Science.gov

Sample records for pulse columns

  1. Programmable selectivity for GC with series-coupled columns using pulsed heating of the second column.

    PubMed

    Whiting, Joshua; Sacks, Richard

    2003-05-15

    A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.

  2. Extraction apparatus with pulsed columns for monitoring dispersed phase

    NASA Astrophysics Data System (ADS)

    Aiba, Koji; Ouchi, Katsunori; Okuma, Takahiro

    The invention pertains to a method and extraction apparatus with pulsed columns for monitoring the dispersed phase that calculates by means of using ultrasonic waves the dispersion that forms on the boundary between the light liquid phase and the heavy liquid phase in the pulsed columns. With the invention, the outer wall of the pulsed column of an extraction tower is irradiated with ultrasonic waves, the radioactive waves or the transmitted waves are received, and the dispersion of the dispersed phase in the pulsed columns is calculated on the basis of the level of radioactive or transmitted waves.

  3. Applicability of hydroxylamine nitrate reductant in pulse-column contactors

    SciTech Connect

    Reif, D.J.

    1983-05-01

    Uranium and plutonium separations were made from simulated breeder reactor spent fuel dissolver solution with laboratory-sized pulse column contactors. Hydroxylamine nitrate (HAN) was used for reduction of plutonium (1V). An integrated extraction-partition system, simulating a breeder fuel reprocessing flowsheet, carried out a partial partition of uranium and plutonium in the second contactor. Tests have shown that acceptable coprocessing can be ontained using HAN as a plutonium reductant. Pulse column performance was stable even though gaseous HAN oxidation products were present in the column. Gas evolution rates up to 0.27 cfm/ft/sup 2/ of column cross section were tested and found acceptable.

  4. Pulsed column and mixer-settler applications in solvent extraction

    NASA Astrophysics Data System (ADS)

    Vancas, Mark F.

    2003-07-01

    Pulsed columns and mixer-settlers are the solvent extraction contactors used most frequently in the minerals industry. Each contactor has inherent advantages and disadvantages that can be utilized to create the optimum processing plant for a given mineral.

  5. Installation of the Pulse-Plate Column Pilot Plant

    SciTech Connect

    Nick R. Mann

    2009-07-01

    There are three primary types of solvent extraction equipment utilized in the nuclear industry for reprocessing of used nuclear fuel; pulse columns, mixer-settlers, and centrifugal contactors. Considerable research and development has been performed at the INL and throughout the DOE complex on the application of centrifugal contactors for used fuel reprocessing and these contactors offer many significant advantages. However, pulse columns have been used extensively in the past in throughout the world for aqueous separations processes and remain the preferred equipment by many commercial entities. Therefore, a pulse-plate column pilot plant has been assembled as part of the Advanced Fuel Cycle Initiative to support experimentation and demonstration of pulse column operation. This will allow the training of personnel in the operation of pulse columns. Also, this capability will provide the equipment to allow for research to be conducted in the operation of pulse columns with advanced solvents and processes developed as part of the fuel cycle research and development being performed in the AFCI program.

  6. Instrument for the measurement and determination of chemical pulse column parameters

    DOEpatents

    Marchant, Norman J.; Morgan, John P.

    1990-01-01

    An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.

  7. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  8. Development and testing of a rotary disc pulser for pulse column application

    SciTech Connect

    Olson, A.L.

    1988-10-01

    Air pulse column contactors are a favored method of conducting radiochemical liquid-liquid separations processes. They have no moving parts and are easily operated from behind thick shielding. A ruggedly constructed more reliable air pulsing device was developed and its operation mathematically characterized in this study. Additionally, a correlation for the column perforated nozzle plate discharge coefficient was developed. Rigorous mass, momentum, and energy balances were solved using a computer software code entitled ''Advanced Continuous Simulation Language.'' Experimental data from a 2-inch diameter glass column equipped with the prototypical air pulser showed that column pulse amplitudes could be predicted within 10% for the conditions studied and within 5% for normal column operating conditions. 17 refs., 45 figs., 15 tabs.

  9. Zero-derivative boundary condition for pulsed distributed systems. [column chromatography example

    NASA Technical Reports Server (NTRS)

    Lashmet, P. K.; Woodrow, P. T.

    1975-01-01

    To permit use of experimentally determined Peclet numbers in numerical simulations of pulsed distributed flow systems such as chromatograph columns, substitution of the zero-derivative boundary condition for the infinite boundary condition used in treating data is examined. Moment analysis shows that application of the zero-derivative condition external to the column will yield equivalent numerical results for the two boundary conditions. Criteria for locating this position are provided as a function of the Peclet number.

  10. Consolidated Fuel Reprocessing Program. Operating experience with pulsed-column holdup estimators

    SciTech Connect

    Ehinger, M.H.

    1986-01-01

    Methods for estimating pulsed-column holdup are being investigated as part of the Safeguards Assessment task of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory. The CFRP was a major sponsor of test runs at the Barnwell Nuclear Fuel plant (BNFP) in 1980 and 1981. During these tests, considerable measurement data were collected for pulsed columns in the plutonium purification portion of the plant. These data have been used to evaluate and compare three available methods of holdup estimation.

  11. Study on the dynamic holdup distribution of the pulsed extraction column

    SciTech Connect

    Wang, S.; Chen, J.; Wu, Q.

    2013-07-01

    In the study, a CSTR cascade dynamic hydraulic model was developed to investigate the dynamic holdup distribution of the pulsed extraction column. It is assumed that the dynamic process of the dispersed phase holdup of pulsed extraction column has equal effects with the operational process of multiple cascade CSTRs. The process is consistent with the following assumptions: the holdups vary on different stages but maintain uniform on each stage; the changes of the hydraulic parameters have impact initially on the inlet of dispersed phase, and stability will be reached gradually through stage-by-stage blending. The model was tested and verified utilizing time domain response curves of the average holdup. Nearly 150 experiments were carried out with different capillary columns, various feed liquids, and diverse continuous phases and under different operation conditions. The regression curves developed by the model show a good consistency with the experimental results. After linking parameters of the model with operational conditions, the study further found that the parameters are only linearly correlated with pulse conditions and have nothing to do with flow rate for a specific pulsed extraction column. The accuracy of the model is measured by the average holdup, and the absolute error is ±0.01. The model can provide supports for the boundary studies on hydraulics and mass transfer by making simple and reliable prediction of the dynamic holdup distribution, with relatively less accessible hydraulic experimental data. (authors)

  12. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  13. Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-10-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 mJ and up to 10 Hz repetition rate. The two laser pulses are separated by 200 µs and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-µm direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-μm IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  14. Retrievals of column CO2 mixing ratio from airborne pulsed lidar measurements

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; Allan, G. R.; Riris, H.; Hasselbrack, W. E.; Biraud, S.; Abshire, J. B.

    2009-12-01

    We will present retrieved CO2 column densities from in-flight lidar measurements. We will describe a retrieval algorithm, which extracts the column-average CO2 volume-mixing ratio from pulsed airborne lidar measurements. The airborne instrument steps a pulsed wavelength-tunable laser transmitter across the 1572.33 nm CO2 line in twenty steps at a 450 Hz repitition rate. The laser beam is co-aligned with the receiver and directed toward nadir. The energy of the laser echoes from land and water surfaces are measured. The gas extinction and column densities for the CO2 are obtained from a retrieval algorithm that fits the observed scan while accounting for atmospheric temperature, pressure, water vapor and the lidar’s wavelength response During summer 2009 we flew the instrument on the NASA Glenn LearJet-25 aircraft over a variety of surface types: corn and soybean fields of the US Midwest, the Oklahoma prairie and waters of the Chesapeake Bay. At selected locations we flew stair step patterns at altitudes from 4 to 12 km. At the Oklahoma site the flights were also coordinated with DOE investigators who flew their in-situ CO2 sensor on a Cessna aircraft inside the LearJet flight pattern. We will present the lidar retrieved CO2 column amounts from the in-flight measurements along side in-situ measurements where available.

  15. Cost/performance comparison between pulse columns and centrifugal contactors designed to process Clinch River Breeder Reactor fuel

    SciTech Connect

    Ciucci, J.A. Jr.

    1983-12-01

    A comparison between pulse columns and centrifugal contactors was made to determine which type of equipment was more advantageous for use in the primary decontamination cycle of a remotely operated fuel reprocessing plant. Clinch River Breeder Reactor (CRBR) fuel was chosen as the fuel to be processed in the proposed 1 metric tonne/day reprocessing facility. The pulse columns and centrifugal contactors were compared on a performance and total cost basis. From this comparison, either the pulse columns or the centrifugal contactors will be recommended for use in a fuel reprocessing plant built to reprocess CRBR fuel. The reliability, solvent exposure to radiation, required time to reach steady state, and the total costs were the primary areas of concern for the comparison. The pulse column units were determined to be more reliable than the centrifugal contactors. When a centrifugal contactor motor fails, it can be remotely changed in less than one eight hour shift. Pulse columns expose the solvent to approximately five times as much radiation dose as the centrifugal contactor units; however, the proposed solvent recovery system adequately cleans the solvent for either case. The time required for pulse columns to reach steady state is many times longer than the time required for centrifugal contactors to reach steady state. The cost comparison between the two types of contacting equipment resulted in centrifugal contactors costing 85% of the total cost of pulse columns when the contactors were stacked on three levels in the module. If the centrifugal contactors were all positioned on the top level of a module with the unoccupied volume in the module occupied by other equipment, the centrifugal contactors cost is 66% of the total cost of pulse columns. Based on these results, centrifugal contactors are recommended for use in a remotely operated reprocessing plant built to reprocess CRBR fuel.

  16. Extreme Degree of Ionization in Homogenous Micro-Capillary Plasma Columns Heated by Ultrafast Current Pulses

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Grisham, M.; Li, J.; Tomasel, F. G.; Shlyaptsev, V. N.; Busquet, M.; Woolston, M.; Rocca, J. J.

    2015-03-01

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520 -μ m -diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3 GA cm-2 greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe28 + , while xenon impurities in hydrogen discharges reach Xe30 + . The unique characteristics of these hot, ˜300 :1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  17. Copper extraction from ammoniacal medium in a pulsed sieve-plate column with LIX 84-I.

    PubMed

    Gameiro, M Lurdes F; Machado, Remígio M; Ismael, M Rosinda C; Reis, M Teresa A; Carvalho, Jorge M R

    2010-11-15

    This article reports on a study of copper removal from ammoniacal aqueous solution (1.0 kg m(-3) Cu, pH 9.5) by liquid-liquid extraction using a pulsed sieve-plate column. The extractant tested was the hydroxyoxime LIX 84-I (2-hydroxy-5-nonylacetophenone oxime) in the aliphatic diluent Shellsol D-70. The results of the pilot plant experiments demonstrated the feasibility of operating the extraction process in this type of column, with efficiencies of copper removal in the range of 90.5-99.5%. Several effects on the column performance were examined, namely the aqueous and organic flow rates and the pulse velocity. The axial dispersion model was applied to simulate the concentration profiles, which reasonably predicted the experimental data. The overall mass transfer coefficient was evaluated from the experimental data and was found to be between 9×10(-6) and 1.2×10(-5) m s(-1). These data were compared with the ones obtained from the resistances in series model, which indicated that the resistance due to chemical reaction was 84-91% of the overall resistance to mass transfer. The extraction using a hollow fiber contactor was also carried out to compare the membrane process performance with the one of conventional process. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  19. Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anamd; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B.

    2012-01-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations.

  20. Advances in Pulsed Lidar Measurements of CO2 Column Concentrations from Aircraft and for Space

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Allan, G. R.; Hasselbrack, W. E.; Riris, H.; Numata, K.; Mao, J.; Sun, X.

    2016-12-01

    We have demonstrated an improved pulsed, multiple-wavelength integrated path differential absorption lidar for measuring the tropospheric CO2 concentrations. The lidar measures the range resolved shape of the 1572.33 nm CO2 absorption line to scattering surfaces, including the ground and the tops of clouds. Airborne measurements have used both 30 and 15 fixed wavelength samples distributed across the line. Analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the CO2 absorption line shape and the column average CO2 concentrations by using radiative transfer calculations, the aircraft altitude and range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations from in-situ sensors. In recent campaigns the lidar used a step-locked laser diode source, and a new HgCdTe APD detector in the receiver. During August and September 2014 the ASCENDS campaign flew over the California Central Valley, a coastal redwood forest, desert areas, and above growing crops in Iowa. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over variable topography and through thin clouds and aerosols. The retrievals clearly show the decrease in CO2 concentration over growing cropland. Airborne lidar measurements of horizontal gradients of CO2 concentrations across Nevada, Colorado and Nebraska showed good agreement with those from a model of CO2 flux and transport (PCTM). In several flights the agreement of the lidar with the column average concentration was < 1ppm, with standard deviation of 0.9 ppm. Two additional flights were made in February 2016 using a larger laser spot size and an optimized receiver. These improved the sensitivity x3, and the retrievals show 0.7 ppm precision over the desert in 1 second averaging time. A summary of these results will be presented, along with on-going developments for a space version.

  1. [Simultaneous determination of organophosphorus pesticides in cruciferous vegetables by dual-column GC with pulsed FPD and FTD].

    PubMed

    Ueno, Eiji; Oshima, Harumi; Saito, Isao; Matsumoto, Hiroshi; Nakazawa, Hiroyuki

    2004-02-01

    We evaluated simultaneous analytical methods for organophosphorus pesticides in cruciferous vegetables by gas chromatography (GC). Firstly, 36 pesticides were selected on the basis of monitoring data (April 1996-March 2003) in Aichi Prefecture. A sample was extracted with acetonitrile and the acetonitrile layer was separated by salting-out. The extract was cleaned up with gel permeation chromatography (GPC), and then with a tandem silica-gel/PSA mini-column. The test solution was subjected to dual-column GC equipped with a pulsed FPD (P mode, Rtx-OPPesticides column) and a FTD (Rtx-OPPesticides 2 column). Organophosphorus pesticides in such sulfur-rich matrices as cabbage and radish were determined without any serious interfering peaks on the pulsed FPD chromatograms after diluting the extracts 10- to 20-fold (0.25-0.5 mg/L of sample). The method was applied to cruciferous vegetables to demonstrate its usefulness in routine analysis.

  2. Pulsed Lidar Measurements of Atmospheric CO2 Column Concentration in the ASCENDS 2014 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Chen, J. R.

    2015-12-01

    We report progress in demonstrating a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line by using 30 wavelength samples distributed across the lube. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the optimum CO2 absorption line shape and the column average CO2 concentrations using radiative transfer calculations based on HITRAN, the aircraft altitude, range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations sampled by in-situ sensors on the aircraft. The number of wavelength samples can be reduced in the retrievals. During the ASCENDS airborne campaign in 2013 two flights were made in February over snow in the Rocky Mountains and the Central Plains allowing measurement of snow-covered surface reflectivity. Several improvements were made to the lidar for the 2014 campaign. These included using a new step-locked laser diode source, and incorporating a new HgCdTe APD detector and analog digitizer into the lidar receiver. Testing showed this detector had higher sensitivity, analog response, and a more linear dynamic range than the PMT detector used previously. In 2014 flights were made in late August and early September over the California Central Valley, the redwood forests along the California coast, two desert areas in Nevada and California, and two flights above growing agriculture in Iowa. Two flights were also made under OCO-2 satellite ground tracks. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds and aerosol scattering. The lidar measurements clearly

  3. Dynamics of a Finite Liquid Oxygen (LOX) Column in a Pulsed Magnetic Field

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Immer, Christopher; Lane, John; Simpson, James; Steinrock, T. (Technical Monitor)

    2002-01-01

    It is well known that liquid oxygen has a sufficient paramagnetic susceptibility that a strong magnetic field gradient can lift it in the earth's gravitational field. The movement of liquid oxygen is vital to the space program since it one of the primary oxidizers used for propulsion. Transport of liquid oxygen (LOX) via direct interaction of the magnetic fields (B field) with the fluid is a current topic of research and development at Kennedy Space Center, FL. This method of transporting (i.e. pumping) LOX may have particular advantages on Mars and other reduced gravitational environments, namely safety and reliability. This paper will address transport of a magnetic fluid, LOX, via phased-pulsed electromagnets acting on the edge of the column of fluid. The authors have developed a physical model from first-principles for the motion of a magnetic fluid in a particular U-tube geometry subjected to a pulsed magnetic field from an arbitrary solenoidal electromagnet. Experimental data that have been collected from the analogous geometry correlate well to that of the ab-initio calculations.

  4. Dynamics of atomic kinetics in a pulsed positive-column discharge at 100 Pa

    NASA Astrophysics Data System (ADS)

    Franek, J. B.; Nogami, S. H.; Koepke, M. E.; Demidov, V. I.; Barnat, E. V.

    2017-01-01

    Temporal measurements of the electron density, metastable-atom density, and reduced electric field demonstrate that four orders of magnitude variation in the dynamic range of the electron-atom collision-induced excitation rates takes place during the 2.0 kV height, 40 µs duration repeating pulse applied to a 100 Pa (1 Torr), argon positive column in a hollow-cathode discharge. Correlation between metastable-atom density and emission-line ratio is demonstrated to be sufficiently reliable to infer one quantity based on the measurement of the other quantity during the Initiation, Transient, and Post-Transient spectroscopic stages of the pulse. Observed emission-line ratio and the predicted emission-line ratio are in quantitative agreement with each other in the Transient and Post-Transient stages of the discharge and are in qualitative agreement with each other in the Initiation stage of the discharge. Reasonable assumptions regarding the interpretation of the electron energy probability function (EEPF), as it starts off being Druyvesteyn and becomes more Maxwellian later with the increasing electron density, is key to interpreting the correlation and explaining the temporal behavior of the emission-line ratio in all stages of the discharge.

  5. Pulse Profiles, Accretion Column and a flare in Gx 1+4 During a Faint State

    NASA Technical Reports Server (NTRS)

    Giles, A. B.; Galloway, D. K.; Greenhill, J. G.; Storey, M. C.; Wilson, C. A.

    1999-01-01

    The Rossi X-ray Timing Explorer (RXTE) spacecraft observed the X-ray pulsar GX 1+4 for a period of 34 hours on July 19/20 1996. The source faded from an intensity of approx. 20 mcrab to a minimum of less than or equal to 0.7 mcrab and then partially recovered towards the end of the observation. This extended minimum lasted approx. 40,000 seconds. Phase folded light curves at a barycentric rotation period of 124.36568 +/- 0.00020 seconds show that near the center of the extended minimum the source stopped pulsing in the traditional sense but retained a weak dip feature at the rotation period. Away from the extended minimum the dips are progressively narrower at higher energies and may be interpreted as obscurations or eclipses of the hot spot by the accretion column. The pulse profile changed from leading-edge bright before the extended minimum to trailing-edge bright after it. Data from the Burst and Transz'ent Source Experiment (BATSE) show that a torque reversal occurred less than 10 days after our observation. Our data indicate that the observed rotation departs from a constant period with a P/P value off approx. -5% per year at a 4.5(sigma) significance. We infer that we may have serendipitously obtained data. with high sensitivity and temporal resolution about the time of an accretion disk spin reversal. We also observed a rapid flare which had some precursor activity close to the center of the extended minimum.

  6. Recent Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption to 13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Mao, J.; Hasselbrack, W.; Sun, X.; Rodriguez, M. R.

    2010-12-01

    We have developed a lidar technique for measuring atmospheric CO2 concentrations as a candidate for NASA’s ASCENDS mission. It uses pulsed laser transmitters to simultaneously measure a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers step in wavelength across the CO2 line and an O2 line pair during the measurement. The receiver uses a telescope and photon counting detectors, and measures the time resolved backscatter of the laser echoes. Signal processing is used to isolate the laser echo signals from the surface, estimate their range, and reject laser photons scattered in the atmosphere. The gas extinction and column densities for the CO2 and O2 gases are estimated via the IPDA technique. We developed a lidar to demonstrate the CO2 measurement from aricraft. The lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 or 30 steps per scan. The line scan rate is 450 Hz and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. During July and August 2009 we made 5 two hour long flights while installed on the NASA Glenn Lear-25 aircraft. We measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surfaces in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The Oklahoma and east coast flights were coordinated with the NASA LaRC/ITT CO2 lidar on their UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. Ed Browell

  7. Nonmonotonic radial distribution of excited atoms in a positive column of pulsed direct currect discharges in helium

    SciTech Connect

    Barnat, E. V.; Kolobov, V. I.

    2013-01-21

    Nonmonotonic radial distributions of excited helium atoms have been experimentally observed in a positive column of pulsed helium discharges using planar laser induced fluorescence. Computational analysis of the discharge dynamics with a fluid plasma model confirms the experimental observations over a range of pressures and currents. The observed effect is attributed to the peculiarities of electron population-depopulation of the excited states during the 'dynamic discharge' conditions with strong modulations of the electric field maintaining the plasma.

  8. Analysis of sugar phosphates in plants by ion chromatography on a titanium dioxide column with pulsed amperometric detection.

    PubMed

    Sekiguchi, Yoko; Mitsuhashi, Naoto; Inoue, Yoshinori; Yagisawa, Hitoshi; Mimura, Tetsuro

    2004-06-11

    This paper describes the development of a practical method for the analysis of sugar phosphates from the model higher plant Arabidopsis thaliana by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The extraction method of sugar phosphates from higher plants was first optimized for HPAEC-PAD analysis. In order to improve the resolution in HPAEC-PAD, a column packed with titanium dioxide resin was used. The titanium dioxide column was used as a trap-column for sugar phosphates and nucleotides, for the removal of sample matrices. Sample pretreatment was achieved in-line and automatically using a six-port valve placed after the injection valve.

  9. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  10. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Ramanathan, A.; Hasselbrack, W.; Mao, J.; Weaver, C. J.; Browell, E. V.

    2012-12-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the lidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected ~linear change of the peak DOD with altitude. For measurements at altitudes > 6 km the random errors were ~ 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity

  11. Radiotracer investigations to study the hydrodynamic characteristics of continuous phase in a pulsed sieve plate extraction column

    NASA Astrophysics Data System (ADS)

    Din, G. U.; Khan, I. H.; Chughtai, I. R.; Inayat, M. H.; Jin, J. H.

    2013-05-01

    The present investigations are focused to study the hydrodynamic characteristics of continuous phase in a pulsed sieve plate extraction column using 68Ga in the form of gallium chloride from an industrial radionuclide generator (68Ge/68Ga). Labeling of water with the subject radiotracer in water-kerosene environment was evaluated. Experiments for Residence Time Distribution (RTD) analysis were carried out for a range of dispersed phase superficial velocities in a liquid-liquid extraction pulsed sieve plate column operating in the emulsion regime with water as continuous and kerosene as dispersed phase. Axial Dispersion Model (ADM) was used to simulate the hydrodynamic characteristics of continuous phase. It has been observed that the axial mixing in the continuous phase decreases and slip velocity increases with increase in superficial velocity of dispersed phase while the holdup of continuous phase was found to decrease with increase in superficial velocity of dispersed phase. ADM with open-open boundary condition was found to be a suitable model for the subject system.

  12. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  13. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made

  14. Effect of pressure pulses at the interface valve on the stability of second dimension columns in online comprehensive two-dimensional liquid chromatography.

    PubMed

    Talus, Eric S; Witt, Klaus E; Stoll, Dwight R

    2015-01-23

    Users of online comprehensive two-dimensional liquid chromatography (LCxLC) frequently acknowledge that the mechanical instability of HPLC columns installed in these systems, particularly in the second dimension, is a significant impediment to its use. Such instability is not surprising given the strenuous operating environment to which these columns are subjected, including the large number (thousands per day) of fast and large pressure pulses resulting from interface valve switches (on the timescale of tens of milliseconds) associated with very fast second dimension separations. There appear to be no published reports of systematic studies of the relationship between second dimension column lifetime and any of these variables. In this study we focused on the relationship between the lifetimes of commercially available columns and the pressure pulses observed at the inlet of the second dimension column that occur during the switching of the valve that interfaces the two dimensions of a LCxLC system. We find that the magnitude of the pressure drop at the inlet of the second dimension column during the valve switch, which may vary between 10 and 95% of the column inlet pressure, is dependent on valve switching speed and design, and has a dramatic impact on column lifetime. In the worst case, columns fail within the first few hours of use in an LCxLC system. In the best case, using a valve that exhibits much smaller pressure pulses, the same columns exhibit much improved lifetimes and have been used continuously under LCxLC conditions for several days with no degradation in performance. This result represents a first step in understanding the factors that affect second dimension column lifetime, and will significantly improve the usability of the LCxLC technique in general.

  15. Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout

    NASA Astrophysics Data System (ADS)

    Yang, Tingting; Nigro, Lisa M.; Gutierrez, Tony; D`Ambrosio, Lindsay; Joye, Samantha B.; Highsmith, Raymond; Teske, Andreas

    2016-07-01

    One of the defining features of the Deepwater Horizon oil spill was the rapid formation and persistence of a hydrocarbon plume in deep water. Here we use 16S rRNA gene clone libraries and pyrosequencing of 16S rRNA gene fragments to outline the temporal dynamics of the bacterial community in the water column near the Macondo wellhead. Our timeline starts with the pre-spill (March 2010) status of the water column bacterial community, continues through the bacterial enrichments dominating the hydrocarbon plume after the blowout (DWH Oceanospirillales, Cycloclasticus, Colwellia in late May 2010), and leads towards post-spill bacterial communities with molecular signatures related to degradation of phytoplankton pulses (September and October 2010; July 2011) in the water column near the Macondo wellhead. We document a dramatic transition as the complex bacterial community before the oil spill was temporarily overwhelmed by a few specialized bacterial groups responding to the massive influx of hydrocarbons in May 2010. In September and October 2010, this bacterial bloom had been replaced by a diversified bacterial community which resembled its predecessor prior to the spill. Notably, the post-plume 16S rRNA gene clone libraries and pyrosequencing datasets illustrated the continued presence of oil-degrading bacteria in the water column near the Macondo wellhead which we posit to represent an inherent signature of hydrocarbon catabolic potential to the Gulf of Mexico. The pyroseqencing results detected and tracked minority bacterial populations that were not visible in the conventional 16S rRNA gene clone libraries and allowed us to identify natural reservoirs of the Deepwater Horizon Oceanospirillales within and outside of the Gulf of Mexico.

  16. Effects of pulsed and oscillatory flow on water vapor removal from a laboratory soil column. Final report, November 1993

    SciTech Connect

    Morrow, Katherine Elizabeth

    1993-05-01

    Subsurface contamination by volatile organic contaminants (VOC`s) in the vadose zone and groundwater is primarily due to leaking underground storage tanks and industrial spills. Soil vapor extraction is a technique that is being used successfully to remove VOC`s from the subsurface. A flow of air is established through the soil to remove the vapor phase component of the contaminant. Soil vapor extraction will initially remove high levels of contaminant that is already present in the macropores. The concentration will start to decline as the removal from the soil matrix becomes limited by diffusion of contaminant from regions away from the air flow paths. This study examines potential methods of overcoming the diffusion limitation by adding an oscillatory component to the steady air flow and by pulsed flow, which involves turning air flow on and off at predetermined intervals. The study considered only the removal of water from the soil to try to establish general vapor behavior in the soil under the imposed conditions. Based on a statistical analysis, both the oscillatory and pulsed flow showed an improved water removal rate over the steady state flow. The effect of oscillatory flow was only examined at higher frequencies. The literature indicates that oscillations at lower frequencies may be more effective. Pulsed flow showed the most efficient removal of water compared to steady state conditions. The pulsed flow was most efficient because rather than reducing the diffusion limitation, the system would shut down and wait for diffusion to occur. This optimizes energy consumption, but does not reduce treatment time. The oscillatory flow actually reduced the diffusion limitation within the column which could result in a shorter treatment time.

  17. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    PubMed

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  18. Water pulse migration through semi-infinite vertical unsaturated porous column with special relative-permeability functions: Exact solutions

    NASA Astrophysics Data System (ADS)

    Hayek, Mohamed

    2014-09-01

    The paper presents certain exact solutions describing the vertical movement of a water pulse through a semi-infinite unsaturated porous column. The saturation-based form of the Richards' equation is used with special power law relative-permeability functions. Both capillary and gravity effects are taken into account. Three exact solutions are derived corresponding to three relative-permeability functions, linear, quadratic and cubic. The Richards' equation is nonlinear for the three cases. The solutions are obtained by applying a general similarity transformation. They are explicit in space and time variables and do not contain any approximation. They describe the evolution of the water saturation in the vertical column and they can be used to predict the post-infiltration movement of a finite quantity of water. Exact expressions of the masses of water leaving a given depth are also derived for the three cases. We analyze the effect of relative-permeability and capillary pressure. The proposed solutions are also useful for checking numerical schemes. One of the exact solutions is used to validate numerical solution obtained from an arbitrary initial condition. Results show that the numerical solution converges to the exact solution for large times.

  19. Development of Double and Triple-Pulsed 2-micron IPDA Lidars for Column CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Reithmaier, Karl

    2015-01-01

    Carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and globalradiation budget on Earth. CO2 role on Earth’s climate is complicated due to different interactions with various climatecomponents that include the atmosphere, the biosphere and the hydrosphere. Although extensive worldwide efforts formonitoring atmospheric CO2 through various techniques, including in-situ and passive sensors, are taking place highuncertainties exist in quantifying CO2 sources and sinks. These uncertainties are mainly due to insufficient spatial andtemporal mapping of the gas. Therefore it is required to have more rapid and accurate CO2 monitoring with higheruniform coverage and higher resolution. CO2 DIAL operating in the 2-µm band offer better near-surface CO2measurement sensitivity due to the intrinsically stronger absorption lines. For more than 15 years, NASA LangleyResearch Center (LaRC) contributed in developing several 2-?m CO2 DIAL systems and technologies. This paperfocuses on the current development of the airborne double-pulsed and triple-pulsed 2-?m CO2 integrated pathdifferential absorption (IPDA) lidar system at NASA LaRC. This includes the IPDA system development andintegration. Results from ground and airborne CO2 IPDA testing will be presented. The potential of scaling suchtechnology to a space mission will be addressed.

  20. Pulse Profiles, Accretion Column Dips and a Flare in GX 1+4 During a Faint State

    NASA Technical Reports Server (NTRS)

    Giles, A. B.; Galloway, D. K.; Greenhill, J. G.; Storey, M. C.; Wilson, C. A.

    1999-01-01

    The Rossi X-ray Timing Explorer (RXTE) spacecraft observed the X-ray GX 1+4 for it period of 34 hours on July 19/20 1996. The source faded front an intensity of approximately 20 mcrab to a minimum of <= 0.7 mcrab and then partially recovered towards the end of the observation. This extended minimum lasted approximately 40,000 seconds. Phase folded light curves at a barycentric rotation period of 124.36568 +/- 0.00020 seconds show that near the center of the extended minimum the source stopped pulsing in the traditional sense but retained a weak dip feature at the rotation period. Away from the extended minimum the dips are progressively narrower at higher energies and may be interpreted as obscurations or eclipses of the hot spot by the accretion column. The pulse profile changed from leading-edge bright before the extended minimum to trailing-edge bright after it. Data from the Burst and Transient Source Experiment (BATSE) show that a torque reversal occurred < 10 days after our observation. Our data indicate that the observed rotation departs from a constant period with a P/P value of approximately -1.5% per year at a 4.5sigma significance. We infer that we may have serendipitously obtained data, with high sensitivity and temporal resolution about the time of an accretion disk spin reversal. We also observed a rapid flare which had some precursor activity close to the center of the extended minimum.

  1. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-05-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  2. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  3. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were <1.4 ppm for flight measurement altitudes >6 km.

  4. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The

  5. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  6. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    We have developed a lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA’s planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the CO2 line and an O2 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, laser pulse energy is 25 uJ and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric CO2 column measurements using the 1571.4, 1572.02 and 1572.33 nm CO2 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The

  7. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 and 2013 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W.; Weaver, C. J.; Browell, E. V.

    2013-12-01

    We have developed a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan with 300 scans per second. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength every second. We then solve for the optimum CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak and the column average CO2 concentrations. We compared these to radiative transfer calculations based on the HITRAN 2008 database, the atmospheric conditions, and the CO2 concentrations sampled by in-situ sensors on the aircraft. Our team participated in the ASCENDS science flights during July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 absorption line shapes were recorded. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds and to stratus cloud tops. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption profile (averaged for 50 sec) matched the predicted profile to better than 1% RMS error for all flight altitudes. For 10 second averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by signal shot noise (i.e. the signal photon count). For flight

  8. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  9. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  10. CFD simulation and experimental investigation of the copper solvent extraction in a pilot plant pulsed packed column in Sarcheshmeh Copper Complex

    NASA Astrophysics Data System (ADS)

    Mirzaie, Maryam; Sarrafi, Amir; Hashemipour, Hasan; Baghaie, Ali; Molaeinasab, Mehdi

    2016-12-01

    Present work deals with the development of a computational fluid dynamics (CFD) model for investigate the extraction of copper from leach solution with the Lix84-I. The model is based on Eulerian-Eulerian two phase equations in conjunction with the realizable k-ɛ model for turbulence. Population balance modeling (PBM) is used to describe the dynamics of the time and space variation of droplet sizes in the column. The PBM equation is solved using the class method. The mass transfer is the important parameters which can improve the performance of pulsed column and changes widely with the variation in the droplet number density. Valid empirical correlations were implemented to the CFD model for mass transfer coefficients by user defined functions. To validate the model, the results of CFD model and experimental measurements were compared and there was a good agreement between them. The effects of flow rates and intensity of pulsation on the yield of copper extraction and entrainment of the organic phase were studied. The results shown that increasing the phase ratio (the flow rate of organic phase/aqueous phase) from 0.5 to 1.75, caused yield of copper extraction from leach solution increased from 31 to 91%. The organic entrainment increased with increasing the pulse intensity and phase flow rates. Additionally, the results show that the performance of the pulsed packed column for copper extraction is reasonable.

  11. CFD simulation and experimental investigation of the copper solvent extraction in a pilot plant pulsed packed column in Sarcheshmeh Copper Complex

    NASA Astrophysics Data System (ADS)

    Mirzaie, Maryam; Sarrafi, Amir; Hashemipour, Hasan; Baghaie, Ali; Molaeinasab, Mehdi

    2017-06-01

    Present work deals with the development of a computational fluid dynamics (CFD) model for investigate the extraction of copper from leach solution with the Lix84-I. The model is based on Eulerian-Eulerian two phase equations in conjunction with the realizable k-ɛ model for turbulence. Population balance modeling (PBM) is used to describe the dynamics of the time and space variation of droplet sizes in the column. The PBM equation is solved using the class method. The mass transfer is the important parameters which can improve the performance of pulsed column and changes widely with the variation in the droplet number density. Valid empirical correlations were implemented to the CFD model for mass transfer coefficients by user defined functions. To validate the model, the results of CFD model and experimental measurements were compared and there was a good agreement between them. The effects of flow rates and intensity of pulsation on the yield of copper extraction and entrainment of the organic phase were studied. The results shown that increasing the phase ratio (the flow rate of organic phase/aqueous phase) from 0.5 to 1.75, caused yield of copper extraction from leach solution increased from 31 to 91%. The organic entrainment increased with increasing the pulse intensity and phase flow rates. Additionally, the results show that the performance of the pulsed packed column for copper extraction is reasonable.

  12. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  13. SPIRAL CONTACTOR FOR SOLVENT EXTRACTION COLUMN

    DOEpatents

    Cooley, C.R.

    1961-06-13

    The patented extraction apparatus includes a column, perforated plates extending across the column, liquid pulse means connected to the column, and an imperforate spiral ribbon along the length of the column.

  14. Atmospheric Backscatter Profiles at 1572nm from Pulsed Lidar Measurments of CO2 Column Absorption from the 2011 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Sun, X.; Ramanathan, A.; Mao, J.; Abshire, J. B.

    2012-12-01

    We present height-resolved backscatter profiles from the NASA Goddard Space Flight Center's CO2 sounder lidar, rich in detail, which shows clear evidence of multiple backscatter layers, clouds, and aerosols allowing for the identification of the Planetary Boundary Layer (PBL). This data is recorded as a consequence of our pulsed lidar measurements of the CO2 column absorption. The CO2 Sounder is a pulsed lidar for active remote measurements of CO2 abundance from an airborne platform and is one candidate for the lidar on the NASA ASCENDS mission. The lidar uses a scanning, pulsed laser and fiber amplifier in a Master Oscillator Power Amplifier (MOPA) configuration to measure CO2 absorption at 1572.335 nm, lineshape, range to scattering surface and backscatter profiles. The laser is scanned across the absorption feature measuring at 30 discrete wavelengths/scan and ~300 scans/sec. The time-resolved return signal, with a temporal resolution of 8ns, is detected by a photon-counting PMT fiber coupled to a modified commercial, 2m focal length f10 Schmidt-Cassegrain telescope. The column density for CO2 is estimated from the differential optical depth (DOD) of the scanned absorption line using an integrated-path differential absorption (IPDA) technique and the optical path from the time of flight. A backscatter profile of the measured column is recorded for every pulse of every scan and integrated for 1 second. The backscatter profiles we will show are determined from the receivers photon counting record using a cross-correaltion technique (sliding inner product) with a vertical resolution of better than 300m, set by the 1μs pulse width from the MOPA. The range to the surface can be determined to a few meters. Major benefits of a pulsed technique using time-resolved detection to measure lineshape, is the unambiguous detection of the ground return, intervening clouds, aerosols and information on the vertical distribution of CO2. This technique can uniquely identify the

  15. Rapid determination of theophylline in serum by selective extraction using a heated molecularly imprinted polymer micro-column with differential pulsed elution.

    PubMed

    Mullett, W M; Lai, E P

    1999-12-01

    Molecular imprinting of theophylline in poly(methacrylic acid ethylene dimethacrylate) form binding sites with complementary size, shape and chemical functionalities to theophylline. This molecularly imprinted polymer (MIP) can be packed into a micro-column for selective solid phase extraction (SPE) of theophylline from 20 microl of sample solution. Its chemical inertness and thermal stability allow the use of various organic solvents and elevated column temperatures for effective binding of theophylline. Non-specific adsorption of interfering drugs on the MIP surface is eliminated by an intermediate wash with 20 microl of acetonitrile, prior to quantitative desorption of the bound theophylline by 20 microl of methanol for in-line UV spectrophotometric determination. In this differential pulsed elution (DPE) technique, both the column temperature and solvent flow rate can be optimized to enhance selectivity. Application of this micro-analytical method, molecularly imprinted solid phase extraction DPE (MISPE-DPE), is demonstrated for accurate determination of theophylline in human blood serum. The method is validated over a linear range from 2 microg/ml to at least 20 microg/ml.

  16. A Novel Triple-Pulsed 2-micrometer Lidar for Simultaneous and Independent CO2 and H2O Column Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Singh, Upendra; Petros, Mulugeta; Refaat, Tamer

    2015-01-01

    The study of global warming needs precisely and accurately measuring greenhouse gases concentrations in the atmosphere. CO2 and H2O are important greenhouse gases that significantly contribute to the carbon cycle and global radiation budget on Earth. NRC Decadal Survey recommends a mission for Active Sensing of Carbon Dioxide (CO2) over Nights, Days and Seasons (ASCENDS). 2 micron laser is a viable IPDA transmitter to measure CO2 and H2O column density from space. The objective is to demonstrate a first airborne direct detection 2 micron IPDA lidar for CO2 and H2O measurements.

  17. Atmospheric Backscatter Profiles at 765nm and 1572nm from Pulsed Lidar Measurements of CO2 and O2 Column Absorption from the 2013 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Rodriguez, M.; Ramanathan, A.; Sun, X.; Mao, J.; Abshire, J. B.

    2013-12-01

    We present height-resolved, range corrected, backscatter profiles from NASA GSFC's two-channel (CO2 & O2) sounder, an Integrated Path Differential Absorption (IPDA) lidar, which measures simultaneously both carbon dioxide & oxygen column absorptions. These backscatter profiles show clear evidence of multiple backscattering layers, clouds & aerosols, which allows for the identification of the Planetary Boundary Layer (PBL). The backscatter measurements enable sampling of the vertical distribution of CO2 in the atmosphere when broken & thin clouds are present & may help identify sources & sinks within the PBL as opposed to natural variations in the vertical distribution of CO2. The CO2 Sounder is an airborne pulsed lidar for active remote measurements of CO2 abundance & is a candidate for NASA's ASCENDS mission (Active Sensing of CO2 Emissions over Nights, Days & Seasons). The O2 channel measures atmospheric pressure in the same air column to calculate the dry mixing ratio of CO2. The lidars use a scanning, pulsed laser & fiber amplifier in a Master Oscillator Power Amplifier configuration to measure lineshape, range to scattering surface & backscatter profiles. The CO2 channel operates at 1572.335 nm. The O2 channel uses similar technology but frequency doubles the output from ~1530nm to the O2 A-band absorption around 765nm. Both lasers are scanned across the absorption feature of interest sampling the line at a fixed number of discrete wavelengths per scan around ~300 scans per second. The time-resolved return signal is detected by photon-counting detectors with a temporal resolution of a few nanoseconds. The CO2 channel uses a PMT while the O2 channel uses Single Photon Counting Modules. The detectors are fiber coupled to a 2m f10 Schmidt-Cassegrain telescope. The column density of the gas of interest is estimated from the differential optical depths of the scanned absorption using the IPDA technique & the optical path from the time of flight. A backscatter

  18. Analysis of trace amounts of carbon dioxide, oxygen and carbon monoxide in nitrogen using dual capillary columns and a pulsed discharge helium ionisation detector.

    PubMed

    Janse van Rensburg, M; Botha, A; Rohwer, E

    2007-10-05

    Gas mixtures of trace amounts of carbon dioxide (CO(2)), dioxygen (O(2)), and carbon monoxide (CO) in dinitrogen (N(2)) were separated and quantified using parallel dual capillary columns and pulsed discharge helium ionisation detection (PDHID). The detection limits (9 x 10(-9) mol mol(-1) for CO(2), 7 x 10(-9) mol mol(-1) for O(2) and 37 x 10(-9) mol mol(-1) for CO) were lower than those reported previously for similar methods. Uncertainties were calculated and results were validated by comparison of the CO and CO(2) results with those obtained using conventional methods. The method was also used to analyse nitrogen, carbon dioxide and carbon monoxide in oxygen.

  19. Axial dispersion, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column by radiotracer residence time distribution analysis.

    PubMed

    Din, Ghiyas Ud; Chughtai, Imran Rafiq; Inayat, Mansoor Hameed; Khan, Iqbal Hussain

    2008-12-01

    Axial dispersion, holdup and slip velocity of dispersed phase have been investigated for a range of dispersed and continuous phase superficial velocities in a pulsed sieve plate extraction column using radiotracer residence time distribution (RTD) analysis. Axial dispersion model (ADM) was used to simulate the hydrodynamics of the system. It has been observed that increase in dispersed phase superficial velocity results in a decrease in its axial dispersion and increase in its slip velocity while its holdup increases till a maximum asymptotic value is achieved. An increase in superficial velocity of continuous phase increases the axial dispersion and holdup of dispersed phase until a maximum value is obtained, while slip velocity of dispersed phase is found to decrease in the beginning and then it increases with increase in superficial velocity of continuous phase.

  20. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  1. Separation and determination of 4-methylimidazole, 2-methylimidazole and 5-hydroxymethylfurfural in beverages by amino trap column coupled with pulsed amperometric detection.

    PubMed

    Xu, Xian-Bing; Liu, Ding-Bo; Yu, Shu-Juan; Yu, Pei; Zhao, Zhen-Gang

    2015-02-15

    A method for simultaneous determination of 4-methylimidazole (4-MeI), 2-methylimidazole (2-MeI) and 5-hydroxymethylfurfural (HMF) in beverages was developed using solid-phase extraction (SPE) and amino trap column coupled with pulsed amperometric detection (AMTC-PAD). A single amino trap column (P/N: 046122) was first applied to separate the targeted analytes in samples after SPE pretreatment. This method demonstrated low limit of quantification (0.030mg/L for methylimidazoles and 0.300mg/L for HMF) and excellent linearity with correlation of determination (R(2)=0.999 for 2-MeI, 0.997 for 4-MeI and 0.998 for HMF). Nearly no 2-MeI was found in all soft drinks. However, 4-MeI could be detected in cola drinks and soft drinks containing caramel colour (ranging from 0.13 to 0.34mg/L), whereas HMF were only found in cola drinks (ranging from 1.07 to 4.47mg/L). Thus, AMTC-PAD technique would be a valid and inexpensive alternative to analysis of 4-MeI, 2-MeI and HMF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Determination of Myo-Inositol in Infant, Pediatric, and Adult Formulas by Liquid Chromatography-Pulsed Amperometric Detection with Column Switching: Collaborative Study, Final Action 2011.18.

    PubMed

    Butler-Thompson, Linda D; Jacobs, Wesley A; Schimpf, Karen J

    2015-01-01

    AOAC First Action Method 2011.18, Myo-Inositol (Free and Bound as Phosphatidylinositol) in Infant and Pediatric Formulas and Adult Nutritionals, was collaboratively studied. With this method free myo-inositol and phosphatidylinositol bound myo-inositol are extracted using two different sample preparation procedures, separated by ion chromatography using a combination of Dionex Carbo Pac PA1 and MA1 columns with column switching, and detected with pulsed amperometry using a gold electrode. Free myo-inositol is extracted from samples with dilute hydrochloric acid and water. Phosphatidylinositol is extracted from samples with chloroform and separated from other fats with silica SPE cartridges. Myo-inositol is then released from the glycerol backbone with concentrated acetic and hydrochloric acids at 120°C. During this collaborative study, nine laboratories from five different countries analyzed blind duplicates of nine infant and pediatric nutritional formulas for both free and phosphatidylinositol bound myo-inositol, and one additional laboratory only completed the free myo-inositol analyses. The method demonstrated acceptable repeatability and reproducibility and met the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) Standard Method Performance Requirements (SMPRs®) for free myo-inositol plus phosphatidylinositol bound myo-inositol for all the matrixes analyzed. SMPRs for repeatability were ≤5% RSD at myo-inositol concentrations of 2-68 mg/100 g ready-to-feed (RTF) liquid. SMPRs for reproducibility were ≤8% RSD in products with myo-inositol concentrations ranging from 2 to 68 mg/100 g RTF liquid. During this collaborative study, repeatability RSDs ranged from 0.51 to 3.22%, and RSDs ranged from 2.66 to 7.55% for free myo-inositol plus phosphatidylinositol bound myo-inositol.

  3. Monitoring of enzymatic hydrolysis of starch by microdialysis sampling coupled on-line to anion exchange chromatography and integrated pulsed electrochemical detection using post-column switching

    SciTech Connect

    Torto, N.; Gorton, L.; Emneus, J.; Laurell, T.; Marko-Varga, G.; Akerberg, C.; Zacchi, G. |

    1997-12-05

    A quantitative evaluation of the hydrolysis of wheat starch using Termamyl, a thermostable {alpha}-amylase, is reported. Data from the monitoring of the hydrolysis of wheat starch indicated that, after 1 h, glucose and maltooligosaccharides up to DP 7 were the main hydrolysis products and thus enabled optimization of a liquefaction step during the production of L-lactic acid. The monitoring system used, both in the on- and off-line mode, was based on continuous flow microdialysis sampling (CFMS) coupled to anion exchange chromatography and integrated pulsed electrochemical detection (IPED). A microdialysis probe equipped with a 5-mm polysulfone (SPS 4005) membrane, with a molecular-weight cut-off of 5 kDa, was used to sample the hydrolysis products of native wheat starch at 90 C. Characteristic fingerpoint separations were achieved by anion exchange chromatography after enzymatic hydrolysis. Post-column switching improved the detection and, consequently, also quantification of the hydrolysates as fouling of the electrode could be reduced. Maltooligosaccharide standards were used for quantification and to verify the elution of the hydrolysates by spiking the off-line samples.

  4. Monitoring of enzymatic hydrolysis of starch by microdialysis sampling coupled on-line to anion exchange chromatography and integrated pulsed electrochemical detection using post-column switching.

    PubMed

    Torto, N; Gorton, L; Marko-Varga, G; Emnéus, J; Akerberg, C; Zacchi, G; Laurell, T

    1997-12-05

    A quantitative evaluation of the hydrolysis of wheat starch using Termamyl, a thermostable alpha-amylase (endo-1,4-alpha-d-glucan, glucanohydrolase; EC 3.2.1.78), is reported. Data from the monitoring of the hydrolysis of wheat starch indicated that, after 1 h, glucose and maltooligosaccharides up to DP 7 were the main hydrolysis products and thus enabled optimization of a liquefication step during the production of L-lactic acid. The monitoring system used, both in the on- and off-line mode, was based on continuous flow microdialysis sampling (CFMS) coupled to anion exchange chromatography and integrated pulsed electrochemical detection (IPED). A microdialysis probe equipped with a 5-mm polysulfone (SPS 4005) membrane, with a molecular-weight cut-off of 5 kDa, was used to sample the hydrolysis products of native wheat starch at 90 degrees C. Characteristic fingerprint separations were achieved by anion exchange chromatography after enzymatic hydrolysis. Post-column switching improved the detection and, consequently, also quantification of the hydrolysates as fouling of the electrode could be reduced. Maltooligosaccharide standards were used for quantification and to verify the elution of the hydrolysates by spiking the off-line samples. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 546-554, 1997.

  5. Determination of myo-inositol (free and bound as phosphatidylinositol) in infant formula and adult nutritionals by liquid chromatography/pulsed amperometry with column switching: first action 2011.18.

    PubMed

    Schimpf, Karen; Thompson, Linda; Baugh, Steve

    2012-01-01

    Myo-inositol is a 6-carbon cyclic polyalcohol also known as meso-inositol, meat sugar, inosite, and i-inositol. It occurs in nature in both free (myo-inositol) and bound (inositol phosphates and phosphatidylinositol) forms. For the determination of free myo-inositol, samples are mixed with dilute hydrochloric acid to extract myo-inositol and precipitate proteins, diluted with water, and filtered. For the determination of myo-inositol bound as phosphatidylinositol, samples are extracted with chloroform, isolated from other fats with silica SPE cartridges, and hydrolyzed with concentrated acid to free myo-inositol. Prepared samples are first injected onto a Dionex CarboPac PA1 column, which separates myo-inositol from other late-eluting carbohydrates. After column switching, myo-inositol is further separated on a CarboPac MA1 column using a 0.12% sodium hydroxide mobile phase; strongly retained carbohydrates are eluted from the PA1 column with a 3% sodium hydroxide mobile phase. Eluant from the CarboPac MA1 analytical column passes through an electrochemical detector cell where myo-inositol is detected by pulsed amperometry using a gold electrode. The method showed appropriate performance characteristics versus selected established standard method performance requirement parameters for the determination of myo-inositol: linear response; repeatability (RSDr) of 2%; and intermediate precision (RSDir) of 2.5%. Instrument LOD and LOQ were 0.0004 and 0.0013 mg/100 mL, respectively, and correspond to a free myo-inositol quantitation limit of 0.026 mg/100 g and a phosphatidylinositol quantitation limit of 0.016 mg/100 g. Correlation with the reference microbiological assay was good. The proposed method has been accepted by the Expert Review Panel as an AOAC First Action Method, suitable for the routine determination of myo-inositol in infant formula and adult nutritionals.

  6. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  7. 2-micron triple-pulse integrated path differential absorption lidar development for simultaneous airborne column measurements of carbon dioxide and water vapor in the atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-05-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  8. Burdach's column.

    PubMed

    Pearce, J M S

    2006-01-01

    After the Greek physicians Herophilus and Galen, the major anatomical advances in the anatomy of the spinal cord were made possible by the microtome devised by Benedikt Stilling in January 1842. This enabled him to cut the frozen, thin sections and examine them, unstained,with the microscope. The technique founded future investigation of the cord's anatomy. Brown-Séquard, Türck, Clarke, Lissauer, Goll, and Flechsig all contributed. An important result of these progressing anatomical experiments was the identification of the posterior columns. In 1826, the German physiologist Karl Friedrich Burdach (1776-1847) described, from macroscopic study, the fasciculus cuneatus, known as the tract of Burdach: the lateral portion of the posterior columns of the cord that terminate in the nucleus cuneatus of the medulla.

  9. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  10. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  11. Modeling Stone Columns.

    PubMed

    Castro, Jorge

    2017-07-11

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.

  12. Modeling Stone Columns

    PubMed Central

    2017-01-01

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the “unit cell”, longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns. PMID:28773146

  13. Enhanced column flotation of fine and ultrafine coal

    SciTech Connect

    Slomka, B.J.; Buttermore, W.H.; Birlingmair, D.H.; Dawson, M.R.; Pollard, J.L.; Enustun, B.V.

    1992-12-01

    A 2-inch diameter, twenty-foot tall, glass laboratory flotation column was modified to incorporate digital control of critical operating parameters. Different column control strategies were explored including location of the froth interface, and manipulation of volumetric flow ratios. Column flotation tests were performed with both fine (-250{mu}m) and ultrafine (-5{mu}m) Pittsburgh seam coal. Both moisture- and ash-free (MAF) recovery, and ash rejection were improved when the partition of the column`s liquid content into froth and tailings was directly controlled. MAF recovery and ash rejection were also enhanced by brief exposure of the coarser feed to pulsed sonic energy.

  14. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  15. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  16. Transient flow and heating characteristics in a pinched plasma column.

    NASA Technical Reports Server (NTRS)

    York, T. M.; Stover, E. K.

    1972-01-01

    The generation of axial flow and heating of an argon plasma in a pinched plasma column of a pulsed, linear z-pinch device was examined experimentally and analytically. Transient (about 5 microsec) axial pressure profiles identify three characteristic periods in the column history. These include (1) strong axial pressure asymmetry indicative of plasma streaming, (2) isotropic, rapidly rising plasma pressure indicative of plasma heating, and (3) column breakup. An efficient conversion of radial collapse to axial streaming velocity is identified. Mechanisms for such an effect and subsequent heating are evaluated; significance to transients in pulsed plasma accelerators is identified.

  17. Inelastic column behavior

    NASA Technical Reports Server (NTRS)

    Duberg, John E; Wilder, Thomas W , III

    1952-01-01

    The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.

  18. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  19. The Effects of Pulsating Flow on Eruption Column Dynamics

    NASA Astrophysics Data System (ADS)

    Black, T.; Dufek, J.; Benage, M. C.

    2015-12-01

    Pulsating flow, at frequencies ranging from 10-2 to 101 Hz, has been recorded in explosive eruptions through video, thermal imagery, and infrasonic and seismic data. Such pulsating flow can be generated from instabilities in bubbly magma, and from granular instabilities in post-fragmentation conduit flow. Variable fluxes of gas and particles at the vent can alter entrainment conditions, and consequently affect eruption column stability. However, volcanic eruption models typically assume steady flow from the vent, and regime diagrams of eruption column stability are based on such steady flow assumptions. Using Eulerian-Eulerian multiphase numerical simulations of eruption columns with both steady and pulsating sources, we compared the relative behavior of steady and pulsed columns across a range of pulse frequencies and mass fluxes at the vent (mass flux is time-averaged for pulsating cases). Preliminary results suggest that pulsating flow increases air entrainment into the column relative to steady flow for otherwise constant eruption conditions, and that entrainment increases with decreasing pulse frequency. Increased entrainment at low frequency implies that low-frequency pulsed columns are more buoyant and potentially more stable than their steady counterparts, for a given mass flux. This effect disrupts the steady flow-based understanding of eruption column stability regimes and may be a factor to consider for future assessment of volcanic hazards and interpreting mass flux conditions from deposits.

  20. Distillation Column Modeling Tools

    SciTech Connect

    2001-09-01

    Advanced Computational and Experimental Techniques will Optimize Distillation Column Operation. Distillation is a low thermal efficiency unit operation that currently consumes 4.8 quadrillion BTUs of energy...

  1. Enhanced column flotation of fine and ultrafine coal

    SciTech Connect

    Slomka, B.J.; Buttermore, W.H.; Birlingmair, D.H.; Dawson, M.R.; Pollard, J.L.; Enustun, B.V.

    1992-01-01

    A 2-inch diameter, twenty-foot tall, glass laboratory flotation column was modified to incorporate digital control of critical operating parameters. Different column control strategies were explored including location of the froth interface, and manipulation of volumetric flow ratios. Column flotation tests were performed with both fine (-250[mu]m) and ultrafine (-5[mu]m) Pittsburgh seam coal. Both moisture- and ash-free (MAF) recovery, and ash rejection were improved when the partition of the column's liquid content into froth and tailings was directly controlled. MAF recovery and ash rejection were also enhanced by brief exposure of the coarser feed to pulsed sonic energy.

  2. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  3. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  4. Column flotation '88

    SciTech Connect

    Sastry, K.V.S.

    1988-01-01

    This book contains 34 selections. Some of the titles are: Column flotation of ultrafine coal: experience at BHP-Utah Coal Limited's Riverside mine; Measurement of rate data in flotation columns; Factors influencing the structure of a 3-phase coal flotation froth; and Microbubble flotation of fine coal.

  5. JCE Feature Columns

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  6. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  7. Modeling of column flotation

    SciTech Connect

    Luttrell, G.H.; Adel, G.T.; Yoon, R.H.

    1987-01-01

    Many investigators believe that column flotation cells offer significant advantages over standard mechanical machines for the flotation of fine particles. However, because of their unique design and operation, conventional techniques for flotation cell scale-up and design cannot be applied to columns. In an attempt to help alleviate this problem, a population balance model based on first principles has been developed for fine particle flotation in a column. Two different terms have been considered in the model, i.e., transport and rate. Transport terms, incorporating fluid flow and buoyancy, are used to describe the movement of air bubbles, unattached particles and bubble-particle aggregates along the length of the column. Rate terms, which describe the bubble-particle attachment process, have been derived from first principle considerations. Because the model is based on first principles, it can be useful for the design, control, optimization and scale-up of column flotation cells. 9 refs., 12 figs.

  8. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  9. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  10. Column continuous transition functions

    NASA Astrophysics Data System (ADS)

    Li, Yangrong

    2007-04-01

    A column continuous transition function is by definition a standard transition function P(t) whose every column is continuous for t[greater-or-equal, slanted]0 in the norm topology of bounded sequence space l[infinity]. We will prove that it has a stable q-matrix and that there exists a one-to-one relationship between column continuous transition functions and increasing integrated semigroups on l[infinity]. Using the theory of integrated semigroups, we give some necessary and sufficient conditions under which the minimal q-function is column continuous, in terms of its generator (of the Markov semigroup) as well as its q-matrix. Furthermore, we will construct all column continuous Q-functions for a conservative, single-exit and column bounded q-matrix Q. As applications, we find that many interesting continuous-time Markov chains (CTMCs), say Feller-Reuter-Riley processes, monotone processes, birth-death processes and branching processes, etc., have column continuity.

  11. Distillation Column Flooding Predictor

    SciTech Connect

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  12. Eruption column physics

    SciTech Connect

    Valentine, G.A.

    1997-03-01

    In this paper the author focuses on the fluid dynamics of large-scale eruption columns. The dynamics of these columns are rooted in multiphase flow phenomena, so a major part of the paper sets up a foundation on that topic that allows one to quickly assess the inherent assumptions made in various theoretical and experimental approaches. The first part is centered on a set of complex differential equations that describe eruption columns, but the focus is on a general understanding of important physical processes rather than on the mathematics. The author discusses briefly the relative merits and weaknesses of different approaches, emphasizing that the largest advances in understanding are made by combining them. He then focuses on dynamics of steady eruption columns and then on transient phenomena. Finally he briefly reviews the effects of varying behavior of the ambient medium through which an eruption column moves. These final sections will emphasize concepts and a qualitative understanding of eruption dynamics. This paper relies on principles of continuum mechanics and transport processes but does not go into detail on the development of those principles. 36 refs., 36 figs., 3 tabs.

  13. Enhanced reductive dechlorination in columns treated with edible oil emulsion

    NASA Astrophysics Data System (ADS)

    Long, Cameron M.; Borden, Robert C.

    2006-09-01

    The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due

  14. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  15. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  16. 4. TYPICAL COLUMN BASE (COLUMN #1 ON PHOTO ELEVATION PLAN) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TYPICAL COLUMN BASE (COLUMN #1 ON PHOTO ELEVATION PLAN) FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  17. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  18. PULSE SORTER

    DOEpatents

    Wade, E.J.

    1958-07-29

    An apparatus is described for counting and recording the number of electrical pulses occurring in each of a timed sequence of groups of pulses. The particular feature of the invention resides in a novel timing circuit of the univibrator type which provides very accurately timed pulses for opening each of a series of coincidence channels in sequence. The univibrator is shown incorporated in a pulse analyzing system wherein a series of pulse counting channels are periodically opened in order, one at a time, for a predetermtned open time interval, so that only one channel will be open at the time of occurrence of any of the electrical pulses to be sorted.

  19. Nonequilibrium Positive Column II.

    NASA Astrophysics Data System (ADS)

    Ingold, John H.

    1998-10-01

    Previous work has shown that the first principles nonlocal kinetic method [1] is closely approximated by the nonlocal moment method [2] in positive column analysis. In the present paper, the nonlocal moment method is compared with two of the most often used local moment methods: (i) local moment method with Maxwell EEDF; (ii) local moment method with 0D EEDF. The form of the Boltzmann equation for electrons in a positive column discharge suggests that each gas has a characteristic curve of positive column E/N versus NR (E is axial electric field, N is gas density, and R is tube radius). This characteristic curve affords a systematic way of comparing various methods because its course depends on the form of the EEDF used to calculate transport coefficients and inelastic collision rates, on whether or not it is assumed that the electrons are in equilibrium with the axial field, on whether or not ion inertia is taken into account, etc. Using an argon-like gas for illustration, it is shown that the characteristic curve based on equilibrium with 0D EEDF is a poor approximation to that based on nonequilibrium for NR less than 1× 10^17 cm-2 (PR<3 Torr-cm), while that based on equilibrium with Maxwell EEDF is an extremely poor approximation at any value of NR. [1]D. Uhrlandt and R. Winkler, J. Phys. D 29, 115 (1996). [2]J. H. Ingold, Phys. Rev. E 56, 5932 (1997).

  20. Chain/column evolution and corresponding electrorheological effect

    NASA Astrophysics Data System (ADS)

    Wen, Weijia; Zheng, D. W.; Tu, K. N.

    1999-01-01

    We present an investigation about chain/column evolution and the corresponding electrorheological (ER) effect performed with glass/oil ER fluid. Our results demonstrate that once the field applied to the ER fluids surpasses a certain time period, the particles begin aggregating to form chains. These chains then coarsen and eventually form columns in the direction of the external field. We found that different column structures can be obtained depending on how the electric field is applied to the ER fluid. Only a loose column structure can be achieved if a square pulse field is applied to the ER fluid, yet a compact column is formed when the field strength is increased slowly. We have measured the ER effect with a sensitive yield stress testing device as the structure varies. The results indicate that there exist three increasing tendencies of interaction among particles corresponding to three processes of sequential transition between states; they are (1) random spatial configuration to chain, (2) chain to metastable column, and (3) metastable column to stable column.

  1. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...

  2. Microfabricated packed gas chromatographic column

    DOEpatents

    Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.

    2003-12-16

    A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.

  3. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  4. The lateral column lengthening and medial column stabilization procedures.

    PubMed

    Chi, T D; Toolan, B C; Sangeorzan, B J; Hansen, S T

    1999-08-01

    The results of medial column stabilization, lateral column lengthening, and combined medial and lateral procedures were reviewed in the treatment of adult acquired flatfoot secondary to posterior tibialis tendon insufficiency. All bony procedures were accompanied by transfer of the flexor digitorum longus tendon to the medial cuneiform or stump of the posterior tibialis tendon and tendoachilles lengthening or gastrocnemius recession. Medial column fusion was performed for naviculocuneiform and cuneiform first metatarsal sag; lateral column lengthening was performed for calcaneovalgus deformity with a flat pitch angle; and combined procedures were performed for complex combined deformities. At 1 to 4 year followup of 65 feet, 88% of the feet that had lateral column lengthening, 80% that had medial column stabilization, and 88% of the feet that had medial and lateral procedures had a decrease in pain or were pain free. The lateral talar first metatarsal angle improved by 16 degrees in the patients in the lateral column lengthening group, 20 degrees in the patients in the medial column stabilization group, and 24 degrees in the patients in the combined medial and lateral procedures group. The anteroposterior talonavicular coverage angle improved by 14 degrees in the patients in the lateral column lengthening group, 10 degrees in the patients in the medial column stabilization group, and 14 degrees in the patients in the combined medial and lateral procedures group. These techniques effectively correct deformity without disrupting the essential joints of the hindfoot and midfoot.

  5. Airborne Double Pulsed 2-Micron IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Singh, Upendra

    2015-01-01

    We have developed an airborne 2-micron Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The double pulsed, high pulse energy lidar instrument can provide high-precision CO2 column density measurements.

  6. The simultaneous modelling of metal ion and humic substance transport in column experiments.

    PubMed

    Bryan, Nick D; Barlow, Jenny; Warwick, Peter; Stephens, Sarah; Higgo, Jenny J W; Griffin, David

    2005-03-01

    Pulsed column experiments using Co, fulvic acid and porous sediment packing, along with up/down-flooding experiments using Eu, humic acid and intact sandstone blocks have been performed. The elution of metal and humic and their distribution along the sandstone columns have been measured. A mixed equilibrium and kinetic coupled chemical transport model has been used to simulate the results. In both cases, one exchangeable and one non-exchangeable component have been used to simulate the interaction of metal and humic substance. For the pulsed experiments, a simple equilibrium approach was used to model humic sorption, while a two component, kinetic model was required for the sandstone columns.

  7. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-09

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  8. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  9. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  10. Buckling of a holey column.

    PubMed

    Pihler-Puzović, D; Hazel, A L; Mullin, T

    2016-09-14

    We report the results from a combined experimental and numerical investigation of buckling in a novel variant of an elastic column under axial load. We find that including a regular line of centred holes in the column can prevent conventional, global, lateral buckling. Instead, the local microstructure introduced by the holes allows the column to buckle in an entirely different, internal, mode in which the holes are compressed in alternate directions, but the column maintains the lateral reflection symmetry about its centreline. The internal buckling mode can be accommodated within a smaller external space than the global one; and it is the preferred buckling mode over an intermediate range of column lengths for sufficiently large holes. For very short or sufficiently long columns a modification of the classical, global, lateral buckling is dominant.

  11. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  12. Verification of a model for foam flotation column operation

    SciTech Connect

    Kiefer, J.E.; Rodriguez, J.; McIntyre, G.; Thackston, E.L.; Wilson, D.J.

    1982-01-01

    We report experimental data testing the validity of a mathematical model for the time-dependent operation of a continuous-flow foam floating column.Sodium lauryl sulfate was the surfactant being removed. The responses of the column in steady-state operation and under the influence of rectangular pulses in sodium lauryl sulfates concentration and in hydraulic loading rate were investigated and compared with the results of computer simulation.Effluent surfactant concentrations were well simulated under all conditions. It was found that the fraction of liquid in the Plateau borders varies somewhat with the hydraulic loading rate, which causes some discrepancy between calculated and observed collapsed foamate flow rates.

  13. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  14. 45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified at the time of removal for transfer to the George School for re-erection. The stamp reads, 'REMOVED FROM 12th ST. MTG HSE PHILA 1972'. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  15. Pulse oximetry

    PubMed Central

    Jubran, Amal

    1999-01-01

    Pulse oximetry is one of the most commonly employed monitoringmodalities in the critical care setting. This review describes the latesttechnological advances in the field of pulse oximetry. Accuracy of pulseoximeters and their limitations are critically examined. Finally, the existingdata regarding the clinical applications and cost-effectiveness of pulseoximeters are discussed. PMID:11094477

  16. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  17. Dorsal column stimulator applications

    PubMed Central

    Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián

    2012-01-01

    Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533

  18. An Undergraduate Column Chromatography Experiment.

    ERIC Educational Resources Information Center

    Danot, M.; And Others

    1984-01-01

    Background information, list of materials needed, and procedures used are provided for an experiment designed to introduce undergraduate students to the theoretical and technical aspects of column chromatography. The experiment can also be shortened to serve as a demonstration of the column chromatography technique. (JN)

  19. Automatic connector joins structural columns

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.

    1980-01-01

    Connector snap-locks over toothed bolthead mounted on column end, forming rigid joint that will not bend or twist. Connector is used in conventional construction to install temporary structures or as mechanical coupler. Up to nine receptacles can be clustered in one node to join up to nine converging columns.

  20. Comparison of column flotation cells

    SciTech Connect

    Honaker, R.Q.; Mohanty, M.K.; Ho, K.

    1995-08-01

    Six commercial column flotation technologies, i.e., Canadian, Flotaire, Jameson, Microcel, Packed-Column, and Turbo-air, were tested for the treatment of Illinois Basin fine coal and the results from each column compared based on separation performance and throughout capacity. The separation performance achieved by each cell approached and, in some cases, exceeded the ultimate performance predicted by release analysis. A comparison of the test results indicates differences in the selectivity obtained by each flotation column on the basis of both ash and sulfur rejection. This finding may be due to variations in cell hydrodynamics and the ability to support a deep froth phase among the different column cells. In addition, throughput capacity of each cell was found to differ, apparently due to the differences in the bubble-particle attachment environment, bubble size, and bubble population. Variations in the operating characteristics, such as reagent additions, aeration rate and wash water rate, were also noted and summarized in this publication.

  1. PULSED MIXER-SETTLER SOLVENT EXTRACTION CONTACTORS

    DOEpatents

    Figg, W.S.

    1958-08-12

    A mixer-settler extractor is described for contacting immiscible liquids having different specific gravities in order to withdraw one or more components from one liquid with the aid of the other liquid. The extractor consists of a hollow column, a rotary drive shafi extending : through the column with a number of impellers spaced thereon, an equal nunnber of separator plate sets each consisting of one fluorothene and one stainless steel plate with peripheral recesses and flow slots mounted on the column, and a pulse generator. This apparatus is particularly useful in solvent extraction processes for recovering plutonium from aqueous acidic solutions of irradiated uranium.

  2. An advanced solventless column test for capillary GC columns.

    PubMed

    Luong, Jim; Gras, Ronda; Jennings, Walter

    2007-10-01

    Manufacturing skills for capillary GC columns have improved to a point where the commonly used tests no longer distinguish between "adequate" and "excellent" columns. A more stringent test mixture, coupled with a more exacting procedure, was proposed for testing capillary columns in 2004. The solutes were less sterically hindered and less retained, permitting the test to be run isothermally at lower temperatures where sorptive forces are stronger. To avoid masking active sites by solvent flooding, the test used a higher boiling solvent that eluted last. This test mixture, used under the prescribed conditions, differentiated adequate from excellent columns, but removal of the late-eluting solvent prolonged run times to as long as 1 h. The new test uses the same probes proposed in 2004, but entirely eliminates the solvent. Injections utilize a plunger-in-needle microvolume syringe, and the "gas saver" feature of a contemporary gas chromatograph. The latter serves as a dynamic diluter to deliver nanogram quantities of undiluted solutes to the column. The test can be conducted isothermally at a lower temperature in less than 15 min for most of the columns. This paper summarizes the analytical approach used, and presents method performance data and test results obtained on contemporary capillary columns from leading manufacturers.

  3. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  4. Pulsed electric field processing for fruit and vegetables

    USDA-ARS?s Scientific Manuscript database

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  5. Pulse Data.

    ERIC Educational Resources Information Center

    Hands On!, 1998

    1998-01-01

    Presents an activity using computer software to investigate the role of the heart and blood, how the blood system responds to exercise, and how pulse rate is a good measure of physical condition. (ASK)

  6. Pulse Voltammetry.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  7. Seismic behavior of lightweight concrete columns

    NASA Astrophysics Data System (ADS)

    Rabbat, B. G.; Daniel, J. I.; Weinmann, T. L.; Hanson, N. W.

    1982-09-01

    Sixteen full-scale, column-beam assemblies, which represented a portion of a frame subjected to simulated seismic loading, were tested. Controlled test parameters included concrete type, column size, amount of main column steel, size and spacing of column confining hoops, and magnitude of column axial load. The columns were subjected to constant axial load and slow moment reversals at increasing inelastic deformations. Test data showed that properly designed lightweight concrete columns maintained ductility and strength when subjected to large inelastic deformations from load reversals. Confinement requirements for normal weight concrete columns were shown to be applicable to lightweight concrete columns up to thirty percent of the design strength.

  8. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  9. Self-regenerating column chromatography

    DOEpatents

    Park, W.K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  10. Telescoping columns. [parabolic antenna support

    NASA Technical Reports Server (NTRS)

    Mazur, J. T. (Inventor)

    1980-01-01

    An extendable column is described which consists of several axially elongated rigid structural sections nested within one another. Each section includes a number of rotatably attached screws running along its length. The next inner section includes threaded lugs oriented to threadingly engage the screws. The column is extended or retracted upon rotation of the screws. The screws of each section are selectively rotated by a motor and an engagement mechanism.

  11. Radiotracer Imaging of Sediment Columns

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; O'Neil, J. P.; Boutchko, R.; Nico, P. S.; Druhan, J. L.; Vandehey, N. T.

    2010-12-01

    Nuclear medical PET and SPECT cameras routinely image radioactivity concentration of gamma ray emitting isotopes (PET - 511 keV; SPECT - 75-300 keV). We have used nuclear medical imaging technology to study contaminant transport in sediment columns. Specifically, we use Tc-99m (T1/2 = 6 h, Eγ = 140 keV) and a SPECT camera to image the bacteria mediated reduction of pertechnetate, [Tc(VII)O4]- + Fe(II) → Tc(IV)O2 + Fe(III). A 45 mL bolus of Tc-99m (32 mCi) labeled sodium pertechnetate was infused into a column (35cm x 10cm Ø) containing uranium-contaminated subsurface sediment from the Rifle, CO site. A flow rate of 1.25 ml/min of artificial groundwater was maintained in the column. Using a GE Millennium VG camera, we imaged the column for 12 hours, acquiring 44 frames. As the microbes in the sediment were inactive, we expected most of the iron to be Fe(III). The images were consistent with this hypothesis, and the Tc-99m pertechnetate acted like a conservative tracer. Virtually no binding of the Tc-99m was observed, and while the bolus of activity propagated fairly uniformly through the column, some inhomogeneity attributed to sediment packing was observed. We expect that after augmentation by acetate, the bacteria will metabolically reduce Fe(III) to Fe(II), leading to significant Tc-99m binding. Imaging sediment columns using nuclear medicine techniques has many attractive features. Trace quantities of the radiolabeled compounds are used (micro- to nano- molar) and the half-lives of many of these tracers are short (<1 day). This allows multiple measurements to be made on the same column and thus the sediment biology to be monitored non-invasively over time (i.e. after an augmentation has been introduced) and minimizes long-lived radioactive waste. Different parameters can be measured, depending on the tracer type and delivery. A constant infusion of a conservative tracer, such as the positron emitter Br-76 (T1/2= 16.2 hr), measures the exclusion fraction (as

  12. Virus movement in soil columns flooded with secondary sewage effluent.

    PubMed Central

    Lance, J C; Gerba, C P; Melnick, J L

    1976-01-01

    Secondary sewage effluent containing about 3 X 10(4) plaque-forming units of polio virus type 1 (LSc) per ml was passed through columns 250 cm in length packed with calcareous sand from an area in the Salt River bed used for ground-water recharge of secondary sewage effluent. Viruses were not detected in 1-ml samples extracted from the columns below the 160-cm level. However, viruses were detected in 5 of 43 100-ml samples of the column drainage water. Most of the viruses were adsorbed in the top 5 cm of soil. Virus removal was not affected by the infiltration rate, which varied between 15 and 55 cm/day. Flooding a column continuosly for 27 days with the sewage water virus mixture did not saturate the top few centimeters of soil with viruses and did not seem to affect virus movement. Flooding with deionized water caused virus desorption from the soil and increased their movement through the columns. Adding CaCl2 to the deionized water prevented most of the virus desorption. Adding a pulse of deionized water followed by sewage water started a virus front moving through the columns, but the viruses were readsorbed and none was detected in outflow samples. Drying the soil for 1 day between applying the virus and flooding with deionized water greatly reduced desorption, and drying for 5 days prevented desorption. Large reductions (99.99% or more) of virus would be expected after passage of secondary sewage effluent through 250 cm of the calcareous sand similar to that used in our laboratory columns unless heavy rains fell within 1 day after the application of sewage stopped. Such virus movement could be minimized by the proper management of flooding and drying cycles. PMID:185960

  13. Nondestructive evaluation of the preservation state of stone columns in the Hospital Real of Granada

    NASA Astrophysics Data System (ADS)

    Moreno de Jong van Coevorden, C.; Cobos Sánchez, C.; Rubio Bretones, A.; Fernández Pantoja, M.; García, Salvador G.; Gómez Martín, R.

    2012-12-01

    This paper describes the results of the employment of two nondestructive evaluation methods for the diagnostic of the preservation state of stone elements. The first method is based on ultrasonic (US) pulses while the second method uses short electromagnetic pulses. Specifically, these methods were applied to some columns, some of them previously restored. These columns are part of the architectonic heritage of the University of Granada, in particular they are located at the patio de la capilla del Hospital Real of Granada. The objective of this work was the application of systems based on US pulses (in transmission mode) and the ground-penetrating radar systems (electromagnetic tomography) in the diagnosis and detection of possible faults in the interior of columns.

  14. Air pulsed plate liquid-liquid extractor simulation

    NASA Astrophysics Data System (ADS)

    Barrington, C. A.

    1991-05-01

    A simulation of bulk fluid behavior in pneumatically pulsed sieve-plate columns is developed primarily through application of fundamental concepts in thermodynamics and fluid mechanics. The simulation allows estimation of the time variation of many basic parameters such as gas and liquid pressures and positions of liquid interfaces. The simulation includes sufficient detail to allow use as an aid to the design of pneumatic pulse columns. An open system and adiabatic gas dynamics are assumed. A new pulse leg design is proposed and included in the mathematical development of the stimulation. The use of the simulation as an aid in designing a pulse leg for a hypothetical column is demonstrated. This entire work has been developed solely for the purpose of satisfying requirements for the degree of Master of Science in Chemical Engineering for the University of Washington in Seattle, Washington.

  15. PULSE COUNTER

    DOEpatents

    Trumbo, D.E.

    1959-02-10

    A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.

  16. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  17. Fluid Dynamic Experiments on Mush Column Magmatism

    NASA Astrophysics Data System (ADS)

    Flanagan-Brown, R. E.; Marsh, B. D.

    2001-05-01

    A vertically extensive stack of sills interconnected by pipe-like conduits extending from the mantle through the lithosphere and capped by a volcanic center is a magmatic mush column. At any instant at various locations it contains fractionated and primitive melts as pools of nearly crystal-free magma, pools of crystal-rich magma, thick beds of cumulates, open conduits, and conduits congested by cognate and wall debris. All boundaries of the system are sheathed by solidification fronts. With the wide range of local, characteristic length scales there is a commensurate range of solidification time scales. This creates a complicated series of resistances to magma flow and provides a variety of distinct local physical environments for the chemical modification of magma. The system is driven by over-pressure from the addition of new melt from below. The over-pressure propagates upward by moving magma which flushes conduits, disrupts cumulate beds, and pools or purges sills. A critical aspect of this process is the entrainment, transport, and deposition of crystals throughout the system. Picritic lavas charges with entrained (tramp) olivine of a wide compositional range erupted at many systems (e.g. Jan Mayen, Kilauea, Reunion, etc.) are the final expression of this process. That the size and abundance of these crystals is correlated with eruptive flux (Murata & Richter, AJS, 1966) suggests an important indicator of the overall dynamics of the mush column. A mush column of this basic nature is observed is observed in the McMurdo Dry Valleys region of Antarctica and is inferred beneath Hawaii and the ocean ridges. We have attempted to model this process by studying the entrainment, transport, and deposition of particles in a vertical stack of sills (Plexiglas tanks) connected by resistive conduits (check valves), over-pressured from the base, and open at the top. The system is about two meters in height with water and oil as fluids and particles with Reynolds numbers

  18. Triangular Helical Column for Centrifugal Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Yu, Henry

    2009-01-01

    Effective column space and stationary phase retention have been improved by changing the configuration of the helical column originally used for toroidal coil countercurrent chromatography. The use of an equilateral triangular core for the helix column doubles effective column space and retains the stationary phase over 40% of the total column capacity without increasing the column pressure. The present results suggest that the stationary phase retention and the peak resolution will be further improved using new column designs fabricated by a new technology called “laser sintering for rapid prototyping.” PMID:20046940

  19. Pulsed thermoelectricity

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Nedelcu, M.

    2010-07-01

    A special mechanism of thermoelectric transport is described, consisting of pulses of charge carriers which "fly" periodically through the external circuit from the hot end of the sample to the cold end, with a determined duration of the "on" and "off" times of the electric contacts, while maintaining continuously the thermal contacts. It is shown that such a "resonant" ideal thermogenerator may work cyclically, with the same efficiency quotient as the ideal efficiency quotient of the thermoelectric devices operated in the usual stationary transport regime but the electric flow and power are increased, as a consequence of the concentration of the charge carriers on pulses of small spatial extent. The process is reversible, in the sense that it can be operated either as a thermoelectric generator or as an electrothermal cooler.

  20. Pulsed hydrojet

    DOEpatents

    Bohachevsky, I.O.; Torrey, M.D.

    1986-06-10

    An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.

  1. Chromatographic properties PLOT multicapillary columns.

    PubMed

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N

    2017-03-10

    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered.

  2. Partially saturated granular column collapse

    NASA Astrophysics Data System (ADS)

    Turnbull, Barbara; Johnson, Chris

    2017-04-01

    Debris flows are gravity-driven sub-aerial mass movements containing water, sediments, soil and rocks. These elements lead to characteristics common to dry granular media (e.g. levee formation) and viscous gravity currents (viscous fingering and surge instabilities). The importance of pore fluid in these flows is widely recognised, but there is significant debate over the mechanisms of build up and dissipation of pore fluid pressure within debris flows, and the resultant effect this has on dilation and mobility of the grains. Here we specifically consider the effects of the liquid surface in the flow. We start with a simple experiment constituting a classical axisymmetric granular column collapse, but with fluid filling the column up to a depth comparable to the depth of grains. Thus, as the column collapses, capillary forces may be generated between the grains that prevent dilation. We explore a parameter space to uncover the effects of fluid viscosity, particle size, column size, aspect ratio, grain shape, saturation level, initial packing fraction and significantly, the effects of fine sediments in suspension which can alter the capillary interaction between wetted macroscopic grains. This work presents an initial scaling analysis and attempts to relate the findings to current debris flow modelling approaches.

  3. Column

    ERIC Educational Resources Information Center

    Education in Chemistry, 1973

    1973-01-01

    Articles are included concerning industry and schools, science and mathematics award scheme, teaching and research, safety, inservice training, Ugandan chemistry, plastics, and 19th century Nuffield. (DF)

  4. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  5. Beam Studies with Electron Columns

    SciTech Connect

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; Kamerdzhiev, V.; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  6. Stability of elastically supported columns

    NASA Technical Reports Server (NTRS)

    Niles, Alfred S; Viscovich, Steven J

    1942-01-01

    A criterion is developed for the stiffness required of elastic lateral supports at the ends of a compression member to provide stability. A method based on this criterion is then developed for checking the stability of a continuous beam-column. A related method is also developed for checking the stability of a member of a pin-jointed truss against rotation in the plane of the truss.

  7. Propagation of Complex Laser Pulses in Optically Dense Media

    NASA Astrophysics Data System (ADS)

    Fetterman, M. R.; Davis, J. C.; Goswami, D.; Yang, W.; Warren, W. S.

    1999-05-01

    Ultrafast laser pulses with complex envelopes (amplitude and frequency modulated) are used to excite an optically dense column of rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation in the Rb vapor are all shown to depend strongly on the laser pulse shape. Pulses that produce adiabatic passage in the optically thin limit exhibit more complex behavior in optically thick samples, including an unexpected dependence on the sign of the frequency sweep. Numerical solutions of the Maxwell-Bloch equations are shown to account for our results.

  8. Water Column Methylation in Estuaries

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.; Calder, R.; Soerensen, A. L.; Mason, R. P.; Balcom, P. H.; Sunderland, E. M.

    2014-12-01

    Methylmercury (MeHg) is a neurotoxin that bioaccumulates in aquatic food webs and affects humans and wildlife through fish consumption. Many studies have measured active methylation/demethylation in ocean margin sediments but few have reported similar rates for the marine water column. This presentation will review available evidence for water column methylation in estuaries, including new experimental measurements of methylation/demethylation rates from a deep subarctic fjord in Labrador Canada collected in Spring and Fall of 2012-2013. We used these and other data to construct a mass budget for MeHg in the estuary and show that water column methylation (with rates ranging from 1.5 to 2.8 % day-1), is the largest contributor, followed by inputs from rivers (4.9 mol year-1), to the in situ pool of MeHg available for uptake by biota. By contrast, the sediment in this system is a net sink for MeHg (-1.5 mol year-1). We discuss the relationship between observed MeHg and other ancillary environmental factors (organic carbon, sulfur and nutrients) as well as implications for the response time of fish to future changes in mercury inputs.

  9. Lightweight structural columns. [space erectable trusses

    NASA Technical Reports Server (NTRS)

    Bush, H. G. (Inventor)

    1981-01-01

    Lightweight half-lengths of columns for truss structures are described. The columns are adapted for nestable storage and transport to facilitate fabrication of large area truss structures at a remote site and particularly adaptable for space applications.

  10. Method for packed column separations and purifications

    DOEpatents

    Holman, David A.; Bruckner-Lea, Cynthia J.; Brockman, Fred J.; Chandler, Darrell P.

    2006-08-15

    The invention encompasses a method of packing and unpacking a column chamber. A mixture of a fluid and a matrix material are introduced through a column chamber inlet so that the matrix material is packed within a column chamber to form a packed column. The column chamber having the column chamber inlet or first port for receiving the mixture further has an outlet port and an actuator port. The outlet port is partially closed for capturing the matrix material and permitting the fluid to flow therepast by rotating relative one to the other of a rod placed in the actuator port. Further rotation relative one to the other of the rod and the column chamber opens the outlet and permits the matrix material and the fluid to flow therethrough thereby unpacking the matrix material from the column chamber.

  11. Temperature programmable microfabricated gas chromatography column

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  12. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor... 29 Labor 8 2011-07-01 2011-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor...

  13. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor... 29 Labor 8 2014-07-01 2014-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor...

  14. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor... 29 Labor 8 2012-07-01 2012-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor...

  15. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor... 29 Labor 8 2013-07-01 2013-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor...

  16. Dry-Column Flash Chromatography

    NASA Astrophysics Data System (ADS)

    Shusterman, Alan J.; McDougal, Patrick G.; Glasfeld, Arthur

    1997-10-01

    Dry-column flash chromatography is a safe, powerful, yet easily learned preparative chromatography technique. It has proven useful in research, and an adaptation of the technique for use in large teaching laboratories (general chemistry, organic chemistry) is described here. The student version is similar to vacuum filtration, uses the same compact, readily available glassware, and inexpensive and safe solvents (ethyl acetate and hexane) and adsorbent (Merck grade 60 silica gel). The technique is sufficiently simple and powerful that a beginning student can successfully resolve diastereomers on sample scales ranging from 100 mg to >1 g.

  17. Noninvasive Imaging of Tracer Experiments in a Soil Column

    NASA Astrophysics Data System (ADS)

    Jelinkova, V.; Pohlmeier, A.; van Dusschoten, D.; Vereecken, H.; Cislerova, M.

    2008-12-01

    A set of tracer-infiltration experiments on soil columns by means of magnetic resonance imaging (MRI) was performed. Computed tomography (CT) was applied in order to map the spatial distribution of porous media, namely the local densities and porosities, and their variation within the soil sample under test. The CT visualisation was done in order to trace disturbances in the structure as a possible source of preferential flow. By means of MRI the flow paths during the infiltration experiment were visualized using a tracer pulse containing Ni(NO3)2 in a concentration of 0.05 mol/litre. The pulse was added under hydraulic steady state conditions. The tracer motion was monitored through its effect on the signal relaxation of 1H using a 7 Tesla vertical magnet system equipped with a 40 mm RF probe. The boundary condition at the top of the soil columns was maintained using a dripping system connected to a HPLC pump with flow rate set to 0.5 ml/min. Free outflow was used as the bottom boundary condition. The vertical component of the local velocity value was calculated after the experiment. Small disturbances in the tracer front observed during the break-through could be related to the preferential flow phenomena in combination with the air bubble entrapment. This research has been supported by research project SP/2e7/229/07 and DBU - Deutsche Bundesstiftung Umwelt.

  18. Elastic stability of non-uniform columns

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Kuo, Y. H.

    1991-07-01

    A simple and efficient method is proposed to investigate the elastic stability of three different tapered columns subjected to uniformly distributed follower forces. The influences of the boundary conditions and taper ratio on critical buckling loads are investigated. The critical buckling loads of columns of rectangular cross section with constant depth and linearly varied width ( T1), constant width and linearly varied depth ( T2) and double taper ( T3) are investigated. Among the three different non-uniform columns considered, taper ratio has the greatest influence on the critical buckling load of column T3 and the lowest influence on that of column T1. The types of instability mechanisms for hinged-hinged and cantilever non-uniform columns are divergence and flutter respectively. However, for clamped-hinged and clamped-clamped non-uniform columns, the type of instability mechanism for column T1 is divergence, while that for columns T2 and T3 is divergence only when the taper ratio of the columns is greater than certain critical values and flutter for the rest value of taper ratio. When the type of instability mechanism changes from divergence to flutter, there is a finite jump for the critical buckling load. The influence of taper ratio on the elastic stability of cantilever column T3 is very sensitive for small values of the taper ratio and there also exist some discontinieties in the critical buckling loads of flutter instability. For a hinged-hinged non-uniform column ( T2 or T3) with a rotational spring at the left end of the column, when the taper ratio is less than the critical value the instability mechanism changes from divergence to flutter as the rotational spring constant is increased. For a clamped-elastically supported non-uniform column, when the taper ratio is greater than the critical value the instability mechanism changes from flutter to divergence as the translational spring constant is increased.

  19. Pulsed Optics

    NASA Astrophysics Data System (ADS)

    Hirlimann, C.

    Optics is the field of physics which comprises knowledge on the interaction between light and matter. When the superposition principle can be applied to electromagnetic waves or when the properties of matter do not depend on the intensity of light, one speaks of linear optics. This situation occurs with regular light sources such as light bulbs, low-intensity light-emitting diodes and the sun. With such low-intensity sources the reaction of matter to light can be characterized by a set of parameters such as the index of refraction, the absorption and reflection coefficients and the orientation of the medium with respect to the polarization of the light. These parameters depend only on the nature of the medium. The situation changed dramatically after the development of lasers in the early sixties, which allowed the generation of light intensities larger than a kilowatt per square centimeter. Actual large-scale short-pulse lasers can generate peak powers in the petawatt regime. In that large-intensity regime the optical parameters of a material become functions of the intensity of the impinging light. In 1818 Fresnel wrote a letter to the French Academy of Sciences in which he noted that the proportionality between the vibration of the light and the subsequent vibration of matter was only true because no high intensities were available. The intensity dependence of the material response is what usually defines nonlinear optics.

  20. Axisymmetric collapses of granular columns

    NASA Astrophysics Data System (ADS)

    Lube, Gert; Huppert, Herbert E.; Sparks, R. Stephen J.; Hallworth, Mark A.

    2004-06-01

    Experimental observations of the collapse of initially vertical columns of small grains are presented. The experiments were performed mainly with dry grains of salt or sand, with some additional experiments using couscous, sugar or rice. Some of the experimental flows were analysed using high-speed video. There are three different flow regimes, dependent on the value of the aspect ratio a {=} h_i/r_i, where h_i and r_i are the initial height and radius of the granular column respectively. The differing forms of flow behaviour are described for each regime. In all cases a central, conically sided region of angle approximately 59(°) , corresponding to an aspect ratio of 1.7, remains undisturbed throughout the motion. The main experimental results for the final extent of the deposit and the time for emplacement are systematically collapsed in a quantitative way independent of any friction coefficients. Along with the kinematic data for the rate of spread of the front of the collapsing column, this is interpreted as indicating that frictional effects between individual grains in the bulk of the moving flow only play a role in the last instant of the flow, as it comes to an abrupt halt. For a {<} 1.7, the measured final runout radius, r_infty, is related to the initial radius by r_infty {=} r_i(1 {+} 1.24a); while for 1.7 {<} a the corresponding relationship is r_infty {=} r_i(1 {+} 1.6a(1/2) ). The time, t_infty, taken for the grains to reach r_infty is given by t_infty {=} 3(h_i/g)(1/2} {=} 3(r_i/g)({1/2}a^{1/2)) , where g is the gravitational acceleration. The insights and conclusions gained from these experiments can be applied to a wide range of industrial and natural flows of concentrated particles. For example, the observation of the rapid deposition of the grains can help explain details of the emplacement of pyroclastic flows resulting from the explosive eruption of volcanoes.

  1. Oscillating water column structural model

    SciTech Connect

    Copeland, Guild; Bull, Diana L; Jepsen, Richard Alan; Gordon, Margaret Ellen

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  2. Long pulse production from short pulses

    DOEpatents

    Toeppen, J.S.

    1994-08-02

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  3. Long pulse production from short pulses

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).

  4. The jet flotation column control system

    SciTech Connect

    Xu Zhiqiang; Ming Shangzhi; Liu Lijian; Huangfu Jinghua; Huo Sen; Zhang Rongzeng; Yang Hongjun

    1998-12-31

    Compared with the conventional mechanical flotation column, the jet flotation column has the advantages of high selectivity of separation, low investment and production cost, low floor space requirement, low dosage of reagent, easy control; it is more suitable to process fine particles. Recently, many new types of flotation columns have been developed with new methods. Mineral Processing Dept., China University of Mining and Technology (Beijing) designed an aerated, double-jet flotation column in the lab and the industrial trial will be put into operation. One of the significant characteristics of the new type of flotation column is high selectivity of separation, fast bubble mineralization speed. As it is sensitive to various factors, a control system for flotation column has been developed to stabilize the working condition, and this set of control system has been operated in the lab experiment.

  5. Oblique Shock Wave Effects on Impulsively Accelerated Heavy Gas Column

    NASA Astrophysics Data System (ADS)

    Olmstead, Dell T.

    An experimental study was performed to elucidate the fundamental physics of shock-induced mixing for a simple three-dimensional interface. The interface studied consists of a gravity stabilized SF6-based heavy gas jet that produced a circular column with a diffuse interface into the surrounding air. The effects of density gradient (Atwood number, A), shock strength (Mach number, M), and column inclination angle (theta) were examined. Concentration was measured using Planar Laser Induced Fluorescence (PLIF) of an acetone vapor tracer mixed with the heavy gas jet and illuminated by a pulsed Nd-YAG laser. Shocks with Mach numbers of 1.13, 1.5, 1.7, and 2.0 were used for inclinations of 0° (planar normal shock wave), 20° and 30°. Columns with Atwood numbers of 0.25, 0.4, and 0.60 were tested at Mach 1.7 for inclinations of 0° and 20°. The oblique shock-accelerated cylindrical interface produced a typical Richtmyer-Meshkov instability (RMI) consisting of a primary counter-rotating vortices. The streamwise extent of the vortex pair in the centerline plane (cross-section) images of the column is proportional to √A/√ M, regardless of oblique shock angle for theta < 20. A heretofore unseen manifestation of Kelvin-Helmholtz (K-H) waves on the upstream edge of the column appear for oblique shock acceleration. The upstream edge K-H waves were observed in images from a vertical plane through the center of the column. The wavelength of the upstream edge K-H waves is proportional to theta/M ˙ √A. This upstream edge K-H instability (KHI) caused earlier onset of secondary instabilities in the primary RMI vortices seen in the centerline plane images. The combination of more rapid onset of secondary instabilities in the RMI and upstream edge KHI accelerated transition to turbulence and thus reduced the time to achieve well-mixed flow. Time to reach well-mixed flow was inversely related to Atwood number, and had a weak correlation with Mach number for M>1.13. Transition to

  6. Soil column leaching of pesticides.

    PubMed

    Katagi, Toshiyuki

    2013-01-01

    In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are

  7. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C

    2012-10-26

    The effect of extra-column volume on observed linear velocity was investigated for columns of various internal diameters in very high pressure liquid chromatography. The results showed that the observed linear velocities were approximately 4.5, 9.5, 16.8, and 39.5% lower than the linear velocities corrected for the extra-column volume contribution for 4.6, 3.0, 2.1, and 1.0mm internal diameter columns, respectively. An empirical relationship between extra-column band broadening and extra-column volume was obtained using 50 cm long tubings of various internal diameters. The peak variance from the extra-column volume is near linearly proportional to the square of the extra-column volume for tubings with 0.0635-0.178 mm (0.025-0.07 in.) i.d. using a 50/50 acetonitrile/water mobile phase at flow rates greater than 0.3 mL/min. The effect of column internal diameter and column length on observed efficiency was studied using 50mm columns with four different column internal diameters and 2.1mm i.d columns with three different lengths. The results showed that the observed column efficiencies for 3.0, 2.1, and 1.0mm internal diameter columns were 18, 33, and 73% lower than that for a 4.6mm internal diameter column for benzophenone (k=5.5), respectively. An approximate 20% decrease in theoretical plate number was observed for propiophenone (k=3.3) using a 50 mm × 2.1 mm column packed with 1.7 μm particles compared to a 150 mm × 2.1 mm column packed with 5.0 μm particles, while the former column provided 9 fold faster separation. It is the column to extra column volume ratio instead of absolute extra-column volume that determines the degree of extra-column band-broadening in VHPLC.

  8. Synthesis of Ion Microbeam Column

    NASA Astrophysics Data System (ADS)

    Mui, Peter Hon-Fung

    1995-01-01

    Electrostatic lenses have traditionally been designed by analyzing and combining different electrode configurations. Computational complexity typically limits such systems to a few geometrically simple elements, where the component interactions are neglected and not exploited to combat the various aberrations. Recently, Szilagyi and Szep have demonstrated that an axially symmetric column of circular plates, with the electrode potentials optimized for focusing, can surpass the typical conventional designs by many times in performance. Following the footsteps of pioneers like Burfoot and Hawkes, we partition the plates in order to transcend the limitations set by Scherzer's theorem on the chromatic and spherical aberrations of axially symmetric structures. Two algorithms, one based upon integral asymptotics and one upon the Levinson algorithm. for Toeplitz matrix inversion, are developed to complement the charge-density method in analyzing the new column structures. Various optimization schemes are combined to avoid shallow minima at a reasonable computational cost. With each plate partitioned into four sectors, we show that the interactions between the monopole and the quadrupole components can increase the output current density by more than 400% over the axially symmetric structure. By adjusting the sector potentials, we can realize systems capable of both focusing and deflecting the beam. In comparison to some existing designs, our systems excel in both performance and compactness, sometimes by many hundred percents. We then further partition the plates to generate the "octupole" deflectors and correctors. We show that the "octupole" deflectors can drastically slow down the beam degradation with deflection distance and that the correctors can further increase the output current density by more than 300%. Finally, we apply linear system theories to the study of the first-order properties of optical systems with different symmetries. We showed, without resorting to

  9. DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR

    DOEpatents

    Test, L.D.

    1958-11-11

    Pulse-height discriminators are described, specifically a differential pulse-height discriminator which is adapted to respond to pulses of a band of amplitudes, but to reject pulses of amplitudes greater or less than tbe preselected band. In general, the discriminator includes a vacuum tube having a plurality of grids adapted to cut off plate current in the tube upon the application of sufficient negative voltage. One grid is held below cutoff, while a positive pulse proportional to the amplltude of each pulse is applled to this grid. Another grid has a negative pulse proportional to the amplitude of each pulse simultaneously applied to it. With this arrangement the tube will only pass pulses which are of sufficlent amplitude to counter the cutoff bias but not of sufficlent amplitude to cutoff the tube.

  10. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a... field-modified without the approval of the project structural engineer of record. (2) Prior to the erection of a column, the controlling contractor shall provide written notification to the steel erector...

  11. Circulation in gas-slurry column reactors

    SciTech Connect

    Clark, N.; Kuhlman, J.; Celik, I.; Gross, R.; Nebiolo, E.; Wang, Yi-Zun.

    1990-08-15

    Circulation in bubble columns, such as those used in fischer-tropsch synthesis, detracts from their performance in that gas is carried on average more rapidly through the column, and the residence time distribution of the gas in the column is widened. Both of these factors influence mass-transfer operations in bubble columns. Circulation prediction and measurement has been undertaken using probes, one-dimensional models, laser Doppler velocimetry, and numerical modeling. Local void fraction was measured using resistance probes and a newly developed approach to determining air/water threshold voltage for the probe. A tall column of eight inch diameter was constructed of Plexiglas and the distributor plate was manufactured to distribute air evenly through the base of the column. Data were gathered throughout the volume at three different gas throughputs. Bubble velocities proved difficult to measure using twin probes with cross-correlation because of radial bubble movement. A series of three-dimensional mean and RMS bubble and liquid velocity measurements were also obtained for a turbulent flow in a laboratory model of a bubble column. These measurements have been made using a three-component laser Doppler velocimeter (LDV), to determine velocity distributions non-intrusively. Finally, the gas-liquid flow inside a vertically situated circular isothermal column reactor was simulated numerically. 74 refs., 170 figs., 5 tabs.

  12. Maintenance of column performance at scale.

    PubMed

    William, Alan; Taylor, Kathy; Dambuleff, Kyril; Persson, Owe; Kennedy, Robert M

    2002-01-25

    Pack-in-place column packing methods were developed for Q Sepharose Big Beads at 40 cm I.D. and scaled up to 200 cm I.D. in Chromaflow columns. The efficiency and asymmetry of the packed bed were evaluated as a function of test velocity and sample volume. The performance of the packed beds at both scales approached the theoretical limits of column performance (Hred =2 and Af=1) expected in small analytical columns. The packing strategy was effective for scale up and the stability of the packed beds, the effectiveness of the column design with respect to the mobile phase distribution system and the stability of the media to the pack-in-place technology, are presented.

  13. Nonlinear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.

    1972-01-01

    Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.

  14. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  15. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  16. Dorsal column mapping for intramedullary spinal cord tumor resection decreases dorsal column dysfunction.

    PubMed

    Mehta, Ankit Indravadan; Mohrhaus, Cindy A; Husain, Aatif M; Karikari, Isaac O; Hughes, Betsy; Hodges, Tiffany; Gottfried, Oren; Bagley, Carlos A

    2012-06-01

    Retrospective cohort study and technical report. To demonstrate, through our institutional series of intramedullary spinal tumor resection, the potential avoidance of dorsal column dysfunction after using dorsal column mapping. Surgical resection of intramedullary spinal cord tumors carries significant associated postoperative morbidity. Much of this morbidity is because of dorsal column dysfunction from the dorsal myelotomy. The inconsistency and distortion of anatomic landmarks for a midline myelotomy has posed a significant challenge for spine surgeons. Dorsal column mapping is a relative new technique that may decrease the morbidity associated with operative resection of intramedullary masses. A cohort of patients operated upon at our institution for intramedullary lesions were retrospectively reviewed. Neurologic examination changes were assessed through clinic notes and chart review. A total of 91 intramedullary tumors were assessed, with 80 patients without dorsal column mapping and 11 patients with dorsal column mapping. In our cohort of 91 patients with intramedullary tumors undergoing resection over the past decade, postoperative dorsal column dysfunction was observed in 45%. Dorsal column mapping decreased the frequency of new postoperative posterior column dysfunction. Patients with dorsal column mapping had a statistically significant decrease rate of new postoperative posterior column dysfunction of 9% compared with 50% for without mapping (P=0.01). Tumor histology was not found to correlate with worsening posterior column dysfunction in patients undergoing tumor resection. With our surgical cohort as an internal control, we found a decreased rate of postoperative posterior column dysfunction when using intraoperative dorsal column mapping. Our findings show the ability of this evolving technology to provide useful intraoperative information to localize the physiological midline and decrease the rate of posterior column dysfunction after

  17. Mass transfer in chromatographic columns studied by PFG NMR.

    PubMed

    Tallarek, U; van Dusschoten, D; Van As, H; Guiochon, G; Bayer, E

    1998-01-01

    Pulsed field gradient (PFG) nuclear magnetic resonance (NMR) is applied to study convective and diffusional transport in chromatographic columns packed with totally porous support particles. Here stagnant zones exist in the particle pores, and diffusional mass-transfer limitations between fluid molecules diffusing in the intraparticle pore network and flowing in the interparticle void space are detected quantitatively. Axial displacement probability distributions were measured for water over a range of Peclet numbers and observation times, with diffusion lengths between 0.15 and 0.91 times the average support particle diameter. The transition towards complete diffusional exchange is demonstrated, thereby also revealing the development of the classical convective dispersion process in a packed bed of (porous) particles.

  18. Pulse to pulse klystron diagnosis system

    SciTech Connect

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 ..mu..s. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations.

  19. Collapse of tall granular columns in fluid

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  20. Single column locking plate fixation is inadequate in two column acetabular fractures. A biomechanical analysis

    PubMed Central

    2010-01-01

    Background The objective of this study was to determine whether one can achieve stable fixation of a two column (transverse) acetabular fracture by only fixing a single column with a locking plate and unicortical locking screws. We hypothesized that a locking plate applied to the anterior column of a transverse acetabular fracture would create a construct that is more rigid than a non-locking plate, and that this construct would be biomechanically comparable to two column fixation. Methods Using urethane foam models of the pelvis, we simulated transverse acetabular fractures and stabilized them with 1) an anterior column plate with bicortical screws, 2) an anterior locking plate with unicortical screws, 3) an anterior plate and posterior column lag screw, and 4) a posterior plate with an anterior column lag screw. These constructs were mechanically loaded on a servohydraulic material testing machine. Construct stiffness and fracture displacement were measured. Result and Discussion We found that two column fixation is 54% stiffer than a single column fixation with a conventional plate with bicortical screws. There was no significant difference between fixation with an anterior column locking plate with unicortical screws and an anterior plate with posterior column lag screw. We detected a non-significant trend towards more stiffness for the anterior locking plate compared to the anterior non-locking plate. Conclusion In conclusion, a locking plate construct of the anterior column provides less stability than a traditional both column construct with posterior plate and anterior column lag screw. However, the locking construct offers greater strength than a non-locking, bicortical construct, which in addition often requires extensive contouring and its application is oftentimes accompanied by the risk of neurovascular damage. PMID:20459688

  1. Single column locking plate fixation is inadequate in two column acetabular fractures. A biomechanical analysis.

    PubMed

    Khajavi, Kiarash; Lee, Arthur T; Lindsey, Derek P; Leucht, Philipp; Bellino, Michael J; Giori, Nicholas J

    2010-05-09

    The objective of this study was to determine whether one can achieve stable fixation of a two column (transverse) acetabular fracture by only fixing a single column with a locking plate and unicortical locking screws. We hypothesized that a locking plate applied to the anterior column of a transverse acetabular fracture would create a construct that is more rigid than a non-locking plate, and that this construct would be biomechanically comparable to two column fixation. Using urethane foam models of the pelvis, we simulated transverse acetabular fractures and stabilized them with 1) an anterior column plate with bicortical screws, 2) an anterior locking plate with unicortical screws, 3) an anterior plate and posterior column lag screw, and 4) a posterior plate with an anterior column lag screw. These constructs were mechanically loaded on a servohydraulic material testing machine. Construct stiffness and fracture displacement were measured. We found that two column fixation is 54% stiffer than a single column fixation with a conventional plate with bicortical screws. There was no significant difference between fixation with an anterior column locking plate with unicortical screws and an anterior plate with posterior column lag screw. We detected a non-significant trend towards more stiffness for the anterior locking plate compared to the anterior non-locking plate. In conclusion, a locking plate construct of the anterior column provides less stability than a traditional both column construct with posterior plate and anterior column lag screw. However, the locking construct offers greater strength than a non-locking, bicortical construct, which in addition often requires extensive contouring and its application is oftentimes accompanied by the risk of neurovascular damage.

  2. Evaluation and application of liquid chromatographic columns coated with 'intelligent' ligands: (I) acylcarnitine column.

    PubMed

    Kamimori, H; Konishi, M

    2001-09-21

    Unique stationary phases of octadecylsilica (ODS) coated with acylcarnitines have been developed for liquid chromatographic columns. The ODS column coated with acylcarnitine was readily prepared by recycling the solution containing acylcarnitine through an ODS column in a closed loop. Acylcarnitine was adsorbed on the ODS surfaces by hydrophobic interaction between the acyl group of acylcarnitine and the octadecyl group of the ODS phases. The ODS column coated with stearoylcarnitine (CN-18 column) was the most stable among the four columns coated with acylcarnitines of various acyl chain lengths (decanoylcarnitine, lauroylcarnitine, myristoylcarnitine, and stearoylcarnitine) under the condition of delivery of the mobile phase, indicating that adsorption of acylcarnitine on the ODS surfaces depended on the length of acyl chains. The CN-18 column was usable for delivering the mobile phase contained less than 20% (v/v) acetonitrile, retaining almost the same separation efficiency as the intact ODS column. The retention behavior of ionic solutes on the CN-18 column could be explained by both ionic and electrostatic interactions between the solutes and the stationary phase. The CN-18 column enabled efficient separation of inorganic anions, nicotinic acids, amino acids, and nucleotides. The chiral ODS column coated with enantiomer of stearoylcarnitine, L-stearoylcarnitine (L-CN-18 column) could achieve direct enantiomeric separation of DL-tryptophan, alpha-methyl-DL-tryptophan and DL-3-indolelactic acid using 100% water as the mobile phase. The L-CN-18 column could also separate enantiomers of amino acids and alpha-hydroxycarboxylic acids by ligand-exchange chromatographic mode using a mobile phase containing copper(II) ion. The chiral recognition is discussed for enantiomeric separation on the L-CN-18 column.

  3. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  4. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  5. Pulse compression in plasma: Generation of femtosecond pulses without CPA

    SciTech Connect

    G. Shvets; N. J. Fisch; A. Pukhov; J. Meyer-ter-Vehn

    2000-07-20

    Laser pulses can be efficiently compressed to femtosecond duration when a smaller-frequency short pulse collides with high frequency long pulse in rare plasma, absorbing most of its energy. The mechanism of short pulse amplification is nonlinear superradiance.

  6. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  7. Axisymmetric Column Collapse in a Rotating System

    NASA Astrophysics Data System (ADS)

    Warnett, Jay; Thomas, Peter; Dennisenko, Petr

    2012-11-01

    We discuss experimental and computational results of a study investigating the collapse of an initially axisymmetric cylindrical column of granular material within a rotating environment of air or liquids. In industry this type of granular column collapse that is subject to background rotation is encountered, for instance, in the context of the spreading of powders and fertilizers. In comparison to its non-rotating counterpart the physical characteristics of the column collapse in a rotating system are expected to be modified by effects arising from centrifugal forces and Coriolis forces. We compare our new results for the rotating flow to data available in the literature for the collapse of granular columns in non-rotating systems to highlight the differences observed.

  8. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  9. Tests on duralumin columns for aircraft construction

    NASA Technical Reports Server (NTRS)

    Lee, John G

    1924-01-01

    The following paper is based on the results of tests, upon duralumin columns, contained in two theses presented to the Department of Civil and Sanitary Engineering of the Massachusetts Institute of Technology.

  10. Early development of the vertebral column.

    PubMed

    Scaal, Martin

    2016-01-01

    The segmental organization of the vertebrate body is most obviously visible in the vertebral column, which consists of a series of vertebral bones and interconnecting joints and ligaments. During embryogenesis, the vertebral column derives from the somites, which are the primary segments of the embryonic paraxial mesoderm. Anatomical, cellular and molecular aspects of vertebral column development have been of interest to developmental biologists for more than 150 years. This review briefly summarizes the present knowledge on early steps of vertebral column development in amniotes, starting from sclerotome formation and leading to the establishment of the anatomical bauplan of the spine composed of vertebral bodies, vertebral arches, intervertebral discs and ribs, and their specific axial identities along the body axis.

  11. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  12. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  13. Stress pulse phenomena

    SciTech Connect

    McGlaun, M.

    1993-08-01

    This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.

  14. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  15. Modeling Tropical Precipitation in a Single Column.

    NASA Astrophysics Data System (ADS)

    Sobel, Adam H.; Bretherton, Christopher S.

    2000-12-01

    A modified formulation of the traditional single column model for representing a limited area near the equator is proposed. This formulation can also be considered a two-column model in the limit as the area represented by one of the columns becomes very large compared to the other. Only a single column is explicitly modeled, but its free tropospheric temperature, rather than its mean vertical velocity, is prescribed. This allows the precipitation and vertical velocity to be true prognostic variables, as in prior analytical theories of tropical precipitation. Two models developed by other authors are modified according to the proposed formulation. The first is the intermediate atmospheric model of J. D. Neelin and N. Zeng, but with the horizontal connections between columns broken, rendering it a set of disconnected column models. The second is the column model of N. O. Rennó, K. A. Emanuel, and P. H. Stone. In the first model, the set of disconnected column models is run with a fixed temperature that is uniform in the Tropics, and insolation, SST, and surface wind speed taken from a control run of the original model. The column models produce a climatological precipitation field that is grossly similar to that of the control run, despite that the circulation implied by the column models is not required to conserve mass. The addition of horizontal moisture advection by the wind from the control run substantially improves the simulation in dry regions. In the second model the sensitivity of the modeled steady-state precipitation and relative humidity to varying SST and wind speed is examined. The transition from shallow to deep convection is simulated in a `Lagrangian' calculation in which the column model is subjected to an SST that increases in time. In this simulation, the onset of deep convection is delayed to a higher SST than in the steady-state case, due to the effect of horizontal moisture advection (viewed in a Lagrangian reference frame). In both of the

  16. Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation

    NASA Astrophysics Data System (ADS)

    Sánchez, F.; Morenza, J. L.; Aguiar, R.; Delgado, J. C.; Varela, M.

    We present new results about the development of the whiskerlike structures that grow on silicon single crystals exposed in air to ArF excimer-laser irradiation. Small depressions appear on the surface after 100-200 laser pulses. With the next pulses, the size of these depressions increases, without change in depth, and new depressions are formed. At the end of this step the non-depressed regions are constricted and form a reticular network with a mesh size of some μm. With more pulses the material of the network tends to desert the branches and accumulate in the nodes, and discrete hillocks result. The hillocks progressively change their shape until tall columns are formed. Independent of this process, small protuberances appear on flat areas of the irradiated spot, initially in regions far from the center of the spot. These protuberances evolve to mushroom-type shapes, which remain much shorter than the columns.

  17. Commander prepares glass columns for electrophoresis experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Jack Lousma prepares on of the glass columns for the electrophoresis test in the middeck area of the Columbia. The experiment, deployed in an L-shaped mode in upper right corner, consists of the processing unit with glass columns in which the separation takes place; a camera (partially obscurred by Lousma's face) to document the process; and a cryogenic freezer to freeze and store the samples after separation.

  18. Pulsed IR inductive lasers

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.

    2014-07-01

    Pulsed inductive discharge is a new alternative method of pumping active gas laser media. The work presents results of experimental investigations of near, mid, and far IR inductive gas lasers (H2, HF, and CO2) operating at different transitions of atoms and molecules with different mechanisms of formation of inversion population. The excitation systems of a pulsed inductive cylindrical discharge (pulsed inductively coupled plasma) and pulsed RF inductive discharge in the gases are developed. Various gas mixtures including H2, N2, He, Ne, F2, NF3, and SF6 are used. Characteristics of near IR H2 laser radiation are investigated. Maximal pulse peak power of 7 kW is achieved. The possibility of using a pulsed inductive discharge as a new method of pumping HF laser active medium is demonstrated. The pulsed RF inductive CO2 laser is created and a total efficiency of 17% is achieved.

  19. The handedness of historiated spiral columns.

    PubMed

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  20. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  1. Pulse shaper assisted short laser pulse characterization

    NASA Astrophysics Data System (ADS)

    Galler, A.; Feurer, T.

    2008-03-01

    We demonstrate that a pulse shaper is able to simultaneously act as an optical waveform generator and a short pulse characterization device when combined with an appropriate nonlinear element. We present autocorrelation measurements and their frequency resolved counterparts. We show that control over the carrier envelope phase allows continuous tuning between an intensity-like and an interferometric autocorrelation. By changing the transfer function other measurement techniques, for example STRUT, are easily realized without any modification of the optical setup.

  2. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    SciTech Connect

    Busigin, A.

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  3. [Evaluation of capillary chromatographic columns packed by electrokinetic packing method].

    PubMed

    Li, Z; You, H; Hu, S; Wei, W; Luo, G

    1997-01-01

    In this paper, a method for electrokinetic packing capillary columns is reported. A higher column effeciency was obtained by performing electrochromatography on electrokinetic packing columns. The highest column efficiency in number of theoretical plate per meter was more than 200000, corresponding to reduced plate height less than 2. The reproducibilities of the same column in different intervals and different columns prepared from the same or different batches were compared. The relative standard deviations of the number of theoretical plate and retention time were less than 10% and 8%, respectively. The results indicated that high column efficiency and good reproducibility can be obtained on these new capillary packed columns.

  4. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  5. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-10-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}˜ 10^{2{-}3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  6. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  7. PULSE HEIGHT ANALYZER

    DOEpatents

    Goldsworthy, W.W.

    1958-06-01

    A differential pulse-height discriminator circuit is described which is readily adaptable for operation in a single-channel pulse-height analyzer. The novel aspect of the circuit lies in the specific arrangement of differential pulse-height discriminator which includes two pulse-height discriminators having a comnnon input and an anticoincidence circuit having two interconnected vacuum tubes with a common cathode resistor. Pulses from the output of one discriminator circuit are delayed and coupled to the grid of one of the anticoincidence tubes by a resistor. The output pulses from the other discriminator circuit are coupled through a cathode follower circuit, which has a cathode resistor of such value as to provide a long time constant with the interelectrode capacitance of the tube, to lenthen the output pulses. The pulses are then fed to the grid of the other anticoincidence tube. With such connections of the circuits, only when the incoming pulse has a pesk value between the operating levels of the two discriminators does an output pulse occur from the anticoincidence circuit.

  8. PULSE RATE DIVIDER

    DOEpatents

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  9. Variation of the pulse profile of Hercules X-1

    NASA Technical Reports Server (NTRS)

    Ohashi, T.; Inoue, H.; Kawai, N.; Koyama, K.; Matsuoka, M.; Mitani, K.; Tanaka, Y.; Nagase, F.; Nakagawa, M.; Kondo, Y.

    1984-01-01

    The X-ray pulsar Her X-1 was observed in an on-state during its 35th cycle of activity in May, 1983 using the gas scintillation proportional counter (GSPC) array of the Tenma X-ray astronomy satellite. The outstanding features observed during the declining phase of the on-state included: a sharp decrease in the main X-ray pulse amplitude; and a steady increase in the column density of cool matter. On the basis of the spectral shape of the pulses, it is suggested that the main phase was attenuated due to electron scattering of the X-ray beam in a highly ionized medium located 3 x 10 to the 8th cm from the neutron star. Near the end of the on-state, the main pulse totally disappeared and a plain sinusoidal profile was observed. The observed pulse profiles are reproduced in graphic form.

  10. [Preparation and evaluation of silica xerogel monolithic column].

    PubMed

    Yan, Fengchuan; Chen, Bo

    2011-05-01

    Using potassium silicate as silicon source, formamide as catalyst, a series of silica xerogel monolithic columns with different consistencies were prepared. The column bed would not rupture and collapse during drying at high temperatures. This is the biggest advantage compared with the inorganic monolithic columns using alkoxy silane as precursor. The effect of the modulus of potassium silicate on the physical structure of the monolithic column was investigated. The monolithic silica columns were characterized by scanning electron micrograph (SEM) and nitrogen adsorption. The relationship between column pressure and flow rate was evaluated. The column efficiency for anthracene was tested. The breakthrough curve for toluene was studied. The results showed that the column bed could maintain good stability at high temperatures, high column pressures, and high flow rates. The column efficiency of 41,400 plates/m was achieved for anthracene. The column capacity for toluene was 61 ng.

  11. Recent advances in column switching sample preparation in bioanalysis.

    PubMed

    Kataoka, Hiroyuki; Saito, Keita

    2012-04-01

    Column switching techniques, using two or more stationary phase columns, are useful for trace enrichment and online automated sample preparation. Target fractions from the first column are transferred online to a second column with different properties for further separation. Column switching techniques can be used to determine the analytes in a complex matrix by direct sample injection or by simple sample treatment. Online column switching sample preparation is usually performed in combination with HPLC or capillary electrophoresis. SPE or turbulent flow chromatography using a cartridge column and in-tube solid-phase microextraction using a capillary column have been developed for convenient column switching sample preparation. Furthermore, various micro-/nano-sample preparation devices using new polymer-coating materials have been developed to improve extraction efficiency. This review describes current developments and future trends in novel column switching sample preparation in bioanalysis, focusing on innovative column switching techniques using new extraction devices and materials.

  12. Effects of pulse frequency on the microstructure, composition and optical properties of pulsed dc reactively sputtered vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Wu, Zhiming; Jiang, Yadong; Xu, Xiangdong; Yu, He; Gu, Deen; Wang, Tao

    2014-09-01

    Vanadium oxide (VOx) thin films were prepared on unheated glass substrate by pulsed dc reactive magnetron sputtering using different pulse frequency. Field emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry (SE) measurements were made on the deposited VOx films to characterize the microstructure, composition and optical properties, respectively. It was found that under the same discharge power and argon-oxygen atmosphere, with the increase of pulse frequency, the vertical column-like structure in the films will gradually disappear and the ratio of high-valent VOx to low-valent VOx will obviously elevate. Optical parameters of the VOx films have been obtained by fitting the ellipsometric data (Ψ andΔ) using the Tauc-Lorentz dispersion relation and a multilayer model (air/roughness layer/VOx/glass). The results demonstrated that pulse frequency plays a critical role in determining the transmittance, refractive index, extinction coefficient and optical band gap etc. The correlations between the microstructure, composition, optical properties and pulse frequency are also given by our experiment results. And the mechanisms for the evolution of the microstructure, composition and optical properties with pulse frequency have been discussed. Overall, due to the pulse frequency had a great effect not only on the growth characteristics but also on the optical properties of the VOx films, thus through variation of the pulse frequency during deposition which provide a convenient and efficient approach to control and optimize the performances of the VOx films.

  13. PULSE AMPLITUDE ANALYSERS

    DOEpatents

    Lewis, I.A.D.

    1956-05-15

    This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.

  14. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  15. Modeling of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar

    2014-12-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.

  16. Characterizing gaseous flow in submicron chromatography columns.

    SciTech Connect

    Wong, Chung-Nin Channy

    2003-05-01

    Enormous interest exists to develop the next generation of an integrated microsystem for chemical and biological analysis ({mu}ChemLab{trademark}) and to further reduce the volume of the system. One approach is to scale down the size of critical components and to explore any pumping mechanism that can minimize the power requirement. Since the majority of the pumping requirement is to overcome the wall resistance in the gas chromatography (GC) column, our attention is to study the gas flow in this GC column. As the column dimension decreases, the gaseous flow will go from a continuum regime into a non-continuum regime; i.e., slip, transition, and free molecular regimes. Thus it is very important to well characterize the gaseous flow in submicron columns and to understand its flow behavior. Specifically, in this study, our focus is to investigate the effects of viscosity, rarefaction, and compressibility as the column dimension decreases. Both theoretical predictions and experimental results will be presented.

  17. Vertebral Column Resection for Rigid Spinal Deformity

    PubMed Central

    Laratta, Joseph L.; Petridis, Petros; Shillingford, Jamal N.; Lehman, Ronald A.; Lenke, Lawrence G.

    2017-01-01

    Study Design: Broad narrative review. Objective: To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. Methods: A literature review of posterior vertebral column resection was performed. The authors’ surgical technique is outlined in detail. The authors’ experience and the literature regarding vertebral column resection are discussed at length. Results: Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50–70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. Conclusion: The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands. PMID:28660112

  18. Vertebral Column Resection for Rigid Spinal Deformity.

    PubMed

    Saifi, Comron; Laratta, Joseph L; Petridis, Petros; Shillingford, Jamal N; Lehman, Ronald A; Lenke, Lawrence G

    2017-05-01

    Broad narrative review. To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. A literature review of posterior vertebral column resection was performed. The authors' surgical technique is outlined in detail. The authors' experience and the literature regarding vertebral column resection are discussed at length. Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50-70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands.

  19. PULSED INDICATOR CIRCUIT

    DOEpatents

    Linlor, W.I.; Kerns, Q.A.

    1960-11-15

    A system is given for detecting incremental changes in a transducer impedance terminating a transmission line. Principal novelty resides in the transducer impedance terminating the line in a mismatch and a pulse generator being provided to apply discrete pulses to the input end of the line. The amplitudes of the pulses reflected to the input end of the line from the mismatched transducer impedance are then observed as a very accurate measure of the instantaneous value of the latter.

  20. PulseSoar

    SciTech Connect

    Carter, P.; Peglow, S.

    1992-07-21

    This paper is an introduction to the PulseSoar concept. PulseSoar is a hypervelocity airplane that uses existing airport facilities and current technologies to fly at the very edge of space. It will be shown that PulseSoar can fly between any two points on the globe in less than two hours with fuel efficiency exceeding current state of the art commercial airliners. In addition, it will be shown that PulseSoar avoids environmental issues concerning the ozone layer and sonic booms because of its unique flight profile. All of this can be achieved with current technology. PulseSoar does not require the development of enabling technology. It is a concept which can be demonstrated today. The importance of this idea goes beyond the technical significance`s of PulseSoar in terms of feasibility and performance. PulseSoar could provide a crucial economic advantage to America`s largest export market: commercial aircraft. PulseSoar is a breakthrough concept for addressing the emerging markets of long range and high speed aircraft. Application of PulseSoar to commercial transport could provide the US Aerospace industry a substantial lead in offering high speed/long range aircraft to the world`s airlines. The rapid emergence of a US developed high speed aircraft could also be important to our competitiveness in the Pacific Rim and South American economies. A quick and inexpensive demonstration vehicle is proposed to bang the concept to reality within two years. This discussion will address all the major technical subjects encompassed by PulseSoar and identifies several near-term, and low risk, applications which may be further explored with the initial demonstration vehicle. What is PulseSoar? PulseSoar could enable high speed, high altitude and long range flight without many of the difficulties encountered by traditional hypersonic vehicles.

  1. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  2. Femtosecond optical pulse amplification

    NASA Astrophysics Data System (ADS)

    Knox, Wayne H.

    1988-02-01

    A number of techniques have been developed for amplification of optical pulses of approximately 100-fs duration. These amplifiers span a wide range of operating parameters from kilowatt to gigawatt peak powers and from 10 Hz to megahertz repetition rates. Amplification of femtosecond pulses has also been demonstrated at several wavelengths including visible, near-infrared, and ultraviolet regions. Several problems arise when amplifying short optical pulses to very high intensities. The problems are discussed and the state of the art of femtosecond optical pulse amplification is reviewed.

  3. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  4. PULSE SCALING SYSTEM

    DOEpatents

    Kandiah, K.

    1954-06-01

    Pulse scaling systems embodying multi-electrode gaseous-discharge tubes of the type having a plurality of stable discharge paths are described. The novelty of this particular system lies in the simplification of the stepping arrangement between successive tubes. In one form the invention provides a multistage scaler comprising a pulse generator, a first multi-electrode scaling tube of the type set forth coupled to said generator to receive transfer pulses therefrom and one or more succeeding multi-electrode scaling tubes each deriving its transfer pulses from preceding scaling tubes.

  5. Comparison of the kinetic performance of different columns for fast liquid chromatography, emphasizing the contributions of column end structure.

    PubMed

    Lambert, Nándor; Miyazaki, Shota; Ohira, Masayoshi; Tanaka, Nobuo; Felinger, Attila

    2016-11-18

    The kinetic performance of five chromatographic columns designed for fast liquid chromatography with different column packing materials - including fully porous (2.0 and 1.9μm particles), core-shell (2.6μm particles) or monolithic packings - with identical column dimensions (2.1×50mm) was tested. Since the tested monolithic column showed systematically better efficiency for early eluting compounds than the packed columns, an additional band broadening effect was suspected for the packed columns. The effects of the presence of the frits and the bed heterogeneity of the columns near the frits were characterized by a column-reversal method. It has been shown that significant differences - even 20-25% difference in efficiency - can exist between the two ends of the packed columns, while the monolithic column shows rather similar performance at either column end.

  6. Neutron camera employing row and column summations

    SciTech Connect

    Clonts, Lloyd G.; Diawara, Yacouba; Donahue, Jr, Cornelius; Montcalm, Christopher A.; Riedel, Richard A.; Visscher, Theodore

    2016-06-14

    For each photomultiplier tube in an Anger camera, an R.times.S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P.times.Q array of photomultiplier tubes, P.times.Q summation circuitries generate P.times.Q row histograms including R entries and P.times.Q column histograms including S entries. The total set of histograms include P.times.Q.times.(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).

  7. Methylmercury production in the marine water column

    NASA Astrophysics Data System (ADS)

    Topping, G.; Davies, I. M.

    1981-03-01

    Although the biosynthesis of methylmercury in sediments is well established1, this is not necessarily the exclusive natural source of methylmercury entering the marine food chain, particularly commercial fish and shellfish species for human consumption. An examination of mercury levels in freshwater fish2, collected from a lake with a history of industrial mercury contamination, suggested that levels in fish are controlled in part by mercury in suspension and it followed that methylation should occur in the water column. Although methylmercury is present in seawater in coastal areas receiving discharges of waste containing either inorganic mercury3 or methylmercury4 there is no evidence that methylmercury is actually formed in the water column. We now present data which demonstrate that inorganic mercury can be methylated in the water column and we compare this production with that known to occur in marine sediments.

  8. Cadmium removal in a biosorption column

    SciTech Connect

    Volesky, B.; Prasetyo, I. . Dept. of Chemical Engineering)

    1994-05-01

    New biosorbent material derived from a ubiquitous brown marine alga Ascophyllum nodosum has been examined in packed-bed flow-through sorption columns. It effectively removed 10 mg/L of cadmium down to 1.5 ppb levels in the effluent, representing 99.985% removal. The experimental methodology used was based on the early Bohart and Adams sorption model, resulting in quantitative determination of the characteristic process parameters which can be used for performance comparison and process design. An average metal loading of the biosorbent (N[sub 0]) determined was 30 mg Cd/g, corresponding closely to that observed for the batch equilibrium metal concentration of 10 mg Cd/L. The critical bed depth (D[sub min]) for the potable water effluent quality standard varied with the column feed flow rate from 20 to 50 cm. The sorption column mass transfer and dispersion coefficients were determined, which are also required for solving the sorption model equations.

  9. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  10. CUB DI (Deionization) column control system

    SciTech Connect

    K. C. Seino

    1999-07-02

    For the old MR (Main Ring), deionization was done with two columns in CUB, using an ion exchange process. Typically 65 GPM of LCW flew through a column, and the resistivity was raised from 3 Mohm-cm to over 12 Mohm-cm. After a few weeks, columns lost their effectiveness and had to be regenerated in a process involving backwashing and adding hydrochloric acid and sodium hydroxide. For normal MR operations, LCW returned from the ring and passed through the two columns in parallel for deionization, although the system could have been operated satisfactorily with only one in use. A 3000 gallon reservoir (the Spheres) provided a reserve of LCW for allowing water leaks and expansions in the MR. During the MI (Main Injector) construction period, the third DI column was added to satisfy requirements for the MI. When the third column was added, the old regeneration controller was replaced with a new controller based on an Allen-Bradley PLC (i.e., SLC-5/04). The PLC is widely used and well documented, and therefore it may allow us to modify the regeneration programs in the future. In addition to the above regeneration controller, the old control panels (which were used to manipulate pumps and valves to supply LCW in Normal mode and to do Int. Recir. (Internal Recirculation) and Makeup) were replaced with a new control system based on Sixtrak Gateway and I/O modules. For simplicity, the new regeneration controller is called as the US Filter system, and the new control system is called as the Fermilab system in this writing.

  11. Final Report, Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2003-05-31

    The Flooding Predictor is an advanced process control strategy comprising a patented pattern-recognition methodology that identifies pre-flood patterns discovered to precede flooding events in distillation columns. The grantee holds a U.S. patent on the modeling system. The technology was validated at the Separations Research Program, The University of Texas at Austin under a grant from the U. S. Department of Energy, Inventions & Innovation Program. Distillation tower flooding occurs at abnormally high vapor and/or liquid rates. The loss in tray efficiencies is attributed to unusual behavior of liquid inventories inside the column leading to conditions of flooding of the space in between trays with liquid. Depending on the severity of the flood condition, consequences range from off spec products to equipment damage and tower shutdown. This non-intrusive pattern recognition methodology, processes signal data obtained from existing column instrumentation. Once the pattern is identified empirically, it is modeled and coded into the plant's distributed control system. The control system is programmed to briefly "unload" the tower each time the pattern appears. The unloading takes the form of a momentary reduction in column severity, e.g., decrease bottom temperature, reflux or tower throughput. Unloading the tower briefly at the pre-flood state causes long-term column operation to become significantly more stable - allowing an increase in throughput and/or product purity. The technology provides a wide range of value between optimization and flooding. When a distillation column is not running at capacity, it should be run in such a way ("pushed") that optimal product purity is achieved. Additional benefits include low implementation and maintenance costs, and a high level of console operator acceptance. The previous commercial applications experienced 98% uptime over a four-year period. Further, the technology is unique in its ability to distinguish between different

  12. Desulfurization of coal by microbial column flotation.

    PubMed

    Ohmura, N; Saiki, H

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.

  13. Retention Models on Core-Shell Columns.

    PubMed

    Jandera, Pavel; Hájek, Tomáš; Růžičková, Marie

    2017-07-13

    A thin, active shell layer on core-shell columns provides high efficiency in HPLC at moderately high pressures. We revisited three models of mobile phase effects on retention for core-shell columns in mixed aqueous-organic mobile phases: linear solvent strength and Snyder-Soczewiński two-parameter models and a three-parameter model. For some compounds, two-parameter models show minor deviations from linearity due to neglect of possible minor retention in pure weak solvent, which is compensated for in the three-parameter model, which does not explicitly assume either the adsorption or the partition retention mechanism in normal- or reversed-phase systems. The model retention equation can be formulated as a function of solute retention factors of nonionic compounds in pure organic solvent and in pure water (or aqueous buffer) and of the volume fraction of an either aqueous or organic solvent component in a two-component mobile phase. With core-shell columns, the impervious solid core does not participate in the retention process. Hence, the thermodynamic retention factors, defined as the ratio of the mass of the analyte mass contained in the stationary phase to its mass in the mobile phase in the column, should not include the particle core volume. The values of the thermodynamic factors are lower than the retention factors determined using a convention including the inert core in the stationary phase. However, both conventions produce correct results if consistently used to predict the effects of changing mobile phase composition on retention. We compared three types of core-shell columns with C18-, phenyl-hexyl-, and biphenyl-bonded phases. The core-shell columns with phenyl-hexyl- and biphenyl-bonded ligands provided lower errors in two-parameter model predictions for alkylbenzenes, phenolic acids, and flavonoid compounds in comparison with C18-bonded ligands.

  14. Laboratory studies of water column separation

    NASA Astrophysics Data System (ADS)

    Autrique, R.; Rodal, E.

    2013-12-01

    Results of experimental studies of water column separation following an upstream valve closure are presented. Different geometrical arrangements with transparent PVC pipes are installed immediately downstream of the closing valve, namely, horizontal pipes, vertical pipes flowing down, and humpback profile pipes, the last two being used in order to obtain full pipe section vapor cavities. Maximum over pressures at water column rejoining, and maximum cavity lengths and duration, are compared with theoretical values and with previous experiments with horizontal pipes. Good agreement is found between theory and experiments, and interesting visual material is obtained.

  15. Complex osteotomies vertebral column resection and decancellation.

    PubMed

    Obeid, Ibrahim; Bourghli, Anouar; Boissière, Louis; Vital, Jean-Marc; Barrey, Cédric

    2014-07-01

    Pedicle subtraction osteotomy (PSO) is nowadays widely used to treat sagittal imbalance. Some complex malalignment cases cannot be treated by a PSO, whereas the imbalance is coronal or mixed or the sagittal imbalance is major and cannot be treated by a single PSO. The aim of this article was to review these complex situations--coronal imbalance, mixed imbalance, two-level PSO, vertebral column resection, and vertebral column decancellation, and to focus on their specificities. It wills also to evoke the utility of navigation in these complex cases.

  16. Physical model studies of water column separation

    NASA Astrophysics Data System (ADS)

    Autrique, R.; Rodal, E.; Sánchez, A.; Carmona, L.

    2012-11-01

    Results of physical model studies of water column separation following an upstream valve closure in a horizontal pipe are presented, using three dimensionless parameters: the magnitude of the transient, M, or the ratio between the Joukowsky pressure and the initial absolute head; ΔHr, or the ratio between the maximum overpressure and the Joukowsky pressure, and tcr, the duration of the vapor cavity relative to the pipeline period. Conclusions are derived, aiming to a better understanding of water column separation extreme pressures and to the establishment of useful preliminary design guidelines.

  17. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  18. Opportunities in pulse combustion

    SciTech Connect

    Brenchley, D.L.; Bomelburg, H.J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  19. PULSE HEIGHT ANALYZER

    DOEpatents

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  20. Extrusion cooking: Legume pulses

    USDA-ARS?s Scientific Manuscript database

    Extrusion is used commercially to produce high value breakfast and snack foods based on cereals such as wheat or corn. However, this processing method is not being commercially used for legume pulses seeds due to the perception that they do not expand well in extrusion. Extrusion cooking of pulses (...

  1. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  2. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  3. The industrial practice and development of flotation column in China

    SciTech Connect

    Liu Jiongtian; Zhang Shuangquan

    1997-12-31

    This paper reviewed the developing course of the flotation column since the 1960`s in China. Based on the practical data from several coal preparation plants, two types of flotation columns (the pressure aerated column and the jetting-cyclone column) were compared by their operation, performance and the reasons why they succeeded in the coal industry in China. The paper points out that the flotation column has come into commercial use and has good application prospects in China.

  4. Pulsed hall thruster system

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir J. (Inventor); Pote, Bruce M. (Inventor); Gamero-Castano, Manuel (Inventor)

    2004-01-01

    A pulsed Hall thruster system includes a Hall thruster having an electron source, a magnetic circuit, and a discharge chamber; a power processing unit for firing the Hall thruster to generate a discharge; a propellant storage and delivery system for providing propellant to the discharge chamber and a control unit for defining a pulse duration .tau.<0.1d.sup.3.rho./m, where d is the characteristic size of the thruster, .rho. is the propellant density at standard conditions, and m is the propellant mass flow rate for operating either the power processing unit to provide to the Hall thruster a power pulse of a pre-selected duration, .tau., or operating the propellant storage and delivery system to provide a propellant flow pulse of duration, .tau., or providing both as pulses, synchronized to arrive coincidentally at the discharge chamber to enable the Hall thruster to produce a discreet output impulse.

  5. Short pulse test set

    NASA Astrophysics Data System (ADS)

    1990-11-01

    This report discusses the construction and operation of the Short Pulse Test Set that has been built for the U.S. Army Missile Command for the purpose of applying short (25 to 100 nanosecond), high voltage pulses to electronic explosive devices (EEDs) in both the pin-to-pin and pins-to-case mode. The test set employs the short pulse generating techniques first described in the Franklin Institute Research Laboratories (now Franklin Research Center) Report I-C3410, 'Pins-to-Case Short Pulse Sensitivity Studies for the Atlas DC Switch', December 1974. This report, authored by Ramie H. Thompson, was prepared for Picatinny Arsenal under contract DAAA21-72C-0766. The test set described herein utilizes a computer controlled high speed digitizer to monitor the pulse voltage and current and provides software to process and display these data.

  6. ELECTRIC PULSE GENERATOR

    DOEpatents

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  7. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  8. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    PubMed

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  9. Column selectivity in reversed-phase liquid chromatography. VI. Columns with embedded or end-capping polar groups.

    PubMed

    Wilson, N S; Gilroy, J; Dolan, J W; Snyder, L R

    2004-02-13

    A previous model of column selectivity for reversed-phase liquid chromatography (RP-LC) has been applied to an additional 21 columns with embedded or end-capping polar groups (EPGs). Embedded-polar-group columns exhibit a significantly different selectivity vs. non-EPG, type-B columns, generally showing preferential retention of hydrogen-bond donors, as well as decreased retention for hydrogen-bond acceptors or ionized bases. EPG-columns are also generally less hydrophobic (more polar) than are non-EPG-columns. Interestingly, columns with polar end-capping tend to more closely resemble non-EPG columns, suggesting that the polar group has less effect on column selectivity when used to end-cap the column versus the case of an embedded polar group. Column selectivity data reported here for EPG-columns can be combined with previously reported values for non-EPG columns to provide a database of 154 different columns. This enables a comparison of any two of these columns in terms of selectivity. However, comparisons that involve EPG columns are more approximate.

  10. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  11. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  12. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  13. Developing the Pulsed Fission-Fusion (PuFF) Engine

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Cassibry, Jason; Bradley, David; Fabisinski, Leo; Statham, Geoffrey

    2014-01-01

    In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.

  14. Localized wave pulse experiments

    SciTech Connect

    Chambers, D L; Henderson, T L; Krueger, K L; Lewis, D K; Zilkowski, R N

    1999-06-01

    The Localized Wave project of the Strategic System Support Program has recently finished an experiment in cooperation with the Advanced SONAR group of the Applied Research Laboratory of the University of Texas at Austin. The purpose of the experiment was three-fold. They wanted to see if (1) the LW pulse could propagate over significant distances, to see if (2) a new type of array and drive system specifically designed for the pulse would increase efficiency over single frequency tone bursts, and to see if (3) the complexity of our 24 channel drivers resulted in better efficiency than a single equivalent pulse driving a piston. In the experiment, several LW pulses were launched from the Lake Travis facility and propagated over distances of either 100 feet or 600 feet, through a thermocline for the 600 foot measurements. The results show conclusively that the Localized Wave will propagate past the near field distance. The LW pulses resulted in extremely broad frequency band width pulses with narrow spatial beam patterns and unmeasurable side lobes. Their array gain was better than most tone bursts and further, were better than their equivalent piston pulses. This marks the first test of several Low Diffraction beams against their equivalent piston pulses, as well as the first propagation of LW pulses over appreciable distances. The LW pulse is now proven a useful tool in open water, rather than a laboratory curiosity. The experimental system and array were built by ARL, and the experiments were conducted by ARL staff on their standard test range. The 600 feet measurements were made at the farthest extent of that range.

  15. Pilot scale benzene stripping column testing: Review of test data and application to the ITP columns

    SciTech Connect

    Georgeton, G.K.; Gaughan, T.P.; Taylor, G.A.

    1993-09-10

    Radioactive cesium will be removed from aqueous high level waste (HLW) solutions by precipitation with sodium tetraphenyl borate (TPB) in the In-Tank Precipitation (ITP) process. Benzene is generated due to the radiolysis of TPB, and dissolves into the decontaminated salt solution (DSS) and into the water used to wash (WW) the precipitate. These solutions will be processed through stripping columns to reduce the benzene concentration to satisfy limits for disposal of the DSS and for temporary storage of the WW. A pilot scale testing program to evaluate the stripping column operation in support of ITP startup activities has been completed. Equipment and test plans were developed so that data obtained from the pilot scale testing would be directly applicable to full scale column operation and could be used to project hydraulic performance and stripping efficiency of both columns. A review of the test data indicate that the ITP stripping columns will be capable of reducing benzene concentrations in salt solutions to satisfy Saltstone and Tank 22 acceptance limits. An antifoam (AF) will be required to maintain the column differential pressure below the vendor recommendation of 40 inches wc so that design feed rates can be achieved. Additionally, the testing program indicated that the nitrogen rate can be decreased from the ITP column design rates and still satisfy benzene concentration requirements in the product.

  16. Constrained optimal design of columns against buckling.

    NASA Technical Reports Server (NTRS)

    Frauenthal, J. C.

    1972-01-01

    The buckling loads of straight, simply supported columns, loaded by axial thrust are maximized, subject to the restriction that the available volume of structural material is specified. In addition, a constraint is placed upon the maximum allowable prebuckling stress. Analytic solutions are presented for a variety of different cross-sectional geometries.

  17. WATER COLUMN DATA AND SPECTRAL IRRADIANCE MODEL

    EPA Science Inventory

    Water samples collected monthly, for 18 months, from six sites in the Laguna Madre were analyzed to identify and quantify phytopigments using High Performance Liquid Chromatography (HPLC). In addition, water column pigment and nutrient data were acquired at 12 stations in Upper ...

  18. Contexts for Column Addition and Subtraction

    ERIC Educational Resources Information Center

    Lopez Fernandez, Jorge M.; Velazquez Estrella, Aileen

    2011-01-01

    In this article, the authors discuss their approach to column addition and subtraction algorithms. Adapting an original idea of Paul Cobb and Erna Yackel's from "A Contextual Investigation of Three-Digit Addition and Subtraction" related to packing and unpacking candy in a candy factory, the authors provided an analogous context by…

  19. Density Gradient Columns for Chemical Displays.

    ERIC Educational Resources Information Center

    Guenther, William B.

    1986-01-01

    Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)

  20. Column densities of interstellar molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Spitzer, L., Jr.; Cochran, W. D.; Hirshfeld, A.

    1974-01-01

    Equivalent widths of some 50 lines in the 0-0 to 5-0 Lyman bands of H2 are reported in the spectra of 28 stars. Curves of growth are given and column densities for levels from J = 0 to J = 5 are tabulated, with a few values and upper limits for N(6) and N(7), together with values for b, the velocity spread parameter. In three Orion stars and in rho Leo pairs of components are detected, the difference in radial velocity is determined, and column densities are measured or estimated; tentative identifications are made with the components observed by Hobbs (1969) in the Na D-lines. Column densities for HD are given for 13 stars. Upper limits for column densities in the first and second vibrational levels are listed for several stars; the ratio of N(J = 0) in the v double prime = 1 level to that in the ground vibrational level is less than 2.4 x 10 to the minus 8th power in zeta Oph. Values of a rotational excitation temperature for the higher J levels are given for all the stars. Data are presented which show an apparent increase of velocity dispersion with J for a number of stars, as measured both from the curves of growth and from line widths.

  1. WATER COLUMN DATA AND SPECTRAL IRRADIANCE MODEL

    EPA Science Inventory

    Water samples collected monthly, for 18 months, from six sites in the Laguna Madre were analyzed to identify and quantify phytopigments using High Performance Liquid Chromatography (HPLC). In addition, water column pigment and nutrient data were acquired at 12 stations in Upper ...

  2. Contexts for Column Addition and Subtraction

    ERIC Educational Resources Information Center

    Lopez Fernandez, Jorge M.; Velazquez Estrella, Aileen

    2011-01-01

    In this article, the authors discuss their approach to column addition and subtraction algorithms. Adapting an original idea of Paul Cobb and Erna Yackel's from "A Contextual Investigation of Three-Digit Addition and Subtraction" related to packing and unpacking candy in a candy factory, the authors provided an analogous context by…

  3. Water Column Variability in Coastal Regions

    DTIC Science & Technology

    2016-06-07

    amount of sunlight available. Phytoplankton blooms in the Bay occur almost always during quarter phases of the moon , and not during the new moon ...of sunshine and cloud cover in both RI and Hong Kong. Water column stratification varies with the phase of the moon due to differences in neap and

  4. On Row Rank Equal Column Rank

    ERIC Educational Resources Information Center

    Khalili, Parviz

    2009-01-01

    We will prove a well-known theorem in Linear Algebra, that is, for any "m x n" matrix the dimension of row space and column space are the same. The proof is based on the subject of "elementary matrices" and "reduced row-echelon" form of a matrix.

  5. Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J.E.

    1999-06-16

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades.

  6. On Row Rank Equal Column Rank

    ERIC Educational Resources Information Center

    Khalili, Parviz

    2009-01-01

    We will prove a well-known theorem in Linear Algebra, that is, for any "m x n" matrix the dimension of row space and column space are the same. The proof is based on the subject of "elementary matrices" and "reduced row-echelon" form of a matrix.

  7. Inklings: Collected Columns on Leadership and Creativity.

    ERIC Educational Resources Information Center

    Campbell, David P.

    This book brings together 35 of David P. Campbell's essays originally published as a regular column in a quarterly publication called "Issues and Observations." The articles deal with topics ranging from leadership issues such as risk-taking, executive motivation, decision making, and corporate taboos, to more general concerns such as…

  8. Desulfurization of coal by microbial column flotation

    SciTech Connect

    Ohmura, Naoya; Saiki, Hiroshi . Dept. of Biotechnology)

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics. Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 [mu]L/L kerosene) with the reduction of pyrite sulfur content from11% (feed coal) to 3.9% (product coal). An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7.

  9. "Dry-column" chromatography of plant pigments

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Lehwalt, M. F.; Oyama, V. I.

    1973-01-01

    Separation of plant pigments which can be accomplished on thin-layer silica plates with mixture of petroleum ether, halocarbon, acetone, and polar solvent can be readily translated into dry-column technique that yields reproducible chromatograms after elution in fashion of liquid chromatography with fluorimeter as detector. Best solvent system was found to be mixture of petroleum ether, dichloromethane, acetone, and ethyl acetate.

  10. A method for determining the column curve from tests of columns with equal restraints against rotation on the ends

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Rossman, Carl A; Houbolt, John C

    1943-01-01

    The results are presented of a theoretical study for the determination of the column curve from tests of column specimens having ends equally restrained against rotation. The theory of this problem is studied and a curve is shown relating the fixity coefficient c to the critical load, the length of the column, and the magnitude of the elastic restraint. A method of using this curve for the determination of the column curve for columns with pin ends from tests of columns with elastically restrained ends is presented. The results of the method as applied to a series of tests on thin-strip columns of stainless steel are also given.

  11. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  12. Analysis of microwave leaky modes propagating through laser plasma filaments column waveguide

    SciTech Connect

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2012-12-15

    A plasma column waveguide formed by a bundle of closely spaced plasma filaments induced by the propagation of ultrafast laser pulses in air and revived by a longer infrared laser pulse is shown to support microwave radiation. We consider values of both the plasma electron density and microwave frequency for which the refractive index of plasma is lower than the refractive index of air; therefore, a leaky plasma waveguide can be realized in extremely high frequency band. The guiding mechanism does not require high conductance of the plasma and can be easily excited by using commercial femtosecond laser sources. A theoretical study of leaky mode characteristics of isotropic and homogeneous plasma column waveguides is investigated with several values of plasma and waveguide structure parameters. The microwave transmission loss was found to be mainly caused by the microwave leakage through the air-plasma interface and is weakly dependent on the plasma absorption. In spite of losses of microwaves caused by leakage and plasma absorption, it is shown to be much lower than both that accompanying to surface waves attaching to single conducting plasma wire and the free space propagation over distances in the order of the filament length, which opens exciting perspectives for short distance point to point wireless transmission of pulsed-modulated microwaves.

  13. Electromagnetic wave radiation by an electron beam spiraling in a magnetized plasma column

    SciTech Connect

    Zaboronkova, T. M.; Krafft, C.

    2007-06-15

    The paper studies the electromagnetic wave radiation by a density modulated and thin electron beam of finite length injected obliquely with respect to the constant external magnetic field into a cylindrical plasma column embedded in a homogeneous medium (plasma, dielectric, or free space) and aligned along the magnetic field lines. The time-averaged power radiated at the modulation frequency is determined as a function of the beam, the plasma column, and the medium parameters. Particular attention is devoted to the case when the beam modulation frequency belongs to the whistler frequency band. The paper shows what significant differences exist between the physical features of the emissions when the beam radiates in a plasma column embedded in a homogeneous medium or in a uniform and unbounded magnetized plasma. Based on the results of numerical calculations, the time-averaged power radiated by pulsed and modulated beams has been estimated for typical laboratory plasma experiments. In particular, it is shown that a beam propagating in a plasma column can efficiently enhance its wave emission due to Cherenkov and normal cyclotron excitation of guided whistler modes.

  14. RF Pulsed Heating

    SciTech Connect

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  15. SHORT PULSE STRETCHER

    DOEpatents

    Branum, D.R.; Cummins, W.F.

    1962-12-01

    >A short pulse stretching circuit capable of stretching a short puise to enable it to be displayed on a relatively slow sweeping oscilloscope is described. Moreover, the duration of the pulse is increased by charging a capacitor through a diode and thereafter discharging the capacitor at such time as is desired. In the circuit the trigger pulse alone passes through a delay line, whereas the main signal passes through the diode only, and results in over-all circuit losses which are proportional to the low losses of the diode only. (AEC)

  16. Pulsed Laser Propulsion.

    DTIC Science & Technology

    1978-10-01

    afforded by a pulsed laser propulsion system over a CW laser propulsion system are 1) simplicity in engine design as a result of permitting the laser...to engineering and weight considerations. The lower boundary of the corridor is set by propellant feed considerations. To the right of this boundary...example, a OOJ -5 per pulse laser operating at 7 x 10 sec between pulses (14, 285 pps) is capable of powering a 30 lb (135 Nt)thrust rocket engine that has

  17. Pulse joining cartridges

    DOEpatents

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2016-08-23

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  18. Dynamic pulse difference circuit

    DOEpatents

    Erickson, Gerald L.

    1978-01-01

    A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter.

  19. Whispering Gallery Pulse Compressor

    SciTech Connect

    Hirshfield, J.; Kuzikov, S.V.; Petelin, M.I.; Pavelyev, V.G.

    2004-12-07

    A barrel-like cavity resonant at a whispering gallery mode is known as capable to provide a SLED-like rf pulse compression. To enhance the power handling capacity of the compressor, we propose to use a coupler based on a wave tunneling through a continuous slot. A modeling low power 11.4 GHz experiment proved to be consistent with theory. A preliminary technical design for an evacuated high-power compressor has also been developed. According to a theory, a twin-cavity version of the device can efficiently compress microwave pulses produced with sources of limited bandwidth, in particular frequency-chirped pulses.

  20. Design procedures for fiber composite structural components: Rods, columns and beam columns

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.

  1. How to select equivalent and complimentary reversed phase liquid chromatography columns from column characterization databases.

    PubMed

    Borges, Endler M

    2014-01-07

    Three RP-LC column characterization protocols [Tanaka et al. (1989), Snyder et al. (PQRI, 2002), and NIST SRM 870 (2000)] were evaluated using both Euclidian distance and Principal Components Analysis to evaluate effectiveness at identifying equivalent columns. These databases utilize specific chromatographic properties such as hydrophobicity, hydrogen bonding, shape/steric selectivity, and ion exchange capacity of stationary phases. The chromatographic parameters of each test were shown to be uncorrelated. Despite this, the three protocols were equally successful in identifying similar and/or dissimilar stationary phases. The veracity of the results has been supported by some real life pharmaceutical separations. The use of Principal Component Analysis to identify similar/dissimilar phases appears to have some limitations in terms of loss of information. In contrast, the use of Euclidian distances is a much more convenient and reliable approach. The use of auto scaled data is favoured over the use of weighted factors as the former data transformation is less affected by the addition or removal of columns from the database. The use of these free databases and their corresponding software tools shown to be valid for identifying similar columns with equivalent chromatographic selectivity and retention as a "backup column". In addition, dissimilar columns with complimentary chromatographic selectivity can be identified for method development screening strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  3. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  4. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 - F2(NF3 or SF66) and He(Ne) - H2 - F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% - 6%.

  5. Pulse Coil Tester

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1988-01-01

    Set of relays tested easily and repeatedly. Pulse coil tester causes coil under test to generate transient voltage; waveform indicates condition of coil. Tester accommodates assembly of up to four coils at a time.

  6. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  7. Pulse measurement apparatus and method

    DOEpatents

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  8. Algae columns with anodic stripping voltammetric detection

    SciTech Connect

    Kubiak, W.W.; Wang, J.; Darnall, D.

    1989-03-01

    The use of silica-immobilized algal cells for on-line column separation in conjunction with continuous monitoring of trace metals is described. Algae-silica preparations are highly suitable for flow analysis as they couple the unique reactivity patterns and high binding capacity of algal biomass with the hydrodynamic and mechanical features of porous silica. Such advantages are illustrated by using on-line anodic stripping voltammetry and the alga Chlorella pyrenidosa. Selective and exhaustive removal of interfering constituents circumvents common problems such as overlapping peaks and intermetallic effects. Effects of flow rate, pH, operation time, and other variables are reported. The system is characterized by high durability, simplicity, and economy and offers an attractive alternative to prevalent columns used for flow analysis.

  9. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  10. Pulsed spallation neutron sources

    SciTech Connect

    Carpenter, J.M.

    1996-05-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology.

  11. Four pulse recoupling

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin; Kumar, Ashutosh

    2016-11-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called four pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ°(π/2) 180 ° + ϕ°(3π/2) 180 ° where ϕ = π/n (ϕ° = 180°/n) , and n is number of blocks in a two rotor period. The heteronuclear recoupling pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ1 °(π/2) 180 ° +ϕ1 °(3π/2) 180 ° and (π/2) 0 °(3π/2) ϕ2 °(π/2) 180 ° +ϕ2 °(3π/2) 180 ° on channel I and S, where ϕ1 = 3π/2n, ϕ2 = π2/n and n is number of blocks in a two rotor period. The recoupling pulse sequences mix the y magnetization. We show that four pulse recoupling is more broadband compared to three pulse recoupling [1]. Experimental quantification of this method is shown for 13Cα-13CO, homonuclear recoupling in a sample of Glycine and 15N-13Cα, heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF).

  12. Pulsed spallation Neutron Sources

    SciTech Connect

    Carpenter, J.M.

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  13. Pulse subtraction Doppler

    NASA Astrophysics Data System (ADS)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  14. Resonant megavolt pulse generator

    SciTech Connect

    Zheltov, K.A.; Malygin, A.V.; Petrenko, A.N.; Shalimanov, V.F.

    1987-09-01

    A compact pulse generator with a capacitive load is described that employs resonant voltage multiplication at the load. A 60-pF capacitor is charged to 1.1 MV in a pulse with a rise time of 0.25 ..mu..sec. The dimensions of the resonant generator are considerably smaller than those of known Tesla-coil voltage sources (by a factor of approx. 30 in volume).

  15. Pulse magnetic welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  16. Pulse magnetic welder

    SciTech Connect

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  17. Column flotation of coal with fluorosurfactants

    SciTech Connect

    Not Available

    1989-10-01

    Laboratory tests were carried out by the US Bureau of Mines, Salt Lake City Research Center to evaluate the potential of column flotation technology, coupled with novel fluorosurfactant collectors, for the selective flotation of fine coal from pyritic sulfur and mineral matter. The results on flotation feeds of both {minus}100 and {minus}400 mesh Middle Kittaning seam coal samples are presented. 4 refs., 23 figs., 9 tabs.

  18. Fisheries Aspects of Seamounts and Taylor Columns

    DTIC Science & Technology

    1986-09-01

    NAVAL POSTGRADUATE SCHOOL DTI I V4 D THESIS FISH ERIES ASPECT S OF SEAMOUNTS AND) TAYLOR COLUMNS by Russell E. Brainard September 1986 Thesis Co...Takahashi and Sasaki, 1977; Genin and Boehlert, 1985). In fact, many seamounts are now known to be excellent fishing grounds for both pelagic nekton, such as...Pentaceros richardsoni and alfonsin, Baryx splendeus on the southern Emperor-northern Hawaiian Ridge seamounts. Both of these rare fish are eagerly

  19. A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Tarr, C. E.; Nickerson, M. A.

    1972-01-01

    A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.

  20. [Spectral investigation of atmospheric pressure plasma column].

    PubMed

    Li, Xue-Chen; Chang, Yuan-Yuan; Xu, Long-Fei

    2012-07-01

    Atmospheric pressure plasma column has many important applications in plasma stealth for aircraft. In the present paper, a plasma column with a length of 65 cm was generated in argon at atmospheric pressure by using dielectric barrier discharge device with water electrodes in coaxial configurations. The discharge mechanism of the plasma column was studied by optical method and the result indicates that a moving layer of light emission propagates in the upstream region. The propagation velocity of the plasma bullet is about 0.6 x 10(5) m x s(-1) through optical measurement. Spectral intensity ratios as functions of the applied voltage and driving frequency were also investigated by spectroscopic method. The variation in spectral intensity ratio implies a change in the averaged electron energy. Results show that the averaged electron energy increases with the increase in the applied voltage and the driving frequency. These results have significant values for industrial applications of the atmospheric pressure discharge and have extensive application potentials in stealth for military aircraft.

  1. Modular evolution of the Cetacean vertebral column.

    PubMed

    Buchholtz, Emily A

    2007-01-01

    Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).

  2. Plant practices in fine coal column flotation

    SciTech Connect

    Davis, V.L. Jr.; Bethell, P.J.; Stanley, F.L.; Luttrell, G.H.

    1995-10-01

    Five 3 m (10 ft) diameter Microcel{trademark} flotation columns were installed at Clinchfield Coal Company`s Middle Fork preparation facility in order to reduce product ash and increase recovery and plant capacity. The Middle Fork facility is utilized for the recovery of fine coal from a feed stream that consists primarily of 1.5 mm x 0 material. The columns replaced conventional flotation cells for the treatment of the minus 150 {micro}m fraction while spirals are used to upgrade the plus 150 {micro}m material in the plant feed. The addition of the column flotation circuit resulted in an increase in plant capacity in excess of 20 percent while reducing the flotation product ash content by approximately 7 percentage points. Flotation circuit combustible recovery wa increased by 17 percentage points. This paper discusses circuit design, commissioning, and sparging system design. Circuit instrumentation, level control, reagent system control, performance comparisons with conventional flotation, and general operating procedures are also discussed.

  3. Employing anatomical knowledge in vertebral column labeling

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Summers, Ronald M.

    2009-02-01

    The spinal column constitutes the central axis of human torso and is often used by radiologists to reference the location of organs in the chest and abdomen. However, visually identifying and labeling vertebrae is not trivial and can be timeconsuming. This paper presents an approach to automatically label vertebrae based on two pieces of anatomical knowledge: one vertebra has at most two attached ribs, and ribs are attached only to thoracic vertebrae. The spinal column is first extracted by a hybrid method using the watershed algorithm, directed acyclic graph search and a four-part vertebra model. Then curved reformations in sagittal and coronal directions are computed and aggregated intensity profiles along the spinal cord are analyzed to partition the spinal column into vertebrae. After that, candidates for rib bones are detected using features such as location, orientation, shape, size and density. Then a correspondence matrix is established to match ribs and vertebrae. The last vertebra (from thoracic to lumbar) with attached ribs is identified and labeled as T12. The rest of vertebrae are labeled accordingly. The method was tested on 50 CT scans and successfully labeled 48 of them. The two failed cases were mainly due to rudimentary ribs.

  4. Comparison of monolithic silica and polymethacrylate capillary columns for LC.

    PubMed

    Moravcová, Dana; Jandera, Pavel; Urban, Jiri; Planeta, Josef

    2004-07-01

    Organic polymer monolithic capillary columns were prepared in fused-silica capillaries by radical co-polymerization of ethylene dimethacrylate and butyl methacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in the presence of various amounts of porogenic solvent mixtures and different concentration ratios of monomers and 1-propanol, 1,4-butanediol, and water. The chromatographic properties of the organic polymer monolithic columns were compared with those of commercial silica-based particulate and monolithic capillary and analytical HPLC columns. The tests included the determination of H-u curves, column permeabilities, pore distribution by inversed-SEC measurements, methylene and polar selectivities, and polar interactions with naphthalenesulphonic acid test samples. Organic polymer monolithic capillary columns show similar retention behaviour to chemically bonded alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have lower methylene selectivities and do not show polar interactions with sulphonic acids. The commercial capillary and analytical silica gel-based monolithic columns showed similar selectivities and provided symmetrical peaks, indicating no significant surface heterogeneities. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra-column contributions. With 0.3 mm ID capillary columns, corrections for extra-column volume contributions are sufficient, but to obtain true information on the efficiency of 0.1 mm ID capillary columns, the experimental bandwidths should be corrected for extra-column contributions to peak broadening.

  5. In-process inventory estimation for pulsed columns and mixer-settlers

    SciTech Connect

    Cobb, D.D.; Burkhart, L.E.; Beyerlein, A.L.

    1980-01-01

    Nuclear materials accounting and control in fuels reprocessing plants can be improved by near-real-time estimation of the nuclear materials inventory in solvent-extraction contactors. Techniques are being developed for the estimation of the in-process inventory in contactors. These techniques are derived from recent developments in chemical modeling of contactor systems, on-line measurements for materials accounting and control of the Purex process, and computer-based data acquisition and analysis methods.

  6. Method to fabricate silicon chromatographic column comprising fluid ports

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.; Heller, Edwin J.; Adkins, Douglas R.

    2004-03-02

    A new method for fabricating a silicon chromatographic column comprising through-substrate fluid ports has been developed. This new method enables the fabrication of multi-layer interconnected stacks of silicon chromatographic columns.

  7. 19. Detail of builtup 5" x 13" column at fruit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Detail of built-up 5" x 13" column at fruit and vegetable storage room; note ledger plates bolted to top of column - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  8. 20. Detail of 8" square solid wood column at fruit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail of 8" square solid wood column at fruit and vegetable storage room; note ledger plates bolted to top of column - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  9. 15. View taken on eighth floor, showing office partitions, columns ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View taken on eighth floor, showing office partitions, columns at expansion joint (left) and typical column (right). - U.S. Navy Fleet Supply Base, Storehouse No. 1, 830 Third Avenue, Brooklyn, Kings County, NY

  10. 6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS AND COLUMN BRICKFACED AFTER THE GREAT FIRE 1904 - Old U.S. Appraisers Stores, Gay & Lombard Streets, Baltimore, Independent City, MD

  11. 14. Detail view of columns, capitals and beams at south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail view of columns, capitals and beams at south end of north section of mill. Note the transition from deep pocket to shallow pocket column capitals. - Lowe Mill, Eighth Avenue, Southwest, Huntsville, Madison County, AL

  12. A Convenient Method for Comparison of Efficiency of Fractionating Columns.

    ERIC Educational Resources Information Center

    Higgins, Robert H.

    1990-01-01

    Presented is a method for demonstrating the use of various fractionating columns to resolve mixtures into individual components and to correlate the resolving powers of column packings to their "hold-up" volumes. Fractions were analyzed using refractive indices. (KR)

  13. 29. View of paired concreteencased columns at joint between beams ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. View of paired concrete-encased columns at joint between beams contrasted against wider single columns. Looking east. - Stillwell Avenue Station, Intersection of Stillwell & Surf Avenues, Brooklyn, Kings County, NY

  14. 93. DETAIL SHOWING HAND WROUGHT IRON STRAP CONNECTING INNER COLUMN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. DETAIL SHOWING HAND WROUGHT IRON STRAP CONNECTING INNER COLUMN OF DRUM TO ATTIC COLUMN BELOW, FIRST CATWALK LEVEL, NORTHEAST WALL, WITH SCALE - Maryland State House, State Circle, Annapolis, Anne Arundel County, MD

  15. CAR MACHINE SHOP, FIRST FLOOR, DETAIL OF WOOD COLUMN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CAR MACHINE SHOP, FIRST FLOOR, DETAIL OF WOOD COLUMN AND INVERTED KING-POST TRUSS TO PROVIDE INCREASED SPAN BETWEEN COLUMNS, LOOKING SOUTH. - Southern Pacific, Sacramento Shops, Car Machine Shop, 111 I Street, Sacramento, Sacramento County, CA

  16. 4. VIEW FROM LOWER LEVEL PEDESTRIAN WALKWAY. FOUR SUPPORT COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW FROM LOWER LEVEL PEDESTRIAN WALKWAY. FOUR SUPPORT COLUMNS WITH SWAY BRACING AND BRACKETS IN COLUMNS. - Chanute Air Force Base, Hangar No. 4, Junction of Challenger Street & Sentry Street, Rantoul, Champaign County, IL

  17. 3. Detail of beam splice and column capital on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Detail of beam splice and column capital on the second floor of the Cloth Room Building/Old Bleach House, Monadnock Mills. Beam and column edges are chamfered. - Monadnock Mills, 15 Water Street, Claremont, Sullivan County, NH

  18. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  19. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  20. Efficient optical pulse stacker system

    DOEpatents

    Seppala, Lynn G.; Haas, Roger A.

    1982-01-01

    Method and apparatus for spreading and angle-encoding each pulse of a multiplicity of small area, short pulses into several temporally staggered pulses by use of appropriate beam splitters, with the optical elements being arranged so that each staggered pulse is contiguous with one or two other such pulses, and the entire sequence of stacked pulses comprising a single, continuous long pulse. The single long pulse is expanded in area, and then doubly passed through a nonstorage laser amplifier such as KrF. After amplification, the physically separated, angle-encoded and temporally staggered pulses are recombined into a single pulse of short duration. This high intensity output beam is well collimated and may be propagated over long distance, or used for irradiating inertial confinement fusion targets.

  1. Enhanced transport of colloidal oil droplets in saturated and unsaturated sand columns.

    PubMed

    Travis, Micheal J; Gross, Amit; Weisbrod, Noam

    2011-11-01

    Colloidal-sized triacylglycerol droplets demonstrated enhanced transport compared to ideal latex colloid spheres in both saturated and unsaturated quartz sand columns. Oil droplets (mean diameter 0.74 ± 0.03 μm, density 0.92 g cm(-3), ζ-potential -34 ± 1 mV) were injected simultaneously with latex microsphere colloids (FluoSpheres; density 1.055 g cm(-3), diameters 0.02, 0.2, and 1.0 μm, ζ-potentials -16 ± 1, -30 ± 2, and -49 ± 1, respectively) and bromide into natural quartz sand (ζ-potential -63 ± 2 mV) via short-pulse column breakthrough experiments. Tests were conducted under both saturated and unsaturated conditions. Breakthrough of oil droplets preceded bromide and FluoSpheres. Recovery of oil droplets was 20% greater than similarly sized FluoSpheres in the saturated column, and 16% greater in the 0.18 ± 0.01 volumetric water content (VWC) unsaturated column. Higher variability was observed in the 0.14 ± 0.01 VWC column experiments with oil droplet recovery only slightly greater than similarly sized FluoSpheres. The research presents for the first time the direct comparison of colloidal oil droplet transport in porous media with that of other colloids, and demonstrates transport under unsaturated conditions. Based on experimental results and theoretical analyses, we discuss possible mechanisms that lead to the observed enhanced mobility of oil droplets compared to FluoSpheres with similar size and electrostatic properties.

  2. Control of microbial souring of oil in a porous media column

    SciTech Connect

    Reinsel, M.

    1996-06-01

    Oil reservoir souring is a major problem in industry due to H{sub 2}S toxicity, corrosion, plugging, and sulfide concentrations in natural gas. Reservoir souring was simulated in Berea sandstone columns and cores using native mixed microbial consortia from two oil fields. Similar souring activity was seen with both consortia growing as a biofilm in columns and cores at 60{degrees}C. Most of the souring activity occurred at the beginning of the columns. This simulated injection well souring, in which sulfate-reducing bacteria, sulfate and carbon sources, are all available at the well bore. Biomass and precipitated iron sulfide accumulated uniformly along the column length and caused plugging. More plugging was found in systems with lower initial permeabilities, and most of this plugging was due to iron sulfide precipitation. Several novel methods were discovered to inhibit souring in the columns and cores. Addition of 10 ppm nitrate stimulated both native consortia to quickly and completely inhibit active souring, and 5 ppm maintained the inhibition. Nitrite was produced at 80-100% of the nitrate level added through incomplete denitrification by nitrate-reducing bacteria, and nitrite was found to be the inhibitory agent. Direct continuous addition of 10-12 ppm nitrite also inhibited souring; but pulse addition was found to be more effective than continuous addition at the same total addition rate. In the 20-hour residence time of the reactor, 10-20% of the nitrite was consumed. Nitrite addition appeared to decrease plugging in the core system. Removal of nitrate or nitrite allowed souring to resume after it had been inhibited for as long as three months. Nitrite was a more effective and longer lasting inhibitor than was glutaraldehyde, a biocide routinely used in oil fields and other industrial applications.

  3. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  4. Egg white protein-bonded columns and their applications.

    PubMed

    Oda, Y

    2000-11-01

    Egg white protein-bonded columns were developed for HPLC. These columns can be used under aqueous mobile phase and separate various kinds of drug enantiomers. Hyphenated techniques using protein-bonded columns with LC/MS and/or column switching have been recognized as integral methods in pharmaceutical research to analyze drug enantiomers. Therefore, these methods are very useful for research fields of pharmacokinetics and pharmacology.

  5. Cross flow cyclonic flotation column for coal and minerals beneficiation

    DOEpatents

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  6. Cross flow cyclonic flotation column for coal and minerals beneficiation

    SciTech Connect

    Lai, R.W.; Patton, R.A.

    2000-05-02

    An apparatus and process are disclosed for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophilic tailings.

  7. Cross flow flotation column for coal and minerals beneficiation

    SciTech Connect

    Lai, Ralph W.; Patton, Robert A.

    1997-12-01

    An apparatus and process are disclosed for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophilic tailings.

  8. 24. DETAIL VIEW OF COLUMN #072 DEVIATING FROM VERTICAL IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL VIEW OF COLUMN #072 DEVIATING FROM VERTICAL IN ROW OF INTACT COLUMNS, LOOKING NORTHEAST TO SOUTHWEST. (NOTE BOLTED BLOCK SCABBED TO COLUMN AS JOIST/TRUSS SUPPORT) - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  9. Dips in the pulse profiles of accretion powered X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Devasia, Jincy; Paul, Biswajit; James, Marykutty; Indulekha, Kavila

    We will report detection of sharp dips in the pulse profiles of several persistent and transient accretion powered X-ray pulsars using RXTE observations.The pulse profiles of accretion pow-ered pulsars carry a lot of information regarding the radiative processes near the surface of the star, magnetic fields that channel the accretion flow etc. The dips in pulse profiles can be due to the interaction of accretion column with the emitting radiation as it passes through the line of sight. We have also investigated the energy dependence and phase width of these dips to get a better understanding of the nature of this feature.

  10. Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers

    NASA Astrophysics Data System (ADS)

    Keller, A. S.; Jacobs, H. R.; Boehm, R. F.

    The reported investigation was conducted in connection with research intended to improve the efficiency of direct contact devices for geothermal and solar applications. The investigation had the objective to evaluate the effect of adding sieve trays to the laboratory column used in studies concerned with the development of models for spray column heat transfer. Hot water is pumped from a supply vessel into the top of the heat exchanger column where, as the continuous phase, it flows down through the column. The dispersed phase is kerosene. Using an identical pump to that used for the water, the kerosene flows into a dispersion plate in the bottom of the column. The droplets rise through the column and coalesce at the top. It was found that the heat transfer performance of the perforated plate column was significantly improved over that in a spray column for similar operating conditions.

  11. Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers

    NASA Astrophysics Data System (ADS)

    Keller, A.; Jacobs, H. R.; Boehm, R. F.

    1980-12-01

    The performance of the spray column as a heat exchanger was shown to correlate with the model of Letan-Kehat which has as a basis that the heat transfer is dominated by the wakeshedding characteristics of the drops over much of the column length. This model defines several hydrodynamic zones along the column of which the wake formation zone at the bottom appears to have the most efficient heat transfer. The column was also operated with four perforated plates spaced two column diameters apart in order to take advantage of the wake formation zone heat transfer. It is shown that the overall volumetric heat transfer coefficient in a perforated plate column is increased by a minimum of eleven percent over that in a spray column. A hydrodynamic model that predicts the performance of a perforated plate column is suggested.

  12. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  13. Fast gas chromatography of explosive compounds using a pulsed-discharge electron capture detector.

    PubMed

    Collin, Olivier L; Niegel, Claudia; Derhodes, Kate E; McCord, Bruce R; Jackson, Glen P

    2006-07-01

    The detection of a mixture of nine explosive compounds, including nitrate esters, nitroaromatics, and a nitramine in less than 140 sec is described. The new method employs a commercially available pulsed-discharge electron capture detector (PDECD) coupled with a microbore capillary gas chromatography (GC) column in a standard GC oven to achieve on-column detection limits between 5 and 72 fg for the nine explosives studied. The PDECD has the benefit that it uses a pulsed plasma to generate the standing electron current instead of a radioactive source. The fast separation time limits on-column degradation of the thermally labile compounds and decreases the peak widths, which results in larger peak intensities and a concomitant improvement in detection limits. The combination of short analysis time and low detection limits make this method a potential candidate for screening large numbers of samples that have been prepared using techniques such as liquid-liquid extraction or solid-phase microextraction.

  14. Pulse power linac

    DOEpatents

    Villa, Francesco

    1990-01-01

    A linear acceleration for charged particles is constructed of a plurality of transmission line sections that extend between a power injection region and an accelerating region. Each line section is constructed of spaced plate-like conductors and is coupled to an accelerating gap located at the accelerating region. Each gap is formed between a pair of apertured electrodes, with all of the electrode apertures being aligned along a particle accelerating path. The accelerating gaps are arranged in series, and at the injection region the line sections are connected in parallel. At the injection region a power pulse is applied simultaneously to all line sections. The line sections are graduated in length so that the pulse reaches the gaps in a coordinated sequence whereby pulse energy is applied to particles as they reach each of the gaps along the accelerating path.

  15. Pulse shaping system

    DOEpatents

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  16. Pulse shaping system

    DOEpatents

    Skeldon, Mark D.; Letzring, Samuel A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  17. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  18. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  19. Pulse combustion space heater

    SciTech Connect

    Thrasher, W.H.; Pavlik, C.M.; Moon, L.

    1990-07-17

    This patent describes a pulse combustion space heater for heating air in a space to be temperature conditioned. It comprises: a cabinet having exterior walls providing a cabinet volume for enclosing and supporting the heater, interior housing means located within the cabinet volume including walls providing a substantially closed heat transfer chamber having inlet and outlet openings through which air to be heated is circulated and a chamber volume substantially smaller than the cabinet volume, pulse combustion burner means including an assembly of closely spaced elongate burner elements operably connected in a fluid-tight manner for pulse combustion of a combustible gaseous mixture and discharge of combustion products to the atmosphere. The burner elements having exterior heat transfer surface located within the heat transfer chamber for transfer of combustion heat to air contacting the heat transfer surfaces, and blower means for circulating air from the space through the heat transfer chamber.

  20. Pulsed ELDOR detected NMR

    NASA Astrophysics Data System (ADS)

    Schosseler, P.; Wacker, Th.; Schweiger, A.

    1994-07-01

    A pulsed EPR method for the determination of small hyperfine interactions in disordered systems is described. A selective preparation pulse of frequency ω mw(1) excites allowed and forbidden transitions, thereby burning spectral holes into the EPR line. The positions of the holes caused by the excitation of forbidden transitions correspond to the nuclear transition frequencies of the spin system. A selective detection pulse of frequency ω mw(2) creates an FID with integrated intensity proportional to the magnetization at frequency ω mw(2). The entire hole pattern is obtained by recording the integrated intensity of the FID while varying the frequency difference Δω mw=ω mw(1)-ω mw(2) step by step.

  1. Pulsed welding plasma source

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.

    2016-04-01

    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  2. Discharge pulse phenomenology

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.

    1985-01-01

    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  3. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  4. The Total Carbon Column Observing Network (TCCON)

    NASA Astrophysics Data System (ADS)

    Wennberg, P. O.; Washenfelder, R. A.; Yavin, Y.; Toon, G. C.; Blavier, J. F.; Salawitch, R. J.; Connor, B. J.; Sherlock, V.; Wood, S. W.; Notholt, J.; Warneke, T.; Griffith, D. W.; Deutscher, N. M.; Bryant, G.; Jones, N. B.

    2005-12-01

    We describe the design, implementation, and evaluation of a network for remotely sensing the column-averaged volume mixing ratio of CO2, CH4, CO, and N2O. These measurements will be used both for constraining greenhouse gas fluxes and for validation of corresponding greenhouse gas abundances retrieved from satellite radiances. The measurement methodology is described including an assessment of the precision and accuracy of the network and plans for maintaining high degree of relative accuracy among the stations. Initial results from the four currently operating network stations - Ny Alesund (Spitzbergen), Park Falls (Wisconsin, USA), Darwin (Australia) and Lauder (New Zealand) - are discussed.

  5. Growing Cobalt Silicide Columns In Silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Obert W.

    1991-01-01

    Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).

  6. Growing Cobalt Silicide Columns In Silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Obert W.

    1991-01-01

    Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).

  7. OH vertical column abundance - Tropical measurements

    NASA Astrophysics Data System (ADS)

    Burnett, Clyde R.; Minschwaner, Kenneth R.; Burnett, Elizabeth B.

    1990-09-01

    Measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been made during the period 1987-1989 at the National Weather Service (NWS) station at Moen, Truk, Federated States of Micronesia (7 deg N, 152 deg E). A total of 384 independent data sets was obtained. Tropical OH abundance levels average about 22 percent above corresponding mid-latitude values, with OH levels during late winter and early spring up to 50 percent above those observed at 40 deg N. Stratospheric wind and temperature data obtained from the daily NWS radiosonde data are examined for correlations with the OH results.

  8. OH vertical column abundance - Tropical measurements

    NASA Technical Reports Server (NTRS)

    Burnett, Clyde R.; Minschwaner, Kenneth R.; Burnett, Elizabeth B.

    1990-01-01

    Measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been made during the period 1987-1989 at the National Weather Service (NWS) station at Moen, Truk, Federated States of Micronesia (7 deg N, 152 deg E). A total of 384 independent data sets was obtained. Tropical OH abundance levels average about 22 percent above corresponding mid-latitude values, with OH levels during late winter and early spring up to 50 percent above those observed at 40 deg N. Stratospheric wind and temperature data obtained from the daily NWS radiosonde data are examined for correlations with the OH results.

  9. A review of oscillating water columns.

    PubMed

    Heath, T V

    2012-01-28

    This paper considers the history of oscillating water column (OWC) systems from whistling buoys to grid-connected power generation systems. The power conversion from the wave resource through to electricity via pneumatic and shaft power is discussed in general terms and with specific reference to Voith Hydro Wavegen's land installed marine energy transformer (LIMPET) plant on the Scottish island of Islay and OWC breakwater systems. A report on the progress of other OWC systems and power take-off units under commercial development is given, and the particular challenges faced by OWC developers reviewed.

  10. Interface stability of a fluid column subject to periodic accelerations normal to the longitudinal axis of the column

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    This project investigates the interface stability of an inviscid fluid column in the presence of a periodic acceleration field which has a component normal to the longitudinal axis of the column. A ramification of this configuration is that perturbations cannot be considered axisymmetric. The column is taken to be infinite in length. Floquet analysis will be utilized in the stability investigation.

  11. Basic phononic diagnostic measurements in fluid columns

    NASA Astrophysics Data System (ADS)

    Hazony, D.; Hazony, Y.

    2010-07-01

    A pre-selected 21 MHz ultrasonic transducer was used to produce characteristic pulses, arbitrarily similar to the quantum-mechanical concept of a phonon, describable as having a single-frequency modulated Gaussian shape. The propagation of such pulses in water-acoustic channels was studied in conjunction with nonlinear regression analysis and an Erlangian model for size distribution of molecular aggregates. Experimental results obtained distinguish between surface and bulk phenomena and provide quantitative measures of an average molecular cluster size in water. The relevance of the Erlangian model, in studying the near front of the channel, provides a significant distinction between the behavior of pure water and Ringer's solution of water. The inherent consistency between the various results re-enforces the theoretical approach, implying new venues for future research.

  12. Two pulse recoupling

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin; Kumar, Ashutosh

    2017-08-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called two pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π)ϕ(π) - ϕ where ϕ =π/4n, and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ(π) - ϕ(π) π + ϕ(π) π - ϕ . The heteronuclear recoupling pulse sequence consists of a building block (π)ϕ1(π)-ϕ1 and (π)ϕ2(π)-ϕ2 on channel I and S, where ϕ1 = 3π/8n, ϕ2 = π/8n and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ1(π)-ϕ1(π) π +ϕ1(π) π -ϕ1 and (π)ϕ2(π)-ϕ2(π) π +ϕ2(π) π -ϕ2 on two channels respectively. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα-13CO homonuclear recoupling in a sample of Glycine and 15N-13Cα heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF). Compared to R-sequences (Levitt, 2002), these sequences are more robust to rf-inhomogeneity and give better sensitivity, as shown in Fig. 3.

  13. Pulsed Artificial Electrojet Generation

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.

    2008-12-01

    Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.

  14. Pulsed optoacoustics in solids

    NASA Astrophysics Data System (ADS)

    Wei, Zibiao

    2000-10-01

    Optoacoustic techniques are widely used to probe and characterize target materials including solids, liquids and gases. Included in such applications are diagnoses of thin films and semiconductor materials. The need to obtain greater spatial resolution requires the generation of shorter optoacoustic pulses. For such pulses, non- thermal effects may be quite important. On the other hand, even when an optoacoustic pulse is generated by an initially non-thermal technique, the thermal aspects become important in its evolution and propagation. The research undertaken in this Ph.D. dissertation included the generation and detection of optoacoustic signals through the thermal elastic mechanism. Several applications in material property diagnostics were investigated using several pulsed lasers. Both contact and non-contact detection techniques were used. A compact, lightweight, inexpensive system using a semiconductor laser, with potentially wide applicability, was developed. We developed the methods of analysis required to compare and explain the experimental results obtained. Included in such development was the incorporation of the responsivity of a piezoelectric transducer, whose necessarily non-ideal characteristics need to be accounted for in any analysis. We extended the Rosencwaig-Gersho model, which is used to treat the thermal diffusion problem with a sinusoidal heat source, to a at source, to a general pulsed laser source. This problem was also solved by a numerical method we developed in this work. Two powerful tools were introduced to process experimental data. The Fourier transform was used to resolve the time interval between two acoustic echoes. The wavelet transform was used to identify optoacoustic pulses in different wave modes or those generated by different mechanisms. The wavelet shrinkage technique was used to remove white noise from the signal. We also developed a spectral ratio method, which eliminates the need for the knowledge of several material

  15. 9. Detail view of columns on first floor. This row ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail view of columns on first floor. This row of columns indicates the former location of the exterior mill wall before World War II era expansion. The unusual column and beam connection was a key part of the mill structural system patented by Providence, Rhode Island engineers Charles Praray and Charles Makepeace in 1894. Each column was originally located in the apex of triangular window bay, but not connected to the exterior wall. Modifications on the right side of each column support the beams of the addition. - Dixie Cotton Mill, 710 Greenville Street, La Grange, Troup County, GA

  16. Long Pulse Homopolar Generator

    DTIC Science & Technology

    1988-08-01

    AD-A205 452 AFWAL-TR-88-2045 LONG PULSE HOMOPOLAR GENERATOR Edward A. Knoth David P. Bauer lAP Research, Inc. 2763 Culver Avenue Dayton OH 45429-3723...TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. 61101F ILIR P3 01 11. TITLE (include Security Classiflcation) Long Pulse Homopolar Generator 12. PERSONAL...FIELD GROUP SUB-GROUP C6 6; y .- o- , -, ’, - 20 07 homopolar , high current, high power, high speed, generator, 19. ABIT!CT (Contkwe on rer if =ray and

  17. PULSED ION SOURCE

    DOEpatents

    Ford, F.C.; Ruff, J.W.; Zizzo, S.G.; Cook, B.

    1958-11-11

    An ion source is described adapted for pulsed operation and producing copious quantities of ions with a particular ion egress geometry. The particular source construction comprises a conical member having a conducting surface formed of a metal with a gas occladed therein and narrow non-conducting portions hereon dividing the conducting surface. A high voltage pulse is applied across the conducting surface or producing a discharge across the surface. After the gas ions have been produced by the discharge, the ions are drawn from the source in a diverging conical beam by a specially constructed accelerating electrode.

  18. Pulsed NMR spectroscopy

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Elleman, D. D.; Rhim, W.

    1978-01-01

    Method gives results approximating those of classical continuous-irradiation method but in less time. Method also makes it possible to measure chemical shifts and spin-lattice relaxation times with improved sensitivity. Equipment can be used for adiabatic demagnetization experiments, measurements of rotating-frame spin/lattice relaxation times, and accurate measurements of exact resonance points. When measuring relaxation times, pulse technique can be very effective since pulses may be limited in amplitude and length to prevent spin system from being driven into saturation.

  19. Ionic liquids monolithic columns for protein separation in capillary electrochromatography.

    PubMed

    Liu, Cui-Cui; Deng, Qi-Liang; Fang, Guo-Zhen; Liu, Hui-Lin; Wu, Jian-Hua; Pan, Ming-Fei; Wang, Shuo

    2013-12-04

    A series of ionic liquids (ILs) monolithic capillary columns based on 1-vinyl-3-octylimidazolium (ViOcIm(+)) were prepared by two approaches ("one-pot" approach and "anion-exchange" approach). The effects of different anions (bromide, Br(-); tetrafluoroborate, BF4(-); hexafluorophosphate, PF6(-); and bis-trifluoromethanesulfonylimide, NTf2(-)) on chromatography performance of all the resulting columns were investigated systematically under capillary electrochromatography (CEC) mode. The results indicated that all these columns could generate a stable reversed electroosmotic flow (EOF) over a wide pH range from 2.0 to 12.0. For the columns prepared by "one-pot" approach, the EOF decreased in the order of ViOcIm(+)Br(-)>ViOcIm(+)BF4(-)>ViOcIm(+)PF6(-)>ViOcIm(+)NTf2(-) under the same CEC conditions; the ViOcIm(+)Br(-) based column exhibited highest column efficiencies for the test small molecules; the ViOcIm(+)NTf2(-) based column possessed the strongest retention for aromatic hydrocarbons; and baseline separation of four standard proteins was achieved on ViOcIm(+)NTf2(-) based column corresponding to the highest column efficiency of 479,000 N m(-1) for cytochrome c (Cyt c). These results indicated that the property of ILs based columns could be tuned successfully by changing anions, which gave these columns potential to separate both small molecules and macro biomolecules.

  20. Pulse Onset Detection using Neighbor Pulse-Based Signal Enhancement

    PubMed Central

    Xu, Peng; Bergsneider, Marvin; Hu, Xiao

    2008-01-01

    Detecting onsets of cardiovascular pulse wave signals is an important prerequisite for successfully conducting various analysis tasks involving the concept of pulse wave velocity. However, pulse onsets are frequently influenced by inherent noise and artifacts in signals continuously acquired in a clinical environment. The present work proposed and validated a neighbor pulse-based signal enhancement algorithm for reducing error in the detected pulse onset locations from noise-contaminated pulsatile signals. Pulse onset was proposed to be detected using the first principal component extracted from three adjacent pulses. This algorithm was evaluated using test signals constructed by mixing arterial blood pressure, cerebral blood flow velocity and intracranial pressure pulses recorded from neurosurgical patients with white noise of various levels. The results showed that the proposed pulse enhancement algorithm improved (p < 0.05) pulse onset detection according to all three different onset definitions and for all three types of pulsatile signals as compared to results without using the pulse enhancement. These results suggested that the proposed algorithm could help achieve robustness in pulse onset detection and facilitate pulse wave analysis using clinical recordings. PMID:18632299

  1. Curvature ductility of reinforced and prestressed concrete columns

    SciTech Connect

    Suprenant, B.A.

    1984-01-01

    Engineers are concerned with the survival of reinforced and prestressed concrete columns during earthquakes. The prediction of column survival can be deduced from moment-curvature curves of the column section. An analytical approach is incorporated into a computer model. The computer program is based on assumed stress-strain relations for confined and unconfined concrete, nonprestressed and prestressing steel. The results of studies on reinforced and prestressed concrete columns indicate that reinforced concrete columns may be designed to resist earthquakes, while prestressed concrete columns may not. The initial reduction in moment capacity, after concrete cover spalling, of a prestressed concrete column could be as much as 50%. Analyses indicate that the bond between concrete and prestressing strand after concrete cover spalling is not critical.

  2. Microparticle column geometry in acoustic stationary fields.

    PubMed

    Hancock, Andrew; Insana, Michael F; Allen, John S

    2003-01-01

    Particles suspended in a fluid will experience forces from stationary acoustic fields. The magnitude of the force depends on the time-averaged energy density of the field and the material properties of the particles and fluid. Forces acting on known particles smaller than 20 microm were studied. Within a 500 kHz acoustic beam generated by a plane-piston circular source, observations were made of the geometry of the particle column that is formed. Varying the acoustic energy altered the column width in a manner predicted by equations for the primary acoustic radiation force from scattering of particles in the long-wavelength limit. The minimum pressures required to trap gas, solid, and liquid particles in a water medium at room temperature were also estimated to within 12%. These results highlight the ability of stationary acoustic fields from a plane-piston radiator to impose nano-Newton-scale forces onto fluid particles with properties similar to biological cells, and suggest that it is possible to accurately quantify these forces.

  3. Water vapor column abundance retrievals during FIFE

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Conel, James E.; Green, Robert O.; Margolis, Jack S.; Holm, Ronald G.; Toon, Geoff

    1992-01-01

    A variation of the modified Langley plot algorithm is reported here and applied to the retrieval of atmospheric water column abundance from a filtered sunphotometer. In this new methodology an absorption data base (LOWTRAN 7) is used to compute a water abundance versus transmittance curve of growth, rather than the square-root dependence previously assumed. Validation of the technique is provided from an uncertainty analysis, and plans to further validate using Fourier transform spectrometers are detailed. The new sunphotometer technique is used to report local column water vapor during the First ISLSCP Field Experiment (FIFE), and comparisons are made with abundances retrieved via FIFE radiosonde observations. The sunphotometer data can best be utilized, however, to in turn validate data from airborne or in-orbit measurements of water vapor. With these flight sensors, horizontal and topographic variability within the scene can be viewed. An example of the airborne data set is given using an image from the airborne visible infrared imaging spectrometer, as acquired on August 31, 1990.

  4. Interactions of evaportranspiration between two parallel columns

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhu, J.

    2010-12-01

    Moisture flux across the land-atmosphere boundary (through soil evaporation and plant transpiration) is an important component of many large-scale hydrological processes, which were often quantified through simulation of multiple realizations (stream tubes) of independent one-dimensional local scale flow. A major problem of this approach is that it ignores the interactions among different stream tubes. Lateral flows might be prominent for long and narrow tubes and heterogeneous hydraulic properties and plant covers. This study is to investigate whether using this stream tube modeling will produce unacceptable errors for large scale evapotranspiration simulations. Instead of using convenient parallel column models of independent hydrologic processes, this study simulates two-dimensional transpiration and evaporation in two parallel columns which allow lateral interactions. The impact of both plant characteristics and soil hydraulic properties on evapotranspitration is addressed and discussed in comparison to those of independent stream tube models. The results provide applicable guidance for applications of stream tube models to simulate large scale evapotranspiration in a heterogeneous landscape.

  5. Monolithic columns in plant proteomics and metabolomics.

    PubMed

    Rigobello-Masini, Marilda; Penteado, José Carlos Pires; Masini, Jorge Cesar

    2013-03-01

    Since "omics" techniques emerged, plant studies, from biochemistry to ecology, have become more comprehensive. Plant proteomics and metabolomics enable the construction of databases that, with the help of genomics and informatics, show the data obtained as a system. Thus, all the constituents of the system can be seen with their interactions in both space and time. For instance, perturbations in a plant ecosystem as a consequence of application of herbicides or exposure to pollutants can be predicted by using information gathered from these databases. Analytical chemistry has been involved in this scientific evolution. Proteomics and metabolomics are emerging fields that require separation, identification, and quantification of proteins, peptides, and small molecules of metabolites in complex biological samples. The success of this work relies on efficient chromatographic and electrophoretic techniques, and on mass spectrometric detection. This paper reviews recent developments in the use of monolithic columns, focusing on their applications in "top-down" and "bottom-up" approaches, including their use as supports for immobilization of proteolytic enzymes and their use in two-dimensional and multidimensional chromatography. Whereas polymeric columns have been predominantly used for separation of proteins and polypeptides, silica-based monoliths have been more extensively used for separation of small molecules of metabolites. Representative applications in proteomics and in analysis of plant metabolites are given and summarized in tables.

  6. Development of a practical pulse tube refrigerator: co-axial designs and the influence of viscosity

    NASA Astrophysics Data System (ADS)

    Richardson, R. N.

    Pulse tube refrigeration offers the potential to develop an inherently reliable cryocooler. Unlike Stirling or Gifford-McMahon cryocoolers the pulse tube has no active components at low temperature. Refrigeration results from a process known as surface heat pumping involving the thermal interaction between a pulsating gas column and adjacent tube wall. The simple pulse tube configuration is not amenable to miniaturization and has a limited temperature per stage both of which compromise practicality. A compact co-axial design which may be readily miniaturized is described in detail and reference is made to a valved (or orifice) design which offers higher performance. Development of a viable co-axial pulse tube requires an understanding of the influence of viscosity on surface heat pumping. A qualitative explanation is provided. It is concluded that a truly practical pulse tube offering a working temperature of 70 K should be possible if the co-axial and valved designs are combined in a single device.

  7. SNMR pulse sequence phase cycling

    DOEpatents

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  8. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    SciTech Connect

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-04-05

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  9. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  10. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.

  11. Passive and active pulse stacking scheme for pulse shaping

    DOEpatents

    Harney, Robert C.; Schipper, John F.

    1977-01-01

    Apparatus and method for producing a sequence of radiation pulses with a pulse envelope of time variation which is controllable by an external electromagnetic signal applied to an active medium or by a sectored reflector, through which the radiation passes.

  12. Solid-state pulse forming module with adjustable pulse duration

    NASA Astrophysics Data System (ADS)

    Wang, Langning; Liu, Jinliang; Qiu, Yongfeng; Chu, Xu; Zhang, Qingmeng

    2017-03-01

    A new solid-state pulse forming module is described in this paper. The pulse forming module is fabricated on a glass ceramic substrate, with the dimension of 250 mm × 95 mm × 4 mm. By changing the copper strips used in the pulse forming modules, the pulse duration of the obtained pulsed can range from 80 ns to 140 ns. Both the simulation and tests show that the pulse forming module has a good pulse forming ability. Under a high voltage in microsecond's time, the new pulse forming modules can hold off a voltage up to 25 kV higher than that of the previous study. In addition, future optimization for the field enhancement near the thin electrode edge has been proposed and simulated.

  13. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    PubMed

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  14. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  15. Experiments in Pulsed Ultrasonics

    ERIC Educational Resources Information Center

    Palmer, S. B.; Forster, G. A.

    1970-01-01

    Describes and apparatus designed to generate and detect pulsed ultrasonics in solids and liquids over the frequency range 1-20 MHz. Experiments are suggested for velocity of sound, elastic constant and ultrasonic attenuation measurements on various materials over a wide temperature range. The equipment should be useful for demonstration purposes.…

  16. Hybrid Chirped Pulse Amplification

    SciTech Connect

    Jovanovic, I; Barty, C P J

    2002-05-07

    We present a novel chirped pulse amplification method which combines optical parametric amplification and laser amplification. We have demonstrated this hybrid CPA concept with a combination of beta-barium borate and Ti:sapphire. High-efficiency, multi-terawatt compatible amplification is achieved without gain narrowing and without electro-optic modulators using a simple commercial pump laser.

  17. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  18. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  19. Experiments in Pulsed Ultrasonics

    ERIC Educational Resources Information Center

    Palmer, S. B.; Forster, G. A.

    1970-01-01

    Describes and apparatus designed to generate and detect pulsed ultrasonics in solids and liquids over the frequency range 1-20 MHz. Experiments are suggested for velocity of sound, elastic constant and ultrasonic attenuation measurements on various materials over a wide temperature range. The equipment should be useful for demonstration purposes.…

  20. Pulsed electric fields

    USDA-ARS?s Scientific Manuscript database

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  1. Pulsed inductive HF laser

    SciTech Connect

    Razhev, A M; Kargapol'tsev, E S; Churkin, D S; Demchuk, S V

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  2. Ultrafast optomechanical pulse picking

    NASA Astrophysics Data System (ADS)

    Lilienfein, Nikolai; Holzberger, Simon; Pupeza, Ioachim

    2017-01-01

    State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range. To this end, an isolated section of a beam path is moved in a system comprising mirrors rotating at a high angular velocity and stationary imaging mirrors, without affecting the propagation of the beam thereafter. We discuss three variants of the concept and exemplify practical parameters for its application in regenerative amplifiers and stack-and-dump enhancement cavities. We find that optomechanical pulse picking has the potential to achieve switching rates of up to a few tens of kilohertz while supporting pulse energies of up to several joules.

  3. Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dr. Tom Markusic, a propulsion research engineer at the Marshall Space Flight Center (MSFC), adjusts a diagnostic laser while a pulsed plasma thruster (PPT) fires in a vacuum chamber in the background. NASA/MSFC's Propulsion Research Center (PRC) is presently investigating plasma propulsion for potential use on future nuclear-powered spacecraft missions, such as human exploration of Mars.

  4. Analog pulse processor

    DOEpatents

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  5. Electromagnetic pulse bombs' defense

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wang, Yongbin; Li, Juan; Wang, Jianzhong

    2007-11-01

    With the high power microwave devices development, the high power microwave electromagnetic pulse bombs (E-bombs) have become practical abroad. The development of conventional E-bombs devices allows their use in nonnuclear confrontations. E-bombs are powerful enough to damage communication, radar, navigation and computer systems. This paper discusses effects of EMP on electrical system and how to defend the EMP.

  6. Comparison of automated pre-column and post-column analysis of amino acid oligomers

    NASA Technical Reports Server (NTRS)

    Chow, J.; Orenberg, J. B.; Nugent, K. D.

    1987-01-01

    It has been shown that various amino acids will polymerize under plausible prebiotic conditions on mineral surfaces, such as clays and soluble salts, to form varying amounts of oligomers (n = 2-6). The investigations of these surface reactions required a quantitative method for the separation and detection of these amino acid oligomers at the picomole level in the presence of nanomole levels of the parent amino acid. In initial high-performance liquid chromatography (HPLC) studies using a classical postcolumn o-phthalaldehyde (OPA) derivatization ion-exchange HPLC procedure with fluorescence detection, problems encountered included lengthy analysis time, inadequate separation and large relative differences in sensitivity for the separated species, expressed as a variable fluorescent yield, which contributed to poor quantitation. We have compared a simple, automated, pre-column OPA derivatization and reversed-phase HPLC method with the classical post-column OPA derivatization and ion-exchange HPLC procedure. A comparison of UV and fluorescent detection of the amino acid oligomers is also presented. The conclusion reached is that the pre-column OPA derivatization, reversed-phase HPLC and UV detection produces enhanced separation, improved sensitivity and faster analysis than post-column OPA derivatization, ion-exchange HPLC and fluorescence detection.

  7. Pulsed electromagnetic acceleration of exploded wire plasmas

    SciTech Connect

    Peratt, A.L.; Koert, P.

    1983-11-01

    A simple analysis of the dynamic state of a current-conducting high-density plasma column, resulting from an exploded wire between the conductors of a rail-gun accelerator or one or more wires strung between the anode and cathode conductors in a pulsed-power generator diode, is given on the basis of a one-dimensional magnetohydrodynamics model. Spatial distributions of the current density, magnetic field, temperature, and particle density are calculated as well as the temporal current, voltage, and impedance histories. The model self-consistently treats the accelerator load transition through its solid, melt, vapor, and plasma states in the presence of its supply source and feed network. Once formed and accelerated, the plasma state calculations show expansion cooling across the self-induced magnetic field if the Bennett condition is not satisfied. The model predictions are compared to two experimental situations. The first involves the delivery of some hundreds of Joules of stored energy to the wire load. For this case, good agreement between the calculated and observed plasma state is obtained. The second situation involves the delivery of many thousands of Joules to the wire load. For this case and dependent upon the wire mass, diameter, number of wires exploded, their separation, and the pulsed energy electrical wave shapes, the magnetohydrodynamic results can be qualitatively incorrect. The necessity of an electromagnetic particle simulation approach is indicated in order to resolve the magnetic rope-like structure and filamentation observed in the very energetic plasmas.

  8. Column properties and flow profiles of a flat, wide column for high-pressure liquid chromatography

    SciTech Connect

    Mriziq, Khaled S; Guiochon, Georges A

    2008-01-01

    The design and the construction of a pressurized, flat, wide column for high-performance liquid chromatography (HPLC) are described. This apparatus, which is derived from instruments that implement over-pressured thin layer chromatography, can carry out only uni-dimensional chromatographic separations. However, it is intended to be the first step in the development of more powerful instruments that will be able to carry out two-dimensional chromatographic separations, in which case, the first separation would be a space-based separation, LC{sup x}, taking place along one side of the bed and the second separation would be a time-based separation, LC{sup t}, as in classical HPLC but proceeding along the flat column, not along a tube. The apparatus described consists of a pressurization chamber made of a Plexiglas block and a column chamber made of stainless steel. These two chambers are separated by a thin Mylar membrane. The column chamber is a cavity which is filled with a thick layer (ca. 1 mm) of the stationary phase. Suitable solvent inlet and outlet ports are located on two opposite sides of the sorbent layer. The design allows the preparation of a homogenous sorbent layer suitable to be used as a chromatographic column, the achievement of effective seals of the stationary phase layer against the chamber edges, and the homogenous flow of the mobile phase along the chamber. The entire width of the sorbent layer area can be used to develop separations or elute samples. The reproducible performance of the apparatus is demonstrated by the chromatographic separations of different dyes. This instrument is essentially designed for testing detector arrays to be used in a two-dimensional LC{sup x} x LC{sup t} instrument. The further development of two-dimension separation chromatographs based on the apparatus described is sketched.

  9. Heat Transfer Analysis for a Fixed CST Column

    SciTech Connect

    Lee, S.Y.

    2004-02-19

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant

  10. Comparison of two column characterisation systems based on pharmaceutical applications.

    PubMed

    Haghedooren, Erik; Németh, Tamás; Dragovic, Sanja; Noszál, Béla; Hoogmartens, Jos; Adams, Erwin

    2008-05-02

    A useful column characterisation system should help chromatographers to select the most appropriate column to use, e.g. when a particular chromatographic column is not available or when facing the dilemma of selecting a suitable column for analysis according to an official monograph. Official monographs of the European Pharmacopoeia and the United States Pharmacopeia are not allowed to mention the brand name of the stationary phase used for the method development. Also given the overwhelming offer of several hundreds of commercially available reversed-phase liquid chromatographic columns, the choice of a suitable column could be difficult sometimes. To support rational column selection, a column characterisation study was started in our laboratory in 2000. In the same period, Euerby et al. also developed a column characterisation system, which is now released as Column Selector by ACD/Labs. The aim of this project was to compare the two existing column characterisation systems, i.e. the KUL system and the Euerby system. Other research groups active in this field will not be discussed here. Euerby et al. developed a column characterisation system based on 6 test parameters, while the KUL system is based on 4 chromatographic parameters. Comparison was done using a set of 63 columns. For 7 different pharmaceutical separations (fluoxetine, gemcitabine, erythromycin, tetracycline, tetracaine, amlodipine and bisacodyl), a ranking was built based on an F-value (KUL method) or Column Difference Factor value (Euerby method) versus a (virtual) reference column. Both methods showed a similar ranking. The KUL and Euerby methods do not perfectly match, but they yield very similar results, allowing with a relatively high certainty, the selection of similar or dissimilar columns as compared to a reference column. An analyst that uses either of the two methods, will end up with a similar ranking. From a practical point of view, it must be noted that the KUL method only includes 4

  11. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    SciTech Connect

    Clark, E.A.

    1992-11-21

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (ABL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns.

  12. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    SciTech Connect

    Clark, E.A.

    1992-11-21

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns.

  13. All about Heart Rate (Pulse)

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More All About Heart Rate (Pulse) Updated:Aug 22,2017 ... Blood Pressure is Diagnosed BP vs. Heart Rate All About Heart Rate (Pulse) Low Blood Pressure Resistant ...

  14. All about Heart Rate (Pulse)

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More All About Heart Rate (Pulse) Updated:Apr 19,2016 ... are the Symptoms of High Blood Pressure? 7 All About Heart Rate (Pulse) 8 Tachycardia | Fast Heart ...

  15. Pulse line ion accelerator concept

    NASA Astrophysics Data System (ADS)

    Briggs, Richard J.

    2006-06-01

    The pulse line ion accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of high energy density physics and warm dense matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3 5MeV/meter acceleration gradients. The concept might be described crudely as an “air core” induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  16. Nondegenerate optical parametric chirped pulse amplifier

    DOEpatents

    Jovanovic, Igor; Ebbers, Christopher A.

    2005-03-22

    A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.

  17. Sequentially pulsed traveling wave accelerator

    DOEpatents

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  18. Micro-column plasma emission liquid chromatograph

    DOEpatents

    Gay, Don D.

    1984-01-01

    In a direct current plasma emission spectrometer for use in combination with a micro-column liquid chromatograph, an improved plasma source unit. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  19. Optimization of monolithic columns for microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pagaduan, Jayson V.; Yang, Weichun; Woolley, Adam T.

    2011-06-01

    Monolithic columns offer advantages as solid-phase extractors because they offer high surface area that can be tailored to a specific function, fast mass transport, and ease of fabrication. Porous glycidyl methacrylate-ethylene glycol dimethacrylate monoliths were polymerized in-situ in microfluidic devices, without pre-treatment of the poly(methyl methacrylate) channel surface. Cyclohexanol, 1-dodecanol and Tween 20 were used to control the pore size of the monoliths. The epoxy groups on the monolith surface can be utilized to immobilize target-specific probes such as antibodies, aptamers, or DNA for biomarker detection. Microfluidic devices integrated with solid-phase extractors should be useful for point-of-care diagnostics in detecting specific biomarkers from complex biological fluids.

  20. Education and training column: the learning collaborative.

    PubMed

    MacDonald-Wilson, Kim L; Nemec, Patricia B

    2015-03-01

    This column describes the key components of a learning collaborative, with examples from the experience of 1 organization. A learning collaborative is a method for management, learning, and improvement of products or processes, and is a useful approach to implementation of a new service design or approach. This description draws from published material on learning collaboratives and the authors' experiences. The learning collaborative approach offers an effective method to improve service provider skills, provide support, and structure environments to result in lasting change for people using behavioral health services. This approach is consistent with psychiatric rehabilitation principles and practices, and serves to increase the overall capacity of the mental health system by structuring a process for discovering and sharing knowledge and expertise across provider agencies. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  1. Rapid Column Extraction Methods for Urine

    SciTech Connect

    Maxwell, S.L. III

    2000-06-09

    A new fecal analysis method that dissolves plutonium oxide was developed at the Westinghouse Savannah River Site. Diphonix Resin (Eichrom Industries), is used to pre-concentrate the actinides from digested fecal samples. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin, which effectively extracts plutonium and americium from acidic solutions containing hydrofluoric acid. After resin digestion, the plutonium and americium are recovered in a small volume of nitric acid that is loaded onto small extraction chromatography columns, TEVA Resin and TRU Resin (Eichrom Industries). The method enables complete dissolution of plutonium oxide and provides high recovery of plutonium and americium with good removal of thorium isotopes such as thorium-228.

  2. The vertebral column of Australopithecus sediba.

    PubMed

    Williams, Scott A; Ostrofsky, Kelly R; Frater, Nakita; Churchill, Steven E; Schmid, Peter; Berger, Lee R

    2013-04-12

    Two partial vertebral columns of Australopithecus sediba grant insight into aspects of early hominin spinal mobility, lumbar curvature, vertebral formula, and transitional vertebra position. Au. sediba likely possessed five non-rib-bearing lumbar vertebrae and five sacral elements, the same configuration that occurs modally in modern humans. This finding contrasts with other interpretations of early hominin regional vertebral numbers. Importantly, the transitional vertebra is distinct from and above the last rib-bearing vertebra in Au. sediba, resulting in a functionally longer lower back. This configuration, along with a strongly wedged last lumbar vertebra and other indicators of lordotic posture, would have contributed to a highly flexible spine that is derived compared with earlier members of the genus Australopithecus and similar to that of the Nariokotome Homo erectus skeleton.

  3. The flotation column as a froth separator

    SciTech Connect

    Schultz, C.W.; Mehta, R.K.; Bates, J.B. )

    1991-12-01

    The Mineral Resources Institute, The University of Alabama, has for the past three years been engaged in a program to develop a beneficiation system for eastern (Devonian) oil shales. One objective of that program was to evaluate advanced technologies for effecting a kerogen-mineral matter separation. Column flotation was among the advanced technologies selected for evaluation. One observation made in the course of optimization testing was that introducing the feed into the froth (above the pulp- froth interface) resulted in an improved combination of concentrate grade and kerogen recovery. This observation was reported in a previous paper. Because the practice of maintaining the pulp froth interface below the feed point is contrary to conventional practice, it was decided to subject the observation to a systematic series of tests. This paper describes a recent series of tests and the results that were obtained.

  4. Earth Remote Sensing: A Column Closure Approach

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Lau, William (Technical Monitor)

    2001-01-01

    Entering the new millennium, there is no doubt that scientists expand greatly their scientific knowledge of the Earth system by utilizing unique capabilities from the vantage points of space. These global satellite observations include the NASA/NOAA Pathfinder and other ongoing data analysis projects, the Earth Observing System (EOS) program, the Earth System Science Pathfinders (ESSP) small research satellite missions, multi-agency planning for the National Polar-orbiting Operational Environmental Satellite (NPOESS), and other international satellite missions. However, using satellite remotely sensed data alone cannot explore fully the physical processes and energetic balance involved in our changing climate. To close the loop, the ground-based remote sensing and airborne in situ measurements are required. This talk provides an overview of the general strategy of Earth remote sensing for a column closure approach and discusses necessary instrumentation.

  5. Ewing's sarcoma of the vertebral column

    SciTech Connect

    Pilepich, M.V.; Vietti, T.J.; Nesbit, M.E.; Tefft, M.; Kissane, J.; Burgert, O.; Pritchard, D.; Gehan, E.A.

    1981-01-01

    Twenty-two patients with vertebral primaries were registered in the Intergroup Ewing's Sarcoma Study between 1973 and 1977. The radiation doses to the primary tumors ranged between 3800 and 6200 rad. All patients received intensive combination chemotherapy. After a followup ranging between 14 and 62 months, 14 patients remained disease-free. All patients with primary tumor of the cervical and dorsal spine remained disease-free. Of eight patients with lesions in the distal spine, (sacrococcygeal region) six developed recurrence, in three a local recurrence was observed despite doses of 6000 rad or higher. Doses of 5000 rad or less (in addition to combination chemotherapy as used in the Intergroup Ewing's Study) appear adequate in controlling the primary tumors of the proximal segments of the spinal column.

  6. Dynamic CT scanning of spinal column trauma

    SciTech Connect

    Brown, B.M.; Brant-Zawadzki, M.; Cann, C.E.

    1982-12-01

    Dynamic sequential computed tomographic scanning with automatic table incrementation uses low milliampere-second technique to eliminate tube cooling delays between scanning slices and, thus, markedly shortens examination times. A total of 25 patients with spinal column trauma involving 28 levels were studied with dynamic scans and retrospectively reviewed. Dynamic studies were considerably faster than conventional spine examinations and yielded reliable diagnosis. Bone disruption and subluxation was accurately evaluated, and the use of intrathecal metrizamide in low doses allowed direct visualization of spinal cord or radicular compromise. Multiplanar image reformation was aided by the dynamic incrementation technique, since motion between slices (and the resulting misregistration artifact on image reformation) was minimized. A phantom was devised to test spatial resolution of computed tomography for objects 1-3 mm in size and disclosed minimal differences for dynamic and conventional computed tomographic techniques in resolving medium-to-high-contrast objects.

  7. A THERMAL PULSE SHAPER MECHANISM.

    DTIC Science & Technology

    A shaped pulse of intense thermal radiation, corresponding to the pulses from nuclear weapons, is obtained by the output of a QM carbon arc. A flywheel driven by a DC motor actuated a venetian blind shutter placed between a mirror and the target to control the flux. The combination produced reasonably good simulation and reproduction of the generalized field pulse.

  8. Dispersion characteristics in column flotation of fine coal

    SciTech Connect

    Peng, F.F.; Lili, L.

    1995-10-01

    The dispersion model of nonideal flow was applied to describe the hydrodynamic state within the flotation column. Residence time distribution (RTD) data of a laboratory flotation column were measured to determine the parameters of the model. The effects of operating variables and column geometry on the Peclet number which reflects the extent of axial dispersion were investigated and a semi-empirical expression of Pe was formulated. The dispersion model was validated for the column flotation of ultrafines coal. Under the conditions of sufficient aeration rate and frother addition, a good agreement between the measured recoveries and predicted data was obtained. The dispersion model with first-order flotation rate process of the flotation column developed in this study is useful in predicting the collection zone recovery of fine coal, and for the flotation column scale-up.

  9. Commercial applications of the packed column froth separator

    SciTech Connect

    Yang, D.C.; Mengxiong Guo; Xusin Shao; Zexue Du

    1993-12-31

    The packed column flotation technology is commercially proven in processing a variety of coal and mineral fines. It incorporates the packing design to overcome most of the problems encountered by conventional columns or open vessel type cells. The packing elements break up air bubbles through small tortuous passages and support an unlimited froth depth inside the column where nearly all separation takes place. Thus, the packed column is actually a froth separator. The first commercial packed column for coal application was installed at the Pingdingshan Mine, China in 1989. This unit (1.5 m ID {times} 7 m tall) has been used to recover clean coal ({approximately}6% ash) from the black water (10--15% ash) with 82--88% coal yield. The capacity of the unit is 10--12 TPH. Some modifications of the column are being considered to improve product quality and to simplify control strategy.

  10. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  11. Noisy homoclinic pulse dynamics

    SciTech Connect

    Eaves, T. S.; Balmforth, Neil J.

    2016-04-15

    The effect of stochastic perturbations on nearly homoclinic pulse trains is considered for three model systems: a Duffing oscillator, the Lorenz-like Shimizu–Morioka model, and a co-dimension-three normal form. Using the Duffing model as an example, it is demonstrated that the main effect of noise does not originate from the neighbourhood of the fixed point, as is commonly assumed, but due to the perturbation of the trajectory outside that region. Singular perturbation theory is used to quantify this noise effect and is applied to construct maps of pulse spacing for the Shimizu–Morioka and normal form models. The dynamics of these stochastic maps is then explored to examine how noise influences the sequence of bifurcations that take place adjacent to homoclinic connections in Lorenz-like and Shilnikov-type flows.

  12. ELECTRONIC PULSE SCALING CIRCUITS

    DOEpatents

    Cooke-Yarborough, E.H.

    1958-11-18

    Electronic pulse scaling circults of the klnd comprlsing a serles of bi- stable elements connected ln sequence, usually in the form of a rlng so as to be cycllcally repetitive at the highest scallng factor, are described. The scaling circuit comprises a ring system of bi-stable elements each arranged on turn-off to cause, a succeeding element of the ring to be turned-on, and one being arranged on turn-off to cause a further element of the ring to be turned-on. In addition, separate means are provided for applying a turn-off pulse to all the elements simultaneously, and for resetting the elements to a starting condition at the end of each cycle.

  13. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  14. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  15. Short pulse neutron generator

    SciTech Connect

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  16. Pulsed excimer laser processing

    NASA Astrophysics Data System (ADS)

    Wong, D.

    1985-06-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  17. Pulsed excimer laser processing

    NASA Technical Reports Server (NTRS)

    Wong, D.

    1985-01-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  18. High field pulsed microwiggler

    SciTech Connect

    Warren, R.W.

    1990-12-31

    This paper describes a microwiggler assembly which produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180{degrees} relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.

  19. Noisy homoclinic pulse dynamics

    NASA Astrophysics Data System (ADS)

    Eaves, T. S.; Balmforth, Neil J.

    2016-04-01

    The effect of stochastic perturbations on nearly homoclinic pulse trains is considered for three model systems: a Duffing oscillator, the Lorenz-like Shimizu-Morioka model, and a co-dimension-three normal form. Using the Duffing model as an example, it is demonstrated that the main effect of noise does not originate from the neighbourhood of the fixed point, as is commonly assumed, but due to the perturbation of the trajectory outside that region. Singular perturbation theory is used to quantify this noise effect and is applied to construct maps of pulse spacing for the Shimizu-Morioka and normal form models. The dynamics of these stochastic maps is then explored to examine how noise influences the sequence of bifurcations that take place adjacent to homoclinic connections in Lorenz-like and Shilnikov-type flows.

  20. High field pulsed microwiggler

    SciTech Connect

    Warren, R.W.

    1990-01-01

    This paper describes a microwiggler assembly which produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180{degrees} relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.

  1. Pulse thermal loop

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M. (Inventor)

    2002-01-01

    A pulse thermal loop heat transfer system includes a means to use pressure rises in a pair of evaporators to circulate a heat transfer fluid. The system includes one or more valves that iteratively, alternately couple the outlets the evaporators to the condenser. While flow proceeds from one of the evaporators to the condenser, heating creates a pressure rise in the other evaporator, which has its outlet blocked to prevent fluid from exiting the other evaporator. When the flow path is reconfigured to allow flow from the other evaporator to the condenser, the pressure in the other evaporator is used to circulate a pulse of fluid through the system. The reconfiguring of the flow path, by actuating or otherwise changing the configuration of the one or more valves, may be triggered when a predetermined pressure difference between the evaporators is reached.

  2. Computationally intelligent pulsed photoacoustics

    NASA Astrophysics Data System (ADS)

    Lukić, Mladena; Ćojbašić, Žarko; Rabasović, Mihailo D.; Markushev, Dragan D.

    2014-12-01

    In this paper, the application of computational intelligence in pulsed photoacoustics is discussed. Feedforward multilayer perception networks are applied for real-time simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases. Networks are trained and tested with theoretical data adjusted for a given experimental set-up. Genetic optimization has been used for calculation of the same parameters, fitting the photoacoustic signals with a different number of generations. Observed benefits from the application of computational intelligence in pulsed photoacoustics and advantages over previously developed methods are discussed, such as real-time operation, high precision and the possibility of finding solutions in a wide range of parameters, similar to in experimental conditions. In addition, the applicability for practical uses, such as the real-time in situ measurements of atmospheric pollutants, along with possible further developments of obtained results, is argued.

  3. Fluid column stability in the presence of periodic accelerations

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1993-01-01

    The interface stability of fluid columns in the presence of a periodic acceleration field with a component normal to the longitudinal axis of the isothermal cylinder was investigated. Floquet theory was used in the investigation and the column was taken as infinite. The finite length case was also studied and axisymmetric and nonaxisymmetric oscillations were considered. Results for the infinite length case were good approximations to those for the finite length column.

  4. Communication Avoiding Rank Revealing QR Factorization with Column Pivoting

    DTIC Science & Technology

    2013-05-03

    parallel computer. Research performed in the recent years has shown that most of the classic algorithms in direct dense linear algebra transfer more...O(2n). A strong RRQR factorization is computed by performing first a QR factorization with column pivoting followed by additional swaps of columns...notation. At each node of the reduction tree, f(Aij) returns the first b columns obtained after performing (strong) RRQR of Aij . The input matrix Aij

  5. Residual Strength of Blast Damaged Reinforced Concrete Columns

    DTIC Science & Technology

    2010-07-01

    both reinforced concrete columns and shear walls during seismic investigations [14]. 4.2.3. Effect of longitudinal reinforcement ratio As the...Residual strength of blast damaged reinforced concrete columns Xiaoli Bao, Bing Li* School of Civil and Environmental Engineering, Nanyang...DATES COVERED - 4. TITLE AND SUBTITLE Residual strength of blast damaged reinforced concrete columns 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  6. Compact pulsed accelerator

    SciTech Connect

    Rhee, M.J.; Schneider, R.F.

    1983-01-01

    The formation of fast pulses from a current charged transmission line and opening switch is described. By employing a plasma focus as an opening switch and diode in the prototype device, a proton beam of peak energy 250 keV is produced. The time integrated energy spectrum of the beam is constructed from a Thomson spectrograph. Applications of this device as an inexpensive and portable charged particle accelerator are discussed. 7 refs., 5 figs., 1 tab.

  7. International magnetic pulse compression

    NASA Astrophysics Data System (ADS)

    Kirbie, H. C.; Newton, M. A.; Siemens, P. D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12-14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card - its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  8. Energy pulse bonding

    NASA Technical Reports Server (NTRS)

    Smith, G. C.

    1972-01-01

    To eliminate many of the present termination problems a technique called energy pulse bonding (EPB) was developed. The process demonstrated the capability of: (1) joining conductors without prior removal of insulations, (2) joining conductors without danger of brittle intermetallics, (3) increased joint temperature capability, (4) simultaneous formation of several bonds, (5) capability of higher joint density, and (6) a production oriented process. The following metals were successfully bonded in the solid state: copper, beryllium copper, phosphor bronze, aluminum, brass, and Kovar.

  9. Pulsed Power Education

    DTIC Science & Technology

    1983-06-01

    Weapons Laboratory the next day. Coordinators for the technical program are M. Kristiansen and A. Guenther , while the local coordinators are T... Guenther R. Gullickson S. Levy T. Martin R. Parker F. Rose P. Turchi I. Vitkovitsky Army Research Office Defense Advanced Research Project Agency...Present address: Physics Department Auburn University 729 1. "Introduction to Pulsed Power" A.H. Guenther -Air Force Weapons Laboratory 2.(P

  10. Pulse Portraiture: Pulsar timing

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2016-06-01

    Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

  11. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  12. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  13. International magnetic pulse compression

    SciTech Connect

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12--14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card -- its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  14. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  15. Optimum geometry of tuned liquid column-gas damper for control of offshore jacket platform vibrations under seismic excitation

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Amin; Zahrai, Seyed Mehdi; Bargi, Khosrow

    2012-12-01

    In this study, the effectiveness of a tuned liquid column-gas damper, TLCGD, on the suppression of seismicinduced vibrations of steel jacket platforms is evaluated. TLCGD is an interesting choice in the case of jacket platforms because it is possible to use the structural elements as the horizontal column of the TLCGD. The objective here is to find the optimum geometric parameters, namely orientation and configuration of vertical columns, length ratio, and area ratio of the TLCGD, considering nonlinear damping of the TLCGD and water-structure interaction between the jacket platform and sea water. The effects of different characteristics of ground motion such as PGA and frequency content on the optimum geometry are also investigated and it is observed that these features have some influence on the optimum area ratio. Finally it is observed that pulse arrangement of ground acceleration is one of the most important parameters affecting the efficiency of a TLCGD. In other words, it is found that the TLCGD's capability to reduce the RMS responses depends only on the frequency content of the ground acceleration, but its capability to reduce the maximum responses depends on both the frequency content and the pulse arrangement of the ground acceleration.

  16. Pulsed thermionic converter study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasmadynamic accelerator (MPD arc jet) is described, and the results of preliminary analyses are presented. In this system, the MPD thruster operates intermittently at higher voltages and power levels than the thermionic generating unit. A typical thrust pulse from the MPD arc jet is characterized by power levels of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. The thermionic generating unit operates continuously but with a lower power level of approximately 0.4 MWe. Energy storage between thrust pulses is provided by building up a large current in an inductor using the output of the thermionic converter array. Periodically, the charging current is interrupted, and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. The results of the preliminary analysis show that a coupling effectiveness of approximately 85 to 90% is feasible for a nominal 400 KWe system with an inductive unit suitable for a flight vehicle.

  17. Pulse structure of four pulsars.

    PubMed

    Drake, F D; Craft, H D

    1968-05-17

    The pulse structure of the four known pulsars is given. The pulse is about 38 milliseconds for the two pulsars of longest period, and within the pulsewidth three subpulses typically appear. The pulsar of next longest period typically radiates two pulses separated about 23 milliseconds in time. The one short-period pulsar emits single pulses of constant shape. The first subpulses of all pulsars have nearly the same shape. The shape of the first subpulse agrees well with the pulse shape expected from a radio-emitting sphere which is excited by a spherically expanding disturbance, and in which the radio emission, once excited, decays exponentially.

  18. MULTICHANNEL PULSE-HEIGHT ANALYZER

    DOEpatents

    Russell, J.T.; Lefevre, H.W.

    1958-01-21

    This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.

  19. Fracture Behaviour of Glass Columns Experimental Study of Axial Loaded Glass Columns

    NASA Astrophysics Data System (ADS)

    Jakab, A.; Nehme, K.; Nehme, S. G.

    2016-04-01

    Nowadays supporting structures can be transparent due to the development of glass strengthening procedures. The building glass as a versatile building material enables the efforts of the architects due to its transparency. This paper focuses on glass columns in the topic of load-bearing glasses and also on the design and load bearing capacity of fins and stability issues. Laboratory experiments were carried out at the BME, Department of Building Materials and Engineering Geology on the fracture behaviour of centrally compressed glass columns. More than 120 specimens where loaded until fracture. The load and deformations were measured. Based on the experimental results the critical force was determined and with force-deflection diagrams were illustrated the fracture and stability processes. Authors are going to compare the results of the laboratory experiments and theoretical calculations.

  20. Halo columns: new generation technology for high speed liquid chromatography.

    PubMed

    Ali, Imran; Gaitonde, Vinay D; Grahn, Anders

    2010-01-01

    Fast speed and high sample loading and the pressing demands of industries and researchers are compelling scientists and manufacturers to explore the new horizons in column technology. Recently, superficially porous silica particle columns are manufactured with some salient features such as super fast speed, sharp peaks, good sample loading, and low backpressure. The commercially available columns are Halo (Advanced Material Technology, Wilmington, DE), Express (Supelco, Bellefonte, PA), and Proshell 120 (Agilent, Santa Clara, CA). Halo columns are of C(8), C(18), RP Amide, and HILIC types with 2.7 microm over all diameters, 0.5 microm porous thick layers containing 90 A as pore diameter, and 150 m(2)/g surface area. These columns have been used for fast separation of low molecular weight compounds with some exception for large molecules such as protein, peptides, and DNA. The present article describes the importance of these state-of-the-art superficially porous silica particles based columns with special emphasis on Halo columns. The different aspects of these columns such as structures, mechanism of separations, applications, and comparison, with conventional columns have been discussed.

  1. 13. Detail showing canopy at southeast corner; note single column ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail showing canopy at southeast corner; note single column supporting structure - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  2. Monolithic capillary columns based on pentaerythritol tetraacrylate for peptide analysis

    NASA Astrophysics Data System (ADS)

    Kucherenko, E. V.; Melnik, D. M.; Korolev, A. A.; Kanateva, A. Yu.; Pirogov, A. V.; Kurganov, A. A.

    2015-09-01

    Monolythic medium-polar capillary columns based on pentaerythritol tetraacrylate were optimized for separation of peptides. The synthesis temperature and time, the fraction of monomer in the initial polymerization mixture, and the nature of alcohol contained in the complex porogen were chosen as optimization parameters. The highest efficiency was attained for columns obtained with 33 and 34% monomer at a polymerization time of 75 min and a temperature of 75°C. The columns with the optimum structure were effective in separation of a model mixture of five peptides. The sensitivity of the method was 200 ng of peptide per column.

  3. 10. COLUMN/BEAM CONNECTION DETAIL. VIEW TO NORTHWEST. Commercial & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. COLUMN/BEAM CONNECTION DETAIL. VIEW TO NORTHWEST. - Commercial & Industrial Buildings, Key City Electric Street Railroad, Powerhouse & Storage Barn, Eighth & Washington Streets, Dubuque, Dubuque County, IA

  4. Stability of leaning column at Devils Tower National Monument, Wyoming

    USGS Publications Warehouse

    Harp, Edwin L.; Lindsay, Charles R.

    2006-01-01

    In response to reports from climbers that an 8-meter section (referred to as the leaning column) of the most popular climbing route on Devils Tower in northeastern Wyoming is now moving when being climbed, scientists from the U.S. Geological Survey inspected the site to determine the stability of the column and the underlying column that serves as a support pedestal. Evidence of a recent tensile spalling failure was observed on the pedestal surface immediately beneath the contact with the overlying leaning column. The spalling of a flake-shaped piece of the pedestal, probably due to the high stress concentration exerted by the weight of the leaning column along a linear contact with the pedestal, is likely causing the present movement of the leaning column. Although it is unlikely that climbers will dislodge the leaning column by their weight alone, the possibility exists that additional spalling failures may occur from the pedestal surface and further reduce the stability of the leaning column and result in its toppling. To facilitate detection of further spalling failures from the pedestal, its surface has been coated with a layer of paint. Any new failures from the pedestal could result in the leaning column toppling onto the climbing route or onto the section of the Tower trail below.

  5. In-plant testing of microbubble column flotation

    SciTech Connect

    Luttrell, G.H.; Mankosa, M.J.; Adel, G.T.; Yoon, R.H.

    1990-01-01

    This report describes progress in two areas: advanced instrumentation and column installation. The project is working with both 30-inch and 8-foot columns for coal flotation. The paper describes installation of the instrument package, the control loops, and the data acquisition system. Under the second area of study, a test plan was developed for a parametric study of the 8-foot column operating conditions (feed flow rate, gas flow rate, wash water flow rate, and froth addition) that were determined to influence separation efficiency on the 30-inch column. Results to date are discussed. 7 refs., 4 tabs. (CK)

  6. 15. FIRST FLOOR WAREHOUSE SPACE, SHOWING COLUMN / BEAM CONNECTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. FIRST FLOOR WAREHOUSE SPACE, SHOWING COLUMN / BEAM CONNECTION. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA

  7. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  8. Boston Column Network: Compact Solar-Tracking Spectrometers and Differential Column Measurements

    NASA Astrophysics Data System (ADS)

    Chen, J.; Samra, J.; Gottlieb, E.; Budney, J.; Daube, C.; Daube, B. C.; Hase, F.; Gerbig, C.; Chance, K.; Wofsy, S. C.

    2014-12-01

    In urban environments, the surface concentration is influenced by both the dynamics of the planetary boundary layer (PBL) height and by emissions. Path-integrated measurements that integrate through the entire mixed layer are valuable complements to surface data, compatible with the scale of the atmospheric models and therefore help reduce the representation errors in data assimilation studies of surface emission rates. Here we present a ground-based column sensor network in metro Boston. The network extends the existing surface sensor network to the vertical dimension in order to help quantify the concentration gradients across a city using a differential strategy: by measuring the "total column" of greenhouse gases (CO2, CH4, H2O etc.) and pollutants (NO2, O3, CH2O etc.) simultaneously inside and upwind of the urban core. Each stationary network site has a Fourier transform infrared spectrometer (Bruker, EM27Sun), a UV-visible grating spectrometer (Pandora) and a LIDAR (Sigma Space, Mini MPL) to provide PBL height. Two EM27Sun Fourier transform spectrometers at fixed locations are complemented by our self-developed solar-tracking Fourier transform spectrometer (Nicolet) to be used as a mobile unit to acquire cross-sectional slices of total column burdens across the urban dome. In additional to O2, CO2, CH4, H2O measurements, this system is also capable of measuring CO and N2O. This compact, inexpensive instrument uses a diffuser as a part of the tracking optics, which results in a rugged and simplified system. A novel camera-based active tracking schema is developed: the sun image on the diffuser is always regulated to the same position to ensure an accurate tracking. In this paper we will show comparisons between the self-developed solar-tracking system and the commercial Bruker EM27Sun. In addition, initial data for the retrieved column concentrations in and outside of the Boston urban dome will be presented.

  9. Petawatt pulsed-power accelerator

    SciTech Connect

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  10. Pulsed laser beam intensity monitor

    SciTech Connect

    Cason, C.M.; Jones, R.W.

    1982-07-13

    A pulsed laser beam intensity monitor measures the peak power within a selectable cross section of a test laser beam and measures integrated energy of the beam during the pulse period of a test laser. A continuous wave laser and a pulsed ruby laser are coaxially arranged for simultaneously transmitting optical output energy through a crystal flat during the time a test laser pulse is transmitted through the flat. Due to stress birefringence in the crystal, the ruby laser pulse transmitted through the flat is recorded and analyzed to provide peak power information about the test laser output pulse, and the continuous wave laser output reflected from the crystal flat provides a measurement of energy during the test laser pulse.

  11. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  12. High frequency pulsed electromigration

    NASA Astrophysics Data System (ADS)

    Malone, David Wayne

    Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of

  13. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  14. Dynamic Stabilization of Atmospheric Single Column Models.

    NASA Astrophysics Data System (ADS)

    Bergman, John W.; Sardeshmukh, Prashant D.

    2004-03-01

    Single column models (SCMs) provide an economical framework for assessing the sensitivity of atmospheric temperature and humidity to natural and imposed perturbations, and also for developing improved representations of diabatic processes in weather and climate models. Their economy is achieved at the expense of ignoring interactions with the circulation dynamics; thus, advection by the large-scale flow is either prescribed or neglected. This artificial decoupling of the diabatic and adiabatic tendencies can often cause rapid error growth in SCM integrations, especially in the Tropics where large-scale vertical advection is important. As a result, SCMs can quickly develop highly unrealistic thermodynamic structures, making it pointless to study their subsequent evolution.This paper suggests one way around this fundamental difficulty through a simple coupling of the diabatic and adiabatic tendencies. In essence, the local vertical velocity at any instant is specified by a formula that links the local vertical temperature advection to the evolution of SCM-generated diabatic heating rates up to that instant. This vertical velocity is then used to determine vertical humidity advection, and also horizontal temperature and humidity advection under an additional assumption that the column is embedded in a uniform environment. The parameters in the formula are estimated in a separate set of calculations, from the approach to equilibrium of a linearized global primitive equation model forced by steady heat sources. As a test, the parameterized dynamics are used to predict the linear model's local response to oscillating heat sources, and found to perform remarkably well over a wide range of space and time scales. In a second test, the parameterization is found to capture important aspects of a general circulation model's vertical advection and temperature tendencies and their lead lag relationships with diabatic heating fluctuations at convectively active locations in the

  15. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    NASA Astrophysics Data System (ADS)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  16. Numerical method for the estimation of column radial heterogeneity and of the actual column efficiency from tailing peak profiles.

    PubMed

    Miyabe, Kanji; Guiochon, Georges

    2011-01-01

    It is probably impossible to prepare high-performance liquid chromatography (HPLC) columns that have a completely homogeneous packing structure. Many reports in the literature show that the radial distributions of the mobile phase flow velocity and the local column efficiency are not flat, even in columns considered as good. A degree of radial heterogeneity seems to be a common property of all HPLC columns and an important source of peak tailing, which prevents the derivation of accurate information on chromatographic behavior from a straightforward analysis of elution peak profiles. This work reports on a numerical method developed to derive from recorded peak profiles the column efficiency at the column center, the degree of column radial heterogeneity, and the polynomial function that best represents the radial distributions of the flow velocity and the column efficiency. This numerical method was applied to two concrete examples of tailing peak profiles previously described. It was demonstrated that this numerical method is effective to estimate important parameters characterizing the radial heterogeneity of chromatographic columns.

  17. Column studies on BTEX biodegradation under microaerophilic and denitrifying conditions

    SciTech Connect

    Hutchins, S.R.; Moolenaar, S.W.; Rhodes, D.E.

    1992-01-01

    Two column tests were conducted using aquifer material to simulate the nitrate field demonstration project carried out earlier at Traverse City, Michigan. The objectives were to better define the effect nitrate addition had on biodegradation of benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes (BTEX) in the field study, and to determine whether BTEX removal can be enhanced by supplying a limited amount of oxygen as a supplemental electron acceptor. Columns were operated using limited oxygen, limited oxygen plus nitrate, and nitrate alone. In the first column study, benzene was generally recalcitrant compared to the alkylbenzenes (TEX), although some removal did occur. The average benzene breakthroughs were 74.3 + or - 5.8%, 75.9 + or - 12.1%, and 63.1 + or - 9.6% in the columns with limited oxygen, limited oxygen plus nitrate, and nitrate alone, respectively, whereas the corresponding average effluent TEX breakthroughs were 22.9 + or - 2.3%, 2.9 + or - 1.1%, and 4.3 + or - 3.3%. In the second column study, nitrate was deleted from the feed to the column originally receiving nitrate alone and added to the feed of the column originally receiving limited oxygen alone. Benzene breakthrough was similar for each column. Breakthrough of TEX decreased by an order of magnitude once nitrate was added to the microaerophilic column, whereas TEX breakthrough increased by 50-fold once nitrate as removed from the denitrifying column. Although the requirement for nitrate for optimum TEX removal was clearly demonstrated in these columns, there were significant contributions by biotic and abiotic processes other than denitrification which could not be quantified.

  18. GPR Diagnostics of columns in archaeological contexts

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Masini, Nicola; Persico, Raffaele; Catapano, Ilaria

    2017-04-01

    In the last decade the use of Ground Penetrating radar (GPR) applied to cultural heritage has been strongly increasing thanks to both technological development of sensors and softwares for data processing and cultural reasons such as the increasing awareness of conservators and archaeologist of the benefits of this method in terms of reduction of costs and time and risk associated with restoration works. This made GPR a mature technique for investigating different types of works of art and building elements of historical interest, including masonry structures, frescoes, mosaics [1-3], in the context of scientific projects, decision support activities aimed at the diagnosis of decay pathologies, and educational activities. One of the most complex building elements to be investigated by GPR are the columns both for the geometry of the object and for the several expected features to be detected including fractures, dishomogeneities and metallic connection elements. The work deals with the Ground Penetrating Radar diagnostic surveys at the prestigious archaeological site of Pompei. In particular, GPR surveys were carried out in two different areas, Palestra Grande and Tempio di Giove. The first campaign was carried out also as educational activity of the "International School "GEOPHYSICS AND REMOTE SENSING FOR ARCHAEOLOGY". The School aimed at giving the opportunity to scholars, PhD students, researchers and specialists in Geophysics, Remote Sensing and Archaeology to deepen their knowledge and expertise with geophysical and remote sensing techniques for archaeology and cultural heritage documentation and management. This survey was carried on two kinds of columns, with circular and rectangular section in order to detect possible hidden defects affecting their integrity. The second survey was carried out at Tempio di Giove, on request of the Soprintendenza Pompei, in order to gain information about the presence of reinforcement structures, which may be put inside the

  19. Kelvin waves in total column ozone

    NASA Astrophysics Data System (ADS)

    Ziemke, J. R.; Stanford, J. L.

    1994-01-01

    Tropical Kelvin waves have been observed previously in ozone mixing ratio data from the SBUV (Solar Backscatter Ultraviolet) and LIMS (Limb Infrared Monitor of the Stratosphere) instruments on board the Nimbus-7 satellite. The present study investigates Kelvin wave features in total column ozone, using version 6 data from the Total Ozone Mapping Spectrometer (TOMS) instrument (also on Nimbus-7). Results show eastward-propagating zonal waves 1-2 with periods approx. 5-15 days, amplitudes approx. 3-5 Dobson Units (1-2% of the time mean), and latitudinal symmetry typical of Kelvin waves. The analyses and a linear model in this study suggest that the primary source of the perturbations is slow Kelvin waves in the lower-to-middle stratosphere. Maximum Kelvin wave signatures occur in conjunction with westward lower-to-middle stratospheric equatorial zonal winds (a quasi-biennial oscillation (QBO) wind modulation effect). The significance of these results is that the TOMS data are shown to be useful for investigations with global coverage of a major component of tropical stratospheric dynamics, Kelvin waves. The TOMS data set with its excellent coverage and high quality should be useful in validating model studies in the relatively data sparse and dynamically difficult tropical region.

  20. SPR Hydrostatic Column Model Verification and Validation.

    SciTech Connect

    Bettin, Giorgia; Lord, David; Rudeen, David Keith

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  1. Kelvin waves in total column ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Stanford, J. L.

    1994-01-01

    Tropical Kelvin waves have been observed previously in ozone mixing ratio data from the SBUV (Solar Backscatter Ultraviolet) and LIMS (Limb Infrared Monitor of the Stratosphere) instruments on board the Nimbus-7 satellite. The present study investigates Kelvin wave features in total column ozone, using version 6 data from the Total Ozone Mapping Spectrometer (TOMS) instrument (also on Nimbus-7). Results show eastward-propagating zonal waves 1-2 with periods approx. 5-15 days, amplitudes approx. 3-5 Dobson Units (1-2% of the time mean), and latitudinal symmetry typical of Kelvin waves. The analyses and a linear model in this study suggest that the primary source of the perturbations is slow Kelvin waves in the lower-to-middle stratosphere. Maximum Kelvin wave signatures occur in conjunction with westward lower-to-middle stratospheric equatorial zonal winds (a quasi-biennial oscillation (QBO) wind modulation effect). The significance of these results is that the TOMS data are shown to be useful for investigations with global coverage of a major component of tropical stratospheric dynamics, Kelvin waves. The TOMS data set with its excellent coverage and high quality should be useful in validating model studies in the relatively data sparse and dynamically difficult tropical region.

  2. Movement of Endotoxin Through Soil Columns

    PubMed Central

    Goyal, Sagar M.; Gerba, Charles P.; Lance, J. Clarence

    1980-01-01

    Land treatment of wastewater is an attractive alternative to conventional sewage treatment systems and is gaining widespread acceptance. Although land application systems prevent surface water pollution and augment the available water supplies, the potential dangers to human health should be evaluated. Since sewage may contain high amounts of bacterial endotoxin, the removal of endotoxin from sewage by percolation through soil was investigated. It was found that 90 to 99% of the endotoxin was removed after travel of sewage through 100 to 250 cm of loamy sand soil. When distilled water was allowed to infiltrate into the soil to simulate rainfall, the endotoxin was mobilized and moved in a concentrated band through the soil column. On testing samples from actual land treatment sites, as much as 480 ng of endotoxin per milliliter was found in some groundwater samples. The presence of endotoxin in potable water is known to be a potential problem under some circumstances, but the importance of endotoxin in water supplies has not been fully assessed. Therefore, the design, operation, and management of land application systems should take into account the fate of endotoxin in groundwater beneath the sites. PMID:7387154

  3. Stirring a slightly magnetized column of plasma

    NASA Astrophysics Data System (ADS)

    Désangles, Victor; Bousselin, Guillaume; Poyé, Alexandre; Moulin, Marc; de Poucques, Ludovic; Plihon, Nicolas; Physique statistique, Hydrodynamique, Non-Linéarités Team; Département Chimie et Physique des Solides et des Surfaces Team

    2016-10-01

    The von-Kàrmàn plasma experiment (VKP) is a cylindrical, low pressure, high density plasma experiment which confines the plasma thanks to an axial magnetic field. Currents are radially driven between a hot emissive cathode and an anode which apply a Lorentz force on the plasma together with the magnetic field. We demonstrate that current driven radially sets the plasma into rotation. LIF technique at 668.43 nm as well as Mach probes measurements have been developed and used in different regimes in order to measure the velocity of plasma and relate it to the current driven between the electrodes. The LIF signal shows an important widening which corresponds to doppler shift effect due to the velocity of the ions. This widening can be related to the Mach probes signals. In the long term views, each end of the plasma column will be rotating in an opposite direction, such as to create a large shear-layer, resulting in a von-Kàrmàn-type flow.

  4. Seismogenic frictional melting in the magmatic column

    NASA Astrophysics Data System (ADS)

    Kendrick, J. E.; Lavallée, Y.; Hess, K.-U.; De Angelis, S.; Ferk, A.; Gaunt, H. E.; Meredith, P. G.; Dingwell, D. B.; Leonhardt, R.

    2014-04-01

    Lava dome eruptions subjected to high extrusion rates commonly evolve from endogenous to exogenous growth and limits to their structural stability hold catastrophic potential as explosive eruption triggers. In the conduit, strain localisation in magma, accompanied by seismogenic failure, marks the onset of brittle magma ascent dynamics. The rock record of exogenous dome structures preserves vestiges of cataclastic processes and thermal anomalies, key to unravelling subsurface processes. Here, a combined structural, thermal and magnetic investigation of a shear band crosscutting a large block erupted in 2010 at Soufrière Hills volcano (SHV) reveals evidence of faulting and frictional melting within the magmatic column. The mineralogy of this pseudotachylyte vein offers confirmation of complete recrystallisation, altering the structure, porosity and permeability of the material, and the magnetic signature typifies local electric currents in faults. Such melting events may be linked to the step-wise extrusion of magma accompanied by repetitive long-period (LP) drumbeat seismicity at SHV. Frictional melting of Soufrière Hills andesite in a high velocity rotary shear apparatus highlights the small slip distances (< 15 cm) thought to be required to bring 800 °C magma to melting point at upper conduit stress conditions (10 MPa). We conclude that frictional melting is a common consequence of seismogenic magma fracture during dome building eruptions and that it may govern the ascent of magma in the upper conduit.

  5. Seismogenic frictional melting in the magmatic column

    NASA Astrophysics Data System (ADS)

    Kendrick, J. E.; Lavallée, Y.; Hess, K.-U.; De Angelis, S.; Ferk, A.; Gaunt, H. E.; Dingwell, D. B.; Leonhardt, R.

    2013-10-01

    Lava dome eruptions subjected to high extrusion rates commonly evolve from endogenous to exogenous growth and limits to their structural stability hold catastrophic potential as explosive eruption triggers. In the conduit, strain localisation in magma, accompanied by seismogenic failure, marks the onset of brittle magma ascent dynamics. The rock record of exogenous dome structures preserves vestiges of cataclastic processes (Cashman et al., 2008; Kennedy and Russell, 2011) and of thermal anomalies (Kendrick et al., 2012), key to unravelling subsurface processes. Here, a combined structural, thermal and magnetic investigation of a shear band crosscutting a large block erupted in 2010 at Soufrière Hills volcano (SHV) reveals evidence of faulting and frictional melting within the magmatic column. The mineralogy of this pseudotachylyte vein offers confirmation of complete recrystallisation with an isothermal remanent magnetisation signature that typifies local electric currents in faults. The pseudotachylyte presents an impermeable barrier, which is thought to have influenced the degassing pathway. Such melting events may be linked to the step-wise extrusion of magma accompanied by repetitive long-period (LP) drumbeat seismicity at SHV (Neuberg et al., 2006). Frictional melting of SHV andesite in a high velocity rotary shear apparatus highlights the small slip distances (< 15 cm) required to bring 800 °C magma to melting point at upper conduit stress conditions (10 MPa). We conclude that frictional melting is an inevitable consequence of seismogenic, conduit-dwelling magma fracture during dome building eruptions and that it may have an important influence on magma ascent dynamics.

  6. Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas

    SciTech Connect

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-12-15

    Two different experiments involving pressure gradients across the confinement magnetic field in a large plasma column are found to exhibit a broadband turbulence that displays an exponential frequency spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. In both experiments the width of the pulses is narrowly distributed resulting in exponential spectra with a single characteristic time scale. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. The experiments are performed in the Large Plasma Device (LAPD-U) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. One experiment involves a controlled, pure electron temperature gradient associated with a microscopic (6 mm gradient length) hot electron temperature filament created by the injection a small electron beam embedded in the center of a large, cold magnetized plasma. The other experiment is a macroscopic (3.5 cm gradient length) limiter-edge experiment in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. The temperature filament experiment permits a detailed study of the transition from coherent to turbulent behavior and the concomitant change from classical to anomalous transport. In the limiter experiment the turbulence sampled is always fully developed. The similarity of the results in the two experiments strongly suggests a universal feature of pressure-gradient driven turbulence in magnetized plasmas that results in nondiffusive cross-field transport. This may explain previous observations in helical confinement devices, research tokamaks, and arc plasmas.

  7. High current transistor pulse generator

    SciTech Connect

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs.

  8. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  9. High current transistor pulse generator

    SciTech Connect

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs.

  10. Microwave and Pulsed Power

    SciTech Connect

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  11. Microwave and pulsed power

    NASA Astrophysics Data System (ADS)

    Freytag, E. K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO(x) from various effluent sources. We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  12. Polyimide polymer glass-free capillary columns for gas chromatography.

    PubMed

    Webster, Jackie G; Marine, Susan S; Danielson, Neil D

    2011-01-01

    Polymeric polyimide capillary tubing, both uncoated and coated with stationary phases of two polarities, is explored for use as capillary columns for gas chromatography (GC). These glass-free polyimide columns are flexible and their small winding diameter of less than a cm around a solid support makes them compatible for potential use in portable GC instruments. Polyimide columns with dimensions of 0.32 mm i.d. × 3 m are cleaned, annealed at 300°C, and coated using the static method with phenylmethylsilicone (PMS). Separations of volatile organics are investigated isothermally on duplicate sets of polyimide columns by GC with a flame ionization detector using split injection. Unlike the uncoated ones, the coated polyimide columns successfully separate Grob test mix classes of alkanes, amines, and fatty acid methyl esters. The relative standard deviations for retention time and peak area are 0.5 and 2.5 , respectively. With the 3 m PMS-coated column connected to a retention gap to permit operation at its optimum flow rate of 30 cm/s, a plate count of 3200 or plate height of 1 mm is possible. Lack of retention and tailing peaks are evident for the polyimide polymer capillary columns as compared to that of a 3 m commercial cross-linked PMS fused silica capillary. However, headspace analyses of an aromatic hydrocarbon mix and a Clearcoat automotive paint sample are viable applications on the PMS polyimide polymer column.

  13. Taxicab Correspondence Analysis of Contingency Tables with One Heavyweight Column

    ERIC Educational Resources Information Center

    Choulakian, V.

    2008-01-01

    The aim of this paper is to study the analysis of contingency tables with one heavyweight column or one heavyweight entry by taxicab correspondence analysis (TCA). Given that the mathematics of TCA is simpler than the mathematics of correspondence analysis (CA), the influence of one heavyweight column on the outputs of TCA is studied explicitly…

  14. A Better Method for Filling Pasteur Pipet Chromatography Columns

    ERIC Educational Resources Information Center

    Ruekberg, Ben

    2006-01-01

    An alternative method for the preparation of Pasteur pipet chromatography columns is presented that allows the column to be filled with solvent without bubbles and allows greater control of fluid flow while the materials to be separated are added. Students are required to wear gloves and goggles and caution should be used while handling glass…

  15. A Better Method for Filling Pasteur Pipet Chromatography Columns

    ERIC Educational Resources Information Center

    Ruekberg, Ben

    2006-01-01

    An alternative method for the preparation of Pasteur pipet chromatography columns is presented that allows the column to be filled with solvent without bubbles and allows greater control of fluid flow while the materials to be separated are added. Students are required to wear gloves and goggles and caution should be used while handling glass…

  16. Stationary phases for packed-column supercritical fluid chromatography.

    PubMed

    Poole, Colin F

    2012-08-10

    The properties of silica-based, chemically bonded, packed column stationary phases used in supercritical fluid chromatography are described with a focus on column design and retention mechanisms. Supercritical fluid chromatography has benefited substantially from innovations in column design for liquid chromatography even if the separation conditions employed are generally quite different. The mobile phase composition and column operating conditions play an interactive role in modifying selectivity in supercritical fluid chromatography by altering analyte solubility in the mobile phase and through selective solvation of the stationary phase resulting in a wider range and intensity of intermolecular interactions with the analyte. The solvation parameter model is used to identify the main parameters that affect retention in supercritical fluid chromatography using carbon dioxide-methanol as a mobile phase and as a basis for column characterization to facilitate the identification of stationary phases with different separation characteristics for method development. As a caution it is pointed out that these column characterization methods are possibly a product of both the stationary phase chemistry and the column operating conditions and are suitable for use only when columns of similar design and with similar operating conditions are used.

  17. Exploring the Sulfur Nutrient Cycle Using the Winogradsky Column

    ERIC Educational Resources Information Center

    Rogan, Brian; Lemke, Michael; Levandowsky, Michael; Gorrell, Thomas

    2005-01-01

    The Winogradsky column demonstrates how the metabolic diversity of prokaryotes transforms sulfur to different forms with varying redox states and hence, supplies nutrients and/or energy to the organism. The Winogardsky column is an excellent way to show that not all bacteria are pathogens and they have an important role in the geochemical cycling…

  18. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

  19. Taxicab Correspondence Analysis of Contingency Tables with One Heavyweight Column

    ERIC Educational Resources Information Center

    Choulakian, V.

    2008-01-01

    The aim of this paper is to study the analysis of contingency tables with one heavyweight column or one heavyweight entry by taxicab correspondence analysis (TCA). Given that the mathematics of TCA is simpler than the mathematics of correspondence analysis (CA), the influence of one heavyweight column on the outputs of TCA is studied explicitly…

  20. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of...

  1. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of...

  2. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of...

  3. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of...

  4. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Beams and columns. 1926.756 Section 1926.756 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.756 Beams and columns. (a.... (2) A competent person shall determine if more than two bolts are necessary to ensure the stability...

  5. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of...

  6. An Automated Distillation Column for the Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Perkins, Douglas M.; Bruce, David A.; Gooding, Charles H.; Butler, Justin T.

    2005-01-01

    A batch distillation apparatus has been designed and built for use in the undergraduate unit operations laboratory course. The column is fully automated and is accompanied by data acquisition and control software. A mixture of 1­-propanol and 2-­propanol is separated in the column, using either a constant distillate rate or constant composition…

  7. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

  8. An Automated Distillation Column for the Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Perkins, Douglas M.; Bruce, David A.; Gooding, Charles H.; Butler, Justin T.

    2005-01-01

    A batch distillation apparatus has been designed and built for use in the undergraduate unit operations laboratory course. The column is fully automated and is accompanied by data acquisition and control software. A mixture of 1­-propanol and 2-­propanol is separated in the column, using either a constant distillate rate or constant composition…

  9. Photochemical migration of liquid column in a glass tube

    NASA Astrophysics Data System (ADS)

    Muto, M.; Ayako, Y.; Yamamoto, K.; Yamamoto, M.; Kondo, Y.; Motosuke, M.

    2017-04-01

    A light-induced migration of liquid columns in a 2.5-mm glass capillary by photochemical isomerization was demonstrated. The isomerization of a surfactant AZTMA, which was added into ultrapure water, occurred by irradiating UV or visible light and results in the surface tension of the liquid. By utilizing this effect, the column manipulation was performed by irradiating the UV light to a half portion of the liquid column so that liquid-gas interface at two column ends had different surface tension dye to the photochemical isomerization. As a result, the migration of the columns generated by a difference in the Laplace pressure at two ends was observed. The columns firstly advanced at constant speeds depending on their lengths and then decelerated by mixing of isomers in the columns. Moreover, it was found that shorter the column length, higher the mobility. This characteristic was explained by the viscous friction, which counteracted the driving force, and the Marangoni convection in the vicinity of the interface.

  10. Photochemical migration of liquid column in a glass tube

    NASA Astrophysics Data System (ADS)

    Muto, M.; Ayako, Y.; Yamamoto, K.; Yamamoto, M.; Kondo, Y.; Motosuke, M.

    2016-09-01

    A light-induced migration of liquid columns in a 2.5-mm glass capillary by photochemical isomerization was demonstrated. The isomerization of a surfactant AZTMA, which was added into ultrapure water, occurred by irradiating UV or visible light and results in the surface tension of the liquid. By utilizing this effect, the column manipulation was performed by irradiating the UV light to a half portion of the liquid column so that liquid-gas interface at two column ends had different surface tension dye to the photochemical isomerization. As a result, the migration of the columns generated by a difference in the Laplace pressure at two ends was observed. The columns firstly advanced at constant speeds depending on their lengths and then decelerated by mixing of isomers in the columns. Moreover, it was found that shorter the column length, higher the mobility. This characteristic was explained by the viscous friction, which counteracted the driving force, and the Marangoni convection in the vicinity of the interface.

  11. COLUMN EXPERIMENTS AND ANOMALOUS CONDUCTIVITY IN HYDROCARBON-IMPACTED SOILS

    EPA Science Inventory

    A laboratory experiment was designed to increase the understanding of the geoelectric effects of microbial " degradation of hydrocarbons. Eight large columns were were paired to provide a replicate of each of four experiments. These large-volume columns contained "sterilized" soi...

  12. Column compression strength of tubular packaging forms made from paper

    Treesearch

    Thomas J. Urbanik; Sung K. Lee; Charles G. Johnson

    2006-01-01

    Tubular packaging forms fabricated and shaped from rolled paper are used as reinforcing corner posts for major appliances packaged in corrugated containers. Tests of column compression strength simulate the expected performance loads from appliances stacked in warehouses. Column strength depends on tube geometry, paper properties, basis weight, and number of...

  13. 45. GROUND FLOOR OF 1852 WING LOOKING WEST. COLUMNS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. GROUND FLOOR OF 1852 WING LOOKING WEST. COLUMNS IN RIGHT FOREGROUND ORIENTED 90 TO NEW WING; COLUMNS IN BACKGROUND ORIENTED 90 TO EARLIER 1814-16-43 WING. - Boston Manufacturing Company, 144-190 Moody Street, Waltham, Middlesex County, MA

  14. COLUMN EXPERIMENTS AND ANOMALOUS CONDUCTIVITY IN HYDROCARBON-IMPACTED SOILS

    EPA Science Inventory

    A laboratory experiment was designed to increase the understanding of the geoelectric effects of microbial " degradation of hydrocarbons. Eight large columns were were paired to provide a replicate of each of four experiments. These large-volume columns contained "sterilized" soi...

  15. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural members...

  16. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural members...

  17. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural members...

  18. Twisting of thin walled columns perfectly restrained at one end

    NASA Technical Reports Server (NTRS)

    Lazzarino, Lucio

    1938-01-01

    Proceeding from the basic assumptions of the Batho-Bredt theory on twisting failure of thin-walled columns, the discrepancies most frequently encountered are analyzed. A generalized approximate method is suggested for the determination of the disturbances in the stress condition of the column, induced by the constrained warping in one of the end sections.

  19. Exploring the Sulfur Nutrient Cycle Using the Winogradsky Column

    ERIC Educational Resources Information Center

    Rogan, Brian; Lemke, Michael; Levandowsky, Michael; Gorrell, Thomas

    2005-01-01

    The Winogradsky column demonstrates how the metabolic diversity of prokaryotes transforms sulfur to different forms with varying redox states and hence, supplies nutrients and/or energy to the organism. The Winogardsky column is an excellent way to show that not all bacteria are pathogens and they have an important role in the geochemical cycling…

  20. Dual low thermal mass gas chromatography-mass spectrometry for fast dual-column separation of pesticides in complex sample.

    PubMed

    Sasamoto, Kikuo; Ochiai, Nobuo; Kanda, Hirooki

    2007-07-31

    A method is described for fast dual-column separation of pesticides by use of dual low thermal mass gas chromatography-mass spectrometry (dual LTM-GC-MS) with different temperature programming. The method can provide two total ion chromatograms with different separation on DB-5 and DB-17 in a single run, which allows improved identification capability, even with short analysis time (<17 min). Also simultaneous detection with MS and elemental selective detector, e.g. pulsed flame photometric detection (PFPD) was evaluated for fast dual-column separation of 82 pesticide mixtures including 27 phosphorus pesticides. Dual LTM-GC-MS/PFPD was applied to analysis of pesticides in a brewed green tea sample with dual stir bar sorptive extraction method (dual SBSE).