirped laser source (DCLS) that produces nanosecond, linearly-chirped laser pulses at 1053 nm for seeding high energy CPA systems. DCLS produces a frequency chirp on an optical pulse through direct temporal phase modulation. DCLS provides programmable control for the temporal phase of the pulse, high pulse energy and diffraction-limited beam performance, which are beneficial for CPA systems. The DCLS concept is first described. Its key enabling technologies are identified and their experimental demonstration is presented. These include high-precision temporal phase control using an arbitrary waveform generator, multi-pass phase modulation to achieve high modulation depth, regenerative amplification in a fiber ring cavity and a negative feedback system that controls the amplifier cavity dynamics. A few technical challenges that arise from the multi-pass architecture are described and their solutions are presented, such as polarization management and gain-spectrum engineering in the DCLS fiber cavity. A DCLS has been built and its integration into a high energy OPCPA system is demonstrated. DCLS produces a 1-ns chirped pulse with a 3-nm bandwidth. The temporal phase and group delay dispersion on the DCLS output pulse is measured using temporal interferometry. The measured temporal phase has an ˜1000 rad amplitude and is close to a quadratic shape. The chirped pulse is amplified from 0.9 nJ to 76 mJ in an OPCPA system. The amplified pulse is compressed to close to its Fourier transform limit, producing an intensity autocorrelation trace with a 1.5-ps width. Direct compressed-pulse duration control by adjusting the phase modulation drive amplitude is demonstrated. Limitation to pulse compression is investigated using numerical simulation.

  1. Regenerative Amplification of Femtosecond Pulses: Design andConstruction of a sub-100fs, muon J Laser System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Andreas B.

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the μJ level,while the pulse duration remains below 100 fs. A combination of continuous pumping, acousto-optic switching and Ti:Al 2O 3 as a gain medium allows amplification at high repetition rates. By focusingmore » the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.« less

  2. Towards sub-100 fs multi-GW pulses directly emitted from a Thulium-doped fiber CPA system

    NASA Astrophysics Data System (ADS)

    Gaida, C.; Gebhardt, M.; Stutzki, F.; Jauregui, C.; Limpert, J.; Tünnermann, A.

    2017-02-01

    Experimental demonstrations of Tm-doped fiber amplifiers (typically in CW- or narrow-band pulsed operation) span a wavelength range going from about 1700 nm to well beyond 2000 nm. Thus, it should be possible to obtain a bandwidth of more than 100 nm, which would enable sub-100 fs pulse duration in an efficient, linear amplification scheme. In fact, this would allow the emission of pulses with less than 20 optical cycles directly from a Tm-doped fiber system, something that seems to be extremely challenging for other dopants in a fused silica fiber. In this contribution, we summarize the current development of our Thulium-doped fiber CPA system, demonstrate preliminary experiments for further scaling and discuss important design factors for the next steps. The current single-channel laser system presented herein delivers a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. Special care has been taken to reduce the detrimental impact of water vapor absorption by placing the whole system in a dry atmosphere housing (<0.1% rel. humidity) and by using a sufficiently long wavelength (1920-1980 nm). The utilization of a low-pressure chamber in the future will allow for the extension of the amplification bandwidth. Preliminary experiments demonstrating a broader amplification bandwidth that supports almost 100 fs pulse duration and average power scaling to < 100W have already been performed. Based on these results, a Tm-doped fiber CPA with sub-100 fs pulse duration, multi-GW pulse peak power and >100 W average power can be expected in the near future.

  3. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    NASA Astrophysics Data System (ADS)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  4. A 1J LD pumped Nd:YAG pulsed laser system

    NASA Astrophysics Data System (ADS)

    Yi, Xue-bin; Wang, Bin; Yang, Feng; Li, Jing; Liu, Ya-Ping; Li, Hui-Jun; Wang, Yu; Chen, Ren

    2017-11-01

    A 1J LD pumped Nd;YAG pulsed laser was designed. The laser uses an oscillation and two-staged amplification structure, and applies diode bar integrated array as side-pump. The TEC temperature control device combing liquid cooling system is organized to control the temperature of the laser system. This study also analyzed the theoretical threshold of working material, the effect of thermal lens and the basic principle of laser amplification. The results showed that the laser system can achieve 1J, 25Hz pulse laser output, and the laser pulse can be output at two width: 6-7ns and 10ns, respectively, and the original beam angle is 1.2mrad. The laser system is characterized by small size, light weight, as well as good stability, which make it being applied in varied fields such as photovoltaic radar platform and etc

  5. Final Technical Report "Study of Efficiency of Raman Backscattering Amplification in Plasma"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suckewer, Szymon

    2014-03-31

    General : Our major scientific achievements in Raman Backscattering (RBS) amplification and compression of short laser pulses in plasma. The laser system based on RBS steps in where the current technology of chirped pulse amplification (CPA) (extremely successful in developing ultra-short and ultra-intense laser pulses in last 2 decades) becomes difficult and very expensive to apply. Good base for such RBS laser was created by our recent experiments, which were supported by GPS grants. The main objective of the present grant was: improvement efficiency of energy transfer from pump to seed. The results surpassed our expectations; we improved the efficiencymore » of energy transfer from pump to seed by a factor of 6 compared to the best of our previous results and amplified seed pulse compressed down to about 50 fsec.« less

  6. Simulation of energy buildups in solid-state regenerative amplifiers for 2-μm emitting lasers

    NASA Astrophysics Data System (ADS)

    Springer, Ramon; Alexeev, Ilya; Heberle, Johannes; Pflaum, Christoph

    2018-02-01

    A numerical model for solid-state regenerative amplifiers is presented, which is able to precisely simulate the quantitative energy buildup of stretched femtosecond pulses over passed roundtrips in the cavity. In detail, this model is experimentally validated with a Ti:Sapphire regenerative amplifier. Additionally, the simulation of a Ho:YAG based regenerative amplifier is conducted and compared to experimental data from literature. Furthermore, a bifurcation study of the investigated Ho:YAG system is performed, which leads to the identification of stable and instable operation regimes. The presented numerical model exhibits a well agreement to the experimental results from the Ti:Sapphire regenerative amplifier. Also, the gained pulse energy from the Ho:YAG system could be approximated closely, while the mismatch is explained with the monochromatic calculation of pulse amplification. Since the model is applicable to other solid-state gain media, it allows for the efficient design of future amplification systems based on regenerative amplification.

  7. Numerical investigations of non-collinear optical parametric chirped pulse amplification for Laguerre-Gaussian vortex beam

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Yu, Lianghong; Liang, Xiaoyan

    2016-04-01

    We present for the first time a scheme to amplify a Laguerre-Gaussian vortex beam based on non-collinear optical parametric chirped pulse amplification (OPCPA). In addition, a three-dimensional numerical model of non-collinear optical parametric amplification was deduced in the frequency domain, in which the effects of non-collinear configuration, temporal and spatial walk-off, group-velocity dispersion and diffraction were also taken into account, to trace the dynamics of the Laguerre-Gaussian vortex beam and investigate its critical parameters in the non-collinear OPCPA process. Based on the numerical simulation results, the scheme shows promise for implementation in a relativistic twisted laser pulse system, which will diversify the light-matter interaction field.

  8. Generation of 70 fs broadband pulses in a hybrid nonlinear amplification system with mode-locked Yb:YAG ceramic oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Chao; Luo, Daping; Yang, Chao; Li, Jiang; Ge, Lin; Pan, Yubai; Li, Wenxue

    2017-12-01

    We demonstrate the passively mode-locked laser performances of bulk Yb:YAG ceramic prepared by non-aqueous tape casting, which generates initial pulses in temporal width of 3 ps and spectrum width of 3 nm without intra-cavity dispersion management. The ceramic laser is further used as seeding oscillator in a fiber nonlinear amplification system, where ultrashort pulses in maximum output power of ˜100 W and pulse duration of 70 fs are achieved. Moreover, the laser spectrum is broadened to be ˜41 nm due to self-phase modulation effects in the gain fiber, overcoming the narrow spectrum limitations of ceramic materials. Our approach opens a new avenue for power-scaling and spectrum-expanding of femtosecond ceramic lasers.

  9. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.

    PubMed

    Phillips, C R; Mayer, B W; Gallmann, L; Keller, U

    2016-07-11

    Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed.

  10. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  11. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.

    2006-10-15

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60 J on target in a 500 fs pulse, around 100 TW, at the fundamental laser wavelength of 1.054 {mu}m. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibratedmore » radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 10{sup 19} W cm{sup -2} and to underwrite the facility radiological safety system.« less

  12. Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, D J; Barty, C J; Betts, S M

    2005-04-21

    The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3-5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 {micro}J, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, anmore » optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a pump beam in pump-probe diffraction experiments using the ultrashort tunable x-rays generated as the probe.« less

  13. Coherent white light amplification

    DOEpatents

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  14. Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses.

    PubMed

    Liu, Wei; Schimpf, Damian N; Eidam, Tino; Limpert, Jens; Tünnermann, Andreas; Kärtner, Franz X; Chang, Guoqing

    2015-01-15

    We demonstrate a pre-chirp managed Yb-doped fiber laser system that outputs 75 MHz, 130 W spectrally broadened pulses, which are compressed by a diffraction-grating pair to 60 fs with average powers as high as 100 W. Fine tuning the pulse chirp prior to amplification leads to high-quality compressed pulses. Detailed experiments and numerical simulation reveal that the optimum pre-chirp group-delay dispersion increases from negative to positive with increasing output power for rod-type high-power fiber amplifiers. The resulting laser parameters are suitable for extreme nonlinear optics applications such as frequency conversion in femtosecond enhancement cavities.

  15. Femtosecond optical parametric amplification in BBO and KTA driven by a Ti:sapphire laser for LIDT testing and diagnostic development

    NASA Astrophysics Data System (ADS)

    Meadows, Alexander R.; Cupal, Josef; Hříbek, Petr; Durák, Michal; Kramer, Daniel; Rus, Bedřich

    2017-05-01

    We present the design of a collinear femtosecond optical parametric amplification (OPA) system producing a tunable output at wavelengths between 1030 nm and 1080 nm from a Ti:Sapphire pump laser at a wavelength of 795 nm. Generation of a supercontinuum seed pulse is followed by one stage of amplification in Beta Barium Borate (BBO) and two stages of amplification in Potassium Titanyle Arsenate (KTA), resulting in a 225 μJ output pulse with a duration of 90 fs. The output of the system has been measured by self-referenced spectral interferometry to yield the complete spectrum and spectral phase of the pulse. When compared to KTP, the greater transparency of KTA in the spectral range from 3 - 4 μm allows for reduced idler absorption and enhanced gain from the OPA process when it is pumped by the fundamental frequency of a Ti:sapphire laser. In turn, the use of the Ti:sapphire fundamental at 795 nm as a pump improves the efficiency with which light can be converted to wavelengths between 1030 nm and 1080 nm and subsequently used to test components for Nd-based laser systems. This OPA system is operated at 1 kHz for diagnostic development and laser-induced damage threshold testing of optical components for the ELI-Beamlines project.

  16. A 100J-level nanosecond pulsed DPSSL for pumping high-efficiency, high-repetition rate PW-class lasers

    NASA Astrophysics Data System (ADS)

    De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Smith, J. M.; Butcher, T. J.; Chekhlov, O.; Divoky, M.; Pilar, J.; Hooker, C.; Shaikh, W.; Lucianetti, A.; Hernandez-Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2017-02-01

    In this paper, we review the development, at the STFC's Central Laser Facility (CLF), of high energy, high repetition rate diode-pumped solid-state laser (DPSSL) systems based on cryogenically-cooled multi-slab ceramic Yb:YAG. Up to date, two systems have been completed, namely the DiPOLE prototype and the DiPOLE100 system. The DiPOLE prototype has demonstrated amplification of nanosecond pulses in excess of 10 J at 10 Hz repetition rate with an opticalto- optical efficiency of 22%. The larger scale DiPOLE100 system, designed to deliver 100J temporally-shaped nanosecond pulses at 10 Hz repetition rate, has been developed at the CLF for the HiLASE project in the Czech Republic. Recent experiments conducted on the DiPOLE100 system demonstrated the energy scalability of the DiPOLE concept to the 100 J pulse energy level. Furthermore, second harmonic generation experiments carried out on the DiPOLE prototype confirmed the suitability of DiPOLE-based systems for pumping high repetition rate PW-class laser systems based on Ti:sapphire or optical parametric chirped pulse amplification (OPCPA) technology.

  17. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    PubMed

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  18. Control of Brillouin short-pulse seed amplification by chirping the pump pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, G.; Spatschek, K. H.

    Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of themore » seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.« less

  19. Carrier-envelope phase stabilization and control using a transmission grating compressor and an AOPDF.

    PubMed

    Canova, Lorenzo; Chen, Xiaowei; Trisorio, Alexandre; Jullien, Aurélie; Assion, Andreas; Tempea, Gabriel; Forget, Nicolas; Oksenhendler, Thomas; Lopez-Martens, Rodrigo

    2009-05-01

    Carrier-envelope phase (CEP) stabilization of a femtosecond chirped-pulse amplification system featuring a compact transmission grating compressor is demonstrated. The system includes two amplification stages and routinely generates phase-stable (approximately 250 mrad rms) 2 mJ, 25 fs pulses at 1 kHz. Minimizing the optical pathway in the compressor enables phase stabilization without feedback control of the grating separation or beam pointing. We also demonstrate for the first time to the best of our knowledge, out-of-loop control of the CEP using an acousto-optic programmable dispersive filter inside the laser chain.

  20. Two-dimensional Maxwell-Bloch simulation of quasi-π-pulse amplification in a seeded XUV laser

    NASA Astrophysics Data System (ADS)

    Larroche, O.; Klisnick, A.

    2013-09-01

    The amplification of high-order-harmonics (HOH) seed pulses in a swept-gain XUV laser is investigated through numerical simulations of the full set of Bloch and two-dimensional paraxial propagation equations with our code colax. The needed atomic data are taken from a hydrodynamics and collisional-radiative simulation in the case of a Ni-like Ag plasma created from the interaction of an infrared laser with a solid target and pumped in the transient regime. We show that the interplay of strong population inversion and diffraction or refraction due to the short transverse dimensions and steep density gradient of the active plasma can lead to the amplification of an intense, ultrashort, quasi-“π” pulse triggered by the incoming seed. By properly tuning the system geometry and HOH pulse parameters, we show that an ≃10 fs, 8×1012 W/cm2 amplified pulse can be achieved in a 3-mm-long Ni-like Ag plasma, with a factor of ≳10 intensity contrast with respect to the longer-lasting wake radiation and amplified spontaneous emission.

  1. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification.

    PubMed

    Fu, Yuxi; Midorikawa, Katsumi; Takahashi, Eiji J

    2018-05-16

    Expansion of the wavelength range for an ultrafast laser is an important ingredient for extending its range of applications. Conventionally, optical parametric amplification (OPA) has been employed to expand the laser wavelength to the infrared (IR) region. However, the achievable pulse energy and peak power have been limited to the mJ and the GW level, respectively. A major difficulty in the further energy scaling of OPA results from a lack of suitable large nonlinear crystals. Here, we circumvent this difficulty by employing a dual-chirped optical parametric amplification (DC-OPA) scheme. We successfully generate a multi-TW IR femtosecond laser pulse with an energy of 100 mJ order, which is higher than that reported in previous works. We also obtain excellent energy scaling ability, ultrashort pulses, flexiable wavelength tunability, and high-energy stability, which prove that DC-OPA is a superior method for the energy scaling of IR pulses to the 10 J/PW level.

  2. Self similar solution of superradiant amplification of ultrashort laser pulses in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghadasin, H.; Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Shokri, B.

    2015-05-15

    Based on the self-similar method, superradiant amplification of ultrashort laser pulses by the counterpropagating pump in a plasma is investigated. Here, we present a governing system of partial differential equations for the signal pulse and the motion of the electrons. These equations are transformed to ordinary differential equations by the self-similar method and numerically solved. It is found that the increase of the signal intensity is proportional to the square of the propagation distance and the signal frequency has a red shift. Also, depending on the pulse width, the signal breaks up into a train of short pulses or itsmore » duration decreases with the inverse square root of the distance. Moreover, we identified two distinct categories of the electrons by the phase space analysis. In the beginning, one of them is trapped in the ponderomotive potential well and oscillates while the other is untrapped. Over time, electrons of the second kind also join to the trapped electrons. In the potential well, the electrons are bunched to form an electron density grating which reflects the pump pulse into the signal pulse. It is shown that the backscattered intensity is enhanced with the increase of the electron bunching parameter which leads to the enhanced efficiency of superradiant amplification.« less

  3. Development of a femtosecond micromachining workstation by use of spectral interferometry.

    PubMed

    Bera, Sudipta; Sabbah, A J; Durfee, Charles G; Squier, Jeff A

    2005-02-15

    A workstation that permits real-time measurement of ablation depth while micromachining with femtosecond laser pulses is demonstrated. This method incorporates the unamplified pulse train that is available in a chirped-pulse amplification system as the probe in an arrangement that uses spectral interferometry to measure the ablation depth while cutting with the amplified pulse in thin metal films.

  4. 1047nm 270mJ all solid state diode pumped MOPA at 50 Hz

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Yang, Qi; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei; Chen, Weibiao

    2015-02-01

    A diode-pumped nanosecond Master Oscillator Power Amplifier (MOPA) system based on Nd:YLF crystal slabs has been demonstrated. The seed pulses with pulse duration of 11 ns were generated in an EO Q-switched Nd:YLF laser, with single pulse energy of 10 mJ. The 1047 nm signal pulses were amplified in a double-pass amplification system. Maximum output pulse energy of 270 mJ at a repetition rate of 50 Hz has been achieved with effective optical-to-optical efficiency of 14.5%.

  5. 0.4 mJ quasi-continuously pumped picosecond Nd:GdVO4 laser with selectable pulse duration

    NASA Astrophysics Data System (ADS)

    Kubeček, V.; Jelínek, M.; Čech, M.; Hiršl, P.; Diels, J.-C.

    2010-02-01

    A quasi-continuously pumped picosecond oscillator-amplifier Nd:GdVO4 laser system based on two identical slabs in a single bounce geometry is reported. Pulse duration is from 160 to 55 ps resulting from the pulse shortening along the extended mode locked train from passively mode locked oscillator, which was measured directly from a single laser shot. The shortest 55 ps long cavity dumped single pulses from the oscillator with the energy of 15±1 μJ and the contrast better than 10-3 were amplified to the energy of 150 μJ with the contrast better than 10-3 after the single-pass amplification and to the energy of 400 μJ after the double-pass amplification.

  6. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2013-07-01

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  7. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Pulsed neodymium amplifier with phase conjugation and direct amplification

    NASA Astrophysics Data System (ADS)

    Basov, N. G.; Efimkov, V. F.; Zubarev, I. G.; Kolobrodov, V. V.; Pastukhov, S. A.; Smirnov, M. G.; Sobolev, V. B.

    1988-12-01

    A study was made of the characteristics of an amplifier containing neodymium-activated silicate rods, 45 mm in diameter, used in direct amplification and phase conjugation systems. At low output energies the divergence of the output radiation in the presence of a phase-conjugating mirror was half ( ~ 10- 4 rad) that in the case of direct amplification. An increase in the output power caused the divergence to rise more rapidly in the presence of a phase-conjugating mirror, which was tentatively attributed to an earlier manifestation of large-scale self-focusing. Output energies of 130 J in the case of direct amplification and 80 J in the presence of a phase-conjugating mirror were obtained when the output pulse duration was ~ 2 ns and the fraction of the total energy contained within an angle of ~ 10- 4 rad was ~ 0.3.

  8. Ultrafast Laser Techniques

    DTIC Science & Technology

    1991-06-05

    2 Prism Dye Amplifiers .................................................................................. 2 Axicon...carried out under this project. PRISM DYE AMPLIFIERS A first effort was devoted to setting up an amplifier system for the output of a short pulse dye laser...For amplification up to pulse energies of approximately 500 p.J/pulse we chose three stages of prism amplifier cells, with diameters of 1 m, 3 mm

  9. Measuring system for the determination of nonlinear elastic and electromechanical properties in solids

    NASA Astrophysics Data System (ADS)

    Straube, U.; Beige, H.

    1999-03-01

    An arbitrary waveform generator was introduced to produce pulse bursts with improved time jitter for the generation of ultrasound pulses. The problem of pulse amplification was solved using a ceramic power triode driven by a power FET amplifier. The construction of these special amplifier stages is mainly considered in this paper.

  10. Envelope matching for enhanced backward Raman amplification by using self-ionizing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. M.; Zhang, B.; Hong, W.

    2014-12-15

    Backward Raman amplification (BRA) in plasmas has been promoted as a means for generating ultrapowerful laser pulses. For the purpose of achieving the maximum intensities over the shortest distances, an envelope matching between the seed pulse and the amplification gain is required, i.e., the seed pulse propagates at the same velocity with the gain such that the peak of the seed pulse can always enjoy the maximum gain. However, such an envelope matching is absent in traditional BRA because in the latter the amplification gain propagates at superluminous velocity while the seed pulse propagates at the group velocity, which ismore » less than the speed of light. It is shown here that, by using self-ionizing plasmas, the speed of the amplification gain can be well reduced to reach the envelope matching regime. This results in a favorable BRA process, in which higher saturated intensity, shorter interaction length and higher energy-transfer efficiency are achieved.« less

  11. The theory of optical black hole lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaona-Reyes, José L., E-mail: jgaona@fis.cinvestav.mx; Bermudez, David, E-mail: dbermudez@fis.cinvestav.mx

    The event horizon of black holes and white holes can be achieved in the context of analogue gravity. It was proven for a sonic case that if these two horizons are close to each other their dynamics resemble a laser, a black hole laser, where the analogue of Hawking radiation is trapped and amplified. Optical analogues are also very successful and a similar system can be achieved there. In this work we develop the theory of optical black hole lasers and prove that the amplification is also possible. Then, we study the optical system by determining the forward propagation ofmore » modes, obtaining an approximation for the phase difference which governs the amplification, and performing numerical simulations of the pulse propagation of our system. - Highlights: • We develop the conditions to obtain the kinematics of the optical black hole laser. • We prove the amplification of Hawking radiation for the optical case. • We derive the forward propagation of modes and check the result of the backward case. • A model is proposed to calculate the phase difference and the amplification rate. • We perform numerical simulations of a pulse between two solitons forming a cavity.« less

  12. High Intensity Mirror-Free Nanosecond Ytterbium Fiber Laser System in Master Oscillator Power Amplification

    NASA Astrophysics Data System (ADS)

    Chun-Lin, Louis Chang

    Rare-earth-doped fiber lasers and amplifiers are relatively easy to efficiently produce a stable and high quality laser beam in a compact, robust, and alignment-free configuration. Recently, high power fiber laser systems have facilitated wide spread applications in academics, industries, and militaries in replacement of bulk solid-state laser systems. The master oscillator power amplifier (MOPA) composed of a highly-controlled seed, high-gain preamplifiers, and high-efficiency power amplifiers are typically utilized to scale up the pulse energy, peak power, or average power. Furthermore, a direct-current-modulated nanosecond diode laser in single transverse mode can simply provide a compact and highly-controlled seed to result in the flexible output parameters, such as repetition rate, pulse duration, and even temporal pulse shape. However, when scaling up the peak power for high intensity applications, such a versatile diode-seeded nanosecond MOPA laser system using rare-earth-doped fibers is unable to completely save its own advantages compared to bulk laser systems. Without a strong seeding among the amplifiers, the guided amplified spontaneous amplification is easy to become dominant during the amplification, leading to the harmful self-lasing or pulsing effects, and the difficulty of the quantitative numerical comparison. In this dissertation, we study a high-efficiency and intense nanosecond ytterbium fiber MOPA system with good beam quality and stability for high intensity applications. The all-PM-fiber structure is achieved with the output extinction ratio of >12 dB by optimizing the interconnection of high power optical fibers. The diode-seeded MOPA configuration without parasitic stimulated amplification (PAS) is implemented using the double-pass scheme to extract energy efficiently for scaling peak power. The broadband PAS was studied experimentally, which matches well with our numerical simulation. The 1064-nm nanosecond seed was a direct-current-modulated Fabry-Perot diode laser associated with a weak and pulsed noise spanning from 1045 to 1063 nm. Even though the contribution of input noise pulse is only <5%, it becomes a significant transient spike during amplification. The blue-shifted pulsed noise may be caused by band filling effect for quantum-well seed laser driven by high peak current. The study helps the development of adaptive pulse shaping for scaling peak power or energy at high efficiency. On the other hand, the broadband spike with a 3-dB bandwidth of 8.8 nm can support pulses to seed the amplifier for sub-nanosecond giant pulse generation. Because of the very weak seed laser, the design of high-gain preamplifier becomes critical. The utilization of single-mode core-pumped fiber preamplifier can not only improve the mode contrast without fiber coiling effect but also significantly suppress the fiber nonlinearity. The double-pass scheme was therefore studied both numerically and experimentally to improve energy extraction efficiency for the lack of attainable seed and core-pumped power. As a result, a record-high peak power of > 30 kW and energy of > 0.23 mJ was successfully achieved to the best of our knowledge from the output of clad-pumped power amplifier with a beam quality of M2 ˜1.1 in a diode-seeded 15-microm-core fiber MOPA system. After the power amplifier, the MOPA conversion efficiency can be dramatically improved to >56% for an energy gain of >63 dB at a moderate repetition rate of 20 kHz with a beam quality of M 2 <1.5. The output energy of >1.1 mJ with a pulse duration of ˜6.1 ns can result in a peak power up to >116 kW which is limited by fiber fuse in long-term operation. Such a condition able to generate the on-target laser intensity of > 60 GW/cm2 for applications is qualified to preliminarily create a laser-plasma light source. Moreover, the related simulation results also reveal the double-passed power amplifier can further simplify MOPA. Such an intense clad-pumped power amplifier can further become a nonlinear fiber amplifier in all-normal dispersion instead of a nonlinear passive fiber. The combination of laser amplification and nonlinear conversion together can therefore overcome the significant pump depletion during the propagation along the passive fiber for power scaling. As a result, an intense spectrum spanning from 980 to 1600 nm as a high-power nanosecond supercontinuum source can be successfully generated with a conversion efficiency of >65% and a record-high peak power of >116 kW to the best of our knowledge. Because of MOPA structure, the influence of input parameters of nonlinear fiber amplifier on supercontinuum parameters can also be studied. The onset and interplay of fiber nonlinearities can be revealed stage by stage. Such an unique and linearly-polarized light source composed of an intense pump and broad sideband seed is beneficial for efficiently driving the broadband tunable optical parametric amplification free from the bulkiness and timing jitter. Keywords: High power fiber laser and amplifier, ytterbium fiber, master oscillator power amplification, parasitic stimulated amplification, multi-pass fiber amplification, peak power/pulse energy scaling, fiber nonlinear optics, supercontinuum generation.

  13. Optimization of interaction conditions for efficient short laser pulse amplification by stimulated Brillouin scattering in the strongly coupled regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiaramello, M.; Riconda, C.; Amiranoff, F.

    Plasma amplification of low energy, a short (∼100–500 fs) laser pulse by an energetic long (∼10 ps) pulse via strong coupling Stimulated Brillouin Backscattering is investigated with an extensive analysis of one-dimensional particle-in-cell simulations. Parameters relevant to nowadays experimental conditions are investigated. The obtained seed pulse spectra are analyzed as a function of the interaction conditions such as plasma profile, pulses delay, and seed or pulse duration. The factors affecting the amount of energy transferred are determined, and the competition between Brillouin-based amplification and parasitic Raman backscattering is analyzed, leading to the optimization of the interaction conditions.

  14. Nonlinear processes associated with the amplification of MHz-linewidth laser pulses in single-mode Tm:fiber

    NASA Astrophysics Data System (ADS)

    Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.

    2017-03-01

    This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A <2 MHz linewidth CW diode seed is externally modulated using a fiberized acousto-optic modulator. This enables independent control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.

  15. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  16. Short-pulse amplification by strongly coupled stimulated Brillouin scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew R., E-mail: mredward@princeton.edu; Mikhailova, Julia M.; Jia, Qing

    2016-08-15

    We examine the feasibility of strongly coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  17. Active/passive mode-locked laser oscillator

    DOEpatents

    Fountain, William D.; Johnson, Bertram C.

    1977-01-01

    A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.

  18. The generation of amplified spontaneous emission in high-power CPA laser systems.

    PubMed

    Keppler, Sebastian; Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph

    2016-03-01

    An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.

  19. Molecular alignment and orientation with a hybrid Raman scattering technique

    NASA Astrophysics Data System (ADS)

    Bustard, Philip J.; Lausten, R.; Sussman, Benjamin J.

    2012-11-01

    We demonstrate a scheme for the preparation of molecular alignment and angular momentum orientation using a hybrid combination of two limits of Raman scattering. First a weak, impulsive pump pulse initializes the system via the nonresonant dynamic Stark effect. Then, having overcome the influence of the vacuum fluctuations, an amplification pulse selectively enhances the initial coherences by transient stimulated Raman scattering, generating alignment and angular momentum orientation of molecular hydrogen. The amplitude and phase of the resulting coherent dynamics are experimentally probed, indicating an amplification factor of 4.5. An analytic theory is developed to model the dynamics.

  20. 20 mJ, 1 ps Yb:YAG Thin-disk Regenerative Amplifier

    PubMed Central

    Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Fattahi, Hanieh

    2017-01-01

    This is a report on a 100 W, 20 mJ, 1 ps Yb:YAG thin-disk regenerative amplifier. A homemade Yb:YAG thin-disk, Kerr-lens mode-locked oscillator with turn-key performance and microjoule-level pulse energy is used to seed the regenerative chirped-pulse amplifier. The amplifier is placed in airtight housing. It operates at room temperature and exhibits stable operation at a 5 kHz repetition rate, with a pulse-to-pulse stability less than 1%. By employing a 1.5 mm-thick beta barium borate crystal, the frequency of the laser output is doubled to 515 nm, with an average power of 70 W, which corresponds to an optical-to-optical efficiency of 70%. This superior performance makes the system an attractive pump source for optical parametric chirped-pulse amplifiers in the near-infrared and mid-infrared spectral range. Combining the turn-key performance and the superior stability of the regenerative amplifier, the system facilitates the generation of a broadband, CEP-stable seed. Providing the seed and pump of the optical parametric chirped-pulse amplification (OPCPA) from one laser source eliminates the demand of active temporal synchronization between these pulses. This work presents a detailed guide to set up and operate a Yb:YAG thin-disk regenerative amplifier, based on chirped-pulse amplification (CPA), as a pump source for an optical parametric chirped-pulse amplifier. PMID:28745636

  1. Reduction of B-integral accumulation in lasers

    DOEpatents

    Meyerhofer, David D.; Konoplev, Oleg A.

    2000-01-01

    A pulsed laser is provided wherein the B-integral accumulated in the laser pulse is reduced using a semiconductor wafer. A laser pulse is generated by a laser pulse source. The laser pulse passes through a semiconductor wafer that has a negative nonlinear index of refraction. Thus, the laser pulse accumulates a negative B-integral. The laser pulse is then fed into a laser amplification medium, which has a positive nonlinear index of refraction. The laser pulse may make a plurality of passes through the laser amplification medium and accumulate a positive B-integral during a positive non-linear phase change. The semiconductor and laser pulse wavelength are chosen such that the negative B-integral accumulated in the semiconductor wafer substantially cancels the positive B-integral accumulated in the laser amplification medium. There may be additional accumulation of positive B-integral if the laser pulse passes through additional optical mediums such as a lens or glass plates. Thus, the effects of self-phase modulation in the laser pulse are substantially reduced.

  2. Ultrashort pulse CPA-free Ho:YLF linear amplifier

    NASA Astrophysics Data System (ADS)

    Hinkelmann, Moritz; Wandt, Dieter; Morgner, Uwe; Neumann, Jörg; Kracht, Dietmar

    2018-02-01

    We present CPA-free linear amplification of 6:3 ps pulses in Ho:YLF crystals up to 100 μJ pulse energy at 10 kHz repetition rate. The seed pulses at a wavelength of 2:05 μm are provided by a Ho-based all-fiber system consisting of a soliton oscillator and a subsequent pre-amplifier followed by a free-space AOM as pulse-picker. Considering the achieved pulse peak power at MW-level, this system is a powerful tool for efficient pumping of parametric amplifiers addressing the highly demanded mid-IR spectral region. In detailed numerical simulations we verified our experimental results and discuss scaling options for pulse duration and energy.

  3. Nonphasematched broadband THz amplification and reshaping in a dispersive chi(3) medium.

    PubMed

    Koys, Martin; Noskovicova, Eva; Velic, Dusan; Lorenc, Dusan

    2017-06-12

    We theoretically investigate non-phasematched broadband THz amplification in dispersive chi(3) media. A short 100 fs pump pulse is interacting with a temporally matched second harmonic pulse and a weak THz signal through the four wave mixing process and a significant broadband THz amplification and reshaping is observed. The pulse evolution dynamics is explored by numerically solving a set of generalized Nonlinear Schroedinger equations. The influence of incident pulse chirp, pulse duration and the role of wavelength, THz seed frequency and losses are evaluated separately. It is found that a careful choice of incident parameters can provide a broadband THz output and/or a significant increase of THz peak power.

  4. Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile.

    PubMed

    Bartulevicius, Tadas; Frankinas, Saulius; Michailovas, Andrejus; Vasilyeu, Ruslan; Smirnov, Vadim; Trepanier, Francois; Rusteika, Nerijus

    2017-08-21

    In this work, a compact fiber chirped pulse amplification system exploiting a tandem of a chirped fiber Bragg grating stretcher and a chirped volume Bragg grating compressor with matched chromatic dispersion is presented. Chirped pulses of 230 ps duration were amplified in a Yb-doped fiber amplifier and re-compressed to 208 fs duration with good fidelity. The compressed pulse duration was fine-tuned by temperature gradient along the fiber Bragg grating stretcher.

  5. Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Kawanaka, J.; Tsubakimoto, K.; Yoshida, H.; Fujioka, K.; Fujimoto, Y.; Tokita, S.; Jitsuno, T.; Miyanaga, N.; Gekko-EXA Design Team

    2016-03-01

    A 50 PW ultrahigh-peak-power laser has been conceptually designed, which is based on optical parametric chirped pulse amplification (OPCPA). A 250 J DPSSL and a flash- lamp-pumped kJ laser are adopted as new repeatable pump source. The existed LFEX-laser with more than ten kilo joules are used in the final amplifier stage and the OPCPA with the 2x2 tiled pump beams in random phase has been proposed with several ten centimeter aperture. A pulse duration of amplified pulses is set at less than 10 fs. A broadband OPCPA with ∼500 nm of the gain spectral width near 1 μm is required. A partially deuterated KDP (p-DKDP) crystal is one of the most promising nonlinear crystals and our numerical calculation ensured such ultra-broad gain width. p-DKDP crystals with several deuteration ratio have been successfully grown.

  6. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect

    PubMed Central

    Maram, Reza; Van Howe, James; Li, Ming; Azaña, José

    2014-01-01

    Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. PMID:25319207

  7. Ultra-powerful compact amplifiers for short laser pulses

    NASA Astrophysics Data System (ADS)

    Malkin, Vladimir

    1999-11-01

    Laser compressors-amplifiers more powerful and compact than ones based on the currently most advanced chirped pulse amplification technique must handle ultrahigh laser intensities. The medium capable of bearing those is plasma. An interesting kinetic regime of short laser pulse amplification by Compton backscattering of counterpropagating laser pump in plasma, akin to superradiant amplification in free-electron lasers, has been proposed recently (Shvets G., Fisch N. J., Pukhov A., and Meyer-ter-Vehn J., Phys. Rev. Lett., v.81, 4879 (1998)). However, the conversion efficiency of pump energy into a short pulse appears to be higher in a transient Raman backscattering regime (Malkin V. M., Shvets G. and Fisch N. J., Phys. Rev. Lett., v.82, 4448 (1999)), where the integrity of the three-wave interaction is maintained. In this regime the pump is completely depleted through the full nonlinear stage of the interaction, so that unwanted Raman and modulational instabilities limit just the amplification time, while the efficiency is kept about 100%. For instance, a 2*10^14 W/cm^2, 1 μm-wavelength laser pump can be compressed within 5 mm length, which is less than the length for filamentation instabilities to develop, to a 30--40 fsec pulse with fluence 6 kJ/cm^2. Such an output pulse is a thousand times shorter and a million time more intensive than outputs of conventional Raman amplifiers operating in a stationary regime. Yet larger amplification distances and output energies can be achieved by suppressing filamentation instabilities. It appears (Malkin V. M., Shvets G. and Fisch N. J., Submitted to Phys. Rev. Lett.) that appropriate detuning of the resonance (by plasma density gradient or/and chirping the pump laser) suppresses the Raman near-forward scattering instability of the pumped pulse, as well as the pump Raman backscattering instability to noise, while the high efficiency of the amplification still persists. The respective new class of transient amplification regimes, generalizing the classical pi-pulse regime of exactly resonant amplification, is described quantitatively. These regimes are of broad interest, being applicable also to other processes such as Brillouin scattering.

  8. FIBER AND INTEGRATED OPTICS: Amplification of femtosecond pulses in single-mode fiber waveguides activated with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Grudinin, A. B.; Dianov, Evgenii M.; Korobkin, D. V.; Prokhorov, A. M.; Semenov, V. A.; Khrushchev, I. Yu

    1990-08-01

    An experimental investigation was made of the process of amplification of femtosecond pulses in single-mode fiber waveguides activated with erbium ions. The amplified pulses were compressed from 80 to 55 fs in the course of their propagation. The energy of the pulses was estimated to be 5 nJ. The maximum gain was 26 dB.

  9. The method for scanning reshaping the spectrum of chirped laser pulse based on the quadratic electro-optic effects

    NASA Astrophysics Data System (ADS)

    Ye, Rong; Yin, Ming; Wu, Xianyun; Tan, Hang

    2017-10-01

    T A new method for scanning reshaping the spectrum of chirped laser pulse based on quadratic electro-optic effects is proposed. The scanning reshaping scheme with a two-beam interference system is designed and the spectrum reshaping properties are analyzed theoretically. For the Gaussian chirped laser pulse with central wavelength λ0=800nm, nearly flat-topped spectral profiles with wider bandwidth is obtained with the proposed scanning reshaping method, which is beneficial to compensate for the gain narrowing effect in CPA and OPCPA. Further numerical simulations show that the reshaped spectrum is sensitive to the time-delay and deviation of the voltage applied to the crystal. In order to avoid narrowing or distorting the reshaped spectrum pointing to target, it is necessary to reduce the unfavorable deviations. With the rapid and wide applications of ultra-short laser pulse supported by some latter research results including photo-associative formation of ultra-cold molecules from ultra-cold atoms[1-3], laser-induced communications[4], capsule implosions on the National Ignition Facility(NIF)[5-6], the control of the temporal and spectral profiles of laser pulse is very important and urgently need to be addressed. Generally, the control of the pulse profiles depends on practical applications, ranging from femtosecond and picosecond to nanosecond. For instance, the basic shaping setup is a Fourier transform system for ultra-short laser pulse. The most important element is a spatially patterned mask which modulates the phase or amplitude, or sometimes the polarization after the pulse is decomposed into its constituent spectral components by usually a grating and a lens[7]. One of the generation techniques of ultra-short laser pulse is the chirped pulse amplifications(CPA), which brings a new era of development for high energy and high peak intensity ultra-short laser pulse, proposed by D. Strcik and G. Mourou from the chirping radar technology in microwave region since 1985[8]. The other generation technique of ultra-short pulse is the optical parametric chirped pulse amplification(OPCPA) invented by Dubietis et al. in 1992, which combined the respective superiorities of CPA and optical parametric amplification(OPA). However, there are disadvantages for the both technologies such as gain narrowing, gain saturation effects, and even spectrum shift. The first one among the three is the most significant which narrows the spectrum after amplification so that it limits the minimum durations of ultra-short laser pulse. This paper proposed a approach for scanning reshaping the spectrum of chirped laser pulse to compensate for the gain narrowing effect, according to the characteristics of the chirped laser pulse, i.e. the frequency varies with time linearly. The spectral characteristics of the scanning reshaping was analyzed quantitatively. Furthermore, the influence of the time-delay and deviation of the controlling voltage employed on the electro-optic crystal on the reshaped spectrum was also been discussed in detail.

  10. Central and peripheral blood pressures in relation to plasma advanced glycation end products in a Chinese population.

    PubMed

    Huang, Q-F; Sheng, C-S; Kang, Y-Y; Zhang, L; Wang, S; Li, F-K; Cheng, Y-B; Guo, Q-H; Li, Y; Wang, J-G

    2016-07-01

    We investigated the association of plasma AGE (advanced glycation end product) concentration with central and peripheral blood pressures and central-to-brachial blood pressure amplification in a Chinese population. The study subjects were from a newly established residential area in the suburb of Shanghai. Using the SphygmoCor system, we recorded radial arterial waveforms and derived aortic waveforms by a generalized transfer function and central systolic and pulse pressure by calibration for brachial blood pressure measured with an oscillometric device. The central-to-brachial pressure amplification was expressed as the central-to-brachial systolic blood pressure difference and pulse pressure difference and ratio. Plasma AGE concentration was measured by the enzyme-linked immunosorbent assay method and logarithmically transformed for statistical analysis. The 1051 participants (age, 55.1±13.1 years) included 663 women. After adjustment for sex, age and other confounding factors, plasma AGE concentration was associated with central but not peripheral blood pressures and with some of the pressure amplification indexes. Indeed, each 10-fold increase in plasma AGE concentration was associated with 2.94 mm Hg (P=0.04) higher central systolic blood pressure and 2.39% lower central-to-brachial pulse pressure ratio (P=0.03). In further subgroup analyses, the association was more prominent in the presence of hypercholesterolemia (+8.11 mm Hg, P=0.008) for central systolic blood pressure and in the presence of overweight and obesity (-4.89%, P=0.009), diabetes and prediabetes (-6.26%, P=0.10) or current smoking (-6.68%, P=0.045) for central-to-brachial pulse pressure ratio. In conclusion, plasma AGE concentration is independently associated with central systolic blood pressure and pulse pressure amplification, especially in the presence of several modifiable cardiovascular risk factors.

  11. High-average-power 2-kHz laser for generation of ultrashort x-ray pulses.

    PubMed

    Jiang, Yan; Lee, Taewoo; Li, Wei; Ketwaroo, Gyanprakash; Rose-Petruck, Christoph G

    2002-06-01

    We describe a Ti:sapphire-based laser-x-ray system specifically designed for generation of ultrafast x-ray pulses in the tenths-of-nanometers spectral range at a 2-kHz repetition rate. To obtain high-contrast laser pulses we divide the laser system into a section for generation of microjoule, high-contrast pulses with pulse cleaning and a subsequent section for chirped-pulse amplification and pulse compression. This laser section operates in conjunction with an x-ray-generation section based on a moving copper wire in a He atmosphere. The high reliability of the entire system permits maintenance-free production of x-ray pulses over tens of hours. Average x-ray fluxes of 10(13) photons/(s 4pi sr 1 keV) at 3 keV and 10(9) photons/(s 4pi sr) above 5 keV of photon energy are produced.

  12. co2amp: A software program for modeling the dynamics of ultrashort pulses in optical systems with CO 2 amplifiers

    DOE PAGES

    Polyanskiy, Mikhail N.

    2015-01-01

    We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.

  13. Optical pulse synthesis using brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2002-01-01

    Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.

  14. Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA

    NASA Astrophysics Data System (ADS)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Cheriaux, G.; Le, T. T. T.; Li, L.; Pitman, M.; Ros, D.; Sebban, S.; Velarde, P.

    2012-07-01

    By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of μJ. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings for maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.

  15. Light amplification by seeded Kerr instability

    NASA Astrophysics Data System (ADS)

    Vampa, G.; Hammond, T. J.; Nesrallah, M.; Naumov, A. Yu.; Corkum, P. B.; Brabec, T.

    2018-02-01

    Amplification of femtosecond laser pulses typically requires a lasing medium or a nonlinear crystal. In either case, the chemical properties of the lasing medium or the momentum conservation in the nonlinear crystal constrain the frequency and the bandwidth of the amplified pulses. We demonstrate high gain amplification (greater than 1000) of widely tunable (0.5 to 2.2 micrometers) and short (less than 60 femtosecond) laser pulses, up to intensities of 1 terawatt per square centimeter, by seeding the modulation instability in an Y3Al5O12 crystal pumped by femtosecond near-infrared pulses. Our method avoids constraints related to doping and phase matching and therefore can occur in a wider pool of glasses and crystals even at far-infrared frequencies and for single-cycle pulses. Such amplified pulses are ideal to study strong-field processes in solids and highly excited states in gases.

  16. Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.

    2012-07-09

    By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of {mu}J. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings formore » maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.« less

  17. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    NASA Astrophysics Data System (ADS)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging resolution enhancement, while the results of the modeling in the time domain open opportunities for development of flexible pulse shaping benefitting a variety of ultrafast applications.

  18. High-power femtosecond pulses without a modelocked laser

    PubMed Central

    Fu, Walter; Wright, Logan G.; Wise, Frank W.

    2017-01-01

    We demonstrate a fiber system which amplifies and compresses pulses from a gain-switched diode. A Mamyshev regenerator shortens the pulses and improves their coherence, enabling subsequent amplification by parabolic pre-shaping. As a result, we are able to control nonlinear effects and generate nearly transform-limited, 140-fs pulses with 13-MW peak power—an order-of-magnitude improvement over previous gain-switched diode sources. Seeding with a gain-switched diode results in random fluctuations of 2% in the pulse energy, which future work using known techniques may ameliorate. Further development may allow such systems to compete directly with sources based on modelocked oscillators in some applications while enjoying unparalleled robustness and repetition rate control. PMID:29214187

  19. Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber.

    PubMed

    Želudevičius, J; Danilevičius, R; Viskontas, K; Rusteika, N; Regelskis, K

    2013-03-11

    Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.

  20. Baseband pulse shaping for pi /4 FQPSK in nonlinearly amplified mobile channels

    NASA Astrophysics Data System (ADS)

    Subasinghe-Dias, Dileeka; Feher, Kamilo

    1994-10-01

    We apply baseband pulse shaping techniques for pi /4 QPSK in order to reduce the spectral regeneration of the bandlimited carrier after nonlinear amplification. These Feher's patented techniques, namely, pi /4 FQPSK (superposed QPSK) and pi /4 CTPSK (controlled transition PSK), may also be noncoherently demodulated. Application of these techniques is in fast fading, power efficient channels, typical of the mobile radio environment. Patents related to FQPSK are described. Computer simulation and experimental studies demonstrate that with these baseband waveshaping techniques, carrier envelope fluctuations are significantly reduced, and the out-of-band power after nonlinear amplification is suppressed by up to 20 dB compared to pi /4 QPSK. In frequency noninterleaved land or satellite mobile radio systems operating in a nonlinear, fading and ACI (adjacent channel interference) environment, these techniques may achieve 20%-50% higher spectral efficiency compared to pi /4 QPSK. In mobile cellular systems using pi /4 QPSK, such as the new North American and the Japanese digital cellular systems, the application of these baseband pulse shapes may allow more convenient and less costly amplifier linearization.

  1. 0.4-1.4 μm Visible to Near-Infrared Widely Broadened Super Continuum Generation with Er-doped Ultrashort Pulse Fiber Laser System

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko; Mitsuzawa, Hideyuki; Sumimura, Kazuhiko

    2009-03-01

    Visible to near-infrared widely broadened super continuum generation is demonstrated using ultrashort-pulse fiber laser system. Er-doped fiber chirped-pulse amplification system operated at 1550 nm in wavelength is used for the amplifier system, which generated ultrashort-pulse of 112 fs in FWHM with output power of 160 mW, on average. Almost pedestal free 200 fs second harmonic generation pulse is generated at 780 nm region using periodically poled LiNbO3 and conversion efficiency is as high as 37%. 0.45-1.40 μm widely broadened super continuum is generated in highly nonlinear photonic crystal fiber and spectrum flatness is within ±6 dB. All of the fiber devices are fusion spliced so that this system shows a good stability.

  2. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.

    PubMed

    Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-06-20

    This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

  3. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    NASA Astrophysics Data System (ADS)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  4. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  5. Efficient optical pulse stacker system

    DOEpatents

    Seppala, Lynn G.; Haas, Roger A.

    1982-01-01

    Method and apparatus for spreading and angle-encoding each pulse of a multiplicity of small area, short pulses into several temporally staggered pulses by use of appropriate beam splitters, with the optical elements being arranged so that each staggered pulse is contiguous with one or two other such pulses, and the entire sequence of stacked pulses comprising a single, continuous long pulse. The single long pulse is expanded in area, and then doubly passed through a nonstorage laser amplifier such as KrF. After amplification, the physically separated, angle-encoded and temporally staggered pulses are recombined into a single pulse of short duration. This high intensity output beam is well collimated and may be propagated over long distance, or used for irradiating inertial confinement fusion targets.

  6. Method and apparatus for controlling carrier envelope phase

    DOEpatents

    Chang, Zenghu [Manhattan, KS; Li, Chengquan [Sunnyvale, CA; Moon, Eric [Manhattan, KS

    2011-12-06

    A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.

  7. Observation of strong amplification at 8.8 nm in the TCE scheme by a table-top pumping system

    NASA Astrophysics Data System (ADS)

    Kawachi, Tetsuya; Tanaka, Momoko; Sasaki, Akira; Kishimoto, Maki; Nishiuchi, Mamiko; Yasuike, Kazuhito; Hasegawa, Noboru; Kilpio, Alexander V.; Lu, Peixiang; Tai, Renzhong

    2002-11-01

    We observed strong amplification of the transition of 4d 4p, J = 0 1 (the transition from (3d3/2, 4d3/2)0 to (3d3/2, 4p1/2)1) of the Ni-like lanthanum (La) ions at a wavelength of 8.8 nm pumped by a compact CPA Nd:Glass laser light at a wavelength of 1.053 mum with a pumping energy of 18 J. The experimental gain coefficient and the achieved gain-length product was 14.5 cm-1 and 7.7, respectively. In this experiment, the pumping laser pulse consisted of a pre-pulse with a duration of 200 ps and a 7ps-duration main pulse, separated by 250 ps. A hydrodynamics simulation coupled with a collisional-radiative model showed that the present experimental condition generated a pre-formed plasma with small volume and made it possible by the main pulse to heat the high density region effectively.

  8. Kilohertz Cr:forsterite regenerative amplifier.

    PubMed

    Evans, J M; Petri Evi, V; Alfano, R R; Fu, Q

    1998-11-01

    We report on a tunable regenerative amplifier that is operational in the near-infrared spectral region from 1230 to 1280 nm based on the vibronic laser material Cr:forsterite. Utilizing the technique of chirped-pulse amplification, we generated pulses as short as 150 fs at 1255 nm at a repetition rate of 1 kHz. Pulse amplification of more than 5 x 10(5) times was observed, with recorded output pulse energies of 34 muJ . Implementation of a second-harmonic generator yielded 110-fs-duration pulses of 7-muJ energy at 625 nm.

  9. Research on High-Intensity Picosecond Pump Laser in Short Pulse Optical Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Pan, Xue; Peng, Yu-Jie; Wang, Jiang-Feng; Lu, Xing-Hua; Ouyang, Xiao-Ping; Chen, Jia-Lin; Jiang, You-En; Fan, Wei; Li, Xue-Chun

    2013-01-01

    A 527 nm pump laser generating 1.7 mJ energy with peak power of more than 0.12 GW is demonstrated. The theoretical simulation result shows that it has 106 gain in the picosecond-pump optical parametric chirped pulse amplification when the pump laser peak power is 0.1 GW and the intensity is more than 5 GW/cm2, and that it can limit the parametric fluorescence in the picosecond time scale of pump duration. The pump laser system adopts a master-oscillator power amplifier, which integrates a more than 30 pJ fiber-based oscillator with a 150 μJ regenerative amplifier and a relay-imaged four-pass diode-pump Nd glass amplifier to generate a 1 Hz top hat spatial beam and about 14 ps temporal Guassian pulse with <2% pulse-to-pulse energy stability. The output energy of the power amplifier is limited to 4 mJ for B-integral concern, and the frequency doubling efficiency can reach 65% with input intensity 10 GW/cm2.

  10. Intensity noise reduction of a high-power nonlinear femtosecond fiber amplifier based on spectral-breathing self-similar parabolic pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Liu, Bowen; Song, Youjian; Hu, Minglie

    2016-04-01

    We report on a simple passive scheme to reduce the intensity noise of high-power nonlinear fiber amplifiers by use of the spectral-breathing parabolic evolution of the pulse amplification with an optimized negative initial chirp. In this way, the influences of amplified spontaneous emission (ASE) on the amplifier intensity noise can be efficiently suppressed, owing to the lower overall pulse chirp, shorter spectral broadening distance, as well as the asymptotic attractive nature of self-similar pulse amplification. Systematic characterizations of the relative intensity noise (RIN) of a free-running nonlinear Yb-doped fiber amplifier are performed over a series of initial pulse parameters. Experiments show that the measured amplifier RIN increases respect to the decreased input pulse energy, due to the increased amount of ASE noise. For pulse amplification with a proper negative initial chirp, the increase of RIN is found to be smaller than with a positive initial chirp, confirming the ASE noise tolerance of the proposed spectral-breathing parabolic amplification scheme. At the maximum output average power of 27W (25-dB amplification gain), the incorporation of an optimum negative initial chirp (-0.84 chirp parameter) leads to a considerable amplifier root-mean-square (rms) RIN reduction of ~20.5% (integrated from 10 Hz to 10 MHz Fourier frequency). The minimum amplifier rms RIN of 0.025% (integrated from 1 kHz to 5 MHz Fourier frequency) is obtained along with the transform-limited compressed pulse duration of 55fs. To our knowledge, the demonstrated intensity noise performance is the lowest RIN level measured from highpower free-running femtosecond fiber amplifiers.

  11. Spatio-temporal characterisation of a 100 kHz 24 W sub-3-cycle NOPCPA laser system

    NASA Astrophysics Data System (ADS)

    Witting, Tobias; Furch, Federico J.; Vrakking, Marc J. J.

    2018-04-01

    In recent years, OPCPA and NOPCPA laser systems have shown the potential to supersede Ti:sapphire plus post-compression based laser systems to drive next generation attosecond light sources via direct amplification of few-cycle pulses to high pulse energies at high repetition rates. In this paper, we present a sub 3-cycle, 100 kHz, 24 W NOPA laser system and characterise its spatio-temporal properties using the SEA-F-SPIDER technique. Our results underline the importance of spatio-temporal diagnostics for these emerging laser systems.

  12. Broadband tunable integrated CMOS pulser with 80-ps minimum pulse width for gain-switched semiconductor lasers.

    PubMed

    Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi

    2017-07-31

    High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.

  13. Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers.

    PubMed

    Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U

    2013-01-14

    A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.

  14. Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, H.; Wu, Z. H.; Zhang, Z. M.

    2016-07-15

    Laser amplification in plasma, including stimulated Raman scattering amplification and strongly coupled stimulated Brillouin scattering (sc-SBS) amplification, is very promising to generate ultrahigh-power and ultrashort laser pulses. But both are quite complex in experiments: at least three different laser pulses must be prepared; temporal delay and spatial overlap of these three pulses are difficult. We propose a single pulse compression scheme based on sc-SBS in plasma. Only one moderately long laser is applied, the front part of which ionizes the gas to produced plasma, and gets reflected by a plasma mirror at the end of the gas channel. The reflectedmore » front quickly depletes the remaining part of the laser by sc-SBS in the self-similar regime. The output laser is much stronger and shorter. This scheme is at first considered theoretically, then validated by using 1D PIC simulations.« less

  15. Compressed 6 ps pulse in nonlinear amplification of a Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Diao, Ruxin; Liu, Zuosheng; Niu, Fuzeng; Wang, Aimin; Taira, Takunori; Zhang, Zhigang

    2017-02-01

    We present a passively Q-switched Nd:YVO4 crystal microchip laser with a 6 ps pulse width, which is based on SPM-induced spectral broadening and pulse compression. The passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser’s seed source centered at 1064 nm pulses with a duration of 80 ps, at a repetition rate of 600 kHz corresponding to an average output power of 10 mW. After amplification and compression, the pulses were compressed to 6 ps with a maximum pulse energy of 0.5 µJ.

  16. Strongly aligned gas-phase molecules at free-electron lasers

    DOE PAGES

    Kierspel, Thomas; Wiese, Joss; Mullins, Terry; ...

    2015-09-16

    Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment ofmore » $$\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.« less

  17. Astigmatism transfer phenomena in the optical parametric amplification process

    NASA Astrophysics Data System (ADS)

    Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin

    2017-01-01

    We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.

  18. Efficient, diode-laser-pumped, diode-laser-seeded, high-peak-power Nd:YLF regenerative amplifier.

    PubMed

    Selker, M D; Afzal, R S; Dallas, J L; Yu, A W

    1994-04-15

    Optical amplification of 11 orders of magnitude in a microlens-collimated, diode-laser-pumped regenerative amplifier has been demonstrated. The amplifier was seeded with 20-ps pulses from an FM mode-locked oscillator and with 0.9-ns pulses from a modulated diode laser. Seed pulses from both sources were amplified to energies exceeding 2.5 mJ. With the thermoelectric coolers and the Pockels cell electronics neglected, the diode-seeded system exhibited an electrical-to-optical efficiency of 2.2%.

  19. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    NASA Astrophysics Data System (ADS)

    Su, J.; Liu, L.; Luo, B.; Wang, W.; Jing, F.; Wei, X.; Zhang, X.

    2008-05-01

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  20. Offset-Free Gigahertz Midinfrared Frequency Comb Based on Optical Parametric Amplification in a Periodically Poled Lithium Niobate Waveguide

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Phillips, C. R.; Langrock, C.; Klenner, A.; Johnson, A. R.; Luke, K.; Okawachi, Y.; Lipson, M.; Gaeta, A. L.; Fejer, M. M.; Keller, U.

    2016-11-01

    We report the generation of an optical-frequency comb in the midinfrared region with 1-GHz comb-line spacing and no offset with respect to absolute-zero frequency. This comb is tunable from 2.5 to 4.2 μ m and covers a critical spectral region for important environmental and industrial applications, such as molecular spectroscopy of trace gases. We obtain such a comb using a highly efficient frequency conversion of a near-infrared frequency comb. The latter is based on a compact diode-pumped semiconductor saturable absorber mirror-mode-locked ytterbium-doped calcium-aluminum gadolynate (Yb:CALGO) laser operating at 1 μ m . The frequency-conversion process is based on optical parametric amplification (OPA) in a periodically poled lithium niobate (PPLN) chip containing buried waveguides fabricated by reverse proton exchange. The laser with a repetition rate of 1 GHz is the only active element of the system. It provides the pump pulses for the OPA process as well as seed photons in the range of 1.4 - 1.8 μ m via supercontinuum generation in a silicon-nitride (Si3 N4 ) waveguide. Both the PPLN and Si3 N4 waveguides represent particularly suitable platforms for low-energy nonlinear interactions; they allow for mid-IR comb powers per comb line at the microwatt level and signal amplification levels up to 35 dB, with 2 orders of magnitude less pulse energy than reported in OPA systems using bulk devices. Based on numerical simulations, we explain how high amplification can be achieved at low energy using the interplay between mode confinement and a favorable group-velocity mismatch configuration where the mid-IR pulse moves at the same velocity as the pump.

  1. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification

    NASA Astrophysics Data System (ADS)

    Luo, Daping; Liu, Yang; Gu, Chenglin; Wang, Chao; Zhu, Zhiwei; Zhang, Wenchao; Deng, Zejiang; Zhou, Lian; Li, Wenxue; Zeng, Heping

    2018-02-01

    We report a fiber self-similar-amplification (SSA) comb system that delivers a 250-MHz, 109-W, 42-fs pulse train with a 10-dB spectral width of 85 nm at 1056 nm. A pair of grisms is employed to compensate the group velocity dispersion and third-order dispersion of pre-amplified pulses for facilitating a self-similar evolution and a self-phase modulation (SPM). Moreover, we analyze the stabilities and noise characteristics of both the locked carrier envelope phase and the repetition rate, verifying the stability of the generated high-power comb. The demonstration of the SSA comb at such high power proves the feasibility of the SPM-based low-noise ultrashort comb.

  2. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    PubMed

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  3. Control of the amplifications of large-band amplitude-modulated pulses in an Nd-glass amplifier chain

    NASA Astrophysics Data System (ADS)

    Videau, Laurent; Bar, Emmanuel; Rouyer, Claude; Gouedard, Claude; Garnier, Josselin C.; Migus, Arnold

    1999-07-01

    We study nonlinear effects in amplification of partially coherent pulses in a high power laser chain. We compare statistical models with experimental results for temporal and spatial effects. First we show the interplay between self-phase modulation which broadens spectrum bandwidth and gain narrowing which reduces output spectrum. Theoretical results are presented for spectral broadening and energy limitation in case of time-incoherent pulses. In a second part, we introduce spatial incoherence with a multimode optical fiber which provides a smoothed beam. We show with experimental result that spatial filter pinholes are responsible for additive energy losses in the amplification. We develop a statistical model which takes into account the deformation of the focused beam as a function of B integral. We estimate the energy transmission of the spatial filter pinholes and compare this model with experimental data. We find a good agreement between theory and experiments. As a conclusion, we present an analogy between temporal and spatial effects with spectral broadening and spectral filter. Finally, we propose some solutions to control energy limitations in smoothed pulses amplification.

  4. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    PubMed Central

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-01-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496

  5. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    NASA Astrophysics Data System (ADS)

    Ryser, Manuel; Neff, Martin; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2012-02-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 μW of fiber-coupled average output power. For the low output pulse energy of 0.33 pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72 dBs to an output pulse energy of 5.7 μJ, pulse duration of 11 ps and peak power of >0.6 MW.

  6. On the saturation of stimulated Raman scattering in laser amplification

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Ren, J.; Kwan, T. J. T.; Schmitt, M. J.

    2012-10-01

    The use of stimulated Raman scattering (SRS) in plasmas has been proposed as an alternative to the CPA technique for laser pulse amplification and compression [1]. Initial experiments demonstrated the amplification and compression of laser pulses in plasma to an unfocused intensity of ˜10^16 W/cm^2 [2], however the amplification was saturated at this level and was accompanied by deleterious spatial and temporal incoherence. The reasons for this incoherence have not been well understood. A physical picture has been developed with results from PIC simulations using the LSP code where spontaneous SRS in the pump modifies the plasma conditions, and which in turn significantly weakens the coupling strength for seed amplification. This led to the development of a novel experimental method to significantly increase the amplified power in the short-pulses via SRS.[4pt] [1] G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. 81 4879 (1998).[0pt] [2] J. Ren, W.-F. Cheng, S.-L Li, and S. Suckewer, Nat. Phys. 3 732 (2007). LA-UR-12-22734

  7. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    PubMed

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

  8. Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schluck, F.; Lehmann, G.; Müller, C.

    Short laser pulse amplification via stimulated Brillouin backscattering in plasma is considered. Previous work distinguishes between the weakly and strongly coupled regime and treats them separately. It is shown here that such a separation is not generally applicable because strong and weak coupling interaction regimes are entwined with each other. An initially weakly coupled amplification scenario may dynamically transform into strong coupling. This happens when the local seed amplitude grows and thus triggers the strongly driven plasma response. On the other hand, when in a strong coupling scenario, the pump pulse gets depleted, and its amplitude might drop below themore » strong coupling threshold. This may cause significant changes in the final seed pulse shape. Furthermore, experimentally used pump pulses are typically Gaussian-shaped. The intensity threshold for strong coupling may only be exceeded around the maximum and not in the wings of the pulse. Also here, a description valid in both strong and weak coupling regimes is required. We propose such a unified treatment which allows us, in particular, to study the dynamic transition between weak and strong coupling. Consequences for the pulse forms of the amplified seed are discussed.« less

  9. Relativistic Eulerian Vlasov simulations of the amplification of seed pulses by Brillouin backscattering in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoucri, M., E-mail: Shoucri.Magdi@ireq.ca; Matte, J.-P.; Vidal, F.

    We apply an Eulerian Vlasov code to study the amplification by Brillouin scattering of a short seed laser pulse by a long pump laser pulse in an underdense plasma. The stimulated Brillouin backscattering interaction is the coupling of the pump and seed electromagnetic waves propagating in opposite directions, and the ion plasma wave. The code solves the one-dimensional relativistic Vlasov-Maxwell set of equations. Large amplitude ion waves are generated. In the simulations we present, the density plateau of the plasma is n{sub e}=0.3 n{sub c} (n{sub c} is the critical density), which excludes spurious stimulated Raman scattering amplification (which can occurmore » only if n{sub e}« less

  10. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification.

    PubMed

    Kim, Young Hoon; Song, Kwang Yong

    2017-06-26

    A Brillouin optical time domain analysis (BOTDA) system utilizing tailored compensation for the propagation loss of the pump pulse is demonstrated for long-range and high-resolution distributed sensing. A continuous pump wave for distributed Brillouin amplification (DBA pump) of the pump pulse co-propagates with the probe wave, where gradual variation of the spectral width is additionally introduced to the DBA pump to obtain a uniform Brillouin gain along the position. In the experimental confirmation, a distributed strain measurement along a 51.2 km fiber under test is presented with a spatial resolution of 20 cm, in which the measurement error (σ) of less than 1.45 MHz and the near-constant Brillouin gain of the probe wave are maintained throughout the fiber.

  11. Role of Frequency Chirp and Energy Flow Directionality in the Strong Coupling Regime of Brillouin-Based Plasma Amplification.

    PubMed

    Chiaramello, M; Amiranoff, F; Riconda, C; Weber, S

    2016-12-02

    A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.

  12. Multi-delay, phase coherent pulse pair generation for precision Ramsey-frequency comb spectroscopy.

    PubMed

    Morgenweg, J; Eikema, K S E

    2013-03-11

    We demonstrate the generation of phase-stable mJ-pulse pairs at programmable inter-pulse delays up to hundreds of nanoseconds. A detailed investigation of potential sources for phase shifts during the parametric amplification of the selected pulses from a Ti:Sapphire frequency comb is presented, both numerically and experimentally. It is shown that within the statistical error of the phase measurement of 10 mrad, there is no dependence of the differential phase shift over the investigated inter-pulse delay range of more than 300 ns. In combination with nonlinear upconversion of the amplified pulses, the presented system will potentially enable short wavelength (<100 nm), multi-transition Ramsey-frequency comb spectroscopy at the kHz-level.

  13. Impact of pumping configuration on all-fibered femtosecond chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Lecourt, Jean-Bernard; Duterte, Charles; Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2008-04-01

    We experimentally compared the co- and counter-propagative pumping scheme for the amplification of ultra-short optical pulses. According to pumping direction we show that optical pulses with a duration of 75 fs and 100mW of average output power can be obtained for co-propagative pumping, while pulse duration is never shorter than 400 fs for the counter-propagative case. We show that the impact of non-linear effects on pulse propagation is different for the two pumping configurations. We assume that Self Phase Modulation (SPM) is the main effect in the copropagative case, whereas the impact of Stimulated Raman Scattering is bigger for the counter-propagative case.

  14. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  15. Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system.

    PubMed

    Fourmaux, S; Payeur, S; Buffechoux, S; Lassonde, P; St-Pierre, C; Martin, F; Kieffer, J C

    2011-04-25

    Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results.

  16. Short-pulse laser amplification and saturation using stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Ren, J.; Kwan, T. J. T.; Schmitt, M. J.; Lundquist, P. B.; Sarkisyan, S.; Nelson-Melby, E.

    2010-11-01

    Recent theoretical and experimental work has focused on using backward-stimulated Raman scattering (BSRS) in plasmas as a means of laser pulse amplification and compression [1,2,3]. We present initial computational and experimental work on SRS amplification in a capillary-discharge generated Xe plasma. The experimental set-up uses a 200 ps pump pulse with an 800 nm wavelength seeded by a 100 fs pulse from a broadband source and counter-propagates the pulses through a plasma of length 1 cm and diameter 0.1 cm. Results from initial experiments characterizing the plasma and on short-pulse amplification will be presented. Additionally, we present results from calculations using pF3d [4], and discuss the role of SRS saturation and determine the possible significance of electron trapping with a model implemented in pF3d [5]. [1] G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. 81 4879 (1998). [2] V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82 4448 (1999). [3] R. K. Kirkwood, E. Dewald, and C. Niemann, et al., Phys. Plasmas 14 113109 (2007). [4] R. L. Berger, B. F. Lasinski, T. B. Kaiser, et al., Phys. Fluids B 5 2243 (1993). [5] H. X. Vu, D. F. DuBois, and B. Bezzerides, Phys. Plasmas 14 012702 (2007). Supported by US DOE and LANS, LLC under contract DE-AC52-06NA25396. LA-UR-10-04787

  17. Carrier-envelope phase stabilization and control of 1 kHz, 6 mJ, 30 fs laser pulses from a Ti:sapphire regenerative amplifier.

    PubMed

    Chen, Shouyuan; Chini, Michael; Wang, He; Yun, Chenxia; Mashiko, Hiroki; Wu, Yi; Chang, Zenghu

    2009-10-20

    Carrier-envelope (CE) phase stabilization of a two-stage chirped pulse amplifier laser system with regenerative amplification as the preamplifier is demonstrated. The CE phase stability of this laser system is found to have a 90 mrad rms error averaged over 50 laser shots for a locking period of 4.5 h. The CE phase locking was confirmed unambiguously by experimental observation of the 2pi periodicity of the high-order harmonic spectrum generated by double optical gating.

  18. Impaired Central Pulsatile Hemodynamics in Children and Adolescents With Marfan Syndrome.

    PubMed

    Grillo, Andrea; Salvi, Paolo; Marelli, Susan; Gao, Lan; Salvi, Lucia; Faini, Andrea; Trifirò, Giuliana; Carretta, Renzo; Pini, Alessandro; Parati, Gianfranco

    2017-11-07

    Marfan syndrome is characterized by aortic root dilation, beginning in childhood. Data about aortic pulsatile hemodynamics and stiffness in pediatric age are currently lacking. In 51 young patients with Marfan syndrome (12.0±3.3 years), carotid tonometry was performed for the measurement of central pulse pressure, pulse pressure amplification, and aortic stiffness (carotid-femoral pulse wave velocity). Patients underwent an echocardiogram at baseline and at 1 year follow-up and a genetic evaluation. Pathogenetic fibrillin-1 mutations were classified between "dominant negative" and "haploinsufficient." The hemodynamic parameters of patients were compared with those of 80 sex, age, blood pressure, and heart-rate matched controls. Central pulse pressure was significantly higher (38.3±12.3 versus 33.6±7.8 mm Hg; P =0.009), and pulse pressure amplification was significantly reduced in Marfan than controls (17.9±15.3% versus 32.3±17.4%; P <0.0001). Pulse wave velocity was not significantly different between Marfan and controls (4.98±1.00 versus 4.75±0.67 m/s). In the Marfan group, central pulse pressure and pulse pressure amplification were independently associated with aortic diameter at the sinuses of Valsalva (respectively, β=0.371, P =0.010; β=-0.271, P =0.026). No significant difference in hemodynamic parameters was found according to fibrillin-1 genotype. Patients who increased aortic Z-scores at 1-year follow-up presented a higher central pulse pressure than the remaining (42.7±14.2 versus 32.3±5.9 mm Hg; P =0.004). Central pulse pressure and pulse pressure amplification were impaired in pediatric Marfan syndrome, and associated with aortic root diameters, whereas aortic pulse wave velocity was similar to that of a general pediatric population. An increased central pulse pressure was present among patients whose aortic dilatation worsened at 1-year follow-up. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.; Key, M.; Britten, J.; Beach, R.; Beer, G.; Brown, C.; Bryan, S.; Caird, J.; Carlson, T.; Crane, J.; Dawson, J.; Erlandson, A. C.; Fittinghoff, D.; Hermann, M.; Hoaglan, C.; Iyer, A.; Jones, L., II; Jovanovic, I.; Komashko, A.; Landen, O.; Liao, Z.; Molander, W.; Mitchell, S.; Moses, E.; Nielsen, N.; Nguyen, H.-H.; Nissen, J.; Payne, S.; Pennington, D.; Risinger, L.; Rushford, M.; Skulina, K.; Spaeth, M.; Stuart, B.; Tietbohl, G.; Wattellier, B.

    2004-12-01

    The technical challenges and motivations for high-energy, short-pulse generation with NIF and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.

  20. Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump.

    PubMed

    Co, Dick T; Lockard, Jenny V; McCamant, David W; Wasielewski, Michael R

    2010-04-01

    Narrow-bandwidth (approximately 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

  1. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu.; Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of themore » incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.« less

  2. High average/peak power linearly polarized all-fiber picosecond MOPA seeded by mode-locked noise-like pulses

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Ma, P. F.; Tao, R. M.; Wang, X. L.; Zhou, P.; Chen, J. B.

    2015-06-01

    The characteristics of mode-locked noise-like pulses generated from a passively mode-locked fiber oscillator are experimentally investigated. By carefully adjusting the two polarization controllers, stable mode-locked noise-like pulse emission with a high radio frequency signal/noise ratio of  >55 dB is successfully achieved, ensuring the safety and possibility of high power amplification. To investigate the amplification characteristics of such pulses, one all-fiber master oscillator power amplifier (MOPA) is built to boost the power and energy of such pulses. Amplified noise-like pulses with average output power of 423 W, repetition rate of 18.71 MHz, pulse energy of 22.61 μJ, pulse duration of 72.1 ps and peak power of 314 kW are obtained. Near diffraction-limited beam is also demonstrated with M2 factor measured at full power operation of ~1.2 in the X and Y directions. The polarization extinction ratio at output power of 183 W is measured to be ~13 dB. To the best of our knowledge, this is the first demonstration of high-power amplification of noise-like pulses and the highest peak power ever reported in all-fiber picosecond MOPAs. The temporal self-compression process of such pulses and high peak power when amplified make it an ideal pump source for generation of high-power supercontinuum. Other potential applications, such as material processing and optical coherent tomography, could also be foreseen.

  3. 180 mJ, long-pulse-duration, master-oscillator power amplifier with linewidth less than 25.6 kHz for laser guide stars.

    PubMed

    Wang, Chunhua; Zhang, Xiang; Ye, Zhibin; Liu, Chong; Chen, Jun

    2013-07-01

    A high-energy single-frequency hundred-microsecond long-pulse solid-state laser is demonstrated, which features an electro-optically modulated seed laser and two-stage double-passed pulse-pumped solid-state laser rod amplifier. Laser output with energy of 180 mJ, repetition rate of 50 Hz, and pulse width of 150 μs is achieved. The laser linewidth is measured to be less than 25.52 kHz by a fiber delay self-heterodyne method. In addition, a closed-loop controlling system is adopted to lock the center wavelength. No relaxation oscillation spikes appear in the pulse temporal profile, which is beneficial for further amplification.

  4. Adiabatic Soliton Laser

    NASA Astrophysics Data System (ADS)

    Bednyakova, Anastasia; Turitsyn, Sergei K.

    2015-03-01

    The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity—the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

  5. Carrier-envelope phase control using linear electro-optic effect.

    PubMed

    Gobert, O; Paul, P M; Hergott, J F; Tcherbakoff, O; Lepetit, F; 'Oliveira, P D; Viala, F; Comte, M

    2011-03-14

    We present a new method to control the Carrier-Envelope Phase of ultra-short laser pulses by using the linear Electro-Optic Effect. Experimental demonstration is carried out on a Chirped Pulse Amplification based laser. Phase shifts greater than π radian can be obtained by applying moderate voltage on a LiNbO3 crystal with practically no changes to all other parameters of the pulse with the exception of its group delay. Time response of the Electro-Optic effect makes possible shaping at a high repetition rate or stabilization of the CEP of ultra short CPA laser systems.

  6. Simple pre-distortion schemes for improving the power efficiency of SOA-based IR-UWB over fiber systems

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2017-01-01

    In this paper, we investigate the usage of SOA for reach extension of an impulse radio over fiber system. Operating in the saturated regime translates into strong nonlinearities and spectral distortions, which drops the power efficiency of the propagated pulses. After studying the SOA response versus operating conditions, we have enhanced the system performance by applying simple analog pre-distortion schemes for various derivatives of the Gaussian pulse and their combination. A novel pulse shape has also been designed by linearly combining three basic Gaussian pulses, offering a very good spectral efficiency (> 55 %) for a high power (0 dBm) at the amplifier input. Furthermore, the potential of our technique has been examined considering a 1.5 Gbps-OOK and 0.75 Gbps-PPM modulation schemes. Pre-distortion proved an advantage for a large extension of optical link (150 km), with an inline amplification via SOA at 40 km.

  7. Implementation of a preamplifier-amplifier system for radiation detectors used in Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Velásquez, A. A.; Arroyave, M.

    2014-01-01

    We report the assembly and testing of a preamplification and amplification system for pulses produced by gaseous radiation detectors commonly used in Mössbauer spectroscopy. The system is composed by a pair of commercial integrated circuits A203 and A206, which operate as charge sensitive preamplifier-shaping amplifier and linear amplifier-low level discriminator, respectively. The integrated circuits were interconnected in the unipolar output mode and placed inside a metallic shielding, which prevents noise amplification for a suitable signal-noise ratio. The system was tested by irradiating a proportional counter LND-45431 with characteristic X rays of 6.3 keV and gamma rays of 14.4 keV emitted by a Mössbauer radioactive source of 57Co (Rh). Unipolar pulses with Gaussian profile were obtained at the output of the linear amplifier, whose amplitudes were close to 0.4 V for 6.3 keV X rays and 1.4 V for 14.4 keV gamma rays. Pulse height spectra showed that the system allows a satisfactory identification of the X-rays and gamma rays emitted by the 57Co source, giving the possibility to make a good selection of the 14.4 keV peak for having a suitable signal-noise ratio in the Mössbauer spectra. Absorption percentages of 14 % were found by taking the Mössbauer spectra of a natural iron absorber. The assembly and tests of the system are presented through this paper.

  8. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  9. All-fiber high-power monolithic femtosecond laser at 1.59 µm with 63-fs pulse width

    NASA Astrophysics Data System (ADS)

    Hekmat, M. J.; Omoomi, M.; Gholami, A.; Yazdabadi, A. Bagheri; Abdollahi, M.; Hamidnejad, E.; Ebrahimi, A.; Normohamadi, H.

    2018-01-01

    In this research, by adopting an alternative novel approach to ultra-short giant pulse generation which basically originated from difficulties with traditional employed methods, an optimized Er/Yb co-doped double-clad fiber amplifier is applied to boost output average power of single-mode output pulses to a high level of 2-W at 1.59-µm central wavelength. Output pulses of approximately 63-fs pulse width at 52-MHz repetition rate are obtained in an all-fiber monolithic laser configuration. The idea of employing parabolic pulse amplification for stretching output pulses together with high-power pulse amplification using Er/Yb co-doped active fibers for compressing and boosting output average power plays crucial role in obtaining desired results. The proposed configuration enjoys massive advantages over previously reported literature which make it well-suited for high-power precision applications such as medical surgery. Detailed dynamics of pulse stretching and compressing in active fibers with different GVD parameters are numerically and experimentally investigated.

  10. Influence of wave-packet dynamics on the medium gain of an atomic system

    NASA Astrophysics Data System (ADS)

    Delagnes, J. C.; Bouchene, M. A.

    2007-10-01

    A sequence of two femtosecond pulses—a strong driving π -polarized pulse and a weak propagating σ -polarized pulse—excites resonantly the S1/2→P1/2 transition of an atomic system. Strong interference effects take place in the system between absorption and emission paths leading to a substantial amplification of the σ pulse. We study the influence of the fine structure on the medium gain when the contribution of the off-resonant P3/2 level is taken into account. A drastic reduction of the medium gain is obtained. This effect is explained within the bright-state dark-state formalism where the strong driving pulse creates a wave packet that can be trapped in a state—the bright state—leading to a significant reduction of the gain for the σ pulse. Finally, we also show that periodical gain dependence with the driving pulse energy exhibits a significant change in its period value (compared with expected Rabi oscillations).

  11. Ground motion in Anchorage, Alaska, from the 2002 Denali fault earthquake: Site response and Displacement Pulses

    USGS Publications Warehouse

    Boore, D.M.

    2004-01-01

    Data from the 2002 Denali fault earthquake recorded at 26 sites in and near Anchorage, Alaska, show a number of systematic features important in studies of site response and in constructing long-period spectra for use in earthquake engineering. The data demonstrate that National Earthquake Hazards Reduction Program (NEHRP) site classes are a useful way of grouping stations according to site amplification. In general, the sites underlain by lower shear-wave velocities have higher amplification. The amplification on NEHRP class D sites exceeds a factor of 2 relative to an average of motions on class C sites. The amplifications are period dependent. They are in rough agreement with those from previous studies, but the new data show that the amplifications extend to at least 10 sec, periods longer than considered in previous studies. At periods longer than about 14 sec, all sites have motion of similar amplitude, and the ground displacements are similar in shape, polarization, and amplitude for all stations. The displacement ground motion is dominated by a series of four pulses, which are associated with the three subevents identified in inversion studies (the first pulse is composed of P waves from the first subevent). Most of the high-frequency ground motion is associated with the S waves from subevent 1. The pulses from subevents 1 and 2, with moment releases corresponding to M 7.1 and 7.0, are similar to the pulse of displacement radiated by the M 7.1 Hector Mine earthquake. The signature from the largest subevent (M 7.6) is more subdued than those from the first two subevents. The two largest pulses produce response spectra with peaks at a period of about 15 sec. The spectral shape at long periods is in good agreement with the recent 2003 NEHRP code spectra but is in poor agreement with the shape obtained from Eurocode 8.

  12. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  13. Formation of short high-power laser radiation pulses in excimer mediums

    NASA Astrophysics Data System (ADS)

    Losev, V. F., Sr.; Ivanov, N. G.; Panchenko, Yu. N.

    2007-06-01

    Presently an excimer mediums continue are examined as one of variants for formation of powerful and over powerful pulses of laser radiation with duration from units of nanosecond up to tens femtosecond. The researches on such powerful installations as "NIKE" (USA) and << SUPER ASHURA >>, Japan) proceed in this direction. The main advantage of excimer mediums is the opportunity to work in a frequency mode, absence of restriction on the size of active area, high uniformity of a gas working medium, high efficiency (up to 10 %) and wide spectral range of laser radiation (KrF, XeCl ~ 2nm, XeF (C-A), Xe IICl ~ 50-100 nanometers). Research in area of high quality laser beams formation in excimer mediums and its amplification in high power amplifiers are carried out the long time in Institute of High Current Electronics SB RAS, Tomsk, Russia. The wide aperture XeCl laser system of MELS-4k is used for these investigations. Last time we take part in program on development of high power excimer laser system with a petawatt level of power. This system supposes the formation and amplification high quality laser beams with different pulse duration from units of nanosecond up to tens femtosecond. We research the possibility of laser beams formation in excimer mediums with ps-ns pulse duration having the low noise and divergence near to diffraction limit. In other hand, we are developing the wide aperture XeF(C-A) amplifier with optical pump on base electron accelerator. According to our estimations of the XeF(C-A) amplifier based on the converter of e-beam energy to the Xe II* fluorescence at 172 nm will allow to obtain up to 100 TW peak power in a 30 fs pulse.

  14. Single-shot, high-resolution, fiber-based phase-diversity photodetection of optical pulses

    NASA Astrophysics Data System (ADS)

    Dorrer, C.; Waxer, L. J.; Kalb, A.; Hill, E. M.; Bromage, J.

    2016-03-01

    Temporally characterizing optical pulses is an important task when building, optimizing, and using optical sources. Direct photodetection with high-bandwidth photodiodes and real-time oscilloscopes is only adequate for optical pulses longer than ~10 ps; diagnostics based on indirect strategies are required to characterize femtosecond and sub-10-ps coherent sources. Most of these diagnostics are based on nonlinear optics and can be difficult to implement for the single-shot characterization of nonrepetitive events. A temporal diagnostic based on phase diversity is demonstrated in the context of picosecond high-energy laser systems, where single-shot pulse measurements are required for system safety and interpretation of experimental results. A plurality of ancillary optical pulses obtained by adding known amounts of chromatic dispersion to the pulse under test are directly measured by photodetection and processed to reconstruct the input pulse shape. This high-sensitivity (~50-pJ) diagnostic is based on a pulse replicator composed of fiber splitters and delay fibers, making it possible to operate with fiber sources and free-space sources after fiber coupling. Experimental data obtained with a high-bandwidth real-time oscilloscope demonstrate accurate characterization of pulses from a high-energy chirped-pulse amplification system, even for pulses shorter than the photodetection impulse response.

  15. Raman Amplification and Tunable Pulse Delays in Silicon Waveguides

    NASA Astrophysics Data System (ADS)

    Rukhlenko, Ivan D.; Garanovich, Ivan L.; Premaratne, Malin; Sukhorukov, Andrey A.; Agrawal, Govind P.

    2010-10-01

    The nonlinear process of stimulated Raman scattering is important for silicon photonics as it enables optical amplification and lasing. However, generally employed numerical approaches provide very little insight into the contribution of different silicon Raman amplifier (SRA) parameters. In this paper, we solve the coupled pump-signal equations analytically and derive an exact formula for the envelope of a signal pulse when picosecond optical pulses are amplified inside a SRA pumped by a continuous-wave laser beam. Our solution is valid for an arbitrary pulse shape and fully accounts for the Raman gain-dispersion effects, including temporal broadening and group-velocity reduction. Our results are useful for optimizing the performance of SRAs and for engineering controllable signal delays.

  16. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    PubMed

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  17. Phase matched parametric amplification via four-wave mixing in optical microfibers.

    PubMed

    Abdul Khudus, Muhammad I M; De Lucia, Francesco; Corbari, Costantino; Lee, Timothy; Horak, Peter; Sazio, Pier; Brambilla, Gilberto

    2016-02-15

    Four-wave mixing (FWM) based parametric amplification in optical microfibers (OMFs) is demonstrated over a wavelength range of over 1000 nm by exploiting their tailorable dispersion characteristics to achieve phase matching. Simulations indicate that for any set of wavelengths satisfying the FWM energy conservation condition there are two diameters at which phase matching in the fundamental mode can occur. Experiments with a high-power pulsed source working in conjunction with a periodically poled silica fiber (PPSF), producing both fundamental and second harmonic signals, are undertaken to investigate the possibility of FWM parametric amplification in OMFs. Large increases of idler output power at the third harmonic wavelength were recorded for diameters close to the two phase matching diameters. A total amplification of more than 25 dB from the initial signal was observed in a 6 mm long optical microfiber, after accounting for the thermal drift of the PPSF and other losses in the system.

  18. 2.36 J, 50 Hz nanosecond pulses from a diode side-pumped Nd:YAG MOPA system

    NASA Astrophysics Data System (ADS)

    Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Yang, Ning; Li, Ye; Yang, Zhen; Han, Song; Shi, Junfeng; Zhou, Zewu

    2017-07-01

    We report on a high-energy high-repetition-rate nanosecond Nd:YAG main oscillator power amplifier (MOPA) system. Maximum output pulse energy of 2.36 J with duration of 9.4 ns at 50 Hz has been achieved. The master oscillator was a LD side-pumped electro-optical Q-switched Nd:YAG rod laser adopting unstable cavity with variable reflectivity mirror (VRM). It delivered a pulse train with energy up to 180 mJ and pulse duration of 10.7 ns. The near-field pattern demonstrated a nearly super Gaussian flat top profile. In the amplification stage, the pulse was boosted via double-pass two Nd:YAG rod amplifiers. Maximum pulse energy was obtained at the peak pump power of 37.5 kW, corresponding to an optical-optical conversion efficiency of 25.2%. The correlative peak power was deduced to be 251 MW. We also presented the result of 100 Hz nanosecond laser with average output power of >100 W.

  19. Amplified DNAs in laboratory stocks of Leishmania tarentolae: extrachromosomal circles structurally and functionally similar to the inverted-H-region amplification of methotrexate-resistant Leishmania major

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrillo-Peixoto, M.L.; Beverley, S.M.

    1988-12-01

    We describe the structure of amplified DNA that was discovered in two laboratory stocks of the protozoan parasite Leishmania tarentolae. Restriction mapping and molecular cloning revealed that a region of 42 kilobases was amplified 8- to 30-fold in these lines. Southern blot analyses of digested DNAs or chromosomes separated by pulsed-field electrophoresis showed that the amplified DNA corresponded to the H region, a locus defined originally by its amplification in methotrexate-resistant Leishmania major. Similarities between the amplified DNA of the two species included (i) extensive cross-hybridization; (ii) approximate conservation of sequence order; (iii) extrachromosomal localization; (iv) an overall inverted, head-to-headmore » configuration as a circular 140-kilobase tetrameric molecule; (v) two regions of DNA sequence rearrangement, each of which was closely associated with the two centers of the inverted repeats; (vi) association with methotrexate resistance; and (vii) phenotypically conservative amplification, in which the wild-type chromosomal arrangement was retained without apparent modification. Our data showed that amplified DNA mediating drug resistance arose in unselected L. tarentolae, although the pressures leading to apparently spontaneous amplification and maintenance of the H region are not known. The simple structure and limited extent of DNA amplified in these and other Leishmania lines suggests that the study of gene amplification in Leishmania spp. offers an attractive model system for the study of amplification in cultured mammalian cells and tumors. We also introduced a method for measuring the size of large circular DNAs, using gamma-irradiation to introduce limited double-strand breaks followed by sizing of the linear DNAs by pulsed-field electrophoresis.« less

  20. Three-wave interaction solitons in optical parametric amplification.

    PubMed

    Ibragimov, E; Struthers, A A; Kaup, D J; Khaydarov, J D; Singer, K D

    1999-05-01

    This paper applies three-wave interaction (TWI)-soliton theory to optical parametric amplification when the signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity regimes to compare the theory with output from an experimental synchronously pumped optical parametric amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and 20-fold pulse compression in this experiment. The theory and supporting numerics show that one can effectively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.

  1. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    DOEpatents

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  2. Quasi-remote Pulse Compression and Generation of Radiation and Particle Beams

    NASA Astrophysics Data System (ADS)

    Hubbard, Richard F.; Ting, Antonio; Penano, Joseph R.; Hafizi, Bahman; Gordon, Daniel F.; Sprangle, Phillip; Zigler, Arie

    2013-10-01

    Using chirped pulse amplification (CPA), laser pulses are routinely compressed to pulse lengths below 50 femtoseconds and focused to spot sizes of a few microns. These intense pulses may be focused onto a solid, gas, or plasma converter to produce penetrating electromagnetic radiation (e.g., x-rays, terahertz) or energetic particles. However, nonlinear effects and plasma generation place severe restrictions on the intensity of the pulse that can be propagated through the air to a distant target or object. This paper describes a quasi-remote laser pulse compression architecture in which the pulse compression apparatus, focusing system, and radiation or particle beam converter are placed at a substantial distance from the rest of the CPA system. By propagating a radially-expanded, chirped/stretched pulse through the air at a sufficiently low intensity, the stretched pulse can be compressed and focused onto the converter while keeping the largest and most expensive components of the CPA system far from the object to be irradiated. Analytical and simulation models are used to determine how axial compression and focused spot size degrade as the standoff distance to the compressor/focusing/converter assembly is increased. The implications of these results for proof-of-concept experiments and various potential applications will be discussed. Supported by the NRL Base Program

  3. Anomalous amplification of a homodyne signal via almost-balanced weak values.

    PubMed

    Liu, Wei-Tao; Martínez-Rincón, Julián; Viza, Gerardo I; Howell, John C

    2017-03-01

    We propose precision measurements of ultra-small angular velocities of a mirror within a modified Sagnac interferometer, where the counter-propagating beams are spatially separated, using the recently proposed technique of almost-balanced weak values amplification (ABWV) [Phys. Rev. Lett.116, 100803 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.100803]. The separation between the two beams provides additional amplification with respect to using collinear beams in a Sagnac interferometer. Within the same setup, the weak-value amplification technique is also performed for comparison. Much higher amplification factors can be obtained using the almost-balanced weak values technique, with the best one achieved in our experiments being as high as 1.2×107. In addition, the amplification factor monotonically increases with decreasing of the post-selection phase for the ABWV case in our experiments, which is not the case for weak-value amplification (WVA) at small post-selection phases. Both techniques consist of measuring the angular velocity. The sensitivity of the ABWV technique is ∼38  nrad/s per averaged pulse for a repetition rate of 1 Hz and ∼33  nrad/s per averaged pulse for the WVA technique.

  4. Explanatory Model for Sound Amplification in a Stethoscope

    ERIC Educational Resources Information Center

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with…

  5. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  6. Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier.

    PubMed

    Bobkov, Konstantin; Andrianov, Alexey; Koptev, Maxim; Muravyev, Sergey; Levchenko, Andrei; Velmiskin, Vladimir; Aleshkina, Svetlana; Semjonov, Sergey; Lipatov, Denis; Guryanov, Alexey; Kim, Arkady; Likhachev, Mikhail

    2017-10-30

    We demonstrate a novel amplification regime in a counter-pumped, relatively long (2 meters), large mode area, highly Yb-doped and polarization-maintaining tapered fiber, which offers a high peak power directly from the amplifier. The main feature of this regime is that the amplifying signal propagates through a thin part of the tapered fiber without amplification and experiences an extremely high gain in the thick part of the tapered fiber, where most of the pump power is absorbed. In this regime, we have demonstrated 8 ps pulse amplification to a peak power of up to 0.76 MW, which is limited by appearance of stimulated Raman scattering. In the same regime, 28 ps chirped pulses are amplified to a peak power of 0.35 MW directly from the amplifier and then compressed with 70% efficiency to 315 ± 10 fs, corresponding to an estimated peak power of 22 MW.

  7. Aberration-free, all-reflective laser pulse stretcher

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.; Fochs, Scott N.

    1999-09-28

    An all-reflective pulse stretcher for laser systems employing chirped-pulse amplification enables on-axis use of the focusing mirror which results in ease of use, significantly decreased sensitivity to alignment and near aberration-free performance. By using a new type of diffraction grating which contains a mirror incorporated into the grating, the stretcher contains only three elements: 1) the grating, 2) a spherical or parabolic focusing mirror, and 3) a flat mirror. Addition of a fourth component, a retro-reflector, enables multiple passes of the same stretcher resulting in stretching ratios beyond the current state of the art in a simple and compact design. The pulse stretcher has been used to stretch pulses from 20 fsec to over 600 psec (a stretching ratio in excess of 30,000).

  8. High energy diode-pumped solid-state laser development at the Central Laser Facility

    NASA Astrophysics Data System (ADS)

    Mason, Paul D.; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Butcher, Thomas; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Hernandez-Gomez, Cristina; Edwards, Chris; Collier, John

    2016-04-01

    In this paper we review the development of high energy, nanosecond pulsed diode-pumped solid state lasers within the Central Laser Facility (CLF) based on cryogenic gas cooled multi-slab ceramic Yb:YAG amplifier technology. To date two 10J-scale systems, the DiPOLE prototype amplifier and an improved DIPOLE10 system, have been developed, and most recently a larger scale system, DiPOLE100, designed to produce 100 J pulses at up to 10 Hz. These systems have demonstrated amplification of 10 ns duration pulses at 1030 nm to energies in excess of 10 J at 10 Hz pulse repetition rate, and over 100 J at 1 Hz, with optical-to-optical conversion efficiencies of up to 27%. We present an overview of the cryo-amplifier concept and compare the design features of these three systems, including details of the amplifier designs, gain media, diode pump lasers and the cryogenic gas cooling systems. The most recent performance results from the three systems are presented along with future plans for high energy DPSSL development within the CLF.

  9. Electromagnetic Pulse/Transient Threat Testing of Protection Devices for Amateur/Military Affiliate Radio System Equipment. Volume 3. Test Data, Electromagnetic Pulse Testing of Protection Devices. Section 1. High Energy Pulse-Device Failure Test. 50 Ohms Impedance 25,000 Volts-4000 Amps, 100 Joules.

    DTIC Science & Technology

    1985-10-31

    7 oat s LinkI . . - P Comments: ~ y V ,~o.*.-’ ,. 157q Pk: 6ETtC*6L- - ’ . */-’-..- -,.-., Oats Teet Poit c C 2 b AmplifI481OS’ dS Attenuaio 2-4D dB...Puleer Level * Data LinkI Comments: /:2- VO%’ a*1 Date/3 - Attenuaion dS HMmontai na/dIv I Vertial mnV/div I s. Horizontal g n a/div 2 Vertical IV

  10. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    NASA Astrophysics Data System (ADS)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  11. New amplifying laser concept for inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Mourou, G. A.; Labaune, C.; Hulin, D.; Galvanauskas, A.

    2008-05-01

    This paper presents a new amplifying laser concept designed to produce high energy in either short or long pulses using coherent or incoherent addition of few millions fibers. These are called respectively CAN for Coherent Amplification Network and FAN for Fiber Amplification Network. The fibers would be large core or Large Mode Area (LMA) which have demonstrated up to 10, mJ output energy per fiber1. Such a system could meet the driver criteria of Inertial Fusion Energy (IFE) power plants based on Inertial Confinement Fusion (ICF), in particular high efficiency and high repetition rate.

  12. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke Yin; Weiqiang Yang; Bin Zhang

    2014-02-28

    An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stagemore » amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)« less

  13. 1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier

    NASA Astrophysics Data System (ADS)

    Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi

    2018-01-01

    A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.

  14. Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials

    NASA Astrophysics Data System (ADS)

    Kolev, V. Z.; Duering, M. W.; Luther-Davies, B.; Rode, A. V.

    2006-12-01

    We propose a novel tuneable table-top optical source as an alternative to the free electron laser currently used for resonant infrared pulsed laser deposition of polymers. It is based on two-stage pulsed optical parametric amplification using MgO doped periodically poled lithium niobate crystals. Gain in excess of 106 in the first stage and pump depletion of 58% in the second stage were achieved when the system was pumped by a high-power Nd:YVO4 picosecond laser source at 1064 nm and seeded by a CW tuneable diode laser at 1530 nm. An average power of 2 W was generated at 3.5 µm corresponding to 1.3 µJ pulse energy.

  15. Distinguishing Raman from strongly coupled Brillouin amplification for short pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qing; Barth, Ido; Edwards, Matthew R.

    2016-05-15

    Plasma-based amplification by strongly coupled Brillouin scattering has recently been suggested for the compression of a short seed laser to ultrahigh intensities in sub-quarter-critical-density plasmas. However, by employing detailed spectral analysis of particle-in-cell simulations in the same parameter regime, we demonstrate that, in fact, Raman backscattering amplification is responsible for the growth and compression of the high-intensity, leading spike, where most of the energy compression occurs, while the ion mode only affects the low-intensity tail of the amplified pulse. The critical role of the initial seed shape is identified. A number of subtleties in the numerical simulations are also pointedmore » out.« less

  16. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    PubMed

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  17. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Consentino, A.; Irwin, D.

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less

  18. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    DOE PAGES

    Dorrer, C.; Consentino, A.; Irwin, D.

    2016-05-18

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less

  19. A dual slope charge sampling analog front-end for a wireless neural recording system.

    PubMed

    Lee, Seung Bae; Lee, Byunghun; Gosselin, Benoit; Ghovanloo, Maysam

    2014-01-01

    This paper presents a novel dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which amplifies neural signals by taking advantage of the charge sampling concept for analog signal conditioning, such as amplification and filtering. The presented DSCS-AFE achieves amplification, filtering, and sampling in a simultaneous fashion, while consuming very small amount of power. The output of the DSCS-AFE produces a pulse width modulated (PWM) signal that is proportional to the input voltage amplitude. A circular shift register (CSR) utilizes time division multiplexing (TDM) of the PWM pulses to create a pseudo-digital TDM-PWM signal that can feed a wireless transmitter. The 8-channel system-on-a-chip was fabricated in a 0.35-μm CMOS process, occupying 2.4 × 2.1 mm(2) and consuming 255 μW from a 1.8V supply. Measured input-referred noise for the entire system, including the FPGA in order to recover PWM signal is 6.50 μV(rms) in the 288 Hz~10 kHz range. For each channel, sampling rate is 31.25 kHz, and power consumption is 31.8 μW.

  20. A Dual Slope Charge Sampling Analog Front-End for a Wireless Neural Recording System

    PubMed Central

    Lee, Seung Bae; Lee, Byunghun; Gosselin, Benoit

    2015-01-01

    This paper presents a novel dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which amplifies neural signals by taking advantage of the charge sampling concept for analog signal conditioning, such as amplification and filtering. The presented DSCS-AFE achieves amplification, filtering, and sampling in a simultaneous fashion, while consuming very small amount of power. The output of the DSCS-AFE produces a pulse width modulated (PWM) signal that is proportional to the input voltage amplitude. A circular shift register (CSR) utilizes time division multiplexing (TDM) of the PWM pulses to create a pseudo-digital TDM-PWM signal that can feed a wireless transmitter. The 8-channel system-on-a-chip was fabricated in a 0.35-µm CMOS process, occupying 2.4 × 2.1 mm2 and consuming 255 µW from a 1.8V supply. Measured input-referred noise for the entire system, including the FPGA in order to recover PWM signal is 6.50 µVrms in the 288 Hz~10 kHz range. For each channel, sampling rate is 31.25 kHz, and power consumption is 31.8 µW. PMID:25570655

  1. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements.

    PubMed

    Lou, Janet W; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with <500 fs pulse durations. The pulses are time-stretched with high-dispersion fiber, amplified by a high-power, large-mode-area fiber amplifier, and recompressed using a chirped volume holographic Bragg grating. The resulting high-peak-power pulses allow for highly efficient harmonic generation. We also demonstrate for the first time to our knowledge, the use of a mode-locked ultraviolet source to excite individual biological particles and other calibration particles in an inlet air flow as they pass through an optical chamber. The repetition rate is ideal for biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  2. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less

  3. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18  THz.

    PubMed

    Liu, B; Bromberger, H; Cartella, A; Gebert, T; Först, M; Cavalleri, A

    2017-01-01

    We report on the generation of high-energy (1.9 μJ) far-infrared pulses tunable between 4 and 18 THz frequency. Emphasis is placed on tunability and on minimizing the bandwidth of these pulses to less than 1 THz, as achieved by difference-frequency mixing of two linearly chirped near-infrared pulses in the organic nonlinear crystal DSTMS. As the two near-infrared pulses are derived from amplification of the same white light continuum, their carrier envelope phase fluctuations are mutually correlated, and hence the difference-frequency THz field exhibits absolute phase stability. This source opens up new possibilities for the control of condensed matter and chemical systems by selective excitation of low-energy modes in a frequency range that has, to date, been difficult to access.

  4. Final EDP Ti: sapphire amplifiers for ELI project

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Kalashnikov, Mikhail; Osvay, Károly

    2015-05-01

    Recently several ultrahigh intensity Chirped Pulse Amplification (CPA) laser systems have reached petawatt output powers [1, 2] setting the next milestone at tens or even hundreds petawatts for the next three to ten years [3, 4]. These remarkable results were reached when laser amplifiers (opposite to Optical Parametric Amplification (OPA) [5]) were used as final ones and from them Ti:Sapphire crystals supposed to be the working horses as well in the future design of these laser systems. Nevertheless, the main limitation that arises on the path toward ultrahigh output power and intensity is the restriction on the pumping and extraction energy imposed by Transverse Amplified Spontaneous Emission (TASE) [6] and/or transverse parasitic generation (TPG) [7] within the large aperture of the disc-shape amplifier volume.

  5. Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    PubMed Central

    Yang, X.; Vieux, G.; Brunetti, E.; Ersfeld, B.; Farmer, J. P.; Hur, M. S.; Issac, R. C.; Raj, G.; Wiggins, S. M.; Welsh, G. H.; Yoffe, S. R.; Jaroszynski, D. A.

    2015-01-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10’s – 100’s fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153

  6. An ultra-high gain and efficient amplifier based on Raman amplification in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieux, G.; Cipiccia, S.; Grant, D. W.

    Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less

  7. An ultra-high gain and efficient amplifier based on Raman amplification in plasma

    DOE PAGES

    Vieux, G.; Cipiccia, S.; Grant, D. W.; ...

    2017-05-25

    Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less

  8. Ultrashort pulse amplification in cryogenically cooled amplifiers

    DOEpatents

    Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary

    2004-10-12

    A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.

  9. Nonlinear amplification of coherent waves in media with soliton-type refractive index pattern.

    PubMed

    Bugaychuk, S; Conte, R

    2012-08-01

    We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a "dark" dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a tanh function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope; at the same time, the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as retention of the pulse shape during the transmission of impulses in a long nonlinear cavity, and giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.

  10. Femtosecond all-solid-state laser for refractive surgery

    NASA Astrophysics Data System (ADS)

    Zickler, Leander; Han, Meng; Giese, G.'nter; Loesel, Frieder H.; Bille, Josef F.

    2003-06-01

    Refractive surgery in the pursuit of perfect vision (e.g. 20/10) requires firstly an exact measurement of abberations induced by the eye and then a sophisticated surgical approach. A recent extension of wavefront measurement techniques and adaptive optics to ophthalmology has quantitatively characterized the quality of the human eye. The next milestone towards perfect vision is developing a more efficient and precise laser scalpel and evaluating minimal-invasive laser surgery strategies. Femtosecond all-solid-state MOPA lasers based on passive modelocking and chirped pulse amplification are excellent candidates for eye surgery due to their stability, ultra-high intensity and compact tabletop size. Furthermore, taking into account the peak emission in the near IR and diffraction limited focusing abilities, surgical laser systems performing precise intrastromal incisions for corneal flap resection and intrastromal corneal reshaping promise significant improvement over today's Photorefractive Keratectomy (PRK) and Laser Assisted In Situ Keratomileusis (LASIK) techniques which utilize UV excimer lasers. Through dispersion control and optimized regenerative amplification, a compact femtosecond all-solid-state laser with pulsed energy well above LIOB threshold and kHz repetition rate is constructed. After applying a pulse sequence to the eye, the modified corneal morphology is investigated by high resolution microscopy (Multi Photon/SHG Confocal Microscope).

  11. Explanatory model for sound amplification in a stethoscope

    NASA Astrophysics Data System (ADS)

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with opportunities to not only better understand the amplification mechanism of a stethoscope, but also to strengthen their understanding of sound, pressure, waves, resonance modes, etc.

  12. Millijoule-level 20 ps Nd:YAG oscillator-amplifier laser system for investigation of stimulated Raman scattering and optical parametric generation

    NASA Astrophysics Data System (ADS)

    Jelínek, Michal; Kubecek, Vàclav

    2012-06-01

    We report on quasi-continuously pumped oscillator-amplifier laser system. The laser oscillator was based on highly 2.4 at.% doped crystalline Nd:YAG in a bounce geometry and passively mode locked by a semiconductor saturable absorber mirror. Using the cavity dumping technique, 19 ps pulses with the energy of 20 μJ and Gaussian spatial beam profile were generated directly from the oscillator at the repetition rate up to 50 Hz. For applications requiring more energetic pulses the amplification was studied using either an identical highly doped Nd:YAG module in bounce geometry or flashlamp pumped Nd:YAG laser rod. Using compact all diode pumped oscillator-amplifier system, 130 μJ pulses were generated. The flashlamp pumped amplifier with 100 mm long Nd:YAG enabled to obtain higher energy. In the single pass configuration the pulse was amplified to 4.5 mJ, using the double pass configuration the pulse energy was further increased up to 20 mJ with the duration of 25 ps at 10 Hz. The developed laser system was used for investigation of stimulated Raman scattering in Strontium Barium Niobate and optical parametric generation in CdSiP2.

  13. Simple ps microchip Nd:YVO4 laser with 3.3-ps pulses at 0.2 to 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-06-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 and 2 MHz, and microjoule level pulse energies. Most systems are based on short pulse mode-locked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast, we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50-μm-long Nd:YVO4 gain material optically bonded to a 4.6-mm-thick undoped YVO4 crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 to 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nanojoule. These 40-ps pulses are spectrally broadened in a standard single-mode fiber and then compressed in a 24-mm-long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from ˜0.2 to 1.4 MHz by changing the pump power, while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fiber is observed throughout the pulse repetition rate, supporting sub-10-ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4 amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result, the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  14. Simple ps microchip Nd:YVO4 laser with 3.3 ps pulses at 0.2 - 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-03-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 to 2 MHz, and micro Joule level pulse energies. Most systems are based on short pulse modelocked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50 μm long Nd:YVO4-gain material optically bonded to a 4.6 mm thick undoped YVO4-crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 - 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nJ. These 40-ps pulses are spectrally broadened in a standard single mode fibre and then compressed in a 24 mm long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from app. 0.2 to 1.4 MHz by changing the pump power while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fibre is observed throughout the pulse repetition rate, supporting sub-10- ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4-amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  15. Single-shot high-resolution characterization of optical pulses by spectral phase diversity

    DOE PAGES

    Dorrer, C.; Waxer, L. J.; Kalb, A.; ...

    2015-12-15

    The concept of spectral phase diversity is proposed and applied to the temporal characterization of optical pulses. The experimental trace is composed of the measured power of a plurality of ancillary optical pulses derived from the pulse under test by adding known amounts of chromatic dispersion. The spectral phase of the pulse under test is retrieved by minimizing the error between the experimental trace and a trace calculated from the optical spectrum using the known diagnostic parameters. An assembly composed of splitters and dispersive delay fibers has been used to generate 64 ancillary pulses whose instantaneous power can be detectedmore » in a single shot with a high-bandwidth photodiode and oscilloscope. Pulse-shape reconstruction for pulses shorter than the photodetection impulse response has been demonstrated.The diagnostic is experimentally shown to accurately characterize pulses from a chirped-pulse–amplification system when its stretcher is detuned from the position for optimal recompression. As a result, various investigations of the performance with respect to the number of ancillary pulses and the range of chromatic dispersion generated in the diagnostic are presented.« less

  16. Single-shot high-resolution characterization of optical pulses by spectral phase diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Waxer, L. J.; Kalb, A.

    The concept of spectral phase diversity is proposed and applied to the temporal characterization of optical pulses. The experimental trace is composed of the measured power of a plurality of ancillary optical pulses derived from the pulse under test by adding known amounts of chromatic dispersion. The spectral phase of the pulse under test is retrieved by minimizing the error between the experimental trace and a trace calculated from the optical spectrum using the known diagnostic parameters. An assembly composed of splitters and dispersive delay fibers has been used to generate 64 ancillary pulses whose instantaneous power can be detectedmore » in a single shot with a high-bandwidth photodiode and oscilloscope. Pulse-shape reconstruction for pulses shorter than the photodetection impulse response has been demonstrated.The diagnostic is experimentally shown to accurately characterize pulses from a chirped-pulse–amplification system when its stretcher is detuned from the position for optimal recompression. As a result, various investigations of the performance with respect to the number of ancillary pulses and the range of chromatic dispersion generated in the diagnostic are presented.« less

  17. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification.

    PubMed

    Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P

    2015-09-01

    We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035  nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.

  18. Solid-state repetitive generator with a gyromagnetic nonlinear transmission line operating as a peak power amplifier

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Pedos, M. S.; Rukin, S. N.; Timoshenkov, S. P.

    2017-07-01

    In this work, experiments were made in which gyromagnetic nonlinear transmission line (NLTL) operates as a peak power amplifier of the input pulse. At such an operating regime, the duration of the input pulse is close to the period of generated oscillations, and the main part of the input pulse energy is transmitted only to the first peak of the oscillations. Power amplification is achieved due to the voltage amplitude of the first peak across the NLTL output exceeding the voltage amplitude of the input pulse. In the experiments, the input pulse with an amplitude of 500 kV and a half-height pulse duration of 7 ns is applied to the NLTL with a natural oscillation frequency of ˜300 MHz. At the output of the NLTL in 40 Ω coaxial transmission line, the pulse amplitude is increased to 740 kV and the pulse duration is reduced to ˜2 ns, which correspond to power amplification of the input pulse from ˜6 to ˜13 GW. As a source of input pulses, a solid-state semiconductor opening switch generator was used, which allowed carrying out experiments at pulse repetition frequency up to 1 kHz in the burst mode of operation.

  19. Generation and subsequent amplification of few-cycle femtosecond pulses from a picosecond pump laser

    NASA Astrophysics Data System (ADS)

    Mukhin, I. B.; Kuznetsov, I. I.; Palashov, O. V.

    2018-04-01

    Using a new approach, in which generation of femtosecond pulses as short as a few field cycles is implemented directly from the radiation of a picosecond pump laser, pulses with the microjoule energy, the repetition rate 10 kHz, and the duration less than 26 fs are generated in the spectral range 1.3 ‑ 1.4 μm. In the process of generating this radiation, use was made of a method providing passive phase stabilisation of the carrier oscillation of the electromagnetic field and its slow envelope. The radiation spectrum was converted into the range of parametric amplification in the BBO crystal by the broadband second harmonic generation; the pulse was parametrically amplified up to the microjoule level and compressed by chirped mirrors to a duration of 28 fs.

  20. Flux amplification and sustainment of ST plasmas by multi-pulsed coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Higashi, T.; Ishihara, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The Helicity Injected Spherical Torus (HIST) device has been developed towards high-current start up and sustainment by Multi-pulsed Coaxial Helicity Injection (M-CHI) method. Multiple pulses operation of the coaxial plasma gun can build the magnetic field of STs and spheromak plasmas in a stepwise manner. So far, successive gun pulses on SSPX at LLNL were demonstrated to maintain the magnetic field of spheromak in a quasi-steady state against resistive decay [1]. The resistive 3D-MHD numerical simulation [2] for STs reproduced the current amplification by the M-CHI method and confirmed that stochastic magnetic field was reduced during the decay phase. By double pulsed operation on HIST, the plasma current was effectively amplified against the resistive decay. The life time increases up to 10 ms which is longer than that in the single CHI case (4 ms). The edge poloidal fields last between 0.5 ms and 6 ms like a repetitive manner. During the second driven phase, the toroidal ion flow is driven in the same direction as the plasma current as well as in the initial driven phase. At the meeting, we will discuss a current amplification mechanism based on the merging process with the plasmoid injected secondly from the gun. [1] B. Hudson et al., Phys. Plasmas Vol.15, 056112 (2008). [2] Y. Kagei et al., J. Plasma Fusion Res. Vol.79, 217 (2003).

  1. NRL Review, 2002

    DTIC Science & Technology

    2002-05-01

    technology for polarization-maintaining fiber amplification and an ultrashort pulsed fiber laser to Calmar Optcom. Calmar Optcom will be manufacturing...June 1995. This facility is made up of 56 laser beams and is single pulsed (4 nanosecond pulse ). This facil- ity provides intense radiation for studying...plasma interactions, in- tense laser -electron beam interactions, and intense laser -matter interactions. The division is building a repetitively pulsed (5

  2. Raman accumulator as a fusion laser driver

    DOEpatents

    George, E. Victor; Swingle, James C.

    1985-01-01

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  3. Raman accumulator as a fusion laser driver

    DOEpatents

    George, E.V.; Swingle, J.C.

    1982-03-31

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  4. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    PubMed

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  5. A Fiber Bragg Grating Sensor for Radial Artery Pulse Waveform Measurement.

    PubMed

    Jia, Dagong; Chao, Jing; Li, Shuai; Zhang, Hongxia; Yan, Yingzhan; Liu, Tiegen; Sun, Ye

    2018-04-01

    In this paper, we report the design and experimental validation of a novel optical sensor for radial artery pulse measurement based on fiber Bragg grating (FBG) and lever amplification mechanism. Pulse waveform analysis is a diagnostic tool for clinical examination and disease diagnosis. High fidelity radial artery pulse waveform has been investigated in clinical studies for estimating central aortic pressure, which is proved to be predictors of cardiovascular diseases. As a three-dimensional cylinder, the radial artery needs to be examined from different locations to achieve optimal pulse waveform for estimation and diagnosis. The proposed optical sensing system is featured as high sensitivity and immunity to electromagnetic interference for multilocation radial artery pulse waveform measurement. The FBG sensor can achieve the sensitivity of 8.236 nm/N, which is comparable to a commonly used electrical sensor. This FBG-based system can provide high accurate measurement, and the key characteristic parameters can be then extracted from the raw signals for clinical applications. The detecting performance is validated through experiments guided by physicians. In the experimental validation, we applied this sensor to measure the pulse waveforms at various positions and depths of the radial artery in the wrist according to the diagnostic requirements. The results demonstrate the high feasibility of using optical systems for physiological measurement and using this FBG sensor for radial artery pulse waveform in clinical applications.

  6. Soft x-ray plasma-based seeded multistage amplification chain.

    PubMed

    Oliva, Eduardo; Fajardo, Marta; Li, Lu; Sebban, Stephane; Ros, David; Zeitoun, Philippe

    2012-10-15

    To date, plasma-based soft x-ray lasers have demonstrated experimentally 1 μJ, 1 ps (1 MW) pulses. This Letter reports extensive study using time-dependant Maxwell-Bloch code of seeding millimeter scale plasmas that store more than 100 mJ in population inversion. Direct seeding of these plasmas has to overcome very strong amplified spontaneous emission (ASE) as well as prevent wake-field amplification. Below 100 nJ injected energy, seed produces pulses with picosecond duration. To overcome this limitation, a new scheme has been studied, taking advantage of a plasma preamplifier that dramatically increases the seed energy prior to entering the main plasma amplifier leading to ASE and wake-free, fully coherent 21.6 μJ, 80 fs pulses (0.27 GW).

  7. Considerations of a ship defense with a pulsed COIL

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2015-10-01

    Ship defense system with a pulsed COIL (Chemical Oxygen-Iodine Laser) has been considered. One of the greatest threats for battle ships and carriers in warfare are supersonic anti-ship cruise missiles (ASCMs). A countermeasure is considered to be a supersonic RAM (Rolling Airframe Missile) at first. A gun-type CIWS (Close-In Weapon System) should be used as the last line of defense. However since an ASCM can be detected at only 30-50km away due to radar horizon, a speed-of-light weapon is desirable as the first defense especially if the ASCM flies at >Mach 6. Our previous report explained several advantages of a giant pulse from a chemical oxygen laser (COL) to shoot down supersonic aircrafts. Since the first defense has the target distance of ~30km, the use of COIL is better considering its beam having high transmissivity in air. Therefore efficient operation of a giant-pulsed COIL has been investigated with rate-equation simulations. The simulation results indicate that efficient single-pass amplification can be expected. Also a design example of a giant-pulsed COIL MOPA (master oscillator and power amplifier) system has been shown, in which the output energy can be increased without limit.

  8. Numerical investigation of output beam quality in efficient broadband optical parametric chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan

    2017-01-01

    We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.

  9. Effects of antihypertensive drugs on central blood pressure in humans: a preliminary observation.

    PubMed

    Agnoletti, Davide; Zhang, Yi; Borghi, Claudio; Blacher, Jacques; Safar, Michel E

    2013-08-01

    Central blood pressure (BP) is considered a better predictor of cardiovascular events than brachial BP. Modifications of central, beyond brachial BP, can be assessed by pressure amplification, a potential new cardiovascular risk factor. Comparison between drugs' effect on central hemodynamics has been poorly studied. Our aim was to assess the hemodynamic effect of a 12-week treatment with amlodipine 5mg, or candesartan 8mg, or indapamide sustained-release 1.5mg, in comparison with placebo. We analyzed 145 out-patients with essential hypertension in primary prevention enrolled in the Natrilix SR Versus Candesartan and Amlodipine in the Reduction of Systolic Blood Pressure in Hypertensive Patients (X-CELLENT) study, a multicenter, randomized, double-blinded, placebo-controlled trial. Arterial stiffness, central BP, pressure amplification, and wave reflection were measured by applanation tonometry. Baseline characteristics of patients were homogeneous between groups. After treatment, we found that active drugs produced similar reduction of both central and peripheral BPs, with no significant interdrug differences (all P < 0.05; excluded peripheral pulse pressure, compared with placebo). Second, amlodipine (1.9% ± 15.3%), candesartan (3.0% ± 14.6%) and indapamide (4.1% ± 14.4%) all increased pulse pressure amplification, but only indapamide was statistically different from placebo (P = 0.02). Finally, no significant changes were observed on pulse wave velocity, heart rate, and augmentation index. The 3 antihypertensive drugs similarly reduced peripheral and central BP, as compared with placebo, but a significant increase in pulse pressure amplification was obtained only with indapamide, independently of arterial stiffness modifications. 3283161 by BIOPHARMA.

  10. Plasma-based generation and control of a single few-cycle high-energy ultrahigh-intensity laser pulse.

    PubMed

    Tamburini, M; Di Piazza, A; Liseykina, T V; Keitel, C H

    2014-07-11

    A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. Here we show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh-intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive result is explained with the larger reflectivity of a heavy foil, which compensates for its lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our multidimensional particle-in-cell simulations show that even few-cycle counterpropagating laser pulses can be further shortened (both temporally and in the number of laser cycles) with pulse amplification. A single few-cycle, multipetawatt laser pulse with several joules of energy and with a peak intensity exceeding 10(23)  W/cm(2) can be generated already employing next-generation high-power laser systems. In addition, the carrier-envelope phase of the generated few-cycle pulse can be tuned provided that the carrier-envelope phase of the initial counterpropagating pulse is controlled.

  11. Comprehensive description of the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Hopps, Nicholas; Oades, Kevin; Andrew, Jim; Brown, Colin; Cooper, Graham; Danson, Colin; Daykin, Simon; Duffield, Stuart; Edwards, Ray; Egan, David; Elsmere, Stephen; Gales, Steve; Girling, Mark; Gumbrell, Edward; Harvey, Ewan; Hillier, David; Hoarty, David; Horsfield, Colin; James, Steven; Leatherland, Alex; Masoero, Stephen; Meadowcroft, Anthony; Norman, Michael; Parker, Stefan; Rothman, Stephen; Rubery, Michael; Treadwell, Paul; Winter, David; Bett, Thomas

    2015-06-01

    The Orion laser facility at the atomic weapons establishment (AWE) in the UK has been operational since April 2013, fielding experiments that require both its long and short pulse capability. This paper provides a full description of the facility in terms of laser performance, target systems and diagnostics currently available. Inevitably, this is a snapshot of current capability—the available diagnostics and the laser capability are evolving continuously. The laser systems consist of ten beams, optimised around 1 ns pulse duration, which each provide a nominal 500 J at a wavelength of 351 nm. There are also two short pulse beams, which each provide 500 J in 0.5 ps at 1054 nm. There are options for frequency doubling one short pulse beam to enhance the pulse temporal contrast. More recently, further contrast enhancement, based on optical parametric amplification (OPA) in the front end with a pump pulse duration of a few ps, has been installed. An extensive suite of diagnostics are available for users, probing the optical emission, x-rays and particles produced in laser-target interactions. Optical probe diagnostics are also available. A description of the diagnostics is provided.

  12. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm rangemore » and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)« less

  13. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    PubMed

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  14. RADIATION-MEASURING SYSTEMS OF SOVIET ROCKETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakulov, P.V.; Goryunov, N.N.; Logachev, Yu.I.

    1961-11-01

    The second and third Sputniks and all Soviet space rockets and spaceship- satellites were equipped with radiationmeasuring systems comprising scintillation and gasdischarge counters and shaping, amplification, and scaling circuits. The scintillation counters use photomultipliers having either 40 x 40 Nal(Tl) or 20 x 20 Csl(Tl) cylindrical crystals. Both types have a gain of ~5.10/sup 4/. The highvoltage battery supplies voltages to the photomultipliers without the use of voltage dividers. Pulses from the 11th, 9th, and 8th dynodes are used for counting the number of particles which produce energy yields from the crystal exceeding ~50 and 500 kev and 5 Mev,more » respectively. Fourstage transistor amplifiers with an over-all gain of ~100 are used for amplification of the counting pulses. The trigger-discriminator, together with the amplifier, is capable of counting (2.5 -- 3.0) x 10/sup 5/ pulses/sec and of insuring a threshold stability of 10% at ambient temperatures of --30 to +50 deg C and voltage variations of plus or minus 20%. Ionization is measured from the current of the 7th dynode and the photomultiplier collector, which permits readings as low as 10/sup -10/ amp to be made by the method of charge storage (in the capacitor) with subsequent discharge through a neon tube. A gas-disoharge counter with 50 mg/cm/sup 2/ stainless-steel walls, operating at 400 v, also measures ionization. Before coming to the scaling circuit, the 50 v negative pulses from this counter pass through a transistor amplifier which changes their polarity and reduces their duration to 8 to 10 mu sec. (OTS)« less

  15. High-power ultrashort fiber laser for solar cells micromachining

    NASA Astrophysics Data System (ADS)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  16. Self-calibrating d-scan: measuring ultrashort laser pulses on-target using an arbitrary pulse compressor.

    PubMed

    Alonso, Benjamín; Sola, Íñigo J; Crespo, Helder

    2018-02-19

    In most applications of ultrashort pulse lasers, temporal compressors are used to achieve a desired pulse duration in a target or sample, and precise temporal characterization is important. The dispersion-scan (d-scan) pulse characterization technique usually involves using glass wedges to impart variable, well-defined amounts of dispersion to the pulses, while measuring the spectrum of a nonlinear signal produced by those pulses. This works very well for broadband few-cycle pulses, but longer, narrower bandwidth pulses are much more difficult to measure this way. Here we demonstrate the concept of self-calibrating d-scan, which extends the applicability of the d-scan technique to pulses of arbitrary duration, enabling their complete measurement without prior knowledge of the introduced dispersion. In particular, we show that the pulse compressors already employed in chirped pulse amplification (CPA) systems can be used to simultaneously compress and measure the temporal profile of the output pulses on-target in a simple way, without the need of additional diagnostics or calibrations, while at the same time calibrating the often-unknown differential dispersion of the compressor itself. We demonstrate the technique through simulations and experiments under known conditions. Finally, we apply it to the measurement and compression of 27.5 fs pulses from a CPA laser.

  17. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    PubMed

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  18. Parametric generation of high-energy 14.5-fs light pulses at 1.5 mum.

    PubMed

    Nisoli, M; Stagira, S; De Silvestri, S; Svelto, O; Valiulis, G; Varanavicius, A

    1998-04-15

    High-energy light pulses that are tunable from 1.1 to 2.6 mum, with a duration as short as 14.5 fs were generated in a type II phase-matching beta-BaB(2)O(4) traveling-wave parametric converter pumped by 18-fs pulses obtained from a Ti:sapphire laser with chirped-pulse amplification, followed by a hollow-fiber compressor.

  19. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE PAGES

    Dorrer, C.; Consentino, A.; Cuffney, R.; ...

    2017-10-18

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  20. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Consentino, A.; Cuffney, R.

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  1. Novel pump head design for high energy 1064 nm oscillator amplifier system for lidar applications

    NASA Astrophysics Data System (ADS)

    Willis, Christina C. C.; Witt, Greg; Martin, Nigel; Albert, Michael; Culpepper, Charles; Burnham, Ralph

    2017-02-01

    Many scientific endeavors are benefitted by the development of increasingly high energy laser sources for lidar applications. Space-based applications for lidar require compact, efficient and high energy sources, and we have designed a novel gain head that is compatible with these requirements. The gain medium for the novel design consists of a composite Nd:YAG/Sm:YAG slab, wherein the Sm:YAG portion absorbs any parasitic 1064 nm oscillations that might occur in the main pump axis. A pump cavity is built around the slab, consisting of angled gold-coated reflectors which allow for five pump passes from each of the four pumping locations around the slab. Pumping is performed with off-axis diode bars, allowing for highly compact conductively cooled design. Optical and thermal modeling of this design was done to verify and predict its performance. In order to ultimately achieve 50 W average power at a repetition rate of 500 Hz, three heads of this design will be used in a MOPA configuration with two stages of amplification. To demonstrate the pump head we built it into a 1064 nm laser cavity and performed initial amplification experiments. Modeling and design of the system is presented along with the initial oscillator and amplifier results. The greatest pulse energy produced from the seeded q-switched linear oscillator was an output of 25 mJ at 500 Hz. With an input of 25 mJ and two planned stages of amplification, we expect to readily reach 100 mJ or more per pulse.

  2. Thermally multiplexed polymerase chain reaction.

    PubMed

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  3. Optimizing the noise characteristics of high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Jauregui, Cesar; Müller, Michael; Kienel, Marco; Emaury, Florian; Saraceno, Clara J.; Limpert, Jens; Keller, Ursula; Tünnermann, Andreas

    2017-02-01

    The noise characteristics of high-power fiber lasers, unlike those of other solid-state lasers such as thin-disks, have not been systematically studied up to now. However, novel applications for high-power fiber laser systems, such as attosecond pulse generation, put stringent limits to the maximum noise level of these sources. Therefore, in order to address these applications, a detailed knowledge and understanding of the characteristics of noise and its behavior in a fiber laser system is required. In this work we have carried out a systematic study of the propagation of the relative intensity noise (RIN) along the amplification chain of a state-of-the-art high-power fiber laser system. The most striking feature of these measurements is that the RIN level is progressively attenuated after each amplification stage. In order to understand this unexpected behavior, we have simulated the transfer function of the RIN in a fiber amplification stage ( 80μm core) as a function of the seed power and the frequency. Our simulation model shows that this damping of the amplitude noise is related to saturation. Additionally, we show, for the first time to the best of our knowledge, that the fiber design (e.g. core size, glass composition, doping geometry) can be modified to optimize the noise characteristics of high-power fiber laser systems.

  4. Beam cleaning of an incoherent laser via plasma Raman amplification

    DOE PAGES

    Edwards, Matthew R.; Qu, Kenan; Mikhailova, Julia M.; ...

    2017-09-25

    We show that backward Raman amplification in plasma can efficiently compress a temporally incoherent pump laser into an intense coherent amplified seed pulse, provided that the correlation time of the pump is longer than the inverse plasma frequency. One analytical theory for Raman amplification using pump beams with different correlation functions is developed and compared to numerical calculations and particle-in-cell simulations. Since incoherence on scales shorter than the instability growth time suppresses spontaneous noise amplification, we point out a broad regime where quasi-coherent sources may be used as efficient low-noise Raman amplification pumps. As the amplified seed is coherent, Ramanmore » amplification provides an additional a beam-cleaning mechanism for removing incoherence. At near-infrared wavelengths, finite coherence times as short as 50 fs allow amplification with only minor losses in efficiency.« less

  5. Beam cleaning of an incoherent laser via plasma Raman amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew R.; Qu, Kenan; Mikhailova, Julia M.

    We show that backward Raman amplification in plasma can efficiently compress a temporally incoherent pump laser into an intense coherent amplified seed pulse, provided that the correlation time of the pump is longer than the inverse plasma frequency. One analytical theory for Raman amplification using pump beams with different correlation functions is developed and compared to numerical calculations and particle-in-cell simulations. Since incoherence on scales shorter than the instability growth time suppresses spontaneous noise amplification, we point out a broad regime where quasi-coherent sources may be used as efficient low-noise Raman amplification pumps. As the amplified seed is coherent, Ramanmore » amplification provides an additional a beam-cleaning mechanism for removing incoherence. At near-infrared wavelengths, finite coherence times as short as 50 fs allow amplification with only minor losses in efficiency.« less

  6. Backward Raman amplification in the long-wavelength infrared

    NASA Astrophysics Data System (ADS)

    Johnson, L. A.; Gordon, D. F.; Palastro, J. P.; Hafizi, B.

    2017-03-01

    The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit; however, backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 μm with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for an LWIR Raman amplifier.

  7. The Diurnal Profile of Central Hemodynamics in a General Uruguayan Population.

    PubMed

    Boggia, José; Luzardo, Leonella; Lujambio, Inés; Sottolano, Mariana; Robaina, Sebastián; Thijs, Lutgarde; Olascoaga, Alicia; Noboa, Oscar; Struijker-Boudier, Harry A; Safar, Michel E; Staessen, Jan A

    2016-06-01

    No previous population study assessed the diurnal profile of central arterial properties. In 167 participants (mean age, 56.1 years; 63.5% women), randomly recruited in Montevideo, Uruguay, we used the oscillometric Mobil-O-Graph 24-h PWA monitor to measure peripheral and central systolic (SBP), diastolic (DBP), and pulse (PP) pressures and central hemodynamics standardized to a heart rate of 75 bpm, including aortic pulse wave velocity, systolic augmentation (first/second peak × 100), and pressure amplification (peripheral PP/central PP). Over 24 hours, day and night, peripheral minus central differences in SBP/DBP and in PP averaged 12.2/-1.1, 14.0/-0.7, and 9.7/0.2mm Hg and 12.6, 14.7, and 9.5mm Hg, respectively (P < 0.001 except for nighttime DBP (P = 0.38)). The central-to-peripheral ratios of SBP, DBP, and PP were 0.89, 1.00, and 0.70 unadjusted, but after accounting for anthropometric characteristics decreased to 0.74, 0.97, and 0.63, respectively, with strong influence of height for SBP and DBP and of sex for PP. From day (10-20h) to nighttime (0-6h), peripheral (-10.4/-10.5 mm Hg) and central (-6.0/-11.3mm Hg) SBP/DBP, pulse wave velocity (-0.7 m/s) and pressure amplification (-0.05) decreased (P < 0.001), whereas central PP (+5.3mm Hg) and systolic augmentation (+2.3%) increased (P < 0.001). The diurnal rhythm of central pressure runs in parallel with that of peripheral pressure, but the nocturnal fall in SBP is smaller centrally than peripherally. pulse wave velocity, systolic augmentation, and pressure amplification loop through the day with high pulse wave velocity and pressure amplification but low systolic augmentation in the evening and opposite trends in the morning. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  9. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization

    PubMed Central

    Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.

    2017-01-01

    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686

  10. High-energy, ceramic-disk Yb:LuAG laser amplifier.

    PubMed

    Siebold, M; Loeser, M; Roeser, F; Seltmann, M; Harzendorf, G; Tsybin, I; Linke, S; Banerjee, S; Mason, P D; Phillips, P J; Ertel, K; Collier, J C; Schramm, U

    2012-09-24

    We report the first short-pulse amplification results to several hundred millijoule energies in ceramic Yb:LuAG. We have demonstrated ns-pulse output from a diode-pumped Yb:LuAG amplifier at a maximum energy of 580 mJ and a peak optical-to-optical efficiency of 28% at 550 mJ. In cavity dumped operation of a nanosecond oscillator we obtained 1 mJ at up to 100 Hz repetition rate. A gain bandwidth of 5.4 nm was achieved at room temperature by measuring the small-signal single-pass gain. Furthermore, we compared our results with Yb:YAG within the same amplifier system.

  11. Broadband pulsed flow using piezoelectric microjets

    NASA Astrophysics Data System (ADS)

    Hogue, Joshua; Solomon, John; Hays, Michael; Alvi, Farrukh; Oates, William

    2010-04-01

    A piezohydraulic microjet design and experimental results are presented to demonstrate broadband active flow control for applications on various aircraft structures including impinging jets, rotor blades, cavity bays, etc. The microjet actuator includes a piezoelectric stack actuator and hydraulic circuit that is used to throttle a 400 μm diameter microjet using hydraulic amplification of the piezoelectric stack actuator. This system is shown to provide broadband pulsed flow actuation up to 800 Hz. Unsteady pressure measurements of the microjet's exit flow are coupled with high-speed phase imagery using micro-Schlieren techniques to quantify the flow field. These results are compared with in situ stack actuator displacements using strain gauge measurements.

  12. Picosecond supercontinuum laser with consistent emission parameters over variable repetition rates from 1 to 40 MHz

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer

    2013-02-01

    An freely triggerable picosecond visible supercontinuum laser source is presented that allows for a uniform spectral profile and equivalent pulse characteristics over variable repetition rates from 1 to 40MHz. The system features PM Yb3+-doped fiber amplification of a picosecond gain-switched seed diode at 1062 nm. The pump power in the multi-stage amplifier is actively adjusted by a microcontroller for a consistent peak power of the amplified signal in the full range of repetition rates. The length of the PCF is scaled to deliver a homogeneous spectrum and minimized distortion of the temporal pulse shape.

  13. The TIL commissioning and performance

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zheng, W.; Wei, X.; Jing, F.; Sui, Z.; Zheng, K.; Xu, Q.; Yuan, X.; Jiang, X.; Yang, L.; Ma, P.; Li, M.; Wang, J.; Hu, D.; He, S.; Li, F.; Peng, Z.; Feng, B.; Zhou, H.; Guo, L.; Li, X.; Zhang, X.; Su, J.; Zhu, Q.; Yu, H.; Zhao, R.; Ma, C.; He, H.; Fan, D.; Zhang, W.

    2008-05-01

    The TIL serves for both technological platforms for SG-III construction and physical experiments to study and understand target physics toward ignition and plasma burning [2]. The TIL has been designed to produce 10kJ blue light. Its eight-beam are stacked 4 high by 2 wide, The clear optical aperture is 30cm×30cm The cavity and booster amplifiers have 9 and 6 glass slabs respectively, with thickness of 3.8cm. The cavity is a four-pass amplification stage with the seed pulse injected through its cavity spatial filter, while the booster a single pass amplification stage. The commissioning experiments have successfully been conducted to test the output and control abilities of the system. A single beam line of TIL produced 3-ns pulse of 1645 Joule blue light at the target, which demonstrated that the TIL can deliver ten-thousand-joule blue light to the target. Beam qualities have been investigated jointly with the laser chain simulations using the SG-99 code. The wavefront distortions of the beams will be improved by deformable mirrors.

  14. TRASER - Total Reflection Amplification of Spontaneous Emission of Radiation

    PubMed Central

    Zachary, Christopher B.; Gustavsson, Morgan

    2012-01-01

    Background and Objective Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single ‘tunable’ device. Study Design/Material and Methods This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER. Results Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate. Conclusion Considering the characteristics and parameters of Traser technology, it is possible that this one device would likely be able to replace the pulsed dye laser and many other light based systems. PMID:22558261

  15. Photonic-band-gap gyrotron amplifier with picosecond pulses.

    PubMed

    Nanni, Emilio A; Jawla, Sudheer; Lewis, Samantha M; Shapiro, Michael A; Temkin, Richard J

    2017-12-04

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03 -like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  16. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  17. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE PAGES

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; ...

    2017-12-05

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  18. 175 fs-long pulses from a high-power single-mode Er-doped fiber laser at 1550 nm

    NASA Astrophysics Data System (ADS)

    Elahi, Parviz; Kalaycıoğlu, Hamit; Li, Huihui; Akçaalan, Önder; Ilday, F. Ömer

    2017-11-01

    Development of Er-doped ultrafast lasers have lagged behind the corresponding developments in Yb- and Tm-doped lasers, in particular, fiber lasers. Various applications benefit from operation at a central wavelength of 1.5 μm and its second harmonic, including emerging applications such as 3D processing of silicon and 3D printing based on two-photon polymerization. We report a simple, robust fiber master oscillator power amplifier operating at 1.55 μm, implementing chirp pulse amplification using single-mode fibers for diffraction-limited beam quality. The laser generates 80 nJ pulses at a repetition rate of 43 MHz, corresponding to an average power of 3.5 W, which can be compressed down to 175 fs. The generation of short pulses was achieved using a design which is guided by numerical simulations of pulse propagation and amplification and manages to overturn gain narrowing with self-phase modulation, without invoking excessive Raman scattering processes. The seed source for the two-stage amplifier is a dispersion-managed passively mode-locked oscillator, which generates a ∼40 nm-wide spectrum and 1.7-ps linearly chirped pulses.

  19. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background.

    PubMed

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-01

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  20. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100more » when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.« less

  1. Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping

    PubMed Central

    Depierreux, S.; Yahia, V.; Goyon, C.; Loisel, G.; Masson-Laborde, P. -E.; Borisenko, N.; Orekhov, A.; Rosmej, O.; Rienecker, T.; Labaune, C.

    2014-01-01

    Stimulated Raman backscattering (SRS) has many unwanted effects in megajoule-scale inertially confined fusion (ICF) plasmas. Moreover, attempts to harness SRS to amplify short laser pulses through backward Raman amplification have achieved limited success. In high-temperature fusion plasmas, SRS usually occurs in a kinetic regime where the nonlinear response of the Langmuir wave to the laser drive and its host of complicating factors make it difficult to predict the degree of amplification that can be achieved under given experimental conditions. Here we present experimental evidence of reduced Landau damping with increasing Langmuir wave amplitude and determine its effects on Raman amplification. The threshold for trapping effects to influence the amplification is shown to be very low. Above threshold, the complex SRS dynamics results in increased amplification factors, which partly explains previous ICF experiments. These insights could aid the development of more efficient backward Raman amplification schemes in this regime. PMID:24938756

  2. Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high-power erbium-doped fiber amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, K.; Yoshida, E.; Sugawa, T.

    1995-08-01

    It is shown for the first time to our knowledge that short-pulse amplification in high-power erbium-doped fiber amplifiers, simultaneously accompanied by stimulated Raman scattering, generates a broadband optical spectrum at high output power (270 mW). At 20 dB down from the peak the continuum extended over 329 nm, from 1427 to 1756 nm. The FWHM bandwidth was 125 nm, centered at 1650 nm. The coherence was measured to be 15 fringes, which corresponds to a 25-{mu}m coherence length. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  3. Influence of Plasma Unsteadiness on the Spectrum and Shape of Microwave Pulses in a Plasma Relativistic Microwave Amplifier

    NASA Astrophysics Data System (ADS)

    Kartashov, I. N.; Kuzelev, M. V.; Strelkov, P. S.; Tarakanov, V. P.

    2018-02-01

    Dependence of the shape of a microwave pulse in a plasma relativistic microwave amplifier (PRMA) on the initial plasma electron density in the system is detected experimentally. Depending on the plasma density, fast disruption of amplification, stable operation of the amplifier during the relativistic electron beam (REB) pulse, and its delayed actuation can take place. A reduction in the output signal frequency relative to the input frequency is observed experimentally. The change in the shape of the microwave signal and the reduction in its frequency are explained by a decrease in the plasma density in the system. The dynamics of the plasma density during the REB pulse is determined qualitatively from the experimental data by using the linear theory of a PRMA with a thin-wall hollow electron beam. The processes in a PRMA are analyzed by means of the KARAT particle-in-cell code. It is shown that REB injection is accompanied by an increase in the mean energy of plasma electrons and a significant decrease in their density.

  4. Influence of Temperature on Nanosecond Pulse Amplification in Thulium Doped Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Abdulfattah, Ali; Gausmann, Stefan; Sincore, Alex; Bradford, Joshua; Bodnar, Nathan; Cook, Justin; Shah, Lawrence; Richardson, Martin

    2018-05-01

    Thulium silica doped fiber (TDF) lasers are becoming important laser sources in both research and applications in industry. A key element of all high-power lasers is thermal management and its impact on laser performance. This is particularly important in TDF lasers, which utilize an unusual cross-relation pumping scheme, and are optically less efficient than other types of fiber lasers. The present work describes an experimental investigation of thermal management in a high power, high repetition-rate, pulsed Thulium (Tm) fiber laser. A tunable nanosecond TDF laser system across the 1838 nm – 1948 nm wavelength range, has been built to propagate 2μm signal seed pulses into a TDF amplifier, comprising a polarized large mode area (PLMA) thulium fiber (TDF) with a 793nm laser diode pump source. The PLMA TDF amplifier is thermally managed by a separately controlled cooling system with a temperature varied from 12°C to 36°C. The maximum output energy (∼400 μJ), of the system is achieved at 12°C at 1947 nm wavelength with ∼32 W of absorbed pump power at 20 kHz with a pulse duration of ∼ 74 ns.

  5. Evaluation of Pulse Counting for the Mars Organic Mass Analyzer (MOMA) Ion Trap Detection Scheme

    NASA Technical Reports Server (NTRS)

    Van Amerom, Friso H.; Short, Tim; Brinckerhoff, William; Mahaffy, Paul; Kleyner, Igor; Cotter, Robert J.; Pinnick, Veronica; Hoffman, Lars; Danell, Ryan M.; Lyness, Eric I.

    2011-01-01

    The Mars Organic Mass Analyzer is being developed at Goddard Space Flight Center to identify organics and possible biological compounds on Mars. In the process of characterizing mass spectrometer size, weight, and power consumption, the use of pulse counting was considered for ion detection. Pulse counting has advantages over analog-mode amplification of the electron multiplier signal. Some advantages are reduced size of electronic components, low power consumption, ability to remotely characterize detector performance, and avoidance of analog circuit noise. The use of pulse counting as a detection method with ion trap instruments is relatively rare. However, with the recent development of high performance electrical components, this detection method is quite suitable and can demonstrate significant advantages over analog methods. Methods A prototype quadrupole ion trap mass spectrometer with an internal electron ionization source was used as a test setup to develop and evaluate the pulse-counting method. The anode signal from the electron multiplier was preamplified. The an1plified signal was fed into a fast comparator for pulse-level discrimination. The output of the comparator was fed directly into a Xilinx FPGA development board. Verilog HDL software was written to bin the counts at user-selectable intervals. This system was able to count pulses at rates in the GHz range. The stored ion count nun1ber per bin was transferred to custom ion trap control software. Pulse-counting mass spectra were compared with mass spectra obtained using the standard analog-mode ion detection. Prelin1inary Data Preliminary mass spectra have been obtained for both analog mode and pulse-counting mode under several sets of instrument operating conditions. Comparison of the spectra revealed better peak shapes for pulse-counting mode. Noise levels are as good as, or better than, analog-mode detection noise levels. To artificially force ion pile-up conditions, the ion trap was overfilled and ions were ejected at very high scan rates. Pile-up of ions was not significant for the ion trap under investigation even though the ions are ejected in so-called 'ion-micro packets'. It was found that pulse counting mode had higher dynamic range than analog mode, and that the first amplification stage in analog mode can distort mass peaks. The inherent speed of the pulse counting method also proved to be beneficial to ion trap operation and ion ejection characterization. Very high scan rates were possible with pulse counting since the digital circuitry response time is so much smaller than with the analog method. Careful investigation of the pulse-counting data also allowed observation of the applied resonant ejection frequency during mass analysis. Ejection of ion micro packets could be clearly observed in the binned data. A second oscillation frequency, much lower than the secular frequency, was also observed. Such an effect was earlier attributed to the oscillation of the total plasma cloud in the ion trap. While the components used to implement pulse counting are quite advanced, due to their prevalence in consumer electronics, the cost of this detection system is no more than that of an analog mode system. Total pulse-counting detection system electronics cost is under $250

  6. Phase stabilization of multidimensional amplification architectures for ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Müller, M.; Kienel, M.; Klenke, A.; Eidam, T.; Limpert, J.; Tünnermann, A.

    2015-03-01

    The active phase stabilization of spatially and temporally combined ultrashort pulses is investigated theoretically and experimentally. Particularly, considering a combining scheme applying 2 amplifier channels and 4 divided-pulse replicas a bistable behavior is observed. The reason is mutual influence of the optical error signals that is intrinsic to temporal polarization beam combining. A successful mitigation strategy is proposed and is analyzed theoretically and experimentally.

  7. High peak-power laser system tuneable from 8 to 10 μm

    NASA Astrophysics Data System (ADS)

    Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gérard, Bruno; Ostendorf, Ralf; Wagner, Joachim; Lallier, Eric

    2017-04-01

    A high peak-power rapidly tuneable laser system in the long-wave infrared is obtained using an external cavity quantum-cascade laser (EC-QCL) broadly tuneable from 8 to 10 μm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs). To provide an efficient amplification, the nonlinear crystal is pumped by a pulsed fiber laser source. With a pump laser source tuneable around 2 μm, quasi phase-matching remains satisfied with a fixed grating period in the OP-GaAs crystal when the EC-QCL wavelength is swept from 8 to 10 μm. The OPA demonstrates parametric amplification from 8 to 10 μm and achieves output peak powers up to 140 W, with spectral linewidths below 3.5 cm-1 and a beam profile quality (M2) below 3.4 in both horizontal and vertical directions.

  8. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping

    PubMed Central

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-01-01

    We present an approach for both efficient generation and amplification of 4–12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8–4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4–12 μm pulses with an available large-aperture ZGP. Furthermore, the 4–12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4–4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4–12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser. PMID:28367966

  9. Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators

    NASA Astrophysics Data System (ADS)

    Shinjo, Ami; Hashiyama, Naoyuki; Koshio, Akane; Eto, Yujiro; Hirano, Takuya

    2016-10-01

    The continuous-variable (CV) Einstein-Podolsky-Rosen (EPR) paradox and steering are demonstrated using a pulsed light source and waveguides. We shorten the duration of the local oscillator (LO) pulse by using parametric amplification to improve the temporal mode-matching between the entangled pulse and the LO pulse. After correcting for the amplifier noise, the product of the measured conditional variance of the quadrature-phase amplitudes is 0.74 < 1, which satisfies the EPR-Reid criterion.

  10. Laser pulse self-compression in an active fibre with a finite gain bandwidth under conditions of a nonstationary nonlinear response

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    We study the influence of a nonstationary nonlinear response of a medium on self-compression of soliton-like laser pulses in active fibres with a finite gain bandwidth. Based on the variational approach, we qualitatively analyse the self-action of the wave packet in the system under consideration in order to classify the main evolution regimes and to determine the minimum achievable laser pulse duration during self-compression. The existence of stable soliton-type structures is shown in the framework of the parabolic approximation of the gain profile (in the approximation of the Gnizburg – Landau equation). An analysis of the self-action of laser pulses in the framework of the nonlinear Schrödinger equation with a sign-constant gain profile demonstrate a qualitative change in the dynamics of the wave field in the case of a nonsta­tionary nonlinear response that shifts the laser pulse spectrum from the amplification region and stops the pulse compression. Expressions for a minimum duration of a soliton-like laser pulse are obtained as a function of the problem parameters, which are in good agreement with the results of numerical simulation.

  11. Active spectral shaping with polarization-encoded Ti:sapphire amplifiers for sub-20 fs multi-terawatt systems

    NASA Astrophysics Data System (ADS)

    Cao, H.; Kalashnikov, M.; Osvay, K.; Khodakovskiy, N.; Nagymihaly, R. S.; Chvykov, V.

    2018-04-01

    A combination of a polarization-encoded (PE) and a conventional multi-pass amplifier was studied to overcome gain narrowing in the Ti:sapphire active medium. The seed spectrum was pre-shaped and blue-shifted during PE amplification and was then further broadened in a conventional, saturated multi-pass amplifier, resulting in an overall increase of the amplified bandwidth. Using this technique, seed pulses of 44 nm were amplified and simultaneously spectrally broadened to 57 nm without the use of passive spectral corrections. The amplified pulse after the PE amplifier was recompressed to 19 fs. The supported simulations confirm all aspects of experimental operation.

  12. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    PubMed

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  13. 140 W peak power laser system tunable in the LWIR.

    PubMed

    Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gerard, Bruno; Ostendorf, Ralf; Rattunde, Marcel; Wagner, Joachim; Lallier, Eric

    2017-08-07

    We present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm. The OPA demonstrates parametric amplification from 8 µm to 10 µm and achieves output peak powers up to 140 W with spectral linewidths below 3.5 cm -1 . The beam profile quality (M 2 ) remains below 3.4 in both horizontal and vertical directions. Compared to the EC-QCL, the linewidth broadening is attributed to a coupling with the OPA.

  14. Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft x-ray absorption spectroscopy with high-flux high harmonics

    NASA Astrophysics Data System (ADS)

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2018-01-01

    An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.

  15. Raman Amplification with a Flying Focus

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Bucht, S.; Davies, A.; Haberberger, D.; Kessler, T.; Shaw, J. L.; Froula, D. H.

    2018-01-01

    We propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus"—a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v =-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just above the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that this will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.

  16. Raman Amplification with a Flying Focus

    DOE PAGES

    Turnbull, D.; Bucht, S.; Davies, A.; ...

    2018-01-12

    Here, we propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus" - a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v=-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just about the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that thismore » will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.« less

  17. Cryogenic cooling for high power laser amplifiers

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.

    2013-11-01

    Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  18. Amplification of terahertz pulses in gases beyond thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Schwaab, G. W.; Schroeck, K.; Havenith, M.

    2007-03-01

    In Ebbinghaus [Plasma Sources Sci. Technol. 15, 72 (2006)] we reported terahertz time-domain spectroscopy in a plasma at low pressure, we observed a simultaneous absorption and amplification process within each single rotational transition. Here we show that this observation is a direct consequence of the short interaction time of the pulsed terahertz radiation with the plasma, which is shorter than the average collision time between the molecules. Thus, during the measurement time the molecular states may be considered entangled. Solution of the time-dependent Schrödinger equation yields a linear term that may be neglected for long observation times, large frequencies, or nonentangled states. We determine the restrictions for the observation of this effect and calculate the spectrum of a simple diatomic molecule. Using this model we are able to explain the spectral features showing a change from emission to absorption as observed previously. In addition we find that the amplification and absorption do not follow the typical Lambert-Beer exponential law but an approximate square law.

  19. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  20. 152 W average power Tm-doped fiber CPA system.

    PubMed

    Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas

    2014-08-15

    A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.

  1. Spatiotemporal noise characterization for chirped-pulse amplification systems

    PubMed Central

    Ma, Jingui; Yuan, Peng; Wang, Jing; Wang, Yongzhi; Xie, Guoqiang; Zhu, Heyuan; Qian, Liejia

    2015-01-01

    Optical noise, the core of the pulse-contrast challenge for ultra-high peak power femtosecond lasers, exhibits spatiotemporal (ST) coupling induced by angular dispersion. Full characterization of such ST noise requires two-dimensional measurements in the ST domain. Thus far, all noise measurements have been made only in the temporal domain. Here we report the experimental characterization of the ST noise, which is made feasible by extending cross-correlation from the temporal domain to the ST domain. We experimentally demonstrate that the ST noise originates from the optical surface imperfections in the pulse stretcher/compressor and exhibits a linear ST coupling in the far-field plane. The contrast on the far-field axis, underestimated in the conventional measurements, is further improved by avoiding the far-field optics in the stretcher. These results enhance our understanding of the pulse contrast with respect to its ST-coupling nature and pave the way toward the design of high-contrast ultra-high peak power lasers. PMID:25648187

  2. Novel fiber-MOPA-based high power blue laser

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu

    2012-06-01

    5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  3. An explosively driven high-power microwave pulsed power system.

    PubMed

    Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  4. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  5. 2-micron lasing in Tm:Lu2O3 ceramic: initial operation

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Filgas, David M.; Smith, Carey A.; Copeland, Drew A.; Litt, Amardeep S.; Briscoe, Eldridge; Schirmer, Ernestina

    2018-03-01

    We report on initial lasing of Tm:Lu2O3 ceramic laser with tunable output in the vicinity of 2 μm. Tm:Lu2O3 ceramic gain materials offer a much lower saturation fluence than the traditionally used Tm:YLF and Tm:YAG materials. The gain element is pumped by 796 nm diodes via a "2-for-1" crossrelaxation energy transfer mechanism, which enables high efficiency. The high thermal conductivity of the Lu2O3 host ( 18% higher than YAG) in combination with low quantum defect of 20% supports operation at high-average power. Konoshima's ceramic fabrication process overcomes the scalability limits of single crystal sesquioxides. Tm:Lu2O3 offers wide-bandwidth amplification of ultrashort pulses in a chirped-pulse amplification (CPA) system. A laser oscillator was continuously tuned over a 230 nm range from 1890 to 2120 nm while delivering up to 43W QCW output with up to 37% efficiency. This device is intended for initial testing and later seeding of a multi-pass edge-pumped disk amplifier now being developed by Aqwest which uses composite Tm:Lu2O3 disk gain elements.

  6. Implementation of continuous-variable quantum key distribution with discrete modulation

    NASA Astrophysics Data System (ADS)

    Hirano, Takuya; Ichikawa, Tsubasa; Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Namiki, Ryo; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro

    2017-06-01

    We have developed a continuous-variable quantum key distribution (CV-QKD) system that employs discrete quadrature-amplitude modulation and homodyne detection of coherent states of light. We experimentally demonstrated automated secure key generation with a rate of 50 kbps when a quantum channel is a 10 km optical fibre. The CV-QKD system utilises a four-state and post-selection protocol and generates a secure key against the entangling cloner attack. We used a pulsed light source of 1550 nm wavelength with a repetition rate of 10 MHz. A commercially available balanced receiver is used to realise shot-noise-limited pulsed homodyne detection. We used a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification. A graphical processing unit card is used to accelerate the software-based post-processing.

  7. Multifunction audio digitizer. [producing direct delta and pulse code modulation

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr. (Inventor)

    1974-01-01

    An illustrative embodiment of the invention includes apparatus which simultaneously produces both direct delta modulation and pulse code modulation. An input signal, after amplification, is supplied to a window comparator which supplies a polarity control signal to gate the output of a clock to the appropriate input of a binary up-down counter. The control signals provide direct delta modulation while the up-down counter output provides pulse code modulation.

  8. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    PubMed

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  9. Random pulse generator

    NASA Technical Reports Server (NTRS)

    Lindsey, R. S., Jr. (Inventor)

    1975-01-01

    An exemplary embodiment of the present invention provides a source of random width and random spaced rectangular voltage pulses whose mean or average frequency of operation is controllable within prescribed limits of about 10 hertz to 1 megahertz. A pair of thin-film metal resistors are used to provide a differential white noise voltage pulse source. Pulse shaping and amplification circuitry provide relatively short duration pulses of constant amplitude which are applied to anti-bounce logic circuitry to prevent ringing effects. The pulse outputs from the anti-bounce circuits are then used to control two one-shot multivibrators whose output comprises the random length and random spaced rectangular pulses. Means are provided for monitoring, calibrating and evaluating the relative randomness of the generator.

  10. Increasing power and amplified spontaneous emission suppression for weak signal amplification in pulsed fiber amplifier

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Zhang, Hanwei; Wang, Xiaolin; Su, Rongtao; Ma, Pengfei; Zhou, Pu; Jiang, Zongfu

    2017-10-01

    In the pulsed fiber amplifiers with repetition frequency of several tens kHz, amplified spontaneous emission (ASE) is easy to build up because of the low repetition frequency and weak pulse signal. The ASE rises the difficulty to amplify the weak pulse signal effectively. We have demonstrated an all-fiber preamplifier stage structure to amplify a 40 kHz, 10 ns bandwidth (FWHM) weak pulse signal (299 μW) with center wavelength of 1062 nm. Compared synchronous pulse pump with continuous wave(CW) pump, the results indicate that synchronous pulse pump shows the better capability of increasing the output power than CW pump. In the condition of the same pump power, the output power of synchronous pulse pump is twice as high as CW pump. In order to suppress ASE, a longer gain fiber is utilized to reabsorb the ASE in which the wavelength is shorter than 1062nm. We amplified weak pulse signal via 0.8 m and 2.1 m gain fiber in synchronous pulse pump experiments respectively, and more ASE in the output spectra are observed in the 0.8 m gain fiber system. Due to the weaker ASE and consequent capability of higher pump power, the 2.1 m gain fiber is capable to achieve higher output power than shorter fiber. The output power of 2.1 m gain fiber case is limited by pump power.

  11. Spectral gain investigation of large size OPCPA based on partially deuterated KDP

    NASA Astrophysics Data System (ADS)

    Galimberti, Marco; Boyle, Alexis; Musgrave, Ian O.; Oliveira, Pedro; Pepler, Dave; Shaikh, Waseem; Winstone, Trevor B.; Wyatt, Adam; Hernandez-Gomez, Cristina

    2018-01-01

    The Optical Parametric Chirped Pulse Amplification is one of the most promising techniques to deliver 20PW laser system. The already available KD*P in large size is a good candidate as nonlinear crystal. In this article we report the experimental analysis of the spectral small signal gain for KD*P at 70% deuteration level for different phase matching and non-collinear angle. The data is also compared with a theoretical model.

  12. Electromagnetic Pulse/Transient Threat Testing of Protection Devices for Amateur/Military Affiliate Radio System Equipment. Volume 3. Test Data, Electromagnetic Pulse Testing of Protection Devices. Section 2. High Impedance/High Voltage Test 50 Ohms-4500 Volts.

    DTIC Science & Technology

    1985-10-31

    692-2124 ;.-.. - 5o sL NN T- - R ,: E -# C-eAcE Date Teot Poat - Amplificatlon dO AttenaUio d 8. Horzontal ne/div I VerticalMV/divI Horizontal ne/div...Vertical mV/div I Horizontal ne/div 2 *Vertical no/dIv 2 Configuration Pulter Level Data Link Comments: SI -. VI DateTo.t.o t, -~. e .4...2 Vertical ne/div 2 Configuration Pulser Level / V Date Linkt Comment:7 "- e "-’ DateG - - Test Point CH~f Amplification dB Attenataion .2 D) d 8

  13. All-optical switch based on doped graphene quantum dots in a defect layer of a one-dimensional photonic crystal.

    PubMed

    Sahrai, Mostafa; Abbasabadi, Majid

    2018-01-20

    We discuss the light pulse propagation in a one-dimensional photonic crystal doped by graphene quantum dots in a defect layer. The graphene quantum dots behave as a three-level quantum system and are driven by three coherent laser fields. It is shown that the group velocity of the transmitted and reflected pulses can be switched from subluminal to superluminal light propagation by adjusting the relative phase of the applied fields. Furthermore, it is found that by proper choice of the phase difference between applied fields, the weak probe field amplification is achieved through a one-dimensional photonic crystal. In this way, the result is simultaneous subluminal transmission and reflection.

  14. Compact Ultraintense Femtosecond Laser via Raman Amplifier and Compressor in Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suckewer, Szymon

    2016-03-01

    The main objective of this project was to conduct experimental and theoretical research to find conditions leading to higher, than previously obtained efficiency η of transfer the pump energy into the short seed beam in plasma of Stimulated Raman Back-Scattering (SRBS). We have demonstrated very large amplification and compression in our earlier SRBS plasma. However, the efficiency η was much too low to reach very high intensity of the output beam in the focal spot. Recently, by solving a very difficult technical SRBS’ problem, namely, the creation of very reproducible and much larger diameter plasma channels than in our earliermore » research, we propose a new approach to obtain higher efficiency η. The crucial new result was a very reproducible, low noise amplified seed in the larger diameter of the plasma channel leading to the higher efficiency. Using this new setup and very encouraging results about increase efficiency continuing this approach in the future the efficiency is expect to reach the range of η ≈15 - 20 % required to develop practical SRBS plasma laser. Intellectual Merit: The model for the present project was created by our earlier SRBS experiments. The main objective of those experiments was to amplify and compress the seed pulses in a plasma . The experiments demonstrated an unprecedented large pulse intensity amplification of 20,000 in system of 2-passes in ~2mm long plasma, and the seed pulse compression from 550fsec down to ~50fsec. The pump and seed beams in the present project have diameters of ~0.2–0.25mm each, propagating in ~0.35 - 0.45mm diameter and ~2-2.5mm long plasma channels (optimal length for our SRBS experiment) with input pump and seed intensities of 2x1014 and 3x1013 W/cm2, respectively. Such an SRBS system design was “prescribed” by computer simulations, which predict elimination of the SRBS “ saturation” for a such relatively short plasma channel. Plasma channels has been created by combining shorter (200psec) and longer (5nsec) laser pulses using an axicon lens for shorter pulse and spherical lens for longer pulse, a unique procedure we have developed for SRBS experiments.« less

  15. Can Anomalous Amplification be Attained without Postselection?

    PubMed

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I; Howell, John C

    2016-03-11

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  16. Can Anomalous Amplification be Attained without Postselection?

    NASA Astrophysics Data System (ADS)

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.

    2016-03-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  17. Precision control of carrier-envelope phase in grating based chirped pulse amplifiers.

    PubMed

    Li, Chengquan; Moon, Eric; Mashiko, Hiroki; Nakamura, Christopher M; Ranitovic, Predrag; Maharjan, Chakra M; Cocke, C Lewis; Chang, Zenghu; Paulus, Gerhard G

    2006-11-13

    It is demonstrated that the carrier-envelope (CE) phase of pulses from a high power ultrafast laser system with a grating-based stretcher and compressor can be stabilized to a root mean square (rms) value of 180 mrad over almost 2 hours, excluding a brief re-locking period. The stabilization was accomplished via feedback control of the grating separation in the stretcher. It shows that the long term CE phase stability of a grating based chirped pulse amplification system can be as good as that of lasers using a glass-block stretcher and a prism pair compressor. Moreover, by adjusting the grating separation to preset values, the relative CE phase could be locked to an arbitrary value in the range of 2pi. This method is better than using a pair of wedge plates to adjust the phase after the hollow-core fiber compressor. The CE phase stabilization after a hollow-core fiber compressor was confirmed by a CE-phase meter based on the measurement of the left-to-right asymmetry of electrons produced by above-threshold ionization.

  18. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    NASA Astrophysics Data System (ADS)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  19. Few-cycle Optical Parametric Chirped Pulse Amplification

    DTIC Science & Technology

    2007-01-08

    silicon - 150mm suprasi1300 Figure 10. Stretcher-compressor unit: group delay 5 -45mm TeO2 (ordinary) (GD) of 30mm silicon, 150mm suprasil300, 45mm CL 0...cycle pulse characterization: 840 -Measured raw 2DSI 20 °OA- traces for pulse (a) before 02. -and (b) after dispersion D 0 by glass plate; (c) so...fused silica plateJ19] see Fig. 15(a), along with the extracted spectral group delays. The chirp introduced by the glass plate is reflected in the

  20. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.

    PubMed

    Baudisch, M; Hemmer, M; Pires, H; Biegert, J

    2014-10-15

    The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8  GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4  GW/cm².

  1. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    NASA Astrophysics Data System (ADS)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  2. Polarized millijoule fiber laser system with high beam quality and pulse shaping ability

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng

    2017-05-01

    The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.

  3. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.

    PubMed

    Lee, Christopher M; Kafle, Kabindra; Huang, Shixin; Kim, Seong H

    2016-01-14

    A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall).

  4. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme.

    PubMed

    Mero, M; Sipos, A; Kurdi, G; Osvay, K

    2011-05-09

    Femtosecond green pulses were generated from broadband pulses centered at 800 nm and quasi-monochromatic pulses centered at 532 nm using noncollinear optical parametric chirped pulse amplification (NOPCPA) followed by sum frequency mixing. In addition to amplifying the 800-nm pulses, the NOPCPA stage pumped by a Q-switched, injection seeded Nd:YAG laser also provided broadband idler pulses at 1590 nm. The signal and idler pulses were sum frequency mixed using achromatic and chirp assisted phase matching yielding pulses near 530 nm with a bandwidth of 12 nm and an energy in excess of 200 μJ. The generated pulses were recompressed with a grating compressor to a duration of 150 fs. The technique is scalable to high energies, broader bandwidths, and shorter pulse durations with compensation for higher order chirps and dedicated engineering of the interacting beams. © 2011 Optical Society of America

  5. High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression.

    PubMed

    Canova, Frederico; Clady, Raphael; Chambaret, Jean-Paul; Flury, Manuel; Tonchev, Svtelen; Fechner, Renate; Parriaux, Olivier

    2007-11-12

    High efficiency, broad-band TE-polarization diffraction over a wavelength range centered at 800 nm is obtained by high index gratings placed on a non-corrugated mirror. More than 96% efficiency wide band top-hat diffraction efficiency spectra, as well as more than 1 J/cm(2) damage threshold under 50 fs pulses are demonstrated experimentally. This opens the way to high-efficiency Chirped Pulse Amplification for high average power laser machining by means of all-dielectric structures as well as for ultra-short high energy pulses by means of metal-dielectric structures.

  6. Low-noise and high-speed photodetection system using optical feedback with a current amplification function

    NASA Astrophysics Data System (ADS)

    Akiba, M.

    2015-09-01

    A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz1/2 at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.

  7. Low-noise and high-speed photodetection system using optical feedback with a current amplification function.

    PubMed

    Akiba, M

    2015-09-01

    A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz(1/2) at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.

  8. Commissioning of a kW-class nanosecond pulsed DPSSL operating at 105 J, 10 Hz

    NASA Astrophysics Data System (ADS)

    Mason, Paul; Divoký, Martin; Butcher, Thomas; Pilař, Jan; Ertel, Klaus; Hanuš, Martin; De Vido, Mariastefania; Banerjee, Saumyabrata; Phillips, Jonathan; Smith, Jodie; Hollingham, Ian; Muresan, Mihai-George; Landowski, Brian; Suarez-Merchan, Jorge; Thomas, Adrian; Dominey, Mark; Benson, Luke; Lintern, Andrew; Costello, Billy; Tomlinson, Stephanie; Blake, Steve; Tyldesley, Mike; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Edwards, Chris; Mocek, Tomas; Collier, John

    2017-05-01

    In this paper we present details of the commissioning of DiPOLE100, a kW-class nanosecond pulsed diode pumped solid state laser (DPSSL), at the HiLASE Centre at Dolní Břežany in the Czech Republic. The laser system, built at the Central Laser Facility (CLF), was dismantled, packaged, shipped and reassembled at HiLASE over a 12 month period by a collaborative team from the CLF and HiLASE. First operation of the laser at the end of 2016 demonstrated amplification of 10 ns pulses at 10 Hz pulse repetition rate to an energy of 105 J at 1029.5 nm, representing the world's first kW average power, high-energy, nanosecond pulsed DPSSL. To date DiPOLE100 has been operated for over 2.5 hours at energies in excess of 100 J at 10 Hz, corresponding to nearly 105 shots, and has demonstrated long term energy stability of less than 1% RMS for continuous operation over 1 hour. This confirms the power scalability of multislab cryogenic gas-cooled amplifier technology and demonstrates its potential as a laser driver for next generation scientific, industrial, and medical applications.

  9. ELI-beamlines: progress in development of next generation short-pulse laser systems

    NASA Astrophysics Data System (ADS)

    Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Fibrich, M.; Green, J. T.; Lagron, J. C.; Antipenkov, R.; Bartoníček, J.; Batysta, F.; Baše, R.; Boge, R.; Buck, S.; Cupal, J.; Drouin, M. A.; Durák, M.; Himmel, B.; Havlíček, T.; Homer, P.; Honsa, A.; Horáček, M.; Hríbek, P.; Hubáček, J.; Hubka, Z.; Kalinchenko, G.; Kasl, K.; Indra, L.; Korous, P.; Košelja, M.; Koubíková, L.; Laub, M.; Mazanec, T.; Meadows, A.; Novák, J.; Peceli, D.; Polan, J.; Snopek, D.; Šobr, V.; Trojek, P.; Tykalewicz, B.; Velpula, P.; Verhagen, E.; Vyhlídka, Å.; Weiss, J.; Haefner, C.; Bayramian, A.; Betts, S.; Erlandson, A.; Jarboe, J.; Johnson, G.; Horner, J.; Kim, D.; Koh, E.; Marshall, C.; Mason, D.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Stolz, C.; Suratwala, T.; Telford, S.; Ditmire, T.; Gaul, E.; Donovan, M.; Frederickson, C.; Friedman, G.; Hammond, D.; Hidinger, D.; Chériaux, G.; Jochmann, A.; Kepler, M.; Malato, C.; Martinez, M.; Metzger, T.; Schultze, M.; Mason, P.; Ertel, K.; Lintern, A.; Edwards, C.; Hernandez-Gomez, C.; Collier, J.

    2017-05-01

    Overview of progress in construction and testing of the laser systems of ELI-Beamlines, accomplished since 2015, is presented. Good progress has been achieved in construction of all four lasers based largely on the technology of diode-pumped solid state lasers (DPSSL). The first part of the L1 laser, designed to provide 200 mJ <15 fs pulses at 1 kHz repetition rate, is up and running. The L2 is a development line employing a 10 J / 10 Hz cryogenic gas-cooled pump laser which has recently been equipped with an advanced cryogenic engine. Operation of the L3-HAPLS system, using a gas-cooled DPSSL pump laser and a Ti:sapphire broadband amplifier, was recently demonstrated at 16 J / 28 fs, at 3.33 Hz rep rate. Finally, the 5 Hz OPCPA front end of the L4 kJ laser is up running and amplification in the Nd:glass large-aperture power amplifiers was demonstrated.

  10. Mortality and cardiovascular events are best predicted by low central/peripheral pulse pressure amplification but not by high blood pressure levels in elderly nursing home subjects: the PARTAGE (Predictive Values of Blood Pressure and Arterial Stiffness in Institutionalized Very Aged Population) study.

    PubMed

    Benetos, Athanase; Gautier, Sylvie; Labat, Carlos; Salvi, Paolo; Valbusa, Filippo; Marino, Francesca; Toulza, Olivier; Agnoletti, Davide; Zamboni, Mauro; Dubail, Delphine; Manckoundia, Patrick; Rolland, Yves; Hanon, Olivier; Perret-Guillaume, Christine; Lacolley, Patrick; Safar, Michel E; Guillemin, Francis

    2012-10-16

    The aim of the longitudinal PARTAGE study was to determine the predictive value of blood pressure (BP) and pulse pressure amplification, a marker of arterial function, for overall mortality (primary endpoint) and major cardiovascular (CV) events, in subjects older than 80 years of age living in a nursing home. Assessment of pulse indexes may be important in the evaluation of the CV risk in very elderly frail subjects. A total of 1,126 subjects (874 women) who were living in French and Italian nursing homes were enrolled (mean age, 88 ± 5 years). Central (carotid) to peripheral (brachial) pulse pressure amplification (PPA) was calculated with the help of an arterial tonometer. Clinical and 3-day self-measurements of BP were conducted. During the 2-year follow-up, 247 subjects died, and 228 experienced major CV events. The PPA was a predictor of total mortality and major CV events in this population. A 10% increase in PPA was associated with a 24% (p < 0.0003) decrease in total mortality and a 17% (p < 0.01) decrease in major CV events. Systolic BP, diastolic BP, or pulse pressure were either not associated or inversely correlated with total mortality and major CV events. In very elderly individuals living in nursing homes, low PPA from central to peripheral arteries strongly predicts mortality and adverse effects. Assessment of this parameter could help in risk estimation and improve diagnostic and therapeutic strategies in very old, polymedicated persons. In contrast, high BP is not associated with higher risk of mortality or major CV events in this population. (Predictive Values of Blood Pressure and Arterial Stiffness in Institutionalized Very Aged Population [PARTAGE]; NCT00901355). Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Generation and Amplification of Tunable Multicolored Femtosecond Laser Pulses by Using Cascaded Four-Wave Mixing in Transparent Bulk Media

    PubMed Central

    Liu, Jun; Kobayashi, Takayoshi

    2010-01-01

    We have reviewed the generation and amplification of wavelength-tunable multicolored femtosecond laser pulses using cascaded four-wave mixing (CFWM) in transparent bulk media, mainly concentrating on our recent work. Theoretical analysis and calculations based on the phase-matching condition could explain well the process semi-quantitatively. The experimental studies showed: (1) as many as fifteen spectral up-shifted and two spectral down-shifted sidebands were obtained simultaneously with spectral bandwidth broader than 1.8 octaves from near ultraviolet (360 nm) to near infrared (1.2 μm); (2) the obtained sidebands were spatially separated well and had extremely high beam quality with M2 factor better than 1.1; (3) the wavelengths of the generated multicolor sidebands could be conveniently tuned by changing the crossing angle or simply replacing with different media; (4) as short as 15-fs negatively chirped or nearly transform limited 20-fs multicolored femtosecond pulses were obtained when one of the two input beams was negatively chirped and the other was positively chirped; (5) the pulse energy of the sideband can reach a μJ level with power stability better than 1% RMS; (6) broadband two-dimensional (2-D) multicolored arrays with more than ten periodic columns and more than ten rows were generated in a sapphire plate; (7) the obtained sidebands could be simultaneously spectra broadened and power amplified in another bulk medium by using cross-phase modulation (XPM) in conjunction with four-wave optical parametric amplification (FOPA). The characterization showed that this is interesting and the CFWM sidebands generated by this novel method have good enough qualities in terms of power stability, beam quality, and temporal features suited to various experiments such as ultrafast multicolor time-resolved spectroscopy and multicolor-excitation nonlinear microscopy. PMID:22399882

  12. [Central pulse pressure but not brachial blood pressure is the predominant factor affecting aortic arterial stiffness].

    PubMed

    Xiao, Wen-Kai; Ye, Ping; Bai, Yong-Yi; Luo, Lei-Ming; Wu, Hong-Mei; Gao, Peng

    2015-01-01

    To investigate the differences in central hemodynamic indices between hypertensive and normotensive subjects and identify the blood pressure index that the most strongly correlate with arterial stiffness and vascular damage markers. A cohort of 820 hypertensive patients and 820 normotensive individuals matched for age and gender were enrolled in this study. We measured carotid-femoral and carotid-radial pulse wave velocity (PWV), aortic augmentation index (AIx) and central blood pressures using pulse wave analysis and applanation tonometry. Plasma homocysteine (HCY), high-sensitivity C-reactive protein (hsCRP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were also tested in these subjects. In both hypertensive and normotensive subjects, the central systolic blood pressure (SBP) and pulse pressure (PP) were significantly lower than brachial SBP and PP; this PP amplification was significantly lower in the normotensives (9.85∓6.55 mmHg) than in the hypertensives (12.64∓6.69 mmHg), but the amplification ratios were comparable between the two groups. Blood pressure and age were closely related with aortic arterial stiffness. Compared with normotensive subjects, hypertensive subjects had higher carotid-femoral PWV and AIx, and showed significantly lowered PP amplification ratio with age. Central PP was more strongly related to arterial stiffness and vascular damage markers than the other pressure indices. Multivariate analyses revealed that carotid-femoral PWV and aortic AIx were strongly influenced by central PP but not by the mean blood pressure or brachial PP. The central PP is a more direct indicator of central arterial stiffness and a better marker of vascular aging than other blood pressure variables. These findings support the use of central blood pressure as a treatment target in future trials.

  13. Image analysis algorithms for the advanced radiographic capability (ARC) grating tilt sensor at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Roberts, Randy S.; Bliss, Erlan S.; Rushford, Michael C.; Halpin, John M.; Awwal, Abdul A. S.; Leach, Richard R.

    2014-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system designed to produce a sequence of short pulses used to backlight imploding fuel capsules. Laser pulses from a short-pulse oscillator are dispersed in wavelength into long, low-power pulses, injected in the NIF main laser for amplification, and then compressed into high-power pulses before being directed into the NIF target chamber. In the target chamber, the laser pulses hit targets which produce x-rays used to backlight imploding fuel capsules. Compression of the ARC laser pulses is accomplished with a set of precision-surveyed optical gratings mounted inside of vacuum vessels. The tilt of each grating is monitored by a measurement system consisting of a laser diode, camera and crosshair, all mounted in a pedestal outside of the vacuum vessel, and a mirror mounted on the back of a grating inside the vacuum vessel. The crosshair is mounted in front of the camera, and a diffraction pattern is formed when illuminated with the laser diode beam reflected from the mirror. This diffraction pattern contains information related to relative movements between the grating and the pedestal. Image analysis algorithms have been developed to determine the relative movements between the gratings and pedestal. In the paper we elaborate on features in the diffraction pattern, and describe the image analysis algorithms used to monitor grating tilt changes. Experimental results are provided which indicate the high degree of sensitivity provided by the tilt sensor and image analysis algorithms.

  14. Principes et réalisation d'une chaîne laser femtoseconde haute intensité basée sur le saphir dopé au titane

    NASA Astrophysics Data System (ADS)

    Le Blanc, Catherine

    We present the initial study, the realisation and the characterisation of a high intensity femtosecond laser chain. This chain is able to produce intensities higher than 10^18 W/cm2 on target, at a 10 Hertz repetition rate. We present first fondamentals principles of chirped pulse propagation mechanisms: group velocity dispersion, self-phase modulation, self-focusing, and gain saturation. Then after describing the spectroscopic properties of titanium doped sapphire (Ti:S), we discuss near infrared femtosecond oscillators able to be amplified in Ti:S medium, and describe our home made Kerr Lens mode locked femtosecond Ti:S oscillator. The high intensity laser chain is based on the Chirped Pulse Amplification concept, which consists in stretching the pulse before its amplification in order to avoid non-linear effects such self-focusing or breakdown, and then recompressing it to its initial pulse duration. We have developed two compact and efficient multipass amplifiers for femtosecond chirped pulse amplification. With only two of these devices, we obtain an amplification factor of 10^8, which corresponds to a peak power of ˜ 0.5 terawatt after compression. We analyse in details the performances of this system and its advantages in terms of its high quantum yield (0.3), flexibility, and optical quality. Some observed spectral distortion on chirped pulses is simply explained by a gain saturation model. High dynamic pulse temporal control is crucial for interaction experiments. For this reason, we have developed a third order sampling autocorrelator. This device is able to measure 100 fs pulses with more than 8 orders of magnitude. I compare our obtained performances to other femtosecond systems and I analyse the best way to increase the energy, reduce the pulse duration and optimise focusing in order to reach the 10^19 W/cm2 regime. Ce mémoire présente les études préliminaires, la réalisation et la caractérisation d'une chaîne dite "de haute intensité" en régime femtosecondes. Cette installation est capable de produire sur cible des intensités supérieures à 10^18 W/cm2 à une récurrence de 10 tirs par seconde. Nous présentons tout d'abord les principes fondamentaux de la propagation d'impulsions étirées dans un milieu amplificateur en mettant en évidence les principaux mécanismes mis en jeu dans ce processus : la dispersion de vitesse de groupe, l'automodulation de phase, l'autofocalisation et la saturation du gain. Une analyse des différentes possibilités quant au choix de la source initiale capable d'émettre des impulsions de durée femtoseconde dans le domaine du proche infrarouge est réalisée après la présentation des caractéristiques spectroscopiques du saphir dopé au titane. Sont en particulier décrits en détail le principe et le fonctionnement de l'oscillateur au saphir dopé au titane à autoblocage de modes que nous avons construit à cet effet. L'amplification jusqu'aux puissances de l'ordre du terawatt repose sur le concept "CPA" d'amplification d'impulsions à dérive de fréquence. Nous explorons ici la voie des amplificateurs à multipassages suivant des configurations déjà développées pour les amplificateurs à colorants. Une attention particulière a été portée sur les méthodes de réglage, la fiabilité, la stabilité et la qualité du profil spatial du faisceau. D'autre part, une modélisation rend parfaitement compte des effets de saturation dans les amplificateurs. Les impulsions obtenues après compression ont une énergie de l'ordre de 60 mJ et une durée de l'ordre de 130 fs. La partie suivante est consacrée à une étude des problèmes d'étirement et de recompression pour tenter d'expliquer les raisons de cette recompression imparfaite. Finalement, un paramètre encore plus crucial pour la physique de l'interaction sur cible solide sans création d'un préplasma est le contraste des impulsions. Nous décrivons donc l'appareil de mesure capable d'effectuer des autocorrélations avec une dynamique dépassant 10^8 permettant d'observer un éventuel pied d'énergie à ce niveau. Les problèmes de propagation d'impulsions lumineuses ultra intenses sont ensuite abordés, pour optimiser la focalisation du faisceau jusqu'à des intensités de 10^18 W/cm2. Dans une discussion finale, les performances de cette installation sont comparées à celles des systèmes développés par ailleurs et nous réalisons une étude plus prospective des étapes à mettre en oeuvre afin d'augmenter l'énergie amplifiée, diminuer la durée des impulsions et optimiser la focalisation, le but à atteindre étant le régime des 10^19 W/cm2.

  15. Short pulse laser stretcher-compressor using a single common reflective grating

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve

    2004-05-25

    The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.

  16. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  17. Single photons to multiple octaves: Engineering nonlinear optics in micro- and nano-structured media

    DTIC Science & Technology

    2017-05-18

    generation and amplification of ultrafast IR pulses. Both efforts took advantage of microstructured nonlinear media, e.g. quasi -phasematched (QPM...enhance the wave-mixing efficiency, especially for low-power devices. Because errors in fabrication of waveguides and quasi - phasematching gratings are... experimental demonstration of optical parametric chirped pulse amplifiers (OPCPA) in apodized aperiodic QPMgratings for high repetition rate, high

  18. High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Körner, J.; Hein, J.; Kahle, M.; Liebetrau, H.; Kaluza, M.; Siebold, M.; Loeser, M.

    2011-06-01

    We present temperature dependent gain measurements with different Ytterbium doped laser media, such as Yb:YAG, Yb:FP15-glass and Yb:CaF2 in a multi-pass amplifier setup. The temperature of these materials was adjusted arbitrarily between 100K and 300K, while heat removal was realized by transverse cooling. In order to obtain a good beam profile throughout the amplification process, we used an all-mirror based relay imaging setup consisting of a telescope accomplishing a 4f-imaging with a plane mirror in each image plane. The amplification beam is then coupled into the cavity and doing several round trips wandering over the surface of the spherical mirrors. Hence the laser material is placed in one of the image planes, the beam quality of the amplifier was ruled by the intensity profile of the pumping laser diodes consisting of two stacks with 2.5kW peak output power each. Due to the given damage threshold fluence, the output energy of the amplifier was limited to about 1J at a beam diameter of 4.5 mm (FWHM). The seed pulses with a duration of 6 ns were generated in a Yb:FP15-glass cavity dumped oscillator with further amplification up to the 100mJ level by a room temperature Yb:YAG multi pass amplifier. The 1 Hz repetition rate of the system was limited by the repetition rate of the front-end. With Yb:YAG for instance an output energy of 1.1 J with an record high optical to optical efficiency of more than 35% was achieved, which was further increased to 45% for 500 mJ output energy.

  19. Advanced chemical oxygen iodine lasers for novel beam generation

    NASA Astrophysics Data System (ADS)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  20. Development of large-aperture electro-optical switch for high power laser at CAEP

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Lin, Donghui; Zheng, Jiangang; Zheng, Kuixing

    2015-02-01

    Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.

  1. Beyond nonlinear saturation of backward Raman amplifiers

    DOE PAGES

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.; ...

    2016-06-27

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. We employed pump detuning in order to mitigate the relativistic phase mismatch and to overcome the associated saturation. In an amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. Finally, this detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  2. Beyond nonlinear saturation of backward Raman amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. We employed pump detuning in order to mitigate the relativistic phase mismatch and to overcome the associated saturation. In an amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. Finally, this detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  3. High-energy 100-ns single-frequency all-fiber laser at 1064 nm

    NASA Astrophysics Data System (ADS)

    Fu, Shijie; Shi, Wei; Tang, Zhao; Shi, Chaodu; Bai, Xiaolei; Sheng, Quan; Chavez-Pirson, Arturo; Peyghambarian, N.; Yao, Jianquan

    2018-02-01

    A high-energy, single-frequency fiber laser with long pulse duration of 100 ns has been experimentally investigated in an all-fiber architecture. Only 34-cm long heavily Yb-doped phosphate fiber was employed in power scaling stage to efficiently suppress the Stimulated Brillouin effect (SBS). In the experiment, 0.47 mJ single pulse energy was achieved in power scaling stage at the pump power of 16 W. The pre-shaped pulse was gradually broadened from 103 to 140 ns during the amplification without shape distortion.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogatskaya, A. V., E-mail: annabogatskaya@gmail.com; Volkova, E. A.; Popov, A. M.

    The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.

  5. Self-seeded injection-locked FEL amplifer

    DOEpatents

    Sheffield, Richard L.

    1999-01-01

    A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.

  6. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yue; Zhang, Zhili, E-mail: zzhang24@utk.edu; Jiang, Naibo

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to showmore » relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.« less

  7. Broadband spectral shaping in regenerative amplifier based on modified polarization-encoded chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Wang, Xinliang; Lu, Xiaoming; Liu, Yanqi; Xu, Yi; Wang, Cheng; Li, Shuai; Yu, Linpeng; Liu, Xingyan; Liu, Keyang; Xu, Rongjie; Leng, Yuxin

    2018-06-01

    We present an intra-cavity spectral shaping method to suppress the spectral narrowing in a Ti:sapphire (Ti:Sa) regenerative amplifier. The spectral shaping is realized by manipulating the stored energies of two Ti:Sa crystals with orthogonal c-axes, changing the length of a quartz plate, and rotating a broadband achromatic half-wave plate. Using this method, in our proof-of-concept experiment, an 84-nm-(FWHM)-broadband amplified pulse with an energy gain larger than 106 is obtained, which supports a 17.8 fs Fourier-transform-limited pulse duration. The pulse is compressed to 18.9 fs.

  8. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.

    PubMed

    Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen

    2014-04-07

    Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.

  9. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Nizhny Novgorod State University, Gagarin Ave., 23, 603950 Nizhny Novgorod; Sergeev, A. S.

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  10. Electro-optically cavity dumped 2 μm semiconductor disk laser emitting 3 ns pulses of 30 W peak power

    NASA Astrophysics Data System (ADS)

    Kaspar, Sebastian; Rattunde, Marcel; Töpper, Tino; Schwarz, Ulrich T.; Manz, Christian; Köhler, Klaus; Wagner, Joachim

    2012-10-01

    A 2 μm electro-optically cavity-dumped semiconductor disk laser (SDL) with a pulse full width at half maximum of 3 ns, a pulse peak power of 30 W, and repetition rates adjustable between 87 kHz and 1 MHz is reported. For ns-pulse cavity dumping the SDL was set up with a 35-cm long cavity into which an intra-cavity Brewster-angled polarizer prism and a Pockels cell for rotation of the linear polarization were inserted. By means of internal total reflection in the birefringent polarizer, pulses are coupled out of the cavity sideways. This variant of ns-pulse 2-μm SDL is well suited for applications such as high-precision light detection and ranging or ns-pulse laser materials processing after further power amplification.

  11. Rabi oscillations produced by adiabatic pulse due to initial atomic coherence.

    PubMed

    Svidzinsky, Anatoly A; Eleuch, Hichem; Scully, Marlan O

    2017-01-01

    If an electromagnetic pulse is detuned from atomic transition frequency by amount Δ>1/τ, where τ is the turn-on time of the pulse, then atomic population adiabatically follows the pulse intensity without causing Rabi oscillations. Here we show that, if initially, the atom has nonzero coherence, then the adiabatic pulse yields Rabi oscillations of atomic population ρaa(t), and we obtain analytical solutions for ρaa(t). Our findings can be useful for achieving generation of coherent light in the backward direction in the QASER scheme in which modulation of the coupling between light and atoms is produced by Rabi oscillations. Initial coherence can be created by sending a short resonant pulse into the medium followed by a long adiabatic pulse, which leads to the light amplification in the backward direction.

  12. Optimization of plasma amplifiers

    DOE PAGES

    Sadler, James D.; Trines, Raoul M. G. M.; Tabak, Max; ...

    2017-05-24

    Here, plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found tomore » maintain good transverse coherence and high-energy efficiency. Effective compression of a 10kJ, nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier.« less

  13. Optimization of plasma amplifiers

    NASA Astrophysics Data System (ADS)

    Sadler, James D.; Trines, Raoul M. Â. G. Â. M.; Tabak, Max; Haberberger, Dan; Froula, Dustin H.; Davies, Andrew S.; Bucht, Sara; Silva, Luís O.; Alves, E. Paulo; Fiúza, Frederico; Ceurvorst, Luke; Ratan, Naren; Kasim, Muhammad F.; Bingham, Robert; Norreys, Peter A.

    2017-05-01

    Plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found to maintain good transverse coherence and high-energy efficiency. Effective compression of a 10 kJ , nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier.

  14. Continuous operation of four-state continuous-variable quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Ichikawa, Tsubasa; Hirano, Takuya; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro

    2016-10-01

    We report on the development of continuous-variable quantum key distribution (CV-QKD) system that are based on discrete quadrature amplitude modulation (QAM) and homodyne detection of coherent states of light. We use a pulsed light source whose wavelength is 1550 nm and repetition rate is 10 MHz. The CV-QKD system can continuously generate secret key which is secure against entangling cloner attack. Key generation rate is 50 kbps when the quantum channel is a 10 km optical fiber. The CV-QKD system we have developed utilizes the four-state and post-selection protocol [T. Hirano, et al., Phys. Rev. A 68, 042331 (2003).]; Alice randomly sends one of four states {|+/-α⟩,|+/-𝑖α⟩}, and Bob randomly performs x- or p- measurement by homodyne detection. A commercially available balanced receiver is used to realize shot-noise-limited pulsed homodyne detection. GPU cards are used to accelerate the software-based post-processing. We use a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification.

  15. Stimulated x-ray emission spectroscopy in transition metal complexes

    DOE PAGES

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; ...

    2018-03-27

    We report the observation and analysis of the gain curve of amplified Kα X-ray emission from solutions of Mn(II) and Mn(VII) complexes using an X-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over four orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ~1.7 eV FWHM is constant over three orders of magnitude, pointing to the build-up of transform limited pulses of ~1fs duration. Driving the amplification into saturation leads to broadening and shift of the line. Importantly, the chemical sensitivity of the stimulated X-ray emission to the Mn oxidation state is preserved at power densities ofmore » $$\\sim10 20$$~W/cm 2 for the incoming X-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) X-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear X-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis and materials science.« less

  16. Stimulated x-ray emission spectroscopy in transition metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto

    We report the observation and analysis of the gain curve of amplified Kα X-ray emission from solutions of Mn(II) and Mn(VII) complexes using an X-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over four orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ~1.7 eV FWHM is constant over three orders of magnitude, pointing to the build-up of transform limited pulses of ~1fs duration. Driving the amplification into saturation leads to broadening and shift of the line. Importantly, the chemical sensitivity of the stimulated X-ray emission to the Mn oxidation state is preserved at power densities ofmore » $$\\sim10 20$$~W/cm 2 for the incoming X-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) X-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear X-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis and materials science.« less

  17. Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes

    NASA Astrophysics Data System (ADS)

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Mercadier, Laurent; Majety, Vinay P.; Marinelli, Agostino; Lutman, Alberto; Guetg, Marc W.; Decker, Franz-Josef; Boutet, Sébastien; Aquila, Andy; Koglin, Jason; Koralek, Jake; DePonte, Daniel P.; Kern, Jan; Fuller, Franklin D.; Pastor, Ernest; Fransson, Thomas; Zhang, Yu; Yano, Junko; Yachandra, Vittal K.; Rohringer, Nina; Bergmann, Uwe

    2018-03-01

    We report the observation and analysis of the gain curve of amplified K α x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1 s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1 s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ˜1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ˜1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ˜1020 W /cm2 for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

  18. Numerical analysis of amplification of picosecond pulses in a THL-100 laser system with an increase in the pump energy of the XeF(C – A) amplifier

    NASA Astrophysics Data System (ADS)

    Yastremskii, A. G.; Ivanov, N. G.; Losev, V. F.

    2018-03-01

    Energy characteristics of laser radiation with a pulse width of 50 ps at an elevated pump energy of the XeF(C – A) amplifier of a hybrid THL-100 laser system are analysed numerically. The dynamics of the change in the energy and maximum intensity of laser radiation with an increase in the pump energy of the XeF(C – A) amplifier from 270 to 400 J is investigated. The results of studying the influence of the input beam divergence on the energy characteristics of the output beam are presented. It is shown that, for the existing system of mirrors, an increase in the pump energy to 400 J leads to an increase in the output energy from 3.2 to 5.5 J at a maximum radiation intensity of 57 GW cm-2. A system of amplifier mirrors with 27 laser beam passes and enlarged divergence angle of the amplified beam is considered. Theoretically, the proposed system of mirrors allows one to increase the laser pulse energy to 7.5 J at a maximum intensity of no more than 14.8 GW cm-2. The calculated efficiency of the conversion of the pump energy absorbed in the amplifier gas chamber into the lasing energy exceeds 3% in this regime.

  19. Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Feehan, James S.; Price, Jonathan H. V.; Butcher, Thomas J.; Brocklesby, William S.; Frey, Jeremy G.; Richardson, David J.

    2017-01-01

    The development of an Yb3+-fiber-based chirped-pulse amplification system and the performance in the generation of extreme ultraviolet (EUV) radiation by high-harmonic generation is reported. The fiber laser produced 100 μJ, 350 fs output pulses with diffraction-limited beam quality at a repetition rate of 16.7 kHz. The system used commercial single-mode, polarization maintaining fiber technology. This included a 40 μm core, easily packaged, bendable final amplifier fiber in order to enable a compact system, to reduce cost, and provide reliable and environmentally stable long-term performance. The system enabled the generation of 0.4 μW of EUV at wavelengths between 27 and 80 nm with a peak at 45 nm using xenon gas. The EUV flux of 1011 photons per second for a driving field power of 1.67 W represents state-of-the-art generation efficiency for single-fiber amplifier CPA systems, corresponding to a maximum calculated energy conversion efficiency of 2.4 × 10-7 from the infrared to the EUV. The potential for high average power operation at increased repetition rates and further suggested technical improvements are discussed. Future applications could include coherent diffractive imaging in the EUV, and high-harmonic spectroscopy.

  20. 100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier

    NASA Astrophysics Data System (ADS)

    Smith, J. M.; Butcher, T. J.; Mason, P. D.; Ertel, K.; Phillips, P. J.; Banerjee, S.; De Vido, M.; Chekhlov, O.; Divoky, M.; Pilar, J.; Shaikh, W.; Hooker, C.; Lucianetti, A.; Hernandez Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2018-02-01

    We report on the successful demonstration of the world's first kW average power, 100 Joule-class, high-energy, nanosecond pulsed diode-pumped solid-state laser (DPSSL), DiPOLE100. Results from the first long-term test for amplification will be presented; the system was operated for 1 hour with 10 ns duration pulses at 10 Hz pulse repetition rate and an average output energy of 105 J and RMS energy stability of approximately 1%. The laser system is based on scalable cryogenic gas-cooled multi-slab ceramic Yb:YAG amplifier technology. The DiPOLE100 system comprises three major sub-systems, a spatially and temporally shaped front end, a 10 J cryo-amplifier and a 100 J cryo-amplifier. The 10 J cryo-amplifier contain four Yb:YAG ceramic gain media slabs, which are diode pumped from both sides, while a multi-pass architecture configured for seven passes enables 10 J of energy to be extracted at 10 Hz. This seeds the 100 J cryo-amplifier, which contains six Yb:YAG ceramic gain media slabs with the multi-pass configured for four passes. Our future development plans for this architecture will be introduced including closed-loop pulse shaping, increased energy, higher repetition rates and picosecond operation. This laser architecture unlocks the potential for practical applications including new sources for industrial materials processing and high intensity laser matter studies as envisioned for ELI [1], HiLASE [2], and the European XFEL [3]. Alternatively, it can be used as a pump source for higher repetition rate PW-class amplifiers, which can themselves generate high-brightness secondary radiation and ion sources leading to new remote imaging and medical applications.

  1. Birefringent Fiber Devices and Lasers

    NASA Astrophysics Data System (ADS)

    Theimer, James Prentice

    1995-01-01

    This thesis presents the results of numerical simulations of mode-locked figure eight lasers and their components: fiber amplifiers and nonlinear optical loop mirrors (NOLMs). The computations were designed to study pulse evolution in optical amplifiers and NOLMs with periodic repetition of these elements. Since fiber laser systems also include birefringent fiber, the effects of fiber birefringence was incorporated into the simulations. My studies of pulse amplification in non-birefringent amplifiers show pulse breakup when their energies exceed 4.5 fundamental soliton energies. In birefringent fibers pulse breakup is also found, but the two orthogonally polarized pulses propagate together. I find that their behavior is related to the properties of a vector soliton. I found that vector waves have close to unity transmission through a birefringent NOLM, but the pulse shape is distorted. This shape distortion reduces subsequent transmissions through the NOLM. The energy required for peak transmission of the pulse is predicted by the theory based on vector solitons. The same theory also predicted the low intensity transmission. The performance of the NOLM with birefringent fiber could not be improved by altering the polarization state of the pulse from linear polarization; the polarization controller introduced pulse distortion that resulted in excessive loss. I found an instability in the steady-state operation of the figure eight laser, which is due to pulse reshaping during propagation in the amplifier section. To remove this instability I introduced the concept of dispersion balancing; by increasing the dispersion in the amplifier section, the pulse can propagate nearly as a fundamental soliton in both the amplifier and the NOLM sections of the laser. This eliminated a major source of dispersive wave shedding and allowed the laser operation to become independent of the amplifier length. Sidebands were found on the pulse spectrum and their maxima corresponded well with the periodic resonance model.

  2. Development of fiber lasers and devices for coherent Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the high energy femtosecond pulses for other multiphoton imaging techniques. Finally, ideas for future extensions of this work will be discussed.

  3. High power lasers for gamma source

    NASA Astrophysics Data System (ADS)

    Durand, Magali; Sangla, Damien; Trophème, Benoit; Sevillano, Pierre; Casanova, Alexis; Caillon, Laurianne; Courjaud, Antoine

    2017-02-01

    A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 3.5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750x500x150 cm), which allows a pulse-pulse stability of 0.1% rms, and a long-term stability of 1,9% over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 3.5 ps.

  4. On the feasibility of a fiber-based inertial fusion laser driver

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Hulin, D.; Galvanauskas, A.; Mourou, G. A.

    2008-08-01

    One critical issue for the realization of Inertial Fusion Energy (IFE) power plants is the driver efficiency. High driver efficiency will greatly relax the driver energy requested to produce a fusion gain, resulting in more compact and less costly facilities. Among lasers, systems based on guided wave such as diode pumped Yb:glass fiber-amplifiers with a demonstrated overall efficiency close to 70% as opposed to few percents for systems based on free propagation, offer some intriguing opportunities. Guided optics provides the enormous advantage to directly benefit from the telecommunication industry where components are made cheap, rugged, well tested, environmentally stable, with lifetimes measured in tens of years and compatible with massive manufacturing. In this paper, we are studying the possibility to design a laser driver solely based on guided wave optics. We call this concept FAN for Fiber Amplification Network. It represents a profound departure from already proposed laser drivers all based on free propagation optics. The system will use a large number of identical fibers to combines long (ns) and short (ps) pulses that are needed for the fast ignition scheme. Technical details are discussed relative to fiber type, pump, phasing, pulse shaping and timing as well as fiber distribution around the chamber. The proposed fiber driver provides maximum and independent control on the wavefront, pulse duration, pulse shape, timing, making possible reaching the highest gain. The massive manufacturing will be amenable to a cheaper facility with an easy upkeep.

  5. Anomalous time delays and quantum weak measurements in optical micro-resonators

    PubMed Central

    Asano, M.; Bliokh, K. Y.; Bliokh, Y. P.; Kofman, A. G.; Ikuta, R.; Yamamoto, T.; Kivshar, Y. S.; Yang, L.; Imoto, N.; Özdemir, Ş.K.; Nori, F.

    2016-01-01

    Quantum weak measurements, wavepacket shifts and optical vortices are universal wave phenomena, which originate from fine interference of multiple plane waves. These effects have attracted considerable attention in both classical and quantum wave systems. Here we report on a phenomenon that brings together all the above topics in a simple one-dimensional scalar wave system. We consider inelastic scattering of Gaussian wave packets with parameters close to a zero of the complex scattering coefficient. We demonstrate that the scattered wave packets experience anomalously large time and frequency shifts in such near-zero scattering. These shifts reveal close analogies with the Goos–Hänchen beam shifts and quantum weak measurements of the momentum in a vortex wavefunction. We verify our general theory by an optical experiment using the near-zero transmission (near-critical coupling) of Gaussian pulses propagating through a nano-fibre with a side-coupled toroidal micro-resonator. Measurements demonstrate the amplification of the time delays from the typical inverse-resonator-linewidth scale to the pulse-duration scale. PMID:27841269

  6. Stabilization and control of the carrier-envelope phase of high-power femtosecond laser pulses using the direct locking technique.

    PubMed

    Imran, Tayyab; Lee, Yong S; Nam, Chang H; Hong, Kyung-Han; Yu, Tae J; Sung, Jae H

    2007-01-08

    We have stabilized and electronically controlled the carrier-envelope phase (CEP) of high-power femtosecond laser pulses, generated in a grating-based chirped-pulse amplification kHz Ti:sapphire laser, using the direct locking technique [Opt. Express 13, 2969 (2005)] combined with a slow feedback loop. An f-2f spectral interferometer has shown the CEP stabilities of 1.2 rad with the direct locking loop applied to the oscillator and of 180 mrad with an additional slow feedback loop, respectively. The electronic CEP modulations that can be easily realized in the direct locking loop are also demonstrated with the amplified pulses.

  7. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    NASA Astrophysics Data System (ADS)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  8. Waveguide fabrication in PMMA using a modified cavity femtosecond oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Klimov, Denis; Kolber, Zbigniew

    2007-09-01

    Poly Methyl Methacrylate (PMMA) is an advantageous material than glass in oceanographic sensing applications because of its inhospitality for marine organisms. Waveguide sensors fabricated in PMMA are often used to measure the parameters in ocean such as PH, CO II, O II concentrations, etc. A tightly-focused femtosecond laser is often used to produce such a waveguide or even more complicated structures through the nonlinear effect in the bulk of PMMA, with pulse energy at μJ or mJ level. And such a laser system requires the amplifier from chirped-pulse amplification (CPA). The oscillator itself can produce pulse energy only at nJ level which is under the threshold of nonlinear effect. However, in our experiment, a modification to the oscillator cavity, which elongates the cavity length approximately 3 times and as a result, decreases the repetition rate from 93mHz to 32 mHz, can increase the pulse energy to 15 nJ. Under a tight focusing lens (100x 1.40 microscope objective), such an intensity exceeds the nonlinear threshold of PMMA. Thus, waveguide can be fabricated in PMMA using only a femtosecond oscillator and oceanographic sensors can be also made by this simple technique.

  9. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Denisov, G. G.; Vilkov, M. N.

    2016-05-15

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only themore » level of steady-state generation but also, in the optimal case, the power of the driving electron beam.« less

  10. Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Shirakawa, Akira; Tanisho, Motoyuki; Ueda, Ken-Ichi

    2006-12-01

    Structural birefringent properties of a hollow-core photonic-bandgap fiber were carefully investigated and applied to all-fiber chirped-pulse amplification as a compressor. The group birefringence of as high as 6.9×10-4 and the dispersion splitting by as large as 149 ps/nm/km between the two principal polarization modes were observed at 1557 nm. By launching the amplifier output to one of the polarization modes a 17-dB polarization extinction ratio was obtained without any pulse degradation originating from polarization-mode dispersion. A hybrid fiber stretcher effectively compensates the peculiar dispersion of the photonic-bandgap fiber and pedestal-free 440-fs pulses with a 1-W average power and 21-nJ pulse energy were obtained. Polarization-maintaining fiber-pigtail output of high-power femtosecond pulses is useful for various applications.

  11. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  12. Mode-locked long fibre master oscillator with intra-cavity power management and pulse energy > 12 µJ.

    PubMed

    Ivanenko, Alexey; Kobtsev, Sergey; Smirnov, Sergey; Kemmer, Anna

    2016-03-21

    Combined lengthening of the cavity of a passive mode-locked fibre master oscillator and implementation of a new concept of intra-cavity power management led to achievement of a record-high pulse energy directly at the output of the mode-locked fibre master oscillator (without any subsequent amplification) exceeding 12 µJ. Output powers at the level of > 12 µJ obtainable from a long-cavity mode-locked fibre master oscillator open new possibilities of application of all pulse types that can be generated in such oscillators.

  13. Integrated microfluidic systems for sample preparation and detection of respiratory pathogen Bordetella pertussis.

    PubMed

    de la Rosa, Carlos; Prakash, Ranjit; Tilley, Peter A; Fox, Julie D; Kaler, Karan V i S

    2007-01-01

    An integrated microfluidic system for combined manipulation, pre-concentration, and lysis of samples containing Bordetella pertussis by dielectrophoresis and electroporation has been developed and implemented. The microfluidic device was able to pre-concentrate the amount of B. pertussis cells present in 200 microl of a B. pertussis suspension stock into a 20 microl volume. The device exhibited optimal sample pre-concentration of 6.7x at a stock value of 10(3) cfu/ml and at a flow rate of 250 microl/h. Electro-disruption experiments showed that on-chip-based electroporation is an effective solution for lysis of B. pertussis cells that is easily integrated with dielectrophoresis assisted pre-concentration procedures. Pulsed voltage applied, number of pulses, and presence of potassium chloride in a B. pertussis suspension showed a reduction in B. pertussis cell viability by electroporation; and transmission electron microscopy confirmed B. pertussis cell disruption by electroporation. Genetic amplification and detection of the pre-concentrated sample employing an integrated chip-based system demonstrated a complete chip approach for pathogen detection.

  14. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  15. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-01

    Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  16. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  17. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    PubMed

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  18. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54% respectively. With the inherent design tradeoff between the fundamental mode loss and higher order mode suppression, loss effects on system efficiency in different configurations were investigated. From these investigations it was seen that the slope-efficiency depends only on the total loss of the active fiber, and that when loss is present, the counter-propagating configuration has substantial advantages over the co-propagating case. In this thesis chirally-coupled-core fiber as the technological basis for the next generation of monolithic high power fiber laser systems has been established.

  19. TU-FG-BRB-08: Challenges, Limitations and Future Outlook Towards Clinical Translation of Proton Acoustic Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousefi, S; Ahmad, M; Xiang, L

    Purpose: To report our investigations of proton acoustic imaging, including computer simulations and preliminary experimental studies at clinical facilities. The ultimate achievable accuracy, sensitivity and clinical translation challenges are discussed. Methods: The acoustic pulse due to pressure rise was estimated using finite element model. Since the ionoacoustic pulse is highly dependent on the proton pulse width and energy, multiple pulse widths were studied. Based on the received signal spectrum at piezoelectric ultrasound transducer with consideration of random thermal noise, maximum spatial resolution of the proton-acoustic imaging modality was calculated. The simulation studies defined the design specifications of the system tomore » detect proton acoustic signal from Hitachi and Mevion clinical machines. A 500 KHz hydrophone with 100 dB amplification was set up in a water tank placed in front of the proton nozzle A 40 MHz data acquisition was synchronized by a trigger signal provided by the machine. Results: Given 30–800 mGy dose per pulse at the Bragg peak, the minimum number of protons detectable by the proton acoustic technique was on the order of 10×10^6 per pulse. The broader pulse widths produce signal with lower acoustic frequencies, with 10 µs pulses producing signals with frequency less than 100 kHz. As the proton beam pulse width increases, a higher dose rate is required to measure the acoustic signal. Conclusion: We have established the minimal detection limit for protonacoustic range validation for a variety of pulse parameters. Our study indicated practical proton-acoustic range verification can be feasible with a pulse shorter than 10 µs, 5×10^6 protons/pulse, 50 nA beam current and a highly sensitive ultrasonic transducer. The translational challenges into current clinical machines include proper magnetic shielding of the measurement equipment, providing a clean trigger signal from the proton machine, providing a shorter proton beam pulse and higher dose per pulse.« less

  20. Understanding of self-terminating pulse generation using silicon controlled rectifier and RC load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chris, E-mail: chrischang81@gmail.com; Karunasiri, Gamani, E-mail: karunasiri@nps.edu; Alves, Fabio, E-mail: falves@alionscience.com

    2016-01-15

    Recently a silicon controlled rectifier (SCR)-based circuit that generates self-terminating voltage pulses was employed for the detection of light and ionizing radiation in pulse mode. The circuit consisted of a SCR connected in series with a RC load and DC bias. In this paper, we report the investigation of the physics underlying the pulsing mechanism of the SCR-based. It was found that during the switching of SCR, the voltage across the capacitor increased beyond that of the DC bias, thus generating a reverse current in the circuit, which helped to turn the SCR off. The pulsing was found to bemore » sustainable only for a specific range of RC values depending on the SCR’s intrinsic turn-on/off times. The findings of this work will help to design optimum SCR based circuits for pulse mode detection of light and ionizing radiation without external amplification circuitry.« less

  1. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    NASA Technical Reports Server (NTRS)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  2. Thin Disk Ti:Sapphire amplifiers for Joule-class ultrashort pulses with high repetition rate (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nagymihály, Roland S.; Cao, Huabao; Kalashnikov, Mikhail P.; Khodakovskiy, Nikita; Ehrentraut, Lutz; Osvay, Károly; Chvykov, Vladimir V.

    2017-05-01

    High peak power CPA laser systems can deliver now few petawatt pulses [1]. Reaching the high energies with broad spectral bandwidth necessary for these pulses was possible by the use of large aperture Ti:Sa crystals as final amplifier media. Wide applications for these systems will be possible if the repetition rate could be increased. Therefore, thermal deposition in Ti:Sa amplifiers is a key issue, which has to be solved in case of high average power pumping. The thin disk (TD) laser technology, which is intensively developed nowadays by using new laser materials, is able to overcome thermal distortions and damages of laser crystals [2]. TD technique also has the potential to be used in systems with both high peak and average power. For this, the commonly used laser materials with low absorption and emission cross sections, also low heat conductivity, like Yb:YAG, need to be replaced by a gain medium that supports broad enough emission spectrum and high thermal conductivity to obtain few tens of fs pulses with high repetition rates. Parasitic effects during the amplification process however seriously limit the energy that can be extracted from the gain medium and also they distort the gain profile. Nevertheless, the application of the Extraction During Pumping (EDP) technique can mitigate the depopulation losses in the gain medium with high aspect ratio [3]. We proposed to use Ti:Sa in combination with TD and EDP techniques to reach high energies at high repetition rates, and we presented numerical simulations for different amplifier geometries and parameters of the amplification [4,5]. We present the results of the proof-of-principle experiment, where a EDP-TD Ti:Sa amplifier was tested for the first time. In our experiment, the final cryogenically cooled Ti:Sa amplifier in a 100 TW/10 Hz/28 fs laser system was replaced with the EDP-TD room temperature cooled arrangement. Amplified seed pulse energy of 2.6 J was reached only for 3 passes through TD with 0.5 J of input seed and 5 J of absorbed pump energy. We verified the excellent heat extraction capabilities of our amplifier module. Results of the scaling simulations on the base of this experiment for 100s of TW peak power laser systems operating at up to 100 Hz will be also presented. References 1. Y. Chu et al, Opt. Lett. 40, 5011-5014 (2015). 2. C. R. E. Baer et al, Opt. Exp. 20, 7054-7065 (2012). 3. V. Chvykov et al, Opt. Comm. 285, 2134-2136 (2012). 4. V. Chvykov, R. S. Nagymihaly, H. Cao, M. Kalashnikov, K. Osvay, Opt. Exp. 24, 3721 (2016). 5. V.Chvykov, R. S. Nagymihaly, H. Cao, M. Kalashnikov, K. Osvay, Opt. Lett. 41,13, 3017 (2016).

  3. 1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2015-02-01

    A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.

  4. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed.

  5. Experimental demonstration of fiber optical parametric chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Cheung, Kim K. Y.; Chui, P. C.; Wong, Kenneth K. Y.

    2010-02-01

    A fiber optical parametric chirped-pulse amplifier (FOPCPA) is experimentally demonstrated. A 1.76 ps signal at 1542 nm with a peak power of 20 mW is broadened to 40 ps, and then amplified by a 100-ps pulsed pump at 1560 nm. The corresponding idler at 1578 nm is generated as the FOPCPA output. The same medium used to stretch the signal is deployed to compress the idler to 3.8 ps, and another spool of fiber is deployed to further compress the idler to 1.87 ps. The peak power of the compressed idler is 2 W, which corresponds to a gain of 20 dB.

  6. Environmentally stable seed source for high power ultrafast laser

    NASA Astrophysics Data System (ADS)

    Samartsev, Igor; Bordenyuk, Andrey; Gapontsev, Valentin

    2017-02-01

    We present an environmentally stable Yb ultrafast ring oscillator utilizing a new method of passive mode-locking. The laser is using all-fiber architecture which makes it insensitive to environmental factors, like temperature, humidity, vibrations, and shocks. The new method of mode-locking is utilizing crossed bandpass transmittance filters in ring architecture to discriminate against CW lasing. Broadband pulse evolves from cavity noise under amplification, after passing each filter, causing strong spectral broadening. The laser is self-starting. It generates transform limited spectrally flat pulses of 1 - 50 nm width at 6 - 15 MHz repetition rate and pulse energy 0.2 - 15 nJ at 1010 - 1080 nm CWL.

  7. The technology on noise reduction of the APD detection circuit

    NASA Astrophysics Data System (ADS)

    Wu, Xue-ying; Zheng, Yong-chao; Cui, Jian-yong

    2013-09-01

    The laser pulse detection is widely used in the field of laser range finders, laser communications, laser radar, laser Identification Friend or Foe, et al, for the laser pulse detection has the advantage of high accuracy, high sensitivity and strong anti-interference. The avalanche photodiodes (APD) has the advantage of high quantum efficiency, high response speed and huge gain. The APD is particularly suitable for weak signal detection. The technology that APD acts as the photodetector for weak signal reception and amplification is widely used in laser pulse detection. The APD will convert the laser signal to weak electrical signal. The weak signal is amplified, processed and exported by the circuit. In the circuit design, the optimal signal detection is one key point in photoelectric detection system. The issue discusses how to reduce the noise of the photoelectric signal detection circuit and how to improve the signal-to-noise ratio, related analysis and practice included. The essay analyzes the mathematical model of the signal-to-noise ratio for photoelectric conversion and the noise of the APD photoelectric detection system. By analysis the bandwidth of the detection system is determined, and the circuit devices are selected that match the APD. In the circuit design separated devices with low noise are combined with integrated operational amplifier for the purpose of noise reduction. The methods can effectively suppress the noise, and improve the detection sensitivity.

  8. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier.

    PubMed

    Kanai, Tsuneto; Malevich, Pavel; Kangaparambil, Sarayoo Sasidharan; Ishida, Kakuta; Mizui, Makoto; Yamanouchi, Kaoru; Hoogland, Heinar; Holzwarth, Ronald; Pugzlys, Audrius; Baltuska, Andrius

    2017-02-15

    We report on the parametric generation of 100 fs sub-6-cycle 40 μJ pulses with the center wavelength at 5.2 μm using a 1 ps 2.1 μm pump laser and a dispersion management scheme based on bulk material. Our optically synchronized amplifier chain consists of a Ho:YAG chirped-pulse amplifier and white-light-seeded optical parametric amplifiers providing simultaneous passive carrier-envelope phase locking of three ultrashort longwave pulses at the pump, signal, and idler wavelengths corresponding, respectively, to 2.1, 3.5, and 5.2 μm. We also demonstrate bandwidth enhancement and efficient control over nonlinear spectral phase in the regime of cascaded χ2 nonlinearity in ZnGeP2.

  9. Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Katz, O.; Natan, A.; Silberberg, Y.; Rosenwaks, S.

    2008-04-01

    We demonstrate a single-beam, standoff (>10m) detection and identification of various materials including minute amounts of explosives under ambient light conditions. This is obtained by multiplex coherent anti-Stokes Raman scattering spectroscopy (CARS) using a single femtosecond phase-shaped laser pulse. We exploit the strong nonresonant background for amplification of the backscattered resonant CARS signals by employing a homodyne detection scheme. The simple and highly sensitive spectroscopic technique has a potential for hazardous materials standoff detection applications.

  10. High-power thulium-doped fibre laser with intracavity dispersion management

    NASA Astrophysics Data System (ADS)

    Krylov, Aleksandr A.; Chernyshova, M. A.; Chernykh, D. S.; Senatorov, A. K.; Tupitsyn, I. M.; Kryukov, P. G.; Dianov, Evgenii M.

    2012-05-01

    This paper reports a scheme for the generation and amplification of pico- and femtosecond pulses in the range 1.93-1.97 μm using thulium-doped silica fibres. Group velocity dispersion (GVD) management in the cavity of the thulium-doped fibre laser oscillator is ensured by a single-mode germanosilicate fibre (75 mol % GeO2 in the core) with a positive GVD. Pulses are obtained down to 200 fs in duration and up to 56 nJ in energy.

  11. Metrology with Weak Value Amplification and Related Topics

    DTIC Science & Technology

    2013-10-12

    sensitivity depend crucially on the relative time scales involved, which include: 4 +- PBS PC HWP SBC Piezo Pulsed Laser Split Detector 50:50 FIG. 1. Simple...reasons why this may be impossible or inadvisable given a laboratory set-up. There may be a minimum quiet time between laser pulses, for example, or...measurements is a full 100 ms, our filtering limits the laser noise to time scales of about 30 ms. For analysis, we take this as our integration time in

  12. Pulsewidth dependence of laser-induced periodic surface structure formed on yttria-stabilized zirconia polycrystal

    NASA Astrophysics Data System (ADS)

    Kakehata, Masayuki; Yashiro, Hidehiko; Oyane, Ayako; Ito, Atsuo; Torizuka, Kenji

    2016-03-01

    Three-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) is a fine engineering ceramic that offers high fracture resistance and flexural strength. Thus, it is often applied in mechanical components and medical implants. The surface roughness can be controlled to improve the device characters in some applications. Ultrashort pulse lasers can form laser-induced periodic surface structures (LIPSS) on 3Y-TZP, which have never been investigated in detail. Therefore, this paper reports the formation and characteristics of LIPSS formed on 3Y-TZP, focusing on the pulsewidth dependence. The LIPSS was formed by a Ti:sapphire chirped-pulse amplification system, which generates 810 nmcentered 80-fs pulses at a 570 Hz repetition rate. The measured ablation threshold peak fluence was ~1.5 J/cm2 and the LIPSS was formed at the peak fluence of 2.7-7.7 J/cm2. For linearly polarized pulses, the lines of the LIPSS were oriented parallel to the polarization direction, and their period was comparable to or larger than the center wavelength of the laser. These characteristics differ from the reported characteristics of LIPSS on metals and dielectrics. The pulsewidth dependence of the ablation and LIPSS was investigated for different pulsewidths and signs of chirp. Under the investigated fluence condition, the LIPSS period increased with increasing pulsewidth for both signs of chirp. Similar pulsewidth dependencies were observed for circularly polarized pulses.

  13. Twenty-Four-Hour Central Pulse Pressure for Cardiovascular Events Prediction in a Low-Cardiovascular-Risk Population: Results From the Bordeaux Cohort.

    PubMed

    Cremer, Antoine; Boulestreau, Romain; Gaillard, Prune; Lainé, Marion; Papaioannou, Georgios; Gosse, Philippe

    2018-02-23

    Central blood pressure (BP) is a promising marker to identify subjects with higher cardiovascular risk than expected by traditional risk factors. Significant results have been obtained in populations with high cardiovascular risk, but little is known about low-cardiovascular-risk patients, although the differences between central and peripheral BP (amplification) are usually greater in this population. The study aim was to evaluate central BP over 24 hours for cardiovascular event prediction in hypertensive subjects with low cardiovascular risk. Peripheral and central BPs were recorded during clinical visits and over 24 hours in hypertensive patients with low cardiovascular risk (Systematic Coronary Risk Evaluation ≤5%). Our primary end point is the occurrence of a cardiovascular event during follow-up. To assess the potential interest in central pulse pressure over 24 hours, we performed Cox proportional hazard models analysis and comparison of area under the curves using the contrast test for peripheral and central BP. A cohort of 703 hypertensive subjects from Bordeaux were included. After the first 24 hours of BP measurement, the subjects were then followed up for an average of 112.5±70 months. We recorded 65 cardiovascular events during follow-up. Amplification was found to be significantly associated with cardiovascular events when added to peripheral 24-hour pulse pressure ( P =0.0259). The area under the curve of 24-hour central pulse pressure is significantly more important than area under the curve of office BP ( P =0.0296), and there is a trend of superiority with the area under the curve of peripheral 24-hour pulse pressure. Central pulse pressure over 24 hours improves the prediction of cardiovascular events for hypertensive patients with low cardiovascular risk compared to peripheral pulse pressure. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Multipass laser amplification with near-field far-field optical separation

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    This invention discloses two classes of optical configurations for high power laser amplification, one allowing near-field and the other allowing far-field optical separation, for the multiple passage of laser pulses through one or more amplifiers over an open optical path. These configurations may reimage the amplifier or any other part of the cavity on itself so as to suppress laser beam intensity ripples that arise from diffraction and/or non-linear effects. The optical cavities combine the features of multiple passes, spatial filtering and optical reimaging and allow sufficient time for laser gain recovery.

  15. Stability investigation in nominally two-dimensional laminar boundary layers by means of heat pulsing

    NASA Astrophysics Data System (ADS)

    Zhou, Ming De; Liu, Tian Shu

    The effects of heat pulses from surface-mounted wires on the laminar boundary-layer flow on an 800 x 300 x 32-mm flat wooden plate with a 6:1 elliptical nose are investigated experimentally in the 1.5 x 0.3-m working section of the DFVLR-AVA Goettingen low-turbulence wind tunnel at maximum free-stream velocity 45 m/s and longitudinal turbulence intensity about 0.05 percent. The results of flow visualization and hot-film measurements are presented in extensive graphs and photographs and analyzed. It is found that the initial amplification of disturbances is accurately predicted by two-dimensional linear stability theory, even when the disturbances include significant three-dimensional components. Subharmonic paths to turbulence are shown to begin from lower initial-disturbance fluctuation levels or at lower Reynolds numbers than predicted by the 'K' mechanism (Klebanoff et al., 1962), and the oblique wave angles at which maximum amplification occurs are seen as consistent with the resonant triad model of Craik (1971).

  16. On-coil multiple channel transmit system based on class-D amplification and pre-amplification with current amplitude feedback

    PubMed Central

    Gudino, N.; Heilman, J.A; Riffe, M. J.; Heid, O.; Vester, M.; Griswold, M.A.

    2016-01-01

    A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D (CMCD) amplifier output stage and a voltage mode class-D (VMCD) preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the CMCD stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5 T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner. PMID:22890962

  17. On-coil multiple channel transmit system based on class-D amplification and pre-amplification with current amplitude feedback.

    PubMed

    Gudino, Natalia; Heilman, Jeremiah A; Riffe, Matthew J; Heid, Oliver; Vester, Markus; Griswold, Mark A

    2013-07-01

    A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability, and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D amplifier output stage and a voltage mode class-D preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the current mode class-D stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner. Copyright © 2012 Wiley Periodicals, Inc.

  18. Lidar Measurements of the Stratosphere and Mesosphere at the Biejing Observatory

    NASA Astrophysics Data System (ADS)

    Du, Lifang; Yang, Guotao; Cheng, Xuewu; Wang, Jihong

    With the high precision and high spatial and temporal resolution, the lidar has become a powerful weapon of near space environment monitoring. This paper describes the development of the solid-state 532nm and 589nm laser radar, which were used to detect the wind field of Beijing stratosphere and mesopause field. The injection seeding technique and atomic absorption saturation bubble frequency stabilization method was used to obtain narrow linewidth of 532nm lidar, Wherein the laser pulse energy of 800mJ, repetition rate of 30Hz. The 589nm yellow laser achieved by extra-cavity sum-frequency mixing 1064nm and 1319nm pulse laser with KTP crystal. The base frequency of 1064nm and 1319nm laser adopted injection seeding technique and YAG laser amplification for high energy pulse laser. Ultimately, the laser pulse of 150mJ and the linewidth of 130MHz of 589nm laser was obtain. And after AOM crystal frequency shift, Doppler frequency discriminator free methods achieved of the measuring of high-altitude wind. Both of 532nm and 589nm lidar system for engineering design of solid-state lidar provides a basis, and also provide a solid foundation for the development of all-solid-state wind lidar.

  19. Miniaturized isothermal nucleic acid amplification, a review.

    PubMed

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  20. Arterial stiffness and cardiovascular events: the Framingham Heart Study.

    PubMed

    Mitchell, Gary F; Hwang, Shih-Jen; Vasan, Ramachandran S; Larson, Martin G; Pencina, Michael J; Hamburg, Naomi M; Vita, Joseph A; Levy, Daniel; Benjamin, Emelia J

    2010-02-02

    Various measures of arterial stiffness and wave reflection have been proposed as cardiovascular risk markers. Prior studies have not assessed relations of a comprehensive panel of stiffness measures to prognosis in the community. We used proportional hazards models to analyze first-onset major cardiovascular disease events (myocardial infarction, unstable angina, heart failure, or stroke) in relation to arterial stiffness (pulse wave velocity [PWV]), wave reflection (augmentation index, carotid-brachial pressure amplification), and central pulse pressure in 2232 participants (mean age, 63 years; 58% women) in the Framingham Heart Study. During median follow-up of 7.8 (range, 0.2 to 8.9) years, 151 of 2232 participants (6.8%) experienced an event. In multivariable models adjusted for age, sex, systolic blood pressure, use of antihypertensive therapy, total and high-density lipoprotein cholesterol concentrations, smoking, and presence of diabetes mellitus, higher aortic PWV was associated with a 48% increase in cardiovascular disease risk (95% confidence interval, 1.16 to 1.91 per SD; P=0.002). After PWV was added to a standard risk factor model, integrated discrimination improvement was 0.7% (95% confidence interval, 0.05% to 1.3%; P<0.05). In contrast, augmentation index, central pulse pressure, and pulse pressure amplification were not related to cardiovascular disease outcomes in multivariable models. Higher aortic stiffness assessed by PWV is associated with increased risk for a first cardiovascular event. Aortic PWV improves risk prediction when added to standard risk factors and may represent a valuable biomarker of cardiovascular disease risk in the community.

  1. Impaired auditory temporal selectivity in the inferior colliculus of aged Mongolian gerbils.

    PubMed

    Khouri, Leila; Lesica, Nicholas A; Grothe, Benedikt

    2011-07-06

    Aged humans show severe difficulties in temporal auditory processing tasks (e.g., speech recognition in noise, low-frequency sound localization, gap detection). A degradation of auditory function with age is also evident in experimental animals. To investigate age-related changes in temporal processing, we compared extracellular responses to temporally variable pulse trains and human speech in the inferior colliculus of young adult (3 month) and aged (3 years) Mongolian gerbils. We observed a significant decrease of selectivity to the pulse trains in neuronal responses from aged animals. This decrease in selectivity led, on the population level, to an increase in signal correlations and therefore a decrease in heterogeneity of temporal receptive fields and a decreased efficiency in encoding of speech signals. A decrease in selectivity to temporal modulations is consistent with a downregulation of the inhibitory transmitter system in aged animals. These alterations in temporal processing could underlie declines in the aging auditory system, which are unrelated to peripheral hearing loss. These declines cannot be compensated by traditional hearing aids (that rely on amplification of sound) but may rather require pharmacological treatment.

  2. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE PAGES

    Backus, Sterling; Durfee, Charles; Lemons, Randy; ...

    2017-02-10

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  3. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling; Durfee, Charles; Lemons, Randy

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  4. Two-stage Raman compression of laser pulses with controllable phase fronts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. A.; Fraiman, G. M.; State University of Nizhny Novgorod, Nizhny Novgorod

    2015-05-15

    The phase front of an ultrashort laser pulse undergoing Raman amplification and compression in inhomogeneous plasma can be controlled such that it is unaffected by density gradients and thus remains focusable. This is achieved by performing the Raman backscattering in two stages. At the first stage, the standard nonlinear Raman compression of a seed wave takes place and produces a short ultraintense pulse, which yet may be poorly focusable. At the second stage, this amplified pulse is scattered again, now serving as a pump, off a second copy of the initial seed. This stage, which utilizes a denser and shortermore » plasma, is intended not for compression but rather for passing a significant fraction of the energy to the second seed quickly. Then, the output pulse that is produced is not just short and ultraintense, but also has the smooth phase front of the original seed.« less

  5. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal.

    PubMed

    Qin, Z P; Xie, G Q; Ma, J; Ge, W Y; Yuan, P; Qian, L J; Su, L B; Jiang, D P; Ma, F K; Zhang, Q; Cao, Y X; Xu, J

    2014-04-01

    We have demonstrated a diode-pumped passively mode-locked femtosecond Nd,Y:CaF2 disordered crystal laser for the first time to our knowledge. By choosing appropriate Y-doping concentration, a broad fluorescence linewidth of 31 nm has been obtained from the gain linewidth-variable Nd,Y:CaF2 crystal. With the Nd,Y:CaF2 disordered crystal as gain medium, the mode-locked laser generated pulses with pulse duration as short as 103 fs, average output power of 89 mW, and repetition rate of 100 MHz. To our best knowledge, this is the shortest pulse generated from Nd-doped crystal lasers so far. The research results show that the Nd,Y:CaF2 disordered crystal will be a potential alternative as gain medium of repetitive chirped pulse amplification for high-peak-power lasers.

  6. High power industrial picosecond laser from IR to UV

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  7. Performance tests of the 5 TW, 1 kHz, passively CEP-stabilized ELI-ALPS SYLOS few-cycle laser system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stanislauskas, Tomas; Budriūnas, Rimantas; Veitas, Gediminas; Gadonas, Darius; Adamonis, Jonas; Aleknavičius, Aidas; Masian, Gžegož; Kuprionis, Zenonas; Hoff, Dominik; Paulus, Gerhard G.; Börzsönyi, Ádám.; Toth, Szabolcs; Kovacs, Mate; Csontos, János; López-Martens, Rodrigo; Osvay, Károly

    2017-05-01

    ELI-ALPS in Hungary, one of the three pillars of the Extreme Light Infrastructure, aims at providing diverse light sources, including energetic attosecond pulses at the highest possible repetition rates. One of the main laser systems for driving plasma and gas-based HHG stages, is a state-of-the-art 1 kHz few-cycle laser called SYLOS. Targeted pulse parameters are an energy of 100 mJ and a duration shorter than two optical cycles (<6 fs), with outstanding energy, phase and pointing stability as well as high spatiotemporal quality. The first phase of the laser system has already set a new standard in kHz laser system engineering and technology. The performance and reliability of the SYLOS laser have been consistently tested over the course of a six-month trial period. During this time the system was running at least 8 hours a day at full power for more than 5 months. The current output parameters are 5 TW peak power, 45 mJ pulse energy with 9 fs duration and 300 mrad CEP stability, while the spectrum spans over 300 nm around 840 nm central wavelength. The layout follows the general scheme NOPCPA architecture with a passively CEP-stabilized front-end. The pulses are negatively chirped for the amplification process and compressed by a combination of large aperture bulk glass blocks and positively chirped mirrors under vacuum conditions at the output. During the trial period, the laser system demonstrated outstanding reliability. Daily startup and shutdown procedures take only a few minutes, and the command-control system enables pulse parameters to be modified instantly. Controlling the delays of individual NOPCPA stages makes it possible to tailor the output spectrum of the pulses and tune the central wavelength between 770 nm and 940 nm. We performed several experimental tests to find out the pulse characteristics. Pulse duration was verified with Wizzler, chirp-scan, autocorrelation methods and a stereo-ATI independently. All of them confirmed the sub-9 fs pulse duration. We recorded the long-term waveform and pointing stabilities of the beam in order to find out the effect of the temperature load on optical elements. Excluding a short initial warm up time, stable signals were observed in general. The in-loop and out-of-loop CEP stability was cross-checked between f-to-2f and stereo-ATI devices. Moreover, the inherent CEP stability of the system without feedback loop was also found to be surprisingly robust thanks to the passive CEP stabilization of the front-end. The polarization contrast was better than 1000:1. The temporal contrast was also measured independently with Sequoia and Tundra cross-correlators, and on the ns scale with a fast photodiode and GHz oscilloscope as well. Results showed that the pulse pedestal generally consists of parametric superfluorescence below the 1E-7 level and about 100 ps long, well in accordance with the pump duration. Delaying the pump pulse allows us to shift the seed pulse to the front and reach a pre-pulse pedestal below 1E-11 at 30 ps before the pulse peak. Detailed findings on all the examined pulse characteristics of the SYLOS laser will be reported in this presentation.

  8. Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, G.; Spatschek, K. H.

    Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called π-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur,more » the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.« less

  9. Design Optimization of Innovative High-Level Waste Pipeline Unplugging Technologies - 13341

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribanic, T.; Awwad, A.; Varona, J.

    2013-07-01

    Florida International University (FIU) is currently working on the development and optimization of two innovative pipeline unplugging methods: the asynchronous pulsing system (APS) and the peristaltic crawler system (PCS). Experiments were conducted on the APS to determine how air in the pipeline influences the system's performance as well as determine the effectiveness of air mitigation techniques in a pipeline. The results obtained during the experimental phase of the project, including data from pipeline pressure pulse tests along with air bubble compression tests are presented. Single-cycle pulse amplification caused by a fast-acting cylinder piston pump in 21.8, 30.5, and 43.6 mmore » pipelines were evaluated. Experiments were conducted on fully flooded pipelines as well as pipelines that contained various amounts of air to evaluate the system's performance when air is present in the pipeline. Also presented are details of the improvements implemented to the third generation crawler system (PCS). The improvements include the redesign of the rims of the unit to accommodate a camera system that provides visual feedback of the conditions inside the pipeline. Visual feedback allows the crawler to be used as a pipeline unplugging and inspection tool. Tests conducted previously demonstrated a significant reduction of the crawler speed with increasing length of tether. Current improvements include the positioning of a pneumatic valve manifold system that is located in close proximity to the crawler, rendering tether length independent of crawler speed. Additional improvements to increase the crawler's speed were also investigated and presented. Descriptions of the test beds, which were designed to emulate possible scenarios present on the Department of Energy (DOE) pipelines, are presented. Finally, conclusions and recommendations for the systems are provided. (authors)« less

  10. High power Yb:CALGO ultrafast regenerative amplifier for industrial application

    NASA Astrophysics Data System (ADS)

    Caracciolo, E.; Guandalini, A.; Pirzio, F.; Kemnitzer, M.; Kienle, F.; Agnesi, A.; Aus der Au, J.

    2017-02-01

    We present a high-power, single-crystal based, Yb:CALGO regenerative amplifier. The system delivers more than 50 W output power in continuous-wave regime, with diffraction limited beam quality. In Q-switching regime the spectrum is centered at 1043 nm and is 11 nm wide. In regenerative amplification experiments we achieved 34 W at 500 kHz with 12.7 nm FWHM wide spectra centered at 1044 nm seeding with a broadly tunable, single-prism SESAM mode-locked Yb:CALGO laser providing 9 nm wide spectra at 1049 nm. Pulse duration after compression was 140 fs, with excellent beam quality (M2 < 1.25).

  11. White light for the fast lane: supercontinuum generation in all-normal dispersion fibers for ultrafast photonics

    NASA Astrophysics Data System (ADS)

    Heidt, Alexander M.

    2014-03-01

    This talk will give an overview of the unique properties of supercontinuum generation (SCG) in all-normal dispersion (ANDi) fibers pumped by ultrashort pulses and the possibilities they offer for ultrafast photonics applications. In contrast to their anomalously pumped counterparts, the SCG process in ANDi fibers conserves a single ultrashort pulse in the time domain, completely suppresses soliton formation and decay, and avoids noise-amplifying nonlinear dynamics. The resulting spectra combine the best of both worlds - the broad, more than octave-spanning bandwidths usually associated with anomalous dispersion pumping with the high temporal coherence, pulse-to-pulse stability and well-defined temporal pulse characteristics known from the normal dispersion regime. These characteristics are ideally suited for ultrafast photonics, and I will present application examples including the generation of high quality single-cycle pulses and their amplification, as well as ultrafast spectroscopy. This talk will also explore the exciting new possibilities enabled by extending this approach into the mid-IR spectral region using novel soft glass fiber designs.

  12. Apparatus and method for enabling quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heebner, John E.; Sridharan, Arun K.; Dawson, Jay Walter

    Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.

  13. Efficient Operation of Conductively Cooled Ho:Tm:LuLiF Laser Oscillator/Amplifier

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Bai, Yingxin; Trieu, Bo; Petros, M.; Petzar, Paul; Lee, Hyung; Singh, U.

    2008-01-01

    A conductively-cooled Ho:Tm:LuLiF laser oscillator generates 1.6J normal mode pulses at 10Hz with optical to optical efficiency of 20%. When the laser head module is used as the amplifier, the double-pass small-signal amplification excesses 25.

  14. Amplification of Anti-Tumor Immunity Without Autoimmune Complications

    DTIC Science & Technology

    2007-05-01

    penicillin, and 100 Ag/mL streptomycin. Generation of Her-2–expressing EL4 /E2 cells was described previously (29), and the cells were maintained in...was used to deliver eight pulses at 100 V for 25 ms/pulse. To measure tumor growth, mice were challenged s.c. with 2 105 EL4 /E2 cells in the flank...vaccinated with pE2TM and pGM-CSF, and then inoculated s.c. with EL4 /E2 cells 2 weeks after the last immunization. EL4 /E2 tumors developed and

  15. Improving carrier-envelope phase stability in optical parametric chirped-pulse amplifiers by control of timing jitter.

    PubMed

    Hädrich, S; Rothhardt, J; Krebs, M; Demmler, S; Limpert, J; Tünnermann, A

    2012-12-01

    It is shown that timing jitter in optical parametric chirped-pulse amplification induces spectral drifts that transfer to carrier-envelope phase (CEP) instabilities via dispersion. Reduction of this effect requires temporal synchronization, which is realized with feedback obtained from the angularly dispersed idler. Furthermore, a novel method to measure the CEP drifts by utilizing parasitic second harmonic generation within parametric amplifiers is presented. Stabilization of the timing allows the obtainment of a CEP stability of 86 mrad over 40 min at 150 kHz repetition rate.

  16. Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker.

    PubMed

    Zhu, Ye; Wang, Huijuan; Wang, Lin; Zhu, Jing; Jiang, Wei

    2016-02-03

    An ultrasensitive and highly selective electrochemical assay was first attempted by combining the rolling circle amplification (RCA) reaction with poly(thymine)-templated copper nanoparticles (CuNPs) for cascade signal amplification. As proof of concept, prostate specific antigen (PSA) was selected as a model target. Using a gold nanoparticle (AuNP) as a carrier, we synthesized the primer-AuNP-aptamer bioconjugate for signal amplification by increasing the primer/aptamer ratio. The specific construction of primer-AuNP-aptamer/PSA/anti-PSA sandwich structure triggered the effective RCA reaction, in which thousands of tandem poly(thymine) repeats were generated and directly served as the specific templates for the subsequent CuNP formation. The signal readout was easily achieved by dissolving the RCA product-templated CuNPs and detecting the released copper ions with differential pulse stripping voltammetry. Because of the designed cascade signal amplification strategy, the newly developed method achieved a linear range of 0.05-500 fg/mL, with a remarkable detection limit of 0.020 ± 0.001 fg/mL PSA. Finally, the feasibility of the developed method for practical application was investigated by analyzing PSA in the real clinical human serum samples. The ultrasensitivity, specificity, convenience, and capability for analyzing the clinical samples demonstrate that this method has great potential for practical disease diagnosis applications.

  17. Rapid DNA Amplification Using a Battery-Powered Thin-Film Resistive Thermocycler

    PubMed Central

    Herold, Keith E.; Sergeev, Nikolay; Matviyenko, Andriy; Rasooly, Avraham

    2010-01-01

    Summary A prototype handheld, compact, rapid thermocycler was developed for multiplex analysis of nucleic acids in an inexpensive, portable configuration. Instead of the commonly used Peltier heating/cooling element, electric thin-film resistive heater and a miniature fan enable rapid heating and cooling of glass capillaries leading to a simple, low-cost Thin-Film Resistive Thermocycler (TFRT). Computer-based pulse width modulation control yields heating rates of 6–7 K/s and cooling rates of 5 K/s. The four capillaries are closely coupled to the heater, resulting in low power consumption. The energy required by a nominal PCR cycle (20 s at each temperature) was found to be 57 ± 2 J yielding an average power of approximately 1.0 W (not including the computer and the control system). Thus the device can be powered by a standard 9 V alkaline battery (or other 9 V power supply). The prototype TFRT was demonstrated (in a benchtop configuration) for detection of three important food pathogens (E. coli ETEC, Shigella dysenteriae, and Salmonella enterica). PCR amplicons were analyzed by gel electrophoresis. The 35 cycle PCR protocol using a single channel was completed in less then 18 min. Simple and efficient heating/cooling, low cost, rapid amplification, and low power consumption make the device suitable for portable DNA amplification applications including clinical point of care diagnostics and field use. PMID:19159110

  18. Long-term hole spin memory in the resonantly amplified spin coherence of InGaAs/GaAs quantum well electrons.

    PubMed

    Yugova, I A; Sokolova, A A; Yakovlev, D R; Greilich, A; Reuter, D; Wieck, A D; Bayer, M

    2009-04-24

    Pulsed optical excitation of the negatively charged trion has been used to generate electron spin coherence in an n-doped (In,Ga)As/GaAs quantum well. The coherence is monitored by resonant spin amplification detected at times exceeding the trion lifetime by 2 orders of magnitude. Still, even then signatures of the hole spin dynamics in the trion complex are imprinted in the signal leading to an unusual batlike shape of the magnetic field dispersion of spin amplification. From this shape information about the spin relaxation of both electrons and holes can be derived.

  19. Soliton-induced relativistic-scattering and amplification.

    PubMed

    Rubino, E; Lotti, A; Belgiorno, F; Cacciatori, S L; Couairon, A; Leonhardt, U; Faccio, D

    2012-01-01

    Solitons are of fundamental importance in photonics due to applications in optical data transmission and also as a tool for investigating novel phenomena ranging from light generation at new frequencies and wave-trapping to rogue waves. Solitons are also moving scatterers: they generate refractive index perturbations moving at the speed of light. Here we found that such perturbations scatter light in an unusual way: they amplify light by the mixing of positive and negative frequencies, as we describe using a first Born approximation and numerical simulations. The simplest scenario in which these effects may be observed is within the initial stages of optical soliton propagation: a steep shock front develops that may efficiently scatter a second, weaker probe pulse into relatively intense positive and negative frequency modes with amplification at the expense of the soliton. Our results show a novel all-optical amplification scheme that relies on soliton induced scattering.

  20. Stimulated resonant x-ray Raman scattering with incoherent radiation

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Rohringer, Nina

    2013-11-01

    We present a theoretical study on stimulated electronic Raman scattering in neon by resonant excitation with an x-ray free electron laser (XFEL). This study is in support of the recent experimental demonstration [C. Weninger , Phys. Rev. Lett. (to be published)] of stimulated x-ray Raman scattering. Focusing the broadband XFEL pulses into a cell of neon gas at atmospheric pressure a strong inelastic x-ray scattering signal in the forward direction was observed, as the x-ray energy was varied across the region of core-excited Rydberg states and the K edge. The broadband and intrinsically incoherent x-ray pulses from the XFEL lead to a rich, structured line shape of the scattered radiation. We present a generalized Maxwell-Liouville-von Neumann approach to self-consistently solve for the amplification of the scattered radiation along with the time evolution of the density matrix of the atomic and residual ionic system. An in-depth analysis of the evolution of the emission spectra as a function of the Raman gain is presented. Furthermore, we propose the use of statistical methods to obtain high-resolution scattering data beyond the lifetime broadening despite pumping with incoherent x-ray pulses.

  1. High power green lasers for gamma source

    NASA Astrophysics Data System (ADS)

    Durand, Magali; Sevillano, Pierre; Alexaline, Olivier; Sangla, Damien; Casanova, Alexis; Aubourg, Adrien; Saci, Abdelhak; Courjaud, Antoine

    2018-02-01

    A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750 x 500 x 150 mm), which allows a pulse-pulse stability of 0.1 % rms, and a long-term stability of 1,9 % over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 4.4 ps. As for the regenerative amplifier a long-term stability of 1.9 % over 30 hours was achieved in an environment with +/-1°C temperature fluctuations The compression and Second Harmonics Generation Stages have allowed the conversion of 150 mJ of uncompressed infrared beam into 60 mJ at 515 nm.

  2. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  3. Apparatus and method for recharging a string a avalanche transistors within a pulse generator

    DOEpatents

    Fulkerson, E. Stephen

    2000-01-01

    An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.

  4. Approach for describing spatial dynamics of quantum light-matter interaction in dispersive dissipative media

    NASA Astrophysics Data System (ADS)

    Zyablovsky, A. A.; Andrianov, E. S.; Nechepurenko, I. A.; Dorofeenko, A. V.; Pukhov, A. A.; Vinogradov, A. P.

    2017-05-01

    Solving the challenging problem of the amplification and generation of an electromagnetic field in nanostructures enables us to implement many properties of the electromagnetic field at the nanoscale in practical applications. A first-principles quantum-mechanical consideration of such a problem is sufficiently restricted by the exponentially large number of degrees of freedom and does not allow the electromagnetic-field dynamics to be described if it involves a high number of interacting atoms and modes of the electromagnetic field. Conversely, the classical description of electromagnetic fields is incorrect at the nanoscale due to the high level of quantum fluctuations connected to high dissipation and noise levels. In this paper, we develop a framework with a significantly reduced number of degrees of freedom, which describes the quantum spatial dynamics of electromagnetic fields interacting with atoms. As an example, we consider the interaction between atoms placed in a metallic subwavelength groove and demonstrate that a spontaneously excited electromagnetic pulse propagates with the group velocity. The developed approach may be exploited to describe nonuniform amplification and propagation of electromagnetic fields in arbitrary dispersive dissipative systems.

  5. Fully integrated Q-switch for commercial high-power resonator with solitary XLMA-fiber

    NASA Astrophysics Data System (ADS)

    Lange, R.; Bachert, C.; Rehmann, G.; Weber, H.; Luxen, R.; Enns, H.; Schenk, M.; Hosdorf, S.; Marfels, S.; Bay, M.; Kösters, A.; Krause, V.; Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.

    2018-02-01

    In surface processing applications the correlation of laser power to processing speed demands a further enhancement of the performance of short-pulsed laser sources with respect to the investment costs. The frequently applied concept of master oscillator power amplifier relies on a complex structure, parts of which are highly sensitive to back reflected amplified radiation. Aiming for a simpler, robust source using only a single ytterbium doped XLMA fiber in a q-switched resonator appears as promising design approach eliminating the need for subsequent amplification. This concept requires a high power-tolerant resonator which is provided by the multikilowatt laser platform of Laserline including directly water-cooled active fiber thermal management. Laserline GmbH and Fraunhofer Institute for Laser Technology joined their forces1 to upgrade standard high power laser sources for short-pulsed operation exceeding 1 kW of average power. Therefor a compact, modular qswitch has been developed. In this paper the implementation of a polarization independent q-switch into an off-the-shelf multi-kilowatt diodepumped continuous wave fiber source is shown. In this early step of implementation we demonstrated more than 1000 W of average power at pulse lengths below 50 ns FWHM and 7.5 mJ pulse energy. The M2 corresponds to 9.5. Reliability of the system is demonstrated based on measurements including temperature and stability records. We investigated the variation possibilities concerning pulse parameters and shape as well as upcoming challenges in power up-scaling.

  6. Analytic and computational modelling of super-radiant pulse compression in plasma and comparisons with experiment

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady; Kalmykov, Serguei; Dreher, Matthias; Meyer-Ter-Vehn, Juergen

    2003-10-01

    The strongly non-linear regime of Raman backscattering [1,2] holds the promise of compressing long low-intensity laser beams into ultra-short high intensity pulses. As the short pulse is amplified by the long counter-propagating pump via backscattering the pump off the nonlinear plasma wave, its duration shrinks and intensity grows. The increase of the bandwidth of the amplified pulse only occurs in the nonlinear amplification regime, and is its most telling signature. Recent experiments at MPQ carried out in the strongly nonlinear regime reveal two previously unobserved features: (i) bandwidth expansion, and (ii) breakdown of the initially smooth amplified pulse into several spikes. Using semi-analytic model and particle-in-cell simulations, we explain the multiple pulse formation by the synchrotron motion of plasma electrons in the ponderomotive potential. Self-similar solutions consisting of multiple spikes are derived, and their nonlinear frequency shifts evaluated. The nonlinear focusing of the pulse by the pump is predicted and compared with experimental observations. [1] G. Shvets et. al., Phys. Rev. Lett. 81, 4879 (1998). [2] A. Pukhov, Rep. Progr. Phys. 66, 47 (1998).

  7. Pulsed hybrid dual wavelength Y-branch-DFB laser-tapered amplifier system suitable for water vapor detection at 965 nm with 16 W peak power

    NASA Astrophysics Data System (ADS)

    Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Hoffmann, Thomas; Liero, Armin; Tränkle, Günther

    2016-03-01

    A master oscillator power amplifier system emitting alternatingly at two neighbored wavelengths around 965 nm is presented. As master oscillator (MO) a Y-branch DFB-laser is used. The two branches, which can be individually controlled, deliver the two wavelengths needed for a differential absorption measurement of water vapor. Adjusting the current through the DFB sections, the wavelength can be adjusted with respect to the targeted either "on" or "off" resonance, respectively wavelength λon or wavelength λoff. The emission of this laser is amplified in a tapered amplifier (TA). The ridge waveguide section of the TA acts as optical gate to generate short pulses with duration of 8 ns at a repetition rate of 25 kHz, the flared section is used for further amplification to reach peak powers up to 16 W suitable for micro-LIDAR (Light Detection and Ranging). The necessary pulse current supply user a GaN-transistor based driver electronics placed close to the power amplifier (PA). The spectral properties of the emission of the MO are preserved by the PA. A spectral line width smaller than 10 pm and a side mode suppression ratio (SMSR) of 37 dB are measured. These values meet the demands for water vapor absorption measurements under atmospheric conditions.

  8. A compact dual-wavelength fiber laser: some design aspects

    NASA Astrophysics Data System (ADS)

    Ban, Christian; Zadravec, Dusan

    2017-05-01

    High performance in combination with small size, low weight and low power consumption are among the main drivers in modern defense and commercial applications of laser systems. Consequently, designers of such systems strive for innovative solutions in the field of laser technology. Ten years ago Safran Vectronix AG (hereafter Vectronix) pioneered these activities with the fielding of the first fiber laser for hand-held rangefinders. This paper will deal with the latest evolution of an eye-safe fiber laser source which can emit two wavelengths for an extended range of applications. In order to comply with high performance requirements the laser on one side has to produce high enough pulse energy and on the other side - especially due to the ever increasing requirement for compactness - to use so called single-stage amplification in combination with bending insensitive fiber solutions. Also, the ASE (Amplified Spontaneous Emission) has to be reduced as much as possible as this light enters the eye safety equation but does not contribute in terms of range performance. All of this has to meet severe environmental requirements typical for most demanding defense applications. Additionally, the laser in its rangefinding mode has to produce a sequence of high frequency pulses in such a way that no substantial temperature effects would arise and thus impair either the pulse energy or the boresight alignment. Additionally, in this paper, a compact dual-stage dual-wavelength version of the above laser will be described, which has been developed to generate much stronger pulses for very long rangefinding applications.

  9. Mechanisms of pulse pressure amplification dipping pattern during sleep time: the SAFAR study.

    PubMed

    Argyris, Antonios A; Nasothimiou, Efthimia; Aissopou, Evaggelia; Papaioannou, Theodoros G; Zhang, Yi; Blacher, Jacques; Safar, Michel E; Sfikakis, Petros P; Protogerou, Athanase D

    2018-02-01

    The difference in pulse pressure (PP) between peripheral arteries and the aorta, called pulse pressure amplification (PPamp), is a well-described physiological phenomenon independently associated with cardiovascular events. Recent studies suggest that it exhibits circadian variability. Our aim was to detect the factors associated with the circadian variability of PPamp. In 497 consecutive subjects (aged 54 years, 56.7% male, 79.7% hypertensives), we assessed the circadian pattern of peripheral and central arterial hemodynamics by 24-hour evaluation of brachial and aortic blood pressure (BP), augmentation index (AI), and pulse wave velocity (PWV) using a validated oscillometric device (Mobil-O-Graph). All parameters exhibited a circadian variation. Sleep dipping (decrease) pattern was observed for PPamp, brachial and aortic systolic BP, mean BP, and PWV, whereas a rising pattern (higher sleep than wake values) was observed for brachial PP, aortic PP, and AI. The factors independently associated with the less sleep dipping in PPamp were older age, lower height, the use of antihypertensive medication, and sleep decrease in arterial stiffness (PWV), whereas female gender, the presence of hypertension, sleep increase of pressure wave reflections (AI), sleep decrease in heart rate, and mean BP were associated with a greater sleep-dipping in PPamp. These data provide further pathophysiological understanding of the mechanisms leading to PPamp dipping. Several implications regarding the clinical use of the aortic and brachial BP, especially during sleep time, are raised that should be addressed in future research. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  10. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Ren, Xiaoyang; Sawant, Rupa R; Wu, Xiangwei; Torchilin, Vladimir P; Lapotko, Dmitri O

    2014-07-01

    Chemoradiation-resistant cancers limit treatment efficacy and safety. We show here the cancer cell-specific, on-demand intracellular amplification of chemotherapy and chemoradiation therapy via gold nanoparticle- and laser pulse-induced mechanical intracellular impact. Cancer aggressiveness promotes the clustering of drug nanocarriers and gold nanoparticles in cancer cells. This cluster, upon exposure to a laser pulse, generates a plasmonic nanobubble, the mechanical explosion that destroys the host cancer cell or ejects the drug into its cytoplasm by disrupting the liposome and endosome. The same cluster locally amplifies external X-rays. Intracellular synergy of the mechanical impact of plasmonic nanobubble, ejected drug and amplified X-rays improves the efficacy of standard chemoradiation in resistant and aggressive head and neck cancer by 100-fold in vitro and 17-fold in vivo, reduces the effective entry doses of drugs and X-rays to 2-6% of their clinical doses and efficiently spares normal cells. The developed quadrapeutics technology combines four clinically validated components and transforms a standard macrotherapy into an intracellular on-demand theranostic microtreatment with radically amplified therapeutic efficacy and specificity.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel S. Clark; Nathaniel J. Fisch

    A critical issue in the generation of ultra-intense, ultra-short laser pulses by backward Raman scattering in plasma is the stability of the pumping pulse to premature backscatter from thermal fluctuations in the preformed plasma. Malkin et al. [V.M. Malkin, et al., Phys. Rev. Lett. 84 (6):1208-1211, 2000] demonstrated that density gradients may be used to detune the Raman resonance in such a way that backscatter of the pump from thermal noise can be stabilized while useful Raman amplification persists. Here plasma conditions for which the pump is stable to thermal Raman backscatter in a homogeneous plasma and the density gradientsmore » necessary to stabilize the pump for other plasma conditions are quantified. Other ancillary constraints on a Raman amplifier are also considered to determine a specific region in the Te-he plane where Raman amplification is feasible. By determining an operability region, the degree of uncertainty in density or temperature tolerable for an experimental Raman amplifier is thus also identified. The fluid code F3D, which includes the effects of thermal fluctuations, is used to verify these analytic estimates.« less

  12. Design and analysis of APD photoelectric detecting circuit

    NASA Astrophysics Data System (ADS)

    Fang, R.; Wang, C.

    2015-11-01

    In LADAR system, photoelectric detecting circuit is the key part in photoelectric conversion, which determines speed of respond, sensitivity and fidelity of the system. This paper presents the design of a matched APD Photoelectric detecting circuit. The circuit accomplishes low-noise readout and high-gain amplification of the weak photoelectric signal. The main performances, especially noise and transient response of the circuit are analyzed. In order to obtain large bandwidth, decompensated operational amplifiers are applied. Circuit simulations allow the architecture validation and the global performances to be predicted. The simulation results show that the gain of the detecting circuit is 630kΩ while the bandwidth is 100MHz, and 28dB dynamic range is achieved. Furthermore, the variation of the output pulse width is less than 0.9ns.

  13. Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier.

    PubMed

    Ahrens, J; Prochnow, O; Binhammer, T; Lang, T; Schulz, B; Frede, M; Morgner, U

    2016-04-18

    We present a compact few-cycle 100 kHz OPCPA system pumped by a CPA-free picosecond Nd:YVO4 solid-state amplifier with all-optical synchronization to an ultra-broadband Ti:sapphire oscillator. This pump approach shows an exceptional conversion rate into the second harmonic of almost 78%. Efficient parametric amplification was realized by a two stage double-pass scheme with following chirped mirror compressor. The amount of superfluorescence was measured by an optical cross-correlation. Pulses with a duration of 8.7 fs at energies of 18 µJ are demonstrated. Due to the peak power of 1.26 GW, this simple OPCPA approach forms an ideal high repetition rate driving source for high-order harmonic generation.

  14. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  15. 0.27 GW Soft X-Ray Pulse Using a Plasma-Based Amplification Chain

    NASA Astrophysics Data System (ADS)

    Oliva, E.; Fajardo, M.; Velarde, P.; Ros, D.; Sebban, S.; Zeitoun, P.

    Seeding plasma-based soft-x-ray lasers (PBSXRL) with high order harmonics (HOH) has been demonstrated in plasmas created from gas targets (Zeitoun et al. in Nature 431:426, 2004 and solid targets (Wang et al. in Nat. Photonics 2:94, 2008), obtaining 1 μJ, 1 ps pulses. Reaching multi-microJoule, hundreds of fs regime is the ultimate goal. Recent papers (Oliva et al. in Opt. Lett. 34(17):2640-2642, 2009; Phys. Rev. E 82(5):056408, 2010) showed that increasing the width (up to 1 mm) of the plasma increases the amplification surface and improves the gain zone properties. Up to 20 μJ could be extracted when seeding but the temporal duration and profile was not studied. Simulations show that the HOH is weakly amplified whereas most of the energy is within a long (several picoseconds) wake induced by the HOH (Al'miev et al. in Phys. Rev. Lett. 99(12):123902, 2007; Kim et al. in Phys. Rev. Lett. 104:053901, 2010). Amplified Spontaneous Emission (ASE) is also present in the output beam. Using the 1D Maxwell-Bloch code DeepOne (Oliva et al. in Phys. Rev. A 84(1):013811, 2011) we will show that fully coherent, wake and ASE-suppressed, 21.6 μJ, 80 fs pulse can be obtained when optimizing at the same time both the seed and the plasma conditions.

  16. Several hundred kHz repetition rate nanosecond pulses amplification in Er-Yb co-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Yin, Ke; Zhang, Bin; Xue, Guanghui; Hou, Jing

    2014-07-01

    We have experimentally investigated several hundred kHz repetition rate 1,550-nm nanosecond pulses amplification in Er-Yb co-doped fiber amplifier (EYDFA). The experimental setup has three stage fiber amplifiers. At the output of the second stage EYDFA, Yb3+ ions induced amplified spontaneous emission (Yb-ASE) is not observed owing to the low pump power. In the third stage EYDFA, a simultaneously seeded 1,064-nm continuous-wave laser is used to control Yb-ASE. Without any additional 1,064-nm signal, significantly backward Yb-ASE which caused loss-induced heat accumulation at the input port of the pump combiner can be observed. The monitored temperature at the input port of the pump combiner rapidly grows from 30 to 80 °C when the pump power is turned from 20 to 32 W. When a 196-mW forward 1,064-nm laser is added, the monitored backward Yb-ASE power is significantly declined, and the monitored temperature is kept below 35 °C. But, the additional signal caused a large power fraction at 1,064 nm in the output laser. In our experiment at the maximum pump power of 48.5 W, the total output power is 20 W with ~6.4-W 1,550-nm pulsed laser and ~13-W 1,064-nm continuous-wave laser.

  17. Challenges in miniaturized automotive long-range lidar system design

    NASA Astrophysics Data System (ADS)

    Fersch, Thomas; Weigel, Robert; Koelpin, Alexander

    2017-05-01

    This paper discusses the current technical limitations posed on endeavors to miniaturize lidar systems for use in automotive applications and how to possibly extend those limits. The focus is set on long-range scanning direct time of flight LiDAR systems using APD photodetectors. Miniaturization evokes severe problems in ensuring absolute laser safety while maintaining the systems' performance in terms of maximum range, signal-to-noise ratio, detection probability, pixel density, or frame rate. Based on hypothetical but realistic specifications for an exemplary system the complete lidar signal path is calculated. The maximum range of the system is used as a general performance indicator. It is determined with the minimum signal-to-noise ratio required to detect an object. Various system parameters are varied to find their impact on the system's range. The reduction of the laser's pulse width and the right choice for the transimpedance amplifier's amplification have shown to be practicable measures to double the system's range.

  18. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    PubMed

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.

  19. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities, January 1976 to December 1977

    NASA Technical Reports Server (NTRS)

    Javan, A.

    1979-01-01

    A tunable multiatmospheric pulsed CO2 laser with emphasis on experimental features and supporting theoretical analyses important to differential absorption lidar and Doppler lidar measurement of pollutants and wind velocities is reported. The energy deposition and the means to produce the uniform high density plasma in the multiatmospheric medium, through UV preionization of an organic seed gas is discussed. Design features of the pulsed CO2 laser are presented. The radiative processes which are operative and prevent the laser from breaking into oscillations in a large number of modes over its broad amplification bandwidth are described. The mode competition for the transient pulsed laser oscillation in a standing wave and traveling wave ring laser configuration is discussed and contrasted with the approach to steady state oscillations. The latter findings are important to transient injection locking for production of a highly stable pulsed CO2 laser output.

  20. High power all-polarization-maintaining photonic crystal fiber monolithic femtosecond nonlinear chirped-pulse amplifier

    NASA Astrophysics Data System (ADS)

    Lv, Zhiguo; Yang, Zhi; Li, Feng; Yang, Xiaojun; Li, Qianglong; Zhang, Xin; Wang, Yishan; Zhao, Wei

    2018-03-01

    We report on an experimental study on fully fusion spliced high power all-polarization-maintaining Yb-doped photonic crystal fiber (PCF) femtosecond nonlinear chirped-pulse amplifier (CPA), which features large values of the positive third-order dispersion (TOD) superposed from the single-mode fiber stretcher (SMFs) and grating-pair compressor. Compensation of the TOD is realized by means of self-phase modulation (SPM) induced nonlinear phase shift during amplification. Up to 9.8 W of compressed average power at 275 kHz repetition rates with 36 μJ pulse energy and 495 fs pulse width has been obtained. To the best of our knowledge, this is the highest output power generated from the strictly all-fiber nonlinear CPA amplifier in femtosecond domain, which provides a possibility for the industrialized promotion and development of the high energy femtosecond fiber laser.

  1. Amplification of Dynamic Nuclear Polarization at 200 GHz by Arbitrary Pulse Shaping of the Electron Spin Saturation Profile.

    PubMed

    Kaminker, Ilia; Han, Songi

    2018-06-07

    Dynamic nuclear polarization (DNP) takes center stage in nuclear magnetic resonance (NMR) as a tool to amplify its signal by orders of magnitude through the transfer of polarization from electron to nuclear spins. In contrast to modern NMR and electron paramagnetic resonance (EPR) that extensively rely on pulses for spin manipulation in the time domain, the current mainstream DNP technology exclusively relies on monochromatic continuous wave (CW) irradiation. This study introduces arbitrary phase shaped pulses that constitute a train of coherent chirp pulses in the time domain at 200 GHz (7 T) to dramatically enhance the saturation bandwidth and DNP performance compared to CW DNP, yielding up to 500-fold in NMR signal enhancements. The observed improvement is attributed to the recruitment of additional electron spins contributing to DNP via the cross-effect mechanism, as experimentally confirmed by two-frequency pump-probe electron-electron double resonance (ELDOR).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitivemore » electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps {at} 100 {micro}s for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials` achievement of these purposes.« less

  3. LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wang, S.; Rhee, H.; Eichler, H. J.; Meister, S.

    2011-06-01

    We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.

  4. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  5. 160 W 800 fs Yb:YAG single crystal fiber amplifier without CPA.

    PubMed

    Markovic, Vesna; Rohrbacher, Andreas; Hofmann, Peter; Pallmann, Wolfgang; Pierrot, Simonette; Resan, Bojan

    2015-10-05

    We demonstrate a compact and simple two-stage Yb:YAG single crystal fiber amplifier which delivers 160 W average power, 800 fs pulses without chirped pulse amplification. This is the highest average power of femtosecond laser based on SCF. Additionally, we demonstrate the highest small signal gain of 32.5 dB from the SCF in the first stage and the highest extraction efficiency of 42% in the second stage. The excellent performance of the second stage was obtained using the bidirectional pumping scheme, which is applied to SCF for the first time.

  6. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification.

    PubMed

    Yan, Ming; Li, Wenxue; Yang, Kangwen; Zhou, Hui; Shen, Xuling; Zhou, Qian; Ru, Qitian; Bai, Dongbi; Zeng, Heping

    2012-05-01

    We report on a simple scheme to precisely control carrier-envelope phase of a nonlinear-polarization-rotation mode-locked self-started Yb-fiber laser system with an average output power of ∼7  W and a pulse width of 130 fs. The offset frequency was locked to the repetition rate of ∼64.5  MHz with a relative linewidth of ∼1.4  MHz by using a self-referenced feed-forward scheme based on an acousto-optic frequency shifter. The phase noise and timing jitter were calculated to be 370 mrad and 120 as, respectively.

  7. Methods and devices based on brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2003-01-01

    Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.

  8. Optimization of the parameters for intrastromal refractive surgery with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Heisterkamp, Alexander; Ripken, Tammo; Lubatschowski, Holger; Welling, Herbert; Dommer, Wolfgang; Luetkefels, Elke; Mamom, Thanongsak; Ertmer, Wolfgang

    2001-06-01

    Focussing femtosecond laser pulses into a transparent media, such as corneal tissue, leads to optical breakdown, generation of a micro-plasma and, thus, a cutting effect inside the tissue. To proof the potential of fs-lasers in refractive surgery, three-dimensional cutting within the corneal stroma was evaluated. With the use of ultrashort laser pulses within the LASIK procedure (laser in situ keratomileusis) possible complications in handling of a mechanical knife, the microkeratome, can be reduced by using the treatment laser as the keratome itself. To study woundhealing effects, animal studies were carried out in rabbit specimen. The surgical outcome was analyzed by means of histological sections, as well as light and scanning electron microscopy. Dependencies on the dispersion caused by focussing optics were evaluated and optimized. Thus, pulse energies well below 1 (mu) J were sufficient to perform the intrastromal cuts. The laser pulses with a duration of 180 fs and energies of 0.5-100 (mu) J were provided by a modelocked frequency doubled erbium fiber-laser with subsequent chirped pulse amplification in a titanium sapphire amplifier at up to 3 kHz.

  9. Whispering gallery mode lithium niobate microresonators for photonics applications

    NASA Astrophysics Data System (ADS)

    Maleki, Lute; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Matsko, Andrey B.

    2003-07-01

    We review various photonics applications of whispering gallery mode (WGM) dielectric resonators and focus on the capability of generating trains of short optical pulses using WGM lithium niobate cavities. We introduce schemes of optical frequency comb generators, actively mode-locked lasers, and coupled opto-electronic oscillators where WGM cavities are utilized for the light amplification and modulation.

  10. Generation and amplification of sub-THz radiation in a rare gases plasma formed by a two-color femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2018-06-01

    A new approach to constructing the source of radiation in the sub-THz frequency range is discussed. It is based on the strong-field ionization of heavy rare gases with Ramsauer minimum in the transport cross-section by a two-color () femtosecond laser pulse. Then a four-photon nonlinear process ( are the frequencies from the spectral width of the pulse with frequency ω, and is the frequency from the spectral width of the second harmonic 2ω) with a transition to the initial state results in a low-frequency spontaneous emission that can be amplified in the strongly nonequilibrium laser plasma if the position of the photoelectron peaks is located in the region of growing energy transport cross-section.

  11. Electronic control of different generation regimes in mode-locked all-fibre F8 laser

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Ivanenko, Aleksey; Kokhanovskiy, Alexey; Smirnov, Sergey

    2018-04-01

    We demonstrate for the first time an electronically controlled realisation of markedly different generation regimes in a mode-locked all-fibre figure-eight (F8) Yb-doped laser. Electronic adjustment of the ratio of pumping powers of two amplification stages in a nonlinear amplifying loop mirror enables the establishment of stable pulse generation regimes with different degrees of coherence and control over their parameters within relatively broad limits, with the pulse duration range exceeding a factor of two in the picosecond domain for coherent and incoherent pulses, the energy range exceeding an order of magnitude for incoherent pulses (2.2-24.8 nJ) and over a factor of 8 for coherent pulses (1.9-16.2 nJ). Adjustment of the pumping powers allows one to maintain the duration of the coherent pulses and to set their peak power in the range of 32.5-292.5 W. The proposed configuration of electronic control over the radiation parameters of a mode-locked all-fibre F8 laser enables reproducible generation of pulses of different types with specified parameters within a broad range of values.

  12. Rapid and Sensitive Detection of Norovirus Genomes in Oysters by a Two-Step Isothermal Amplification Assay System Combining Nucleic Acid Sequence-Based Amplification and Reverse Transcription-Loop-Mediated Isothermal Amplification Assays▿

    PubMed Central

    Fukuda, Shinji; Sasaki, Yukie; Seno, Masato

    2008-01-01

    We developed a two-step isothermal amplification assay system, which achieved the detection of norovirus (NoV) genomes in oysters with a sensitivity similar to that of reverse transcription-seminested PCR. The time taken for the amplification of NoV genomes from RNA extracts was shortened to about 3 h. PMID:18456857

  13. Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yen; Lee, Gwo-Bin; Lin, Jr-Lung; Huang, Fu-Chun; Liao, Chia-Sheng

    2005-06-01

    The present paper reports a fully automated microfluidic system for the DNA amplification process by integrating an electroosmotic pump, an active micromixer and an on-chip temperature control system. In this DNA amplification process, the cell lysis is initially performed in a micro cell lysis reactor. Extracted DNA samples, primers and reagents are then driven electroosmotically into a mixing region where they are mixed by the active micromixer. The homogeneous mixture is then thermally cycled in a micro-PCR (polymerase chain reaction) chamber to perform DNA amplification. Experimental results show that the proposed device can successfully automate the sample pretreatment operation for DNA amplification, thereby delivering significant time and effort savings. The new microfluidic system, which facilitates cell lysis, sample driving/mixing and DNA amplification, could provide a significant contribution to ongoing efforts to miniaturize bio-analysis systems by utilizing a simple fabrication process and cheap materials.

  14. Quantum and classical properties of soliton propagation in optical fibers

    NASA Astrophysics Data System (ADS)

    Krylov, Dmitriy

    2001-05-01

    Quantum and classical aspects of nonlinear optical pulse propagation in optical fibers are studied with the emphasis on temporal solitons. The theoretical and experimental investigation focuses on phenomena that can fundamentally limit transmission and detection of optical signals in fiber-optic communication systems that employ solitons. In transmission experiments the first evidence is presented that a pre-chirped high-order soliton pulse propagating in a low anomalous dispersion optical fiber will irreversibly break up into an ordered train of fundamental (N = 1) solitons. The experimental results confirm previous analytical predictions and show excellent agreement with numerical simulations. This phenomenon presents a fundamental limitation on systems that utilize dispersion-management or pre-chirping of optical pulses, and has to be taken into consideration when designing such systems. The experiments also show that the breakup process can be repeated by cascading two independent breakup stages. Each stage accepts a single input pulse and produces two independent pulses. The stages are cascaded to produce a one-to-four breakup. Solitons are also shown to be ideally suited for investigating non-classical properties of light. Based on the general quantum theory of optical pulse propagation, a new scheme for generating amplitude-squeezed solitons is designed and implemented in a highly asymmetric fiber Sagnac interferometer. A record reduction of 5.7dB (73%) and, with correction for linear losses, 7.0dB (81%) in photon-number fluctuations below the shot-noise level is measured by direct detection. The same scheme is also shown to generate significant classical noise reduction and is limited by Raman effects in fiber. Such large squeezing levels can be employed in practical fiber optic communication systems to achieve noiseless amplification and better signal to noise ratios in direct detection. The photon number states can also be used in quantum non- demolition measurements and quantum communications. Amplitude squeezing is shown to be present in the normal- dispersion regime where no soliton formation is possible. In this case, a noise reduction of 1.7dB (33%) and, with correction for linear losses, 2.5dB (47%) below the shot- noise level is measured. The dependence of noise behavior on dispersion is investigated both experimentally and theoretically.

  15. On the stability of the zinc x-ray laser beam quality using a half cavity

    NASA Astrophysics Data System (ADS)

    Prag, A. R.; Mocek, T.; Kozlova, M.; Rus, B.

    2002-11-01

    At the Prague Asterix Laser System Center (PALS) the Asterix laser delivering up to 700 J in 0.5 ns is used as a pump source for x-ray laser experiments and applications. The prepulse technique was applied which is known to improve the neon-like x-ray laser at the J = 0 - 1 transition dramatically. Since Zn slab targets were used the output wavelength was 21.2 nm. A prepulse having up to 20 J precedes the main pulse by 10 ns. The main beam and the prepulse beam are focussed by two different optical systems separately and their foci are superimposed at the target surface. By implementing a half-cavity for double-pass amplification using a Mo/Si multilayer mirror - which can be used for 100 shots - the x-ray laser output was more than 10 times stronger than at the single pass in a 3 cm long plasma. Double-pass amplification was observed to be most efficient when the pump pulse was at least 150 ps longer than the round trip time (approximately 260 ps) in the half-cavity. Under this fundamental condition the x-ray laser reached saturation in the double-pass regime containing approx4mJ energy which was proved to be enough for applications. In this contribution, the x-ray laser features like divergence in two dimensions, the beam quality (symmetry), and the pointing angle are investigated over 110 shots. To characterize the stability of the x-ray laser the shot distribution, the mean value and the standard deviation for these parameters are evaluated. For 18 shots of a one-day-series these values are given, and a statistical analysis carrying out a chi-squared test characterize the Zn x-ray laser as a robust tool suitable for future applications.

  16. Structural modifications induced in dentin by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-12-01

    The structural and chemical modifications induced in dentin by ultrafast laser ablation were studied. The laser experiments were performed with a Yb:KYW chirped-pulse-regenerative amplification laser system (560-fs pulse duration, 1030-nm radiation wavelength), fluences in the range 2 to 14 J/cm2, 1-kHz pulse repetition rate, and 5-mm/s scanning speed. The ablation surfaces were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The ablation surfaces produced with 2 J/cm2 presented an irregular morphology with exposed dentinal tubules and no evidence of thermal effects. For 7 and 14 J/cm2, the ablation surfaces were covered by a layer of redeposited ablation debris, consisting mainly of amorphous calcium phosphate. This layer is weakly adherent to the underlying tissue and can be easily removed by ultrasonication, revealing a surface with a morphology similar to the one obtained with 2 J/cm2. The constitution of the dentin ablation surfaces is similar to the constitution of pristine dentin, showing that, within this fluence range, the laser treatment does not significantly modify the structure and constitution of dentin. The results achieved suggest an ablation mechanism where collagen is preferentially decomposed by the laser radiation, reducing the tissue cohesive strength and leading, ultimately, to its ablation.

  17. Millimeter Wave Spectroscopy in a Semi-Confocal Fabry-Perot Cavity

    NASA Astrophysics Data System (ADS)

    Drouin, Brian; Tang, Adrian; Reck, Theodore J.; Nemchick, Deacon J.; Cich, Matthew J.; Crawford, Timothy J.; Raymond, Alexander W.; Chang, M.-C. Frank; Kim, Rod M.

    2017-06-01

    A new generation of CMOS circuits operating at 89-104 GHz with improved output power and pulse switch isolation have enhanced the performance of the miniaturized pulsed-echo Fourier transform spectrometer under development for planetary exploration at the Jet Propulsion laboratory. Additional progress has been made by creating a waveguide-fed structure for the novel planar coupler design. This structure has enabled characterization of each component in the system and enabled spectroscopy to be done with conventional millimeter hardware that enables (1) direct comparisons to the CMOS components, (2) enhanced bandwidth of 74-109 GHz, and (3) amplification of the transmitter prior to cavity injection. We have now demonstrated the technique with room temperature detections on multiple species including N_2O, OCS, CH_3CN, CH_3OH, CH_3NH_2, CH_3CHO, CH_3Cl, HDO, D_2O, CH_3CH_2CN and CH_3CH_2OH. Of particular interest to spectroscopic work in the millimeter range is the ongoing incorporation of a ΔΣ radio-frequency source into the millimeter-wave lock-loop - this has improved the phase-noise of the tunable CMOS transceiver to better than the room-temperature Doppler limit and provides a promising source for general use that may replace the high end microwave synthesizers. We are in the process of building a functional interface to the various subsystems. We will present a trade-space study to determine the optimal operating conditions of the pulse-echo system.

  18. Fluctuations and correlations in modulation instability

    NASA Astrophysics Data System (ADS)

    Solli, D. R.; Herink, G.; Jalali, B.; Ropers, C.

    2012-07-01

    Stochastically driven nonlinear processes are responsible for spontaneous pattern formation and instabilities in numerous natural and artificial systems, including well-known examples such as sand ripples, cloud formations, water waves, animal pigmentation and heart rhythms. Technologically, a type of such self-amplification drives free-electron lasers and optical supercontinuum sources whose radiation qualities, however, suffer from the stochastic origins. Through time-resolved observations, we identify intrinsic properties of these fluctuations that are hidden in ensemble measurements. We acquire single-shot spectra of modulation instability produced by laser pulses in glass fibre at megahertz real-time capture rates. The temporally confined nature of the gain physically limits the number of amplified modes, which form an antibunched arrangement as identified from a statistical analysis of the data. These dynamics provide an example of pattern competition and interaction in confined nonlinear systems.

  19. Ultraviolet Channeling Dynamics in Gaseous Media for X -- Ray Production

    NASA Astrophysics Data System (ADS)

    McCorkindale, John Charters

    The development of a coherent high brightness / short duration X -- ray source has been of considerable interest to the scientific community as well as various industries since the invention of the technology. Possible applications include X -- ray lithography, biological micro-imaging and the probing of molecular and atomic dynamics. One such source under investigation involves the interaction of a high pulsed power KrF UV laser with a noble gas target (krypton or xenon), producing a photon energy from 1 -- 5 keV. Amplification in this regime requires materials with very special properties found in spatially organized hollow atom clusters. One of the driving forces behind X -- ray production is the UV laser. Theoretical analysis shows that above a critical laser power, the formation of a stable plasma channel in the gaseous medium will occur which can act as a guide for the X-ray pulse and co-propagating UV beam. These plasma channels are visualized with a triple pinhole camera, axial and transverse von Hamos spectrometers and a Thomson scattering setup. In order to understand observed channel morphologies, full characterization of the drive laser was achieved using a Transient Grating -- Frequency Resolved Optical Gating (TG-FROG) technique which gives a full temporal representation of the electric field and associated phase of the ultrashort pulse. Insights gleaned from the TG -- FROG data as well as analysis of photodiode diagnostics placed along the UV laser amplification chain provide explanations for the plasma channel morphology and X -- ray output.

  20. Multifrequency Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel J.

    2018-03-01

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the total fluence is split between the different spectral components.

  1. Simplified flexible-PON upstream transmission using pulse position modulation at ONU and DSP-enabled soft-combining at OLT for adaptive link budgets.

    PubMed

    Liu, Xiang; Effenberger, Frank; Chand, Naresh

    2015-03-09

    We demonstrate a flexible modulation and detection scheme for upstream transmission in passive optical networks using pulse position modulation at optical network unit, facilitating burst-mode detection with automatic decision threshold tracking, and DSP-enabled soft-combining at optical line terminal. Adaptive receiver sensitivities of -33.1 dBm, -36.6 dBm and -38.3 dBm at a bit error ratio of 10(-4) are respectively achieved for 2.5 Gb/s, 1.25 Gb/s and 625 Mb/s after transmission over a 20-km standard single-mode fiber without any optical amplification.

  2. Nano-optomechanical transducer

    DOEpatents

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  3. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    PubMed Central

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-01-01

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content. PMID:24689588

  4. Ultrafast disk technology enables next generation micromachining laser sources

    NASA Astrophysics Data System (ADS)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues operation at 15W is an excellent choice. Currently this is the world's most powerful industrial sub-10 ps UV laser.

  5. Backward Raman Amplification in the Long-wavelength Infrared

    DTIC Science & Technology

    2016-12-29

    mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation. An electromagnetic finite-difference time-domain simulation...couples a finite-difference time-domain electromagnetic solver with a collisional, relativistic cold fluid plasma model [30]. The simulation domain... electromagnetic simulations coupled to a relativistic cold fluid plasma model with electron- ion collisions. Using a pump pulse that could be generated by a CO

  6. Investigation of internal magnetic structures and comparison with two-fluid equilibrium configurations in the multi-pulsing CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Hanao, T.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Kanki, T.

    2012-10-01

    Spherical torus (ST) plasmas have been successfully maintained by Muti-pulsing Coaxial Helicity Injection (M-CHI) on HIST. This research object is to clarify relations between plasma characteristics and magnetic flux amplifications, and to compare magnetic field structures measured in the plasma interior to a flowing equilibrium calculation. Two-dimensional magnetic probe array has been newly introduced nearby the gun muzzle. The initial result shows that the diverter configuration with a single X-point can be formed after a bubble burst process of the plasma. The closed magnetic flux is surrounded by the open magnetic field lines intersecting with the gun electrodes. To evaluate the sustained configurations, we use the two-fluid equilibrium code containing generalized Bernoulli and Grad-Shafranov equations which was developed by L.C. Steinhauer. The radial profiles of plasma flow, density and magnetic fields measured on the midplane of the FC are consistent to the calculation. We also found that the poloidal shear flow generation is attributed to ExB drift and ion diamagnetic drift. In addition, we will study temporal behaviors of impurity lines such as OV and OVI during the flux amplification by VUV spectroscopic measurements.

  7. A Robust High Current Density Electron Gun

    NASA Astrophysics Data System (ADS)

    Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.

    1996-11-01

    Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.

  8. Performance evaluation of radiation sensors with internal signal amplification based on the BJT effect

    NASA Astrophysics Data System (ADS)

    Bosisio, Luciano; Batignani, Giovanni; Bettarini, Stefano; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Giacomini, Gabriele; Piemonte, Claudio; Verzellesi, Giovanni; Zorzi, Nicola

    2006-11-01

    Prototypes of ionizing radiation detectors with internal signal amplification based on the bipolar transistor effect have been fabricated at ITC-irst (Trento, Italy). Results from the electrical characterization and preliminary functional tests of the devices have been previously reported. Here, we present a more detailed investigation of the performance of this type of detector, with particular attention to their noise and rate limits. Measurements of the signal waveform and of the gain versus frequency dependence are performed by illuminating the devices with, respectively, pulsed or sinusoidally modulated IR light. Pulse height spectra of X-rays from an Am241 source have been taken with very simple front-end electronics (an LF351 operational amplifier) or by directly reading with an oscilloscope the voltage drop across a load resistor connected to the emitter. An equivalent noise charge (referred to input) of 380 electrons r.m.s. has been obtained with the first setup for a small device, with an active area of 0.5×0.5 mm2 and a depleted thickness of 0.6 mm. The corresponding power dissipation in the BJT was 17 μW. The performance limitations of the devices are discussed.

  9. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools

    NASA Astrophysics Data System (ADS)

    Li, Xinlong; Reber, Melanie A. R.; Corder, Christopher; Chen, Yuning; Zhao, Peng; Allison, Thomas K.

    2016-09-01

    We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensitive femtosecond time-resolved spectroscopy and cavity-enhanced high-order harmonic generation.

  10. Development of lasers optimized for pumping Ti:Al2O3 lasers

    NASA Technical Reports Server (NTRS)

    Rines, Glen A.; Schwarz, Richard A.

    1994-01-01

    Laboratory demonstrations that were completed included: (1) an all-solid-state, broadly tunable, single-frequency, Ti:Al2O3 master oscillator, and (2) a technique for obtaining 'long' (nominally 100- to 200-ns FWHM) laser pulses from a Q-switched, Nd oscillator at energy levels commensurate with straightforward amplification to the joule level. A diode-laser-pumped, Nd:YLF laser with intracavity SHG was designed, constructed, and evaluated. With this laser greater than 0.9 W of CW, output power at 523.5 nm with 10 W of diode-laser pump power delivered to the Nd:YLF crystal was obtained. With this laser as a pump source, for the first time, to our knowledge, an all solid-state, single frequency, Ti:Al203 laser with sufficient output power to injection seed a high-energy oscillator over a 20-nm bandwidth was demonstrated. The pulsed laser work succeeded in demonstrating pulse-stretching in a Q-switched Nd:YAG oscillator. Pulse energies greater than 50-mJ were obtained in pulses with 100- to 200-ns pulsewidths (FWHM).

  11. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Alexander Roy; Krushelnick, Karl

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactionsmore » at 10 21 Wcm -2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.« less

  12. Compression of Intense Laser Pulses in Plasma

    NASA Astrophysics Data System (ADS)

    Fisch, Nathaniel J.; Malkin, Vladimir M.; Shvets, Gennady

    2001-10-01

    A counterpropagating short pulse can absorb the energy of a long laser pulse in plasma, resulting in pulse compression. For processing very high power and very high total energy, plasma is an ideal medium. Thus, in plasma one can contemplate the compression of micron light pulses to exawatts per square cm or fluences to kilojoules per square cm, prior to the vacuum focus. Two nonlinear plasma effects have recently been proposed to accomplish compression at very high power in counterpropagating geometry: One is compression by means of Compton or so-called superradiant scattering, where the nonlinear interaction of the plasma electrons with the lasers dominates the plasma restoring motion due to charge imbalance [G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. v. 81, 4879 (1998)]. The second is fast compression by means of stimulated backward Raman scattering (SBRS), where the amplification process outruns deleterious processes associated with the ultraintense pulse [V. M. Malkin, G. Shvets, N. J. Fisch, Phys. Rev. Lett., v. 82, 4448 (1999)]. In each of these regimes, in a realistic plasma, there are technological challenges that must be met and competing effects that must be kept smaller than the desired interaction.

  13. Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization.

    PubMed

    Lim, Jinkang; Chen, Hung-Wen; Chang, Guoqing; Kärtner, Franz X

    2013-02-25

    Laser frequency combs are normally based on mode-locked oscillators emitting ultrashort pulses of ~100-fs or shorter. In this paper, we present a self-referenced frequency comb based on a narrowband (5-nm bandwidth corresponding to 415-fs transform-limited pulses) Yb-fiber oscillator with a repetition rate of 280 MHz. We employ a nonlinear Yb-fiber amplifier to both amplify the narrowband pulses and broaden their optical spectrum. To optimize the carrier envelope offset frequency (fCEO), we optimize the nonlinear pulse amplification by pre-chirping the pulses at the amplifier input. An optimum negative pre-chirp exists, which produces a signal-to-noise ratio of 35 dB (100 kHz resolution bandwidth) for the detected fCEO. We phase stabilize the fCEO using a feed-forward method, resulting in 0.64-rad (integrated from 1 Hz to 10 MHz) phase noise for the in-loop error signal. This work demonstrates the feasibility of implementing frequency combs from a narrowband oscillator, which is of particular importance for realizing large line-spacing frequency combs based on multi-GHz oscillators usually emitting long (>200 fs) pulses.

  14. The role of the global phase in the spatio-temporal evolution of strong-coupling Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Amiranoff, F.; Riconda, C.; Chiaramello, M.; Lancia, L.; Marquès, J. R.; Weber, S.

    2018-01-01

    The role of the global phase in the spatio-temporal evolution of the 3-wave coupled equations for backscattering is analyzed in the strong-coupling regime of Brillouin scattering. This is of particular interest for controlled backscattering in the case of plasma-based amplification to produce short and intense laser pulses. It is shown that the analysis of the envelope equations of the three waves involved, pump, seed, and ion wave, in terms of phase and amplitude fully describes the coupling dynamics. In particular, it helps understanding the role of the chirp of the laser beams and of the plasma density profile. The results can be used to optimize or quench the coupling mechanism. It is found that the directionality of the energy transfer is imposed by the phase relation at the leading edge of the pulse. This actually ensures continued energy transfer even if the intensity of the seed pulse is already higher than the pump pulse intensity.

  15. Using a cover layer to improve the damage resistance of gold-coated gratings induced by a picosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Xia, Zhilin; Wu, Yihan; Kong, Fanyu; Jin, Yunxia

    2018-04-01

    The chirped pulse amplification (CPA) technology is the main approach to achieve high-intensity short-pulse laser. Diffraction gratings are good candidates for stretching and compressing laser pulses in CPA. In this paper, a kind of gold-coated grating has been prepared and its laser damage experiment has been performed. The results reflect that the gratings laser damage was dominated by thermal ablation due to gold films or inclusions absorption and involved the deformation or eruption of the gold film. Based on these damage phenomena, a method of using a cover layer to prevent gold films from deforming and erupting has been adopted to improve the gold-coated gratings laser damage threshold. Since the addition of a cover layer changes the gratings diffraction efficiency, the gratings structure has been re-optimized. Furthermore, according to the calculated thermal stress distributions in gratings with optimized structures, the cover layer was demonstrated to be helpful for improving the gratings laser damage resistance if it is thick enough.

  16. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements

    NASA Astrophysics Data System (ADS)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2017-02-01

    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization and multi-level quad-loop stabilization of the output power of the laser.2 In addition to the well-established platform latest developments addressed single-pulse energies up to 50 μJ and made femtosecond pulse durations available for the TruMicro Series 2000. Beyond these stabilization aspects this laser architecture together with other optical modules and combined with smart laser control software enables process-driven adjustments of the parameters (e. g. repetition rate, multi-pulse functionalities, pulse energy, pulse duration) by external signals, which will be presented in this work.

  17. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End

    PubMed Central

    Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam

    2015-01-01

    An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP). PMID:27069422

  18. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.

    PubMed

    Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam

    2016-01-15

    An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm 2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP).

  19. System Modeling of kJ-class Petawatt Lasers at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shverdin, M Y; Rushford, M; Henesian, M A

    2010-04-14

    Advanced Radiographic Capability (ARC) project at the National Ignition Facility (NIF) is designed to produce energetic, ultrafast x-rays in the range of 70-100 keV for backlighting NIF targets. The chirped pulse amplification (CPA) laser system will deliver kilo-Joule pulses at an adjustable pulse duration from 1 ps to 50 ps. System complexity requires sophisticated simulation and modeling tools for design, performance prediction, and comprehension of experimental results. We provide a brief overview of ARC, present our main modeling tools, and describe important performance predictions. The laser system (Fig. 1) consists of an all-fiber front end, including chirped-fiber Bragg grating (CFBG)more » stretchers. The beam after the final fiber amplifier is split into two apertures and spatially shaped. The split beam first seeds a regenerative amplifier and is then amplified in a multi-pass Nd:glass amplifier. Next, the preamplified chirped pulse is split in time into four identical replicas and injected into one NIF Quad. At the output of the NIF beamline, each of the eight amplified pulses is compressed in an individual, folded, four-grating compressor. Compressor grating pairs have slightly different groove densities to enable compact folding geometry and eliminate adjacent beam cross-talk. Pulse duration is adjustable with a small, rack-mounted compressor in the front-end. We use non-sequential ray-tracing software, FRED for design and layout of the optical system. Currently, our FRED model includes all of the optical components from the output of the fiber front end to the target center (Fig. 2). CAD designed opto-mechanical components are imported into our FRED model to provide a complete system description. In addition to incoherent ray tracing and scattering analysis, FRED uses Gaussian beam decomposition to model coherent beam propagation. Neglecting nonlinear effects, we can obtain a nearly complete frequency domain description of the ARC beam at different stages in the system. We employ 3D Fourier based propagation codes: MIRO, Virtual Beamline (VBL), and PROP for time-domain pulse analysis. These codes simulate nonlinear effects, calculate near and far field beam profiles, and account for amplifier gain. Verification of correct system set-up is a major difficulty to using these codes. VBL and PROP predictions have been extensively benchmarked to NIF experiments, and the verified descriptions of specific NIF beamlines are used for ARC. MIRO has the added capability of treating bandwidth specific effects of CPA. A sample MIRO model of the NIF beamline is shown in Fig. 3. MIRO models are benchmarked to VBL and PROP in the narrow bandwidth mode. Developing a variety of simulation tools allows us to cross-check predictions of different models and gain confidence in their fidelity. Preliminary experiments, currently in progress, are allowing us to validate and refine our models, and help guide future experimental campaigns.« less

  20. Protection from feed-forward amplification in an amplified RNAi mechanism

    PubMed Central

    Pak, Julia; Maniar, Jay Mahesh; Mello, Cecilia Cabral; Fire, Andrew

    2012-01-01

    SUMMARY The effectiveness of RNA interference (RNAi) in many organisms is potentiated through the signal-amplifying activity of a targeted RNA directed RNA polymerase (RdRP) system that can convert a small population of exogenously-encountered dsRNA fragments into an abundant internal pool of small interfering RNA (siRNA). As for any biological amplification system, we expect an underlying architecture that will limit the ability of a randomly encountered trigger to produce an uncontrolled and self-escalating response. Investigating such limits in C. elegans, we find that feed-forward amplification is limited by a critical biosynthetic and structural distinction at the RNA level between (i) triggers that can produce amplification and (ii) siRNA products of the amplification reaction. By assuring that initial (primary) siRNAs can act as triggers but not templates for activation, and that the resulting (secondary) siRNAs can enforce gene silencing on additional targets without unbridled trigger amplification, the system achieves substantial but fundamentally limited signal amplification. PMID:23141544

  1. Dynamics and control of DNA sequence amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less

  2. Generation of tunable high-repetition rate middle infrared transform-limited picosecond pulses

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Ballmann, Charles W.; Petrov, Georgi I.

    2018-03-01

    Tunable middle infrared generation is now affordable through optical parametric generation and amplification in a number of infrared nonlinear crystals. However, maintaining narrow bandwidth, while achieving high conversion efficiency, remains a challenge. In this report, we propose and experimentally demonstrate a relatively simple setup, which utilizes a single-wavelength diode laser as a seed laser for an optical parametric amplifier.

  3. 520-µJ mid-infrared femtosecond laser at 2.8 µm by 1-kHz KTA optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    He, Huijun; Wang, Zhaohua; Hu, Chenyang; Jiang, Jianwang; Qin, Shuang; He, Peng; Zhang, Ninghua; Yang, Peilong; Li, Zhiyuan; Wei, Zhiyi

    2018-02-01

    We report on a 520-µJ, 1-kHz mid-infrared femtosecond optical parametric amplifier system driven by a Ti:sapphire laser system. The seeding signal was generated from white-light continuum in YAG plate and then amplified in four non-collinear amplification stages and the idler was obtained in the last stage with central wavelength at 2.8 µm and bandwidth of 525 nm. To maximize the bandwidth of the idler, a theoretical method was developed to give an optimum non-collinear angle and estimate the conversion efficiency and output spectrum. As an experimental result, laser pulse energy up to 1.8 mJ for signal wave and 520 µJ for idler wave were obtained in the last stage under 10-mJ pump energy, corresponding to a pump-to-idler conversion efficiency of 5.2%, which meets well with the numerical calculation.

  4. Classroom Acoustics: The Problem, Impact, and Solution.

    ERIC Educational Resources Information Center

    Berg, Frederick S.; And Others

    1996-01-01

    This article describes aspects of classroom acoustics that interfere with the ability of listeners to understand speech. It considers impacts on students and teachers and offers four possible solutions: noise control, signal control without amplification, individual amplification systems, and sound field amplification systems. (Author/DB)

  5. Amplification without instability: applying fluid dynamical insights in chemistry and biology

    NASA Astrophysics Data System (ADS)

    McCoy, Jonathan H.

    2013-11-01

    While amplification of small perturbations often arises from instability, transient amplification is possible locally even in asymptotically stable systems. That is, knowledge of a system's stability properties can mislead one's intuition for its transient behaviors. This insight, which has an interesting history in fluid dynamics, has more recently been rediscovered in ecology. Surprisingly, many nonlinear fluid dynamical and ecological systems share linear features associated with transient amplification of noise. This paper aims to establish that these features are widespread in many other disciplines concerned with noisy systems, especially chemistry, cell biology and molecular biology. Here, using classic nonlinear systems and the graphical language of network science, we explore how the noise amplification problem can be reframed in terms of activatory and inhibitory interactions between dynamical variables. The interaction patterns considered here are found in a great variety of systems, ranging from autocatalytic reactions and activator-inhibitor systems to influential models of nerve conduction, glycolysis, cell signaling and circadian rhythms.

  6. On amplifications of photonuclear neutron flux in thunderstorm atmosphere and possibility of detecting them

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Zalyalov, A. N.

    2013-05-01

    The reliability of communications reporting observations of neutron flux enhancements in thunderstorm atmosphere is analyzed. The analysis is motivated by the fact that the employed gas-discharge counters on the basis of reactions 3He( n, p)3H and 10B( n; 4He, γ)7Li detect not only neutrons but any penetrating radiations. Photonuclear reactions are capable of accounting for the possible amplifications of neutron flux in thunder-storm atmosphere since in correlation with thunderstorms γ-ray flashes were repeatedly observed with spectra extending high above the threshold of photonuclear reactions in air. By numerical simulations, it was demonstrated that γ-ray pulses detected in thunderstorm atmosphere are capable of generating photonuclear neutrons in numbers sufficient to be detected even at sea level.

  7. Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion.

    PubMed

    Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas

    2012-04-23

    We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America

  8. Multifrequency Raman amplifiers

    DOE PAGES

    Barth, Ido; Fisch, Nathaniel J.

    2018-03-08

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less

  9. Multifrequency Raman amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Ido; Fisch, Nathaniel J.

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less

  10. Spheromak Formation and Current Sustainment Using a Repetitively Pulsed Source

    NASA Astrophysics Data System (ADS)

    Woodruff, S.; Macnab, A. I. D.; Ziemba, T. M.; Miller, K. E.

    2009-06-01

    By repeated injection of magnetic helicity ( K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.

  11. Laser amplification of incoherent radiation

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1978-01-01

    The amplification of noise in a laser amplifier is treated theoretically. The model for the active medium and its description using density-matrix techniques, are taken from the theory of laser operation. The spectral behavior of the radiation in the nonlinear regime is studied and the formalism is written from the onset in the frequency domain. The statistics of the light are gradually modified by the nonlinear amplification process, and expressions are derived for the rate of change of fluctuations in intensity as a measure of statistical changes. In addition, the range of validity of Litvak's Gaussian-statistics approximation is discussed. In the homogeneous-broadening case, the evolution of initially broadband Gaussian radiation toward quasimonochromatic oscillations with laserlike statistics is explored in several numerical examples. The connections of this study with the time-domain work on self-pulsing in a ring-laser configuration, are established. Finally, spectral-narrowing and -rebroadening effects in Doppler-broadened media are discussed both analytically and with numerical examples. These examples show the distinct contribution of pulsations in the population ('Raman-type terms'), and saturation phenomena.

  12. Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study

    PubMed Central

    Alastruey, Jordi; Chowienczyk, Phil; Rutten, Marcel C. M.; Segers, Patrick; Schaeffter, Tobias

    2017-01-01

    Arterial pressure is an important diagnostic parameter for cardiovascular disease. However, relative contributions of individual ventricular and arterial parameters in generating and augmenting pressure are not understood. Using a novel experimental arterial model, our aim was to characterize individual parameter contributions to arterial pressure and its amplification. A piston-driven ventricle provided programmable stroke profiles into various silicone arterial trees and a bovine aorta. Inotropy was varied in the ventricle, and arterial parameters modulated included wall thickness, taper and diameter, the presence of bifurcation, and a native aorta (bovine) versus silicone. Wave reflection at bifurcations was measured and compared with theory, varying parent-to-child tube diameter ratios, and branch angles. Intravascular pressure-tip wires and ultrasonic flow probes measured pressure and flow. Increasing ventricular inotropy independently augmented pressure amplification from 17% to 61% between the lower and higher systolic gradient stroke profiles in the silicone arterial network and from 10% to 32% in the bovine aorta. Amplification increased with presence of a bifurcation, decreasing wall thickness and vessel taper. Pulse pressure increased with increasing wall thickness (stiffness) and taper angle and decreasing diameter. Theoretical predictions of wave transmission through bifurcations werre similar to measurements (correlation: 0.91, R2 = 0.94) but underestimated wave reflection (correlation: 0.75, R2 = 0.94), indicating energy losses during mechanical wave reflection. This study offers the first comprehensive investigation of contributors to hypertensive pressure and its propagation throughout the arterial tree. Importantly, ventricular inotropy plays a crucial role in the amplification of peripheral pressure wave, which offers opportunity for noninvasive assessment of ventricular health. NEW & NOTEWORTHY The present study distinguishes contributions from cardiac and arterial parameters to elevated blood pressure and pressure amplification. Most importantly, it offers the first evidence that ventricular inotropy, an indicator of ventricular function, is an independent determinant of pressure amplification and could be measured with such established devices such as the SphygmoCor. PMID:28576835

  13. Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study.

    PubMed

    Gaddum, Nicholas; Alastruey, Jordi; Chowienczyk, Phil; Rutten, Marcel C M; Segers, Patrick; Schaeffter, Tobias

    2017-09-01

    Arterial pressure is an important diagnostic parameter for cardiovascular disease. However, relative contributions of individual ventricular and arterial parameters in generating and augmenting pressure are not understood. Using a novel experimental arterial model, our aim was to characterize individual parameter contributions to arterial pressure and its amplification. A piston-driven ventricle provided programmable stroke profiles into various silicone arterial trees and a bovine aorta. Inotropy was varied in the ventricle, and arterial parameters modulated included wall thickness, taper and diameter, the presence of bifurcation, and a native aorta (bovine) versus silicone. Wave reflection at bifurcations was measured and compared with theory, varying parent-to-child tube diameter ratios, and branch angles. Intravascular pressure-tip wires and ultrasonic flow probes measured pressure and flow. Increasing ventricular inotropy independently augmented pressure amplification from 17% to 61% between the lower and higher systolic gradient stroke profiles in the silicone arterial network and from 10% to 32% in the bovine aorta. Amplification increased with presence of a bifurcation, decreasing wall thickness and vessel taper. Pulse pressure increased with increasing wall thickness (stiffness) and taper angle and decreasing diameter. Theoretical predictions of wave transmission through bifurcations werre similar to measurements (correlation: 0.91, R 2 = 0.94) but underestimated wave reflection (correlation: 0.75, R 2 = 0.94), indicating energy losses during mechanical wave reflection. This study offers the first comprehensive investigation of contributors to hypertensive pressure and its propagation throughout the arterial tree. Importantly, ventricular inotropy plays a crucial role in the amplification of peripheral pressure wave, which offers opportunity for noninvasive assessment of ventricular health. NEW & NOTEWORTHY The present study distinguishes contributions from cardiac and arterial parameters to elevated blood pressure and pressure amplification. Most importantly, it offers the first evidence that ventricular inotropy, an indicator of ventricular function, is an independent determinant of pressure amplification and could be measured with such established devices such as the SphygmoCor. Copyright © 2017 the American Physiological Society.

  14. Development of Local Amplification Factors in the NEAM Region for Production of Regional Tsunami Hazard Maps

    NASA Astrophysics Data System (ADS)

    Harbitz, C. B.; Glimsdal, S.; Løvholt, F.; Orefice, S.; Romano, F.; Brizuela, B.; Lorito, S.; Hoechner, A.; Babeyko, A. Y.

    2016-12-01

    The standard way of estimating tsunami inundation is by applying numerical depth-averaged shallow-water run-up models. However, for a regional Probabilistic Tsunami Hazard Assessment (PTHA), applying such inundation models may be too time-consuming. A faster, yet less accurate procedure, is to relate the near-shore surface elevations at offshore points to maximum shoreline water levels by using a set of amplification factors based on the characteristics of the incident wave and the bathymetric slope. The surface elevation at the shoreline then acts as a rough approximation for the maximum inundation height or run-up height along the shoreline. An amplification-factor procedure based on a limited set of idealized broken shoreline segments has previously been applied to estimate the maximum inundation heights globally. Here, we present a study where this technique is developed further, by taking into account the local bathymetric profiles. We extract a large number of local bathymetric transects over a significant part of the North East Atlantic, the Mediterranean and connected seas (NEAM) region. For each bathymetric transect, we compute the wave amplification from an offshore control point to points close to the shoreline using a linear shallow-water model for waves of different period and polarity with a sinusoidal pulse wave as input. The amplification factors are then tabulated. We present maximum water levels from the amplification factor method, and compare these with results from conventional inundation models. Finally, we demonstrate how the amplification factor method can be convolved with PTHA results to provide regional tsunami hazard maps. This work has been supported by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE), and the TSUMAPS-NEAM Project (http://www.tsumapsneam.eu/), co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.

  15. Development of Local Amplification Factors in the NEAM Region for Production of Regional Tsunami Hazard Maps

    NASA Astrophysics Data System (ADS)

    Glimsdal, Sylfest; Løvholt, Finn; Bonnevie Harbitz, Carl; Orefice, Simone; Romano, Fabrizio; Brizuela, Beatriz; Lorito, Stefano; Hoechner, Andreas; Babeyko, Andrey

    2017-04-01

    The standard way of estimating tsunami inundation is by applying numerical depth-averaged shallow-water run-up models. However, for a regional Probabilistic Tsunami Hazard Assessment (PTHA), applying such inundation models may be too time-consuming. A faster, yet less accurate procedure, is to relate the near-shore surface elevations at offshore points to maximum shoreline water levels by using a set of amplification factors based on the characteristics of the incident wave and the bathymetric slope. The surface elevation at the shoreline then acts as a rough approximation for the maximum inundation height or run-up height along the shoreline. An amplification-factor procedure based on a limited set of idealized broken shoreline segments has previously been applied to estimate the maximum inundation heights globally. Here, we present a study where this technique is developed further, by taking into account the local bathymetric profiles. We extract a large number of local bathymetric transects over a significant part of the North East Atlantic, the Mediterranean and connected seas (NEAM region). For each bathymetric transect, we compute the wave amplification from an offshore control point to points close to the shoreline using a linear shallow-water model for waves of different period and polarity with a sinusoidal pulse wave as input. The amplification factors are then tabulated. We present maximum water levels from the amplification factor method, and compare these with results from conventional inundation models. Finally, we demonstrate how the amplification factor method can be convolved with PTHA results to provide regional tsunami hazard maps. This work has been supported by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE), and the TSUMAPS-NEAM Project (http://www.tsumapsneam.eu/), co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.

  16. Diode pumped, regenerative Nd:YAG ring amplifier for space application

    NASA Technical Reports Server (NTRS)

    Coyle, D. B.; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    The study reviews the research and development of a prototype laser used to study one possible method of short-pulse production and amplification, in particular, a pulsed Nd:YAG ring laser pumped by laser diode arrays and injected seeded by a 100-ps source. The diode array pumped, regenerative amplifier consists of only five optical elements, two mirrors, one thin film polarizer, one Nd:YAG crystal, and one pockels cell. The pockels cell performed both as a Q-switch and a cavity dumper for amplified pulse ejection through the thin film polarizer. The total optical efficiency was low principally due to the low gain provided by the 2-bar pumped laser head. After comparison with a computer model, a real seed threshold of about 10 exp -15 J was achieved because only about 0.1 percent of the injected energy mode-matched with the ring.

  17. Electro-optic sampling of near-infrared waveforms

    NASA Astrophysics Data System (ADS)

    Keiber, Sabine; Sederberg, Shawn; Schwarz, Alexander; Trubetskov, Michael; Pervak, Volodymyr; Krausz, Ferenc; Karpowicz, Nicholas

    2016-03-01

    Access to the complete electric field evolution of a laser pulse is essential for attosecond science in general, and for the scrutiny and control of electron phenomena in solid-state physics specifically. Time-resolved field measurements are routine in the terahertz spectral range, using electro-optic sampling (EOS), photoconductive switches and field-induced second harmonic generation. EOS in particular features outstanding sensitivity and ease of use, making it the basis of time-resolved spectroscopic measurements for studying charge carrier dynamics and active optical devices. In this Letter, we show that careful optical filtering allows the bandwidth of this technique to be extended to wavelengths as short as 1.2 μm (230 THz) with half-cycle durations 2.3 times shorter than the sampling pulse. In a proof-of-principle application, we measure the influence of optical parametric amplification (OPA) on the electric field dynamics of a few-cycle near-infrared (NIR) pulse.

  18. Study of the electromagnetic characteristics of multiple HTSPPT modules based on the configuration of toroidal structure for inductive pulsed power supply

    NASA Astrophysics Data System (ADS)

    Zhang, Cunshan; Zheng, Xinxin; Li, Haitao; Li, Zhenmei; Zhang, Tao; Jiao, Can

    2018-04-01

    High temperature superconducting pulsed power transformer (HTSPPT) is an important device for pulsed power supplies. It consists of a superconducting primary and a normal conducting secondary, which is used for energy storage and current amplification. The critical current density, the energy storage, and the coupling coefficient are three main performance indexes. They are affected by the geometry parameters of HTSPPT modules, such as the height and the width of the superconducting coils. In addition, the hoop stress of the HTSPPT coils is limited by the maximum tensile strength of high temperature superconducting (HTS) tapes. In this paper, Bi-2223/Ag HTS tapes are selected as the wire of primary inductor and the toroidal structure model is selected for multiple HTSPPT modules. The relationships between the geometry parameters of HTSPPT modules and the electrical performance are studied.

  19. Pulsed mononode dye laser developed for a geophysical application

    NASA Technical Reports Server (NTRS)

    Jegou, J. P.; Pain, T.; Megie, G.

    1986-01-01

    Following the extension of the lidar technique in the study of the atmosphere, the necessity of having a high power pulsed laser beam with a narrowed bandwidth and the possibility of selecting a particular wavelength within a certain spectral region arises. With the collaboration of others, a laser cavity using the multiwave Fizeau wedge (MWFW) was developed. Using the classical method of beam amplification with the aid of different stages, a new pulsed dye laser device was designed. The originality resides in the use of reflecting properties of the MFWF. Locally a plan wave coming with a particular angular incidence is reflected with a greater than unity coefficient; this is the consequence of the wedge angle which doubles the participation of every ray in the interferometric process. This dye laser operation and advantages are discussed. The feasibility of different geophysical applications envisageable with this laser is discussed.

  20. Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Stuart, N. H.; Bigourd, D.; Hill, R. W.; Robinson, T. S.; Mecseki, K.; Patankar, S.; New, G. H. C.; Smith, R. A.

    2015-02-01

    The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8×105 gain, delivering 335 μJ pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500× from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons ps-1 nm-1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3×10-9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems.

  1. Bringing PW-class lasers to XFELs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    2017-06-01

    Experimental researches using high power optical lasers combined with free electron lasers (FELs) open new frontiers in high energy density (HED) sciences. Probing and pumping capabilities are dramatically improved due to the brightness of the XFEL pulses with ultrafast duration. Besides, the peak intensities of Ti:sapphire laser Chirped Pulse Amplification (CPA) systems reach petawatt (PW)-class with operating in few tens of fs and commercially available at a few Hz of repetition rate. We have been developing an experimental platform for HED sciences using high power, high intensity optical lasers at the XFEL facility, SACLA.Currently, an experimental platform with a dual 0.5 PW Ti:Sapphire laser system is under beam commissioning for experiments combined with the SACLA's x-ray beam for research objectives that require more peak power in the optical laser pulses with a few tens of fs. The optical laser system is designed to deliver two laser beams simultaneously with the maximum power of 0.5 PW in each into a target chamber located in an experimental hutch 6 (EH6) at BL2, which was recently commissioned as a SACLA's 2nd hard x-ray beamline. A focusing capability using sets of compound refractive lenses will be applied to increase the x-ray fluence on the target sample. One of the most key issues for the integrated experimental platform is development of diagnostics that meets requirements both from the high power laser (e.g. resistance to harsh environments) and from the XFEL (e.g. adaptation to the available data acquisition system). The status and future perspective of the development including automatic laser alignment systems will be reported in the presentation. We will discuss the most promising and important new physics experiments that will be enabled by the combination of PW-class lasers and the world-class FEL's x-ray beam.

  2. Rogue waves for a system of coupled derivative nonlinear Schrödinger equations.

    PubMed

    Chan, H N; Malomed, B A; Chow, K W; Ding, E

    2016-01-01

    Rogue waves (RWs) are unexpectedly strong excitations emerging from an otherwise tranquil background. The nonlinear Schrödinger equation (NLSE), a ubiquitous model with wide applications to fluid mechanics, optics, plasmas, etc., exhibits RWs only in the regime of modulation instability (MI) of the background. For a system of multiple waveguides, the governing coupled NLSEs can produce regimes of MI and RWs, even if each component has dispersion and cubic nonlinearity of opposite signs. A similar effect is demonstrated here for a system of coupled derivative NLSEs (DNLSEs) where the special feature is the nonlinear self-steepening of narrow pulses. More precisely, these additional regimes of MI and RWs for coupled DNLSEs depend on the mismatch in group velocities between the components, and the parameters for cubic nonlinearity and self-steepening. RWs considered in this paper differ from those of the NLSEs in terms of the amplification ratio and criteria of existence. Applications to optics and plasma physics are discussed.

  3. Optical instabilities and spontaneous light emission in moving media

    NASA Astrophysics Data System (ADS)

    Silveirinha, Mario

    2015-03-01

    We show that when an uncharged plasmonic material is set in relative motion with respect to another uncharged polarizable body the system may be electromagnetically unstable. Particularly, when the relative velocity of the two bodies is enforced to remain constant the system may support natural oscillations that grow exponentially with time, even in presence of realistic material loss and dispersion. It is proven that a friction-type force acts on the moving bodies to oppose their relative motion. Hence, the optical instabilities result from the conversion of kinetic energy into electromagnetic energy. This new purely classical phenomenon is analogous to the Cherenkov and Smith-Purcell effects but for uncharged polarizable matter. We link the optical instabilities to a spontaneous parity-time symmetry breaking of the system, and demonstrate the possibility of optical amplification of a light pulse in the broken parity-time symmetry regime. This work is supported in part by Fundação para a Ciência e a Tecnologia Grant Number PTDC/EEI-TEL/2764/2012.

  4. Parametric amplification in MoS2 drum resonator.

    PubMed

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  5. Ultrafast demagnetisation dependence on film thickness: A TDDFT calculation

    NASA Astrophysics Data System (ADS)

    Singh, N.; Sharma, S.

    2018-04-01

    Ferromagnetic materials when subjected to intense laser pulses leads to reduction of their magnetisation on an ultrafast scale. Here, we perform an ab-initio calculation to study the behavior of ultrafast demagnetisation as a function of film thickness for Nickel as compared to the bulk of the material. In thin films surface formation results in amplification of demagnetisation with the percentage of demagnetisation depending upon the film thickness.

  6. Drastic disorder-induced reduction of signal amplification in scale-free networks.

    PubMed

    Chacón, Ricardo; Martínez, Pedro J

    2015-07-01

    Understanding information transmission across a network is a fundamental task for controlling and manipulating both biological and manmade information-processing systems. Here we show how topological resonant-like amplification effects in scale-free networks of signaling devices are drastically reduced when phase disorder in the external signals is considered. This is demonstrated theoretically by means of a starlike network of overdamped bistable systems, and confirmed numerically by simulations of scale-free networks of such systems. The taming effect of the phase disorder is found to be sensitive to the amplification's strength, while the topology-induced amplification mechanism is robust against this kind of quenched disorder in the sense that it does not significantly change the values of the coupling strength where amplification is maximum in its absence.

  7. Comparison of pulse wave velocity and pulse pressure amplification in association with target organ damage in community-dwelling elderly: The Northern Shanghai Study.

    PubMed

    Bai, Bin; Teliewubai, Jiadela; Lu, Yuyan; Yu, Shikai; Xiong, Jing; Chi, Chen; Zhou, Yiwu; Ji, Hongwei; Fan, Ximin; Blacher, Jacques; Li, Jue; Zhang, Yi; Xu, Yawei

    2018-05-01

    This study aimed to investigate the discrepancy between pulse wave velocity (PWV) and pulse pressure amplification (PPA) in association with hypertensive target organ damage (TOD) in the elderly. From June 2014 to August 2015, 1599 participants aged >65 years old from communities located in northern Shanghai were recruited. Carotid-femoral pulse wave velocity (cfPWV), peripheral blood pressure (BP), central BP and other TOD indicators, including the ratio of the early ventricular filling velocity (E) to the peak velocity of the tissue Doppler velocity of septal mitral annulus (E/Ea), left ventricular mass index (LVMI), carotid intima-medium thickness (CIMT), estimated glomerular filtration rate (eGFR), and urinary albumin-creatinine ratio (ACR), were determined for each participant. PPA was defined as the peripheral-to-central pulse pressure ratio. In multivariable linear regression analysis, cfPWV was significantly associated with CIMT (β = 12.83 ± 4.28 μm per SD; P = 0.003) and eGFR (β = -1.85 ± 0.69 ml/min/1.73 m 2 per SD; P = 0.007), whereas PPA was significantly associated with E/Ea (β = -0.25 ± 0.10 per SD; P = 0.01) and LVMI (β = -3.00 ± 0.78 g/m 2 per SD; P < 0.001). Similarly, in multivariable logistic regression analysis, cfPWV was significantly associated with arterial plaque (odds ratio [OR], 1.21 [95% confidence interval [CI], 1.05-1.39]; P = 0.007), peripheral artery disease (OR, 1.22 [95% CI, 1.06-1.42]; P = 0.007), chronic kidney diseases (OR, 1.24 [95% CI, 1.01-1.54]; P = 0.04) and microalbuminuria (OR, 1.21 [95% CI, 1.07-1.37]; P = 0.002), while PPA was tightly associated with left ventricular hypertrophy (OR, 0.85 [95% CI, 0.72-0.99]; P = 0.04) and diastolic dysfunction (OR, 0.78 [95% CI, 0.64-0.96]; P = 0.02). In conclusion, cfPWV is a vessel-related and renal-related biomarker, while PPA is a cardiac-related biomarker in community-based elderly.

  8. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics

    NASA Astrophysics Data System (ADS)

    Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.

    2017-12-01

    We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.

  9. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In H.; Stock, Larry V.

    1988-01-01

    A XeCl laser which was developed earlier for an iodine laser oscillator was modified in order to increase the output pulse energy of XeCl laser so that the iodine laser output energy could be increased. The electrical circuit of the XeCl laser was changed from a simple capacitor discharge circuit of the XeCl laser to a Marx system. Because of this improvement the output energy from the XeCl laser was increased from 60 mj to 80 mj. Subsequently, iodine laser output energy was increased from 100 mj to 3 mj. On the other hand, the energy storage capability and amplification characteristics of the Vortek solar simulator-pumped amplifier was calculated expecting the calculated amplification factor is about 2 and the energy extraction efficiency is 26 percent due to the very low input energy density to the amplifier. As a result of an improved kinetic modeling for the iodine solar simulator pumped power amplifier, it is found that the I-2 along the axis of the tube affects seriously the gain profile. For the gas i-C3F7I at the higher pressures, the gain will decrease due to the I-2 as the pumping intensity increases, and at these higher pressures an increase in flow velocity will increase the gain.

  10. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  11. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2004-10-12

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  12. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes

    NASA Astrophysics Data System (ADS)

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.

    2017-01-01

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  13. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes.

    PubMed

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J H; Trau, Matt; Wang, Yuling; Botella, Jose R

    2017-01-17

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  14. Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level.

    PubMed

    Beirow, Frieder; Eckerle, Michael; Dannecker, Benjamin; Dietrich, Tom; Ahmed, Marwan Abdou; Graf, Thomas

    2018-02-19

    We report on a high-power passively mode-locked radially polarized Yb:YAG thin-disk oscillator providing 125 W of average output power. To the best of our knowledge, this is the highest average power ever reported from a mode-locked radially polarized oscillator without subsequent amplification stages. Mode-locking was achieved by implementing a SESAM as the cavity end mirror and the radial polarization of the LG* 01 mode was obtained by means of a circular Grating Waveguide Output Coupler. The repetition rate was 78 MHz. A pulse duration of 0.97 ps and a spectral bandwidth of 1.4 nm (FWHM) were measured at the maximum output power. This corresponds to a pulse energy of 1.6 µJ and a pulse peak power of 1.45 MW. A high degree of radial polarization of 97.3 ± 1% and an M 2 -value of 2.16 which is close to the theoretical value for the LG* 01 doughnut mode were measured.

  15. Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samardak, A. S.; Laboratory of Thin Film Technologies, Far Eastern Federal University, Vladivostok 690950; Nogaret, A.

    2011-05-15

    We have demonstrated the proof of principle of a semiconductor neuron, which has dendrites, axon, and a soma and computes information encoded in electrical pulses in the same way as biological neurons. Electrical impulses applied to dendrites diffuse along microwires to the soma. The soma is the active part of the neuron, which regenerates input pulses above a voltage threshold and transmits them into the axon. Our concept of neuron is a major step forward because its spatial structure controls the timing of pulses, which arrive at the soma. Dendrites and axon act as transmission delay lines, which modify themore » information, coded in the timing of pulses. We have finally shown that noise enhances the detection sensitivity of the neuron by helping the transmission of weak periodic signals. A maximum enhancement of signal transmission was observed at an optimum noise level known as stochastic resonance. The experimental results are in excellent agreement with simulations of the FitzHugh-Nagumo model. Our neuron is therefore extremely well suited to providing feedback on the various mathematical approximations of neurons and building functional networks.« less

  16. Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Hernández-Escobar, E.; Bello-Jiménez, M.; Pottiez, O.; Ibarra-Escamilla, B.; López-Estopier, R.; Durán-Sánchez, M.; Kuzin, E. A.; Andrés, M. V.

    2017-10-01

    The conditions to obtain noise-like pulses (NLPs) from a figure-eight fiber laser (F8L) and their application for supercontinuum (SC) generation in the anomalous dispersion regime are reported. The F8L is designed to remove the undesired low-intensity background radiation from pulse emission, generating NLPs with a 3 dB spectral bandwidth of 17.43 nm at the fundamental repetition frequency of 0.8 MHz. After amplification, NLPs reach a maximum average power of 9.2 mW and 123.32 nm spectral bandwidth. By controlling the amplifier pump power, flat SC generation is demonstrated through both a 800 m long spool of SMF-28 fiber and a piece of 5 m long highly nonlinear optical fiber. The results demonstrate a satisfactory flatness of ~3 dB over a bandwidth of ~1000 nm in the range from 1261 to 2261 nm, achieving to the best of our knowledge, one of the flattest SC generated from noise-like pulses.

  17. Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.

    2018-03-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.

  18. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    1999-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  19. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    2004-06-15

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  20. Isothermal Amplification Methods for the Detection of Nucleic Acids in Microfluidic Devices

    PubMed Central

    Zanoli, Laura Maria; Spoto, Giuseppe

    2012-01-01

    Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed. PMID:25587397

  1. Study of the stability of beam characteristics of the neon-like Zn X-ray laser using a half cavity

    NASA Astrophysics Data System (ADS)

    Präg, A. R.; Mocek, T.; Kozlová, M.; Rus, B.; Jamelot, G.; Ros, D.

    2003-01-01

    At the Prague Asterix Laser System Center (PALS) the Asterix iodine laser delivering up to 700 J/0.5 ns is used as a pump source for X-ray laser experiments and applications. The prepulse technique was applied which is known to improve the neon-like X-ray laser output at the J = 0 {-} 1 transition dramatically. Since Zn slab targets were used the operating wavelength was 21.2 nm. A prepulse having up to 20 J precedes the main pulse by 10 ns. The main beam and the prepulse beam are focussed by two different optical systems separately and their foci are superimposed at the target surface. By implementing a half-cavity set-up for double-pass amplification using a Mo/Si multilayer mirror which can be used for more than 100 shots the X-ray laser output was more than 10 times stronger than at the single pass in a 30 mm long plasma. Double-pass amplification was observed to be most efficient when the pump pulse duration was at least 150 ps longer than the round trip time (≈ 260 ps) in the half-cavity. Under this fundamental condition the X-ray laser reached saturation in the double-pass regime containing approx. 4 mJ energy which has been proved to be enough for future applications. In this contribution, the X-ray laser features like divergence in two dimensions, the beam quality (symmetry), the pointing angle and the integrated intensity giving an estimation of the output energy are investigated over 110 shots. To characterize the stability of the X-ray laser the shot distribution, the mean value and the standard deviation for these parameters are evaluated. For 18 shots in a series what was achievable during one day the corresponding values are given, and a statistical analysis carrying out a chi-squared test characterize the Zn X-ray laser as a robust tool suitable for applications. In the future it is planned to allocate X-ray laser beam time to external research groups.

  2. Noise Characterization of Erbium-Doped Fiber Amplifiers and Avalanche Photodiodes in Optical Communication Systems.

    NASA Astrophysics Data System (ADS)

    Kahraman, Gokalp

    We examine the performance of optical communication systems using erbium-doped fiber amplifiers (OFAs) and avalanche photodiodes (APDs) including nonlinear and transient effects in the former and transient effects in the latter. Transient effects become important as these amplifiers are operated at very high data rates. Nonlinear effects are important for high gain amplifiers. In most studies of noise in these devices, the temporal and nonlinear effects have been ignored. We present a quantum theory of noise in OFAs including the saturation of the atomic population inversion and the pump depletion. We study the quantum-statistical properties of pulse amplification. The generating function of the output photon number distribution (PND) is determined as a function of time during the course of the pulse with an arbitrary input PND assumed. Under stationary conditions, we determine the Kolmogorov equation obeyed by the PND. The PND at the output is determined for arbitrary input distributions. The effect of the counting time and the filter bandwidth used by the detection circuit is determined. We determine the gain, the noise figure, and the sensitivity of receivers using OFAs as preamplifiers, including the effect of backward amplified spontaneous emission (ASE). Backward ASE degrades the noise figure and the sensitivity by depleting the population inversion at the input side of the fiber and thus increasing the noise during signal amplification. We show that the sensitivity improves with the bit rate at low rates but degrades at high rates. We provide a stochastic model that describes the time dynamics in a double-carrier multiplication (DCM) APD. A discrete stochastic model for the electron/hole motion and multiplication is defined on a spatio-temporal lattice and used to derive recursive equations for the mean, the variance, and the autocorrelation of the impulse response as functions of time. The power spectral density of the photocurrent produced in response to a Poisson-distributed stream of photons of uniform rate is evaluated. A method is also developed for solving the coupled transport equations that describe the electron and hole currents in a DCM-APD of arbitrary structure.

  3. Simple System for Isothermal DNA Amplification Coupled to Lateral Flow Detection

    PubMed Central

    Roskos, Kristina; Hickerson, Anna I.; Lu, Hsiang-Wei; Ferguson, Tanya M.; Shinde, Deepali N.; Klaue, Yvonne; Niemz, Angelika

    2013-01-01

    Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden. PMID:23922706

  4. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    PubMed

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  5. 12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression.

    PubMed

    Liu, Tinghao; Sui, Zhan; Chen, Lin; Li, Zhupeng; Liu, Qiang; Gong, Mali; Fu, Xing

    2017-09-04

    Experimental amplification of 10-ns pulses to an energy of 12.2 J at the repetition rate of 1-10 Hz is reported from a diode-pumped room-temperature distributed active mirror amplifier chain (DAMAC) based on Nd:YAG slabs. Efficient power scaling at the optical-optical efficiency of 20.6% was achieved by suppressing the transverse parasitic oscillation with ASE absorbers. To the best of our knowledge, this is the first demonstration of a diode-pumped Nd:YAG active-mirror laser with nanosecond pulse energy beyond 10 joules. The verified DAMAC concept holds the promise of scaling the energy to a 50 J level and higher by adding 10-12 more pieces of active mirror in the chain.

  6. A near-infrared SETI experiment: instrument overview

    NASA Astrophysics Data System (ADS)

    Wright, Shelley A.; Werthimer, Dan; Treffers, Richard R.; Maire, Jérôme; Marcy, Geoffrey W.; Stone, Remington P. S.; Drake, Frank; Meyer, Elliot; Dorval, Patrick; Siemion, Andrew

    2014-07-01

    We are designing and constructing a new SETI (Search for Extraterrestrial Intelligence) instrument to search for direct evidence of interstellar communications via pulsed laser signals at near-infrared wavelengths. The new instrument design builds upon our past optical SETI experiences, and is the first step toward a new, more versatile and sophisticated generation of very fast optical and near-infrared pulse search devices. We present our instrumental design by giving an overview of the opto-mechanical design, detector selection and characterization, signal processing, and integration procedure. This project makes use of near-infrared (950 - 1650 nm) discrete amplification Avalanche Photodiodes (APD) that have > 1 GHz bandwidths with low noise characteristics and moderate gain (~104). We have investigated the use of single versus multiple detectors in our instrument (see Maire et al., this conference), and have optimized the system to have both high sensitivity and low false coincidence rates. Our design is optimized for use behind a 1m telescope and includes an optical camera for acquisition and guiding. A goal is to make our instrument relatively economical and easy to duplicate. We describe our observational setup and our initial search strategies for SETI targets, and for potential interesting compact astrophysical objects.

  7. Coupled isothermal polynucleotide amplification and translation system

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1998-01-01

    A cell-free system for polynucleotide amplification and translation is disclosed. Also disclosed are methods for using the system and a composition which allows the various components of the system to function under a common set of reaction conditions.

  8. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering, Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-15

    was amplified by injection locking of a high power diode laser and further amplified to -300 mW with a semiconductor optical amplifier. This light...amplifiers at 793nm, cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients...injection- locking for broadband optical signal amplification ................. 34 2.10. Tapered semiconductor optical amplifier

  9. Temperature dependence of Ti:Sapphire fluorescence spectra for the design of cryogenic cooled Ti:Sapphire CPA laser.

    PubMed

    Burton, Harry; Debardelaben, Christopher; Amir, Wafa; Planchon, Thomas A

    2017-03-20

    The fluorescence spectra of titanium doped sapphire (Ti:Sapphire) crystals were measured for temperature ranging from 300K to 77K. The resulting gain cross-section line shapes were calculated and used in a three-dimensional amplification model to illustrate the importance of the precise knowledge of these fluorescence spectra for the design of cryogenic cooled Ti:Sapphire based chirped-pulse laser amplifiers.

  10. New, Improved Version of the mCOP-PCR Screening System for Detection of Spinal Muscular Atrophy Gene (SMN1) Deletion.

    PubMed

    Shinohara, Masakazu; Ar Rochmah, Mawaddah; Nakanishi, Kenta; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Bouike, Yoshihiro; Nishio, Hisahide

    2017-09-07

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive disorder, characterized by lower motor neuron loss in the spinal cord. More than 95% of SMA patients show homozygous survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique. However, non-specific amplification products were observed with mCOP-PCR, which might lead to erroneous interpretation of the screening results. To establish an improved version of the mCOP-PCR screening system without non-specific amplification. DNA samples were assayed using a new version of the mCOP-PCR screening system. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The new mCOP-PCR method contained a targeted pre-amplification step of the region, including an SMN1-specific nucleotide, prior to the mCOP-PCR step. mCOP-PCR products were electrophoresed on agarose gels. No non-specific amplification products were detected in electrophoresis gels with the new mCOP-PCR screening system. An additional targeted pre-amplification step eliminated non-specific amplification from mCOP-PCR screening.

  11. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  12. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    PubMed

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  13. Qualification and characterization of electronics of the fast neutron Hodoscope detectors using neutrons from CABRI core

    NASA Astrophysics Data System (ADS)

    Mirotta, S.; Guillot, J.; Chevalier, V.; Biard, B.

    2018-01-01

    The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain.

  14. Closed-loop wavelength stabilization of an optical parametric oscillator as a front end of a high-power iodine laser chain.

    PubMed

    Kral, L

    2007-05-01

    We present a complex stabilization and control system for a commercially available optical parametric oscillator. The system is able to stabilize the oscillator's output wavelength at a narrow spectral line of atomic iodine with subpicometer precision, allowing utilization of this solid-state parametric oscillator as a front end of a high-power photodissociation laser chain formed by iodine gas amplifiers. In such setup, a precise wavelength matching between the front end and the amplifier chain is necessary due to extremely narrow spectral lines of the gaseous iodine (approximately 20 pm). The system is based on a personal computer, a heated iodine cell, and a few other low-cost components. It automatically identifies the proper peak within the iodine absorption spectrum, and then keeps the oscillator tuned to this peak with high precision and reliability. The use of the solid-state oscillator as the front end allows us to use the whole iodine laser system as a pump laser for the optical parametric chirped pulse amplification, as it enables precise time synchronization with a signal Ti:sapphire laser.

  15. Levers and linkages: mechanical trade-offs in a power-amplified system.

    PubMed

    Anderson, Philip S L; Claverie, Thomas; Patek, S N

    2014-07-01

    Mechanical redundancy within a biomechanical system (e.g., many-to-one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs. However, most organisms depend on the integration of more than one biomechanical system. Here, we test whether coupled mechanical systems follow a pattern of amplification (mechanical changes are congruent and evolve toward the same functional extreme) or independence (mechanisms evolve independently). We examined the correlated evolution and evolutionary pathways of the coupled four-bar linkage and lever systems in mantis shrimp (Stomatopoda) ultrafast raptorial appendages. We examined models of character evolution in the framework of two divergent groups of stomatopods-"smashers" (hammer-shaped appendages) and "spearers" (bladed appendages). Smashers tended to evolve toward force amplification, whereas spearers evolved toward displacement amplification. These findings show that coupled biomechanical systems can evolve synergistically, thereby resulting in functional amplification rather than mechanical redundancy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  16. A Polarization-Diversity Homodyne Image-Reject Optical Tranceiver Architecture for Improved Range and Signal Detection in Coherent Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Abari, C. F.; Chu, X.; Mann, J.

    2014-12-01

    Doppler light detection and ranging (lidar) has been used for a few decades for the characterization of wind fields and turbulence structures in the atmosphere. More recently, due to the advances in fiber optic communications, all-fiber coherent Doppler lidars (CDL) have been developed and widely used as a primary instrument for probing the atmospheric boundary layer wind fields. Due to a variety of reasons, all-fiber CDLs have gradually replaced their counterparts benefiting from technologies other than fiber optics. Most CDLs suffer from a number of drawbacks inherent to their principle of operation. For instance, one of the main challenges in CDLs is extracting the signal information from noisy observations, which is common to most opto-electronic systems. Moreover, it is sometimes challenging to extract the sign of the measured radial velocity. Conventionally, CDLs have benefitted from an intermediate frequency (IF) heterodyne receiver architecture for the determination of the radial velocity. In such systems, either the transmitted or the local oscillator (LO) signal is shifted in frequency. Such architectures may suffer from increased noise and spurious effects due to the employment of additional active components, e.g., acousto-optic modulator (AOM), limited measurement bandwidth (BW), and a more sophisticated electronic front-end for signal detection. On the other hand, one of the main challenges in long-range (pulsed) CDLs is the limitations imposed on the pulse repetition rate (PRR) as well as the available transmit power. These restrictions are more significant in all-fiber pulsed CDLs in which Erbium doped fiber amplifiers (EDFA) are employed for the amplification of the optical pulses. In this study, we propose an alternative reconfigurable opto-electronic front-end transceiver architecture in all-fiber CDLs where there is no compromise in the detection BW. Additionally, by benefiting from a polarization diversity architecture we show that both the PRR and transmit optical power can be doubled. Other benefits of the proposed system include, but not limited to, capturing additional information about the nature of aerosol particles, improvement of the signal-to-estimation-noise-ratio (SENR), faster scanning of the wind field, and improved measurement range.

  17. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2001-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

  18. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.

    PubMed

    Le, Binh Huy; Seo, Young Jun

    2018-01-25

    We have developed a gold nanoparticle (AuNP)-based CTG repeat probing system displaying high quenching capability and combined it with isothermal amplification for the detection of miRNA 146a. This method of using a AuNP-based CTG repeat probing system with isothermal amplification allowed the highly sensitive (14 aM) and selective detection of miRNA 146a. A AuNP-based CTG repeat probing system having a hairpin structure and a dT F fluorophore exhibited highly efficient quenching because the CTG repeat-based stable hairpin structure imposed a close distance between the AuNP and the dT F residue. A small amount of miRNA 146a induced multiple copies of the CAG repeat sequence during rolling circle amplification; the AuNP-based CTG repeat probing system then bound to the complementary multiple-copy CAG repeat sequence, thereby inducing a structural change from a hairpin to a linear structure with amplified fluorescence. This AuNP-based CTG probing system combined with isothermal amplification could also discriminate target miRNA 146a from one- and two-base-mismatched miRNAs (ORN 1 and ORN 2, respectively). This simple AuNP-based CTG probing system, combined with isothermal amplification to induce a highly sensitive change in fluorescence, allows the detection of miRNA 146a with high sensitivity (14 aM) and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Chemical amplification based on fluid partitioning

    DOEpatents

    Anderson, Brian L [Lodi, CA; Colston, Jr., Billy W.; Elkin, Chris [San Ramon, CA

    2006-05-09

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  20. Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing.

    PubMed

    John, Rohit Abraham; Ko, Jieun; Kulkarni, Mohit R; Tiwari, Naveen; Chien, Nguyen Anh; Ing, Ng Geok; Leong, Wei Lin; Mathews, Nripan

    2017-08-01

    Emulation of biological synapses is necessary for future brain-inspired neuromorphic computational systems that could look beyond the standard von Neuman architecture. Here, artificial synapses based on ionic-electronic hybrid oxide-based transistors on rigid and flexible substrates are demonstrated. The flexible transistors reported here depict a high field-effect mobility of ≈9 cm 2 V -1 s -1 with good mechanical performance. Comprehensive learning abilities/synaptic rules like paired-pulse facilitation, excitatory and inhibitory postsynaptic currents, spike-time-dependent plasticity, consolidation, superlinear amplification, and dynamic logic are successfully established depicting concurrent processing and memory functionalities with spatiotemporal correlation. The results present a fully solution processable approach to fabricate artificial synapses for next-generation transparent neural circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Portable Lock-in Amplifier-Based Electrochemical Method to Measure an Array of 64 Sensors for Point-of-Care Applications.

    PubMed

    Hrdý, Radim; Kynclová, Hana; Klepáčová, Ivana; Bartošík, Martin; Neužil, Pavel

    2017-09-05

    We present a portable lock-in amplifier-based electrochemical sensing system. The basic unit (cluster) consists of four electrochemical cells (EC), each containing one pseudoreference electrode (PRE) and one working electrode (WE). All four ECs are simultaneously interrogated, each at different frequencies, with square wave pulses superposed on a sawtooth signal for cyclic voltammetry (CV). Lock-in amplification provides independent read-out of four signals, with excellent noise suppression. We expanded a single cluster system into an array of 16 clusters by using electronic switches. The chip with an array of ECs was fabricated using planar technology with a gap between a WE and a PRE of ≈2 μm, which results in partial microelectrode-type behavior. The basic electrode characterization was performed with the model case using a ferricyanide-ferrocyanide redox couple (Fe 2+ /Fe 3+ ) reaction, performing CV and differential pulse voltammetry (DPV). We then used this system to perform cyclic lock-in voltammetry (CLV) to measure concurrently responses of the four ECs. We repeated this method with all 64 ECs on the chip. The standard deviation of a peak oxidation and reduction current in a single channel consisting of 13 ECs was ≈7.46% and ≈5.6%, respectively. The four-EC configuration in each measured spot allows determination of nonperforming ECs and, thus, to eliminate potential false results. This system is built in a portable palm-size format suitable for point-of-care applications. It can perform either individual or multiple measurements of active compounds, such as biomarkers.

  2. A short-pulse mode for the SPHINX LTD Z-pinch driver

    NASA Astrophysics Data System (ADS)

    D'Almeida, Thierry; Lassalle, Francis; Zucchini, Frederic; Loyen, Arnaud; Morell, Alain; Chuvatin, Alexander

    2015-11-01

    The SPHINX machine is a 6MA, 1 μs, LTD Z-pinch driver at CEA Gramat (France) and primarily used for studying radiation effects. Different power amplification concepts were examined in order to reduce the current rise time without modifying the generator discharge scheme, including the Dynamic Load Current Multiplier (DLCM) proposed by Chuvatin. A DLCM device, capable of shaping the current pulse without reducing the rise time, was developed at CEA. This device proved valuable for isentropic compression experiments in cylindrical geometry. Recently, we achieved a short pulse operation mode by inserting a vacuum closing switch between the DLCM and the load. The current rise time was reduced to ~300 ns. We explored the use of a reduced-height wire array for the Dynamic Flux Extruder in order to improve the wire array compression rate and increase the efficiency of the current transfer to the load. These developments are presented. Potential benefits of these developments for future Z pinch experiments are discussed.

  3. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, D. P.; Oettinger, P. E.

    1976-01-01

    The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV.

  4. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less

  5. Experimental observation of the luminescence flash at the collapse phase of a bubble produced by pulsed discharge in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yifan; Zhang, Liancheng; Zhu, Xinlei

    2015-11-02

    This letter presents an experimental observation of luminescence flash at the collapse phase of an oscillating bubble produced by a pulsed discharge in water. According to the high speed records, the flash lasts around tens of microseconds, which is much longer than the lifetime of laser and ultrasound induced luminescence flashes in nanoseconds and picoseconds, respectively. The pulse width of temperature waveform and minimum radius calculated at the collapse phase also show that the thermodynamic and dynamic signatures of the bubbles in this work are much larger than those of ultrasound and laser induced bubbles both in time and spacemore » scales. However, the peak temperature at the point of collapse is close to the results of ultrasound and laser induced bubbles. This result provides another possibility for accurate emission spectrum measurement other than amplification of the emitted light, such as increasing laser energy or sound energy or substituting water with sulphuric acid.« less

  6. Numerical Study of Wave Propagation in a Non-Uniform Flow

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    The propagation of acoustic waves originating from cylindrical and spherical pulses, in a non-uniform mean flow, and in the presence of a reflecting wall is investigated by Hardin and Pope approach using compact approximation of spatial derivatives. The 2-D and 3-D stagnation flows and a flow around a cylinder are taken as prototypes of real world flows with strong gradients of mean pressure and velocity. The intensity and directivity of acoustic wave patterns appear to be quite different from the benchmark solutions obtained in a static environment for the same geometry. The physical reasons for amplification and weakening of sound are discussed in terms of dynamics of wave profile and redistribution of acoustic energy and its potential and kinetic components. For an acoustic wave in the flow around a cylinder, the observed mean acoustic pressure is approximately doubled (upstream pulse position) and halved (downstream pulse position) in comparison with the sound propagation in static ambient conditions.

  7. Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Miller, Joseph D.; Jiang, Naibo; Slipchenko, Mikhail N.; Mance, Jason G.; Meyer, Terrence R.; Roy, Sukesh; Gord, James R.

    2016-12-01

    100-kHz particle image velocimetry (PIV) is demonstrated using a double-pulsed, burst-mode laser with a burst duration up to 100 ms. This enables up to 10,000 time-sequential vector fields for capturing a temporal dynamic range spanning over three orders of magnitude in high-speed turbulent flows. Pulse doublets with inter-pulse spacing of 2 µs and repetition rate of 100 kHz are generated using a fiber-based oscillator and amplified through an all-diode-pumped, burst-mode amplifier. A physics-based model of pulse doublet amplification in the burst-mode amplifier is developed and used to accurately predict oscillator pulse width and pulse intensity inputs required to generate equal-energy pulse doublets at 532 nm for velocity measurements. The effect of PIV particle response and high-speed-detector limitations on the spatial and temporal resolution are estimated in subsonic turbulent jets. An effective spatial resolution of 266-275 µm and temporal resolution of 10 µs are estimated from the 8 × 8 pixel correlation window and inter-doublet time spacing, respectively. This spatiotemporal resolution is sufficient for quantitative assessment of integral time and length scales in highly turbulent jets with Reynolds numbers in the range 15,000-50,000. The temporal dynamic range of the burst-mode PIV measurement is 1200, limited by the 85-ms high-energy portion of the burst and 30-kHz high-frequency noise limit.

  8. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Guerra, M.; Javan, A.

    1980-01-01

    The problem of laser energy extraction at a tunable monochromatic frequency from an energetic high pressure CO2 pulsed laser plasma, for application to remote sensing of atmospheric pollutants by Differential Absorption Lidar (DIAL) and of wind velocities by Doppler Lidar, was investigated. The energy extraction principle analyzed is based on transient injection locking (TIL) at a tunable frequency. Several critical experiments for high gain power amplification by TIL are presented.

  9. Investigation of the photon statistics of parametric fluorescence in a traveling-wave parametric amplifier by means of self-homodyne tomography.

    PubMed

    Vasilyev, M; Choi, S K; Kumar, P; D'Ariano, G M

    1998-09-01

    Photon-number distributions for parametric fluorescence from a nondegenerate optical parametric amplifier are measured with a novel self-homodyne technique. These distributions exhibit the thermal-state character predicted by theory. However, a difference between the fluorescence gain and the signal gain of the parametric amplifier is observed. We attribute this difference to a change in the signal-beam profile during the traveling-wave pulsed amplification process.

  10. 30-W Yb3+-pulsed fiber laser with wavelength tuning

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.; Krylov, A. A.

    2007-12-01

    We have investigated various pulsed operation regimes of a diode-pumped Yb3+-doped fiber laser with both an acoustooptic filter and a shutter inside the resonator. To imbed the polarization-sensitive acoustooptic-tunable spectral filter into the polarization-nonmaintaining resonator, based on an “isotropic” single-mode fiber without “polarization’ losses, we have used a CaCO3 single-crystal nondispersive thermostable polarization splitter. Stable smooth bell-shaped laser pulses were obtained in the Q-switch generation regime across the entire wavelength tuning band. Their duration depended on the resonator travel time and their repetition rate was determined exclusively by the outer high-frequency generator controlling the acoustooptic shutter. A pulsed laser radiation tuning bandwidth of more than 20-nm at a repetition rate band of 10-100 kHz was observed in the amplification band of the Yb3+-doped fiber. A stable average power of 30 W of the pulsed 70-ns 100-kHz laser radiation in a near Gaussian beam was reached by means of the two-stage amplifier based on Yb3+-doped fibers with an enlarged mode field diameter (14 μm). The amplifier was pumped by λ = 975 nm CW multimode laser diodes with a maximum average power of 42 W.

  11. Ion heating and characteristics of ST plasma used by double-pulsing CHI on HIST

    NASA Astrophysics Data System (ADS)

    Hanao, Takafumi; Hirono, Hidetoshi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki; Nagata, Masayoshi

    2013-10-01

    Multi-pulsing Coaxial Helicity Injection (M-CHI) is an efficient current drive and sustainment method used in spheromak and spherical torus (ST). We have observed plasma current/flux amplification by double pulsing CHI. Poloidal ion temperature measured by Ion Doppler Spectrometer (IDS) has a peak at plasma core region. In this region, radial electric field has a negative peak. At more inboard side that is called separatrix between closed flux region and inner open flux region, poloidal flow has a large shear and radial electric field changes the polarity. After the second CHI pulse, we observed sharp and rapid ion heating at plasma core region and separatrix. In this region, the poloidal ion temperature is selective heating because electron temperature is almost uniform. At this time, flow shear become larger and radial electric field is amplified at separatorix. These effects produce direct heating of ion through the viscous flow damping. Furthermore, we observed decrease of electron density at separatrix. Decreased density makes Hall dynamo electric field as two-fluid effect. When the ion temperature is increasing, dynamo electric field is observed at separatrix. It may have influence with the ion heating. We will discuss characteristic of double pulsing CHI driven ST plasmas and correlation of direct heating of ion with dynamo electric field and any other parameters.

  12. Understanding Charge Collection Mechanisms in InGaAs FinFETs Using High-Speed Pulsed-Laser Transient Testing With Tunable Wavelength

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Sternberg, Andrew L.; Zhang, En Xia; Kozub, John A.; Jiang, Rong; Schrimpf, Ronald D.; Reed, Robert A.; Fleetwood, Daniel M.; Alles, Michael L.; McMorrow, Dale; Lin, Jianqiang; Vardi, Alon; del Alamo, Jesús

    2017-08-01

    A tunable wavelength laser system and high-resolution transient capture system are introduced to characterize transients in high-mobility MOSFETs. The experimental configuration enables resolution of fast transient signals and new understanding of charge collection mechanisms. The channel layer is critical in the charge collection process for the InGaAs FinFETs examined here. The transient current mainly comes from the channel current, due to shunt effects and parasitic bipolar effects, instead of the junction collection. The charge amplification factor is found to be as high as 14, which makes this technology relatively sensitive to transient radiation. The peak current is inversely proportional to the device gate length. Simulations show that the parasitic bipolar effect is due to source-to-channel barrier lowering caused by hole accumulation in the source and channel. Charge deposited in the channel causes prompt current, while charge deposited below the channel causes delayed and slow current.

  13. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  14. Near-Fault Ground Motion Velocity Pulses Input and Its Non-Stationary Characteristics from 2015 Gorkha Nepal Mw7.8 Earthquake KATNP Station

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Wen, Zengping; Wang, Fang

    2017-04-01

    Using near-fault strong motions from Nepal Mw7.8 earthquake at KATNP station in the city center of Kathmandu, velocity-pulse and non-stationary characteristics of the strong motions are shown, and the reason and potential effect on earthquake damage for intense non-stationary characteristics of near fault velocity-pulse strong motions are mainly studied. The observed strong ground motions of main shock were collected from KATNP station located in 76 kilometers south-east away from epicenter along with forward direction of the rupture fault at an inter-montane basin of the Himalaya. Large velocity pulse show the period of velocity pulse reach up to 6.6s and peak ground velocity of the pulse ground motion is 120 cm/s. Compared with the median spectral acceleration value of NGA prediction equation, significant long-period amplification effect due to velocity pulse is detected at period more than 3.2s. Wavelet analysis shows that the two horizontal component of ground motion is intensely concentration of energy in a short time range of 25-38s and period range of 4-8s. The maximum wavelet-coefficient of horizontal component is 2455, which is about four time of vertical component of strong ground motion. On the perspective of this study, large velocity pulses are identified from two orthogonal components using wavelet method. Intense non-stationary characteristics amplitude and frequency content are mainly caused by site conditions and fault rupture mechanism, which will help to understand the damage evaluation and serve local seismic design.

  15. Visible and near infrared resonance plasmonic enhanced nanosecond laser optoporation of cancer cells

    PubMed Central

    St-Louis Lalonde, Bastien; Boulais, Étienne; Lebrun, Jean-Jacques; Meunier, Michel

    2013-01-01

    In this paper, we report a light driven, non-invasive cell membrane perforation technique based on the localized field amplification by a nanosecond pulsed laser near gold nanoparticles (AuNPs). The optoporation phenomena is investigated with pulses generated by a Nd:YAG laser for two wavelengths that are either in the visible (532 nm) or near infrared (NIR) (1064 nm). Here, the main objective is to compare on and off localized surface plasmonic resonance (LSPR) to introduce foreign material through the cell membrane using nanosecond laser pulses. The membrane permeability of human melanoma cells (MW278) has been successfully increased as shown by the intake of a fluorescent dye upon irradiation. The viability of this laser driven perforation method is evaluated by propidium iodide exclusion as well as MTT assay. Our results show that up to 25% of the cells are perforated with 532 nm pulses at 50 mJ/cm2 and around 30% of the cells are perforated with 1064 nm pulses at 1 J/cm2. With 532 nm pulses, the viability 2 h after treatment is 64% but it increases to 88% 72 h later. On the other hand, the irradiation with 1064 nm pulses leads to an improved 2 h viability of 81% and reaches 98% after 72 h. Scanning electron microscopy images show that the 5 pulses delivered during treatment induce changes in the AuNPs size distribution when irradiated by a 532 nm beam, while this distribution is barely affected when 1064 nm is used. PMID:23577284

  16. NASBA: A detection and amplification system uniquely suited for RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sooknanan, R.; Malek, L.T.

    1995-06-01

    The invention of PCR (polymerase chain reaction) has revolutionized our ability to amplify and manipulate a nucleic acid sequence in vitro. The commercial rewards of this revolution have driven the development of other nuclei acid amplification and detection methodologies. This has created an alphabet soup of technologies that use different amplification methods, including NASBA (nucleic acid sequence-based amplification), LCR (ligase chain reaction), SDA (strand displacement amplification), QBR (Q-beta replicase), CPR (cycling probe reaction), and bDNA (branched DNA). Despite the differences in their processes, these amplification systems can be separated into two broad categories based on how they achieve their goal:more » sequence-based amplification systems, such as PCR, NASBA, and SDA, amplify a target nucleic acid sequence. Signal-based amplification systems, such as LCR, QBR, CPR and bDNA, amplify or alter a signal from a detection reaction that is target-dependent. While the various methods have relative strengths and weaknesses, only NASBA offers the unique ability to homogeneously amplify an RNA analyte in the presence of homologous genomic DNA under isothermal conditions. Since the detection of RNA sequences almost invariably measures biological activity, it is an excellent prognostic indicator of activities as diverse as virus production, gene expression, and cell viability. The isothermal nature of the reaction makes NASBA especially suitable for large-scale manual screening. These features extend NASBA`s application range from research to commercial diagnostic applications. Field test kits are presently under development for human diagnostics as well as the burgeoning fields of food and environmental diagnostic testing. These developments suggest future integration of NASBA into robotic workstations for high-throughput screening as well. 17 refs., 1 tab.« less

  17. Amplification through chaotic synchronization in spatially extended beam-plasma systems

    NASA Astrophysics Data System (ADS)

    Moskalenko, Olga I.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2017-12-01

    In this paper, we have studied the relationship between chaotic synchronization and microwave signal amplification in coupled beam-plasma systems. We have considered a 1D particle-in-cell numerical model of unidirectionally coupled beam-plasma oscillatory media being in the regime of electron pattern formation. We have shown the significant gain of microwave oscillation power in coupled beam-plasma media being in the different regimes of generation. The discovered effect has a close connection with the chaotic synchronization phenomenon, so we have observed that amplification appears after the onset of the complete time scale synchronization regime in the analyzed coupled spatially extended systems. We have also provided the numerical study of physical processes in the chain of beam-plasma systems leading to the chaotic synchronization and the amplification of microwave oscillations power, respectively.

  18. High power pulsed sources based on fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  19. Ionization waves of arbitrary velocity driven by a flying focus

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Turnbull, D.; Bahk, S.-W.; Follett, R. K.; Shaw, J. L.; Haberberger, D.; Bromage, J.; Froula, D. H.

    2018-03-01

    A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.

  20. Smart wheelchair: integration of multiple sensors

    NASA Astrophysics Data System (ADS)

    Gassara, H. E.; Almuhamed, S.; Moukadem, A.; Schacher, L.; Dieterlen, A.; Adolphe, D.

    2017-10-01

    The aim of the present work is to develop a smart wheelchair by integrating multiple sensors for measuring user’s physiological signals and subsequently transmitting and monitoring the treated signals to the user, a designated person or institution. Among other sensors, force, accelerometer, and temperature sensors are successfully integrated within both the backrest and the seat cushions of the wheelchair; while a pulse sensor is integrated within the armrest. The pulse sensor is connected to an amplification circuit board that is, in turn, placed within the armrest. The force and temperature sensors are integrated into a textile cover of the cushions by means of embroidery and sewing techniques. The signal from accelerometer is transmitted through Wi-Fi connection. The electrical connections needed for power supplying of sensors are made by embroidered conductive threads.

Top