Sample records for pulse combustion

  1. Pulse enhanced fluidized bed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, B.

    1996-12-31

    Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.

  2. Stably operating pulse combustor and method

    DOEpatents

    Zinn, Ben T.; Reiner, David

    1990-01-01

    A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

  3. APPLICATION OF PULSE COMBUSTION TO SOLID AND HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    The paper discusses the application of pulse combustion to solid and hazardous waste incineration. otary kiln incinerator simulator was retrofitted with a frequency-tunable pulse combustor to enhance the efficiency of combustion. he pulse combustor excites pulsations in the kiln ...

  4. Stably operating pulse combustor and method

    DOEpatents

    Zinn, B.T.; Reiner, D.

    1990-05-29

    A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

  5. SONOTECH, INC. FREQUENCY-TUNABLE PULSE COMBUSTION SYSTEM (CELLO PULSE BURNER) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Sonotech, Inc. (Sonotech) of Atlanta, Georgia, has developed a pulse combustion burner technology that claims to offer benefits when applied in a variety of combustion processes. The technology incorporates a combustor that can be tuned to induce large-amplitude acoustic or soni...

  6. In-water gas combustion for thrust production

    NASA Astrophysics Data System (ADS)

    Teslenko, V. S.; Drozhzhin, A. P.; Medvedev, R. N.

    2017-07-01

    The paper presents the results of experimental study for hydrodynamic processes occurring during combustion of a stoichiometric mixture propane-oxygen in combustion chambers with different configurations and submerged into water. The pulses of force acting upon a thrust wall were measured for different geometries: cylindrical, conic, hemispherical, including the case of gas combustion near a flat thrust wall. After a single charge of stoichiometric mixture propane-oxygen is burnt near the thrust wall, the process of cyclic generation of force pulses develops. The first pulse is generated due to pressure growth during gas combustion, and the following pulses are the result of hydrodynamic pulsations of the gaseous cavity. Experiments demonstrated that efficient generation of thrust occurs if all bubble pulsations are used during combustion of a single gas combustion. In the series of experiments, the specific impulse on the thrust wall was in the range 104-105 s (105-106 m/s) with account for positive and negative components of impulse.

  7. Pulse combustor with controllable oscillations

    DOEpatents

    Richards, George A.; Welter, Michael J.; Morris, Gary J.

    1992-01-01

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  8. Experimental gas-fired pulse-combustion studies

    NASA Technical Reports Server (NTRS)

    Blomquist, C. A.

    1982-01-01

    Experimental studies conducted at Argonne National Laboratory on a gas-fired, water-cooled, Helmholtz-type pulse combustion burner are discussed. In addition to the experimental work, information is presented on the evolution of pulse combustion, the types of pulse combustion burners and their applications, and the types of fuels used. Also included is a survey of other pertinent studies of gas-fired pulse combustion. The burner used in the Argonne research effort was equipped with adjustable air and gas flapper valves and was operated stably over a heat-input range of 30,000 to 200,000 Btu/h. The burner's overall heat transfer in the pulsating mode was 22 to 31% higher than when the unit was operated in the steady mode. Important phenomena discussed include (1) effects on performance produced by inserting a corebustor to change tailpipe diameter, (2) effects observed following addition of an air-inlet decoupling chamber to the unit, and (3) occurrence of carbon monoxide in the exhaust gas.

  9. The Reduction of NOx Using Pulsed Electron Beams

    DTIC Science & Technology

    2015-12-30

    flue gas (SFG) is described. The SFG is a simulant for exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed electron...a surrogate flue gas (SFG) is described. The SFG simulates exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed...temperature combustion in air-breathing engines and coal power plants. The gases are also produced in nature during thunderstorms by lightning

  10. Pulse combustion engineering research laboratory for indirect heating applications (PERL-IH). Final report, October 1, 1989-June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, F.E.

    1993-01-01

    Uncontrolled NOx emissions from a variety of pulse combustors were measured. The implementation of flue-gas recirculation to reduce NOx was studied. A flexible workstation for parametric testing was built and used to study the phasing between pressure and heat release, and effects of fuel/air mixing on performance. Exhaust-pipe heat transfer was analyzed. An acoustic model of pulse combustion was developed. Technical support was provided to manufacturers on noise, ignition and condensation. A computerized bibliographic database on pulse combustion was created.

  11. DEMONSTRATION BULLETIN: CELLO PULSE COMBUSTION BURNER SYSTEM/SONOTECH INC.

    EPA Science Inventory

    Sonotech, Inc. (Sonotech), of Atlanta, GA, the developer of the Cello® pulse combustion burner, claims that its burner system can be beneficial to a variety of combustion processes. The system incorporates a combustor that can be tuned to induce large amplitude sonic pulsation...

  12. An Investigation of Fully Modulated, Turbulent Diffusion Flames in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Usowicz, J. E.; Sangras, R.; Stocker, D. P.; Hegde, U. G.; Nagashima, T.; Obata, S.

    2001-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this Flight-Definition experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing mechanisms not operative for the case of acoustically excited or partially-modulated jets. The fully-modulated injection approach also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Relatively little is known about the behavior of turbulent flames in reduced-gravity conditions, even in the absence of pulsing. Fundamental issues addressed in this experiment include the impact of buoyancy on the fuel/air mixing and combustion characteristics of fully-modulated flames. It is also important for the planned space experiments to establish the effects of confinement and oxidizer co-flow on these flames.

  13. An Experiment Investigation of Fully-Modulated, Turbulent Diffusion Flames in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Usowicz, J. E.; Stocker, D. P.; Nagashima, T.; Obata, S.

    1999-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The ultimate objective of this program is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This can give rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing mechanisms not operative for the case of acoustically excited or partially-modulated jets. In addition, the fully-modulated injection approach avoids the strong acoustic forcing present in pulsed combustion devices, significantly simplifying the mixing and combustion processes. Relatively little is known of the behavior of turbulent flames in reduced-gravity conditions, even in the absence of pulsing. The goal of this Flight-Definition experiment (PUFF, for PUlsed-Fully Flames) is to establish the behavior of fully-modulated, turbulent diffusion flames under microgravity conditions. Fundamental issues to be addressed in this experiment include the mechanisms responsible for the flame length decrease for fully-modulated, turbulent diffusion flames compared with steady flames, the impact of buoyancy on the mixing and combustion characteristics of these flames, and the characteristics of turbulent flame puffs under fully momentum-dominated conditions.

  14. Development of a Pulsed Combustion Actuator For High-Speed Flow Control

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.

    2005-01-01

    This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.

  15. Pulsed jet combustion generator for premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.; Hom, K.

    1990-01-01

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  16. Triggering of longitudinal combustion instabilities in solid rocket motors: Nonlinear combustion response

    NASA Technical Reports Server (NTRS)

    Wicker, J. M.; Greene, W. D.; Kim, S. I.; Yang, V.

    1995-01-01

    Pulsed oscillations in solid rocket motors are investigated with emphasis on nonlinear combustion response. The study employs a wave equation governing the unsteady motions in a two-phase flow, and a solution technique based on spatial- and time-averaging. A wide class of combustion response functions is studied to second-order in fluctuation amplitude to determine if, when, and how triggered instabilities arise. Conditions for triggering are derived from analysis of limit cycles, and regions of triggering are found in parametric space. Based on the behavior of model dynamical systems, introduction of linear cross-coupling and quadratic self-coupling among the acoustic modes appears to be the manner in which the nonlinear combustion response produces triggering to a stable limit cycle. Regions of initial conditions corresponding to stable pulses were found, suggesting that stability depends on initial phase angle and harmonic content, as well as the composite amplitude, of the pulse.

  17. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  18. Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.

    2003-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.

  19. SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM

    EPA Science Inventory

    Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...

  20. Challenges in Understanding and Development of Predictive Models of Plasma Assisted Combustion

    DTIC Science & Technology

    2014-01-01

    and electron temperature in transient plasmas sustained by nanosecond pulse duration discharges, and their comparison with modeling predictions, are...in nanosecond pulse discharge in nitrogen at 0.25 bar, using the kinetic model developed in Ref. [11]. Rapid electric field reduction during...discharge pulses with kinetic modeling calculations, using conventional hydrocarbon-air combustion mechanisms. Although modeling predictions for H2-air

  1. Method and apparatus for the control of fluid dynamic mixing in pulse combustors

    DOEpatents

    Bramlette, T.T.; Keller, J.O.

    1992-06-02

    In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant. 10 figs.

  2. Method and apparatus for the control of fluid dynamic mixing in pulse combustors

    DOEpatents

    Bramlette, T. Tazwell; Keller, Jay O.

    1992-06-02

    In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant.

  3. Resonant Pulse Combustors: A Reliable Route to Practical Pressure Gain Combustion

    NASA Technical Reports Server (NTRS)

    Paxson, Dan

    2017-01-01

    A particular type of pressure gain combustion (PGC) device is described, which is under investigation at GRC. The Resonant Pulse Combustor (RPC) has been largely overlooked due to its theoretically low performance. However, its practical performance is quite competitive with other PGC systems, and its physical simplicity is unmatched.

  4. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  5. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  6. Fuel Line Based Acoustic Flame-Out Detection System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L. (Inventor); Franke, John M. (Inventor)

    1997-01-01

    An acoustic flame-out detection system that renders a large high pressure combustor safe in the event of a flame-out and possible explosive reignition. A dynamic pressure transducer is placed in the fuel and detects the stabilizing fuel pressure oscillations, caused by the combustion process. An electric circuit converts the signal from the combustion vortices, and transmitted to the fuel flow to a series of pulses. A missing pulse detector counts the pulses and continuously resets itself. If three consecutive pulses are missing, the circuit closes the fuel valve. With fuel denied the combustor is shut down or restarted under controlled conditions.

  7. New type of microengine using internal combustion of hydrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-03-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  8. Apparatus and method for removing particulate deposits from high temperature filters

    DOEpatents

    Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.

    1992-01-01

    A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

  9. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  10. Transient change in the shape of premixed burner flame with the superposition of pulsed dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zaima, Kazunori; Sasaki, Koichi

    2016-08-01

    We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experimental results reveal the oscillation of the rates of combustion chemical reactions as a response to the activation by pulsed DBD. The cycle of the oscillation was 0.18-0.2 ms, which could be understood as the eigenfrequency of the plasma-assisted combustion reaction system.

  11. Apparatus and method for gas turbine active combustion control system

    NASA Technical Reports Server (NTRS)

    Knobloch, Aaron (Inventor); Mancini, Alfred Albert (Inventor); Myers, William J. (Inventor); Fortin, Jeffrey B. (Inventor); Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  12. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  13. Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Yang, Suo; Nagaraja, Sharath; Sun, Wenting; Yang, Vigor

    2017-11-01

    A self-consistent framework for modeling and simulations of plasma-assisted ignition and combustion is established. In this framework, a ‘frozen electric field’ modeling approach is applied to take advantage of the quasi-periodic behaviors of the electrical characteristics to avoid the re-calculation of electric field for each pulse. The correlated dynamic adaptive chemistry (CO-DAC) method is employed to accelerate the calculation of large and stiff chemical mechanisms. The time-step is dynamically updated during the simulation through a three-stage multi-time scale modeling strategy, which utilizes the large separation of time scales in nanosecond pulsed plasma discharges. A general theory of plasma-assisted ignition and combustion is then proposed. Nanosecond pulsed plasma discharges for ignition and combustion can be divided into four stages. Stage I is the discharge pulse, with time scales of O (1-10 ns). In this stage, input energy is coupled into electron impact excitation and dissociation reactions to generate charged/excited species and radicals. Stage II is the afterglow during the gap between two adjacent pulses, with time scales of O (1 0 0 ns). In this stage, quenching of excited species dissociates O2 and fuel molecules, and provides fast gas heating. Stage III is the remaining gap between pulses, with time scales of O (1-100 µs). The radicals generated during Stages I and II significantly enhance exothermic reactions in this stage. The cumulative effects of multiple pulses is seen in Stage IV, with time scales of O (1-1000 ms), which include preheated gas temperatures and a large pool of radicals and fuel fragments to trigger ignition. For flames, plasma could significantly enhance the radical generation and gas heating in the pre-heat zone, thereby enhancing the flame establishment.

  14. A nonlinear dynamical system for combustion instability in a pulse model combustor

    NASA Astrophysics Data System (ADS)

    Takagi, Kazushi; Gotoda, Hiroshi

    2016-11-01

    We theoretically and numerically study the bifurcation phenomena of nonlinear dynamical system describing combustion instability in a pulse model combustor on the basis of dynamical system theory and complex network theory. The dynamical behavior of pressure fluctuations undergoes a significant transition from steady-state to deterministic chaos via the period-doubling cascade process known as Feigenbaum scenario with decreasing the characteristic flow time. Recurrence plots and recurrence networks analysis we adopted in this study can quantify the significant changes in dynamic behavior of combustion instability that cannot be captured in the bifurcation diagram.

  15. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    DOEpatents

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  16. Standardization of Rocket Engine Pulse Time Parameters

    NASA Technical Reports Server (NTRS)

    Larin, Max E.; Lumpkin, Forrest E.; Rauer, Scott J.

    2001-01-01

    Plumes of bipropellant thrusters are a source of contamination. Small bipropellant thrusters are often used for spacecraft attitude control and orbit correction. Such thrusters typically operate in a pulse mode, at various pulse lengths. Quantifying their contamination effects onto spacecraft external surfaces is especially important for long-term complex-geometry vehicles, e.g. International Space Station. Plume contamination tests indicated the presence of liquid phase contaminant in the form of droplets. Their origin is attributed to incomplete combustion. Most of liquid-phase contaminant is generated during the startup and shutdown (unsteady) periods of thruster pulse. These periods are relatively short (typically 10-50 ms), and the amount of contaminant is determined by the thruster design (propellant valve response, combustion chamber size, thruster mass flow rate, film cooling percentage, dribble volume, etc.) and combustion process organization. Steady-state period of pulse is characterized by much lower contamination rates, but may be lengthy enough to significantly conh'ibute to the overall contamination effect. Because there was no standard methodology for thruster pulse time division, plume contamination tests were conducted at various pulse durations, and their results do not allow quantifying contaminant amounts from each portion of the pulse. At present, the ISS plume contamination model uses an assumption that all thrusters operate in a pulse mode with the pulse length being 100 ms. This assumption may lead to a large difference between the actual amounts of contaminant produced by the thruster and the model predictions. This paper suggests a way to standardize thruster startup and shutdown period definitions, and shows the usefulness of this approach to better quantify thruster plume contamination. Use of the suggested thruster pulse time-division technique will ensure methodological consistency of future thruster plume contamination test programs, and allow accounting for thruster pulse length when modeling plume contamination and erosion effects.

  17. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  18. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, George A.; Gemmen, Randall S.

    1998-01-01

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.

  19. Effect of pulsation on black liquor gasification. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinn, B.T.; Jagoda, J.; Jeong, H.

    1998-12-01

    Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be usedmore » to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.« less

  20. Radiation/Catalytic Augmented Combustion.

    DTIC Science & Technology

    1982-05-01

    enhanced combustion processes, utilizing pulsed and continuous VUV light- serces . Similarly, the catalytic technique has provided efficient combustion...tures we had a pl /cx LiF lens with a focal length of 200 nm, and a MgF2 window 2 nmn in thickness. Although these materials are considered to be among

  1. CARS applications to combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Eckbreth, Alan C.

    1986-01-01

    Attention is given to broadband or multiplex CARS of combustion processes, using pulsed lasers whose intensity is sufficiently great for instantaneous measurement of medium properties. This permits probability density functions to be assembled from a series of single-pulse measurements, on the basis of which the true parameter average and the magnitude of the turbulent fluctuations can be ascertained. CARS measurements have been conducted along these lines in diesel engines, gas turbine combustors, scramjets, and solid rocket propellants.

  2. Pulse combustion reactor as a fast and scalable synthetic method for preparation of Li-ion cathode materials

    NASA Astrophysics Data System (ADS)

    Križan, Gregor; Križan, Janez; Dominko, Robert; Gaberšček, Miran

    2017-09-01

    In this work a novel pulse combustion reactor method for preparation of Li-ion cathode materials is introduced. Its advantages and potential challenges are demonstrated on two widely studied cathode materials, LiFePO4/C and Li-rich NMC. By exploiting the nature of efficiency of pulse combustion we have successfully established a slightly reductive or oxidative environment necessary for synthesis. As a whole, the proposed method is fast, environmentally friendly and easy to scale. An important advantage of the proposed method is that it preferentially yields small-sized powders (in the nanometric range) at a fast production rate of 2 s. A potential disadvantage is the relatively high degree of disorder of synthesized active material which however can be removed using a post-annealing step. This additional step allows a further tuning of materials morphology as shown and commented in some detail.

  3. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, G.A.; Gemmen, R.S.

    1998-09-22

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.

  4. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle thermal fatigue behavior has been investigated on a flat Haynes 188 alloy specimen, under the test condition of 30-Hz cycle frequency (33-msec pulse period and 10-msec pulse width including a 0.2-msec pulse spike; ref. 4). Temperature distributions were calculated with one-dimensional finite difference models. The calculations show that that the 0.2-msec pulse spike can cause an additional 40 C temperature fluctuation with an interaction depth of 0.08 mm near the specimen surface region. This temperature swing will be superimposed onto the temperature swing of 80 C that is induced by the 10-msec laser pulse near the 0.53-mm-deep surface interaction region.

  5. The hard start phenomena in hypergolic engines. Volume 1: Bibliography

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    A bibliography of reports pertaining to the hard start phenomenon in attitude control rocket engines on Apollo spacecraft is presented. Some of the subjects discussed are; (1) combustion of hydrazine, (2) one dimensional theory of liquid fuel rocket combustion, (3) preignition phenomena in small pulsed rocket engines, (4) experimental and theoretical investigation of the fluid dynamics of rocket combustion, and (5) nonequilibrium combustion and nozzle flow in propellant performance.

  6. Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    Morris, C. I.

    2003-01-01

    Pulse detonation engines (PDB) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional gas turbines and rocket engines. The detonative mode of combustion employed by these devices offers a theoretical thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional engines. However, the unsteady blowdown process intrinsic to all pulse detonation devices has made realistic estimates of the actual propulsive performance of PDES problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models.

  7. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    DOEpatents

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  8. On the structure of pulsed plasma jets

    NASA Astrophysics Data System (ADS)

    Cavolowsky, John Arthur

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and inhancing combustion. Having shown the ability to ignite lean fuel mixtures, is now offers the potential for real-time control of combustion processes. The fluid mechanical and chemical properties of such jets are explored. The fluid mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. The turbulent, thermal evolution of the jet was explored using high speed laser schlieren cinematography. By examine plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. Molecular beam mass spectroscopy was used to determine temperature and species concentration in the jet. Both noncombustible and combustible jets were studied. Species measurements in combustible jets revealed significant concentrations of radicals and products of complete as well as incomplete combustion.

  9. Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin; Zhu, Jiajian

    2018-03-01

    Dual-pulse laser-induced plasma ignition of kerosene in cavity at model scramjet engine is studied. The simulated flight condition is Ma 6 at 30 km, and the isolator entrance has a Mach number of 2.92, a total pressure of 2.6 MPa and a stagnation temperature of 1650 K. Two independent laser pulses at 532 nm with a pulse width of 10 ns, a diameter of 12 mm and a maximum energy of 300 mJ are focused into cavity for ignition. The flame structure and propagation during transient ignition processes are captured by simultaneous CH* and OH* chemiluminescence imaging. The entire ignition process of kerosene can be divided into five stages, which are referred as turbulent dissipation stage, quasi-stable state, combustion enhancement stage, reverting stage and combustion stabilization stage. A local closed loop of propagations of the burning mixtures from the shear layer into the recirculation zone of cavity is revealed, which the large-scale eddy in the shear layer plays a key role. The enhancement of mass exchange between shear layer and the recirculation zone of cavity could promote the flame propagation process and enhance the ignition capability as well as extend the ignition limits. A cavity shear-layer stabilized combustion of kerosene is established in the supersonic flow roughly 3.3 ms after the laser pulse. Chemical reactions mainly occur in the shear layer and the near-wall zone downstream of the cavity. The distribution of OH* is thicker than CH* at stable combustion condition.

  10. Laser systems for the combustion research facility - Diana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.K.; Lavasek, J.W.; Jones, E.D.

    1982-03-01

    A 5-Joule/pulse, 1.8-..mu..s-pulse-width, 10-ppS flashlamp-pumped tunable-dye-laser system, called Diana, has been built for use in experiments to be performed at the Combustion Research Facility, Sandia National Laboratories, Livermore. Design specifications for the system and details of construction are described, and it is noted that performance of the laser meets or exceeds all design criteria. Areas for further performance improvements are discussed, and updates are suggested to enhance system usefulness.

  11. Transient Heat Transfer Properties in a Pulse Detonation Combustor

    DTIC Science & Technology

    2011-03-01

    strategies for future systems. 15. NUMBER OF PAGES 89 14. SUBJECT TERMS Pulse Detonation Engines, PDE , Heat Transfer 16. PRICE CODE 17. SECURITY...GUI Graphical User Interface NPS Naval Postgraduate School PDC Pulse Detonation Combustion PDE Pulse Detonation Engine RPL Rocket...a tactical missile with a Pulse Detonation Engine ( PDE ) and provide greater range for the same amount of fuel as compared to other current

  12. Numerical modelling of the work of a pulsed aerosol system for fire fighting at the ignitions of liquid hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Rychkov, A. D.

    2009-06-01

    The work of a pulsed aerosol system for fire fighting is modelled, which is designed for fire fighting at oil storages and at the spills of oil products, whose vapors were modelled by gaseous methane. The system represents a device for separate installation, which consists of a charge of solid propellant (the gas generator) and a container with fine-dispersed powder of the flame-damper substance. The methane combustion was described by a one-stage gross-reaction, the influence of the concentration of vapors of the flame-damper substance on the combustion process was taken into account by reducing the pre-exponent factor in the Arrhenius law and was described by an empirical dependence. The computational experiment showed that the application of the pulsed aerosol system for fire fighting ensures an efficient transport of fine-dispersed aerosol particles of the flame-damping substance and its forming vapors to the combustion zone; the concentration of particles ensures the damping of the heat source.

  13. Effect of Detonation through a Turbine Stage

    NASA Technical Reports Server (NTRS)

    Ellis, Matthew T.

    2004-01-01

    Pulse detonation engines (PDE) have been investigated as a more efficient means of propulsion due to its constant volume combustion rather than the more often used constant pressure combustion of other propulsion systems. It has been proposed that a hybrid PDE-gas turbine engine would be a feasible means of improving the efficiency of the typical constant pressure combustion gas turbine cycle. In this proposed system, multiple pulse detonation tubes would replace the conventional combustor. Also, some of the compressor stages may be removed due to the pressure rise gained across the detonation wave. The benefits of higher thermal efficiency and reduced compressor size may come at a cost. The first question that arises is the unsteadiness in the flow created by the pulse detonation tubes. A constant pressure combustor has the advantage of supplying a steady and large mass flow rate. The use of the pulse detonation tubes will create an unsteady mass flow which will have currently unknown effects on the turbine located downstream of the combustor. Using multiple pulse detonation tubes will hopefully improve the unsteadiness. The interaction between the turbine and the shock waves exiting the tubes will also have an unknown effect. Noise levels are also a concern with this hybrid system. These unknown effects are being investigated using TURBO, an unsteady turbomachinery flow simulation code developed at Mississippi State University. A baseline case corresponding to a system using a constant pressure combustor with the same mass flow rate achieved with the pulse detonation hybrid system will be investigated first.

  14. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    EPA Science Inventory

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  15. Design and Evaluation of a Single-Inlet Pulse Detonation Combustor

    DTIC Science & Technology

    2011-06-01

    Kilogram/second m/s Meters/ second N Nitrogen NPS Naval Postgraduate School O Oxygen PDC Pulse Detonation Combustion PDE Pulse Detonation Engine...EVALUATION OF A SINGLE-INLET PULSE DETONATION COMBUSTOR by Danny Soria June 2011 Thesis Advisor: Christopher M. Brophy Second Reader: Garth V...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Design and Evaluation of a Single-Inlet Pulse Detonation Combustor 6. AUTHOR(S) Danny Soria 5

  16. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

    1999-07-13

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

  17. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, Jr., Leighton Ira; Daw, Charles Stuart; Feldkamp, Lee Albert; Hoard, John William; Yuan, Fumin; Connolly, Francis Thomas

    1999-01-01

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

  18. Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release

    NASA Astrophysics Data System (ADS)

    Park, Sammy Ace

    Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.

  19. Variable-pulse switching circuit accurately controls solenoid-valve actuations

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1967-01-01

    Solid state circuit generating adjustable square wave pulses of sufficient power operates a 28 volt dc solenoid valve at precise time intervals. This circuit is used for precise time control of fluid flow in combustion experiments.

  20. Laser ignition of an experimental combustion chamber with a multi-injector configuration at low pressure conditions

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael

    2017-09-01

    In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.

  1. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing.

    PubMed

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-06-02

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species.

  2. Combined planar imaging of schlieren photography with OH-LIPF and spontaneous OH-emission in a 2-D valveless pulse combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishino, Yojiro; Hasegawa, Tatsuya; Yamaguchi, Shigeki

    1999-07-01

    Using a novel optical system, simultaneous imaging of schlieren photography and laser induced predissociation fluorescence of OH radicals (OH-LIPF) have been carried out to examine combustion processes and flame structure in a two-dimensional valveless pulse combustor. Simultaneous imaging of schlieren photographs and spontaneous OH-emission have also been made, in order to obtain information on the behavior of the flame front during a cycle of pulsation. The pulse combustor used in this experiment consists of a combustion chamber of a volume of 125 cm{sup 3} and a tailpipe of a length of 976 mm, which is followed by an automobile muffler.more » The fuel used is commercial grade gaseous propane.« less

  3. Project SQUID - A program of Fundamental Research on Liquid Rocket and Pulse Jet Propulsion

    DTIC Science & Technology

    1947-10-01

    bration methods. It has been determined that by aspirating salt solution of different concentrations into a flame, very little , if any, effect is...process combustion, de- fining effects of combustion-chamber size and shape, fuel and oxidizer distribution, and turbu- lence with available fuck

  4. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  5. Modeling and Simulation of Plasma-Assisted Ignition and Combustion

    DTIC Science & Technology

    2013-10-01

    local plasma chemistry effects over heat transport in achieving “volumetric” ignition using pulse nanosecond discharges. •detailed parametric studies...electrical breakdown • cathode sheath formation • electron impact dynamics PLASMA DISCHARGE DYNAMICS Plasma Chemistry Ionization, Excitation...quenching of excited species nonequilibrium plasma chemistry low temperature radical chemistry high temperature combustion chemistry School of

  6. Laser-Excited Opto-Acoustic Pulses in a Flame

    DTIC Science & Technology

    1981-06-01

    I. INTRODUCTION ........... ....................... . A. Laser Probes and Combustion Chemistry ............. ... B. Cpto...unweighted least-squares fit ...... ................ 32 |Z I: **. t•I U 5-u•. ,. I. .-IRODUCTION A. Laser Probes and Combustion Chemistry The...influencing the chemistry . Although th; presence of particulate matter can be a serious problem, extremes of temperature and pressure offer no hostility

  7. Numerical investigation of combustion phenomena in pulse detonation engine with different fuels

    NASA Astrophysics Data System (ADS)

    Alam, Noor; Sharma, K. K.; Pandey, K. M.

    2018-05-01

    The effects of different fuel-air mixture on the cyclic operation of pulse detonation engine (PDE) are numerically investigated. The present simulation is to be consider 1200 mm long straight tube combustor channel and 60 mm internal diameter, and filled with stoichiometric ethane-air and ethylene-air (C2H6-air & C2H4) fuel mixture at atmospheric pressure and temperature of 0.1 MPa and 300 K respectively. The obstacles of blockage ratio (BR) 0.5 and having 60 mm spacing among them are allocated inside the combustor tube. There are realizable k-ɛ turbulence model used to analyze characteristic of combustion flame. The objective of present simulation is to analyze the variation in combustion mechanism for two different fuels with one-step reduced chemical reaction model. The obstacles were creating perturbation inside the PDE tube. Therefore, flame surface area increases and reduces deflagration-to-detonation transition (DDT) run-up length.

  8. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing

    PubMed Central

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-01-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021

  9. Comparative Analysis of a High Bypass Turbofan Using a Pulsed Detonation Combustor

    DTIC Science & Technology

    2007-03-01

    Thrust Specific Fuel Consumption . . . . . . . . . . . . . 67 xiii List of Abbreviations Abbreviation Page PDE Pulsed Detonation Engine...past ten years to develop pulsed det- onation engines ( PDE ) as a means of aircraft propulsion. Detonation combustion holds the promise of a more...aviation engine, and detonation creates more of it than previous aircraft engines. It is hoped that a marriage of the PDE with traditional

  10. Laser ignition of liquid petroleum gas at elevated pressures

    NASA Astrophysics Data System (ADS)

    Loktionov, E.; Pasechnikov, N.; Telekh, V.

    2017-11-01

    Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.

  11. Combustion dynamics in liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Mclain, W. H.

    1971-01-01

    A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.

  12. Operability of an Ejector Enhanced Pulse Combustor in a Gas Turbine Environment

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Dougherty, Kevin

    2008-01-01

    A pressure-gain combustor comprised of a mechanically valved, liquid fueled pulsejet, an ejector, and an enclosing shroud, was coupled to a small automotive turbocharger to form a self-aspirating, thrust producing gas turbine engine. The system was constructed in order to investigate issues associated with the interaction of pulsed combustion devices and turbomachinery. Installed instrumentation allowed for sensing of distributed low frequency pressure and temperature, high frequency pressure in the shroud, fuel flow rate, rotational speed, thrust, and laboratory noise. The engine ran successfully and reliably, achieving a sustained thrust of 5 to 6 lbf, and maintaining a rotor speed of approximately 90,000 rpm, with a combustor pressure gain of approximately 4 percent. Numerical simulations of the system without pressure-gain combustion indicated that the turbocharger would not operate. Thus, the new combustor represented a substantial improvement in system performance. Acoustic measurements in the shroud and laboratory indicated turbine stage sound pressure level attenuation of 20 dB. This is consistent with published results from detonative combustion experiments. As expected, the mechanical reed valves suffered considerable damage under the higher pressure and thermal loading characteristics of this system. This result underscores the need for development of more robust valve systems for this application. The efficiency of the turbomachinery components did not appear to be significantly affected by unsteadiness associated with pulsed combustion, though the steady component efficiencies were already low, and thus not expected to be particularly sensitive.

  13. Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine

    DTIC Science & Technology

    2013-03-01

    Engine Research Facility HHV Higher heating value LHV Lower heating value PDE Pulsed detonation engine RDE Rotating detonation engine RTD...the combustion community are pulse detonation engines ( PDEs ) and rotating detonation engines (RDEs). 1.1 Differences between Pulsed and Rotating ...steadier than that of a PDE (2, 3). (2) (3) Figure 1. Unrolled rotating detonation wave from high-speed video (4) Another difference that

  14. Nanosecond Plasma Enhanced H2/O2/N2 Premixed Flat Flames

    DTIC Science & Technology

    2014-01-01

    Simulations are conducted with a one-dimensional, multi-scale, pulsed -discharge model with detailed plasma-combustion kinetics to develop additional insight... model framework. The reduced electric field, E/N, during each pulse varies inversely with number density. A significant portion of the input energy is...dimensional numerical model [4, 12] capable of resolving electric field transients over nanosecond timescales (during each discharge pulse ) and radical

  15. Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry.

    PubMed

    Richardson, Daniel R; Stauffer, Hans U; Roy, Sukesh; Gord, James R

    2017-04-10

    A comparison is made between two ultrashort-pulse coherent anti-Stokes Raman scattering (CARS) thermometry techniques-hybrid femtosecond/picosecond (fs/ps) CARS and chirped-probe-pulse (CPP) fs-CARS-that have become standards for high-repetition-rate thermometry in the combustion diagnostics community. These two variants of fs-CARS differ only in the characteristics of the ps-duration probe pulse; in hybrid fs/ps CARS a spectrally narrow, time-asymmetric probe pulse is used, whereas a highly chirped, spectrally broad probe pulse is used in CPP fs-CARS. Temperature measurements were performed using both techniques in near-adiabatic flames in the temperature range 1600-2400 K and for probe time delays of 0-30 ps. Under these conditions, both techniques are shown to exhibit similar temperature measurement accuracies and precisions to previously reported values and to each other. However, it is observed that initial calibration fits to the spectrally broad CPP results require more fitting parameters and a more robust optimization algorithm and therefore significantly increased computational cost and complexity compared to the fitting of hybrid fs/ps CARS data. The optimized model parameters varied more for the CPP measurements than for the hybrid fs/ps measurements for different experimental conditions.

  16. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2016-09-01

    Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.

  17. Computational Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surfacemore » and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.« less

  18. The Use of Steady and Unsteady Detonation Waves for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)

    1995-01-01

    Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.

  19. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.; Chandran, Ravi

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  20. Pulsed, Hydraulic Coal-Mining Machine

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1986-01-01

    In proposed coal-cutting machine, piston forces water through nozzle, expelling pulsed jet that cuts into coal face. Spring-loaded piston reciprocates at end of travel to refill water chamber. Machine a onecylinder, two-cycle, internal-combustion engine, fueled by gasoline, diesel fuel, or hydrogen. Fuel converted more directly into mechanical energy of water jet.

  1. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  2. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    NASA Astrophysics Data System (ADS)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the gas temperature is suitable for combustion (T=2000-3000 K). This technique is demonstrated by attempting ignition of various mixtures of propane-air and it is shown to have distinct advantages when compared to the classical approach: lower ignition energy for given stoichiometry than conventional laser ignition ( 20% lower), extension of the lean limit ( 15% leaner) and improvement in combustion efficiency. Moreover, it is demonstrated that careful alignment of the two pulses influences the fluid dynamics of the early flame kernel growth. This finding has a number of implications for practical uses as it demonstrates that the flame kernel dynamics can be tailored using various combinations of laser pulses and opens the door for implementing such a technique to applications such as: flame holding and flame stabilization in high speed flow combustors (such as ramjet and scramjet engines), reducing flame stretching in highly turbulent combustion devices and increasing combustion efficiency for stationary natural gas engines. As such, the work presented in this dissertation should be of interest to a broad audience including those interested in combustion research, engine operation, chemically reacting flows, plasma dynamics and laser diagnostics.

  3. The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-11-01

    Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)

  4. Nox reduction system utilizing pulsed hydrocarbon injection

    DOEpatents

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  5. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas

    NASA Astrophysics Data System (ADS)

    Tishchenko, V. N.; Grachev, G. N.; Pavlov, A. A.; Smirnov, A. L.; Pavlov, A. A.; Golubev, M. P.

    2008-01-01

    The effect of energy removal from the combustion zone of a motionless optical pulsating discharge in the horizontal direction along the axis of a repetitively pulsed laser beam producing the discharge is discovered. The directivity diagram of a hot gas flow is formed during the action of hundreds of pulses. The effect is observed for short pulse durations, when the discharge efficiently generates shock waves. For long pulse durations, the heated gas propagates upward, as in a thermal source.

  6. Nanotechnology Investigated for Future Gelled and Metallized Gelled Fuels

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2003-01-01

    The objective of this research is to create combustion data for gelled and metallized gelled fuels using unique nanometer-sized gellant particles and/or nanometer-sized aluminum particles. Researchers at the NASA Glenn Research Center are formulating the fuels for both gas turbine and pulsed detonation engines. We intend to demonstrate metallized gelled fuel ignition characteristics for pulse detonation engines with JP/aluminum fuel and for gas turbine engines with gelled JP, propane, and methane fuel. The fuels to be created are revolutionary as they will deliver the highest theoretically maximum performance of gelled and metallized gelled fuels. Past combustion work has used micrometer-sized particles, which have limited the combustion performance of gelled and metallized gelled fuels. The new fuel used nanometer-sized aluminum oxide particles, which reduce the losses due to mismatch in the gas and solid phases in the exhaust. Gelled fuels provide higher density, added safety, reduced fuel slosh, reduced leakage, and increased exhaust velocity. Altogether, these benefits reduce the overall size and mass of the vehicle, increasing its flexibility.

  7. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  8. Pulse Detonation Engine Test Bed Developed

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    2002-01-01

    A detonation is a supersonic combustion wave. A Pulse Detonation Engine (PDE) repetitively creates a series of detonation waves to take advantage of rapid burning and high peak pressures to efficiently produce thrust. NASA Glenn Research Center's Combustion Branch has developed a PDE test bed that can reproduce the operating conditions that might be encountered in an actual engine. It allows the rapid and cost-efficient evaluation of the technical issues and technologies associated with these engines. The test bed is modular in design. It consists of various length sections of both 2- and 2.6- in. internal-diameter combustor tubes. These tubes can be bolted together to create a variety of combustor configurations. A series of bosses allow instrumentation to be inserted on the tubes. Dynamic pressure sensors and heat flux gauges have been used to characterize the performance of the test bed. The PDE test bed is designed to utilize an existing calorimeter (for heat load measurement) and windowed (for optical access) combustor sections. It uses hydrogen as the fuel, and oxygen and nitrogen are mixed to simulate air. An electronic controller is used to open the hydrogen and air valves (or a continuous flow of air is used) and to fire the spark at the appropriate times. Scheduled tests on the test bed include an evaluation of the pumping ability of the train of detonation waves for use in an ejector and an evaluation of the pollutants formed in a PDE combustor. Glenn's Combustion Branch uses the National Combustor Code (NCC) to perform numerical analyses of PDE's as well as to evaluate alternative detonative combustion devices. Pulse Detonation Engine testbed.

  9. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  10. Plasma Assisted Combustion Mechanism for Small Hydrocarbons

    DTIC Science & Technology

    2015-01-01

    fast ionization wave. Combust.  Theory Modeling, 2001. V.5 pp.97‐129.  N.A.Popov. Effect of a  Pulsed  High‐Current  Discharge  on Hydrogen–Air  Mixtures... Discharge Tube Mono- chro- mator PM Pressure Gauge Electric Gauge Physics of Nonequilibrium  Systems Laboratory Hexane Oxidation by  Pulsed  Nanosecond...Pathways: C2H4‐air  Where PAC Experimental Data is Available Avalanche  to Streamer Transition in Uniform  Electric Field (air, 1 bar, 300 K, 1 cm

  11. Experimental Study of the Conditions for Quenching Forest Combustible Materials

    NASA Astrophysics Data System (ADS)

    Antonov, D. V.; Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-05-01

    To confirm the possibility of quenching forest combustible materials by small volumes of water, experimental studies have been made of the processes of interaction of droplets, films, and aerosol flows of water with small sources of combustion of typical forest combustible materials — birch leaves, pine needles, birch and asp twigs. Model combustion sources in the form of cylinders of diameter 20-60 mm and height 40-100 mm were constructed. With the use of high-speed video recording, the characteristic times of thermal decomposition of forest combustibles and the times of suppressing combustion of these materials under various conditions of their interaction with water (pulsed supply of aerosol, injection of water ″mist″ with droplets of radius up to 100 μm, sequential supply of large drops of radius about 1.5 mm) have been determined. Volumes of water sufficient for suppressing combustion depending on the method of supplying it onto the surface of the reacting forest combustible have been determined. Estimates have been made of the nonreacted portion of the material by comparing the initial mass of the sample of the forest combustible with its final mass (upon quenching the material).

  12. Idling speed control system of an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, M.; Ishii, M.; Kako, H.

    1986-09-16

    This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less

  13. Synchronized smoldering combustion

    NASA Astrophysics Data System (ADS)

    Mikalsen, R. F.; Hagen, B. C.; Frette, V.

    2018-03-01

    Synchronized, pulsating temperatures are observed experimentally in smoldering fires. The entire sample volume (1.8 l) participates in the pulsations (pulse period 2–4 h). The synchrony lasts up to 25 h and is followed by a spontaneous transition to either disordered combustion or self-extinguishment. The synchronization is obtained when the fuel bed is cooled to the brink of extinguishment. Calculations for adiabatic conditions, including heat generation from combustion (nonlinear in temperature) and heat storage in sample (linear in temperature), predict diverging sample temperature. Experimentally, heat losses to surroundings (linear in temperature) prevent temperatures to increase without bounds and lead to pulsations.

  14. Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, E.S.; Boris, J.P.

    1991-01-01

    Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less

  15. Schlieren Imaging and Pulsed Detonation Engine Testing of Ignition by a Nanosecond Repetitively Pulsed Discharge

    DTIC Science & Technology

    2016-05-16

    in ethylene–air and aviation gasoline (avgas)–air mixtures. Testing of NRP discharges in the glow and corona regimes in PDE engines has been...in further detail in Refs. [17,21–23]. NRP discharges in the pin-to-pin configuration have been shown to operate in three regimes: corona , glow, and...assisted combustion Plasma assisted ignition Aircraft propulsionA nanosecond repetitively pulsed (NRP) discharge in the spark regime has been investigated

  16. CW Laser radar for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Brydegaard, Mikkel; Aldén, Marcus; Bood, Joakim

    2018-04-01

    A CW-laser radar system developed for combustion diagnostics is described. The system is based on triangulation to attain range information. A portable system has been constructed and here we show some result from measurements in various flames, for example Rayleigh scattering thermometry and monitoring of particle distributions with high temporal and spatial resolution. The concept can equally well be based on pulsed lasers, allowing suppression of background emission through gated detection.

  17. CPU and GPU-based Numerical Simulations of Combustion Processes

    DTIC Science & Technology

    2012-04-27

    Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and

  18. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E. (Inventor)

    2010-01-01

    An apparatus and method [or thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such a Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air. and a spark. Metal is inserted continuously in a high volume of meta1 into a combustion chamber of the pulsejet. The combustion is thereafter. controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tail pipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  19. Unsteady specific work and isentropic efficiency of a radial turbine driven by pulsed detonations

    NASA Astrophysics Data System (ADS)

    Rouser, Kurt P.

    There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle based engines. Theoretically, pressure-gain combustion allows heat addition with reduced entropy loss. The pulsed detonation combustor (PDC) is a device that can provide such pressure-gain combustion and possibly replace typical steady deflagration combustors. The PDC is inherently unsteady, however, and comparisons with conventional steady deflagration combustors must be based upon time-integrated performance variables. In this study, the radial turbine of a Garrett automotive turbocharger was coupled directly to and driven, full admission, by a PDC in experiments fueled by hydrogen or ethylene. Data included pulsed cycle time histories of turbine inlet and exit temperature, pressure, velocity, mass flow, and enthalpy. The unsteady inlet flowfield showed momentary reverse flow, and thus unsteady accumulation and expulsion of mass and enthalpy within the device. The coupled turbine-driven compressor provided a time-resolved measure of turbine power. Peak power increased with PDC fill fraction, and duty cycle increased with PDC frequency. Cycle-averaged unsteady specific work increased with fill fraction and frequency. An unsteady turbine efficiency formulation is proposed, including heat transfer effects, enthalpy flux-weighted total pressure ratio, and ensemble averaging over multiple cycles. Turbine efficiency increased with frequency but was lower than the manufacturer reported conventional steady turbine efficiency.

  20. Mechanism for Increasing the Pressure in an Oil Well by a Combustible Oxidizing Liquid Mixture

    NASA Astrophysics Data System (ADS)

    Melik-Gaikazov, G. V.

    2014-09-01

    A method of estimating the pressure pulse arising in a deep oil well as a result of the thermal explosion of a combustible oxidizing liquid mixture in it is presented. It was established that less than 10% of this mixture is expended for the formation of a pressure pulse in this well. The conditions under which a tubing string positioned in such a well experiences a plastic bending and its walls are crumpled were determined. The maximum admissible difference between the pressures at the walls of this tube were calculated, and axial compression loads were related to critical forces of different orders. It is shown that, when the indicated tube is submerged in the liquid in the well, its resistance to a short-time axial compression load increases.

  1. Experimental Study on an Unsteady Pressure Gain Combustion Hypergolic Rocket Engine Concept

    NASA Astrophysics Data System (ADS)

    Kan, Brandon K.

    An experimental study is conducted to investigate pulsed combustion in a lab-scale bipropellant rocket engine using hypergolic propellants. The propellant combination is high concentration hydrogen peroxide and a catalyst-laced triglyme fuel. A total of 50 short duration firings have been conducted; the vast majority in an open-chamber configuration. High amplitude pulsations were evident in nearly all cases and have been assessed with high frequency pressure measurements. Both pintle and unlike impinging quadlet injector types have been evaluated although the bulk of the testing was with the latter configuration. Several firings were conducted with a transparent chamber in an attempt to gain understanding using a high-speed camera in the visible spectrum. Peak chamber pressures in excess of 5000 psi have been recorded with surface mounted high frequency gages with pulsation frequencies exceeding 600 Hz. A characterization of time-averaged performance is made for the unsteady system, where time-resolved thrust and pressure measurements were attempted. While prior literature describes this system as a pulse detonation rocket engine, the combustion appears to be more "constant volume" in nature.

  2. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  3. Analysis of pollutant chemistry in combustion by in situ pulsed photoacoustic laser diagnostics

    NASA Astrophysics Data System (ADS)

    Stenberg, Jari; Hernberg, Rolf; Vattulainen, Juha

    1995-12-01

    A technique for gas analysis based on pulsed-laser-induced photoacoustic spectroscopy in the UV and the visible is presented. The laser-based technique and the associated analysis probe have been developed for the analysis of pollutant chemistry in fluidized beds and other combustion environments with limited or no optical access. The photoacoustic-absorption spectrum of the analyzed gas is measured in a test cell located at the end of a tubular probe. This test cell is subject to the prevailing temperature and pressure in the combustion process. The instrument response has been calibrated for N2O, NO, NO2, NH3, SO2, and H2 S at atmospheric pressure between 20 and 910 deg C. The response of the probe was found to increase with pressure for N2O, NO, NH 3, and NO2 up to 1.2 MPa pressure. The method and the probe have been used for detection and ranging of gas concentrations in a premixed methane flame. Some preliminary tests in a large 12-MW circulating bed boiler have also been done.

  4. Soil heating during the complete combustion of mega-logs and broadcast burning in central Oregon USA pumice soils

    Treesearch

    Jane E. Smith; Ariel D. Cowan; Stephen A. Fitzgerald

    2016-01-01

    The environmental effect of extreme soil heating, such as occurs with the complete combustion of large downed wood during wildfires, is a post-fire management concern to forest managers. To address this knowledge gap, we stacked logs to create ‘mega-log’ burning conditions and compared the temperature, duration and penetration of the soil heat pulse in nine high...

  5. Pulse Detonation Propulsion

    DTIC Science & Technology

    2010-01-01

    constant-pressure ( Brayton ) cycle used in gas turbines and ramjets. The advantages of PDE for air- breathing propulsion are simplicity and easy scaling...constant-volume, and detonative combustion cycles will be referred to as Brayton , Humphrey, and PDE cycles. The efficiency of thermodynamic cycles O’ODD...efficiency of Brayton cycle, as 0G HH =′ , i.e., 0==constpχ (3) Constant-volume combustion (point E in Fig. 1) results in temperature K 2647/0E

  6. Axisymmetric single shear element combustion instability experiment

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    1993-01-01

    The combustion stability characteristics of a combustor consisting of a single shear element and a cylindrical chamber utilizing LOX and gaseous hydrogen as propellants are presented. The combustor geometry and the resulting longitudinal mode instability are axisymmetric. Hydrogen injection temperature and pyrotechnic pulsing were used to determine stability boundaries. Mixture ratio, fuel annulus gap, and LOX post configuration were varied. Performance and stability data were obtained for chamber pressures of 300 and 1000 psia.

  7. Axisymmetric single shear element combustion instability experiment

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    1993-01-01

    The combustion stability characteristics of a combustor consisting of a single shear element and a cylindrical chamber utilizing LOX and gaseous hydrogen as propellants are presented. The combustor geometry and the resulting longitudinal mode instability are axisymmetric. Hydrogen injection temperature and pyrotechnic pulsing were used to determine stability boundaries. Mixture ratio, fuel annulus gap, and LOX post configuration were varied. Performance and stability data are presented for chamber pressures of 300 and 1000 psia.

  8. Role of Air-Breathing Pulse Detonation Engines in High Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Lee, Jin-Ho; Anderberg, Michael O.

    2001-01-01

    In this paper, the effect of flight Mach number on the relative performance of pulse detonation engines and gas turbine engines is investigated. The effect of ram and mechanical compression on combustion inlet temperature and the subsequent sensible heat release is determined. Comparison of specific thrust, fuel consumption and impulse for the two engines show the relative benefits over the Mach number range.

  9. Metallized Gelled Propellants Combustion Experiments in a Pulse Detonation Engine

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Jurns, John; Breisacher, Kevin; Kearns, Kim

    2006-01-01

    A series of combustion tests were performed with metallized gelled JP 8/aluminum fuels in a Pulse Detonation Engine (PDE). Nanoparticles of aluminum were used in the 60 to 100 nanometer diameter. Gellants were also of a nanoparticulate type composed of hydrocarbon alkoxide materials. Using simulated air (a nitrogen-oxygen mixture), the ignition potential of metallized gelled fuels with nanoparticle aluminum was investigated. Ignition of the JP 8/aluminum was possible with less than or equal to a 23-wt% oxygen loading in the simulated air. JP 8 fuel alone was unable to ignite with less than 30 percent oxygen loaded simulated air. The tests were single shot tests of the metallized gelled fuel to demonstrate the capability of the fuel to improve fuel detonability. The tests were conducted at ambient temperatures and with maximal detonation pressures of 1340 psia.

  10. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.

  11. Heat Transfer Experiments on a Pulse Detonation Driven Combustor

    DTIC Science & Technology

    2011-03-01

    steps that need to take place before such a hybrid is successfully developed. PDEs obtain their increased efficiency by means of detonation , a pressure...combustion in the Brayton cycle. A PDE utilizes detonations , which offer much higher pressures at the site of fuel ignition, generating less...HEAT TRANSFER EXPERIMENTS ON A PULSE DETONATION DRIVEN COMBUSTOR THESIS Nicholas C. Longo, Captain, USAF AFIT/GAE/ENY/11-M18

  12. Plasma Assisted Combustion

    DTIC Science & Technology

    2007-02-28

    these pulses was uniform. Dependence of the energy contribution on pressure is showed in the Figure 3.5. It is clearly seen that for the pressure of...note that water–ions kinetics is more important than kinetics of initial substances– ions because water has higher proton affinity energy than... pulsed discharge. 4.3.2 Kinetic model To calculate the densities of active particles, one has to determine electron energy dis- tribution function (EEDF

  13. Experimental and Computational Characterization of Combustion Phenomena

    DTIC Science & Technology

    2006-05-01

    combustors without installing glass , quartz, or sapphire windows when using terahertz radiation. To explore the potential diagnostics utility of T...laser was reduced using a Spectra-Physics Model 3980 pulse selector. This device employs a TeO2 acousto-optic modulator to select subsets of pulses...equipped with a UG-11 and two WG-295 colored glass filters to reduce visible and laser-scattered light, respectively. OH-PLIF images were acquired

  14. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge

    PubMed Central

    Lefkowitz, Joseph K; Guo, Peng; Rousso, Aric; Ju, Yiguang

    2015-01-01

    Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H2O, CO, CO2, H2, CH2O, CH3OH, C2H6, C2H4 and C2H2. A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH2O and CH3OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH3O2 radical reactions and methane reactions with O(1D), are responsible for this disagreement. PMID:26170433

  15. Rapid flash lamp

    DOEpatents

    Gavenonis, Thomas L.; Hewitt, William H.

    1989-01-01

    A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.

  16. Pulsed jet combustion generator for non-premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.

    1990-01-01

    A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.

  17. Rapid flash lamp

    DOEpatents

    Gavenonis, Thomas L.; Hewitt, William H.

    1989-06-06

    A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.

  18. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  19. Active Control of Combustor Instability Shown to Help Lower Emissions

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would not be effective for control. Testing in the combustor rig showed that open-loop pulsing of the fuel was, in fact, able to effectively modulate the combustor pressure. To suppress the combustor pressure oscillations due to thermoacoustic instabilities, it is desirable to time the injection of the fuel so that it interferes with the instability. A closed-loop control scheme was developed that uses combustion pressure feedback and a phase-shifting controller to time the fuel-injection pulses. Some suppression of the pressure oscillations at the 280-Hz instability frequency was demonstrated (see the next figure). However, the overall peak-to- peak pressure oscillations in the combustor were only mildly reduced. Improvements to control hardware and control methods are being continued to gain improved closed-loop reduction of the pressure oscillations.pulse the fuel at

  20. Characteristics of the evolution of a plasma generated by radiation from CW and repetitively pulsed CO2 lasers in different gases

    NASA Astrophysics Data System (ADS)

    Kanevskii, M. F.; Stepanova, M. A.

    1990-06-01

    The interaction between high-power CW and repetitively pulsed CO2 laser radiation and a low-threshold optical-breakdown plasma near a metal surface is investigated. The characteristics of the breakdown plasma are examined as functions of the experimental conditions. A qualitative analysis of the results obtained was performed using a simple one-dimensional model for laser combustion waves.

  1. Unsteady Specific Work and Isentropic Efficiency of a Radial Turbine Driven by Pulsed Detonations

    DTIC Science & Technology

    2012-06-14

    iv AFIT/DS/ENY/12-25 Abstract There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle...10 III.A. Unsteady Flow in Conventional Brayton Cycle Turbines ........................10 III.B. Unsteady Flow in Pulsed Detonation Driven...Szpynda and Nalim 2007) 114 Figure 69. Heiser and Pratt comparison of ideal PDE, Humphrey, and Brayton cycles on a temperature-entropy diagram (Heiser

  2. Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation

    DTIC Science & Technology

    2014-08-18

    the super- sonic flow at takeover flight speeds (Mach num- bers ɝ) prohibit auto - ignition . Therefore energy addition techniques typically need to be...locate/proci of the Combustion InstituteCavity ignition in supersonic flow by spark discharge and pulse detonation Timothy M. Ombrello a,⇑, Campbell D...45430, USA c Innovative Scientific Solutions, Inc., Dayton, OH 45459, USA Available online 18 August 2014Abstract Ignition of an ethylene fueled cavity

  3. Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions

    NASA Astrophysics Data System (ADS)

    Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin

    2017-09-01

    Laser-induced plasma ignition of an ethylene fuelled cavity is successfully conducted in a model scramjet engine combustor with dual cavities. The simulated flight condition corresponds to takeover flight Mach 4, with isolator entrance Mach number of 2.1, the total pressure of 0.65 MPa and stagnation temperature of 947 K. Ethylene is injected 35 mm upstream of cavity flameholder from four orifices with 2-mm-diameter. The 1064 nm laser beam, from a Q-switched Nd:YAG laser source running at 10 Hz and 940 mJ per pulse, is focused into cavity for ignition. High speed photography is used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation are all recorded and ensuing stable supersonic combustion is established in cavity. The highly ionized plasma zone is almost round at starting, and then the surface of the flame kernel is wrinkled severely in 150 μs after the laser pulse due to the strong turbulence flow in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upstream as the entrainment of circulation flow in cavity. The flame is stabilized at the corner of the cavity for about 200 μs, and then spreads from leading edge to trailing edge via the under part of shear layer to fully fill the entire cavity. The corner recirculation zone of cavity is of great importance for flame spreading. Eventually, a cavity shear-layer stabilized combustion is established in the supersonic flow roughly 2.9 ms after the laser pulse. Both the temporal evolution of normalized chemiluminescence intensity and normalized flame area show that the entire ignition process can be divided into four stages, which are referred as turbulent dissipation stage, combustion enhancement stage, reverting stage and combustion stabilization stage. The results show promising potentials of laser induced plasma for ignition in real scramjets.

  4. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  5. Current and Future Critical Issues in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.; Dix, Jeff C.

    1998-01-01

    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  6. Study of Mechanisms of Filamentary Pulse Electric Discharge Interaction with Gaseous Flow of Nonuniform Composition

    DTIC Science & Technology

    2013-06-01

    dynamic and localization in subsonic and supersonic airflow also at presence of second gas jet and spray jet of liquid hydrocarbons. The experiments...the specific localization of pulse filamentary discharge in vicinity of boundary between two gases and between liquid spray and gas . The...17, 1, 2010 3. M. A. Deminsky, I. V. Kochetov, S. B. Leonov, А. P. Napartovich, “Modeling of plasma assisted combustion in premixed supersonic gas

  7. CARS diagnostics of the burning of H{sub 2} - O{sub 2} and CH{sub 4} - O{sub 2} mixtures at high temperatures and pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereshchagin, K A; Smirnov, Valery V; Stel'makh, O M

    2012-01-31

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to determine the parameters of gaseous combustion products of hydrogen and hydrocarbon fuels with oxygen at high temperatures and pressures. The methodical aspects of CARS thermometry, which are related to the optimal choice of molecules (diagnostic references) and specific features of their spectra, dependent on temperature and pressure, are analysed. Burning is modelled under the conditions similar to those of real spacecraft propulsion systems using a specially designed laboratory combustion chamber, operating in the pulse-periodic regime at high temperatures (to 3500 K) and pressures (to 20 MPa) of combustion products. (nonlinear opticalmore » phenomena)« less

  8. Repetitive laser ignition by optical breakdown of a LOX/H2 rocket combustion chamber with multi-injector head configuration

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael

    2017-09-01

    This paper reports on the repetitive laser ignition by optical breakdown within an experimental rocket combustion chamber. Ignition was performed by focusing a laser pulse generated by a miniaturized diode-pumped Nd:YAG laser system. The system, which delivers 33.2 mJ in 2.3 ns, was mounted directly to the combustion chamber. The ignition process and flame stabilization was investigated using an optical probe system monitoring the flame attachment across the 15 coaxial injector configuration. 1195 successful ignitions were performed proving the reliability of this laser ignition system and its applicability to the propellant combination LOX/hydrogen at temperatures of T_{{{H}_{ 2} }} = 120-282 K and T_{{{O}_{ 2} }} = 110-281 K.

  9. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor

    PubMed Central

    Barbosa, S.; Pilla, G.; Lacoste, D. A.; Scouflaire, P.; Ducruix, S.; Laux, C. O.; Veynante, D.

    2015-01-01

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  10. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  11. Third-harmonic generation and scattering in combustion flames using a femtosecond laser filament.

    PubMed

    Zang, Hong-Wei; Li, He-Long; Su, Yue; Fu, Yao; Hou, Meng-Yao; Baltuška, Andrius; Yamanouchi, Kaoru; Xu, Huailiang

    2018-02-01

    Coherent radiation in the ultraviolent (UV) range has high potential applicability to the diagnosis of the formation processes of soot in combustion because of the high scattering efficiency in the UV wavelength region, even though the UV light is lost largely by the absorption within the combustion flames. We show that the third harmonic (TH) of a Ti:sapphire 800 nm femtosecond laser is generated in a laser-induced filament in a combustion flame and that the conversion efficiency of the TH varies sensitively by the ellipticity of the driver laser pulse but does not vary so much by the choice of alkanol species introduced as fuel for the combustion flames. We also find that the TH recorded from the side direction of the filament is the Rayleigh scattering of the TH by soot nanoparticles within the flame and that the intensity of the TH varies depending on the fuel species as well as on the position of the laser filament within the flame. Our results show that a remote and in situ measurement of distributions of soot nanoparticles in a combustion flame can be achieved by Rayleigh scattering spectroscopy of the TH generated by a femtosecond-laser-induced filament in the combustion flame.

  12. Investigation of Sustained Detonation Devices: the Pulse Detonation Engine-Crossover System and the Rotating Detonation Engine System

    NASA Astrophysics Data System (ADS)

    Driscoll, Robert B.

    An experimental study is conducted on a Pulse Detonation Engine-Crossover System to investigate the feasibility of repeated, shock-initiated combustion and characterize the initiation performance. A PDE-crossover system can decrease deflagration-to-detonation transition length while employing a single spark source to initiate a multi-PDE system. Visualization of a transferred shock wave propagating through a clear channel reveals a complex shock train behind the leading shock. Shock wave Mach number and decay rate remains constant for varying crossover tube geometries and operational frequencies. A temperature gradient forms within the crossover tube due to forward flow of high temperature ionized gas into the crossover tube from the driver PDE and backward flow of ionized gas into the crossover tube from the driven PDE, which can cause intermittent auto-ignition of the driver PDE. Initiation performance in the driven PDE is strongly dependent on initial driven PDE skin temperature in the shock wave reflection region. An array of detonation tubes connected with crossover tubes is developed using optimized parameters and successful operation utilizing shock-initiated combustion through shock wave reflection is achieved and sustained. Finally, an air-breathing, PDE-Crossover System is developed to characterize the feasibility of shock-initiated combustion within an air-breathing pulse detonation engine. The initiation effectiveness of shock-initiated combustion is compared to spark discharge and detonation injection through a pre-detonator. In all cases, shock-initiated combustion produces improved initiation performance over spark discharge and comparable detonation transition run-up lengths relative to pre-detonator initiation. A computational study characterizes the mixing processes and injection flow field within a rotating detonation engine. Injection parameters including reactant flow rate, reactant injection area, placement of the fuel injection, and fuel injection distribution are varied to assess the impact on mixing. Decreasing reactant injection areas improves fuel penetration into the cross-flowing air stream, enhances turbulent diffusion of the fuel within the annulus, and increases local equivalence ratio and fluid mixedness. Staggering fuel injection holes produces a decrease in mixing when compared to collinear fuel injection. Finally, emulating nozzle integration by increasing annulus back-pressure increases local equivalence ratio in the injection region due to increased convection residence time.

  13. Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature.

    PubMed

    Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R

    2011-07-04

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.

  14. Atomization and combustion performance of antimisting kerosene and jet fuel

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Parikh, P.; Sarohia, V.

    1983-01-01

    Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

  15. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Characteristics of the evolution of a plasma formed by cw and pulse-periodic CO2 laser radiation in various gases

    NASA Astrophysics Data System (ADS)

    Kanevskiĭ, M. F.; Stepanova, M. A.

    1990-06-01

    An investigation was made of the interaction between high-power cw and pulse-periodic CO2 laser radiation and a low-threshold optical breakdown plasma near a metal surface. Characteristics of the breakdown plasma were studied as a function of the experimental conditions. A qualitative analysis was made of the results using a simple one-dimensional model for laser combustion waves.

  16. DEVELOPMENT OF LiCo0.90Mg0.05Al0.05O2 THIN FILMS BY PULSED LASER DEPOSITION TECHNIQUE

    NASA Astrophysics Data System (ADS)

    Vasanthi, R.; Ruthmangani, I.; Manoravi, P.; Joseph, M.; Kesavamoorthy, R.; Sundar, C.; Selladurai, S.

    LiCo0.90Mg0.05Al0.05O2 bulk powders are synthesized using combustion process and made into a thin film by depositing on silicon wafer using a pulsed laser ablation technique. A comparative study by SEM (Scanning Electron Microscope) XRD (X-ray diffraction), Infrared spectroscopy and Raman Spectroscopy is performed on both bulk and PLD thin films.

  17. Engine flow visualization using a copper vapor laser

    NASA Technical Reports Server (NTRS)

    Regan, Carolyn A.; Chun, Kue S.; Schock, Harold J., Jr.

    1987-01-01

    A flow visualization system has been developed to determine the air flow within the combustion chamber of a motored, axisymmetric engine. The engine has been equipped with a transparent quartz cylinder, allowing complete optical access to the chamber. A 40-Watt copper vapor laser is used as the light source. Its beam is focused down to a sheet approximately 1 mm thick. The light plane is passed through the combustion chamber, and illuminates oil particles which were entrained in the intake air. The light scattered off of the particles is recorded by a high speed rotating prism movie camera. A movie is then made showing the air flow within the combustion chamber for an entire four-stroke engine cycle. The system is synchronized so that a pulse generated by the camera triggers the laser's thyratron. The camera is run at 5,000 frames per second; the trigger drives one laser pulse per frame. This paper describes the optics used in the flow visualization system, the synchronization circuit, and presents results obtained from the movie. This is believed to be the first published study showing a planar observation of airflow in a four-stroke piston-cylinder assembly. These flow visualization results have been used to interpret flow velocity measurements previously obtained with a laser Doppler velocimetry system.

  18. Energetic Combustion Devices for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  19. Fuel combustion exhibiting low NO{sub x} and CO levels

    DOEpatents

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.

    1996-07-30

    Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.

  20. Electron Microscopic and Spectroscopic Characterization for Soot Source Differentiation by Laser Derivatization

    NASA Astrophysics Data System (ADS)

    Gaddam, Chethan K.

    Combustion produced soot is highly variable with nanostructure and chemistry dependent upon combustion conditions and fuel. Previous studies have shown soot nanostructure to be dependent upon the source via quantification of high-resolution transmission electron microscopy (HRTEM) images for nanostructural parameters. In principle this permits identification of the soot source and its contribution to any particular receptor site. Yet many structural aspects are subtle, and the chemistry of lamellae is unaddressed for reasons of poorly resolved or differentiated nanostructure and insufficient sample quantity for traditional analytical methods. This characterization gap then leads to the formative question prompting this study: how best to bring out small differences in nanostructure and other seemingly subtle differences in chemistry? A process of pulsed laser annealing is proposed to highlight compositional and structural differences thereby distinctively and uniquely identifying the source of the soot. The operative premise being that small variations in nanostructure and unresolved differences in chemistry exist and are specific to the particular combustion process. The overall goal is then to develop the laser-based heating as an analytical tool by identifying the process conditions and operational parameters for optimal derivatization. Specific objectives directed towards achieving this goal include: 1) Identifying optimal laser operational parameters for derivatization. 2) Defining the dependence upon nanostructure and molecular composition using model soots while also identifying variability and range of outcomes. 3) Demonstrating differentiation upon combustion derived soots from real engines, e.g. diesel, gasoline, gas-turbines, combustors, etc. 4) Applying image processing algorithms to the laser heated soots to quantify and differentiate the transformed carbon nanostructures. For laser derivatization, a sample-housing chamber was custom built using a commercial optical grade quartz tube. Depending on the sample quantity, two different sample support systems were designed. Soot was laser-heated while in an inert (Ar) atmosphere using a pulsed Nd:YAG laser operating at 1064 nm. A laser beam dimension of ca 9 mm in diameter ensured that the entire sample area received uniform irradiation. To identify the optimal laser fluence, pulsed laser heating was applied at three different laser fluences to three carbon samples. Laser heating at these short timescales produced partially graphitized structures comprised of extended graphitic layers (>1 nm), and voids as material is rearranged. While laser heating the material with additional pulses did further graphitize the material, multiple pulses were not particularly beneficial for laser derivatization as this repetitive exposure decreased the degree of differentiation between the test samples. Based on visual HRTEM observations and quantified fringe analysis, a single pulse laser fluence of 250 mJ/cm2 (˜2800 K, determined from multiwavelength pyrommetry) produced the best derivatization without causing fragmentation or material ablation. For demonstrating the uniqueness of the laser-derivatized (nano)structure as dependent upon source and combustion conditions, the laser derivatization technique was validated by comparing different synthetic carbons, selected soots from transportation and residential combustion sources, and laboratory flames, each with recognizable nanostructure. After laser heating, the direction of nanostructure evolution of the synthetic carbons (possessing C:H > 10:1) appeared to be governed by their initial nanostructure as shown by HRTEM images. As illustration of chemistry's role, though nascent R250 carbon black showed structural similarity across multiple particles, laser heating led to either hollow shells or particles with internal structures. These differences were attributed to the chemistry of construction, i.e., the sp2/sp 3 bonding as quantified by electron energy loss spectroscopy (EELS), showing significant differences between particles as large as 60%. The nanostructure of soots from different transportation sources (such as diesel, jet and gasoline engines) evolved distinctively upon laser annealing. Laser derivatization of soot collected from same platform (engine-type) revealed that fuel commonality leads to similar nanostructure for the same class of combustion source, whereas, fuel dependence and ensuing chemistry differences were prominently illustrated by comparison of laser-annealed soots originating from ultra-low sulfur diesel (ULSD) and an oxygenated fuel blend. The origin for this dependence was identified by X-ray photoelectron spectroscopy (XPS), revealing a significantly lower sp2/sp3 carbon bonding for the oxygenated fuels compared to their pure hydrocarbon fuels. As another example, laser annealing of residential boiler soot produced highly intertwined lamellae; this was attributed to inherent chemistry differences relative to the biodiesel (B100) soot that similarly lacked recognizable nanostructure. These observations suggest that the initial soot nanostructure in conjunction with the chemistry of construction governs the material transformation under pulsed laser annealing. (Abstract shortened by ProQuest.).

  1. Laser ignition of a multi-injector LOX/methane combustor

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-06-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  2. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  3. Laser ignition of a multi-injector LOX/methane combustor

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-02-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  4. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering.

    PubMed

    Kearney, Sean P; Guildenbecher, Daniel R

    2016-06-20

    We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps) laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. The results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments.

  5. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering

    DOE PAGES

    Kearney, Sean P.; Guildenbecher, Daniel R.

    2016-06-20

    We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps)more » laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Lastly, the results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments.« less

  6. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Sean P.; Guildenbecher, Daniel R.

    We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps)more » laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Lastly, the results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments.« less

  7. 16 CFR 305.4 - Prohibited acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... advertisement, with respect to the energy use or efficiency or, in the case of showerheads, faucets, water... showerheads, faucets, water closets and urinals, water use of such product, or cost of energy consumed by such... conditioners, pulse combustion and condensing furnaces, fluorescent lamp ballasts, showerheads, faucets, water...

  8. Numerical simulation of the interaction between a flowfield and chemical reaction on premixed pulsed jet combustion

    NASA Astrophysics Data System (ADS)

    Hishida, Manabu; Hayashi, A. Koichi

    1992-12-01

    Pulsed Jet Combustion (PJC) is numerically simulated using time-dependent, axisymmetric, full Navier-Stokes equations with the mass, momentum, energy, and species conservation equations for a hydrogen-air mixture. A hydrogen-air reaction mechanism is modeled by nine species and nineteen elementary forward and backward reactions to evaluate the effect of the chemical reactions accurately. A point implicit method with the Harten and Yee's non-MUSCL (Monotone Upstream-centerd Schemes for Conservation Laws) modified-flux type TVD (Total Variation Diminishing) scheme is applied to deal with the stiff partial differential equations. Furthermore, a zonal method making use of the Fortified Solution Algorithm (FSA) is applied to simulate the phenomena in the complicated shape of the sub-chamber. The numerical result shows that flames propagating in the sub-chamber interact with pressure waves and are deformed to be wrinkled like a 'tulip' flame and a jet passed through the orifice changes its mass flux quasi-periodically.

  9. Research of burning of methane in a supersonic stream of the caused cross-section pulse-periodic laser radiation

    NASA Astrophysics Data System (ADS)

    Zudov, Vladimir N.; Tretyakov, Pavel K.

    2017-10-01

    The effect of a focused pulsed-periodic beam of a CO2 laser on initiation and evolution of combustion in subsonic and supersonic flows of homogeneous fuel-air mixtures (CH4 + air) is experimentally studied. The beam generated by the CO2 laser propagates across the flow and is focused by a lens at the jet axis. The flow structure is determined by a schlieren system with a slot and a plane knife aligned in the streamwise direction. The image is recorded by a high speed camera with an exposure time of 1.5 μs and a frame frequency of 1000 s-1. The structure of the combustion region is studied by an example of inherent luminescence of the flame at the wavelengths of OH and CH radicals. The distribution of the emission intensity of the mixture components in the optical discharge region is investigated in the present experiments by methods of emission spectroscopy.

  10. Triggered instabilities in rocket motors and active combustion control for an incinerator afterburner

    NASA Astrophysics Data System (ADS)

    Wicker, Josef M.

    1999-11-01

    Two branches of research are conducted in this thesis. The first deals with nonlinear combustion response as a mechanism for triggering combustion instabilities in solid rocket motors. A nonlinear wave equation is developed to study a wide class of combustion response functions to second-order in fluctuation amplitude. Conditions for triggering are derived from analysis of limit cycles, and regions of triggering are found in parametric space. Introduction of linear cross-coupling and quadratic self-coupling among the acoustic modes appears to be how the nonlinear combustion response produces triggering to a stable limit cycle. Regions of initial conditions corresponding to stable pulses were found, suggesting that stability depends on initial phase angle and harmonic content, as well as the composite amplitude, of the pulse. Also, dependence of nonlinear stability upon system parameters is considered. The second part of this thesis presents research for a controller to improve the emissions of an incinerator afterburner. The developed controller was experimentally tested at the Naval Air Warfare Center (NAWC), on a 50kW-scale model of an afterburner for Naval shipboard incinerator applications. Acoustic forcing of the combustor's reacting shear layer is used to control the formation of coherent vortical structures, within which favorable fuel-air mixing and efficient combustion can occur. Laser-based measurements of CO emissions are used as the performance indicator for the combustor. The controller algorithm is based on the downhill simplex method and adjusts the shear layer forcing parameters in order to minimize the CO emissions. The downhill simplex method was analyzed with respect to its behavior in the face of time-variation of the plant and noise in the sensor signal, and was modified to account for these difficulties. The control system has experimentally demonstrated the ability (1) to find optimal control action for single- and multi-variable control, (2) to maintain optimal control for time-varying operating states, and (3) to automatically adjust auxiliary fuel in response to changing stoichiometry of the incoming waste pyrolysis gas. Also presented but not tested in the experiments are an expert-type model-guidance feature to aid convergence of the controller to optimum control, and methodology for maintaining flammability.

  11. Nonintrusive, multipoint velocity measurements in high-pressure combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M.; Davis, S.; Kessler, W.; Legner, H.; Mcmanus, K.; Mulhall, P.; Parker, T.; Sonnenfroh, D.

    1993-01-01

    A combined experimental and analytical effort was conducted to demonstrate the applicability of OH Doppler-shifted fluorescence imaging of velocity distributions in supersonic combustion gases. The experiments were conducted in the underexpanded exhaust flow from a 6.8 atm, 2400 K, H2-O2-N2 burner exhausting into the atmosphere. In order to quantify the effects of in-plane variations of the gas thermodynamic properties on the measurement accuracy, a set of detailed measurements of the OH (1,0) band collisional broadening and shifting in H2-air gases was produced. The effect of pulse-to-pulse variations in the dye laser bandshape was also examined in detail and a modification was developed which increased in the single pulse bandwidth, thereby increasing the intraimage velocity dynamic range as well as reducing the sensitivity of the velocity measurement to the gas property variations. Single point and imaging measurements of the velocity field in the exhaust flowfield were compared with 2D, finite-rate kinetics simulations of the flowfield. Relative velocity accuracies of +/- 50 m/s out of 1600 m/s were achieved in time-averaged imaging measurements of the flow over an order of magnitude variation in pressure and a factor of two variation in temperature.

  12. JANNAF Airbreathing Propulsion Subcommittee and 35th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    This document, CPIA Publication 682, Volume 1, is a compilation of 5 unclassified/unlimited technical papers (approved for public release) which were presented at the 1 998 meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Airbreathing Propulsion Subcommittee (APS) and Combustion Subcommittee (CS) held jointly with the Propulsion Systems Hazards Subcommittee (PSHS). The meeting was held on 7-11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include HyTech technology development, hydrocarbon fuel development for hypersonic applications, pulse detonation propulsion system development and arc heaters for direct-connect scramjet testing.

  13. The Development of Pulsed Photoacoustic and Photothermal Deflection Spectroscopy as Diagnostic Tools for Combustion.

    NASA Astrophysics Data System (ADS)

    Rose, Allen Howard

    The application of Photoacoustic Deflection Spectroscopy (PADS) and Photothermal Deflection Spectroscopy (PTDS) to the combustion environment has been made to determine the usefulness of these techniques in combustion diagnostics. Both theoretical models and experimental techniques have been developed. With these tools, PADS and PTDS, one can measure absolute species concentration, temperature, and flow velocity in the combustion environment. These techniques are nonintrusive, with a high sensitivity and excellent spatial and temporal resolution. With PADS it is possible to measure OH concentrations down to 1times 10^{14} OH molecules/cm^3 in a single shot and temperatures to an accuracy of ^{ ~}+/- 100{rm K}. With PTDS it is possible to measure OH concentrations down to 3times 10^{12} OH molecules/cm^3 in a single shot and velocities to an accuracy of ^{ ~}+/- 1{rm m/s} in a flame. Higher accuracies can be obtained with further improvements in the experimental apparatus. The disadvantages are: (1) the need for a strong absorbing species within the combustion environment to generate these signals, (2) the lack of knowledge about the major molecular species concentrations in the combustion environment, and (3) the lack of knowledge about the thermodynamic properties of these major species at combustion temperatures. PADS and PTDS would complement other techniques such as coherent anti-Stokes Raman spectroscopy (CARS), laser-induced fluorescence spectroscopy (LIFS), and optogalvanic spectroscopy.

  14. Detonation Jet Engine. Part 2--Construction Features

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  15. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    NASA Astrophysics Data System (ADS)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly-pulsed flames was not strongly impacted by buoyancy. This lack of sensitivity to buoyancy was consistent with offsetting changes in flame puff celerity and time to burnout for the microgravity versus normal-gravity cases. The emissions of CO and NO were examined in the vicinity of the visible flame tip and at the combustor exit for strongly-pulsed flames. The highest exhaust-point emission indices of CO for compact, isolated puffs were as much as a factor of six higher than those of elongated flames with longer injection times. The amount of CO decreased substantially with a decreased amount of flame puff interaction. The higher CO levels for pulsed flames with the shortest injection times were consistent with quenching due to the very rapid mixing and dilution with excess air for the most compact flame puffs. The injection time for which steady-flame emission levels were attained was comparable to the injection time for which the visible flame length approached the flame length of steady flames. The CO emissions, for a given fuelling rate, were strongly dependent on both the injection time and jet-off time for a jet-on fraction less than approximately 50%. The NO levels were generally proportional to the fuelling rate. This work indicates that there are specific combinations of injection time and jet-off time that considerably change the fuel/air mixing, resulting in emissions comparable to those of the steady flame while the flame length is significantly shorter. This points the potential utility of the strongly-pulsed injection technique in the development of compact, low emissions combustors involving turbulent diffusion flames. (Abstract shortened by UMI.)

  16. Laser ignition of traumatically embedded firework debris.

    PubMed

    Taylor, C R

    1998-01-01

    The Q-switched ruby laser (QSRL) has a good track record for traumatic tattoo removal. An unusual case of QSRL-treatment of a traumatic tattoo composed of firework debris is presented. A young man's traumatic tattoo, composed of firework debris, underwent QSRL ablation at 4-7 J/cm2 (pulse width 5 mm; duration 20 ns). Each test pulse produced visible sparks and focal projectile ejection of skin with pox-like scar formation. Caution is advised when using the QSRL for the treatment of traumatic tattoos composed of potentially combustible debris.

  17. Rotary wave-ejector enhanced pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Nalim, M. R.; Izzy, Z. A.; Akbari, P.

    2012-01-01

    The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.

  18. Transpiration cooling in the locality of a transverse fuel jet for supersonic combustors

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Capriotti, Diego P.; Byington, Carl S.

    1990-01-01

    The objective of the current work was to determine the feasibility of transpiration cooling for the relief of the local heating rates in the region of a sonic, perpendicular, fuel jet of gaseous hydrogen. Experiments were conducted to determine the interaction between the cooling required and flameholding limits of a transverse jet in a high-enthalpy, Mach 3 flow in both open-jet and direct-connect test mode. Pulsed shadowgraphs were used to illustrate the flow field. Infrared thermal images indicated the surface temperatures, and the OH(-) emission of the flame was used to visualize the limits of combustion. Wall, static presures indicated the location of the combustion within the duct and were used to calculate the combustion efficiency. The results from both series of tests at facility total temperatures of 1700 K and 2000 K are presented.

  19. JANNAF 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 1, the first of three volumes is a compilation of 16 unclassified/unlimited-technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee held jointly with the 181 Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include overviews of RBCC and PDE hypersonic technology, Hyper-X propulsion ground testing, development of JP-8 for hypersonic vehicle applications, numerical simulation of dual-mode SJ combustion, V&V of M&S computer codes, MHD SJ and Rocket Based Combined Cycle (RBCC) launch vehicle concepts, and Pulse Detonation Engine (PDE) propulsion technology development including fundamental investigations, modeling, aerodynamics, operation and performance.

  20. A Resonant Pulse Detonation Actuator for High-Speed Boundary Layer Separation Control

    NASA Technical Reports Server (NTRS)

    Beck, B. T.; Cutler, A. D.; Drummond, J. P.; Jones, S. B.

    2004-01-01

    A variety of different types of actuators have been previously investigated as flow control devices. Potential applications include the control of boundary layer separation in external flows, as well as jet engine inlet and diffuser flow control. The operating principles for such devices are typically based on either mechanical deflection of control surfaces (which include MEMS flap devices), mass injection (which includes combustion driven jet actuators), or through the use of synthetic jets (diaphragm devices which produce a pulsating jet with no net mass flow). This paper introduces some of the initial flow visualization work related to the development of a relatively new type of combustion-driven jet actuator that has been proposed based on a pulse detonation principle. The device is designed to utilize localized detonation of a premixed fuel (Hydrogen)-air mixture to periodically inject a jet of gas transversely into the primary flow. Initial testing with airflow successfully demonstrated resonant conditions within the range of acoustic frequencies expected for the design. Schlieren visualization of the pulsating air jet structure revealed axially symmetric vortex flow, along with the formation of shocks. Flow visualization of the first successful sustained oscillation condition is also demonstrated for one configuration of the current test section. Future testing will explore in more detail the onset of resonant combustion and the approach to conditions of sustained resonant detonation.

  1. Investigation on Novel Methods to Increase Specific Thrust in Pulse Detonation Engines via Imploding Detonations

    DTIC Science & Technology

    2009-12-01

    Malliakos. Detonation cell size measurements in high-temperature hydrogen- air-steam mixtures at the bnl high-temperature combustion facility. Technical...Report NUREG/CR-6391, BNL -NUREG-52482, Brookhaven National Laboratory, 1997. [13] W.B. Benedick, R. Knystautas, and J.H.S. Lee. Large-scale

  2. OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY95

    EPA Science Inventory

    During fiscal year 1995 (FY95), the last few tests of the Superfund Innovative Technology Evaluation (SITE) demonstration of the pulse combustion burner technology developed by Sonotech, Inc. were completed, with subsequent data evaluation efforts carried through to test report s...

  3. Risk Assessment for NOTES

    DTIC Science & Technology

    1991-09-01

    this is probably a low risk. Risks with Fuel Transfer (5) If a pulse occurs as fuel is being dispensed, say into a lawn mower , and the fueling nozzle is...occur near combustible materials or vapors, such as gasoline fumes. WARNING: As a safety precaution, the refueling of lawn mowers or other power

  4. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  5. Importance of atomic oxygen in preheating zone in plasma-assisted combustion of a steady-state premixed burner flame

    NASA Astrophysics Data System (ADS)

    Zaima, K.; Akashi, H.; Sasaki, K.

    2015-09-01

    It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.

  6. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.

    PubMed

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  7. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    NASA Astrophysics Data System (ADS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  8. Fuel combustion exhibiting low NO.sub.x and CO levels

    DOEpatents

    Keller, Jay O.; Bramlette, T. Tazwell; Barr, Pamela K.

    1996-01-01

    Method and apparatus for safely combusting a fuel in such manner that very low levels of NO.sub.x and CO are produced. The apparatus comprises an inlet line (12) containing a fuel and an inlet line (18) containing an oxidant. Coupled to the fuel line (12) and to the oxidant line (18) is a mixing means (11,29,33,40) for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means (11,29,33,40) is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure (8), into a combustion region (2). Coupled to the combustion region (2) is a means (1,29,33) for producing a periodic flow field within the combustion region (2) to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor (1), a rotating band (29), or a rotating cylinder (33) within an acoustic chamber (32) positioned upstream or downstream of the region (2) of combustion. The mixing means can be a one-way flapper valve (11); a rotating cylinder (33); a rotating band (29) having slots (31) that expose open ends (20,21) of said fuel inlet line (12) and said oxidant inlet line (18) simultaneously; or a set of coaxial fuel annuli (43) and oxidizer annuli (42,44). The means for producing a periodic flow field (1, 29, 33) may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion (2).

  9. Particle sizing in rocket motor studies utilizing hologram image processing

    NASA Technical Reports Server (NTRS)

    Netzer, David; Powers, John

    1987-01-01

    A technique of obtaining particle size information from holograms of combustion products is described. The holograms are obtained with a pulsed ruby laser through windows in a combustion chamber. The reconstruction is done with a krypton laser with the real image being viewed through a microscope. The particle size information is measured with a Quantimet 720 image processing system which can discriminate various features and perform measurements of the portions of interest in the image. Various problems that arise in the technique are discussed, especially those that are a consequence of the speckle due to the diffuse illumination used in the recording process.

  10. Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures

    NASA Technical Reports Server (NTRS)

    Roberts, Ted A.; Burton, Rodney L.; Krier, Herman

    1993-01-01

    The ignition and combustion of Al, Mg, and Al/Mg alloy particles in 99 percent O2/1 percent N2 mixtures is investigated at high temperatures and pressures for rocket engine applications. The 20-micron particles contain 0, 5, 10, 20, 40, 60, 80, and 100 wt pct Mg alloyed with Al, and are ignited in oxygen using the reflected shock in a single-pulse shock tube near the endwall. Using this technique, the ignition delay and combustion times of the particles are measured at temperatures up to 3250 K as a function of Mg content for oxygen pressures of 8.5, 17, and 34 atm. An ignition model is developed that employs a simple lumped capacitance energy equation and temperature and pressure dependent particle and gas properties. Good agreement is achieved between the measured and predicted trends in the ignition delay times.

  11. Stratified charge rotary engine - Internal flow studies at the MSU engine research laboratory

    NASA Technical Reports Server (NTRS)

    Hamady, F.; Kosterman, J.; Chouinard, E.; Somerton, C.; Schock, H.; Chun, K.; Hicks, Y.

    1989-01-01

    High-speed visualization and laser Doppler velocimetry (LDV) systems consisting of a 40-watt copper vapor laser, mirrors, cylindrical lenses, a high speed camera, a synchronization timing system, and a particle generator were developed for the study of the fuel spray-air mixing flow characteristics within the combustion chamber of a motored rotary engine. The laser beam is focused down to a sheet approximately 1 mm thick, passing through the combustion chamber and illuminates smoke particles entrained in the intake air. The light scattered off the particles is recorded by a high speed rotating prism camera. Movies are made showing the air flow within the combustion chamber. The results of a movie showing the development of a high-speed (100 Hz) high-pressure (68.94 MPa, 10,000 psi) fuel jet are also discussed. The visualization system is synchronized so that a pulse generated by the camera triggers the laser's thyratron.

  12. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  13. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  14. Experimental Supersonic Combustion Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne

    1998-01-01

    Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.

  15. Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    DTIC Science & Technology

    2012-09-30

    the CS2 was contained in a rectangular colorimeter cell with a custom built Teflon cap to alleviate the evaporation of the hazardous chemical...6: A comparison of the image quality between the older colorimeter cell (a) and the new containment cell (b). 2.5 Autocorrelation-Based Pulse Length

  16. Perspective of laser-induced plasma ignition of hydrocarbon fuel in Scramjet engine

    NASA Astrophysics Data System (ADS)

    Yang, Leichao; Li, Xiaohui; Liang, Jianhan; Yu, Xin; Li, Xipeng

    2016-01-01

    Laser-induced plasma ignition of an ethylene fuelled cavity was successfully conducted in a model scramjet engine combustor. The ethylene was injected 10mm upstream of cavity flameholder from 3 orifices 60 degree inclined relative to freestream direction. The 1064nm laser beam, from a Q-switched Nd:YAG laser source running at 3Hz and 200mJ per pulse, was focused into cavity for ignition. High speed photography was used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation were all recorded and ensuing stable supersonic combustion was established in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upwards as the entrainment of circulation flow in cavity. The flame is then stretched from leading edge to trailing edge to fully fill the entire cavity. Eventually, a stable combustion is achieved roughly 900μs after the laser pulse. The results show promising potentials for practical application. The perspective of laser-induced plasma ignition of hydrocarbon fuel in scramjet engine is outlined.

  17. Pulsed co-electrodeposition and characterization of Ni-based nanocomposites reinforced with combustion-synthesized, undoped, tetragonal-ZrO(2) particulates.

    PubMed

    Reddy, B S B; Das, Karabi; Datta, Amal Kumar; Das, Siddhartha

    2008-03-19

    Nanostructured nickel matrix composites reinforced with nanosized, undoped, tetragonal zirconia has been synthesized by cathodic pulsed electrodeposition. The reinforcement is synthesized by the aqueous combustion synthesis route with glycine as the fuel and zirconyl nitrate as the oxidizer. The reinforcement and composite have been characterized by XRD, TEM and SEM coupled with EDS. The microhardness and thermal stability (Kissinger method) of the composite are evaluated. These values are compared with those of pure nickel deposited under the same conditions. The results show that the microhardness of the nickel matrix is enhanced by the presence of the reinforcement from 450 to 575 VHN. Also the strengthening due to grain size effects and dispersion strengthening effect are evaluated individually and the interparticle separation is estimated to be around 85 nm. The volume fraction of the reinforcement is estimated to be 12-15% and the particles are uniformly distributed and monodispersed in the nickel matrix. The thermal stability of the composite is better than that of pure nickel in contrast to some of the reported literature.

  18. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    PubMed

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  19. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

    DTIC Science & Technology

    2013-10-22

    0.0, pulse #10 Front view: T0=500 K, ϕ=0.3 Front view: T0=300 K, ϕ=0.0 200 Torr DBD Discharges : 20 kV, 10kHz ICCD gate 50 ns. P = 20 Torr #5...0.60 19,050 49 ppm 0.47 10,820 Non-diffusive hybrid scheme for simulation of filamentary discharges AVALANCHE TO STREAMER TRANSITION IN...Specific Deposited Discharge Energy and Energy Deposited in First Pulse С2Н2:О2:Ar = 17:83:900 (φ = 0.5) Ignition delay time in С2Н2:О2:Ar

  20. Experimental study of a valveless pulse detonation rocket engine using nontoxic hypergolic propellants

    NASA Astrophysics Data System (ADS)

    Kan, Brandon K.

    A pulsed detonation rocket engine concept was explored through the use of hypergolic propellants in a fuel-centered pintle injector combustor. The combustor design yielded a simple open ended chamber with a pintle type injection element and pressure instrumentation. High-frequency pressure measurements from the first test series showed the presence of large pressure oscillations in excess of 2000 psia at frequencies between 400-600 hz during operation. High-speed video confirmed the high-frequency pulsed behavior and large amounts of after burning. Damaged hardware and instrumentation failure limited the amount of data gathered in the first test series, but the experiments met original test objectives of producing large over-pressures in an open chamber. A second test series proceeded by replacing hardware and instrumentation, and new data showed that pulsed events produced under expanded exhaust prior to pulsing, peak pressures around 8000 psi, and operating frequencies between 400-800 hz. Later hot-fires produced no pulsed behavior despite undamaged hardware. The research succeeded in producing pulsed combustion behavior using hypergolic fuels in a pintle injector setup and provided insights into design concepts that would assist future injector designs and experimental test setups.

  1. Three-dimensional multi-physics coupled simulation of ignition transient in a dual pulse solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer

    2018-05-01

    In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.

  2. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    NASA Astrophysics Data System (ADS)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and to improve the resistance to hydrogen embrittlement in aerospace materials are also suggested. This knowledge can play an important role in the development of new hydrogen embrittlement resistant materials. A novel micro/macro-scale coupled finite element method incorporating multi-scale experimental data is presented with which it is possible to perform full scale component analyses in order to investigate hydrogen embrittlement at the design stage. Finally, some preliminary and very encouraging results of grain boundary engineering based techniques to develop alloys that are resistant to hydrogen induced failure are presented. Keywords: Hydrogen embrittlement; Aerospace materials; Ariane 5 combustion chamber; Pulse plated nickel; Nickel based super alloy 718; SSRT test; Weldability test; TDA; SEM/EBSD; Hydrogen induced hot and cold cracking; Multiscale modelling and experimental methods.

  3. Deflagration-to-detonation transition in gases in tubes with cavities

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Nikitin, V. F.; Phylippov, Yu. G.

    2010-12-01

    The existence of a supersonic second combustion mode — detonation — discovered by Mallard and Le Chatelier and by Berthélot and Vieille in 1881 posed the question of mechanisms for transition from one mode to the other. In the period 1959-1969, experiments by Salamandra, Soloukhin, Oppenheim, and their coworkers provided insights into this complex phenomenon. Since then, among all the phenomena related to combustion processes, deflagration-to-detonation transition is, undoubtedly, the most intriguing one. Deflagration-to-detonation transition (DDT) in gases is connected with gas and vapor explosion safety issues. Knowing mechanisms of detonation onset control is of major importance for creating effective mitigation measures addressing two major goals: to prevent DDT in the case of mixture ignition, or to arrest the detonation wave in the case where it has been initiated. A new impetus to the increase in interest in deflagration-to-detonation transition processes was given by the recent development of pulse detonation devices. The probable application of these principles to creation of a new generation of engines put the problem of effectiveness of pulse detonating devices at the top of current research needs. The effectiveness of the pulse detonation cycle turned out to be the key factor characterizing the Pulse Detonation Engine (PDE), whose operation modes were shown to be closely related to periodical onset and degeneration of a detonation wave. Those unsteady-state regimes should be self-sustained to guarantee a reliable operation of devices using the detonation mode of burning fuels as a constitutive part of their working cycle. Thus deflagration-to-detonation transition processes are of major importance for the issue. Minimizing the predetonation length and ensuring stability of the onset of detonation enable one to increase the effectiveness of a PDE. The DDT turned out to be the key factor characterizing the PDE operating cycle. Thus, the problem of DDT control in gaseous fuel-air mixtures became very acute. This paper contains results of theoretical and experimental investigations of DDT processes in combustible gaseous mixtures. In particular, the paper investigates the effect of cavities incorporated in detonation tubes at the onset of detonation in gases. Extensive numerical modeling and simulations allowed studying the features of deflagration-to-detonation transition in gases in tubes incorporating cavities of a wider cross section. The presence of cavities substantially affects the combustion modes being established in the device and their dependence on the governing parameters of the problem. The influence of geometrical characteristics of the confinement and flow turbulization on the onset of detonation and the influence of temperature and fuel concentration in the unburned mixture are discussed. It was demonstrated both experimentally and theoretically that the presence of cavities of wider cross section in the ignition part of the tube promotes DDT and shortens the predetonation length. At the same time, cavities incorporated along the whole length or in the far-end section inhibit detonation and bring about the onset of low-velocity galloping detonation or galloping combustion modes. The presence of cavities in the ignition section turns an increase in the initial mixture temperature into a DDT-promoting factor instead of a DDT-inhibiting factor.

  4. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    NASA Astrophysics Data System (ADS)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  5. Very high pressure combustion; Reaction propagation rates of nitromethane within a diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, S.F.; Foltz, M.F.

    1991-11-01

    This paper reports on the combustion-front propagation rate of nitromethane that has been examined to pressures of 40 GPa. A new and general technique involving pulsed laser ignition of an energetic material within a diamond anvil cell and a method for monitoring the rapid decomposition of nitromethane and other explosives to more stable chemical products is described in detail. Nitromethane is shown to exhibit a flame propagation rate that increases smoothly to 100 m/s at 30 GPa as a function of pressure. Above 30 GPa, the final solid-state combustion products change dramatically and the flame propagation rate begins to decrease.more » The combustion-front propagation rate is analyzed in terms of an existing condensed-phase model that predicts a relationship between the front propagation rate, U, and the pressure derivative of the chemical kinetic activation energy, dE{sub a}/dP, such that a plot of logU{sup 2} vs. P should be linear. The activation energy is analyzed to yield an effective volume of activation, {Delta}V, of {minus}3.4 ml/mol. The chemical kinetic parameters determined from the combustion-front propagation rate analysis of solid high-pressure nitromethane is compared with results from other thermal decomposition studies of this prototypic molecular explosive.« less

  6. Comparison Between Numerically Simulated and Experimentally Measured Flowfield Quantities Behind a Pulsejet

    NASA Technical Reports Server (NTRS)

    Geng, Tao; Paxson, Daniel E.; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.

    2008-01-01

    Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamic (CFD) simulation work focused primarily on the pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.

  7. The Impact of Multipollutant Clusters on the Association Between Fine Particulate Air Pollution and Microvascular Function.

    PubMed

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Austin, Elena; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Benjamin, Emelia J; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Hamburg, Naomi M; Mittleman, Murray A

    2016-03-01

    Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003 to 2008. In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction P value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% confidence interval: 4.6%, 33%) higher baseline pulse amplitude per 5 μg/m and days with high contributions of oil and wood combustion with 16% (95% confidence interval: 0.2%, 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil, and wood combustion was associated with higher baseline pulse amplitude but not hyperemic response. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences.

  8. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  9. Localized microwave pulsed plasmas for ignition and flame front enhancement

    NASA Astrophysics Data System (ADS)

    Michael, James Bennett

    Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow instantaneous velocity measurements. FLEET is shown to perform in high temperature and reactive mixtures.

  10. Effects of Temperature on the Performance of a Small Internal Combustion Engine at Altitude

    DTIC Science & Technology

    2013-03-21

    flexible diaphragm was attached to damp out pulses in the air flow pulsations . Their method of temperature control was electric heating of the intake air...42  Figure 14. Heat exchanger ................................................................................................ 45  Figure...15. Both liquid nitrogen lines from Dewar ............................................................ 45  Figure 16. Engine inlet flow path heat

  11. Nontoxic Hydroxylammonium Nitrate (HAN) Monopropellant Propulsion

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N.

    2015-01-01

    Nontoxic monopropellants have been developed that provide better performance than toxic hydrazine. Formulations based on HAN have superior performance as compared to hydrazine with enhanced specific impulse (Isp), higher density and volumetric impulse, lower melting point, and much lower toxicity. However, HAN-based monopropellants require higher chamber temperatures (2,083 K vs. 883 K) to combust. Current hydrazine-based combustion chamber technology (Inconel® or niobium C103 and silicide coating) and catalyst (Shell 405) are inadequate. In Phase I, state-of-the-art iridium-lined rhenium chambers and innovative new foam catalysts were demonstrated in pulse and 10-second firings. Phase II developed and tested a flight-weight thruster for an environmentally green monopropellant.

  12. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition

    DOE PAGES

    Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.; ...

    2017-08-31

    The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less

  13. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.

    The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less

  14. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition.

    PubMed

    Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M; Yalin, Azer P

    2017-08-31

    The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We perform a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution of the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.

  15. Fundamentals and industrial applications of ultrashort pulsed lasers at Bosch

    NASA Astrophysics Data System (ADS)

    König, Jens; Bauer, Thorsten

    2011-03-01

    Fundamental results of ablation processes of metals with ultrashort laser pulses in the far threshold fluence regime are shown and discussed. Time-resolved measurements of the plasma transmission exhibit two distinctive minima. The minima occurring within the first nanoseconds can be attributed to electrons and sublimated material emitted from the target surface, whereas the subsequent minimum after several 10 ns is due to particles and droplets after a thermal boiling process. Industrial applications of ultrashort pulsed laser micro machining in the Bosch Group are also shown with the production of exhaust gas sensors and common rail diesel systems. Since 2007, ultrashort laser pulses are used at the BOSCH plant in Bamberg for producing lambda-probes, which are made of a special ceramic layer system and can measure the exhaust gas properties faster and more accurately. This enables further reduction of emissions by optimized combustion control. Since 2009, BOSCH uses ultrashort pulsed lasers for micro-structuring the injector of common rail diesel systems. A drainage groove allows a tight system even at increased pressures up to 2000 bar. Diesel injection is thus even more reliable, powerful and environment-friendly.

  16. Characteristics of pulse corona discharge over water surface

    NASA Astrophysics Data System (ADS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  17. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallner, Thomas; Scarcelli, Riccardo; Zhang, Anqi

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  18. Noise of high-performance aircraft at afterburner

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.

    2015-09-01

    The noise from a high-performance aircraft at afterburner is investigated. The main objective is to determine whether the dominant noise components are the same or similar to those of a hot supersonic laboratory jet. For this purpose, measured noise data from F-22A Raptors are analyzed. It is found, based on both spectral and directivity data, that there is a new dominant noise component in addition to the usual turbulent mixing noise. The characteristic features of the new noise component are identified. Measured data indicates that the new noise component is observed only when the rate of fuel burn of the engine is increased significantly above that of the intermediate power setting. This suggests that the new noise component is combustion related. The possibility that it is indirect combustion noise generated by the passage of hot spots from the afterburner through the nozzle of the jet is investigated. Because flow and temperature data were not measured in the F-22A engine tests, to provide support to the proposition, numerical simulations of indirect combustion noise generation due to the passing of an entropy wave pulse (a hot spot) through a military-style nozzle are carried out. Sound generation is observed at the front and at the back of the pulse. This creates a fast and a slow acoustic wave as the sound radiates out from the nozzle exit. Quantitative estimates of the principal directions of acoustic radiation due to the emitted fast and slow acoustic waves are made. It is found that there are reasonably good agreements with measured data. To estimate the intensity level (IL) of the radiated indirect combustion noise, a time-periodic entropy wave train of 15 percent temperature fluctuation is used as a model of the hot spots coming out of the afterburner. This yields an IL of 175.5 dB. This is a fairly intense noise source, well capable of causing the radiation of the new jet noise component.

  19. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    NASA Astrophysics Data System (ADS)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non-uniform distributions of radical densities and gas temperature obtained after the nanosecond voltage pulse provide accurate initial conditions for 2D reactive flow codes to study the combustion ignition on longer timescales and compare with experiments.

  20. Performance of a green propellant thruster with discharge plasma

    NASA Astrophysics Data System (ADS)

    Shindo, Takahiro; Wada, Asato; Maeda, Hiroshi; Watanabe, Hiroki; Takegahara, Haruki

    2017-02-01

    A discharge plasma was applied to initiate the combustion of a hydroxylammonium nitrate-based propellant as a substitute for the catalysts that are typically employed. The resulting thrust and thrust-to-power ratio during short interval firing tests as well as the chamber pressure with a single pulse discharge were evaluated. A 1.5-s firing test generated a maximum thrust of 322 mN along with a thrust-to-power ratio of 0.95 mN/W. During the single-pulse discharge trials, pulsed discharge capacitor energies of 5.4, 10.8, and 16.4 J were assessed, and the maximum chamber pressure was found to increase as the energy was raised. The maximum chamber pressures varied widely between experimental trials, and a 16.4-J energy value resulted in the highest chamber pressure of over 1 MPaG. The time spans between the pulsed discharge and the peak chamber pressure were in the range of 1-2 ms, representing a chamber pressure increase rate much higher than those obtained with standard catalysts.

  1. Transient analysis of a pulsed detonation combustor using the numerical propulsion system simulation

    NASA Astrophysics Data System (ADS)

    Hasler, Anthony Scott

    The performance of a hybrid mixed flow turbofan (with detonation tubes installed in the bypass duct) is investigated in this study and compared with a baseline model of a mixed flow turbofan with a standard combustion chamber as a duct burner. Previous studies have shown that pulsed detonation combustors have the potential to be more efficient than standard combustors, but they also present new challenges that must be overcome before they can be utilized. The Numerical Propulsion System Simulation (NPSS) will be used to perform the analysis with a pulsed detonation combustor model based on a numerical simulation done by Endo, Fujiwara, et. al. Three different cases will be run using both models representing a take-off situation, a subsonic cruise and a supersonic cruise situation. Since this study investigates a transient analysis, the pulse detonation combustor is run in a rig setup first and then its pressure and temperature are averaged for the cycle to obtain quasi-steady results.

  2. Development and testing of pulsed and rotating detonation combustors

    NASA Astrophysics Data System (ADS)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data analysis approach is developed, which employs cross-correlations to detect the combustor operating state as it evolves during a test. This method enables expedient detection of the operating state from sensors placed outside the combustor, and can also identify and quantify instabilities. An investigation is conducted on a tangentially-injecting initiator tube to characterize the RDC ignition process. Maximum energy deposition for this ignition method is an order of magnitude lower than the required energy for direct initiation, and detonation develops via a deflagration-to-detonation transition process. Stable rotating detonation is preceded by a transitory onset phase with a stochastic duration, which appears to be a function of the reactant injection pressure ratio. Hydrogen-ethylene fuel blends are explored as an interim strategy to transition to stable detonation in ethylene-air mixtures. While moderate hydrogen addition enables stable operation, removal of the supplemental hydrogen triggers instability and failure. Chemical kinetic analysis indicates that elevated reactant pressure is far more significant than hydrogen addition, and suggests that the stabilizing effect of hydrogen is physical, rather than kinetic. The role of kinetic effects (e.g., cell width) is also assessed, using H2-O2-N2 mixtures. Detonation is observed when the normalized channel width exceeds the classical limit of wch/lambda = 0.5, and the number of detonations increases predictably when the detonation perimeter exceeds a critical value.

  3. A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.; Kim, W.; Sivathanu, Yudaya

    2007-01-01

    One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described.

  4. Ultrasonic agitation-floating classification of nano-sized Ba-Mg ferrites particles formed by using self-propagating high temperature synthesis and fabrication of nickel-ferrites thin sheet by pulse-electroforming.

    PubMed

    Choi, Yong

    2013-01-01

    Nickel-nano-sized ferrites composites sheet for electromagnetic shielding was produced by pulse-electroforming in a modified nickel sulfamate solution. The ferrite particles were prepared by self-propagating high temperature synthesis (SHS) followed by mechanical milling, and classified with an ultrasonic agitation-floating unit to obtain about 100 nm in size. Average combustion temperature and combustion propagating rate during SHS reaction were 1190 K and 5.8 mm/sec at the oxygen pressure of 1.0 MPa, respectively. The nickel-ferrite composite sheet had preferred orientation which (100) pole clearly concentrated to normal direction, whereas, (110) and (111) poles tended to split to the longitudinal direction, respectively. Maximum magnetization, residual magnetization and coercive force of the nano-sized ferrites were 27.13 A x m2/kg, 6.4 A x m2/kg and 14.58 kA/m, respectively. Complex permeability of the composites decreased with an increase in frequency, and its real value (mu'r) had the maximum at about 0.3 GHz. The dielectric constants of the composites were epsilon'r = 6.7 and epsilon"r = 0.

  5. TOPICAL REVIEW: Plasma assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  6. High-Speed Linear Raman Spectroscopy for Instability Analysis of a Bluff Body Flame

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Fischer, David

    2013-01-01

    We report a high-speed laser diagnostics technique based on point-wise linear Raman spectroscopy for measuring the frequency content of a CH4-air premixed flame stabilized behind a circular bluff body. The technique, which primarily employs a Nd:YLF pulsed laser and a fast image-intensified CCD camera, successfully measures the time evolution of scalar parameters (N2, O2, CH4, and H2O) in the vortex-induced flame instability at a data rate of 1 kHz. Oscillation of the V-shaped flame front is quantified through frequency analysis of the combustion species data and their correlations. This technique promises to be a useful diagnostics tool for combustion instability studies.

  7. Mixing due Pulsating Turbulent Jets

    NASA Astrophysics Data System (ADS)

    Grosshans, Holger; Nygård, Alexander; Fuchs, Laszlo

    Combustion efficiency and the formation of soot and/or NOx in Internal- Combustion engines depends strongly on the local air/fuel mixture, the local flow conditions and temperature. Modern diesel engines employ high injection pressure for improved atomization, but mixing is controlled largely by the flow in the cylinder. By injecting the fuel in pulses one can gain control over the atomization, evaporation and the mixing of the gaseous fuel. We show that the pulsatile injection of fuel enhances fuel break-up and the entrainment of ambient air into the fuel stream. The entrainment level depends on fuel property, such as fuel/air viscosity and density ratio, fuel surface-tension, injection speed and injection sequencing. Examples of enhanced break-up and mixing are given.

  8. Laser-Driven Mini-Thrusters

    NASA Astrophysics Data System (ADS)

    Sterling, Enrique; Lin, Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B.

    2006-05-01

    Laser-driven mini-thrusters were studied using Delrin® and PVC (Delrin® is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  9. Monitoring temperatures in coal conversion and combustion processes via ultrasound

    NASA Astrophysics Data System (ADS)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    The state of the art of instrumentation for monitoring temperatures in coal conversion and combustion systems is examined. The instrumentation types studied include thermocouples, radiation pyrometers, and acoustical thermometers. The capabilities and limitations of each type are reviewed. A feasibility study of the ultrasonic thermometry is described. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible.

  10. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  11. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  12. Wright Research and Development Center Test Facilities Handbook

    DTIC Science & Technology

    1990-01-01

    Variable Temperature (2-400K) and Field (0-5 Tesla) Squid Susceptometer Variable Temperature (10-80K) and Field (0-10 Tesla) Transport Current...determine products of combustion using extraction type probes INSTRUMENTATION: Mini computer/data acquisiton system Networking provides access to larger...data recorder, Masscomp MC-500 computer with acquisition digitizer, laser and ink -jet printers,lo-pass filters, pulse code modulation AVAILABILITY

  13. Effect of medium electrophysical parameters and their temperature dependences on wideband electromagnetic pulse propagation

    NASA Astrophysics Data System (ADS)

    Volkomirskaya, L. B.; Gulevich, O. A.; Reznikov, A. E.

    2017-03-01

    The dielectric permittivity of fiery spoil tips (Shakhty town, Rostov Region) is studied with the use of a GROT 12E remote-controlled ground-penetrating radar (GPR). An anomalous zone in a combustion source is shown to be clearly pronounced in GPR data due to the temperature dependence of the dielectric permittivity of these spoil tips. To substantiate this statement, the GPR data are compared with direct measurements of soil temperatures at depths from 1.5 to 2.5 m. The experimental results are compared with the variable spectral range of a GPR sounding pulse. GPR is shown to be a promising tool for the mapping of temperature-contrast underground objects.

  14. Shock Tunnel Studies of Scramjet Phenomena 1993

    NASA Technical Reports Server (NTRS)

    Stalker, R. J.; Bakos, R. J.; Morgan, R. G.; Porter, L.; Mee, D.; Paull, A.; Tuttle, S.; Simmons, J. M.; Wendt, M.; Skinner, K.

    1995-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology and hypervelocity pulse test facilities are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 10 under NASA Grant NAGw-674.

  15. Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method ofmore » liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevik, James; Wallner, Thomas; Pamminger, Michael

    The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coilmore » ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.« less

  17. Optical engine initiation: multiple compartment applications

    NASA Astrophysics Data System (ADS)

    Hunt, Jeffrey H.

    2009-05-01

    Modern day propulsion systems are used in aerospace applications for different purposes. The aerospace industry typically requires propulsion systems to operate in a rocket mode in order to drive large boost vehicles. The defense industry generally requires propulsion systems to operate in an air-breathing mode in order to drive missiles. A mixed system could use an air-breathing first stage and a rocket-mode upper stage for space access. Thus, propulsion systems can be used for high mass payloads and where the payload is dominated by the fuel/oxidizer mass being used by the propulsion system. The pulse detonation wave engine (PDWE) uses an alternative type of detonation cycle to achieve the same propulsion results. The primary component of the PDWE is the combustion chamber (or detonation tube). The PDWE represents an attractive propulsion source since its engine cycle is thermodynamically closest to that of a constant volume reaction. This characteristic leads to the inference that a maximum of the potential energy of the PDWE is put into thrust and not into flow work. Consequently, the volume must be increased. The technical community has increasingly adopted the alternative choice of increasing total volume by designing the engine to include a set of banks of smaller combustion chambers. This technique increases the complexity of the ignition subsystem because the inter-chamber timing must be considered. Current approaches to igniting the PDWE have involved separate shock or blast wave initiators and chemical additives designed to enhance detonatibility. An optical ignition subsystem generates a series of optical pulses, where the optical pulses ignite the fuel/oxidizer mixture such that the chambers detonate in a desired order. The detonation system also has an optical transport subsystem for transporting the optical pulses from the optical ignition subsystem to the chambers. The use of optical ignition and transport provides a non-toxic, small, lightweight, precisely controlled detonation system.

  18. Modeling and simulation of combustion chamber and propellant dynamics and issues in active control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Isella, Giorgio Carlo

    A method for a comprehensive approach to analysis of the dynamics of an actively controlled combustion chamber, with detailed analysis of the combustion models for the case of a solid rocket propellant, is presented here. The objective is to model the system as interconnected blocks describing the dynamics of the chamber, combustion and control. The analytical framework for the analysis of the dynamics of a combustion chamber is based on spatial averaging, as introduced by Culick. Combustion dynamics are analyzed for the case of a solid propellant. Quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface layer. The models are constructed so that they produce a combustion response function for the solid propellant that can be immediately introduced in the our analytical framework. The principal objective mechanisms responsible for the large sensitivity, observed experimentally, of propellant response to small variations. We show that velocity coupling, and not pressure coupling, has the potential to be the mechanism responsible for that high sensitivity. We also discuss the effect of particulate modeling on the global dynamics of the chamber and revisit the interpretation of the intrinsic stability limit for burning of solid propellants. Active control is also considered. Particular attention is devoted to the effect of time delay (between sensing and actuation); several methods to compensate for it are discussed, with numerical examples based on the approximate analysis produced by our framework. Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an unstable burning mode, defined through the measurement of the pressure trace and shadowgraph imaging. The transition between stable and unstable modes of operation is characterized by the presence of hysteresis, also observed in other experimental works, and hence not a special characteristic of this combustor. Control is introduced in the form of pulsed secondary fuel. We show the capability of forcing the transition from unstable to stable burning, hence extending the stable operating regime of the combustor. The transition, characterized by the use of a shadowgraph movie sequence, is attributed to a combined fluid-mechanic and combustion mechanism.

  19. Impact of input field characteristics on vibrational femtosecond coherent anti-Stokes Raman scattering thermometry.

    PubMed

    Yang, Chao-Bo; He, Ping; Escofet-Martin, David; Peng, Jiang-Bo; Fan, Rong-Wei; Yu, Xin; Dunn-Rankin, Derek

    2018-01-10

    In this paper, three ultrashort-pulse coherent anti-Stokes Raman scattering (CARS) thermometry approaches are summarized with a theoretical time-domain model. The difference between the approaches can be attributed to variations in the input field characteristics of the time-domain model. That is, all three approaches of ultrashort-pulse (CARS) thermometry can be simulated with the unified model by only changing the input fields features. As a specific example, the hybrid femtosecond/picosecond CARS is assessed for its use in combustion flow diagnostics; thus, the examination of the input field has an impact on thermometry focuses on vibrational hybrid femtosecond/picosecond CARS. Beginning with the general model of ultrashort-pulse CARS, the spectra with different input field parameters are simulated. To analyze the temperature measurement error brought by the input field impacts, the spectra are fitted and compared to fits, with the model neglecting the influence introduced by the input fields. The results demonstrate that, however the input pulses are depicted, temperature errors still would be introduced during an experiment. With proper field characterization, however, the significance of the error can be reduced.

  20. Pressure and Thrust Measurements of a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Nguyen, Namtran C.; Cutler, Andrew D.

    2008-01-01

    This paper describes the development of a small-scale, high-frequency pulsed detonation actuator. The device utilized a fuel mixture of H2 and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at approx.600 Hz, for the lambda/4 mode. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to specific impulse of 2611 s. This value is comparable to other H2-fueled pulsed detonation engines (PDEs) experiments. The injection and detonation frequency for this new experimental case was approx.600 Hz, and was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the model and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 lb/cu in, and compares favorably with other experiments, which typically have thrust-per-unit-volume values of approximately 0.01 lb/cu in.

  1. Swept-Ramp Detonation Initiation Performance in a High-Pressure Pulse Detonation Combustor

    DTIC Science & Technology

    2010-12-01

    conditions at sea level, but at elevated temperatures of 300–500°F in the combustor. The current work was motivated by a need to experimentally...The current work was motivated by a need to experimentally evaluate the detonation initiation performance of a PDC at elevated combustor pressures...High-Speed Propulsion Technologies (After [3]) .....................2 Figure 2. Stationary One-Dimensional Combustion Wave Model (From [7

  2. Pulsed Film Cooling on a Turbine Blade Leading Edge

    DTIC Science & Technology

    2009-09-01

    LEADING EDGE 1. Introduction Gas turbine engines are based on the Brayton cycle in which atmospheric air is compressed, heated via combustion...generation. Because the working fluid is in an open loop, a cooling process is absent from the Brayton cycle. The ideal Brayton cycle (one in which...Technology, Taylor & Francis, 2000. Harrison, K. and Bogard, D., “CFD Predictions of Film Cooling Adiabatic Effectiveness for Cylindrical Holes Embedded

  3. Hydrogen-oxygen auxiliary propulsion for the space shuttle. Volume 1: High pressure thrusters

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technology for long life, high performing, gaseous hydrogen-gaseous oxygen rocket engines suitable for auxiliary propulsion was provided by a combined analytical and experimental program. Propellant injectors, fast response valves, igniters, and regeneratively and film-cooled thrust chambers were tested over a wide range of operating conditions. Data generated include performance, combustion efficiency, thermal characteristics film cooling effectiveness, dynamic response in pulsing, and cycle life limitations.

  4. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion. Overview of OSU Research Plan

    DTIC Science & Technology

    2009-11-04

    air, low-temperature plasma chemistry kinetic model Nonequilibrium Thermodynamics Laboratories The Ohio State University • Air plasma model...problems require separate analysis: • Nsec pulse plasma / sheath models cannot incorporate detailed reactive plasma chemistry : too many species ( 100...and reactions ( 1 000)~ ~ , • Detailed plasma chemistry models (quasi-neutral) cannot incorporate repetitive, nsec time scale sheath dynamics and plasma

  5. Summary of Pressure Gain Combustion Research at NASA

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Paxson, Daniel E.

    2018-01-01

    NASA has undertaken a systematic exploration of many different facets of pressure gain combustion over the last 25 years in an effort to exploit the inherent thermodynamic advantage of pressure gain combustion over the constant pressure combustion process used in most aerospace propulsion systems. Applications as varied as small-scale UAV's, rotorcraft, subsonic transports, hypersonics and launch vehicles have been considered. In addition to studying pressure gain combustor concepts such as wave rotors, pulse detonation engines, pulsejets, and rotating detonation engines, NASA has studied inlets, nozzles, ejectors and turbines which must also process unsteady flow in an integrated propulsion system. Other design considerations such as acoustic signature, combustor material life and heat transfer that are unique to pressure gain combustors have also been addressed in NASA research projects. In addition to a wide range of experimental studies, a number of computer codes, from 0-D up through 3-D, have been developed or modified to specifically address the analysis of unsteady flow fields. Loss models have also been developed and incorporated into these codes that improve the accuracy of performance predictions and decrease computational time. These codes have been validated numerous times across a broad range of operating conditions, and it has been found that once validated for one particular pressure gain combustion configuration, these codes are readily adaptable to the others. All in all, the documentation of this work has encompassed approximately 170 NASA technical reports, conference papers and journal articles to date. These publications are very briefly summarized herein, providing a single point of reference for all of NASA's pressure gain combustion research efforts. This documentation does not include the significant contributions made by NASA research staff to the programs of other agencies, universities, industrial partners and professional society committees through serving as technical advisors, technical reviewers and research consultants.

  6. Fundamental phenomena on fuel decomposition and boundary-layer combustion processes with applications to hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir

    1995-01-01

    The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.

  7. Fundamental phenomena on fuel decomposition and boundary-layer combustion processes with applications to hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir

    The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.

  8. Studies of the flow and turbulence fields in a turbulent pulsed jet flame using LES/PDF

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Masri, Assaad R.; Wang, Haifeng

    2017-09-01

    A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.

  9. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    DOE PAGES

    Jones, Sam; Ritter, Christian; Herwig, Falk; ...

    2015-12-03

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage themore » interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 10 9 (in some cases 10 10) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H- 12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. Here, we also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.« less

  10. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    DTIC Science & Technology

    2012-10-01

    use of high-order numerical methods can also be a powerful tool in the analysis of such complex flows, but we need to understand the interaction of...computational physics, 43(2):357372, 1981. [47] B. Einfeldt. On godunov-type methods for gas dynamics . SIAM Journal on Numerical Analysis , pages 294...dimensional effects with complex reaction kinetics, the simple one-dimensional detonation structure provides a rich spectrum of dynamical features which are

  11. Evaluation of the SSRCT engine with a hydrazine as a fuel, phase 1

    NASA Technical Reports Server (NTRS)

    Minton, S. J.

    1978-01-01

    The performance parameters for the space shuttle reaction control thruster (SSRCT) when the fuel is changed from monomethylhydrazine to hydrazine were predicted. Potential problems are higher chamber wall temperature during steady state operation and explosive events during pulse mode operation. Solutions to the problems are suggested. To conduct the analysis, a more realistic film cooling model was devised which considers that hydrazine based fuels are reactive when used as a film coolant on the walls of the combustion chamber. Hydrazine based fuels can decompose exothermally as a monopropellant and also enter into bipropellant reactions with any excess oxidizer in the combustion chamber. It is concluded that the conversion of the thruster from MMH to hydrazine fuel is feasible but that a number of changes would be required to achieve the same safety margins as the monomethylhydrazine-fueled thruster.

  12. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  13. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    1999-01-01

    The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.

  14. Effect of energetic electrons on combustion of premixed burner flame

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi

    2011-10-01

    In many studies of plasma-assisted combustion, authors superpose discharges onto flames to control combustion reactions. This work is motivated by more fundamental point of view. The standpoint of this work is that flames themselves are already plasmas. We irradiated microwave power onto premixed burner flame with the intention of heating electrons in it. The microwave power was limited below the threshold for a discharge. We obtained the enhancement of burning velocity by the irradiation of the microwave power, which was understood by the shortening of the flame length. At the same time, we observed the increases in the optical emission intensities of OH and CH radicals. Despite the increases in the optical emission intensities, the optical emission spectra of OH and CH were not affected by the microwave irradiation, indicating that the enhancement of the burning velocity was not attributed to the increase in the gas temperature. On the other hand, we observed significant increase in the optical emission intensity of the second positive system of molecular nitrogen, which is a clear evidence for electron heating in the premixed burner flame. Therefore, it is considered that the enhancement of the burning velocity is obtained by nonequilibrium combustion chemistry which is driven by energetic electrons. By irradiating pulsed microwave power, we examined the time constants for the increases and decreases in the optical emission intensities of N2, OH, CH, and continuum radiation.

  15. Physics and chemistry of plasma-assisted combustion.

    PubMed

    Starikovskiy, Andrey

    2015-08-13

    There are several mechanisms that affect a gas when using discharge plasma to initiate combustion or to stabilize a flame. There are two thermal mechanisms-the homogeneous and inhomogeneous heating of the gas due to 'hot' atom thermalization and vibrational and electronic energy relaxation. The homogeneous heating causes the acceleration of the chemical reactions. The inhomogeneous heating generates flow perturbations, which promote increased turbulence and mixing. Non-thermal mechanisms include the ionic wind effect (the momentum transfer from an electric field to the gas due to the space charge), ion and electron drift (which can lead to additional fluxes of active radicals in the gradient flows in the electric field) and the excitation, dissociation and ionization of the gas by e-impact, which leads to non-equilibrium radical production and changes the kinetic mechanisms of ignition and combustion. These mechanisms, either together or separately, can provide additional combustion control which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine relight, detonation initiation in pulsed detonation engines and distributed ignition control in homogeneous charge-compression ignition engines, among others. Despite the lack of knowledge in mechanism details, non-equilibrium plasma demonstrates great potential for controlling ultra-lean, ultra-fast, low-temperature flames and is extremely promising technology for a very wide range of applications. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. System Detects Vibrational Instabilities

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1990-01-01

    Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.

  17. Project SQUID: Quarterly Progress Report

    DTIC Science & Technology

    1950-07-01

    JET ENGINES. ( HYU -eÄl) Submitted by» J» Lemeleon^ New York University, No data on the operations of the glass-walled pulse jet have been...It is felt at HYU that a better understanding of the rela- tively simple phenomenon of the Rijke tube is, therefore, essential before headway...tnd combustion, KYTJ-7R6. Lerge amplitude ges vibration theory 19 HyU -7R7. Photo-ignition 1.4 NYU-7R8. Hydrocorbon Fleme Bends 67 i NYU

  18. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  19. Remote Raman Sensor System for Testing of Rocks and Minerals

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Sharma, Shiv K.; Misra, Anupam K.; Ismail, Syed; Sanford, Stephen P.; Elsayed-Ali, Hani

    2007-01-01

    Recent and future explorations of Mars and lunar surfaces through rovers and landers have spawned great interest in developing an instrument that can perform in-situ analysis of minerals on planetary surfaces. Several research groups have anticipated that for such analysis, Raman spectroscopy is the best suited technique because it can unambiguously provide the composition and structure of a material. A remote pulsed Raman spectroscopy system for analyzing minerals was demonstrated at NASA Langley Research Center in collaboration with the University of Hawaii. This system utilizes a 532 nm pulsed laser as an excitation wavelength, and a telescope with a 4-inch aperture for collecting backscattered radiation. A spectrograph equipped with a super notch filter for attenuating Rayleigh scattering is used to analyze the scattered signal. To form the Raman spectrum, the spectrograph utilizes a holographic transmission grating that simultaneously disperses two spectral tracks on the detector for increased spectral range. The spectrum is recorded on an intensified charge-coupled device (ICCD) camera system, which provides high gain to allow detection of inherently weak Stokes lines. To evaluate the performance of the system, Raman standards such as calcite and naphthalene are analyzed. Several sets of rock and gemstone samples obtained from Ward s Natural Science are tested using the Raman spectroscopy system. In addition, Raman spectra of combustible substances such acetone and isopropanol are also obtained. Results obtained from those samples and combustible substances are presented.

  20. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.

  1. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  2. Highly energetic phenomena in water electrolysis

    NASA Astrophysics Data System (ADS)

    Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.

    2016-12-01

    Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H2 and O2 gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system. Under a frequency of driving pulses above 100 kHz the process is accompanied by clicking sounds repeated every 50 ms or so. Fast video reveals that synchronously with the click a bubble is growing between the electrodes which reaches a size of 300 μm in 50 μs. Detailed dynamics of the system is monitored by means of a vibrometer by observing a piece of silicon floating above the electrodes. The energy of a single event is estimated as 0.3 μJ and a significant part of this energy is transformed into mechanical work moving the piece. The observations are explained by the combustion of hydrogen and oxygen mixture in the initial bubble with a diameter of about 40 μm. Unusual combustion mechanism supporting spontaneous ignition at room temperature is responsible for the process. The observed effect demonstrates a principal possibility to build a microscopic internal combustion engine.

  3. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    NASA Astrophysics Data System (ADS)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  4. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    NASA Astrophysics Data System (ADS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  5. Basic Research of Strong UV Radiating Pulse Discharge as an Ignitor of Gaseous Mixtures Combustion

    DTIC Science & Technology

    2007-07-05

    of Gaseous Mixtures Combustion 5a. CONTRACT NUMBER ISTC Registration No: 2681 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...NUMBER(S) ISTC 02-7008 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY...договору с Международным научно-техническим центром (МНТЦ), Москва, при финансовой поддержке <Финансирующая Сторона> ISTC Project No. 2681p Basic

  6. Air/fuel ratio control system for internal combustion engine having rotary valve and step motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, M.

    A system for feedback control of the air/fuel mixing ratio in an internal combustion engine equipped with a carburetor. The control system has an air/fuel ratio detector of a gas sensor type which provides a feedback signal to a control circuit and a rotary valve which is operated by a stepping motor responsive to a control pulse signal produced by the control circuit to regulate the fuel feed rate so as to nullify a deviation of the detected actual air/fuel ratio from a preset air/fuel ratio. The control system may include two auxiliary air-admitting passages respectively connected to a mainmore » fuel passage and a slow fuel passage in the carburetor, and in this case the single rotary valve is designed and arranged so as to simultaneously control the admission of air into both of the two auxiliary air-admitting passages.« less

  7. In situ optical measurements for characterization of flame species and remote sensing

    NASA Astrophysics Data System (ADS)

    Cullum, Brian Michael

    1998-12-01

    The following dissertation describes the use of spectroscopic techniques for both characterization of combustion intermediates and remote chemical sensing. The primary techniques that have been used for these measurements include, laser-induced fluorescence (LIF), time resolved LIF, resonance enhanced multiphoton ionization (REMPI) and Raman spectroscopy. A simple and quantitative means of measuring the efficiency of halogenated flame retardants is described, using laser-induced fluorescence (LIF). Intensity based LIF measurements of OH radical have been used to quantitatively measure the efficacy of halogenated flame retardant/polymer plaques. Temporally resolved LIF has been used to determine the extent to which the chemical kinetic theory of flame retardation applies to the effect of these compounds on combustion. We have shown that LIF of OH radicals is a very sensitive means of measuring the efficiency of these flame retardants as well as the giving information about the nature of flame retardation. In addition, we have developed a technique for the introduction of insoluble polymer plaques into a flame for fluorescence analysis. A high power pulsed Nd:YAG laser is used to ablate the sample into the flame while a second pulse from a dye laser is used to measure the LIF of OH radicals. Spectroscopic techniques are also very useful for trace remote analysis of environmental pollutants via optical fibers. A simple fiber-optic probe suitable for remote analysis using resonance enhanced multiphoton ionization (REMPI) has been developed for this purpose and is used to determine the toluene/gasoline concentration in water samples via a headspace measurement. The limit of detection for toluene in water using this probe is 0.54 ppb (wt/wt) with a sample standard deviation of 0.02 ppb (wt/wt). Another technique that has great potential for optical sensing is fluorescence lifetime imaging. A new method for measuring fluorescence lifetime images of quickly decaying species has been developed. This method employs a high powered pulsed laser that excites the fluorescent species in a dual pulse manner, and a non-gated charge coupled device (CCD) for detection of the fluorescence. Unlike other fluorescence lifetime imaging methods, this technique has the potential of monitoring fluorescent species with picosecond lifetimes.

  8. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fansler, Todd D.; Reuss, D. L.; Sick, V.

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of themore » spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NO x and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.« less

  9. Prospects of lean ignition with the quarter wave coaxial cavity igniter

    NASA Astrophysics Data System (ADS)

    Pertl, Franz Andreas Johannes

    New ignition sources are needed to operate the next generation of lean high efficiency internal combustion engines. A significant environmental and economic benefit could be obtained from these lean engines. Toward this goal, the quarter wave coaxial cavity resonator, QWCCR, igniter was examined. A detailed theoretical analysis of the resonator was performed relating geometric and material parameters to performance characteristics, such as resonator quality factor and developed tip electric field. The analysis provided for the construction and evaluation of a resonator for ignition testing. The evaluation consisted of ignition tests with liquefied-petroleum-gas (LPG) air mixtures of varying composition. The combustion of these mixtures was contained in a closed steel vessel with a precombustion pressure near one atmosphere. The resonator igniter was fired in this vessel with a nominal 150 W microwave pulse of varying duration, to determine ignition energy limits for various mixtures. The mixture compositions were determined by partial pressure measurement and the ideal gas law. Successful ignition was determined through observation of the combustion through a view port. The pulse and reflected microwave power were captured in real time with a high-speed digital storage oscilloscope. Ignition energies and power levels were calculated from these measurements. As a comparison, these ignition experiments were also carried out with a standard non-resistive spark plug, where gap voltage and current were captured for energy calculations. The results show that easily ignitable mixtures around stoichiometric and slightly rich compositions are ignitable with the QWCCR using the similar kinds of energies as the conventional spark plug in the low milli-Joule range. Energies for very lean mixtures could not be determined reliably for the QWCCR for this prototype test, but could be lower than that for a conventional spark. Given the capability of high power, high energy delivery, and opportunity for optimization, the QWCCR has the potential to deliver more energy per unit time than a conventional spark plug and thus should be considered be as a lean ignition source.

  10. Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application

    DTIC Science & Technology

    2007-08-12

    deficit (the velocity of the wake relative to the free-stream velocity), decays rapidly with downstream distance, so that the streamwise velocity is...switched laser with double-pulse option) and a new imaging system (high-resolution: 4008x2672 pix2, low- noise (cooled) Cooke PCO-4000 CCD camera). The...was designed in-house for high-speed low- noise image acquisition. The KFS CCD image sensor was designed by Mark Wadsworth of JPL and has a resolution

  11. Flowpath Design of a Three-Tube Valve-Less Pulse Detonation Combustor

    DTIC Science & Technology

    2009-09-01

    traditional gas turbine engines since the detonation event produces a lower entropy rise and more available work than a Brayton cycle operating at similar...pressure process ( Brayton cycle), with the result that the combustion process ends at state 3a vice state 3.   6   Figure 3. Pressure – Volume Diagram... Brayton cycle, represented by A1, there is a significantly lower yield when compared to the Humphrey cycle, which envelops area A1+A2. It is

  12. Unsteady Motions in Combustion Chambers for Propulsion Systems

    DTIC Science & Technology

    2006-12-01

    Internal Heat Conduction on the Propagation of Acoustic 5-10 Waves 5.4 Energy and Intensity Associated with Acoustic Waves 5-13 5.5 The Growth or... Heat Source and Motion of the Boundary 6-16 6.6 Rayleigh’s Criterion and Linear Stability 6-18 6.7 Some Results for Linear Stability in Three...7.11.1 Pulsing Solid Propellant Rockets 7-45 7.12 Dependence of Wall Heat Transfer on the Amplitude of Oscillations 7-52 7.13 One Way to Analyze

  13. Interference-free coherence dynamics of gas-phase molecules using spectral focusing.

    PubMed

    Wrzesinski, Paul J; Roy, Sukesh; Gord, James R

    2012-10-08

    Spectral focusing using broadband femtosecond pulses to achieve highly selective measurements has been employed for numerous applications in spectroscopy and microspectroscopy. In this work we highlight the use of spectral focusing for selective excitation and detection of gas-phase species. Furthermore, we demonstrate that spectral focusing, coupled with time-resolved measurements based upon probe delay, allows the observation of interference-free coherence dynamics of multiple molecules and gas-phase temperature making this technique ideal for gas-phase measurements of reacting flows and combustion processes.

  14. The Removal of NOx Using a Pulsed Streamer Corona Discharge in the Presence of Ethylene

    DTIC Science & Technology

    1996-07-25

    be a stratospheric ozone destructor and a greenhouse gas (U.S EPA, 1993). Nitric oxide (NO) is an odorless gas and is only slightly soluble in water...gas can be bubbled for humidification , 5) flow meters, valves, and mass flow controllers, and 6) a stainless steel mixing chamber upstream from the...Reduction of Acid and Greenhouse Gases in Combustion of Flue Gases", Non-Thermal Plasma Techniques for Pollution Control, Part A, Eds: Penetrante

  15. Fluid-Plasma-Combustion Coupling Effects on the Ignition of a Fuel Jet

    NASA Astrophysics Data System (ADS)

    Massa, Luca; Freund, Jonathan

    2016-11-01

    We analyze the effect of plasma-combustion coupling on the ignition and flame supported by a DBD interacting with a jet of H2 in a air cross-flow. We propose that plasma-combustion coupling is due to the strong temperature-dependence of specific collisional energy loss as predicted by the Boltzmann equation, and that e- transport can be modeled by assuming a form for the E-field pulse in microstreamers. We introduce a two-way coupling based on the Boltzmann equation and the charged species conservation. The addition of this mechanism to a hydrogen combustion scheme leads to an improvement of the ignition prediction and of the understanding of the effect of the plasma on the flow. The key points of the analysis are 1) explanation of the mechanism for the two-stage ignition and quenching observed experimentally, 2) explanation of the existence of a power threshold above which the plasma is beneficial to the ignition probability, 3) understanding of the increase in power absorbed by the plasma in burning conditions and the reduction in power absorbed with an increase in the cross velocity, 4) explanation of the non-symmetric emissions and the increase in luminescence at the rotovibrational H2O band. The model is validated in part against air-H2 flow experiments. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  16. Plasma-assisted combustion in lean, high-pressure, preheated air-methane mixtures

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy; Herbon, John; Saddoughi, Seyed; Deminsky, Maxim; Potapkin, Boris

    2013-09-01

    We combine a simplified physical model with a detailed plasma-chemical reaction mechanism to analyze the use of plasmas to improve flame stability in a gas turbine used for electric power generation. For this application the combustion occurs in a lean mixture of air and methane at high pressure (18.6 atm) and at ``preheat'' temperature 700 K, and the flame zone is both recirculating and turbulent. The system is modeled as a sequence of reactors: a pulsed uniform plasma (Boltzmann), an afterglow region (plug-flow), a flame region (perfectly-stirred), and a downstream region (plug-flow). The plasma-chemical reaction mechanism includes electron-impact on the feedstock species, relaxation in the afterglow to neutral molecules and radicals, and methane combustion chemistry (GRI-Mech 3.0), with extensions to properly describe low-temperature combustion 700-1000 K [M Deminsky et al., Chem Phys 32, 1 (2013)]. We find that plasma treatment of the incoming air-fuel mixture can improve the stability of lean flames, expressed as a reduction in the adiabatic flame temperature at lean blow-out, but that the plasma also generates oxides of nitrogen at the preheat temperature through the reactions e + N2 --> N + N and N + O2 --> NO + O. We find that flame stability is improved with less undesirable NOx formation when the plasma reduced-electric-field E/ N is smaller. A portion of this work was supported by the US Dept of Energy under Award Number DE-FC26-08NT05868.

  17. XUV-induced reactions in benzene on sub-10 fs timescale: nonadiabatic relaxation and proton migration.

    PubMed

    Galbraith, M C E; Smeenk, C T L; Reitsma, G; Marciniak, A; Despré, V; Mikosch, J; Zhavoronkov, N; Vrakking, M J J; Kornilov, O; Lépine, F

    2017-08-02

    Unraveling ultrafast dynamical processes in highly excited molecular species has an impact on our understanding of chemical processes such as combustion or the chemical composition of molecular clouds in the universe. In this article we use short (<7 fs) XUV pulses to produce excited cationic states of benzene molecules and probe their dynamics using few-cycle VIS/NIR laser pulses. The excited states produced by the XUV pulses lie in an especially complex spectral region where multi-electronic effects play a dominant role. We show that very fast τ ≈ 20 fs nonadiabatic processes dominate the relaxation of these states, in agreement with the timescale expected for most excited cationic states in benzene. In the CH 3 + fragmentation channel of the doubly ionized benzene cation we identify pathways that involve structural rearrangement and proton migration to a specific carbon atom. Further, we observe non-trivial transient behavior in this fragment channel, which can be interpreted either in terms of propagation of the nuclear wavepacket in the initially excited electronic state of the cation or as a two-step electronic relaxation via an intermediate state.

  18. Thermal Barrier and Protective Coatings to Improve the Durability of a Combustor Under a Pulse Detonation Engine Environment

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming

    2008-01-01

    Pulse detonation engine (PDE) concepts are receiving increasing attention for future aeronautic propulsion applications, due to their potential thermodynamic cycle efficiency and higher thrust to density ratio that lead to the decrease in fuel consumption. But the resulting high gas temperature and pressure fluctuation distributions at high frequency generated with every detonation are viewed to be detrimental to the combustor liner material. Experimental studies on a typical metal combustion material exposed to a laser simulated pulse heating showed extensive surface cracking. Coating of the combustor materials with low thermal conductivity ceramics is shown to protect the metal substrate, reduce the thermal stresses, and hence increase the durability of the PDE combustor liner material. Furthermore, the temperature fluctuation and depth of penetration is observed to decrease with increasing the detonation frequency. A crack propagation rate in the coating is deduced by monitoring the variation of the coating apparent thermal conductivity with time that can be utilized as a health monitoring technique for the coating system under a rapid fluctuating heat flux.

  19. Rapid temperature increase near the anode and cathode in the afterglow of a pulsed positive streamer discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo

    2018-06-01

    The spatiotemporal evolution of the temperature in the afterglow of point-to-plane, pulsed positive streamer discharge was measured near the anode tip and cathode surface using laser-induced predissociation fluorescence of OH radicals. The temperature exhibited a rapid increase and displayed a steep spatial gradient after a discharge pulse. The rate of temperature rise reached 84 K μs‑1 at mm, where z represents the distance from the anode tip. The temperature rise was much faster than in the middle of the gap; it was only 2.8 K μs‑1 at mm. The temperature reached 1700 K near the anode tip at s and 1500 K near the cathode surface at s, where t represents the postdischarge time. The spatial gradient reached 1280 K mm‑1 near the anode tip at s. The mechanism responsible for the rapid temperature increase was discussed, including rapid heating of the gas in the early postdischarge phase (s), and vibration-to-translation energy transfer in the later postdischarge phase (s). The high temperatures near the anode tip and cathode surface are particularly important for the ignition of combustible mixtures and for surface treatments, including solid-surface treatments, water treatments, and plasma medicine using pulsed streamer discharges.

  20. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  1. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous effects in the nozzle flowfield. Additionally, comparisons of the model results to performance data from CalTech, as well as experimental flowfield measurements from Stanford University, are also reported.

  2. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  3. A numerical study of mixing and combustion in hypervelocity flows through a scramjet combustor model

    NASA Technical Reports Server (NTRS)

    Krishamurthy, Ramesh

    1993-01-01

    Interest in high speed, air-breathing propulsion systems such as scramjets has revived in recent years fueled to a large extent by the National Aerospace Plane (NASP) program. These vehicles are expected to fly trans-atmospheric and as a consequence, the Mach number level within the engine/combustor would be rather high (M greater than 5). Ground based testing of such scramjet engines requires a facility that can not only achieve the right Mach number, but also have the proper pressures and temperatures to simulate the combustion processes. At present, only pulse type facilities can provide such high enthalpy flows. The newest of these is the free-piston shock tunnel, T5 located at GALCIT. Recently, a generic combustor model was tested in T5, and the experimental data from that study is analyzed in the present report. The available experimental data from T5 are essentially the static pressures on the injection wall and the one opposite to it. Thus, a principal aim of the present study was to validate the available experimental data by using a proven CFD tool and then investigate the performance characteristics of the combustor model, such as, the mixing efficiency and combustion efficiency. For this purpose, in this study, the code GASP has been used.

  4. A numerical study of mixing and combustion in hypervelocity flows through a scramjet combustor model

    NASA Astrophysics Data System (ADS)

    Krishamurthy, Ramesh

    1993-12-01

    Interest in high speed, air-breathing propulsion systems such as scramjets has revived in recent years fueled to a large extent by the National Aerospace Plane (NASP) program. These vehicles are expected to fly trans-atmospheric and as a consequence, the Mach number level within the engine/combustor would be rather high (M greater than 5). Ground based testing of such scramjet engines requires a facility that can not only achieve the right Mach number, but also have the proper pressures and temperatures to simulate the combustion processes. At present, only pulse type facilities can provide such high enthalpy flows. The newest of these is the free-piston shock tunnel, T5 located at GALCIT. Recently, a generic combustor model was tested in T5, and the experimental data from that study is analyzed in the present report. The available experimental data from T5 are essentially the static pressures on the injection wall and the one opposite to it. Thus, a principal aim of the present study was to validate the available experimental data by using a proven CFD tool and then investigate the performance characteristics of the combustor model, such as, the mixing efficiency and combustion efficiency. For this purpose, in this study, the code GASP has been used.

  5. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two-dimensional transient simulations. The dynamics of the detonation are found to be affected by the application of magnetic and electric fields. We find that the regularity of one-dimensional cesium-seeded detonations can be significantly altered by reasonable applied magnetic fields (Bz ≤ 8T), but that it takes a stronger applied field (Bz > 16T) to significantly alter the cellular structure and detonation velocity of a two-dimensional detonation in the time in which these phenomena were observed. This observation is likely attributed to the additional coupling of the two-dimensional detonation with the transverse waves, which are not captured in the one-dimensional simulations. Future studies involving full ionization kinetics including collisional-radiative processes, will be used to examine these processes in further detail.

  6. Summary of Altitude Pulse Testing of a 100-lbf L02/LCH4 Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Kleinhenz, Julie E.

    2011-01-01

    Recently, liquid oxygen-liquid methane (LO2/LCH4) has been considered as a potential "green" propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project has been tasked by NASA to develop this propulsion combination to enable safe and cost effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating the viability of implementing such a system. The NASA Glenn Research Center has conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes a unique propellant conditioning feed system (PCFS) which allows precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed mode operation portion of testing, with a focus on minimum impulse bit (I-bit) and repeatable pulse performance. The engine successfully demonstrated target minimum impulse bit performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon which was not noted in previous test programs for this engine.

  7. Kadenancy effect, acoustical resonance effect valveless pulse jet engine

    NASA Astrophysics Data System (ADS)

    Ismail, Rafis Suizwan; Jailani, Azrol; Haron, Muhammad Adli

    2017-09-01

    A pulse jet engine is a tremendously simple device, as far as moving parts are concerned, that is capable of using a range of fuels, an ignition device, and the ambient air to run an open combustion cycle at rates commonly exceeding 100 Hz. The pulse jet engine was first recognized as a worthy device for aeronautics applications with the introduction of the German V-1 Rocket, also known as the "Buzz Bomb." Although pulse jets are somewhat inefficient compared to other jet engines in terms of fuel usage, they have an exceptional thrust to weight ratio if the proper materials are chosen for its construction. For this reason, many hobbyists have adopted pulse jet engines for a propulsive device in RC planes, go-karts, and other recreational applications. The concept behind the design and function of propulsion devices are greatly inspired by the Newton's second and third laws. These laws quantitatively described thrust as a reaction force. Basically, whenever a mass is accelerated or expelled from one direction by a system, such a mass will exert the same force which will be equal in magnitude, however that will be opposite in direction over the same system. Thrust is that force utilized over a facade in a direction normal and perpendicular to the facade which is known as the thrust. This is the simplest explanation of the concept, on which propulsion devices functions. In mechanical engineering, any force that is orthogonal to the main load is generally referred to as thrust [1].

  8. Promotion of methane ignition by the laser heating of suspended nanoparticles

    NASA Astrophysics Data System (ADS)

    Drakon, A. V.; Eremin, A. V.; Gurentsov, E. V.; Mikheyeva, E. Yu; Musikhin, S. A.; Selyakov, I. N.

    2018-01-01

    The influence of laser heated iron and carbon nanoparticles on ignition of 20 vol% stoichiometric methane-oxygen mixture in argon was studied experimentally in shock tube reactor. The concentration of nanoparticles 0.3-2.0 ppm was measured by laser light extinction. The particles were heated by Nd:Yag laser pulse operated at wavelength 1064 nm. The ignition delay times were registered by increase of OH chemiluminescence and pressure rise. The temperatures of laser heated particles and their sizes were measured by laser induced incandescence technique. The significant decrease of ignition delay times were found at addition of iron particles heated by laser pulse to the combustible mixture at the temperatures less than 1400 K. Analysis performed has shown that the effect supposedly involves catalytic reactions of methane decomposition on the surface of heated particles and allowed estimating their effective activation energy.

  9. Pulse-actuated fuel-injection spark plug

    DOEpatents

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  10. Ultrasonic thermometry using pulse techniques.

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Carnevale, E. H.

    1972-01-01

    Ultrasonic pulse techniques have been developed which, when applied to inert gases, provide temperature measurements up to 8000 K. The response time can be less than 1 msec. This is a significant feature in studying shock-heated or combusting gases. Using a momentary contact coupling technique, temperature has been measured inside steel from 300 to 1500 K. Thin-wire sensors have been used above 2000 K in nuclear and industrial applications where conditions preclude the use of thermocouples, resistance devices, or optical pyrometers. At 2500 K, temperature sensitivity of 0.1% is obtained in Re wire sensors 5 cm long by timing five round trips with an electronic instrument that resolves the time interval between selected echoes to 0.1 microsec. Sensors have been operated at rotational speeds over 2000 rpm and in noisy environments. Temperature profiling of up to ten regions using only a single guided path or beam has also been accomplished.

  11. Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Lane, John; Immer, Christopher; Simpson, James

    2004-01-01

    An effort is underway to develop a method of pumping small amounts of liquid oxygen by use of pulsed magnetic fields. This development is motivated by a desire to reduce corrosion and hazards of explosion and combustion by eliminating all moving pump parts in contact with the pumped oxygen. The method exploits the known paramagnetism of liquid oxygen. Since they both behave similarly, the existing theory of ferrofluids (liquids with colloidally suspended magnetic particles) is directly applicable to paramagnetic liquid oxygen. In general, the force density of the paramagnetic interaction is proportional to the magnetic susceptibility multiplied by the gradient of the square of the magnitude of the magnetic field. The local force is in the direction of intensifying magnetic field. In the case of liquid oxygen, the magnetic susceptibility is large enough that a strong magnetic-field gradient can lift the liquid in normal Earth gravitation.

  12. Scramjet mixing establishment times for a pulse facility

    NASA Technical Reports Server (NTRS)

    Rogers, R. Clayton; Weidner, Elizabeth H.

    1991-01-01

    A numerical simulation of the temporally developing flow through a generic scramjet combustor duct is presented for stagnation conditions typical of flight at Mach 13 as produced by a shock tunnel pulse facility. The particular focus is to examine the start up transients and to determine the time required for certain flow parameters to become established. The calculations were made with a Navier-Stokes solver SPARK with temporally relaxing inflow conditions derived from operation of the T4 shock tunnel at the University of Queensland in Australia. Calculations at nominal steady inflow conditions were made for comparison. The generic combustor geometry includes the injection of hydrogen fuel from the base of a centrally located strut. In both cases, the flow was assumed laminar and fuel combustion was not included. The establishment process is presented for viscous parameters in the boundary layer and for parameters related to the fuel mixing.

  13. Relative importance of thermal versus carbon dioxide induced warming from fossil-fuel combustion

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Caldeira, K.

    2015-12-01

    The Earth is heated both when reduced carbon is oxidized to carbon dioxide and when outgoing longwave radiation is trapped by carbon dioxide in the atmosphere (CO2 greenhouse effect). The purpose of this study is to improve our understanding of time scales and relative magnitudes of climate forcing increase over time from pulse, continuous, and historical CO2 and thermal emissions. To estimate the amount of global warming that would be produced by thermal and CO2 emissions from fossil fuel combustion, we calculate thermal emissions with thermal contents of fossil fuels and estimate CO2 emissions with emission factors from Intergovernmental Panel on Climate Change (IPCC) AR5. We then use a schematic climate model mimicking Coupled Model Intercomparison Project Phase 5 to investigate the climate forcing and the time-integrated climate forcing. We show that, considered globally, direct thermal forcing from fossil fuel combustion is about 1.71% the radiative forcing from CO2 that has accumulated in the atmosphere from past fossil fuel combustion. When a new power plant comes on line, the radiative forcing from the accumulation of released CO2 exceeds the thermal emissions from the power plant in less than half a year (and about 3 months for coal plants). Due to the long lifetime of CO2 in the atmosphere, CO2 radiative forcing greatly overwhelms direct thermal forcing on longer time scales. Ultimately, the cumulative radiative forcing from the CO2 exceeds the direct thermal forcing by a factor of ~100,000.

  14. Pulsed-Laser, High Speed Photography of Rocket Propellant Surface Deflagration.

    DTIC Science & Technology

    1986-05-01

    Investigator was Dr Roger J. Becker. AFRPL Project Manager was Mr Gary L. Vogt. This technical report has been reviewed and is approved for publication...8217;YMlB)OI (/P’I I la . i tJ .o C ’ Gary L. Vogt (805) 277-5258 AFPLIDYCR DD FORM 1473,83 APR EDITION OF 1 JAN 73 IS OBSOLETE. Unclass i fied" SECURl iY...84-1236. 4. G. A. Flandro , "A Simple Conceptual Model for the Nonlinear Transient Combustion of a Solid Rocket Propellant," AIAA Paper No. 82-1222

  15. Simultaneous sampling technique for two spectral sources

    NASA Technical Reports Server (NTRS)

    Jarrett, Olin, Jr.

    1987-01-01

    A technique is described that uses a bundle of fiber optics to simultaneously sample a dye laser and a spectral lamp. By the use of a real-time display with this technique, the two signals can be superimposed, and the effect of any spectral adjustments can be immediately accessed. In the NASA's CARS system used for combustion diagnostics, the dye laser mixes with a simultaneously pulsed Nd:YAG laser at 532 nm to probe the vibrational levels of nitrogen. An illustration of the oscilloscopic display of the system is presented.

  16. MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2001-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  17. Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2002-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  18. Long time management of fossil fuel resources to limit global warming and avoid ice age onsets

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary

    2009-02-01

    There are about 5000 billion tons of fossil fuel carbon in accessible reserves. Combustion of all this carbon within the next few centuries would force high atmospheric CO2 content and extreme global warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at high northern latitudes. Here I present Earth System Model projections showing that typical reduction targets for fossil fuel use in the present century could limit ongoing global warming to less than one degree Celcius above present. Furthermore, the projections show that combustion pulses of remaining fossil fuel reserves could then be tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer insolation minima far into the future. Our present interglacial period could be extended by about 500,000 years in this way.

  19. Investigations of coherent anti-Stokes Raman spectroscopy /CARS/ for combustion diagnostics

    NASA Technical Reports Server (NTRS)

    Eckbreth, A. C.; Hall, R. J.; Shirley, J. A.

    1979-01-01

    Investigations of coherent anti-Stokes Raman spectroscopy (CARS) in a variety of flames are presented. Thermometry has received the primary emphasis in these studies, but species spectral and sensitivity studies will also be described. CARS is generated by mixing a 10 pps, frequency-doubled neodymium 'pump' laser with a spectrally broadband, laser-pumped, Stokes-shifted dye laser. This approach obviates the requirement to frequency scan the dye laser and generates the entire CARS spectrum with each pulse permitting, in principle, instantaneous measurements of medium properties. CARS spectra of N2, CO, O2, H2O, CO2 and CH4 in flames will be presented. In general these spectra exhibit very good agreement with computer synthesized spectra and permit measurements of temperature and species concentration. To illustrate the applicability of CARS to practical combustion diagnostics, CARS signatures from N2 have been employed to map the temperature field throughout a small, luminous, highly sooting propane diffusion flame

  20. High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression

    NASA Technical Reports Server (NTRS)

    Matalanis, Claude; Bowles, Patrick; Lorber, Peter; Crittenden, Thomas; Glezer, Ari; Schaeffler, Norman; Min, Byung-Young; Jee, Solkeun; Kuczek, Andrzej; Wake, Brian

    2016-01-01

    This work documents high-speed wind tunnel experiments conducted on a pitching airfoil equipped with an array of combustion-powered actuators (COMPACT). The main objective of these experiments was to demonstrate the stall-suppression capability of COMPACT on a high-lift rotorcraft airfoil, the VR-12, at relevant Mach numbers. Through dynamic pressure measurements at the airfoil surface it was shown that COMPACT can positively affect the stall behavior of the VR-12 at Mach numbers up to 0.4. Static airfoil results demonstrated 25% and 50% increases in post-stall lift at Mach numbers of 0.4 and 0.3, respectively. Deep dynamic stall results showed cycle-averaged lift coefficient increases up to 11% at Mach 0.4. Furthermore, it was shown that these benefits could be achieved with relatively few pulses during down-stroke and with no need to pre-anticipate the stall event. The flow mechanisms responsible for stall suppression were investigated using particle image velocimetry.

  1. Revamping AK-Ashland gas cleaning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandes, H.; Koerbel, R.; Haberkamp, K.

    1995-07-01

    AK Steel`s (formerly Armco) BOF shop was using a static precipitator for the primary collection. The system was designed for full combustion in the gas collecting hoods. No secondary dust collection was in place. A detailed study on alternative solutions led to a completely different system in 1990, and an order was awarded to Mannesmann Demag Corp. (MDC) in Dec. 1990. The new gas collection system is using suppressed combustion with the capability to collect Co at a later stage. The gas cleaning uses the Mannesmann Demag Baumco scrubber with a venturi throat for gas flow control. All auxiliary components,more » water treatment plant, electric substations and sludge handling were designed and supplied by MDC. The secondary dust collection covers the hot metal and scrap charging into the BOF`s, reladling, desulfurization and deslagging by a pulse jet baghouse. All emission limits set by the EPA and guaranteed by MDC have been met by the systems installed.« less

  2. Repetitively Pulsed Nonequilibrium Plasmas for Plasma-Assisted Combustion, Flow Control, and Molecular Lasers

    NASA Astrophysics Data System (ADS)

    Adamovich, Igor

    2006-10-01

    The paper presents results of three experiments using high voltage, short pulse duration, high repetition rate discharge plasmas. High electric field during the pulse (E/N˜500-1000 Td) allows efficient ionization and molecular dissociation. Between the pulses, additional energy can be coupled to the decaying plasma using a DC field set below the breakdown threshold. While the DC sustainer discharge adds 90-95% of all the power to the flow, it does not produce any additional ionization. The pulser and the sustainer discharges are fully overlapped in space. Low duty cycle of the pulsed ionizer, ˜1/1000, allows sustaining diffuse and uniform pulser-sustainer plasmas at high pressures and power loadings. The first experiment using the pulsed discharge is ignition of premixed hydrocarbon-air flows, which occurs at low pulsed discharge powers, ˜100 W, and very low plasma temperatures, 100-200^0 C. The second experiment is Lorentz force acceleration of low-temperature supersonic flows. The pulsed discharge was used to generate electrical conductivity in M=3 nitrogen and air flows, while the sustainer discharge produced transverse current in the presence of magnetic field of B=1.5 T. Retarding Lorentz force applied to the flow produced a static pressure increase of up to 15-20%, while accelerating force of the same magnitude resulted in static pressure rise of up to 7-8%, i.e. a factor of two smaller. The third experiment is singlet delta oxygen (SDO) generation in a high-pressure pulser-sustainer discharge. SDO yield was inferred from the integrated intensity of SDO infrared emission spectra calibrated using a blackbody source. The measured yield exceeds the laser threshold yield by about a factor of three, which makes possible achieving positive gain in the laser cavity. The highest gain measured so far is 0.03%/cm.

  3. Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong

    2005-11-01

    A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.

  4. Experimental and numerical investigations on PDE performance augmentation by means of an ejector

    NASA Astrophysics Data System (ADS)

    Canteins, G.; Franzetti, F.; Zocłońska, E.; Khasainov, B. A.; Zitoun, R.; Desbordes, D.

    2006-06-01

    To improve the performance of pulse detonation engines, a 48 cm long cylindrical combustion chamber of 5cm internal diameter (i.d.) is fitted with an ejector of constant section. The role of the ejector is (i) to provide partial confinement of the detonation products escaping from the chamber and (ii) to suck in fresh air and then to increase the mass ejected compared to the ejection of burned gases alone. The combustion chamber is fully filled with a stoichiometric ethylene/oxygen mixture at ambient conditions. Three parameters of the ejector are varied: the i.d. D, the length L, and the position d relative to the thrust wall of the combustion chamber. For various configurations, the specific impulse ( I sp) is determined in single shot experiments. The maximum operating frequency ( f max) and the maximum thrust are then deduced. I sp is measured by means of the ballistic pendulum method, and f max is derived from the pressure signal recorded on the combustion chamber thrust wall. The addition of an ejector increases the specific impulse up to 60% in the best configuration tested, from 164s without ejector to 260s with ejector. The specific impulse can be represented by a single curve using suitable dimensionless parameters. The thrust results for the main ejector studied ( D = 80mm) indicate an optimal ( L, d) configuration that provides a 28% thrust gain. For the same ejector, f max remains constant and equal to the frequency obtained without ejector in a large range of ( L, d) values, before decreasing. Two-dimensional unsteady numerical computations agree reasonably with the experiments, slightly overestimating the experimental values. The results indicate that 80% of the I sp gain comes from the action of the expanding detonation products on the annular end surface of the combustion chamber, governed by the tube wall thickness.

  5. Analysis of 100-lb(sub f) (445-N) LO2-LCH4 Reaction Control Engine Impulse Bit Performance

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Klenhenz, Julie E.

    2012-01-01

    Recently, liquid oxygen-liquid methane (LO2-LCH4) has been considered as a potential green propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project was tasked by NASA to develop this propulsion combination to enable safe and cost-effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating with the viability of implementing such a system. The NASA Glenn Research Center conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the Center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes unique propellant conditioning feed systems (PCFS), which allow precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed-mode operation portion of testing, with a focus on minimum impulse bit (MIB) and repeatable pulse performance. The engine successfully demonstrated target MIB performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon, which was not noted in previous test programs for this engine.

  6. Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Nguyen, N.; Cutler, A. D.

    2008-01-01

    This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.

  7. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers

    PubMed Central

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N.; Hamm, James F.; Dani, Keshav M.; Dani, Anya R.

    2017-01-01

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects. PMID:28772468

  8. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers.

    PubMed

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N; Hamm, James F; Dani, Keshav M; Dani, Anya R

    2017-01-26

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects.

  9. Buoyancy Effects in Strongly-Pulsed, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.

    2004-01-01

    The objective of this experiment is to better understand the combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. The fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Experiments are conducted both in laboratories at UW and WPI and in the GRC 2.2s Drop Tower. A single fuel nozzle with diameter d = 2 mm is centered in a combustor 20 20 cm in cross section and 67 cm in height. The gaseous fuel flow (ethylene or a 50/50 ethylene/nitrogen mixture by volume) is fully-modulated by a fast-response solenoid valve with injection times from tau = 4 to tau = 300 ms. The nominal Reynolds number based on the fuel velocity during injection, U(sub jet), is 5,000. A slow oxidizer co-flow properly ventilates the flame and an electrically heated wire loop serves as a continuous ignition source. Diagnostic techniques include video imaging, fine-wire thermocouples and thermopile radiometers, and gas sampling and standard emissions instruments (the last in the laboratory only).

  10. Buoyancy Effects in Strongly-pulsed, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.

    2004-01-01

    The objective of this experiment is to better understand the combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. The fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Experiments are conducted both in laboratories at UW and WPI and in the GRC 2.2s Drop Tower. A single fuel nozzle with diameter d = 2 mm is centered in a combustor 20 x 20 cm in cross section and 67 cm in height. The gaseous fuel flow (ethylene or a 50/50 ethylene/nitrogen mixture by volume) is fully-modulated by a fast-response solenoid valve with injection times from tau = 4 to tau = 300 ms. The nominal Reynolds number based on the fuel velocity during injection, U(sub jet), is 5,000. A slow oxidizer co-flow properly ventilates the flame and an electrically heated wire loop serves as a continuous ignition source. Diagnostic techniques include video imaging, fine-wire thermocouples and thermopile radiometers, and gas sampling and standard emissions instruments (the last in the laboratory only).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmeister, Kathryn N. Gabet; Guildenbecher, Daniel Robert; Kearney, Sean P.

    We report the application of ultrafast rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning aluminized ammonium perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laserbased diagnostics, with intense background luminosity, scattering and beam obstruction from hot metal particles that can be as large as several hundred microns in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminumparticle- seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of themore » plasma formed by particulateenhanced laser-induced breakdown. Introduction of fs/ps laser pulses enables CARS detection at reduced pulse energies, decreasing the likelihood of breakdown, while simultaneously providing time-gated elimination of any nonresonant background interference. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements from the fs/ps rotational CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Preliminary results in canonical flames are presented using a hybrid fs/ps vibrational CARS system to demonstrate our progress towards acquiring vibrational CARS measurements for more accurate temperatures in the very high temperature propellant burns.« less

  12. Fiber-coupled 2.7 µm laser absorption sensor for CO2 in harsh combustion environments

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    2013-05-01

    A tunable diode laser absorption sensor near 2.7 µm, based on 1f-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f), was developed to measure CO2 concentration in harsh combustion flows. Wavelength selection at 3733.48 cm-1 exploited the overlap of two CO2 transitions in the ν1 + ν3 vibrational band at 3733.468 cm-1 and 3733.498 cm-1. Primary factors influencing wavelength selection were isolation and strength of the CO2 absorption lines relative to infrared water absorption at elevated pressures and temperatures. The HITEMP 2010 database was used to model the combined CO2 and H2O absorption spectra, and key line-strength and line-broadening spectroscopic parameters were verified by high-temperature static cell measurements. To validate the accuracy and precision of the WMS-based sensor, measurements of CO2 concentration were carried out in non-reactive shock-tube experiments (P ˜ 3-12 atm, T ˜ 1000-2600 K). The laser was then free-space fiber-coupled with a zirconium fluoride single-mode fiber for remote light delivery to harsh combustion environments, and demonstrated on an ethylene/air pulse detonation combustor at pressures up to 10 atm and temperatures up to 2500 K. To our knowledge, this work represents the first time-resolved in-stream measurements of CO2 concentration in a detonation-based engine.

  13. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic aroundmore » 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.« less

  14. Simultaneous species concentration and temperature measurements using laser induced breakdown spectroscopy with direct spectrum matching

    NASA Astrophysics Data System (ADS)

    McGann, Brendan J.

    Laser induced breakdown spectroscopy (LIBS) is used to simultaneously measure hydrocarbon fuel concentration and temperature in high temperature, high speed, compressible, and reacting flows, a regime in which LIBS has not been done previously. Emission spectra from the plasma produced from a focused laser pulse is correlated in the combustion region of a model scramjet operating in supersonic wind tunnel. A 532 nm Nd:YAG laser operating at 10 Hz is used to induce break-down. The emissions are captured during a 10 ns gate time approximately 75 ns after the first arrival of photons at the measurement location in order to minimize the measurement uncertainty in the turbulent, compressible, high-speed, and reacting environment. Three methods of emission detection are used and a new backward scattering direction method is developed that is beneficial in reducing the amount of optical access needed to perform LIBS measurements. Measurements are taken in the model supersonic combustion and the ignition process is shown to be highly dependent on fuel concentration and gas density as well as combustion surface temperature, concentration gradient, and flow field. Direct spectrum matching method is developed and used for quantitative measurements. In addition, a comprehensive database of spectra covering the fuel concentrations and gas densities found in the wind tunnel of Research Cell 19 at Wright Patterson Air Force Base is created which can be used for further work.

  15. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse

    NASA Astrophysics Data System (ADS)

    Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.

    2014-01-01

    The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  16. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R; Prince, Benjamin D; Roy, Sukesh; Gord, James R

    2014-01-14

    The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  17. Shock tunnel studies of scramjet phenomena, supplement 6

    NASA Technical Reports Server (NTRS)

    Wendt, M.; Nettleton, M.; Morgan, R. G.; Skinner, K.; Casey, R.; Stalker, R.; Brescianini, C.; Paull, A.; Allen, G.; Smart, M.

    1993-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation.

  18. The Attenuation of a Detonation Wave by an Aircraft Engine Axial Turbine Stage

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane; Turner, Mark G.

    2007-01-01

    A Constant Volume Combustion Cycle Engine concept consisting of a Pulse Detonation Combustor (PDC) followed by a conventional axial turbine was simulated numerically to determine the attenuation and reflection of a notional PDC pulse by the turbine. The multi-stage, time-accurate, turbomachinery solver TURBO was used to perform the calculation. The solution domain consisted of one notional detonation tube coupled to 5 vane passages and 8 rotor passages representing 1/8th of the annulus. The detonation tube was implemented as an initial value problem with the thermodynamic state of the tube contents, when the detonation wave is about to exit, provided by a 1D code. Pressure time history data from the numerical simulation was compared to experimental data from a similar configuration to verify that the simulation is giving reasonable results. Analysis of the pressure data showed a spectrally averaged attenuation of about 15 dB across the turbine stage. An evaluation of turbine performance is also presented.

  19. [Exposure to electrocution by automotive ignition system in the work environment of car service employees].

    PubMed

    Fryśkowski, Bernard; Swiatek-Fryśkowska, Dorota

    2014-01-01

    Automotive ignition system diagnostic procedures involve a specific kind of action due to the presence of high voltage pulses rated of roughly several dozen kilovolts. Therefore, the repairers employed at car service coming into direct contact with electrical equipment of ignition systems are exposed to risk of electric shock. Typically, the electric discharge energy of automotive ignition systems is not high enough to cause fibrillation due to the electric effect on the heart. Nevertheless, there are drivers and car service employees who use electronic cardiac pacemakers susceptible to high voltage pulses. The influence of high-voltage ignition systems on the human body, especially in case of electric injury, has not been comprehensively elucidated. Therefore, relatively few scientific papers address this problem. The aim of this paper is to consider the electrical injury danger from automotive ignition systems, especially in people suffering from cardiac diseases. Some examples of the methods to reduce electric shock probability during diagnostic procedures of spark-ignition combustion engines are presented and discussed.

  20. The effect of CO2 on the plasma remediation of NxOy

    NASA Astrophysics Data System (ADS)

    Gentile, Ann C.; Kushner, Mark J.

    1996-04-01

    Plasma remediation is being investigated for the removal of oxides of nitrogen (NxOy) from atmospheric pressure gas streams. In previous works we have investigated the plasma remediation of NxOy from N2/O2/H2O mixtures using repetitively pulsed dielectric barrier discharges. As combustion effluents contain large percentages of CO2, in this paper we discuss the consequences of CO2 in the gas mixture on the efficiency of remediation and on the end products. We find that there is a small increase in the efficiency of total NxOy remediation (molecules/eV) with increasing CO2 fraction, however the efficiency of NO remediation alone generally decreases with increasing CO2. This differential is more pronounced at low energy deposition per pulse. More remediation occurs through the reduction channel with increasing CO2 while less NO2 and HNOx are produced through the oxidation channel. CO is produced by electron impact of CO2 though negligible amounts of cyanides are generated.

  1. Ignition Characterization Test Results for the LO2/Ethanol Propellant Combination

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Popp, Christopher G.; veith, Eric M.

    2007-01-01

    A series of contracts were issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) un der the auspices of the Exploration Systems Mission Directorate to de velop and expand the maturity of candidate technologies considered to be important for future space exploration. One such technology was to determine the viability of incorporating non-toxic propellants for R eaction Control Subsystems (RCS). Contract NAS8-01109 was issued to A erojet to develop a dual thrust Reaction Control Engine (RCE) that ut ilized liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporated a primary thrust level of 870 lbf, and a vernier thru st level of 10 - 30 lbf. The preferred RCS approach for the dual thru st RCE was to utilize pressure-fed liquid oxygen (LOX) and ethanol pr opellants; however, previous dual thrust feasibility testing incorporated GOX/Ethanol igniters as opposed to LOX/Ethanol igniters in the de sign. GOX/Ethanol was easier to ignite, but this combination had syst em design implications of providing GOX for the igniters. A LOX/Ethan ol igniter was desired; however, extensive LOX/Ethanol ignition data over the anticipated operating range for the dual thrust RCE did not e xist. Therefore, Aerojet designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk m itigation effort for the dual thrust RCE design. The objective of the ignition testing was to demonstrate successful ignition from GOX to LOX, encompassing potential two-phase flow conditions anticipated being present in real mission applications. A workhorse igniter was desig ned to accommodate the full LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the latent heat stored in the hardwa re, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two'phase flow to subcooled LOX. The Workh orse igniter was well instrumented: Pressure and temperature instrumentation permitted oxygen state points to be determined in the igniter oxidizer manifold, and gas-side igniter chamber thermocouples provide d chamber thermal profile characteristics. The cold flow chamber pres sure (Pc) for each test was determined and coupled with the igniter chamber diameter (De) to calculate the characteristic quench parameter (Pc x Dc), which was plotted as a function of core mixture ratio, MRc . Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 210 deg R LOX to 486 deg R GOX. Once ign ited at cold GOX conditions, combustion was continuous as the hardwar e chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5. Pulsing is required in typical RCS engines; therefore, the workhorse igniter was pulse tested to verify the ability to pr ovide the required ignition for a pulsing RCE. The minimum electrical pulse width (EPW) of the dual thrust RCE was 0.080 seconds. Igniter pulse tests were performed at three conditions: (1) an EPW of 0.080 se conds at 25% duty cycle for 400 pulses; (2) an EPW of 0.160 seconds a nd a 5% duty cycle for 124 pulses; (3) an EPW of 0.160 seconds and a 50% duty cycle for 380 pulses. Successful ignition of LOX/Ethanol was demonstrated over a broad range of valve inlet conditions, with the empirically determined LOX/Ethanol ignition limits extending the previous database established for GOX/Ethanol ignition limits. Although th e observed chill-in characteristics of the hardware varied significan tly with flowrate, ignition was readily achieved. Combustion was marg inal at extremely fuel-rich conditions, and it fluctuated as the oxygen passed rough the twophase flow regime during the period of hardware chill-in. Pulse testing showed good repeatability with 100 percent r e-ignition for all pulses. Certain pulse-to-pulse repeatability requirements for actual RCS operation may necessitate establishment of mini mum oxygen flow rates and engine thrust levels for satisfactory engin e performance.

  2. Non-equilibrium dynamics due to moving deflagration front at RDX/HTPB interface

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Santanu; Joshi, Kaushik; Lacevic, Naida

    Reactive dissipative particle dynamics (DPD-RX), a promising tool in characterizing the sensitivity and performance of heterogeneous solid propellants like polymer bonded explosives (PSXs), requires further testing for non-equilibrium dynamics. It is important to understand detailed atomistic chemistry for developing coarse grain reactive models needed for the DPD-RX. In order to obtain insights into combustion chemistry of RDX/HTPB binder, we used reactive molecular dynamics (RMD) to obtain energy up-pumping and reaction mechanisms at RDX/HTPB interface when exposed to a self-sustaining deflagration front. Hot spots are ignited near and away from the heterogeneous interface using the thermal pulse. The results show that the hot spot near interface significantly delays the transition from ignition to deflagration. We will present the mechanical response and the combustion chemistry of HTPB when the propagating deflagration front hits the polymer binder. We will discuss our efforts to incorporate this RMD based chemistry into the DPD-RX which will enable us to perform such non-equilibrium dynamics simulations on large-length scale with microstructural heterogeneities. Funding from DTRA Grant Number HDTRA1-15-1-0034 is acknowledged.

  3. Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments

    NASA Technical Reports Server (NTRS)

    Matalanis, Claude G.; Min, Byung-Young; Bowles, Patrick O.; Jee, Solkeun; Wake, Brian E.; Crittenden, Tom; Woo, George; Glezer, Ari

    2014-01-01

    An investigation on dynamic-stall suppression capabilities of combustion-powered actuation (COMPACT) applied to a tabbed VR-12 airfoil is presented. In the first section, results from computational fluid dynamics (CFD) simulations carried out at Mach numbers from 0.3 to 0.5 are presented. Several geometric parameters are varied including the slot chordwise location and angle. Actuation pulse amplitude, frequency, and timing are also varied. The simulations suggest that cycle-averaged lift increases of approximately 4% and 8% with respect to the baseline airfoil are possible at Mach numbers of 0.4 and 0.3 for deep and near-deep dynamic-stall conditions. In the second section, static-stall results from low-speed wind-tunnel experiments are presented. Low-speed experiments and high-speed CFD suggest that slots oriented tangential to the airfoil surface produce stronger benefits than slots oriented normal to the chordline. Low-speed experiments confirm that chordwise slot locations suitable for Mach 0.3-0.4 stall suppression (based on CFD) will also be effective at lower Mach numbers.

  4. A study of low emissions gas turbine combustions

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.

    1994-01-01

    Analytical studies have been conducted to determine the best methods of reducing NO(x) emissions from proposed civilian supersonic transports. Modifications to the gas turbine engine combustors and the use of additives were both explored. It was found that combustors which operated very fuel rich or lean appear to be able to meet future emissions standards. Ammonia additives were also effective in removing NO(x), but residual ammonia remained a problem. Studies of a novel combustor which reduces emissions and improves performance were initiated. In a related topic, a study was begun on the feasibility of using supersonic aircraft to obtain atmospheric samples. The effects of shock heating and compression on sample integrity were modeled. Certain chemical species, including NO2, HNO3, and ClONO2 were found to undergo changes to their composition after they passed through shock waves at Mach 2. The use of detonation waves to enhance mixing and combustion in supersonic airflows was also investigated. This research is important to the use of airbreathing propulsion to obtain orbital speeds and access to space. Both steady and pulsed detonation waves were shown to improve engine performance.

  5. Conformational Study of Dibenzyl Ether

    NASA Astrophysics Data System (ADS)

    Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Hewett, Daniel M.; Zwier, Timothy S.

    2017-06-01

    Understanding the initial stages of polycyclic aromatic hydrocarbon (PAH) aggregation, the onset of soot formation, is an important goal on the pathway to cleaner combustion processes. PAHs with short alkyl chains, present in fuel-rich combustion environments, can undergo reactions that will chemically link aromatic rings together. One such example of a linked diaryl compound is dibenzyl ether, C_{6}H_{5}-CH_{2}-O-CH_{2}-C_{6}H_{5}. The -CH_{2}-O-CH_{2}- linkage has a length and flexibility well-suited to forming a π-stacked conformation between the two phenyl rings. In this talk, we will explore the single-conformation spectroscopy of dibenzyl ether under jet-cooled conditions in the gas phase. Laser-induced fluorescence, chirped pulse Fourier transform microwave (8-18 GHz region), and single-conformation infrared spectroscopy in the alkyl CH stretch region were all carried out on the molecule, thereby interrogating its full array of electronic, vibrational and rotational degrees of freedom. This work is the first step in a broader study to determine the extent of π-stacking in linked aryl compounds as a function of linkage and PAH size.

  6. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays

    NASA Astrophysics Data System (ADS)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to allow probing of the sprays three dimensional structure. The test matrix included two nozzle diameters, 160 and 320 microns, and two fuels dodecane and methyl oleate. Results are presented comparing the fuels and the effects of nozzle diameter. A mathematical interpretation of the results is also presented.

  7. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    NASA Astrophysics Data System (ADS)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O <-> CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O<-> OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve combustion stability The effect of applied voltage in a flame below self-sustained plasma generation is known to enhance flame holding through induced turbulence. Review of recent results will be presented to show future research opportunities in quantitative measurements and modeling of hydrocarbon/air plasma enhanced combustion.

  8. Experimental study of turbulent flame kernel propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{submore » j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)« less

  9. Fluid Chemistry Dynamics Before and After Fire in the Jemez River Basin Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Chorover, J.; Perdrial, J. N.; Field, J. P.; Pelletier, J. D.; Pohlmann, M. A.; Losleben, M. V.; Lasharr, K.; Amistadi, M.; Brooks, P. D.; McIntosh, J. C.; Meixner, T.; Gallery, R.; Rich, V. I.; Rasmussen, C.; Schaap, M. G.; Breshears, D. D.

    2013-12-01

    The largest wildfire in New Mexico state history (prior to the Whitewater-Baldy fire of 2012) burned the eastern portion of the Jemez River Basin Critical Zone Observatory (JRB CZO) in June-July 2011. This Los Conchas fire burned large stands of ponderosa pine and mixed conifer (MC) forest within the East Fork Jemez River watershed generating massive post-fire erosion. We asked the question: What are the implications of wildfire on pulsed carbon and other bio-active element redistributions in impacted soils and catchments? As soon as possible following the fire, our research group installed sensor and sampler instrumentation in soil profiles in an intensively burned zero order basin (ZOB), enabling the initiation of comparisons to a similarly instrumented, unburned MC ZOB. The signal of biomass combustion was propagated through soil and stream. Post-burn solute fluxes were dominated by highly-aromatic character DOM, as well as elevated DIC, sulfate, chloride and non-hydrolyzing cation (Ca, Mg, K) concentrations deriving from biomass combustion. Supporting an apparent trend of increasing wildfire in western montane forests, the Thompson Ridge wildfire burned MC forest throughout much of the western previously unburned portion of the Valles Caldera National Preserve in June 2013, including the (until then) "unburned" MC ZOB sites comprising CZO sensor and sampler network arrays. Post-burn soil samples were collected for geochemical, physical, and microbial composition characterizations. Solute and gas fluxes were monitored in situ to compare CZ response following this high intensity burn to three years of pre-burn data. Results indicate that the post-fire pulse of water soluble, biomass-derived ions and carbon into underlying and downslope soils is generating landscape-scale element distribution that could affect recolonization by biota in the ensuing secondary succession.

  10. Evaluation of pilot-scale pulse-corona-induced plasma device to remove NO{sub x} from combustion exhausts from a subscale combustor and from a hush house at Nellis AFB, Nevada. Final report, August 1994--January 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haythornthwaite, S.M.; Durham, M.D.; Anderson, G.L.

    1997-05-01

    Jet engine test cells (JETCs) are used to test-fire new, installed, and reworked jet engines. Because JETCs have been classified as stationary sources of pollutant emissions, they are subject to possible regulation under Title 1 of the Clean Air Act (CAA) as amended in 1990. In Phase 1 of the Small Business Innovation Research (SBIR) program, a novel NOx-control approach utilizing pulsed-corona-induced plasma successfully showed 90% removal of NOx in the laboratory. The objective of Phase 2 was to reproduce the laboratory-scale results in a pilot-scale system. The technology was successfully demonstrated at pilot scale in the field, on amore » slipstream of JETC flue gas at Nellis Air Force Base. Based on the field data, cost projections were made for a system to treat the full JETC exhaust. The technology efficiently converted NO into ONO, and a wet scrubber was required to achieve the treatment goal of 50-percent removal and destruction of NOx. The plasma simultaneously removes hydrocarbons from the flue gas stream. This project demonstrated that pulse-corona-induced plasma technology is scalable to practical industrial dimensions.« less

  11. Hybrid fs/ps CARS for Sooting and Particle-laden Flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmeister, Kathryn N. Gabet; Guildenbecher, Daniel Robert; Kearney, Sean P.

    2015-12-01

    We report the application of ultrafast rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning aluminized ammonium perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laserbased diagnostics, with intense background luminosity, scattering and beam obstruction from hot metal particles that can be as large as several hundred microns in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminumparticle- seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of themore » plasma formed by particulateenhanced laser-induced breakdown. Introduction of fs/ps laser pulses enables CARS detection at reduced pulse energies, decreasing the likelihood of breakdown, while simultaneously providing time-gated elimination of any nonresonant background interference. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements from the fs/ps rotational CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Preliminary results in canonical flames are presented using a hybrid fs/ps vibrational CARS system to demonstrate our progress towards acquiring vibrational CARS measurements for more accurate temperatures in the very high temperature propellant burns.« less

  12. Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shifta)

    NASA Astrophysics Data System (ADS)

    Flandro, Gary A.; Fischbach, Sean R.; Majdalani, Joseph

    2007-09-01

    High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.

  13. Experimental study on the thrust modulation performance of powdered magnesium and CO2 bipropellant engine

    NASA Astrophysics Data System (ADS)

    Li, Chao; Hu, Chunbo; Zhu, Xiaofei; Hu, Jiaming; Li, Yue; Hu, Xu

    2018-06-01

    Powdered Mg and CO2 bipropellant engine providing a practical demonstration of in situ resource utilization (ISRU) for Mars Sample Return (MSR) mission seems to be feasible by current investigations. However, essential functions of the engine to satisfy the complicated ballistics requirements such as thrust modulation and multiple pulse have not been established yet. The aim of this experimental study is to evaluate the engine's thrust modulation feasibility and to investigate its thrust modulation characteristics. A powdered Mg and CO2 bipropellant engine construction aiming to achieve thrust modulation ability was proposed. A mass flow rate calibration experiment to evaluate the gas-solid mass flow rate regulating performance was conducted before fire tests. Fire test result shows that the engine achieved successful ignition as well as self-sustaining combustion; Thrust modulation of the engine is feasible, detail thrust estimating result of the test shows that maximum thrust is 135.91 N and the minimum is 5.65 N with a 22.11 thrust modulation ratio, moreover, the transportation period is quick and the thrust modulation ratio is adjustable. At the same time, the powder feed system reaches a two-step flow rate regulating with a modulation ratio of 4.5-5. What' more, caused by the uneven engine working conditions, there is an obvious difference in combustion efficiency value, maximum combustion efficiency of the powdered Mg and CO2 bipropellant engine is 80.20%.

  14. Remote sensing of temperature and concentration profiles of a gas jet by coupling infrared emission spectroscopy and LIDAR for characterization of aircraft engine exhaust

    NASA Astrophysics Data System (ADS)

    Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.

    2015-05-01

    Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.

  15. Studies on pressure-gain combustion engines

    NASA Astrophysics Data System (ADS)

    Matsutomi, Yu

    Various aspects of the pressure-gain combustion engine are investigated analytically and experimentally in the current study. A lumped parameter model is developed to characterize the operation of a valveless pulse detonation engine. The model identified the function of flame quenching process through gas dynamic process. By adjusting fuel manifold pressure and geometries, the duration of the air buffer can be effectively varied. The parametric study with the lumped parameter model has shown that engine frequency of up to approximately 15 Hz is attainable. However, requirements for upstream air pressure increases significantly with higher engine frequency. The higher pressure requirement indicates pressure loss in the system and lower overall engine performance. The loss of performance due to the pressure loss is a critical issue for the integrated pressure-gain combustors. Two types of transitional methods are examined using entropy-based models. An accumulator based transition has obvious loss due to sudden area expansion, but it can be minimized by utilizing the gas dynamics in the combustion tube. An ejector type transition has potential to achieve performance beyond the limit specified by a single flow path Humphrey cycle. The performance of an ejector was discussed in terms of apparent entropy and mixed flow entropy. Through an ideal ejector, the apparent part of entropy increases due to the reduction in flow unsteadiness, but entropy of the mixed flow remains constant. The method is applied to a CFD simulation with a simple manifold for qualitative evaluation. The operation of the wave rotor constant volume combustion rig is experimentally examined. The rig has shown versatility of operation for wide range of conditions. Large pressure rise in the rotor channel and in a section of the exhaust duct are observed even with relatively large leakage gaps on the rotor. The simplified analysis indicated that inconsistent combustion is likely due to insufficient fuel near the ignition source. However, it is difficult to conclude its fuel distribution with the current setup. Additional measurement near the rotor interfaces and better fuel control are required for the future test.

  16. Pulsed Ejector Wave Propogation Test Program

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Slater, John W.; Paxson, Daniel E.

    2003-01-01

    The development of, and initial test data from, a nondetonating Pulse Detonation Engine (PDE) simulator tested in the NASA Glenn 1 x 1 foot Supersonic Wind Tunnel (SWT) is presented in this paper. The concept is a pulsed ejector driven by the simulated exhaust of a PDE. This pro- gram is applicable to a PDE entombed in a ramjet flowpath, i.e., a PDE combined-cycle propulsion system. The ejector primary flow is a pulsed, uiiderexpanded, supersonic nozzle simulating the supersonic waves ema- nating from a PDE, while the ejector secondary flow is the 1 x 1 foot SWT test section operated at subsonic Mach numbers. The objective is not to study the detonation details, but the wave physics including t,he start- ing vortices, the extent of propagation of the wave front, the reflection of the wave from the secondary flowpath walls, and the timing of these events of a pulsed ejector, and correlate these with Computational Fluid Dynamics (CFD) code predictions. Pulsed ejectors have been shown to result in a 3 to 1 improvement in LID (length-to-diameter) and a near 2 to 1 improvement in thrust augmentation over a steady ejector. This program will also explore the extent of upstream interactions between an inlet and large, periodically applied, backpressures to the inlet as would be present due to combustion tube detonations in a PDE. These interactions could result in inlet unstart or buzz for a supersonic mixed compression inlet. The design of the present experiment entailed the use of an 2-t diagram characteristics code to study the nozzle filling and purging timescales as well as a series of CFD analyses conducted using the WIND code. The WIND code is a general purpose CFD code for solution of the Reynolds averaged Navier-Stokes equations and can be applied to both steady state and time-accurate calculations. The first, proof-of-concept, test entry (spring 2001) pressure distributions shown here indicate the simulation concept was successful and therefore the experimental approach is sound.

  17. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) for Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James

    2003-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los Alamos National Laboratory and CFD Research Corporation have designed and fabricated a miniaturized, first-generation optical prototype of a laser ignition system that could be the basis for a laser ignition system for rocket applications. This prototype will be tested at MSFC in future subscale rocket ignition tests.

  18. Shock tunnel studies of scramjet phenomena, supplement 8

    NASA Technical Reports Server (NTRS)

    Stalker, R. J.; Hollis, P.; Allen, G. A.; Roberts, G. T.; Tuttle, S.; Bakos, R. J.; Morgan, R. G.; Pulsonetti, M. V.; Brescianini, C.; Buttsworth, D. R.

    1993-01-01

    Reports by the staff of the University of Oueensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 8 under NASA Grant NAGW-674.

  19. Shock tunnel studies of scramjet phenomena, supplement 7

    NASA Technical Reports Server (NTRS)

    Bakos, R. J.; Morgan, R. G.; Tuttle, S. L.; Kelly, G. M.; Paull, A.; Simmons, J. M.; Stalker, R. J.; Pulsonetti, M. V.; Buttsworth, D.; Allen, G. A., Jr.

    1993-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 7 under NASA Grant NAGW-674.

  20. Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders.

    PubMed

    Secor, Ethan B; Gao, Theodore Z; Dos Santos, Manuel H; Wallace, Shay G; Putz, Karl W; Hersam, Mark C

    2017-09-06

    High-throughput and low-temperature processing of high-performance nanomaterial inks is an important technical challenge for large-area, flexible printed electronics. In this report, we demonstrate nitrocellulose as an exothermic binder for photonic annealing of conductive graphene inks, leveraging the rapid decomposition kinetics and built-in energy of nitrocellulose to enable versatile process integration. This strategy results in superlative electrical properties that are comparable to extended thermal annealing at 350 °C, using a pulsed light process that is compatible with thermally sensitive substrates. The resulting porous microstructure and broad liquid-phase patterning compatibility are exploited for printed graphene microsupercapacitors on paper-based substrates.

  1. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  2. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  3. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  4. Spontaneous Raman Scattering Diagnostics: Applications in Practical Combustion Systems. Chapter 5

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Viet-Nguyen, Quang; Lackner, Maximilian (Editor); Winter, Franz (Editor); Agarwal, Avinash (Editor)

    2010-01-01

    In this chapter, the recent advancements and practical aspects of laser SRS diagnostics have been reviewed wi til regards to applications in practical combustion systems. Clearly, SRS represents a theoretically and experimentally mature diagnostic technology that has become an essential tool for multiscalar measurements in turbulent combustion at elevated pressures. Today, time-, space-, spectrally, and even polarization-resolved S RS diagnostics is at hand, with aid from recent innovations in theoretical and technological developments on electro-optical or electromechanical devices. Whilst a linear increase in SRS signals can be expected in high-pressure systems (this is perhaps one of the most important advantages for using SRS in high-pressure systems), there are practical (often severe) restrictions associated with pressurized vessels, due mainly to the limited degree of optical access. This narrows ti,e available choice of diagnostics that can be employed at any given time. Point-wise SRS diagnostics provides the highest accuracy on the chemical species and temperature measurements, and will continue to remain a vital approach for the study in such harsh environments. The practical design considerations and hands-on set-up guide for SRS diagnostics provided in this chapter are rarely presented elsewhere. Although the second-harmonic Nd:YAG pulsed laser (532 nm), combined with pulse-stretching optics or the recently introduced White Cell-based laser, seems to be the most favored excitation source of choice by the research community, UV excitation will undoubtedly continue to be used on many occasions, and especially in sooting flames. Detection methods may be divided into ICCD-based nanosecond-gate detection or a rotary-chopper electromechanical shutter-based CCD array detection, and the levels of background flame emission in individual cases would determine this critical design choice. Here, a process of Raman signal calibration based on ti,e crosstalk matrix formalism was explained step-by-step. As tI,is process may be very time-consuming and expensive, a well-planned experimental approach (01' building a transferable calibration database or library (at least with in a user's own facility over a series of different testing and runs) is vitally important. Hands on advice on the design and construction of flow control systems for high pressure burner facilities were also presented.

  5. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Peter M.

    2014-03-31

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energymore » of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electron’s orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecule’s time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or excited valence states is measured by inducing the dynamics using a near UV laser pulse, and employing a multi-photon ionization scheme via the Rydberg states as a probe process. Thus, the technique is capable of measuring the reaction dynamics in any electronic state of neutral molecules.« less

  6. Investigation of combustion control in a dump combustor using the feedback free fluidic oscillator

    NASA Astrophysics Data System (ADS)

    Meier, Eric J.

    The feedback free fluidic oscillator uses the unsteady nature of two colliding jets to create a single oscillating outlet jet with a wide sweep angle. These devices have the potential to provide additional combustion control, boundary layer control, thrust vectoring, and industrial flow deflection. Two-dimensional computational fluid dynamics, CFD, was used to analyze the jet oscillation frequency over a range of operating conditions and to determine the effect that geometric changes in the oscillator design have on the frequency. Results presented illustrate the changes in jet oscillation frequency with gas type, gas temperature, operating pressure, pressure ratio across the oscillator, aspect ratio of the oscillator, and the frequency trends with various changes to the oscillator geometry. A fluidic oscillator was designed and integrated into single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the dump plane using 15% of the oxidizer flow. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide at an O/F of 11.66. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics for studying a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared with equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 60% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. The results indicate open loop propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate. Three-dimensional computational fluid dynamics, 3-D CFD, was conducted to determine the mechanism by which the fluidic oscillators were able to suppress the combustion instability. Results for steady jet secondary injection, showed a strong coupling between the jet injection and the combustion instability pressure pulse. The computational results were able to closely match the experimental results and previous CFD data. The model with the oscillating fluidic oscillator injection was unable to match the stable combustion seen in the experimental data. Further investigation is needed to determine the role higher order chemistry kinetics play in the process and the role of manifolds on the un-choked fuel and fluidic oscillator inlets. This research demonstrates the ability to modulate propellant injection and suppress combustion instabilities using fluidic devices that require no electrical power or moving parts. The advent of advanced manufacturing technologies such as direct metal laser sintering will allow for integration of fluidic devices into combustors to provide open loop active control with a high degree of reliability. Additionally, 2-D CFD analysis is demonstrated to be a valid tool for predicting the feedback free fluidic oscillator oscillation mechanism.

  7. Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Fischer, David G.; Kojima, Jun

    2011-01-01

    Accurate experimental measurement of spatially and temporally resolved variations in chemical composition (species concentrations) and temperature in turbulent flames is vital for characterizing the complex phenomena occurring in most practical combustion systems. These diagnostic measurements are called multiscalar because they are capable of acquiring multiple scalar quantities simultaneously. Multiscalar diagnostics also play a critical role in the area of computational code validation. In order to improve the design of combustion devices, computational codes for modeling turbulent combustion are often used to speed up and optimize the development process. The experimental validation of these codes is a critical step in accepting their predictions for engine performance in the absence of cost-prohibitive testing. One of the most critical aspects of setting up a time-resolved stimulated Raman scattering (SRS) diagnostic system is the temporal optical gating scheme. A short optical gate is necessary in order for weak SRS signals to be detected with a good signal- to-noise ratio (SNR) in the presence of strong background optical emissions. This time-synchronized optical gating is a classical problem even to other spectroscopic techniques such as laser-induced fluorescence (LIF) or laser-induced breakdown spectroscopy (LIBS). Traditionally, experimenters have had basically two options for gating: (1) an electronic means of gating using an image intensifier before the charge-coupled-device (CCD), or (2) a mechanical optical shutter (a rotary chopper/mechanical shutter combination). A new diagnostic technology has been developed at the NASA Glenn Research Center that utilizes a frame-transfer CCD sensor, in conjunction with a pulsed laser and multiplex optical fiber collection, to realize time-resolved Raman spectroscopy of turbulent flames that is free from optical background noise (interference). The technology permits not only shorter temporal optical gating (down to <1 s, in principle), but also higher optical throughput, thus resulting in a substantial increase in measurement SNR.

  8. Increase in the efficiency of a high-speed ramjet on hydrocarbon fuel at the flying vehicle acceleration up to M = 6+

    NASA Astrophysics Data System (ADS)

    Abashev, V. M.; Korabelnikov, A. V.; Kuranov, A. L.; Tretyakov, P. K.

    2017-10-01

    At the analysis of the work process in a ramjet, a complex consideration of the ensemble of problems the solution of which determines the engine efficiency appears reasonable. The main problems are ensuring a high completeness of fuel combustion and minimal hydraulic losses, the reliability of cooling of high-heat areas with the use of the fuel cooling resource, and ensuring the strength of the engine duct elements under non-uniform heat loads due to fuel combustion in complex gas-dynamic flow structures. The fundamental techniques and approaches to the solution of above-noted problems are considered in the present report, their novelty and advantages in comparison with conventional techniques are substantiated. In particular, a technique of the arrangement of an intense (pre-detonation) combustion regime for ensuring a high completeness of fuel combustion and minimal hydraulic losses at a smooth deceleration of a supersonic flow down to the sound velocity using the pulsed-periodic gas-dynamic flow control has been proposed. A technique has been proposed for cooling the high-heat areas, which employs the cooling resource of the hydrocarbon fuel, including the process of the kerosene chemical transformation (conversion) using the nano-catalysts. An analysis has shown that the highly heated structure will operate in the elastic-plastic domain of the behavior of constructional materials, which is directly connected to the engine operation resource. There arise the problems of reducing the ramjet shells depending on deformations. The deformations also lead to a significant influence on the work process in the combustor and, naturally, on the heat transfer process and the performance of catalysts (the action of plastic and elastic deformations of restrained shells). The work presents some results illustrating the presence of identified problems. A conclusion is drawn about the necessity of formulating a complex investigation both with the realization in model experiments and execution of computational and theoretical investigations.

  9. Damage of natural stone tablets exposed to exhaust gas under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Farkas, Orsolya; Szabados, György; Török, Ákos

    2016-04-01

    Natural stone tablets were exposed to exhaust gas under laboratory conditions to assess urban stone damage. Cylindrical test specimens (3 cm in diameter) were made from travertine, non-porous limestone, porous limestone, rhyolite tuff, sandstone, andesite, granite and marble. The samples were exposed to exhaust gas that was generated from diesel engine combustion (engine type: RÁBA D10 UTSLL 160, EURO II). The operating condition of the internal combustion engine was: 1300 r/m (app 50%). The exhaust gas was diverted into a pipe system where the samples were placed perpendicular to main flow for 1, 2, 4, 8 and 10 hours, respectively. The exhaust emission was measured by using AVL particulate measurement technology; filter paper method (AVL 415). The stone samples were documented and selective parameters were measured prior to and after exhaust gas exposure. Density, volume, ultrasonic pulse velocity, mineral composition and penetration depth of emission related particulate matter were recorded. The first results indicate that after 10 hours of exposure significant amount of particulate matter deposited on the stone surface independently from the surface properties and porosity. The black soot particles uniformly covered all types of stones, making hard to differentiate the specimens.

  10. Plasma characterization for application in ballistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katulka, G.; Nusca, M.; White, K.

    1996-12-31

    There is currently a strong motivation for improving the existing performance of fielded military gun systems. For that objective, research over the past several years has been carried out in an effort to enhance performance by addition of energy into the gun chamber by way of a plasma generator. This energy addition, referred to as Electro-thermal Chemical (ETC) propulsion, can be readily controlled electrically where it can be used to ignite the chamber`s energetic material, enhance the total energy, and control the interior process through control of the propellant combustion. To realize the potential advantages of this system it ismore » important to characterize the plasma generator in terms of (a) the impedance characteristics and its relationship to the pulse forming network used to generate the plasma, (b) the plasma output energy components such as radiation and convection in both time and space, (c) the details of the hydrodynamic interactions of the plasma with the propelling charge bed in the gun chamber and, (d) the direct effect of the plasma on the propellant reactions. Experimental studies have been carried out to study the effect of the plasma radiation on the propellant characteristics related to combustion.« less

  11. Single-Shot Scalar-Triplet Measurements in High-Pressure Swirl-Stabilized Flames for Combustion Code Validation

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2007-01-01

    In support of NASA ARMD's code validation project, we have made significant progress by providing the first quantitative single-shot multi-scalar data from a turbulent elevated-pressure (5 atm), swirl-stabilized, lean direct injection (LDI) type research burner operating on CH4-air using a spatially-resolved pulsed-laser spontaneous Raman diagnostic technique. The Raman diagnostics apparatus and data analysis that we present here were developed over the past 6 years at Glenn Research Center. From the Raman scattering data, we produce spatially-mapped probability density functions (PDFs) of the instantaneous temperature, determined using a newly developed low-resolution effective rotational bandwidth (ERB) technique. The measured 3-scalar (triplet) correlations, between temperature, CH4, and O2 concentrations, as well as their PDF s, also provide a high-level of detail into the nature and extent of the turbulent mixing process and its impact on chemical reactions in a realistic gas turbine injector flame at elevated pressures. The multi-scalar triplet data set presented here provides a good validation case for CFD combustion codes to simulate by providing both average and statistical values for the 3 measured scalars.

  12. Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph; Hartfield, Roy J., Jr.; Trinh, Huu P.; Dobson, Chris C.; Eskridge, Richard H.

    2000-01-01

    Rocket engine propellent injector development at NASA-Marshall includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The Raman technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented, as well as a high pressure demonstration in the NASA-Marshall Modular Combustion Test Artice, using the liquid methane-liquid oxygen propellant system

  13. Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers.

    PubMed

    Caswell, Andrew W; Roy, Sukesh; An, Xinliang; Sanders, Scott T; Schauer, Frederick R; Gord, James R

    2013-04-20

    Hyperspectral absorption spectroscopy is being used to monitor gas temperature, velocity, pressure, and H(2)O mole fraction in a research-grade pulsed-detonation combustor (PDC) at the Air Force Research Laboratory. The hyperspectral source employed is termed the TDM 3-FDML because it consists of three time-division-multiplexed (TDM) Fourier-domain mode-locked (FDML) lasers. This optical-fiber-based source monitors sufficient spectral information in the H(2)O absorption spectrum near 1350 nm to permit measurements over the wide range of conditions encountered throughout the PDC cycle. Doppler velocimetry based on absorption features is accomplished using a counterpropagating beam approach that is designed to minimize common-mode flow noise. The PDC in this study is operated in two configurations: one in which the combustion tube exhausts directly to the ambient environment and another in which it feeds an automotive-style turbocharger to assess the performance of a detonation-driven turbine. Because the enthalpy flow [kilojoule/second] is important in assessing the performance of the PDC in various configurations, it is calculated from the measured gas properties.

  14. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  15. Subnanosecond breakdown in high-pressure gases

    NASA Astrophysics Data System (ADS)

    Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; Lomaev, Mikhail I.

    2018-01-01

    Pulsed discharges in high-pressure gases are of considerable interest as sources of nonequilibrium plasma for various technological applications: pollution control, pumping of laser media, plasma-assisted combustion, etc. Recently, attention has been attracted to the use of subnanosecond voltage fronts, producing diffuse discharges with radii of several millimeters. Such plasma structures, similar to pulsed glow discharges, are of special interest for applications due to quasi-uniformity of plasma parameters in relatively large gas volumes. This review presents the results of experimental and computational study of subnanosecond diffuse discharge formation. A description of generators of short high-voltage pulses with subnanosecond fronts and of discharge setups is given. Diagnostic methods for the measurement of various discharge parameters with high temporal and spatial resolution are described. Obtained experimental data on plasma properties for a wide range of governing factors are discussed. A review of various theoretical approaches used for computational study of the dynamics and structure of fast ionization waves is given; the applicability of conventional fluid streamer models for simulation of subnanosecond ionization waves is discussed. Calculated spatial-temporal profiles of plasma parameters during streamer propagation are presented. The efficiency of subnanosecond discharges for the production of reactive species is evaluated. On the basis of the comparison of simulation results and experimental data the effects of various factors (voltage rise time, polarity, etc.) on discharge characteristics are revealed. The major physical phenomena governing the properties of subnanosecond breakdown are analyzed.

  16. Spatially resolved heat release rate measurements in turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique usesmore » simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.« less

  17. Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with GOX under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from +/-20% of the localized mean pressure to an acceptable range of +/-1.5% Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thickness burned and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented.

  18. Burn Propagation in a PBX 9501 Thermal Explosion

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-01

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.

  19. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zegrya, G. G.; Savenkov, G. G.; Morozov, V. A.

    2017-04-15

    The sensitivity of an energy-packed compound based on nanoporous silicon and calcium perchlorate to a high-current electron beam is studied. The initiation of explosive transformations in a mixture of potassium picrate with a highly dispersed powder of boron-doped silicon by means of a high-voltage discharge is examined. It is shown that explosive transformation modes (combustion and explosion) appear in the energy-packed compound under study upon its treatment with an electron beam. A relationship is established between the explosive transformation modes and the density of the energy-packed compound and between the breakdown (initiation) voltage and the mass fraction of the siliconmore » powder.« less

  20. JPRS report: Science and technology. Central Eurasia: Physics and mathematics

    NASA Astrophysics Data System (ADS)

    1993-11-01

    Translated articles cover the following topics: laser-acoustic cleaning of surfaces from mechanical microparticles; supersonic CO laser with HF excitation in combustion products; possibility of use of interaction between acoustic and light waves in fiber light conductors for generation of short light pulses; steady three-dimensional flow of viscous gas through channels and nozzles; current fluctuations in superconductor with superlattice in strong electric and magnetic fields; influence of strong electric field on conductivity of high-temperature superconductor ceramic of YBaCuO system; effect of electron bombardment on peak-effect in YBa2 Cu3Ox single crystals; and evolution of homogeneous isotropic universe, dark mass, and absence of monopoles.

  1. Characterization of the space shuttle reaction control system engine

    NASA Technical Reports Server (NTRS)

    Wilson, M. S.; Stechman, R. C.; Edelman, R. B.; Fortune, O. F.; Economos, C.

    1972-01-01

    A computer program was developed and written in FORTRAN 5 which predicts the transient and steady state performance and heat transfer characteristics of a pulsing GO2/GH2 rocket engine. This program predicts the dynamic flow and ignition characteristics which, when combined in a quasi-steady state manner with the combustion and mixing analysis program, will provide the thrust and specific impulse of the engine as a function of time. The program also predicts the transient and steady state heat transfer characteristics of the engine using various cooling concepts. The computer program, test case, and documentation are presented. The program is applicable to any system capable of utilizing the FORTRAN 4 or FORTRAN 5 language.

  2. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.

  3. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for gas-phase temperature measurements

    NASA Astrophysics Data System (ADS)

    Miller, Joseph Daniel

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is employed for quantitative gas-phase temperature measurements in combustion processes and heated flows. In this approach, ultrafast 100-fs laser pulses are used to induce vibrational and rotational transitions in N2 and O2, while a third spectrally narrowed picosecond pulse is used to probe the molecular response. Temporal suppression of the nonresonant contribution and elimination of collisional effects are achieved by delay of the probe pulse, while sufficient spectral resolution is maintained for frequency-domain detection and thermometry. A theoretical framework is developed to model experimental spectra by phenomenologically describing the temporal evolution of the vibrational and rotational wavepackets as a function of temperature and pressure. Interference-free, single-shot vibrational fs/ps CARS thermometry is demonstrated at 1-kHz from 1400-2400 K in a H2-air flame, with accuracy better than 3%. A time-asymmetric exponential pulse shape is introduced to optimize nonresonant suppression with a 103 reduction at a probe delay of 0.31 ps. Low-temperature single-shot thermometry (300-700 K) with better than 1.5% accuracy is demonstrated using a fully degenerate rotational fs/ps CARS scheme, and the influence of collision energy transfer on thermometry error is quantified at atmospheric pressure. Interference-free thermometry, without nonresonant contributions and collision-induced error, is demonstrated for the first time using rotational fs/ps CARS at room temperature and pressures from 1-15 atm. Finally, the temporal and spectral resolution of fs/ps CARS is exploited for transition-resolved time-domain measurements of N2 and O2 self-broadened S-branch Raman linewidths at pressures of 1-20 atm.

  4. Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility

    NASA Astrophysics Data System (ADS)

    Petrova, Tz. B.; Petrov, G. M.; Wolford, M. F.; Giuliani, J. L.; Ladouceur, H. D.; Hegeler, F.; Myers, M. C.; Sethian, J. D.

    2017-02-01

    Nitric oxide (NOx) emission is under restrictive federal regulations because of its negative impact on atmosphere, biosphere, and human health. Therefore, its removal has been a subject of extensive research to develop new efficient and cost effective techniques that can be applied on an industrial scale. In this work, we study both experimentally and theoretically an effective removal of NOx pollutants from a surrogate flue gas (SFG) using high power electron beam (e-beam) pulses. SFG is a simulant for exhaust from coal combustion power plants (82% N2, 6% O2, 12% CO2, and ˜100 ppm of NOx). The pulsed electron beam is generated using the United States Naval Research Laboratory Electra facility, which delivers e-beams with energies of ˜500 keV and a power pulse duration of ˜140 ns. During the e-beam irradiation, the energetic electrons generate a non-equilibrium plasma containing chemically active species, which then react with NOx to form harmless substances. A non-equilibrium time-dependent model is developed to describe NOx remediation from SFG. The model combines e-beam deposition rates obtained by solving the electron Boltzmann equation and extensive plasma chemistry modeling, which follows the species on a time scale from sub-nanoseconds to a few seconds. NOx decomposition as a function of electron beam parameters is studied. It is demonstrated experimentally that short (ns) pulses are the most efficient for NOx removal. A sharp reduction of NOx was measured with e-beam power deposition increasing, following the trend predicted by the model, achieving a 20 fold reduction to ˜5 ppm at energy deposition ˜20 J/l.

  5. New Developments of Broadband Cavity Enhanced Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Walsh, A.; Zhao, D.; Linnartz, H.; Ubachs, W.

    2013-06-01

    In recent years, cavity enhanced spectroscopic techniques, such as cavity ring-down spectroscopy (CRDS), cavity enhanced absorption spectroscopy (CEAS), and broadband cavity enhanced absorption spectroscopy (BBCEAS), have been widely employed as ultra-sensitive methods for the measurement of weak absorptions and in the real-time detection of trace species. In this contribution, we introduce two new cavity enhanced spectroscopic concepts: a) Optomechanical shutter modulated BBCEAS, a variant of BBCEAS capable of measuring optical absorption in pulsed systems with typically low duty cycles. In conventional BBCEAS applications, the latter substantially reduces the signal-to-noise ratio (S/N), consequently also reducing the detection sensitivity. To overcome this, we incorporate a fast optomechanical shutter as a time gate, modulating the detection scheme of BBCEAS and increasing the effective duty cycle reaches a value close to unity. This extends the applications of BBCEAS into pulsed samples and also in time-resolved studies. b) Cavity enhanced self-absorption spectroscopy (CESAS), a new spectroscopic concept capable of studying light emitting matter (plasma, flames, combustion samples) simultaneously in absorption and emission. In CESAS, a sample (plasma, flame or combustion source) is located in an optically stable cavity consisting of two high reflectivity mirrors, and here it acts both as light source and absorbing medium. A high detection sensitivity of weak absorption is reached without the need of an external light source, such as a laser or broadband lamp. The performance is illustrated by the first CESAS result on a supersonically expanding hydrocarbon plasma. We expect CESAS to become a generally applicable analytical tool for real time and in situ diagnostics. A. Walsh, D. Zhao, W. Ubachs, H. Linnartz, J. Phys. Chem. A, {dx.doi.org/10.1021/jp310392n}, in press, 2013. A. Walsh, D. Zhao, H. Linnartz Rev. Sci. Instrum. {84}(2), 021608 2013. A. Walsh, D. Zhao, H. Linnartz Appl. Phys. Lett. {101}(9), 091111 2012.

  6. On the deflagration-to-detonation transition (DDT) process with added energetic solid particles for pulse detonation engines (PDE)

    NASA Astrophysics Data System (ADS)

    Nguyen, V. B.; Li, J.; Chang, P.-H.; Phan, Q. T.; Teo, C. J.; Khoo, B. C.

    2018-01-01

    In this paper, numerical simulations are performed to study the dynamics of the deflagration-to-detonation transition (DDT) in pulse detonation engines (PDE) using energetic aluminum particles. The DDT process and detonation wave propagation toward the unburnt hydrogen/air mixture containing solid aluminum particles is numerically studied using the Eulerian-Lagrangian approach. A hybrid numerical methodology combined with appropriate sub-models is used to capture the gas dynamic characteristics, particle behavior, combustion characteristics, and two-way solid-particle-gas flow interactions. In our approach, the gas mixture is expressed in the Eulerian frame of reference, while the solid aluminum particles are tracked in the Lagrangian frame of reference. The implemented computer code is validated using published benchmark problems. The obtained results show that the aluminum particles not only shorten the DDT length but also reduce the DDT time. The improvement of DDT is primarily attributed to the heat released from surface chemical reactions on the aluminum particles. The temperatures associated with the DDT process are greater than the case of non-reacting particles added, with an accompanying rise in the pressure. For an appropriate range of particle volume fraction, particularly in this study, the higher volume fraction of the micro-aluminum particles added in the detonation chamber can lead to more heat energy released and more local instabilities in the combustion process (caused by the local high temperature), thereby resulting in a faster DDT process. In essence, the aluminum particles contribute to the DDT process of successfully transitioning to detonation waves for (failure) cases in which the fuel gas mixture can be either too lean or too rich. With a better understanding of the influence of added aluminum particles on the dynamics of the DDT and detonation process, we can apply it to modify the geometry of the detonation chamber (e.g., the length of the detonation tube) accordingly to improve the operational performance of the PDE.

  7. Pure-rotational H2 thermometry by ultrabroadband coherent anti-Stokes Raman spectroscopy.

    PubMed

    Courtney, Trevor L; Bohlin, Alexis; Patterson, Brian D; Kliewer, Christopher J

    2017-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) is a sensitive technique for probing highly luminous flames in combustion applications to determine temperatures and species concentrations. CARS thermometry has been demonstrated for the vibrational Q-branch and pure-rotational S-branch of several small molecules. Practical advantages of pure-rotational CARS, such as multi-species detection, reduction of coherent line mixing and collisional narrowing even at high pressures, and the potential for more precise thermometry, have motivated experimental and theoretical advances in S-branch CARS of nitrogen (N 2 ), for example, which is a dominant species in air-fed combustion processes. Although hydrogen (H 2 ) is of interest given its prevalence as a reactant and product in many gas-phase reactions, laser bandwidth limitations have precluded the extension of CARS thermometry to the H 2 S-branch. We demonstrate H 2 thermometry using hybrid femtosecond/picosecond pure-rotational CARS, in which a broadband pump/Stokes pulse enables simultaneous excitation of the set of H 2 S-branch transitions populated at flame temperatures over the spectral region of 0-2200 cm -1 . We present a pure-rotational H 2 CARS spectral model for data fitting and compare extracted temperatures to those from simultaneously collected N 2 spectra in two systems of study: a heated flow and a diffusion flame on a Wolfhard-Parker slot burner. From 300 to 650 K in the heated flow, the H 2 and N 2 CARS extracted temperatures are, on average, within 2% of the set temperature. For flame measurements, the fitted H 2 and N 2 temperatures are, on average, within 5% of each other from 300 to 1600 K. Our results confirm the viability of pure-rotational H 2 CARS thermometry for probing combustion reactions.

  8. Pure-rotational H2 thermometry by ultrabroadband coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.

    2017-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is a sensitive technique for probing highly luminous flames in combustion applications to determine temperatures and species concentrations. CARS thermometry has been demonstrated for the vibrational Q-branch and pure-rotational S-branch of several small molecules. Practical advantages of pure-rotational CARS, such as multi-species detection, reduction of coherent line mixing and collisional narrowing even at high pressures, and the potential for more precise thermometry, have motivated experimental and theoretical advances in S-branch CARS of nitrogen (N2), for example, which is a dominant species in air-fed combustion processes. Although hydrogen (H2) is of interest given its prevalence as a reactant and product in many gas-phase reactions, laser bandwidth limitations have precluded the extension of CARS thermometry to the H2 S-branch. We demonstrate H2 thermometry using hybrid femtosecond/picosecond pure-rotational CARS, in which a broadband pump/Stokes pulse enables simultaneous excitation of the set of H2 S-branch transitions populated at flame temperatures over the spectral region of 0-2200 cm-1. We present a pure-rotational H2 CARS spectral model for data fitting and compare extracted temperatures to those from simultaneously collected N2 spectra in two systems of study: a heated flow and a diffusion flame on a Wolfhard-Parker slot burner. From 300 to 650 K in the heated flow, the H2 and N2 CARS extracted temperatures are, on average, within 2% of the set temperature. For flame measurements, the fitted H2 and N2 temperatures are, on average, within 5% of each other from 300 to 1600 K. Our results confirm the viability of pure-rotational H2 CARS thermometry for probing combustion reactions.

  9. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  10. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    NASA Astrophysics Data System (ADS)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  11. The bombardier beetle and its use of a pressure relief valve system to deliver a periodic pulsed spray.

    PubMed

    Beheshti, Novid; Mcintosh, Andy C

    2007-12-01

    In this paper the combustion chamber of the bombardier beetle is considered and recent findings are presented which demonstrate that certain parts of the anatomy are in fact inlet and outlet valves. In particular, the authors show that the intake and exhaust valve mechanism involves a repeated (pulsating) steam explosion, the principle of which was up till now unclear. New research here has now shown the characteristics of the ejections and the role of important valves. In this paper numerical simulations of the two-phase flow ejection are presented which demonstrate that the principle of cyclic water injection followed by water and steam decompression explosions is the fundamental mechanism used to create the repeated ejections.

  12. Intensification process of air-hydrogen mixture burning in the variable cross section channel by means of the air jet

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2018-03-01

    The paper presents the results of numerical modeling of a transonic region formation in the flat channel. Hydrogen flows into the channel through the holes in the wall. The jet of compressed air is localized downstream the holes. The transonic region formation is formed by the burning of heterogeneous hydrogen-air mixture. It was considered in the framework of the simplified chemical kinetics. The interesting feature of the regime obtained is the following: the distribution of the Mach numbers is qualitatively similar to the case of pulse-periodic energy sources. This mode is a favorable prerequisite for the effective fuel combustion in the expanding part of the channel when injecting fuel into this part.

  13. Flame thermometry using laser-induced-grating spectroscopy of nitric oxide

    NASA Astrophysics Data System (ADS)

    Luers, Andrew; Salhlberg, Anna-Lena; Hochgreb, Simone; Ewart, Paul

    2018-03-01

    A systematic study of laser-induced thermal-grating scattering (LITGS) using nitric oxide as an absorbing species is presented as a means of thermometry in air-fed combustion. The relative contributions to the scattered signal from degenerate four-wave mixing, DFWM, and from laser-induced thermal-grating scattering, LITGS, are studied in the time domain for NO in N2 buffer gas up to 4 bar, using a pulsed laser system to excite the (0,0) γ-bands of NO at 226.21 nm. LITGS signals from combustion-generated NO in a laminar, pre-mixed CH4/O2/N2 flame on an in-house constructed slot burner were used to derive temperature values as a function of O2 concentration and position in the flame at 1 and 2.5 bar total pressure. Temperature values consistent with the calculated adiabatic flame temperature were derived from averaged LITGS signals over 50-100 single shots at 10 Hz repetition rate in the range 1600-2400 K with a pressure-dependent uncertainty of ± 1.8% at 1 bar to ± 1.4% at 2.5 bar. Based on observed signal-to-noise ratios, the minimum detectable concentration of NO in the flame is estimated to be 80 ppm for a 5 s measurement time at 10 Hz repetition rate.

  14. Laser diagnostics for microgravity droplet studies

    NASA Technical Reports Server (NTRS)

    Winter, Michael

    1995-01-01

    An instrument has been designed, built, and tested for performing laser diagnostic measurements of droplet combustion in low-gravity-flight aircraft. Nonintrusive measurements are of particular importance for droplet combustion (the simplest example of non-premixed combustion) and transport in microgravity environments, where physical contact would introduce an unacceptable level of perturbations. The resolution of these diagnostics can also isolate transport to length scales much smaller than the droplet diameter. These techniques can be configured to instantaneously map an entire flow field in two and three dimensions, providing either qualitative or quantitative information on the distribution of a desired scalar or vector quantity. Detailing the gas-phase flow field and position of the flame front can be achieved using planar laser-induced fluorescence (PLIF) of OH or another flame front marker. An alternative approach is to obtain LIF from a diagnostic seed included in the liquid phase fuel; it would be consumed at the flame front. The main advantage to this approach is that it is easier to choose the wavelength of the molecular absorption which coincides with convenient laser wavelengths rather than finding lasers which can be configured to access OH. Our present method uses a nitrogen-pumped dye laser tuned to a sodium absorption and addition of small concentrations of NaCl to the fuel. Particle image velocimetry (PIV) is a laser-based technique which has recently had its practicality greatly enhanced by the development of high-resolution CCD cameras and the increase in speed and capacity of computer systems. With this technique, a seeded flow is illuminated with a double-pulsed laser sheet to generate a double exposure image on a film or CCD camera. Computer analysis of the image is used to determine the particle velocity vectors and, thus, the gas velocity within the plane of the laser sheet. Our current experiment uses PIV for measuring relative droplet gas-phase velocities in a parabolic flight environment. The results show successful application of PLIF relative to luminosity and radical emission near 308 nm. PIV results are less successful due to gas thermal expansion deflecting the seed particles away from the measurement volume. PIV is applicable for measurements in the absence of combustion.

  15. The Experimental Study about the Effect of Operating Conditions on Multi-tube Pulse Detonation Engine Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Min; Han, Hyung-Seok; Choi, Jeong-Yeol

    2018-04-01

    This study examines a multi-tube pulse detonation engine (PDE) which has a type of constant volume combustion. We designed and made the multi-tube PDE and then conducted an experiment in various operating frequencies and equivalence ratios. First, experiments with operating frequencies of 40, 80, 120, 160, and 200 Hz resulted in an average thrust and specific impulse 23.14 N and 42.34 s. The next experiment resulted in the equivalence ratio varying from 0.81 to 1.38, which resulted in an average thrust and specific impulse 22.36 N and 40.11 s. The average detonation velocity was 8% lower than that calculated according to C-J theory. The incidence ratios of the detonation wave were stable with the exception of the operating frequency of 200 Hz. However, at 200 Hz, the incidence ratio was less than 50%. We assumed that a low fill fraction occurred for this problem. The thrust of the PDE increased with the operating frequency. However, the thrust increase was at a lower rate than in previous studies, because of a lost thrust output result from the slow response time of the load cell amplifier.

  16. Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe.

    PubMed

    Bisiaux, Marion M; Edwards, Ross; Heyvaert, Alan C; Thomas, James M; Fitzgerald, Brian; Susfalk, Richard B; Schladow, S Geoffrey; Thaw, Melissa

    2011-03-15

    Emitted to the atmosphere through fire and fossil fuel combustion, refractory black carbon nanoparticles (rBC) impact human health, climate, and the carbon cycle. Eventually these particles enter aquatic environments, where they may affect the fate of other pollutants. While ubiquitous, the particles are still poorly characterized in freshwater systems. Here we present the results of a study determining rBC in waters of the Lake Tahoe watershed in the western United States from 2007 to 2009. The study period spanned a large fire within the Tahoe basin, seasonal snowmelt, and a number of storm events, which resulted in pulses of urban runoff into the lake with rBC concentrations up to 4 orders of magnitude higher than midlake concentrations. The results show that rBC pulses from both the fire and urban runoff were rapidly attenuated suggesting unexpected aggregation or degradation of the particles. We find that those processes prevent rBC concentrations from building up in the clear and oligotrophic Lake Tahoe. This rapid removal of rBC soon after entry into the lake has implications for the transport of rBC in the global aquatic environment and the flux of rBC from continents to the global ocean.

  17. Experimental study of plume induced by nanosecond repetitively pulsed spark microdischarges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Benard, Nicolas; Moreau, Eric; Pai, David

    2016-09-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been widely studied due to their high chemical reactivity, low gas temperature, and high ionization efficiency. They are useful in many research areas: nanomaterials synthesis, combustion, and aerodynamic flow control. In all of these fields, particular attention has been devoted to chemical species transport and/or hydrodynamic and thermal effects for applications. The aim of this study is to generate an electro-thermal plume by combining an NRP spark microdischarge in a pin-to-pin configuration with a third DC-biased electrode placed a few centimeters away. First, electrical characterization and optical emission spectroscopy were performed to reveal important plasma processes. Second, particle image velocimetry was combined with schlieren photography to investigate the main characteristics of the generated flow. Heating processes are measured by using the N2(C ->B) (0,2) and (1,3) vibrational bands, and effects due to the confinement of the discharge are described. Moreover, the presence of atomic ions N+ and O+ is discussed. Finally, the electro-thermal plume structure is characterized by a flow velocity around 1.8 m.s-1, and the thermal kernel has a spheroidal shape.

  18. Acoustic Monitoring of the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two arrays intersect would comprise an ice cap monitoring system. The third subsystem is the energy and telemetry required to run the systems. The geophones are low energy compared to the combustive sound source and might be supplied by batteries and a solar panel (at least for half the year). The combustive sound source needs a large continuously energy supply. Two energy harvesting ideas, which need further investigation, are a wind turbine, and a Stirling engine that runs off the temperature difference between the ocean and the atmosphere. Analysis It is expected that the recording of the acoustics energy, as it travels through the ice and is detected by the geophones, will provide estimates of ice anisotropy and coherence. These give estimates of the ice roughness and thickness, respectively, and are key parameters for modeling the changes in the ice cap cover in the Artic. Reference: P. S. Wilson, T. G. Muir, J. A. Behrens, and J. L. Elizey, "Applications of the combustive sound source," J. Acoust. Soc. Am. 97, 3298(A) (1995).

  19. Stagnation point reverse flow combustor

    NASA Technical Reports Server (NTRS)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Weksler, Yoav (Inventor)

    2008-01-01

    A method for combusting a combustible fuel includes providing a vessel having an opening near a proximate end and a closed distal end defining a combustion chamber. A combustible reactants mixture is presented into the combustion chamber. The combustible reactants mixture is ignited creating a flame and combustion products. The closed end of the combustion chamber is utilized for directing combustion products toward the opening of the combustion chamber creating a reverse flow of combustion products within the combustion chamber. The reverse flow of combustion products is intermixed with combustible reactants mixture to maintain the flame.

  20. Hypersonic propulsion: Status and challenge

    NASA Technical Reports Server (NTRS)

    Guy, R. Wayne

    1990-01-01

    Scientists in the U.S. are again focusing on the challenge of hypersonic flight with the proposed National Aerospace Plane (NASP). This renewed interest has led to an expansion of research related to high speed airbreathing propulsion, in particular, the supersonic combustion ramjet, or scramjet. The history is briefly traced of scramjet research in the U.S., with emphasis on NASA sponsored efforts, from the Hypersonic Research Engine (HRE) to the current status of today's airframe integrated scramjets. The challenges of scramjet technology development from takeover to orbital speeds are outlined. Existing scramjet test facilities such as NASA Langley's Scramjet Test Complex as well as new high Mach number pulse facilities are discussed. The important partnership role of experimental methods and computational fluid dynamics is emphasized for the successful design of single stage to orbit vehicles.

  1. Engine with pulse-suppressed dedicated exhaust gas recirculation

    DOEpatents

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  2. Multipoint Ignition of a Gas Mixture by a Microwave Subcritical Discharge with an Extended Streamer Structure

    NASA Astrophysics Data System (ADS)

    Aleksandrov, K. V.; Busleev, N. I.; Grachev, L. P.; Esakov, I. I.; Ravaev, A. A.

    2018-02-01

    The results of experimental studies on using an electrical discharge with an extended streamer structure in a quasioptical microwave beam in the multipoint ignition of a propane-air mixture have been reported. The pulsed microwave discharge was initiated at the interior surface of a quartz tube that was filled with the mentioned flammable mixture and introduced into a microwave beam with a subbreakdown initial field. Gas breakdown was initiated by an electromagnetic vibrator. The dependence of the type of discharge on the microwave field strength was examined, the lower concentration threshold of ignition of the propane-air mixture by the studied discharge was determined, and the dynamics of combustion of the flammable mixture with local and multipoint ignition were compared.

  3. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    DOEpatents

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  4. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  5. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOEpatents

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  6. Impulse generation by detonation tubes

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding partially filled detonation tubes was compiled and analyzed with models investigating concepts of energy conservation and unsteady gas dynamics. A model to predict the specific impulse was developed for partially filled tubes. The role of finite chemical kinetics in detonation products was examined through numerical simulations of the flow in nonsteady expansion waves.

  7. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e.g. gasoline and diesel engine, wood combustion) and the obtained chemical profiles were compared with the ones from the ambient PAH containing particles.

  8. Theoretical determination of chemical rate constants using novel time-dependent methods

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.

    1994-01-01

    The work completed within the grant period 10/1/91 through 12/31/93 falls primarily in the area of reaction dynamics using both quantum and classical mechanical methodologies. Essentially four projects have been completed and have been or are in preparation of being published. The majority of time was spent in the determination of reaction rate coefficients in the area of hydrocarbon fuel combustion reactions which are relevant to NASA's High Speed Research Program (HSRP). These reaction coefficients are important in the design of novel jet engines with low NOx emissions, which through a series of catalytic reactions contribute to the deterioration of the earth's ozone layer. A second area of research studied concerned the control of chemical reactivity using ultrashort (femtosecond) laser pulses. Recent advances in pulsed-laser technologies have opened up a vast new field to be investigated both experimentally and theoretically. The photodissociation of molecules adsorbed on surfaces using novel time-independent quantum mechanical methods was a third project. And finally, using state-of-the-art, high level ab initio electronic structure methods in conjunction with accurate quantum dynamical methods, the rovibrational energy levels of a triatomic molecule with two nonhydrogen atoms (HCN) were calculated to unprecedented levels of agreement between theory and experiment.

  9. Controlled Aerodynamic Loads on an Airfoil in Coupled Pitch/Plunge by Transitory Regulation of Trapped Vorticity

    NASA Astrophysics Data System (ADS)

    Tan, Yuehan; Crittenden, Thomas; Glezer, Ari

    2017-11-01

    The aerodynamic loads on an airfoil moving in coupled, time-periodic pitch-plunge beyond the static stall margin are controlled using transitory regulation of trapped vorticity concentrations. Actuation is effected by a spanwise array of integrated miniature chemical (combustion based) impulse actuators that are triggered intermittently during the airfoil's motion and have a characteristic time scale that is an order of magnitude shorter than the airfoil's convective time scale. Each actuation pulse effects momentary interruption and suspension of the vorticity flux with sufficient control authority to alter the airfoil's global aerodynamic characteristics throughout its motion cycle. The effects of the actuation are assessed using time-dependent measurements of the lift and pitching moment coupled with time-resolved particle image velocimetry over the airfoil and in its near wake that is acquired phased-locked to its motion. It is shown that while the presence of the pitch-coupled plunge delays lift and moment stall during upstroke, it also delays flow reattachment during the downstroke and results in significant degradation of the pitch stability. These aerodynamic shortcomings are mitigated using superposition of a limited number of pulses that are staged during the pitch/plunge cycle and lead to enhancement of cycle lift and pitch stability, and reduces the cycle hysteresis and peak pitching moment.

  10. Laser ignition of engines: a realistic option!

    NASA Astrophysics Data System (ADS)

    Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.

    2006-01-01

    Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.

  11. Atomic and molecular gas phase spectrometry

    NASA Astrophysics Data System (ADS)

    Winefordner, J. D.

    1985-10-01

    The major goals of this research have been to develop diagnostical spectroscopic methods for measuring spatial/temporal temperatures and species of combustion flames and plasmas and to develop sensitive, selective, precise, reliable, rapid spectrometric methods of trace analysis of elements present in jet engine lubricating oils, metallurgical samples, and engine exhausts. The diagnostical approaches have been based upon the measurement of metal probes introduced into the flame or plasmas and the measurement of OH in flames. The measurement approaches have involved the use of laser-excited fluorescence, saturated absorption, polarization, and linear absorption. The spatial resolution in most studies is less than 1 cu mm and the temporal resolution is less than 10 ns with the use of pulsed lasers. Single pulse temperature and species measurements have also been carried out. Other diagnostical studies have involved the measurement of collisional redistribution of radiatively excited levels of Na and Tl in acetylene/02/Ar flames and the measurement of lifetimes and quantum efficiencies of atoms and ions in the inductively coupled plasmas, ICP. The latter studies indicate that the high electron number densities in ICPs are not efficient quenchers of excited atoms/ions. Temperatures of microwave atmospheric plasmas produced capacitatively and cool metastable N2 discharge produced by a dielectric discharge have also been measured.

  12. A widely-tunable and sensitive optical sensor for multi-species detection in the mid-IR

    NASA Astrophysics Data System (ADS)

    Alquaity, Awad B. S.; Al-Saif, Bidoor; Farooq, Aamir

    2018-01-01

    Pulsed cavity ringdown spectroscopy (CRDS) technique was used to develop a novel widely-tunable laser-based sensor for sensitive measurements of ethylene, propene, 1-butene and allene in the mid-IR. The use of an external-cavity quantum cascade laser (EC-QCL) enabled the sensor to cover a wide wavelength range from 10 to 11.1 µm (900-1000 cm-1) to detect multiple gases relevant to combustion and environment. The sensor operation was validated in a room-temperature static cell using well-characterized absorption lines of carbon dioxide near 938.69 cm-1 and 974.62 cm-1. Detection limits for ethylene, propene, 1-butene, and allene were measured to be 17, 134, 754 and 378 ppb, respectively, at 296 K and 760 Torr for a single-pass path-length of 70 cm with averaging time of 4 ms. The excellent sensitivity of the optical sensor enabled it to measure the aforementioned gases at levels smaller than 1% of their recommended exposure limits. To the best of our knowledge, this is one of the first successful applications of the pulsed CRDS technique to measure trace levels of multiple gases in the 10-11 µm wavelength region.

  13. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  14. The 17th JANNAF Combustion Meeting, Volume 1

    NASA Technical Reports Server (NTRS)

    Eggleston, D. S. (Editor)

    1980-01-01

    The combustion of solid rocket propellants and combustion in ramjets is addressed. Subjects discussed include metal burning, steady-state combustion of composite propellants, velocity coupling and nonlinear instability, vortex shedding and flow effects on combustion instability, combustion instability in solid rocket motors, combustion diagnostics, subsonic and supersonic ramjet combustion, characterization of ramburner flowfields, and injection and combustion of ramjet fuels.

  15. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOEpatents

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  16. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  17. Determining contributions of biomass burning and other sources to fine particle contemporary carbon in the western United States

    NASA Astrophysics Data System (ADS)

    Holden, Amanda S.; Sullivan, Amy P.; Munchak, Leigh A.; Kreidenweis, Sonia M.; Schichtel, Bret A.; Malm, William C.; Collett, Jeffrey L., Jr.

    2011-02-01

    Six-day integrated fine particle samples were collected at urban and rural sampling sites using Hi-Volume samplers during winter and summer 2004-2005 as part of the IMPROVE (Interagency Monitoring of PROtected Visual Environments) Radiocarbon Study. Filter samples from six sites (Grand Canyon, Mount Rainier, Phoenix, Puget Sound, Rocky Mountain National Park, and Tonto National Monument) were analyzed for levoglucosan, a tracer for biomass combustion, and other species by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). Contemporary carbon concentrations were available from previous carbon isotope measurements at Lawrence Livermore National Laboratory. Primary contributions of biomass burning to measured fine particle contemporary carbon were estimated for residential wood burning (winter) and wild/prescribed fires (summer). Calculated contributions ranged from below detection limit to more than 100% and were typically higher at rural sites and during winter. Mannitol, a sugar alcohol emitted by fungal spores, was analyzed and used to determine contributions of fungal spores to fine particle contemporary carbon. Contributions reached up to 13% in summer samples, with higher contributions at rural sites. Concentrations of methyltetrols, oxidation products of isoprene, were also measured by HPAEC-PAD. Secondary organic aerosol (SOA) from isoprene oxidation was estimated to contribute up to 22% of measured contemporary carbon. For each sampling site, a substantial portion of the contemporary carbon was unexplained by primary biomass combustion, fungal spores, or SOA from isoprene oxidation. This unexplained fraction likely contains contributions from other SOA sources, including oxidation products of primary smoke emissions and plant emissions other than isoprene, as well as other primary particle emissions from meat cooking, plant debris, other biological aerosol particles, bio-diesel combustion, and other sources. Loss of levoglucosan during atmospheric aging of biomass burning emissions likely also results in an underestimate of apportioned primary smoke contributions.

  18. BIBLE A whole-air sampling as a window on Asian biogeochemistry

    NASA Astrophysics Data System (ADS)

    Elliott, Scott; Blake, Donald R.; Blake, Nicola J.; Dubey, Manvendra K.; Rowland, F. Sherwood; Sive, Barkley C.; Smith, Felisa A.

    2003-02-01

    Asian trace gas and aerosol emissions into carbon, nitrogen, and other elemental cycles will figure prominently in near term Earth system evolution. Atmospheric hydrocarbon measurements resolve numerous chemical species and can be used to investigate sourcing for key geocarriers. A recent aircraft study of biomass burning and lightning (BIBLE A) explored the East Asian atmosphere and was unique in centering on the Indonesian archipelago. Samples of volatile organics taken over/between the islands of Japan, Saipan, Java, and Borneo are here examined as a guide to whole-air-based studies of future Asian biogeochemistry. The midlatitude onshore/offshore pulse and tropical convection strongly influence concentration distributions. As species of increasing molecular weight are considered, rural, combustion, and industrial source regimes emerge. Methane-rich inputs such as waste treatment and rice cultivation are evidenced in the geostrophic outflow. The Indonesian atmosphere is rich in biomass burning markers and also those of vehicular activity. Complexity of air chemistry in the archipelago is a direct reflection of diverse topography, land use, and local economies in a rapidly developing nation. Conspicuous in its absence is the fingerprint for liquefied petroleum gas leakage, but it can be expected to appear as demand for clean fossil fuels rises along with per capita incomes. Combustion tracers indicate high nitrogen mobilization rates, linking regional terrestrial geocycles with open marine ecosystems. Sea to air fluxes are superimposed on continental and marine backgrounds for the methyl halides. However, ocean hot spots are not coordinated and suggest an intricate subsurface kinetics. Levels of long-lived anthropogenic halocarbons attest to the success of international environmental treaties while reactive chlorine containing species track industrial air masses. The dozens of hydrocarbons resolvable by gas chromatographic methods will enable monitoring of upcoming Asian modernization. Crucial uncertainties are underscored. Signatures for Asian combustion processes and megacities have been obtained only indirectly or at a distance. Detailed fingerprinting must be combined with regular aircraft and ground station measurements to maximize utility of the database.

  19. Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with gaseous oxygen (GOX) under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from plus or minus 20% of the localized mean pressure to an acceptable range of plus or minus 1.5%. Embedded fine--wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or surface temperatures in comparison to the translucent fuel slabs.

  20. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, D. L.

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and exploredmore » in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm 2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling), and hence the engine load, was varied between 0.8, 0.9, and 1.0. The test laser was constructed with a 30% output coupler, 32% Q-switch initial transmission, and a 0.5% Nd concentration rod all pumped by approximately 1000 Watts of optical power. The test laser single mode output pulse had an energy of approximately 23 mJ, with a pulsewidth of approximately 10 ns, and an M2 value of 6.55. This output produced focal intensity of approximately 270 GW/cm 2 with the modified on-engine optical arrangement. The commercial laser had similar output parameters and both laser systems operated the engine with similar results. Due to the shortening of the focal length of the on-engine optical setup both laser systems produced a spark well within the optical transfer cavity of the laser optics to spark plug adaptor. This shrouded spark led to a very long ignition delay and retarded combustion timing for all three values of equivalence ratio. This was evidenced by the in-cylinder pressure traces and the HRR waveforms. The emissions data indicate that both lasers produced very similar combustion. The ignition delay caused by the shrouded spark cause most of the combustion to happen after TDC which lead to poor combustion that produced high levels of CO and THC. The novelty of this work lies in the combination of the laser parameters to create a single high peak power laser output pulse for use as a spark ignition source. Similar configurations have been investigated in the literature but for different applications such as multiple output pulse trains for various industrial and communications applications. Another point of novelty is the investigation of the laser medium concentration on the output characteristics of a passively Q-switched laser system. This work has shown that lowering the Neodymium concentration in the active media within a passively Q-switched laser produces higher output energy values. This is significant because an actively Q-switched laser shows the opposite affect when the active ion concentration is varied.« less

  1. Super low NO.sub.x, high efficiency, compact firetube boiler

    DOEpatents

    Chojnacki, Dennis A.; Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Korenberg, Jacob

    2005-12-06

    A firetube boiler furnace having two combustion sections and an in-line intermediate tubular heat transfer section between the two combustion sections and integral to the pressure vessel. This design provides a staged oxidant combustion apparatus with separate in-line combustion chambers for fuel-rich primary combustion and fuel-lean secondary combustion and sufficient cooling of the combustion products from the primary combustion such that when the secondary combustion oxidant is added in the secondary combustion stage, the NO.sub.x formation is less than 5 ppmv at 3% O.sub.2.

  2. Low emissions compression ignited engine technology

    DOEpatents

    Coleman, Gerald N [Dunlap, IL; Kilkenny, Jonathan P [Peoria, IL; Fluga, Eric C [Dunlap, IL; Duffy, Kevin P [East Peoria, IL

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  3. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  4. Time-Resolved Images of Laser-Induced Gas Ignition Using High-Speed Photographic and Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Ling; Lewis, J. W. L.; Parigger, C. G.

    1997-11-01

    Two-dimensional visualization of laser-induced spark ignition in atmospheric-pressure gases is reported. Laser-induced breakdown in air, O2 and combustible NH_3/O2 mixture was achieved using a 1064 nm, Nd:YAG laser of approximately 6 ns pulse width, focused at 10-mm above a 60-mm diameter flat-flame burner. An argon sheath-gas flow was used to stabilize the core flowfield. High-speed photographic techniques were applied to trace a complete sequence of kernel development of a single breakdown or ignition event. Thermochemical characteristics of the post-breakdown regime were analyzed by laser-induced fluorescence spectroscopy (LIFS). Spatial distribution of NH free radical observed by planar-LIF showed the contours of the developing flame-front. The corresponding NH temperature maps achieved by excitation LIFS and Boltzmann plot are also presented.

  5. Method and apparatus for detecting combustion instability in continuous combustion systems

    DOEpatents

    Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.

    2006-08-29

    An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.

  6. Path planning during combustion mode switch

    DOEpatents

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  7. Preliminary Studies of a Pulsed Detonation Rocket Engine

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Adelman, H. G.; Menees, G. P.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    In the new era of space exploration, there is a strong need for more efficient, cheaper and more reliable propulsion devices. With dramatic increase in specific impulse, the overall mass of fuel to be lifted into orbit is decreased, and this leads, in turn, to much lower mass requirements at lift-off, higher payload ratios and lower launch costs. The Pulsed Detonation engine (PDE) has received much attention lately due to its unique combination of simplicity, light-weight and efficiency. Current investigations focus principally on its use as a low speed, airbreathing engine, although other applications have also been proposed. Its use as a rocket propulsion device was first proposed in 1988 by the present authors. The superior efficiency of the Pulsed Detonation Rocket Engine (PDRE) is due to the near constant volume combustion process of a detonation wave. Our preliminary estimates suggest that the PDRE is theoretically capable of achieving specific impulses as high as 720 sec, a dramatic improvement over the current 480 sec of conventional rocket engines, making it competitive with nuclear thermal rockets. In addition to this remarkable efficiency, the PDRE may eliminate the need for high pressure cryogenic turbopumps, a principal source of failures. The heat transfer rates are also much lower, eliminating the need for nozzle cooling. Overall, the engine is more reliable and has a much lower weight. This paper will describe in detail the operation of the PDRE and calculate its performance, through numerical simulations. Engineering issues will be addressed and discussed, and the impact on mission profiles will also be presented. Finally, the performance of the PDRE using in-situ resources, such as CO and O2 from the martian atmosphere, will also be computed.

  8. Cook stove assembly

    DOEpatents

    DeFoort, Morgan W; Willson, Bryan D; Lorenz, Nathan; Brady, Michael P; Marchese, Anthony; Miller-Lionberg, Daniel D

    2014-12-02

    A combustion chamber, having an upper part and a lower part, may include an annular constriction, in combination with the combustion chamber, to aid in directing partially combusted gases such as carbon monoxide away from the periphery of the combustion chamber back toward its center, and into the flame front. The annular constriction may also impede the flow of partially combusted gases located at the periphery, thus increasing the time these gases spend within the combustion chamber and increasing the likelihood that any products of incomplete combustion will undergo combustion. The combustion chamber may further comprise a dual burner cooktop for directing combustion gases and exhaust to multiple cooking vessels. In further embodiments, the combustion chamber may be made of, lined, or clad with a metal alloy comprising iron, chromium, and aluminum.

  9. Symposium /International/ on Combustion, 18th, University of Waterloo, Waterloo, Ontario, Canada, August 17-22, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Problems related to combustion generated pollution are explored, taking into account the mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence, the structure and similarity of nitric oxide production in turbulent diffusion flames, the effect of steam addition on NO formation, and the formation of NO2 by laminar flames. Other topics considered are concerned with propellant combustion, fluidized bed combustion, the combustion of droplets and sprays, premixed flame studies, fire studies, and flame stabilization. Attention is also given to coal flammability, chemical kinetics, turbulent combustion, soot, coal combustion, the modeling of combustion processes, combustion diagnostics, detonations and explosions, ignition, internal combustion engines, combustion studies, and furnaces.

  10. Multi-stage combustion using nitrogen-enriched air

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  11. Kinetics and Chemistry of Ionization Wave Discharges Propagating Over Dielectric Surfaces

    NASA Astrophysics Data System (ADS)

    Petrishchev, Vitaly

    Experimental studies of near-surface ionization wave electric discharges generated by high peak voltage (20-30 kV), nanosecond duration pulses (full width at half-maximum 50-100 ns) of positive and negative polarity and propagating over dielectric surfaces have been performed. A novel way to sustain diffuse, reproducible, ns pulse surface plasmas at a liquid-vapor interface is demonstrated at buffer gas pressures ranging from 10 to 200 Torr. Generation of surface ionization waves well reproduced shot-to-shot and sustaining diffuse near-surface plasmas is one of the principal advantages of the use of ns pulse discharge waveforms. This makes possible characterization of these plasmas in repetitively pulsed experiments. Numerous applications of these plasmas include low-temperature plasma assisted combustion, plasma fuel reforming, plasma flow control, plasma materials processing, agriculture, biology, and medicine. The objectives of the present work are (i) to demonstrate that surface ionization wave discharge plasmas sustained at a liquid-vapor interface can be used as an experimental platform for studies of near-surface plasma chemical reaction kinetics, at the conditions when the interface acts as a high-yield source of radical species, and (ii) to obtain quantitative insight into dynamics, kinetics and chemistry of surface ionization wave discharges and provide experimental data for validation of kinetic models, to assess their predictive capability. Generation of the initial radical pool may trigger a number of plasma chemical processes leading to formation of a variety of stable product species, depending on the initial composition of the liquid and the buffer gas flow. One of the products formed and detected during surface plasma / liquid water interaction is hydroxyl radical, which is closely relevant to applications of plasmas for biology and medicine. The present work includes detailed studies of surface ionization wave discharges sustained in different buffer gases over solid and liquid dielectric surfaces, such as quartz, distilled water, saline solution, and alcohols, over a wide range of pressures. Specific experiments include: measurements of ionization wave speed; plasma emission imaging using a ns gate camera; detection of surface discharge plasma chemistry products using Fourier transform infrared absorption spectroscopy; surface charge dynamics on short (ns) and long (hundreds of mus) time scales; time-resolved electron density and electron temperature measurements in a ns pulse surface discharge in helium by Thomson scattering; spatially-resolved absolute OH and H atom concentration measurements in ns pulse discharges over distilled water by single-photon and two-photon Laser Induced Fluorescence; and schlieren imaging of perturbations generated by a ns pulse dielectric barrier discharge in a surface plasma actuator in quiescent atmospheric pressure air.

  12. 36th International Symposium on Combustion (ISOC2016)

    DTIC Science & Technology

    2016-12-01

    GREENHOUSE GASES / IC ENGINE COMBUSTION I GAS TURBINE COMBUSTION I NOVEL COMBUSTION CONCEPTS, TECHNOLOGIES AND SYSTEMS 15. SUBJECT TERMS Reaction...pollutants and greenhouse gases; IC engine combustion; Gas turbine combustion; Novel combustion concepts, technologies and systems 16. SECURITY...PLENARY LECTURE TRANSFER (15 min) am Turbulent Flames IC Engines Laminar Flames Reaction Kinetics Gas Turbines Soot Solid Fuels/Pollutants

  13. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  14. A Study on the Effect of Stratified Mixture Formation on Combustion Characteristics in a Constant Volume Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Lee, Kihyung; Lee, Changhee; Jeoung, Haeyoung

    It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption, it produces much unburned hydrocarbon and soot because of inhomogeneity of the charge mixture in the combustion chamber. Therefore, it is necessary to investigate the effect of mixture formation on combustion characteristics in order to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The effect of mixture formation on the combustion characteristics in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, as the swirl intensity increases, (Sv)max is rapidly enhanced and the period of combustion is shortened. We also find that the stratification degree can be quantified by using burning velocity and it was controlled by induced air pressure and turbulent intensity.

  15. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    PubMed

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Symposium on Combustion /International/, 16th, Massachusetts Institute of Technology, Cambridge, Mass., August 15-20, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aspects of combustion technology in power systems are considered, taking into account a combustion in large boilers, the control of over-all thermal efficiency of combustion heating systems, a comparison of mathematical models of the radiative behavior of a large-scale experimental furnace, a concentric multiannular swirl burner, and the effects of water introduction on diesel engine combustion and emissions. Attention is also given to combustion and related processes in energy production from coal, spray and droplet combustion, soot formation and growth, the kinetics of elementary reactions, flame structure and chemistry, propellant ignition and combustion, fire and explosion research, mathematical modeling, high output combustion systems, turbulent flames and combustion, and ignition, optical, and electrical properties.

  17. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A [Idaho Falls, ID; Heaps, Ronald J [Idaho Falls, ID; Steffler, Eric D [Idaho Falls, ID; Swank, William D [Idaho Falls, ID

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  18. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  19. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  20. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  1. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  2. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  3. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  4. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  5. Spray-dry desulfurization of flue gas from heavy oil combustion.

    PubMed

    Scala, Fabrizio; Lancia, Amedeo; Nigro, Roberto; Volpicelli, Gennaro

    2005-01-01

    An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.

  6. Mobile SO2 and NO2 DIAL Lidar system for enforcement use

    NASA Astrophysics Data System (ADS)

    Cunningham, David L.; Pence, William H.; Moody, Stephen E.

    1994-06-01

    A self-contained mobile differential absorption lidar (DIAL) system intended for measuring SO2 and NO2 concentrations from stationary combustion sources has been completed for enforcement use. The system uses tunable Ti:sapphire laser technology, with nonlinear conversion to the blue and UV absorption wavelengths. Separate tunable laser oscillators at slightly offset wavelengths are pumped on alternate pulses of a 20 Hz doubled Nd:YAG pump laser; the outputs are amplified in a common amplifier, doubled or tripled, and transmitted toward a target region via a two-mirror beam director. Scattered atmospheric returns are collected in a 0.27-m-diameter telescope, detected with a filtered photomultiplier, and digitized and stored for analysis. Extensive software-based control and display windows are provided for operator interaction with the system. The DIAL system is built into a small motor coach. Gasoline- powered electrical generation, laser cooling, and air conditioning services are present. Separate computers are provided for simultaneous data collection and data analysis activities, with shared data base access. A laser printer supplies hardcopy output. The system includes the capability for automatic data collection at a series of scanner angles, and computer processing to present results in a variety of formats. Plumes from coal-fired and mixed-fuel-fired combusters have been examined for NO2 and SO2 content. Noise levels of a few parts per million are reached with averaging times of less than one minute.

  7. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  8. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  9. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  10. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  11. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  12. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  13. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  14. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  15. Dry low combustion system with means for eliminating combustion noise

    DOEpatents

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  16. Fuel injection device and method

    DOEpatents

    Carlson, L.W.

    1983-12-21

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  17. Fuel injection device and method

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  18. Fuel injection device and method

    DOEpatents

    Carlson, Larry W.

    1986-02-04

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  19. External combustion engine having a combustion expansion chamber

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    This patent application discloses an external combustion engine having a combustion expansion chamber. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel, and a cylinder for receiving the energized gas through a rotary valve to perform work on a cylinder disposed therein. A baffle plate is positioned between the combustion area and expansion area for reducing the pressure of the gas. The combustion area and expansion area are separated by a baffle plate having a flow area which is sufficiently large to eliminate the transmission of pressure pulsations from the combustion area to the expansion area while being small enough to provide for substantially complete combustion in the combustion area. The engine is particularly well suited for use in a torpedo.

  20. Fundamentals of Gas Turbine combustion

    NASA Technical Reports Server (NTRS)

    Gerstein, M.

    1979-01-01

    Combustion problems and research recommendations are discussed in the areas of atomization and vaporization, combustion chemistry, combustion dynamics, and combustion modelling. The recommendations considered of highest priority in these areas are presented.

  1. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    ScienceCinema

    None

    2018-01-26

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  2. Valorisation of food waste to produce new raw materials for animal feed.

    PubMed

    San Martin, D; Ramos, S; Zufía, J

    2016-05-01

    This study assesses the suitability of vegetable waste produced by food industry for use as a raw material for animal feed. It includes safety and nutritional viability, technical feasibility and environmental evaluation. Vegetable by-products were found to be nutritionally and sanitarily appropriate for use in animal feed. The drying technologies tested for making vegetable waste suitable for use in the animal feed market were pulse combustion drying, oven and microwave. The different meal prototypes obtained were found to comply with all the requirements of the animal feed market. An action plan that takes into account all the stages of the valorisation process was subsequently defined in agreement with local stakeholders. This plan was validated in a pilot-scale demonstration trial. Finally, the technical feasibility was studied and environmental improvement was performed. This project was funded by the European LIFE+ program (LIFE09 ENV/ES/000473). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Experiments and modelling of surge in small centrifugal compressor for automotive engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo, J.; Serrano, J.R.; Climent, H.

    2008-01-15

    In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneousmore » pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)« less

  4. Real Time Diagnostics of Jet Engine Exhaust Plumes Using a Chirped QC Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Hay, K. G.; Duxbury, G.; Langford, N.

    2010-06-01

    Quantitative measurements of real-time variations of the chemical composition of a jet engine exhaust plume is demonstrated using a 4.86 μmn intra-pulse quantum cascade laser spectrometer. The measurements of the gas turbine exhaust were carried out in collaboration with John Black and Mark Johnson at Rolls Royce. The recording of five sets of averaged spectra a second has allowed us to follow the build up of the combustion products within the exhaust, and to demonstrate the large variation of the integrated absorption of these absorption lines with temperature. The absorption cross sections of the lines of both carbon monoxide and water increase with temperature, whereas those of the three main absorption lines of carbon dioxide decrease. At the steady state limit the absorption lines of carbon dioxide are barely visible, and the spectrum is dominated by absorption lines of carbon monoxide and water.

  5. 40 CFR 63.6095 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stationary combustion turbine or a diffusion flame oil-fired stationary combustion turbine as defined by this... combustion turbine which is a lean premix oil-fired stationary combustion turbine or a diffusion flame oil... stationary combustion turbine or diffusion flame gas-fired stationary combustion turbine as defined by this...

  6. 40 CFR 63.6095 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stationary combustion turbine or a diffusion flame oil-fired stationary combustion turbine as defined by this... combustion turbine which is a lean premix oil-fired stationary combustion turbine or a diffusion flame oil... stationary combustion turbine or diffusion flame gas-fired stationary combustion turbine as defined by this...

  7. 40 CFR 63.6095 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stationary combustion turbine or a diffusion flame oil-fired stationary combustion turbine as defined by this... combustion turbine which is a lean premix oil-fired stationary combustion turbine or a diffusion flame oil... stationary combustion turbine or diffusion flame gas-fired stationary combustion turbine as defined by this...

  8. 40 CFR 63.6095 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stationary combustion turbine or a diffusion flame oil-fired stationary combustion turbine as defined by this... combustion turbine which is a lean premix oil-fired stationary combustion turbine or a diffusion flame oil... stationary combustion turbine or diffusion flame gas-fired stationary combustion turbine as defined by this...

  9. 40 CFR 63.6095 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stationary combustion turbine or a diffusion flame oil-fired stationary combustion turbine as defined by this... combustion turbine which is a lean premix oil-fired stationary combustion turbine or a diffusion flame oil... stationary combustion turbine or diffusion flame gas-fired stationary combustion turbine as defined by this...

  10. A Review of LOX/Kerosene Combustion Instability in American and Russian Combustion Devices in Application to Next-Generation Launch Technology

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Tomas E.; Hulka, James R.; Dougherty, N. Sam

    2003-01-01

    The Next-Generation Launch Technology (NGLT) project was introduced with its objectives. To meet the objectives, NASA has directed aerospace industry to perform advances and risk reduction of relevant technologies, including propulsion. Originally, the propulsion industry focused on producing both LOWLH2 and LOWkerosene flight engine technology demonstrators. These flight engine technology demonstrators were briefly reviewed. NASA recently redirected this focus to Lowkerosene only. Discussion of LOWkerosene combustion devices was and is prefaced by grave concerns about combustion instability. These concerns have prompted a review of LOWkerosene combustion instability in American and Russian combustion devices. In the review of the Russian propulsion industry's experience in eliminating LOWkerosene combustion instabilities, the history of principal Russian rocket scientists and their role in the development of LOXkerosene combustion devices is presented. The innovative methods implemented by the Russians of eliminations combustion instabilities in LOXkerosene combustion devices were reviewed. The successful elimination of these combustion instabilities has resulted in two generations of Russian-produced, high-performance LOWkerosene combustion devices.

  11. The Fluids And Combustion Facility Combustion Integrated Rack And The Multi-User Droplet Combustion Apparatus: Microgravity Combustion Science Using Modular Multi-User Hardware

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Myhre, Craig A.

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a multi-rack payload planned for the International Space Station (ISS) that will enable the study of fluid physics and combustion science in a microgravity environment. The Combustion Integrated Rack (CIR) is one of two International Standard Payload Racks of the FCF and is being designed primarily to support combustion science experiments. The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user apparatus designed to accommodate four different droplet combustion science experiments and is the first payload for CIR. The CIR will function independently until the later launch of the Fluids Integrated Rack component of the FCF. This paper provides an overview of the capabilities and the development status of the CIR and MDCA.

  12. Thermal Model of the Promoted Combustion Test

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1996-01-01

    Flammability of metals in high pressure, pure oxygen environments, such as rocket engine turbopumps, is commonly evaluated using the Promoted Combustion Test (PCT). The PCT emphasizes the ability of an ignited material to sustain combustion, as opposed to evaluating the sample's propensity to ignite in the first place. A common arrangement is a rod of the sample material hanging in a chamber in which a high pressure, pure oxygen environment is maintained. An igniter of some energetically combusting material is fixed to the bottom of the rod and fired. This initiates combustion, and the sample burns and melts at its bottom tip. A ball of molten material forms, and this ball detaches when it grows too large to be supported by surface tension with the rod. In materials which do not sustain combustion, the combustion then extinguishes. In materials which do sustain combustion, combustion re-initiates from molten residue left on the bottom of the rod, and the melt ball burns and grows until it detaches again. The purpose of this work is development of a PCT thermal simulation model, detailing phase change, melt detachment, and the several heat transfer modes. Combustion is modeled by a summary rate equation, whose parameters are identified by comparison to PCT results. The sensitivity of PCT results to various physical and geometrical parameters is evaluated. The identified combustion parameters may be used in design of new PCT arrangements, as might be used for flammability assessment in flow-dominated environments. The Haynes 214 nickel-based superalloy, whose PCT results are applied here, burns heterogeneously (fuel and oxidizer are of different phases; combustion takes place on the fuel surface). Heterogeneous combustion is not well understood. (In homogeneous combustion, the metal vaporizes, and combustion takes place in an analytically treatable cloud above the surface). Thermal modeling in heterogeneous combustion settings provides a means for linking test results more directly to detailed combustion mechanics, leading to improved data analysis, and improved understanding of heterogeneous combustion phenomena.

  13. Method and apparatus for reducing mixed waste

    DOEpatents

    Elliott, Michael L.; Perez, Jr., Joseph M.; Chapman, Chris C.; Peters, Richard D.

    1995-01-01

    The present invention is a method and apparatus for in-can waste reduction. The method is mixing waste with combustible material prior to placing the waste into a waste reduction vessel. The combustible portion is ignited, thereby reducing combustible material to ash and non-combustible material to a slag. Further combustion or heating may be used to sinter or melt the ash. The apparatus is a waste reduction vessel having receiving canister connection means on a first end, and a waste/combustible mixture inlet on a second end. An oxygen supply is provided to support combustion of the combustible mixture.

  14. Real-time combustion controls and diagnostics sensors (CCADS)

    DOEpatents

    Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas

    2005-05-03

    The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.

  15. Dynamic estimator for determining operating conditions in an internal combustion engine

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  16. Study on Combustion Characteristics and Propelling Projectile Motion Process of Bulk-Loaded Liquid Propellant

    NASA Astrophysics Data System (ADS)

    Xue, Xiaochun; Yu, Yonggang; Mang, Shanshan

    2017-07-01

    Data are presented showing that the problem of gas-liquid interaction instability is an important subject in the combustion and the propellant projectile motion process of a bulk-loaded liquid propellant gun (BLPG). The instabilities themselves arise from the sources, including fluid motion, to form a combustion gas cavity called Taylor cavity, fluid turbulence and breakup caused by liquid motion relative to the combustion chamber walls, and liquid surface breakup arising from a velocity mismatch on the gas-liquid interface. Typically, small disturbances that arise early in the BLPG combustion interior ballistic cycle can become amplified in the absence of burn rate limiting characteristics. Herein, significant attention has been given to developing and emphasizing the need for better combustion repeatability in the BLPG. Based on this goal, the concept of using different geometries of the combustion chamber is introduced and the concept of using a stepped-wall structure on the combustion chamber itself as a useful means of exerting boundary control on the combustion evolution to thus restrain the combustion instability has been verified experimentally in this work. Moreover, based on this background, the numerical simulation is devoted to a special combustion issue under transient high-pressure and high-temperature conditions, namely, studying the combustion mechanism in a stepped-wall combustion chamber with full monopropellant on one end that is stationary and the other end can move at high speed. The numerical results also show that the burning surface of the liquid propellant can be defined geometrically and combustion is well behaved as ignition and combustion progressivity are in a suitable range during each stage in this combustion chamber with a stepped-wall structure.

  17. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1979-01-01

    The general problem of spray combustion was investigated. The combustion of bipropellent droplets; combustion of hydrozine fuels; and combustion of sprays were studied. A model was developed to predict mean velocities and temperatures in a combusting gas jet.

  18. Assessment of Literature Related to Combustion Appliance Venting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, V. H.; Less, B. D.; Singer, B. C.

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents theirmore » technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.« less

  19. Investigating co-combustion characteristics of bamboo and wood.

    PubMed

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Consequences of sludge composition on combustion performance derived from thermogravimetry analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meiyan; Xiao, Benyi; Wang, Xu

    Highlights: • Volatiles, particularly proteins, play a key role in sludge combustion. • Sludge combustion performance varies with different sludge organic concentrations. • Carbohydrates significantly affect the combustion rate in the second stage. • Combustion performance of digested sludge is more negative compared with others. - Abstract: Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewagemore » sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric–differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175–300 °C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others.« less

  1. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  2. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  3. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  4. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  5. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  6. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    DTIC Science & Technology

    2016-09-07

    AFRL-AFOSR-UK-TR-2016-0021 Distributed Low Temperature Combustion 133024 Peter Lindstedt IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY & MEDICINE Final...TYPE Final 3. DATES COVERED (From - To) 01 Feb 2013 to 31 Jul 2016 4. TITLE AND SUBTITLE Distributed Low Temperature Combustion: Fundamental...identification of five separate fluid states. 15. SUBJECT TERMS EOARD, Low Temperature Combustion, Combustion Regime Transitions 16. SECURITY

  7. Method of operating a two-stage coal gasifier

    DOEpatents

    Tanca, Michael C.

    1982-01-01

    A method of operating an entrained flow coal gasifier (10) via a two-stage gasification process. A portion of the coal (18) to be gasified is combusted in a combustion zone (30) with near stoichiometric air to generate combustion products. The combustion products are conveyed from the combustion zone into a reduction zone (32) wherein additional coal is injected into the combustion products to react with the combustion products to form a combustible gas. The additional coal is injected into the reduction zone as a mixture (60) consisting of coal and steam, preferably with a coal-to-steam weight ratio of approximately ten to one.

  8. Oxy-combustor operable with supercritical fluid

    DOEpatents

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  9. Combustion characteristics of Douglas Fir planer shavings. Technical progress report No. 4, September 16, 1977--September 15, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1978-12-01

    Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the the combustion process in industrialmore » boilers serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of Douglas Fir planer shavings. The data were obtained in a pilot scale combustion test facility at Oregon State Univerisity. Other technical reports present data on the combustion characteristics of: Douglas Fir bark, Red Alder sawdust, Red Alder bark, Ponderosa pine bark, Hemlock bark, and Eastern White Pine bark. An executive summary report is also available which compares the combustion characteristics of the various fuel species.« less

  10. A Basic Behavior of CNG DI Combustion in a Spark-Ignited Rapid Compression Machine

    NASA Astrophysics Data System (ADS)

    Huang, Zuohua; Shiga, Seiichi; Ueda, Takamasa; Jingu, Nobuhisa; Nakamura, Hisao; Ishima, Tsuneaki; Obokata, Tomio; Tsue, Mitsuhiro; Kono, Michikata

    A basic characteristics of compressed natural gas direct-injection (CNG DI) combustion was studied by using a rapid compression machine. Results show that comparing with homogeneous mixture, CNG DI has short combustion duration, high pressure rise due to combustion, and high rate of heat release, which are considered to come from the charge stratification and the gas flow generated by the fuel injection. CNG DI can realize extremely lean combustion which reaches 0.03 equivalence ratio, φ. Combustion duration, maximum pressure rise due to combustion and combustion efficiency are found to be insensitive to the injection modes. Unburned methane showed almost the same level as that of homogeneous mixture combustion. CO increased steeply with the increase in φ when φ was greater than 0.8 due to the excessive stratification, and NOx peak value shifted to the region of lower φ. Combustion inefficiency maintains less than 0.08 in the range of φ from 0.1 to 0.9 and increases at very low φ due to bulk quenching and at higher φ due to excessive stratification. The combustion efficiency estimated from combustion products shows good agreement with that of heat release analysis.

  11. Physicochemical characterization of fine particles from small-scale wood combustion

    NASA Astrophysics Data System (ADS)

    Lamberg, Heikki; Nuutinen, Kati; Tissari, Jarkko; Ruusunen, Jarno; Yli-Pirilä, Pasi; Sippula, Olli; Tapanainen, Maija; Jalava, Pasi; Makkonen, Ulla; Teinilä, Kimmo; Saarnio, Karri; Hillamo, Risto; Hirvonen, Maija-Riitta; Jokiniemi, Jorma

    2011-12-01

    Emissions from small-scale wood combustion appliances are of special interest since fine particles have been consistently associated with adverse health effects. It has been reported that the physicochemical characteristics of the emitted particles affect also their toxic properties but the mechanisms behind these phenomena and the causative role of particles from wood combustion sources are still mostly unknown. Combustion situations vary significantly in small-scale appliances, especially in batch combustion. Combustion behaviour is affected by fuel properties, appliance type and operational practice. Particle samples were collected from six appliances representing different combustion situations in small-scale combustion. These appliances were five wood log fuelled stoves, including one stove equipped with modern combustion technology, three different conventional combustion appliances and one sauna stove. In addition, a modern small-scale pellet boiler represented advanced continuous combustion technology. The aim of the study was to analyze gas composition and fine particle properties over different combustion situations. Fine particle (PM 1) emissions and their chemical constituents emerging from different combustion situations were compared and this physicochemical data was combined with the toxicological data on cellular responses induced by the same particles (see Tapanainen et al., 2011). There were significant differences in the particle emissions from different combustion situations. Overall, the efficient combustion in the pellet boiler produced the smallest emissions whereas inefficient batch combustion in a sauna stove created the largest emissions. Improved batch combustion with air-staging produced about 2.5-fold PM 1 emissions compared to the modern pellet boiler (50.7 mg MJ -1 and 19.7 mg MJ -1, respectively), but the difference in the total particulate PAH content was 750-fold (90 μg MJ -1 and 0.12 μg MJ -1, respectively). Improved batch combustion and conventional batch combustion showed almost the same PM 1 emissions (51.6 mg MJ -1), but a 10-fold difference in total particulate PAH emissions (910 μg MJ -1). These results highlight that same PM 1 emissions can be associated with very different chemical compositions, potentially leading to different toxic properties of the particles. Thus, changing from an old, less efficient, combustion appliance to a modern appliance can have a greater impact on toxic properties than the emitted PM 1 mass might indicate.

  12. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm andmore » an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.« less

  13. Combuster. [low nitrogen oxide formation

    NASA Technical Reports Server (NTRS)

    Mckay, R. A. (Inventor)

    1978-01-01

    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  14. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOEpatents

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  15. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  16. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  17. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  18. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  19. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  20. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  1. Numerical analysis of combustion characteristics of hybrid rocket motor with multi-section swirl injection

    NASA Astrophysics Data System (ADS)

    Li, Chengen; Cai, Guobiao; Tian, Hui

    2016-06-01

    This paper is aimed to analyse the combustion characteristics of hybrid rocket motor with multi-section swirl injection by simulating the combustion flow field. Numerical combustion flow field and combustion performance parameters are obtained through three-dimensional numerical simulations based on a steady numerical model proposed in this paper. The hybrid rocket motor adopts 98% hydrogen peroxide and polyethylene as the propellants. Multiple injection sections are set along the axis of the solid fuel grain, and the oxidizer enters the combustion chamber by means of tangential injection via the injector ports in the injection sections. Simulation results indicate that the combustion flow field structure of the hybrid rocket motor could be improved by multi-section swirl injection method. The transformation of the combustion flow field can greatly increase the fuel regression rate and the combustion efficiency. The average fuel regression rate of the motor with multi-section swirl injection is improved by 8.37 times compared with that of the motor with conventional head-end irrotational injection. The combustion efficiency is increased to 95.73%. Besides, the simulation results also indicate that (1) the additional injection sections can increase the fuel regression rate and the combustion efficiency; (2) the upstream offset of the injection sections reduces the combustion efficiency; and (3) the fuel regression rate and the combustion efficiency decrease with the reduction of the number of injector ports in each injection section.

  2. Study of the rotational-level and temperature dependence of the quenching rate of OH fluorescence due to collisions with water molecules

    NASA Technical Reports Server (NTRS)

    Koker, Edmond B.

    1995-01-01

    The importance of the OH radical as an intermediate in many combustion reactions and in atmospheric photochemistry has led many researchers to use it as a diagnostic tool in these processes. The amount of data that has been acquired over the years for this radical is quite considerable. However, the quenching rate of OH with water molecules as a function of temperature and the rotational level of the excited state is not very well understood. The motivation of the studies undertaken is to bridge the gap between the low temperature measurements and the high temperature ones reported in the literature. The technique generally employed in these diagnostics is laser-induced fluorescence (LIF), through which rotational state selective excitation of the radical is possible. Furthermore, in a combustion medium, water is produced in abundance so that knowledge of the quenching rate of OH due to water molecules plays a crucial role in interpreting the data. In general, the precursor to an understanding of the collisional quenching rates of OH involves a characterization of the mode in which the radical is produced; the resulting rotational and translational distribution, followed by a measurement of the OH temperature; and ultimately obtaining the rate constants from the pressure dependence of the fluorescence signal. The experimental implementation of these measurements therefore involved, as a first step, the production of the OH radicals in a microwave discharge cell using water vapor as the source, wherein a hydrogen atom is abstracted from H2O. The second step involved the absorption of photons from the frequency-doubled output of a pulsed amplified, single-frequency cw ring dye laser. By tuning the laser to the peak of the transition and observing the fluorescence decay after the laser pulse, the lifetime of the OH in a particular rotational electronic state was determined (tau = 1.4 microseconds for Q(sub 1)(3)). Knowledge of this parameter led to a determination of the quenching rate. By varying the water vapor pressure in the cell and measuring the lifetime as a function of pressure a linear plot of the quenching rate as a function of pressure was obtained. Using this plot, the quenching cross section was deduced. It has therefore been possible to measure the local translational temperature and the quenching cross section with one laser system.

  3. Combustion-chamber Performance Characteristics of a Python Turbine-propeller Engine Investigated in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, Carl E

    1951-01-01

    Combustion-chamber performance characteristics of a Python turbine-propeller engine were determined from investigation of a complete engine over a range of engine speeds and shaft horsepowers at simulated altitudes. Results indicated the effect of engine operating conditions and altitude on combustion efficiency and combustion-chamber total pressure losses. Performance of this vaporizing type combustion chamber was also compared with several atomizing type combustion chambers. Over the range of test conditions investigated, combustion efficiency varied from approximately 0.95 to 0.99.

  4. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  5. Elimination of Intermediate-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Tomas E.; Turner, Jim E. (Technical Monitor)

    2001-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. The thrust chamber exhibited benign, yet marginally unstable combustion. The marginally unstable combustion was characterized by chamber pressure oscillations with large amplitudes and a frequency that was too low to be identified as acoustic or high-frequency combustion instability and too high to be identified as chug or low-frequency combustion instability. The source of the buzz or intermediate-frequency combustion instability was traced to the fuel venturi whose violently noisy cavitation caused resonance in the feedline downstream. Combustion was stabilized by increasing the throat diameter of the fuel venturi such that the cavitation would occur more quietly.

  6. Engine and method for operating an engine

    DOEpatents

    Lauper, Jr., John Christian; Willi, Martin Leo [Dunlap, IL; Thirunavukarasu, Balamurugesh [Peoria, IL; Gong, Weidong [Dunlap, IL

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  7. A study of the current group evaporation/combustion theories

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1990-01-01

    Liquid fuel combustion can be greatly enhanced by disintegrating the liquid fuel into droplets, an effect achieved by various configurations. A number of experiments carried out in the seventies showed that combustion of droplet arrays and sprays do not form individual flames. Moreover, the rate of burning in spray combustion greatly deviates from that of the single combustion rate. Such observations naturally challenge its applicability to spray combustion. A number of mathematical models were developed to evaluate 'group combustion' and the related 'group evaporation' phenomena. This study investigates the similarity and difference of these models and their applicability to spray combustion. Future work that should be carried out in this area is indicated.

  8. Supplement B to compilation of air pollutant emission factors, volume 1. Stationary point and area sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less

  9. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOEpatents

    Besmann, Theodore M

    2015-01-06

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  10. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOEpatents

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  11. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY... hazardous air pollutants for stationary reciprocating internal combustion engines and the standards of performance for stationary internal combustion engines. Subsequently, the EPA received three petitions for...

  12. Combustion characteristics of lodge pole pine wood chips. Technical progress report No. 15, September 16, 1978-September 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1979-09-01

    Significant quantits of wood resiue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of lodge pole pine wood chips. The data were obtained in a pilot scale combustion test facility at Oregon State University.« less

  13. Microgravity Smoldering Combustion Takes Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour in September 1995 on the STS-69 mission. This experiment is part of series of studies focused on the smolder characteristics of porous, combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of the study is to provide a better understanding of the controlling mechanisms of smoldering, both in microgravity and Earth gravity. As with other forms of combustion, gravity affects the availability of air and the transport of heat, and therefore, the rate of combustion. Results of the microgravity experiments will be compared with identical experiments carried out in Earth's gravity. They also will be used to verify present theories of smoldering combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvement in fire safety practices.

  14. Transient processes in the combustion of nitramine propellants

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.; Strand, L. D.

    1978-01-01

    A transient combustion model of nitramine propellants is combined with an isentropic compression shock formation model to determine the role of nitramine propellant combustion in DDT, excluding effects associated with propellant structural properties or mechanical behavior. The model is derived to represent the closed pipe experiment that is widely used to characterize explosives, except that the combustible material is a monolithic charge rather than compressed powder. Computations reveal that the transient combustion process cannot by itself produce DDT by this model. Compressibility of the solid at high pressure is the key factor limiting pressure buildups created by the combustion. On the other hand, combustion mechanisms which promote pressure buildups are identified and related to propellant formulation variables. Additional combustion instability data for nitramine propellants are presented. Although measured combustion response continues to be low, more data are required to distinguish HMX and active binder component contributions. A design for a closed vessel apparatus for experimental studies of high pressure combustion is discussed.

  15. Investigation of Ignition and Combustion Processes of Diesel Engines Operating with Turbulence and Air-storage Chambers

    NASA Technical Reports Server (NTRS)

    Petersen, Hans

    1938-01-01

    The flame photographs obtained with combustion-chamber models of engines operating respectively, with turbulence chamber and air-storage chambers or cells, provide an insight into the air and fuel movements that take place before and during combustion in the combustion chamber. The relation between air velocity, start of injection, and time of combustion was determined for the combustion process employing a turbulence chamber.

  16. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  17. Causes of Combustion Instabilities with Passive and Active Methods of Control for practical application to Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Cornwell, Michael D.

    Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between combustion heat release, fluid mechanics and acoustics. This research explores the significant affect of unstable fluid mechanics processes in augmenting unstable periodic combustion heat release. The frequency of the unstable heat release may shift to match one of the combustors natural acoustic frequencies which then can result in significant energy exchange from chemical to acoustic energy resulting in thermoacoustic instability. The mechanisms of the fluid mechanics in coupling combustion to acoustics are very broad with many varying mechanisms explained in detail in the first chapter. Significant effort is made in understanding these mechanisms in this research in order to find commonalities, useful for mitigating multiple instability mechanisms. The complexity of combustion instabilities makes mitigation of combustion instabilities very difficult as few mitigation methods have historically proven to be very effective for broad ranges of combustion instabilities. This research identifies turbulence intensity near the forward stagnation point and movement of the forward stagnation point as a common link in what would otherwise appear to be very different instabilities. The most common method of stabilization of both premixed and diffusion flame combustion is through the introduction of swirl. Reverse flow along the centerline is introduced to transport heat and chemically active combustion products back upstream to sustain combustion. This research develops methods to suppress the movement of the forward stagnation point without suppressing the development of the vortex breakdown process which is critical to the transport of heat and reactive species necessary for flame stabilization. These methods are useful in suppressing the local turbulence at the forward stagnation point, limiting dissipation of heat and reactive species significantly improving stability. Combustion hardware is developed and tested to demonstrate the stability principles developed as part of this research. In order to more completely understand combustion instability a very unique method of combustion was researched where there are no discrete points of combustion initiation such as the forward stagnation point typical in many combustion systems including swirl and jet wake stabilized combustion. This class of combustion which has empirical evidence of great stability and efficient combustion with low CO, NOx and UHC emissions is described as high oxidization temperature distributed combustion. This mechanism of combustion is shown to be stable largely because there are no stagnations points susceptible to fluid mechanic perturbations. The final topic of research is active combustion control by fuel modulation. This may be the only practical method of controlling most instabilities with a single technique. As there are many papers reporting active combustion control algorithms this research focused on the complexities of the physics of fuel modulation at frequencies up to 1000 Hz with proportionally controlled flow amplitude. This research into the physics of high speed fluid movement, oscillation mechanical mechanisms and electromagnetics are demonstrated by development and testing of a High Speed Latching Oscillator Valve.

  18. TECHNOLOGY DEMONSTRATION SUMMARY: THE AMERICAN COMBUSTION PYRETRON THERMAL DESTRUCTION SYSTEM AT THE U.S. EPA'S COMBUSTION FACILITY

    EPA Science Inventory

    The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...

  19. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  20. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  1. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  2. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  3. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  4. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  5. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  6. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  7. Combustion Integration Rack (CIR)/FLame Extinguishment Experiment (FLEX)-2J Fiber Replace

    NASA Image and Video Library

    2015-08-20

    ISS044E064666 (08/20/2015) --- NASA astronaut Kjell Lindgren replaces items inside the Multi-user Droplet Combustion Apparatus found inside the station’s Combustion Integrated Rack (CIR.) The CIR houses hardware capable of performing combustion experiments to further research of combustion in microgravity.

  8. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  9. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  10. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  11. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  12. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  13. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  14. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  15. Densitometry and temperature measurement of combustion gas by X-ray Compton scattering

    PubMed Central

    Sakurai, Hiroshi; Kawahara, Nobuyuki; Itou, Masayoshi; Tomita, Eiji; Suzuki, Kosuke; Sakurai, Yoshiharu

    2016-01-01

    Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction. PMID:26917151

  16. Densitometry and temperature measurement of combustion gas by X-ray Compton scattering.

    PubMed

    Sakurai, Hiroshi; Kawahara, Nobuyuki; Itou, Masayoshi; Tomita, Eiji; Suzuki, Kosuke; Sakurai, Yoshiharu

    2016-03-01

    Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction.

  17. Effects of combustibles on internal quasi-static loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, N.R.; Hokanson, J.C.; Esparza, E.D.

    1984-08-01

    The phenomenon of quasi-static pressure enhancement produced when combustible materials are placed near HE sources has been recently discovered. The effects of placing solid and liquid combustible materials near detonating explosives on internal blast loading was measured during tests conducted in a one-eighth scale model of a containment structure. In many cases, dramatic increases in gas pressures resulted. Principal conclusions of this study are: combustible materials near explosives can markedly increase gas pressures in enclosed structures; there is a lack of data on HE-combustible combinations; quasi-static loading calculations should include estimates of contributions from the burning of combustible materials whenevermore » such materials are expected to be in intimate contact with HE sources; and effects of combustibles should be investigated further to determine methods for prediction. Variations in charge to combustible mass, charge type, structure volume, degree of venting and degree of contact between HE and combustible sbould be studied.« less

  18. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    PubMed

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-11-01

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. H.

    1979-01-01

    The problems of combustion instability in an annular combustion chamber are investigated. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations. By evaluating these effects, parameters which cause instabilities to occur in the combustion chamber can be ascertained. It is assumed that in the annular combustion chamber, the liquid propellants are injected uniformly across the injector face, the combustion processes are distributed throughout the combustion chamber, and that no time delay occurs in the combustion processes.

  20. Heat regenerative external combustion engine

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    It is an object of the invention to provide an external combustion expander-type engine having improved efficiency. It is another object of the invention to provide an external combustion engine in which afterburning in the exhaust channel is substantially prevented. Yet another object of the invention is to provide an external combustion engine which is less noisy than an external combustion engine of conventional design. These and other objects of the invention will become more apparent from the following description. The above objects of the invention are realized by providing a heat regenerative external combustion engine. The heat regenerative external combustion engine of the invention comprises a combustion chamber for combusting a monopropellant fuel in order to form an energized gas. The energized gas is then passed through a rotary valve to a cylinder having a reciprocating piston disposed therein. The gas is spent in moving the piston, thereby driving a drive shaft.

Top