Wavelength-Division Multiplexing Of Bipolar Digital Signals
NASA Technical Reports Server (NTRS)
Gibbons, Ronnie D.; Ubele, John L., II
1994-01-01
In system, bipolar digital data transmitted by use of wavelength-division multiplexing on single optical fiber. Two different wavelengths used to transmit pulses signifying "positive" or "negative" bipolar digital data. Simultaneous absence of pulses at both wavelengths signifies digital "zero."
NASA Astrophysics Data System (ADS)
Lee, Eunjoo; Kim, Byoung Yoon
2017-12-01
We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.
Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian
2015-11-16
Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.
Demonstration of an 8 × 25-Gb/s optical time-division multiplexing system
NASA Astrophysics Data System (ADS)
Wang, Dong; Huo, Li; Li, Yunbo; Wang, Lei; Li, Han; Jiang, Xiangyu; Chen, Xin; Lou, Caiyun
2017-11-01
An 8 × 25-Gb/s optical time-division multiplexing (OTDM) system is demonstrated experimentally. The optical pulse source is based on optical frequency comb (OFC) generation and pulse shaping, which can generate nearly chirp-free 25-GHz 1.6-ps optical Gaussian pulse. The eightfold optical time-division demultiplexer consists of a single-driven dual-parallel Mach-Zehnder modulator (DPMZM) and a Mamyshev reshaper. Error-free demultiplexing of 8 × 25-Gb/s back-to-back (B2B) signal with a power penalty of 4.1 dB to 4.4 dB at a bit error rate (BER) of 10-9 is achieved to confirm the performance of the proposed system.
NASA Astrophysics Data System (ADS)
Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook
2018-05-01
A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.
Multi-Wavelength Mode-Locked Laser Arrays for WDM Applications
NASA Technical Reports Server (NTRS)
Davis, L.; Young, M.; Dougherty, D.; Keo, S.; Muller, R.; Maker, P.
1998-01-01
Multi-wavelength arrays of colliding pulse mode-locked (CPM) lasers have been demonstrated for wavelength division multiplexing (WDM) applications. The need for increased bandwidth is driving the development of both increased speed in time division multiplexing (TDM) and more channels in WDM for fiber optic communication systems.
A Spread-Spectrum SQUID Multiplexer
NASA Astrophysics Data System (ADS)
Irwin, K. D.; Chaudhuri, S.; Cho, H.-M.; Dawson, C.; Kuenstner, S.; Li, D.; Titus, C. J.; Young, B. A.
2018-06-01
The transition-edge sensor (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon-arrival rates.
Uplink transmission of a 60-km-reach WDM/OCDM-PON using a spectrum-sliced pulse source
NASA Astrophysics Data System (ADS)
Choi, Yong-Kyu; Hanawa, Masanori; Park, Chang-Soo
2014-02-01
We propose and experimentally demonstrate the uplink transmission of a 60-km-reach wavelength division multiplexing/optical code division multiplexing (WDM/OCDM) passive optical network (PON) using a spectrum-sliced pulse source. As a single light source, a broadband pulse source with a bandwidth of 6.5 nm and a repetition rate of 1.25 GHz is generated at a central office and supplied to a remote node (RN) through a 50-km fiber link. At the RN, narrow-band pulses (as a source for uplink transmission) are obtained by spectrum slicing the broadband pulse source with a cyclic arrayed waveguide grating and are then supplied to all optical network units (ONUs) via 1×4 power splitters and 10-km drop fibers. Eight wavelengths are obtained with a 6.5-nm bandwidth of the broadband pulse source, and the qualities of the pulses with a repetition rate of 1.25 GHz and a pulse width of 45 ps for the eight wavelengths are sufficient for four-chip OCDM encoding at the ONUs. In our experiments, four signals are multiplexed by OCDM at one wavelength, and another encoded signal is also multiplexed by WDM. The bit error rates (BERs) of the signals exhibit error-free transmission (BER<10-9) over a 60-km single-mode fiber at 1.25 Gb/s.
Optically powered oil tank multichannel detection system with optical fiber link
NASA Astrophysics Data System (ADS)
Yu, Zhijing
1998-08-01
A novel oil tanks integrative parameters measuring system with optically powered are presented. To realize optical powered and micro-power consumption multiple channels and parameters detection, the system has taken the PWM/PPM modulation, ratio measurement, time division multiplexing and pulse width division multiplexing techniques. Moreover, the system also used special pulse width discriminator and single-chip microcomputer to accomplish signal pulse separation, PPM/PWM signal demodulation, the error correction of overlapping pulse and data processing. This new transducer has provided with high characteristics: experimental transmitting distance is 500m; total consumption of the probes is less than 150 (mu) W; measurement error: +/- 0.5 degrees C and +/- 0.2 percent FS. The measurement accuracy of the liquid level and reserves is mainly determined by the pressure accuracy. Finally, some points of the experiment are given.
Particle image velocimetry based on wavelength division multiplexing
NASA Astrophysics Data System (ADS)
Tang, Chunxiao; Li, Enbang; Li, Hongqiang
2018-01-01
This paper introduces a technical approach of wavelength division multiplexing (WDM) based particle image velocimetry (PIV). It is designed to measure transient flows with different scales of velocity by capturing multiple particle images in one exposure. These images are separated by different wavelengths, and thus the pulse separation time is not influenced by the frame rate of the camera. A triple-pulsed PIV system has been created in order to prove the feasibility of WDM-PIV. This is demonstrated in a sieve plate extraction column model by simultaneously measuring the fast flow in the downcomer and the slow vortices inside the plates. A simple displacement/velocity field combination method has also been developed. The constraints imposed by WDM-PIV are limited wavelength choices of available light sources and cameras. The usage of WDM technique represents a feasible way to realize multiple-pulsed PIV.
Enhanced Pulse Compression in Nonlinear Fiber by a WDM Optical Pulse
NASA Technical Reports Server (NTRS)
Yeh, C.; Bergman, L.
1997-01-01
A new way to compress an optical pulse in a single-mode fiber is presented in this paper. By the use of the cross phase modulation (CPM) effect caused by the nonlinearity of the optical fiber, a shepherd pulse propagating on a different wavelength beam in a wavelength division multiplexed (WDM) single-mode fiber system can be used to enhance the pulse compression of a co-propagating primary pulse.
Tanaka, Akihiro; Fujiwara, Mikio; Nam, Sae W; Nambu, Yoshihiro; Takahashi, Seigo; Maeda, Wakako; Yoshino, Ken-ichiro; Miki, Shigehito; Baek, Burm; Wang, Zhen; Tajima, Akio; Sasaki, Masahide; Tomita, Akihisa
2008-07-21
We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78- 0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.
Photonic integrated circuit as a picosecond pulse timing discriminator.
Lowery, Arthur James; Zhuang, Leimeng
2016-04-18
We report the first experimental demonstration of a compact on-chip optical pulse timing discriminator that is able to provide an output voltage proportional to the relative timing of two 60-ps input pulses on separate paths. The output voltage is intrinsically low-pass-filtered, so the discriminator forms an interface between high-speed optics and low-speed electronics. Potential applications include timing synchronization of multiple pulse trains as a precursor for optical time-division multiplexing, and compact rangefinders with millimeter dimensions.
Capmany, J; Pastor, D; Sales, S; Ortega, B
2002-06-01
We present a closed-form expression for computation of the output pulse's rms time width in an optical fiber link with up to fourth-order dispersion (FOD) by use of an optical source with arbitrary linewidth and chirp parameters. We then specialize the expression to analyze the effect of FOD on the transmission of very high-speed linear optical time-division multiplexing systems. By suitable source chirping, FOD can be compensated for to an upper link-length limit above which other techniques must be employed. Finally, a design formula to estimate the maximum attainable bit rate limited by FOD as a function of the link length is also presented.
Temperature Insensitive and Radiation Hard Photonics
2014-03-19
M. COOK , Lt Col, USAF Deputy Chief, Spacecraft Technology Division Space Vehicles Directorate This report is published in the interest of...Approved for Public Release; distribution is unlimited. ii LIST OF FIGURES Figure 1. OTDM Pulse Multiplexer for Increasing the Output Repetition Rate...QDMLL) for use in extreme environments where ionizing radiation is a substantial threat. Mode-Locked lasers generate a train of optical pulses that have
Rapid multispectral cw multiplexing technique for photon migration measurements
NASA Astrophysics Data System (ADS)
Siegel, Andrew M.; Boas, David A.
2001-06-01
A discussion of photon migration will introduce both some fundamental limitations and practical concerns which directly affect the design and construction of DOT instrumentation. The utility of four different multiplexing schemes will be discussed and then contrasted in light of these concerns. The relative merits of each scheme will be used to determine which measurements they are best suited for, given some of the realistic technical, legal, and practical issues common to the medical research community. Within this context, the unique advantages offered by a variant of time-division multiplexing; Pulse-TDM, will be introduced and explained.
Experimental demonstration of subcarrier multiplexed quantum key distribution system.
Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José
2012-06-01
We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.
OSA Trends in Optics and Photonics Series. Volume 13: Ultrafast Electronics and Optoelectronics
1997-01-01
David DiGiovanni, Uziel Koren, and Kevin Dreyer Multiwavelength , 10 GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Traveling...community. The change in slope in the experimental results that led to more rapid progress was due to the invention of an experimental trick which...feed-forward channel equalization for chirped pulse wavelength division multiplexing," Electr. Lett., vol. 33, p. 10-11,(1997). Multiwavelength
Zhou, Ji; Qiao, Yaojun
2015-09-01
In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).
Caswell, Andrew W; Roy, Sukesh; An, Xinliang; Sanders, Scott T; Schauer, Frederick R; Gord, James R
2013-04-20
Hyperspectral absorption spectroscopy is being used to monitor gas temperature, velocity, pressure, and H(2)O mole fraction in a research-grade pulsed-detonation combustor (PDC) at the Air Force Research Laboratory. The hyperspectral source employed is termed the TDM 3-FDML because it consists of three time-division-multiplexed (TDM) Fourier-domain mode-locked (FDML) lasers. This optical-fiber-based source monitors sufficient spectral information in the H(2)O absorption spectrum near 1350 nm to permit measurements over the wide range of conditions encountered throughout the PDC cycle. Doppler velocimetry based on absorption features is accomplished using a counterpropagating beam approach that is designed to minimize common-mode flow noise. The PDC in this study is operated in two configurations: one in which the combustion tube exhausts directly to the ambient environment and another in which it feeds an automotive-style turbocharger to assess the performance of a detonation-driven turbine. Because the enthalpy flow [kilojoule/second] is important in assessing the performance of the PDC in various configurations, it is calculated from the measured gas properties.
Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-900 series system
NASA Technical Reports Server (NTRS)
Raphael, David
1995-01-01
This handbook explicates the hardware and software properties of a time division multiplex system. This system is used to sample analog and digital data. The data is then merged with frame synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information in this handbook is required by users to design congruous interface and attest effective utilization of this encoder system. Aydin Vector provides all of the components for these systems to Goddard Space Flight Center/Wallops Flight Facility.
Fiber-Optic Terahertz Data-Communication Networks
NASA Technical Reports Server (NTRS)
Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.
1994-01-01
Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.
Microresonator-based solitons for massively parallel coherent optical communications
NASA Astrophysics Data System (ADS)
Marin-Palomo, Pablo; Kemal, Juned N.; Karpov, Maxim; Kordts, Arne; Pfeifle, Joerg; Pfeiffer, Martin H. P.; Trocha, Philipp; Wolf, Stefan; Brasch, Victor; Anderson, Miles H.; Rosenberger, Ralf; Vijayan, Kovendhan; Freude, Wolfgang; Kippenberg, Tobias J.; Koos, Christian
2017-06-01
Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs—one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.
Pulse Shepherding in Nonlinear Fiber Optics
NASA Technical Reports Server (NTRS)
Yeh, C.; Bergman, L.
1996-01-01
In a wavelength division multiplexed fiber system, where pulses on different wavelength beams may co-propagate in a single mode fiber, the cross-phase-modulation (CPM) effects caused by the nonlinearity of the optical fiber are unavoidable. In other words, pulses on different wavelength beams can interact with and affect each other through the intensity dependence of the refractive index of the fiber. Although CPM will not cause energy to be exchanged among the beams, the pulse shapes and locations on these beams can be altered significantly. This phenomenon makes possible the manipulation and control of pulses co-propagating on different wavelength beams through the introduction of a shepherd pulse at a separate wavelength. How this can be accomplished is demonstrated in this paper.
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun
2016-09-01
An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.
NASA Astrophysics Data System (ADS)
Xi, Wenze; McKisson, J. E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl
2014-06-01
A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over 29% of the modulator's switching voltage range. Optical spectrum analysis revealed less than -14 dB crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.
Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-600 series system
NASA Technical Reports Server (NTRS)
Currier, S. F.; Powell, W. R.
1986-01-01
The hardware and software characteristics of a time division multiplex system are described. The system is used to sample analog and digital data. The data is merged with synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information presented herein is required by users to design compatible interfaces and assure effective utilization of this encoder system. GSFC/Wallops Flight Facility has flown approximately 50 of these systems through 1984 on sounding rockets with no inflight failures. Aydin Vector manufactures all of the components for these systems.
Zhang, Junwen; Yu, Jianjun; Chi, Nan
2015-01-01
All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals. PMID:26323238
2013-03-01
intermediate frequency LFM linear frequency modulation MAP maximum a posteriori MATLAB® matrix laboratory ML maximun likelihood OFDM orthogonal frequency...spectrum, frequency hopping, and orthogonal frequency division multiplexing ( OFDM ) modulations. Feature analysis would be a good research thrust to...determine feature relevance and decide if removing any features improves performance. Also, extending the system for simulations using a MIMO receiver or
Cost-effective WDM-PON Delivering Up/Down-stream Data on a Single Wavelength Using Soliton Pulse
NASA Astrophysics Data System (ADS)
Tawade, Laxman
2013-06-01
This paper presents wavelength division multiplexing passive optical network (WDM-PON) system delivering downstream 2.5 Gbit/s data and upstream 1 Gbit/s data on a single wavelength using pulse source is mode locked laser which generating a single pulse of "sech" shape with specified power and width i.e. soliton pulse. The optical source for downstream data and upstream data is sech pulse generator at central office and reflective semiconductor optical amplifier (RSOA) at each optical network unit. We also investigate analysis of backscattered optical signal for upstream data and downstream data simultaneously. Bit error rate, Q-Factor were measured to demonstrate the proposed scheme. In this paper Long reach aspects of an access network is investigated using single channel scenario.
Hybrid charge division multiplexing method for silicon photomultiplier based PET detectors
NASA Astrophysics Data System (ADS)
Park, Haewook; Ko, Guen Bae; Lee, Jae Sung
2017-06-01
Silicon photomultiplier (SiPM) is widely utilized in various positron emission tomography (PET) detectors and systems. However, the individual recording of SiPM output signals is still challenging owing to the high granularity of the SiPM; thus, charge division multiplexing is commonly used in PET detectors. Resistive charge division method is well established for reducing the number of output channels in conventional multi-channel photosensors, but it degrades the timing performance of SiPM-based PET detectors by yielding a large resistor-capacitor (RC) constant. Capacitive charge division method, on the other hand, yields a small RC constant and provides a faster timing response than the resistive method, but it suffers from an output signal undershoot. Therefore, in this study, we propose a hybrid charge division method which can be implemented by cascading the parallel combination of a resistor and a capacitor throughout the multiplexing network. In order to compare the performance of the proposed method with the conventional methods, a 16-channel Hamamatsu SiPM (S11064-050P) was coupled with a 4 × 4 LGSO crystal block (3 × 3 × 20 mm3) and a 9 × 9 LYSO crystal block (1.2 × 1.2 × 10 mm3). In addition, we tested a time-over-threshold (TOT) readout using the digitized position signals to further demonstrate the feasibility of the time-based readout of multiplexed signals based on the proposed method. The results indicated that the proposed method exhibited good energy and timing performance, thus inheriting only the advantages of conventional resistive and capacitive methods. Moreover, the proposed method showed excellent pulse shape uniformity that does not depend on the position of the interacted crystal. Accordingly, we can conclude that the hybrid charge division method is useful for effectively reducing the number of output channels of the SiPM array.
Advanced Code-Division Multiplexers for Superconducting Detector Arrays
NASA Astrophysics Data System (ADS)
Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.
2012-06-01
Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.
Multiplexer and time duration measuring circuit
Gray, Jr., James
1980-01-01
A multiplexer device is provided for multiplexing data in the form of randomly developed, variable width pulses from a plurality of pulse sources to a master storage. The device includes a first multiplexer unit which includes a plurality of input circuits each coupled to one of the pulse sources, with all input circuits being disabled when one input circuit receives an input pulse so that only one input pulse is multiplexed by the multiplexer unit at any one time.
Development of a Real-Time Pulse Processing Algorithm for TES-Based X-Ray Microcalorimeters
NASA Technical Reports Server (NTRS)
Tan, Hui; Hennig, Wolfgang; Warburton, William K.; Doriese, W. Bertrand; Kilbourne, Caroline A.
2011-01-01
We report here a real-time pulse processing algorithm for superconducting transition-edge sensor (TES) based x-ray microcalorimeters. TES-based. microca1orimeters offer ultra-high energy resolutions, but the small volume of each pixel requires that large arrays of identical microcalorimeter pixe1s be built to achieve sufficient detection efficiency. That in turn requires as much pulse processing as possible must be performed at the front end of readout electronics to avoid transferring large amounts of data to a host computer for post-processing. Therefore, a real-time pulse processing algorithm that not only can be implemented in the readout electronics but also achieve satisfactory energy resolutions is desired. We have developed an algorithm that can be easily implemented. in hardware. We then tested the algorithm offline using several data sets acquired with an 8 x 8 Goddard TES x-ray calorimeter array and 2x16 NIST time-division SQUID multiplexer. We obtained an average energy resolution of close to 3.0 eV at 6 keV for the multiplexed pixels while preserving over 99% of the events in the data sets.
Tan, Kang; Shao, Jing; Sun, Junqiang; Wang, Jian
2012-01-16
We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach-Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.
Coherent ultra dense wavelength division multiplexing passive optical networks
NASA Astrophysics Data System (ADS)
Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António
2015-12-01
In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).
An analog method of cross-talk compensation for a RGB wavelength division multiplexed optical link
NASA Astrophysics Data System (ADS)
Chisholm, George; Leveneur, Jérôme; Futter, John; Kennedy, John
2018-06-01
Pulse-width modulation (PWM) over optical fiber can be a very advantageous data transmission approach when an electrically isolated data link is required. The use of wavelength division multiplexing allows multiple data streams to be sent through a single fiber independently. The present investigation aims to demonstrate a novel approach to reduce cross-talk in a three-channel RGB optical link without the need for complex optical componentry. An op-amp circuit is developed to reduce the cross-talk so that the resolution of the PWM data is preserved. An iterative Monte-Carlo simulation approach is used to optimize the op-amp circuit. The approach is developed for a set of three PWM Hall effect magnetometers with 12-bit resolution and 128 Hz sampling rate. We show that, in these conditions, the loss of resolution due to cross-talk is prevented. We also show that the cross-talk compensation allows the RGB PWM link to outperform other transmission schemes.
Experimental demonstration of PAM-DWMT for passive optical network
NASA Astrophysics Data System (ADS)
Lin, Bangjiang; Zhang, Kaiwei; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhou, Zhenlei
2018-07-01
We experimentally demonstrate a discrete wavelet multitone (DWMT) modulation scheme based on pulse amplitude modulation (PAM) for next generation passive optical network (PON), which offers high tolerance against chromatic dispersion, high spectral efficiency, low peak to average power ratio (PAPR) and low side lobes. The experimental results show the chromatic dispersion induced power penalties are negligible after 20km fiber transmission. Compared with orthogonal frequency division multiplexing (OFDM), DWMT offers a better receiver sensitivity.
NASA Astrophysics Data System (ADS)
Kim, Dong Hwan; Kim, Sang Hyuck; Jo, Jae Cheol; Choi, Sang Sam
2000-08-01
A new phase lock loop (PLL) is proposed and demonstrated for clock recovery from 40 Gbps time-division-multiplexed (TDM) optical signal using simple optical phase lock loop circuit. The proposed clock recovery scheme improves the jitter effect in PLL circuit from the clock pulse laser of harmonically-mode locked fiber laser. The cross-correlation component between the optical signal and an optical clock pulse train is detected as a four-wave-mixing (FWM) signal generated in SOA. The lock-in frequency range of the clock recovery is found to be within 10 KHz.
Demonstration of an 8*10-Gb/s OTDM system
NASA Astrophysics Data System (ADS)
Huo, Li; Yang, Yanfu; Lou, Caiyun; Gao, Yizhi
2005-03-01
An 8*10 Gb/s optical time-division-multiplexing (OTDM) system was demonstrated with an electroabsorption modulator (EAM) based short pulse generator followed by a two-stage nonlinear compression scheme which generated stable 10-GHz, 2-ps full-width at half-maximum (FWHM) pulse train, an opto-electronic oscillator (OEO) that extracted 10-GHz clock with a timing jitter of 300 fs from 80-Gb/s OTDM signal and a self cascaded EAM which produced a switching window of about 10 ps. A back-to-back error free demultiplexing experiment with a power penalty of 3.25 dB was carried out to verify the system performance.
NASA Astrophysics Data System (ADS)
Ma, Xuejiao; Gan, Chaoqin; Deng, Shiqi; Huang, Yan
2011-11-01
A survivable wavelength division multiplexing passive optical network enabling both point-to-point service and broadcast service is presented and demonstrated. This architecture provides an automatic traffic recovery against feeder and distribution fiber link failure, respectively. In addition, it also simplifies the protection design for multiple services transmission in wavelength division multiplexing passive optical networks.
Multicarrier orthogonal spread-spectrum (MOSS) data communications
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2008-01-01
Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.
NASA Astrophysics Data System (ADS)
Torres, Jhon James Granada; Soto, Ana María Cárdenas; González, Neil Guerrero
2016-10-01
In the context of gridless optical multicarrier systems, we propose a method for intercarrier interference (ICI) mitigation which allows bit error correction in scenarios of nonspectral flatness between the subcarriers composing the multicarrier system and sub-Nyquist carrier spacing. We propose a hybrid ICI mitigation technique which exploits the advantages of signal equalization at both levels: the physical level for any digital and analog pulse shaping, and the bit-data level and its ability to incorporate advanced correcting codes. The concatenation of these two complementary techniques consists of a nondata-aided equalizer applied to each optical subcarrier, and a hard-decision forward error correction applied to the sequence of bits distributed along the optical subcarriers regardless of prior subchannel quality assessment as performed in orthogonal frequency-division multiplexing modulations for the implementation of the bit-loading technique. The impact of the ICI is systematically evaluated in terms of bit-error-rate as a function of the carrier frequency spacing and the roll-off factor of the digital pulse-shaping filter for a simulated 3×32-Gbaud single-polarization quadrature phase shift keying Nyquist-wavelength division multiplexing system. After the ICI mitigation, a back-to-back error-free decoding was obtained for sub-Nyquist carrier spacings of 28.5 and 30 GHz and roll-off values of 0.1 and 0.4, respectively.
Equivalence of time-multiplexed and frequency-multiplexed signals in digital communications.
NASA Technical Reports Server (NTRS)
Timor, U.
1972-01-01
In comparing different techniques for multiplexing N binary data signals into a single channel, time-division multiplexing (TDM) is known to have a theoretic efficiency of 100 percent (neglecting sync power) and thus seems to outperform frequency-division multiplexing systems (FDM). By considering more general FDM systems, we will show that both TDM and FDM are equivalent and have an efficiency of 100 percent. The difference between the systems is in the multiplexing and demultiplexing subsystems, but not in the performance or in the generated waveforms.
2002-07-01
spectral components remain co-polarized. We confirmed that this was the case by passing the continuum through a polarizing beam splitter . The...propagation direction through polarization beam splitters and aligned along the other axis of the fiber. Co-propagating control and signal pulses...amplifier, PBS = polarization beam splitter . Figure 8. Eye diagram of header processor. This is the trace of the eye diagrams taken with the setup of Fig
NASA Astrophysics Data System (ADS)
Li, Yupeng; Ding, Ding
2017-09-01
Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.
MIMO-OFDM signal optimization for SAR imaging radar
NASA Astrophysics Data System (ADS)
Baudais, J.-Y.; Méric, S.; Riché, V.; Pottier, É.
2016-12-01
This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2 ×2 MIMO configuration.
40Gbit/s MDM-WDM Laguerre-Gaussian Mode with Equalization for Multimode Fiber in Access Networks
NASA Astrophysics Data System (ADS)
Fazea, Yousef; Amphawan, Angela
2018-04-01
Modal dispersion is seen as the primary impairment for multimode fiber. Mode division multiplexing (MDM) is a promising technology that has been realized as a favorable technology for considerably upsurges the capacity and distance of multimode fiber in conjunction with Wavelength Division Multiplexing (WDM) for fiber-to-the-home. This paper reveals the importance of an equalization technique in conjunction with controlling the modes spacing of mode division multiplexing-wavelength division multiplexing of Laguerre-Gaussian modes to alleviate modal dispersion for multimode fiber. The effects of channel spacing of 20 channels MDM-WDM were examined through controlling the azimuthal mode number and the radial mode number of Laguerre-Gaussian modes. A data rate of 40Gbit/s was achieved for a distance of 1,500 m for MDM-WDM.
NASA Astrophysics Data System (ADS)
Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun
2017-03-01
The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.
Schmeckebier, H; Fiol, G; Meuer, C; Arsenijević, D; Bimberg, D
2010-02-15
A complete characterization of pulse shape and phase of a 1.3 microm, monolithic-two-section, quantum-dot mode-locked laser (QD-MLL) at a repetition rate of 40 GHz is presented, based on frequency resolved optical gating. We show that the pulse broadening of the QD-MLL is caused by linear chirp for all values of current and voltage investigated here. The chirp increases with the current at the gain section, whereas larger bias at the absorber section leads to less chirp and therefore to shorter pulses. Pulse broadening is observed at very high bias, likely due to the quantum confined stark effect. Passive- and hybrid-QD-MLL pulses are directly compared. Improved pulse intensity profiles are found for hybrid mode locking. Via linear chirp compensation pulse widths down to 700 fs can be achieved independent of current and bias, resulting in a significantly increased overall mode-locking range of 101 MHz. The suitability of QD-MLL chirp compensated pulse combs for optical communication up to 160 Gbit/s using optical-time-division multiplexing are demonstrated by eye diagrams and autocorrelation measurements.
Generation of picosecond optical pulse based on chirp compensation
NASA Astrophysics Data System (ADS)
Sun, Xiaofeng; Yang, Jiaqian; Li, Shangyuan; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun
2017-10-01
Picosecond optical pulses are widely used in optical communication systems, such as the optical time division multiplexing (OTDM) and photonic analog-to-digital converter (ADC). We have proposed and demonstrated a simple method to generate picosecond optical pulse using the mach-zehnder modulator (MZM), phase modulator (PM) and single model fiber (SMF). The phase modulator is used to generate a frequency chirp which varies periodically with time. The MZM is used to suppress the pedestal of the pulse and improve the performance of the pulse. The SMF is used to compensate the frequency chirp. We have carried out theoretical analysis and numerical simulation for the generation process of the picosecond optical pulse. The influence of phase shift between the modulation signals loaded on the MZM and PM is analyzed by numerical simulation and the conditions for the generation of picosecond optical pulse are given. The formula for calculating the optimum length of SMF which is used to compensate the linear chirp is given. The optical pulses with a repetition frequency of 10 GHz and a pulse width of 8.5 ps were obtained. The time-bandwidth product was as small as 1.09 and the timing jitter is as low as 83 fs.
Deng, Lei; Pang, Xiaodan; Zhao, Ying; Othman, M B; Jensen, Jesper Bevensee; Zibar, Darko; Yu, Xianbin; Liu, Deming; Monroy, Idelfonso Tafur
2012-02-13
We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free (<1 × 10(5)) performance and a 1.59 Gb/s net data rate 16QAM-OFDM signal with BER performance of 1.2 × 10(2) are achieved after transmission of 22.8 km single mode fiber followed by 3 m and 1 m air distances, respectively.
NASA Astrophysics Data System (ADS)
Guan, Rui; Xu, Wei; Yang, Zhaohui; Huang, Nuo; Wang, Jin-Yuan; Chen, Ming
2017-11-01
In this paper, we propose a subcarrier-index modulation-based asymmetrically clipped optical orthogonal frequency division multiplexing (SACO-OFDM) scheme for optical wireless communication (OWC) systems, which benefits from the subcarrier-index modulation (SIM) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) techniques. SACO-OFDM conveys additional information via the subcarrier indexing, and the error rate of the bit transmitted by the subcarrier indexing is much lower than that of the conventional M-ary modulation scheme. On the other hand, as the signal constellation in M-ary modulation is relieved, SACO-OFDM has simple transceiver structure and low detection complexity. Moreover, considering the spectral, an enhanced SACO-OFDM (ESACO-OFDM) using even subcarriers is proposed. In this technique, the odd subcarriers are activated for SACO-OFDM, and the imaginary part of even subcarriers are activated for pulse-amplitude-modulated discrete multitone (PAM-DMT). Clearly, ESACO-OFDM achieves better spectral efficiency than the conventional optical OFDM, since all subcarriers are used for data transmission. Simulation results verify the significant bit error rate (BER) and peak-to-average power ratio (PAPR) improvement by the proposed ESACO-OFDM, especially for the medium-to-high signal-to-noise ratio (SNR) regime.
Demi, Libertario; Ramalli, Alessandro; Giannini, Gabriele; Mischi, Massimo
2015-01-01
In classic pulse-echo ultrasound imaging, the data acquisition rate is limited by the speed of sound. To overcome this, parallel beamforming techniques in transmit (PBT) and in receive (PBR) mode have been proposed. In particular, PBT techniques, based on the transmission of focused beams, are more suitable for harmonic imaging because they are capable of generating stronger harmonics. Recently, orthogonal frequency division multiplexing (OFDM) has been investigated as a means to obtain parallel beamformed tissue harmonic images. To date, only numerical studies and experiments in water have been performed, hence neglecting the effect of frequencydependent absorption. Here we present the first in vitro and in vivo tissue harmonic images obtained with PBT by means of OFDM, and we compare the results with classic B-mode tissue harmonic imaging. The resulting contrast-to-noise ratio, here used as a performance metric, is comparable. A reduction by 2 dB is observed for the case in which three parallel lines are reconstructed. In conclusion, the applicability of this technique to ultrasonography as a means to improve the data acquisition rate is confirmed.
On-chip WDM mode-division multiplexing interconnection with optional demodulation function.
Ye, Mengyuan; Yu, Yu; Chen, Guanyu; Luo, Yuchan; Zhang, Xinliang
2015-12-14
We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1 dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are -1.5, -3 and -3.5 dB for TE₀-TE₀, TE₀-TE₁ and TE₀-TE₂ mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.
Underwater optical communications using orbital angular momentum-based spatial division multiplexing
NASA Astrophysics Data System (ADS)
Willner, Alan E.; Zhao, Zhe; Ren, Yongxiong; Li, Long; Xie, Guodong; Song, Haoqian; Liu, Cong; Zhang, Runzhou; Bao, Changjing; Pang, Kai
2018-02-01
In this paper, we review high-capacity underwater optical communications using orbital angular momentum (OAM)-based spatial division multiplexing. We discuss methods to generate and detect blue-green optical data-carrying OAM beams as well as various underwater effects, including attenuation, scattering, current, and thermal gradients on OAM beams. Attention is also given to the system performance of high-capacity underwater optical communication links using OAM-based space division multiplexing. The paper closes with a discussion of a digital signal processing (DSP) algorithm to mitigate the inter-mode crosstalk caused by thermal gradients.
Time Division Multiplexing of Semiconductor Qubits
NASA Astrophysics Data System (ADS)
Jarratt, Marie Claire; Hornibrook, John; Croot, Xanthe; Watson, John; Gardner, Geoff; Fallahi, Saeed; Manfra, Michael; Reilly, David
Readout chains, comprising resonators, amplifiers, and demodulators, are likely to be precious resources in quantum computing architectures. The potential to share readout resources is contingent on realising efficient means of time-division multiplexing (TDM) schemes that are compatible with quantum computing. Here, we demonstrate TDM using a GaAs quantum dot device with multiple charge sensors. Our device incorporates chip-level switches that do not load the impedance matching network. When used in conjunction with frequency multiplexing, each frequency tone addresses multiple time-multiplexed qubits, vastly increasing the capacity of a single readout line.
Thirty-Four Megabit Four-Channel Multiplexer
1985-10-01
person or conveying any rights or permis- sion to manufacture , use, or sell any patented invention thai ma> in any way be related thereto. WARNING...System (DCS) in Europe. The system is evolving from frequency division multiplex ( FDM ) to time division multiplex (TDM) equipment. The bulk of the...channel multi- plexer permits expansion by providing the spare MBS and 2.048~Mb/s data channels, and will do so with no additional cost
NASA Astrophysics Data System (ADS)
Tian, Huiping; Shen, Guansheng; Liu, Weijia; Ji, Yuefeng
2013-07-01
An integrated model of photonic crystal (PC) demultiplexer that can be used to combine dense wavelength-division multiplexing (DWDM) and coarse wavelength-division multiplexing (CWDM) systems is first proposed. By applying the PC demultiplexer, dense channel spacing 0.8 nm and coarse channel spacing 20 nm are obtained at the same time. The transmission can be improved to nearly 90%, and the crosstalk can be decreased to less than -18 dB by enlarging the width of the bus waveguide. The total size of the device is 21×42 μm2. Four channels on one side of the demultiplexer can achieve DWDM in the wavelength range between 1575 and 1578 nm, and the other four channels on the other side can achieve CWDM in the wavelength range between 1490 and 1565 nm, respectively. The demonstrated demultiplexer can be applied in the future CWDM and DWDM system, and the architecture costs can be significantly reduced.
NASA Astrophysics Data System (ADS)
Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars
2014-05-01
This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie
2017-07-01
With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.
A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers
NASA Astrophysics Data System (ADS)
Yang, Peiling; Ma, Jianxin; Zhang, Junyi
2018-06-01
In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.
The Advent of WDM and the All-Optical Network: A Reality Check.
ERIC Educational Resources Information Center
Lutkowitz, Mark
1998-01-01
Discussion of the telecommunications industry focuses on WDM (wavelength division multiplexing) as a solution for dealing with capacity constraints. Highlights include fiber optic technology; cross-connecting and switching wavelengths; SONET (Synchronous Optical Network) and wavelength networking; and optical TDM (Time Division Multiplexing). (LRW)
Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang
2017-01-01
This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554
Fiber-Optic Propagation Effects in Long-Haul HF/VHF/UHF Analog Photonic Links
2014-04-17
theoretical analysis of crosstalk in fiber optic wavelength division multiplexed systems is presented for the HF/VHF/UHF (1 MHz to 3 GHz) frequency...Street, Suite 1425 Arlington, VA 22203-1995 EW-271-003 6582 ONR Wavelength division multiplexing Crosstalk 05-03-2013 – 20-08-2014 TABLE OF CONTENTS...in optical fiber that can alter the phase relationship between signals in separate fibers or between signals that are multiplexed onto the same
NASA Technical Reports Server (NTRS)
Erdmann, R. K.; Walton, B. D.
1988-01-01
Design and fabrication tradeoffs of wavelength division multiplexers are discussed and performance parameters are given. The same multiplexer construction based on prism gratings has been used in spectroscopic applications, in the wavelength region from 450 to 1600 nm. For shorter wavelengths down to 200 nm, a similar instrument based on longer fibers (500 to 1000 micrometer) has been constructed and tested with both a fiber array and a photodiode detector array at the output.
Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Glomb, W. L., Jr.
1989-01-01
Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.
2004-03-01
Data Communication , http://www.iec.org/, last accessed December 2003. 13. Klaus Witrisal, “Orthogonal Frequency Division Multiplexing (OFDM) for...http://ieeexplore.ieee.org, last accessed 26 February 2003. 12. The International Engineering Consortium, Web Forum Tutorials, OFDM for Mobile
622-Mbps Orthogonal Frequency Division Multiplexing (OFDM) Digital Modem Implemented
NASA Technical Reports Server (NTRS)
Kifle, Muli; Bizon, Thomas P.; Nguyen, Nam T.; Tran, Quang K.; Mortensen, Dale J.
2002-01-01
Future generation space communications systems feature significantly higher data rates and relatively smaller frequency spectrum allocations than systems currently deployed. This requires the application of bandwidth- and power-efficient signal transmission techniques. There are a number of approaches to implementing such techniques, including analog, digital, mixed-signal, single-channel, or multichannel systems. In general, the digital implementations offer more advantages; however, a fully digital implementation is very difficult because of the very high clock speeds required. Multichannel techniques are used to reduce the sampling rate. One such technique, multicarrier modulation, divides the data into a number of low-rate channels that are stacked in frequency. Orthogonal frequency division multiplexing (OFDM), a form of multicarrier modulation, is being proposed for numerous systems, including mobile wireless and digital subscriber link communication systems. In response to this challenge, NASA Glenn Research Center's Communication Technology Division has developed an OFDM digital modem (modulator and demodulator) with an aggregate information throughput of 622 Mbps. The basic OFDM waveform is constructed by dividing an incoming data stream into four channels, each using either 16- ary quadrature amplitude modulation (16-QAM) or 8-phase shift keying (8-PSK). An efficient implementation for an OFDM architecture is being achieved using the combination of a discrete Fourier transform (DFT) at the transmitter to digitally stack the individual carriers, inverse DFT at the receiver to perform the frequency translations, and a polyphase filter to facilitate the pulse shaping.
Flexible wavelength de-multiplexer for elastic optical networking.
Zhou, Rui; Gutierrez Pascual, M Deseada; Anandarajah, Prince M; Shao, Tong; Smyth, Frank; Barry, Liam P
2016-05-15
We report an injection locked flexible wavelength de-multiplexer (de-mux) that shows 24-h frequency stability of 1 kHz for optical comb-based elastic optical networking applications. We demonstrate 50 GHz, 87.5 GHz equal spacing and 6.25G-25G-50 GHz, 75G-50G-100 GHz unequal spacing for the de-multiplexer outputs. We also implement an unequally spaced (75G-50G-100 GHz), mixed symbol rate (12.5 GBaud and 40 GBaud) and modulation format (polarization division multiplexed quadrature phase shift keying and on-off keying) wavelength division multiplexed transmission system using the de-multiplexer outputs. The results show 0.6 dB receiver sensitivity penalty, at 7% hard decision forward error correction coding limit, of the 100 km transmitted de-mux outputs when compared to comb source seeding laser back-to-back.
NASA Astrophysics Data System (ADS)
Igarashi, Koji; Park, Kyung Jun; Tsuritani, Takahiro; Morita, Itsuro; Kim, Byoung Yoon
2018-02-01
We show all-fiber-based selective mode multiplexers and demultiplexers for weakly-coupled mode-division multiplexed systems. We fabricate a set of six-mode multiplexer and demultiplexer based on fiber mode selective couplers, and experimentally evaluate the performance for the six-mode dual-polarization (DP) quadrature phase shift keying (QPSK) optical signals. In the mode multiplexer and demultiplexer, the mode couplings between the lower three modes and the higher three modes are suppressed to be less than -20 dB, which enables us to apply partial 6 ×6 MIMO equalizers even for the six-mode demultiplexing. For the six-mode DP-QPSK signals, the penalty of optical signal-to-noise ratio by replacing the full 12 ×12MIMO to the partial 6 ×6 MIMO is suppressed by less than 1 dB.
Multimode fiber optic wavelength division multiplexing
NASA Technical Reports Server (NTRS)
Spencer, J. L.
1982-01-01
Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single optical fiber, can have increased bandwidth and fault isolation properties over single wavelength optical systems. Two WDM system designs that might be used with multimode fibers are considered and a general description of the components which could be used to implement the system are given. The components described are sources, multiplexers, demultiplexers, and detectors. Emphasis is given to the demultiplexer technique which is the major developmental component in the WDM system.
Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing.
Wang, Lixian; Nejad, Reza Mirzaei; Corsi, Alessandro; Lin, Jiachuan; Messaddeq, Younès; Rusch, Leslie; LaRochelle, Sophie
2017-05-15
We experimentally investigate mode-division multiplexing in an elliptical ring core fiber (ERCF) that supports linearly polarized vector modes (LPV). Characterization show that the ERCF exhibits good polarization maintaining properties over eight LPV modes with effective index difference larger than 1 × 10 -4 . The ERCF further displays stable mode power and polarization extinction ratio when subjected to external perturbations. Crosstalk between the LPV modes, after propagating through 0.9 km ERCF, is below -14 dB. By using six LPV modes as independent data channels, we achieved the transmission of 32 Gbaud QPSK over 0.9 km ERCF without any multiple-input-multiple-output (MIMO) or polarization-division multiplexing (PDM) signal processing.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.
1990-01-01
A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.
A 100-Gb/s noncoherent silicon receiver for PDM-DBPSK/DQPSK signals.
Klamkin, Jonathan; Gambini, Fabrizio; Faralli, Stefano; Malacarne, Antonio; Meloni, Gianluca; Berrettini, Gianluca; Contestabile, Giampiero; Potì, Luca
2014-01-27
An integrated noncoherent silicon receiver for demodulation of 100-Gb/s polarization-division multiplexed differential quadrature phase-shift keying and polarization-division multiplexed differential binary phase-shift keying signals is demonstrated. The receiver consists of a 2D surface grating coupler, four Mach-Zehnder delay interferometers and four germanium balanced photodetectors.
NASA Astrophysics Data System (ADS)
Garg, Amit Kumar; Madavi, Amresh Ashok; Janyani, Vijay
2017-02-01
A flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network architecture that allows dual rate signals to be sent at 1 and 10 Gbps to each optical networking unit depending upon the traffic load is proposed. The proposed design allows dynamic wavelength allocation with pay-as-you-grow deployment capability. This architecture is capable of providing up to 40 Gbps of equal data rates to all optical distribution networks (ODNs) and up to 70 Gbps of a asymmetrical data rate to the specific ODN. The proposed design handles broadcasting capability with simultaneous point-to-point transmission, which further reduces energy consumption. In this architecture, each module sends a wavelength to each ODN, thus making the architecture fully flexible; this flexibility allows network providers to use only required OLT components and switch off others. The design is also reliable to any module or TRx failure and provides services without any service disruption. Dynamic wavelength allocation and pay-as-you-grow deployment support network extensibility and bandwidth scalability to handle future generation access networks.
Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit.
Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo
2016-12-21
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10 -9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.
Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit
NASA Astrophysics Data System (ADS)
Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo
2016-12-01
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.
Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit
Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo
2016-01-01
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than −30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10−9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers. PMID:28000735
NASA Astrophysics Data System (ADS)
Campos, Carmina del Rio; Horche, Paloma R.; Martin-Minguez, Alfredo
2011-03-01
Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML-fiber couple.
Frequency-division multiplexer and demultiplexer for terahertz wireless links.
Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M
2017-09-28
The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.
Opportunistic Access in Frequency Hopping Cognitive Radio Networks
2014-03-27
thresholding MA multiple access MFSK M-ary frequency shift keying MIMO multiple-input/multiple-output OFDM orthogonal frequency-division multiplexing x...adaptive BER performance as a function of ISR with orthogonal frequency-division multiplexing ( OFDM ) interference present. . . . . . . . . . 41 4.15 Non...adaptive BER performance as a function of EB/N0 with OFDM interfer- ence present
Multiplexed image storage by electromagnetically induced transparency in a solid
NASA Astrophysics Data System (ADS)
Heinze, G.; Rentzsch, N.; Halfmann, T.
2012-11-01
We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.
NASA Astrophysics Data System (ADS)
Taoka, Hidekazu; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru
This paper presents comparisons between common and dedicated reference signals (RSs) for channel estimation in MIMO multiplexing using codebook-based precoding for orthogonal frequency division multiplexing (OFDM) radio access in the Evolved UTRA downlink with frequency division duplexing (FDD). We clarify the best RS structure for precoding-based MIMO multiplexing based on comparisons of the structures in terms of the achievable throughput taking into account the overhead of the common and dedicated RSs and the precoding matrix indication (PMI) signal. Based on extensive simulations on the throughput in 2-by-2 and 4-by-4 MIMO multiplexing with precoding, we clarify that channel estimation based on common RSs multiplied with the precoding matrix indicated by the PMI signal achieves higher throughput compared to that using dedicated RSs irrespective of the number of spatial multiplexing streams when the number of available precoding matrices, i.e., the codebook size, is less than approximately 16 and 32 for 2-by-2 and 4-by-4 MIMO multiplexing, respectively.
State-of-the-art survey of multimode fiber optic wavelength division multiplexing
NASA Astrophysics Data System (ADS)
Spencer, J. L.
1983-05-01
Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single fiber, can have increased information capacity and fault isolation properties over single wavelength optical systems. This paper describes a typical WDM system. Also, a state-of-the-art survey of optical multimode components which could be used to implement the system is made. The components to be surveyed are sources, multiplexers, and detectors. Emphasis is given to the demultiplexer techniques which are the major development components in the WDM system.
Wavelength Division Multiplexing Scheme for Radio-Frequency Single Electron Transistors
NASA Technical Reports Server (NTRS)
Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)
2001-01-01
We describe work on a wavelength division multiplexing scheme for radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. Using discrete components, we made a two-channel demonstration of this concept and successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.
Chen, Guanyu; Yu, Yu; Zhang, Xinliang
2016-08-01
We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, T.P.; Jannson, J.L.; Yeung, P.C.
1990-05-15
A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.
Transmission of multiplexed video signals in multimode optical fiber systems
NASA Technical Reports Server (NTRS)
White, Preston, III
1988-01-01
Kennedy Space Center has the need for economical transmission of two multiplexed video signals along multimode fiberoptic systems. These systems must span unusual distances and must meet RS-250B short-haul standards after reception. Bandwidth is a major problem and studies of the installed fibers, available LEDs and PINFETs led to the choice of 100 MHz as the upper limit for the system bandwidth. Optical multiplexing and digital transmission were deemed inappropriate. Three electrical multiplexing schemes were chosen for further study. Each of the multiplexing schemes included an FM stage to help meet the stringent S/N specification. Both FM and AM frequency division multiplexing methods were investigated theoretically and these results were validated with laboratory tests. The novel application of quadrature amplitude multiplexing was also considered. Frequency division multiplexing of two wideband FM video signal appears the most promising scheme although this application requires high power highly linear LED transmitters. Futher studies are necessary to determine if LEDs of appropriate quality exist and to better quantify performance of QAM in this application.
Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook
2018-05-14
Simultaneous multiple access (MA) within a single wavelength can increase the data rate and split ratio in a passive optical network while optical beat interference (OBI) becomes serious in the uplink. Previous techniques to reduce OBI were limited by their complexity and lack of extendibility; as well, bandwidth allocation among MA signals is needed for single photo diode (PD) detection. We proposed and experimentally demonstrated full-band optical pulse division multiplexing-based MA (OPDMA) in an optical access network, which can effectively reduce OBI with extendibility and fully utilize frequency resources of optical modulator without bandwidth allocation in a single-wavelength MA.
Frequency Division Multiplexing of Interferometric Sensor Arrays
1989-05-03
exception to this is the approach which employs Fabry - Perot sensorsg 10,12 in which higher order reflections will result inmoderately severe crosstalk...The Fabry - Perot technique appears to have limited array applications because of this problem. Although frequency division multiplexing has received...interferometers (- 4 cm path difference) and phase generated carrier demultiplexing demodulation . This approach leads to a simple all-passive sensor
UGV Interoperability Profile (IOP) Communications Profile, Version 0
2011-12-21
some UGV systems employ Orthogonal Frequency Division Multiplexing ( OFDM ) or Coded Orthogonal Frequency Division Multiplexing (COFDM) waveforms which...other portions of the IOP. Attribute Paragraph Title Values Waveform 3.3 Air Interface/ Waveform OFDM , COFDM, DDL, CDL, None OCU to Platform...Sight MANET Mobile Ad-hoc Network Mbps Megabits per second MC/PM Master Controller/ Payload Manager MHz Megahertz MIMO Multiple Input Multiple
A macrochip interconnection network enabled by silicon nanophotonic devices.
Zheng, Xuezhe; Cunningham, John E; Koka, Pranay; Schwetman, Herb; Lexau, Jon; Ho, Ron; Shubin, Ivan; Krishnamoorthy, Ashok V; Yao, Jin; Mekis, Attila; Pinguet, Thierry
2010-03-01
We present an advanced wavelength-division multiplexing point-to-point network enabled by silicon nanophotonic devices. This network offers strictly non-blocking all-to-all connectivity while maximizing bisection bandwidth, making it ideal for multi-core and multi-processor interconnections. We introduce one of the key components, the nanophotonic grating coupler, and discuss, for the first time, how this device can be useful for practical implementations of the wavelength-division multiplexing network using optical proximity communications. Finite difference time-domain simulation of the nanophotonic grating coupler device indicates that it can be made compact (20 microm x 50 microm), low loss (3.8 dB), and broadband (100 nm). These couplers require subwavelength material modulation at the nanoscale to achieve the desired functionality. We show that optical proximity communication provides unmatched optical I/O bandwidth density to electrical chips, which enables the application of wavelength-division multiplexing point-to-point network in macrochip with unprecedented bandwidth-density. The envisioned physical implementation is discussed. The benefits of such an interconnect network include a 5-6x improvement in latency when compared to a purely electronic implementation. Performance analysis shows that the wavelength-division multiplexing point-to-point network offers better overall performance over other optical network architectures.
Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory
Fisher, Kent A. G.; England, Duncan G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Resch, Kevin J.; Sussman, Benjamin J.
2016-01-01
The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion. PMID:27045988
NASA Astrophysics Data System (ADS)
Geng, Yong; Huang, Xiatao; Cui, Wenwen; Ling, Yun; Xu, Bo; Zhang, Jin; Yi, Xingwen; Wu, Baojian; Huang, Shu-Wei; Qiu, Kun; Wong, Chee Wei; Zhou, Heng
2018-05-01
We demonstrate seamless channel multiplexing and high bitrate superchannel transmission of coherent optical orthogonal-frequency-division-multiplexing (CO-OFDM) data signals utilizing a dissipative Kerr soliton (DKS) frequency comb generated in an on-chip microcavity. Aided by comb line multiplication through Nyquist pulse modulation, the high stability and mutual coherence among mode-locked Kerr comb lines are exploited for the first time to eliminate the guard intervals between communication channels and achieve full spectral density bandwidth utilization. Spectral efficiency as high as 2.625 bit/Hz/s is obtained for 180 CO-OFDM bands encoded with 12.75 Gbaud 8-QAM data, adding up to total bitrate of 6.885 Tb/s within 2.295 THz frequency comb bandwidth. Our study confirms that high coherence is the key superiority of Kerr soliton frequency combs over independent laser diodes, as a multi-spectral coherent laser source for high-bandwidth high-spectral-density transmission networks.
Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory.
Fisher, Kent A G; England, Duncan G; MacLean, Jean-Philippe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J
2016-04-05
The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.
[A review of mixed gas detection system based on infrared spectroscopic technique].
Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din
2014-10-01
In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen
2014-07-01
A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.
Fiber optics for the future - wavelength division multiplexing
NASA Technical Reports Server (NTRS)
Spencer, J. L.
1982-01-01
Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single fiber, can have increased information capacity and fault isolation properties over single wavelength optical systems. This paper describes a typical WDM system. The applicability of future standards to such a system are discussed. Also, a state-of-the-art survey of optical multimode components which could be used to implement the system are made. The components to be surveyed are sources, multiplexers, and detectors. Emphasis is given to the demultiplexer techniques which are the major developmental components in the WDM system.
NASA Astrophysics Data System (ADS)
Shinya, A.; Ishihara, T.; Inoue, K.; Nozaki, K.; Kita, S.; Notomi, M.
2018-02-01
We propose an optical parallel adder based on a binary decision diagram that can calculate simply by propagating light through electrically controlled optical pass gates. The CARRY and CARRY operations are multiplexed in one circuit by a wavelength division multiplexing scheme to reduce the number of optical elements, and only a single gate constitutes the critical path for one digit calculation. The processing time reaches picoseconds per digit when we use a 100-μm-long optical path gates, which is ten times faster than a CMOS circuit.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Shalkhauser, Mary JO
1991-01-01
Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.
Optofluidic wavelength division multiplexing for single-virus detection
Ozcelik, Damla; Parks, Joshua W.; Wall, Thomas A.; Stott, Matthew A.; Cai, Hong; Parks, Joseph W.; Hawkins, Aaron R.; Schmidt, Holger
2015-01-01
Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context––the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine. PMID:26438840
NASA Astrophysics Data System (ADS)
Chen, H.; Jin, C.; Huang, B.; Fontaine, N. K.; Ryf, R.; Shang, K.; Grégoire, N.; Morency, S.; Essiambre, R.-J.; Li, G.; Messaddeq, Y.; Larochelle, S.
2016-08-01
Space-division multiplexing (SDM), whereby multiple spatial channels in multimode and multicore optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.
Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.
2015-01-01
Mode division multiplexing (MDM)– using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams – has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than −15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM−1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10−3. PMID:26450398
Huang, Hao; Milione, Giovanni; Lavery, Martin P J; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R; Willner, Alan E
2015-10-09
Mode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting's 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10(-3).
NASA Astrophysics Data System (ADS)
Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.
2015-10-01
Mode division multiplexing (MDM)- using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10-3.
Enterprise virtual private network (VPN) with dense wavelength division multiplexing (DWDM) design
NASA Astrophysics Data System (ADS)
Carranza, Aparicio
An innovative computer simulation and modeling tool for metropolitan area optical data communication networks is presented. These models address the unique requirements of Virtual Private Networks for enterprise data centers, which may comprise a mixture of protocols including ESCON, FICON, Fibre Channel, Sysplex protocols (ETR, CLO, ISC); and other links interconnected over dark fiber using Dense Wavelength Division Multiplexing (DWDM). Our models have the capability of designing a network with minimal inputs; to compute optical link budgets; suggest alternative configurations; and also optimize the design based on user-defined performance metrics. The models make use of Time Division Multiplexing (TDM) wherever possible for lower data rate traffics. Simulation results for several configurations are presented and they have been validated by means of experiments conducted on the IBM enterprise network testbed in Poughkeepsie, N.Y.
Rademacher, Georg; Warm, Stefan; Petermann, Klaus
2015-01-12
We analyze the impact of Differential Mode Delay (DMD) Management on the nonlinear impairments in mode-division multiplexed transmission systems. It is found out that DMD Management can lead to a degraded performance, due to enhanced intermodal nonlinear interaction. This can be attributed to an increased correlation of co-propagating channels, similar to the effects that show up in dispersion managed single-mode systems.
Time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors
NASA Astrophysics Data System (ADS)
Huang, S. C.; Lin, W. W.; Chen, M. H.
1995-06-01
A system of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors that uses Faraday rotator mirror elements is demonstrated. This system is constructed with conventional low-birefringence single-mode fiber and is able to solve the polarization-fading problem by a combination of Faraday rotator mirrors with unbalanced Michelson interferometers. The system is lead-fiber insensitive and has potentials for practical field applications.
2017-07-01
any of the listed reference frequencies may be used provided the requirements for compensation rate of change are satisfied. If the reference...for in present discriminator systems when the nominal response rating of the channels is employed and a reference frequency is recorded with the...Telemetry Standards, RCC Standard 106-17 Chapter 3, July 2017 3-i CHAPTER 3 Frequency Division Multiplexing Telemetry Standards Acronyms
Polarization division multiplexing for optical data communications
NASA Astrophysics Data System (ADS)
Ivanovich, Darko; Powell, Samuel B.; Gruev, Viktor; Chamberlain, Roger D.
2018-02-01
Multiple parallel channels are ubiquitous in optical communications, with spatial division multiplexing (separate physical paths) and wavelength division multiplexing (separate optical wavelengths) being the most common forms. Here, we investigate the viability of polarization division multiplexing, the separation of distinct parallel optical communication channels through the polarization properties of light. Two or more linearly polarized optical signals (at different polarization angles) are transmitted through a common medium, filtered using aluminum nanowire optical filters fabricated on-chip, and received using individual silicon photodetectors (one per channel). The entire receiver (including optics) is compatible with standard CMOS fabrication processes. The filter model is based upon an input optical signal formed as the sum of the Stokes vectors for each individual channel, transformed by the Mueller matrix that models the filter proper, resulting in an output optical signal that impinges on each photodiode. The results show that two- and three-channel systems can operate with a fixed-threshold comparator in the receiver circuit, but four-channel systems (and larger) will require channel coding of some form. For example, in the four-channel system, 10 of 16 distinct bit patterns are separable by the receiver. The model supports investigation of the range of variability tolerable in the fabrication of the on-chip polarization filters.
Time domain multiplexed spatial division multiplexing receiver.
van Uden, Roy G H; Okonkwo, Chigo M; Chen, Haoshuo; de Waardt, Hugo; Koonen, Antonius M J
2014-05-19
A novel time domain multiplexed (TDM) spatial division multiplexing (SDM) receiver which allows for the reception of >1 dual polarization mode with a single coherent receiver, and corresponding 4-port oscilloscope, is experimentally demonstrated. Received by two coherent receivers and respective 4-port oscilloscopes, a 3 mode transmission of 28GBaud QPSK, 8, 16, and 32QAM over 41.7km of few-mode fiber demonstrates the performance of the TDM-SDM receiver with respect to back-to-back. In addition, by using carrier phase estimation employing one digital phase locked loop per output, the frequency offset between the transmitter laser and local oscillator is shown to perform similar to previous work which employs 3 coherent receivers and 4-port oscilloscopes which are dedicated to the reception of each the three modes.
Multiplexing technique for computer communications via satellite channels
NASA Technical Reports Server (NTRS)
Binder, R.
1975-01-01
Multiplexing scheme combines technique of dynamic allocation with conventional time-division multiplexing. Scheme is designed to expedite short-duration interactive or priority traffic and to delay large data transfers; as result, each node has effective capacity of almost total channel capacity when other nodes have light traffic loads.
The Application of Fiber Optic Wavelength Division Multiplexing in RF Avionics
NASA Technical Reports Server (NTRS)
Ngo, Duc; Nguyen, Hung; Atiquzzaman, Mohammed; Sluss, James J., Jr.; Refai, Hakki H.
2004-01-01
This paper demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment to support analog RF signal transmission. We investigate the simultaneous transmission of four RF signals (channels) over a single optical fiber. These four analog channels are sequentially multiplexed and demultiplexed at different points along a fiber optic backbone to more closely emulate the conditions found onboard aircraft. We present data from measurements of signal-to-noise ratio (SNR), transmission response (loss and gain), group delay that defines phase distortion, and dynamic range that defines nonlinear distortion. The data indicate that WDM is well-suited for avionics applications.
NASA Astrophysics Data System (ADS)
Liao, Yi; Austin, Ed; Nash, Philip J.; Kingsley, Stuart A.; Richardson, David J.
2013-09-01
A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre-optic sensor array systems. This architecture employs a distributed erbium-doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources.
Code-division-multiplexed readout of large arrays of TES microcalorimeters
NASA Astrophysics Data System (ADS)
Morgan, K. M.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Doriese, W. B.; Fowler, J. W.; Gard, J. D.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.
2016-09-01
Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray microcalorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code-division multiplexing circuit based on superconducting quantum interference device (SQUID) amplifiers. The best detector has energy resolution of 2.28 ± 0.12 eV FWHM at 5.9 keV and the array has mean energy resolution of 2.77 ± 0.02 eV over 30 working sensors. The readout channels are sampled sequentially at 160 ns/row, for an effective sampling rate of 5.12 μs/channel. The SQUID amplifiers have a measured flux noise of 0.17 μΦ0/√Hz (non-multiplexed, referred to the first stage SQUID). The multiplexed noise level and signal slew rate are sufficient to allow readout of more than 40 pixels per column, making CDM compatible with requirements outlined for future space missions. Additionally, because the modulated data from the 32 SQUID readout channels provide information on each X-ray event at the row rate, our CDM architecture allows determination of the arrival time of an X-ray event to within 275 ns FWHM with potential benefits in experiments that require detection of near-coincident events.
Infrared Avionics Signal Distribution using Wavelength Division Multiplexing
NASA Technical Reports Server (NTRS)
Atiquzzaman, Mohammed; Sluss, Jim; Nguyen, Hung; Ngo, Duc
2003-01-01
Pilots in the cockpits of aircrafts currently communicate with ground stations using Radio Frequency (RF) signals. Antennas mounted outside the aircraft receive and transmit RF signals from and to the ground stations. The RF signals received at the antennas are sent to the cockpit using coaxial cables. As the number of antennas needed to provide more than one frequency band in aircrafts increases, RF distribution media (such as coaxial cable) adds to the complexity and weight of the cockpit wiring. Concomitantly, the safety and signal to noise ratio also decreases due to the use of RF signals. The University of Oklahoma is collaborating with the National Aeronautics and Space Administration to develop optical fiber based schemes to replace the coaxial cable used for RF signal distribution within an aircraft. The project aims at exploiting emerging Wavelength Division Multiplexing (WDM) techniques to reduce the weight of cabling, and increase the signal to noise ratio and reliability. This will be achieved by wavelength division multiplexing the signals from the various antennas and then demultiplexing the signals to recover the original signals at the cockpit. This paper will show that (i) RF signals can not only be wavelength multiplexed at the end of a fiber, but additional signals can be inserted into the middle of the fiber using WDM technology, and (ii) the signals can also be successfully extracted by tapping into the middle of the fiber. We are currently extending our previous laboratory prototype (which could multiplex signals only at the end of the fiber) to include additional multiplexing and demultiplexing of RF signals from the middle of the optical backbone with a view to validating the proof of concept, and carrying out measurements to determine the effectiveness of Wavelength Division Multiplexing for avionics applications. A test bed to perform measurements of several relevant parameters for various modulation schemes and frequencies (such as VHF, UHF, and L-Band) has been implemented. In particular, results of transmitter and receiver noise, bit-error-rate (BER), effect of cross talk on the quality of the multiplexed signals, and Signal to Noise ratio and Carrier to Noise ratio, obtained using the aforementioned test bed, will be presented.
Optical time division multiplexer on silicon chip.
Aboketaf, Abdelsalam A; Elshaari, Ali W; Preble, Stefan F
2010-06-21
In this work, we experimentally demonstrate a novel broadband optical time division multiplexer (OTDM) on a silicon chip. The fabricated devices generate 20 Gb/s and 40 Gb/s signals starting from a 5 Gb/s input signal. The proposed design has a small footprint of 1mm x 1mm. The system is inherently broadband with a bandwidth of over 100nm making it suitable for high-speed optical networks on chip.
Ruffato, Gianluca; Massari, Michele; Romanato, Filippo
2016-04-20
During the last decade, the orbital angular momentum (OAM) of light has attracted growing interest as a new degree of freedom for signal channel multiplexing in order to increase the information transmission capacity in today's optical networks. Here we present the design, fabrication and characterization of phase-only diffractive optical elements (DOE) performing mode-division (de)multiplexing (MDM) and spatial-division (de)multiplexing (SDM) at the same time. Samples have been fabricated with high-resolution electron-beam lithography patterning a polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Different DOE designs are presented for the sorting of optical vortices differing in either OAM content or beam size in the optical regime, with different steering geometries in far-field. These novel DOE designs appear promising for telecom applications both in free-space and in multi-core fibers propagation.
Time-division multiplexer uses digital gates
NASA Technical Reports Server (NTRS)
Myers, C. E.; Vreeland, A. E.
1977-01-01
Device eliminates errors caused by analog gates in multiplexing a large number of channels at high frequency. System was designed for use in aerospace work to multiplex signals for monitoring such variables as fuel consumption, pressure, temperature, strain, and stress. Circuit may be useful in monitoring variables in process control and medicine as well.
NASA Astrophysics Data System (ADS)
Dua, Puneit
Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced channels has been carried out to show that crosstalk can occur due to the four-wave mixing products generated inside the high power Er/Yb DCFA. A model for parametric amplification due to four-wave mixing has been developed and used to analyze its application for short pulse generation and high speed optical time division multiplexing.
NASA Astrophysics Data System (ADS)
Xu, Yuming; Yu, Jianjun; Li, Xinying
2017-03-01
We experimentally demonstrate 4 lanes up to 400 Gbps discrete multitone transmission using an electric absorption modulated laser (EML) at 1550-nm for dense wavelength division multiplexing (DWDM) intradata center connects. This is the first demonstration of 4×100 Gb/s transmission using EML at 1550-nm, and it is compatible with the DWDM system at C-band.
A Versatile Multichannel Digital Signal Processing Module for Microcalorimeter Arrays
NASA Astrophysics Data System (ADS)
Tan, H.; Collins, J. W.; Walby, M.; Hennig, W.; Warburton, W. K.; Grudberg, P.
2012-06-01
Different techniques have been developed for reading out microcalorimeter sensor arrays: individual outputs for small arrays, and time-division or frequency-division or code-division multiplexing for large arrays. Typically, raw waveform data are first read out from the arrays using one of these techniques and then stored on computer hard drives for offline optimum filtering, leading not only to requirements for large storage space but also limitations on achievable count rate. Thus, a read-out module that is capable of processing microcalorimeter signals in real time will be highly desirable. We have developed multichannel digital signal processing electronics that are capable of on-board, real time processing of microcalorimeter sensor signals from multiplexed or individual pixel arrays. It is a 3U PXI module consisting of a standardized core processor board and a set of daughter boards. Each daughter board is designed to interface a specific type of microcalorimeter array to the core processor. The combination of the standardized core plus this set of easily designed and modified daughter boards results in a versatile data acquisition module that not only can easily expand to future detector systems, but is also low cost. In this paper, we first present the core processor/daughter board architecture, and then report the performance of an 8-channel daughter board, which digitizes individual pixel outputs at 1 MSPS with 16-bit precision. We will also introduce a time-division multiplexing type daughter board, which takes in time-division multiplexing signals through fiber-optic cables and then processes the digital signals to generate energy spectra in real time.
Demi, Libertario; Viti, Jacopo; Kusters, Lieneke; Guidi, Francesco; Tortoli, Piero; Mischi, Massimo
2013-11-01
The speed of sound in the human body limits the achievable data acquisition rate of pulsed ultrasound scanners. To overcome this limitation, parallel beamforming techniques are used in ultrasound 2-D and 3-D imaging systems. Different parallel beamforming approaches have been proposed. They may be grouped into two major categories: parallel beamforming in reception and parallel beamforming in transmission. The first category is not optimal for harmonic imaging; the second category may be more easily applied to harmonic imaging. However, inter-beam interference represents an issue. To overcome these shortcomings and exploit the benefit of combining harmonic imaging and high data acquisition rate, a new approach has been recently presented which relies on orthogonal frequency division multiplexing (OFDM) to perform parallel beamforming in transmission. In this paper, parallel transmit beamforming using OFDM is implemented for the first time on an ultrasound scanner. An advanced open platform for ultrasound research is used to investigate the axial resolution and interbeam interference achievable with parallel transmit beamforming using OFDM. Both fundamental and second-harmonic imaging modalities have been considered. Results show that, for fundamental imaging, axial resolution in the order of 2 mm can be achieved in combination with interbeam interference in the order of -30 dB. For second-harmonic imaging, axial resolution in the order of 1 mm can be achieved in combination with interbeam interference in the order of -35 dB.
Switchable in-line monitor for multi-dimensional multiplexed photonic integrated circuit.
Chen, Guanyu; Yu, Yu; Ye, Mengyuan; Zhang, Xinliang
2016-06-27
A flexible monitor suitable for the discrimination of on-chip transmitted mode division multiplexed (MDM) and wavelength division multiplexed (WDM) signals is proposed and fabricated. By selectively extracting part of the incoming signals through the tunable wavelength and mode dependent drop filter, the in-line and switchable monitor can discriminate the wavelength, mode and power information of the transmitted signals. Being different from a conventional mode and wavelength demultiplexer, the monitor is specifically designed to ensure a flexible in-line monitoring. For demonstration, three mode and three wavelength multiplexed signals are successfully processed. Assisted by the integrated photodetectors (PDs), both the measured photo currents and eye diagrams validate the performance of the proposed device. The bit error ratio (BER) measurement results show less than 0.4 dB power penalty between different modes and ~2 dB power penalty for single wavelength and WDM cases under 10-9 BER level.
NASA Astrophysics Data System (ADS)
Zhang, Hang; Mao, Yu; Huang, Duan; Li, Jiawei; Zhang, Ling; Guo, Ying
2018-05-01
We introduce a reliable scheme for continuous-variable quantum key distribution (CV-QKD) by using orthogonal frequency division multiplexing (OFDM). As a spectrally efficient multiplexing technique, OFDM allows a large number of closely spaced orthogonal subcarrier signals used to carry data on several parallel data streams or channels. We place emphasis on modulator impairments which would inevitably arise in the OFDM system and analyze how these impairments affect the OFDM-based CV-QKD system. Moreover, we also evaluate the security in the asymptotic limit and the Pirandola-Laurenza-Ottaviani-Banchi upper bound. Results indicate that although the emergence of imperfect modulation would bring about a slight decrease in the secret key bit rate of each subcarrier, the multiplexing technique combined with CV-QKD results in a desirable improvement on the total secret key bit rate which can raise the numerical value about an order of magnitude.
NASA Astrophysics Data System (ADS)
Ren, Fang; Li, Juhao; Wu, Zhongying; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin
2017-01-01
We propose three-mode mode-division-multiplexing passive optical network (MDM-PON) based on low mode-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). The FMF with step-index profile is designed and fabricated for effectively three-independent-spatial-mode transmission and low mode-crosstalk for MDM-PON transmission. The all-fiber mode MUX/DEMUX are composed of cascaded mode selective couplers (MSCs), which simultaneously multiplex or demultiplex multiple modes. Based on the low mode-crosstalk of the FMF and all-fiber mode MUX/DEMUX, each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing a different optical linearly polarized (LP) spatial mode in MDM-PON system. We experimentally demonstrate MDM-PON transmission of three independent-spatial-modes over 12-km FMF with 10-Gb/s optical on-off keying (OOK) signal and direct detection.
NASA Astrophysics Data System (ADS)
Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras
2017-11-01
A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.
Microlaser-based compact optical neuro-processors (Invited Paper)
NASA Astrophysics Data System (ADS)
Paek, Eung Gi; Chan, Winston K.; Zah, Chung-En; Cheung, Kwok-wai; Curtis, L.; Chang-Hasnain, Constance J.
1992-10-01
This paper reviews the recent progress in the development of holographic neural networks using surface-emitting laser diode arrays (SELDAs). Since the previous work on ultrafast holographic memory readout system and a robust incoherent correlator, progress has been made in several areas: the use of an array of monolithic `neurons' to reconstruct holographic memories; two-dimensional (2-D) wavelength-division multiplexing (WDM) for image transmission through a single-mode fiber; and finally, an associative memory using time- division multiplexing (TDM). Experimental demonstrations on these are presented.
Preface to the special issue on ;Optical Communications Exploiting the Space Domain;
NASA Astrophysics Data System (ADS)
Wang, Jian; Yu, Siyuan; Li, Guifang
2018-02-01
The demand for high capacity optical communications will continue to be driven by the exponential growth of global internet traffic. Optical communications are about the exploitation of different physical dimensions of light waves, including complex amplitude, frequency (or wavelength), time, polarization, etc. Conventional techniques such as wavelength-division multiplexing (WDM), time-division multiplexing (TDM) and polarization-division multiplexing (PDM) have almost reached their scalability limits. Space domain is the only known physical dimension left and space-division multiplexing (SDM) seems the only option to further scale the transmission capacity and spectral efficiency of optical communications. In recent years, few-mode fiber (FMF), multi-mode fiber (MMF), multi-core fiber (MCF) and few-mode multi-core fiber (FM-MCF) have been widely explored as promising candidates for fiber-based SDM. The challenges for SDM include efficient (de)multiplexer, amplifiers, and multiple-input multiple-output (MIMO) digital signal processing (DSP) techniques. Photonic integration will also be a key technology to SDM. Meanwhile, free-space and underwater optical communications have also exploited the space domain to increase the transmission capacity and spectral efficiency. The challenges include long-distance transmission limited by propagation loss, divergence, scattering and turbulence. Very recently, helically phased light beams carrying orbital angular momentum (OAM) have also seen potential applications both in free-space, underwater and fiber-based optical communications. Actually, different mode bases such as linearly polarized (LP) modes and OAM modes can be employed for SDM. Additionally, SDM could be used in chip-scale photonic interconnects and data center optical interconnects. Quantum processing exploiting the space domain is of great interest. The information capacity limit and physical layer security in SDM optical communications systems are important issues to be addressed.
All-optical OFDM network coding scheme for all-optical virtual private communication in PON
NASA Astrophysics Data System (ADS)
Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong
2014-03-01
A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliyahu, Danny; Yariv, Amnon
1997-05-01
Using the time domain master equation for a complex electric-field pulse envelope, we find analytical results for the optical spectra of passively mode-locked semiconductor lasers. The analysis includes the effect of optical nonlinearity of semiconductor lasers, which is characterized by a slow saturable amplifier and absorber. Group velocity dispersion, bandwidth limiting, and self-phase modulation were considered as well. The FWHM of the spectrum profile was found to have a strong dependence on group velocity dispersion and self-phase modulation. For large absolute values of the chirp parameter, the optical spectra result in equispaced continuous wave frequencies, a large fraction of whichmore » have equal power. {copyright} 1997 Optical Society of America« less
Su, Tiehui; Scott, Ryan P; Djordjevic, Stevan S; Fontaine, Nicolas K; Geisler, David J; Cai, Xinran; Yoo, S J B
2012-04-23
We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of -2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding
2013-10-01
We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.
Jang, Hansol; Lim, Gukbin; Hong, Keum-Shik; Cho, Jaedu; Gulsen, Gultekin; Kim, Chang-Seok
2017-11-28
Diffuse optical tomography (DOT) has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM) DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM) DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D) pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.
NASA Astrophysics Data System (ADS)
Dalarmelina, Carlos A.; Adegbite, Saheed A.; Pereira, Esequiel da V.; Nunes, Reginaldo B.; Rocha, Helder R. O.; Segatto, Marcelo E. V.; Silva, Jair A. L.
2017-05-01
Block-level detection is required to decode what may be classified as selective control information (SCI) such as control format indicator in 4G-long-term evolution systems. Using optical orthogonal frequency division multiplexing over radio-over-fiber (RoF) links, we report the experimental evaluation of an SCI detection scheme based on a time-domain correlation (TDC) technique in comparison with the conventional maximum likelihood (ML) approach. When compared with the ML method, it is shown that the TDC method improves detection performance over both 20 and 40 km of standard single mode fiber (SSMF) links. We also report a performance analysis of the TDC scheme in noisy visible light communication channel models after propagation through 40 km of SSMF. Experimental and simulation results confirm that the TDC method is attractive for practical orthogonal frequency division multiplexing-based RoF and fiber-wireless systems. Unlike the ML method, another key benefit of the TDC is that it requires no channel estimation.
NASA Astrophysics Data System (ADS)
Milione, Giovanni; Lavery, Martin P. J.; Huang, Hao; Ren, Yongxiong; Xie, Guodong; Nguyen, Thien An; Karimi, Ebrahim; Marrucci, Lorenzo; Nolan, Daniel A.; Alfano, Robert R.; Willner, Alan E.
2015-05-01
Vector modes are spatial modes that have spatially inhomogeneous states of polarization, such as, radial and azimuthal polarization. They can produce smaller spot sizes and stronger longitudinal polarization components upon focusing. As a result, they are used for many applications, including optical trapping and nanoscale imaging. In this work, vector modes are used to increase the information capacity of free space optical communication via the method of optical communication referred to as mode division multiplexing. A mode (de)multiplexer for vector modes based on a liquid crystal technology referred to as a q-plate is introduced. As a proof of principle, using the mode (de)multiplexer four vector modes each carrying a 20 Gbit/s quadrature phase shift keying signal on a single wavelength channel (~1550nm), comprising an aggregate 80 Gbit/s, were transmitted ~1m over the lab table with <-16.4 dB (<2%) mode crosstalk. Bit error rates for all vector modes were measured at the forward error correction threshold with power penalties < 3.41dB.
NASA Astrophysics Data System (ADS)
Sakata, H.; Kimpara, K.; Komori, K.; Tomiki, M.
2014-05-01
We report Q-switched pulse generation in Tm-doped fiber lasers by introducing piezoelectric-driven microbend into an elliptical coating fiber in a fiber ring resonator. Compared with the untreated circular fiber having a diameter of 240 μm, the elliptical coating fiber was flattened to have a major axis diameter of about 300 μm. We employed a pair of comblike plates attached on the piezoelectric actuators in order to bend the fiber from both sides. The output pulse power is improved by optimizing the tooth-width and spatial period of the comb-like plates, so that the elliptical coating fiber is easily bent and the propagation mode is efficiently coupled to radiation modes around λ = 1.9 μm. The Tm-doped fiber is pumped by a laser diode emitting at 1.63 μm and the pump light is introduced to the fiber ring resonator via the wavelength division multiplexing coupler. The emission spectra showed that the center oscillation wavelength was typically 1.92 μm. When the pump power was increased to 156 mW, the output pulse showed a peak power of 42.5 W with a pulse width of 1.06 μs. We expect that the in-fiber Q-switching technique will provide simple laser systems for environmental sensing and medical applications.
NASA Astrophysics Data System (ADS)
Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.
2017-08-01
In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.
Derivation of GFDM Based on OFDM Principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein Moradi; Behrouz Farhang-Boroujeny
2015-06-01
This paper starts with discussing the principle based on which the celebrated orthogonal frequency division multiplexing (OFDM) signals are constructed. It then extends the same principle to construct the newly introduced generalized frequency division multiplexing (GFDM) signals. This novel derivation sheds light on some interesting properties of GFDM. In particular, our derivation seamlessly leads to an implementation of GFDM transmitter which has significantly lower complexity than what has been reported so far. Our derivation also facilitates a trivial understanding of how GFDM (similar to OFDM) can be applied in MIMO channels.
NASA Astrophysics Data System (ADS)
Yazdandoust, Fatemeh; Tatenguem Fankem, Hervé; Milde, Tobias; Jimenez, Alvaro; Sacher, Joachim
2018-02-01
We report the development of a platform, based-on a Field-Programmable Gate Arrays (FPGAs) and suitable for Time-Division-Multiplexed DFB lasers. The designed platform is subsequently combined with a spectroscopy setup, for detection and quantification of species in a gas mixture. The experimental results show a detection limit of 460 ppm, an uncertainty of 0.1% and a computation time of less than 1000 clock cycles. The proposed system offers a high level of flexibility and is applicable to arbitrary types of gas-mixtures.
NASA Astrophysics Data System (ADS)
Sinkin, Oleg V.; Grigoryan, Vladimir S.; Menyuk, Curtis R.
2006-12-01
We introduce a fully deterministic, computationally efficient method for characterizing the effect of nonlinearity in optical fiber transmission systems that utilize wavelength-division multiplexing and return-to-zero modulation. The method accurately accounts for bit-pattern-dependent nonlinear distortion due to collision-induced timing jitter and for amplifier noise. We apply this method to calculate the error probability as a function of channel spacing in a prototypical multichannel return-to-zero undersea system.
Willner, Alan E; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F; Ashrafi, Solyman
2017-02-28
There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).
Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman
2017-01-01
There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069770
Coherent control of photoelectron wavepacket angular interferograms
NASA Astrophysics Data System (ADS)
Hockett, P.; Wollenhaupt, M.; Baumert, T.
2015-11-01
Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.
Multi-element fiber technology for space-division multiplexing applications.
Jain, S; Rancaño, V J F; May-Smith, T C; Petropoulos, P; Sahu, J K; Richardson, D J
2014-02-24
A novel technological approach to space division multiplexing (SDM) based on the use of multiple individual fibers embedded in a common polymer coating material is presented, which is referred to as Multi-Element Fiber (MEF). The approach ensures ultralow crosstalk between spatial channels and allows for cost-effective ways of realizing multi-spatial channel amplification and signal multiplexing/demultiplexing. Both the fabrication and characterization of a passive 3-element MEF for data transmission, and an active 5-element erbium/ytterbium doped MEF for cladding-pumped optical amplification that uses one of the elements as an integrated pump delivery fiber is reported. Finally, both components were combined to emulate an optical fiber network comprising SDM transmission lines and amplifiers, and illustrate the compatibility of the approach with existing installed single-mode WDM fiber systems.
Direction-division multiplexed holographic free-electron-driven light sources
NASA Astrophysics Data System (ADS)
Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.
2018-01-01
We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.
A novel MUX/DEMUX based on few-mode FBG for mode division multiplexing system
NASA Astrophysics Data System (ADS)
Han, Yueyu; Hu, Guijun
2016-05-01
In this paper, a novel mode multiplexer/demultiplexer (MUX/DEMUX) based on few-mode fiber Bragg gratings (FBG) has been proposed. The principle of the MUX/DEMUX based on few-mode FBG has been described in detail, and crosstalk of better than -20 dB is obtained experimentally. Then a 2×2 division multiplexing (MDM) system has been established with the MUX/DEMUX we proposed. The transmission experiment of 2×10 Gbps PRBS has been achieved successfully, which are carried by LP01 mode and LP11 mode, respectively. When the receiver sensitivity is greater than -14 dB m and -10 dB m, the BER can both reach 10-3 for B2B and 10 km transmission, respectively.
NASA Astrophysics Data System (ADS)
Sung, Jiun-Yu; Yeh, Chien-Hung; Chow, Chi-Wai; Lin, Wan-Feng; Liu, Yang
2015-11-01
An orthogonal frequency-division multiplexing access (OFDMA) based visible light communication (VLC) system is proposed in this paper. The architecture of the proposed system is divided into several VLC cells, which is defined in this paper. The deployment and upgrade of the system involve only simple combination of the VLC cells. Hence it is economically advantageous. To guarantee smooth communication, nearly equal data rate is provided at every location within the system with no concern on the system scale. The user location monitor strategy is also discussed to solve the region division issues. The characteristics of the proposed system are analyzed in detail in this paper. A one-dimensional experiment was demonstrated with 13.6 Mb/s data rate.
PLC-based mode multi/demultiplexers for mode division multiplexing
NASA Astrophysics Data System (ADS)
Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide
2017-02-01
Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.
Sai, Xiaowei; Li, Yan; Yang, Chen; Li, Wei; Qiu, Jifang; Hong, Xiaobin; Zuo, Yong; Guo, Hongxiang; Tong, Weijun; Wu, Jian
2017-11-01
Elliptical-core few mode fiber (EC-FMF) is used in a mode division multiplexing (MDM) transmission system to release multiple-input-multiple-output (MIMO) digital-signal-processing, which reduces the cost and the complexity of the receiver. However, EC-FMF does not match with conventional multiplexers/de-multiplexers (MUXs/DeMUXs) such as a photonic lantern, leading to extra mode coupling loss and crosstalk. We design elliptical-core mode-selective photonic lanterns (EC-MSPLs) with six modes, which can match well with EC-FMF in MIMO-free MDM systems. Simulation of the EC-MSPL using the beam propagation method was demonstrated employing a combination of either step-index or graded-index fibers with six different sizes of cores, and the taper transition length of 8 cm or 4 cm. Through numerical simulations and optimizations, both types of photonic lanterns can realize low loss transmission and low crosstalk of below -20.0 dB for all modes.
Jia, Hao; Zhou, Ting; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin
2017-08-21
We propose a 2 × 2 multimode optical switch, which is composed of two mode de-multiplexers, n 2 × 2 single-mode optical switches where n is the number of the supported spatial modes, and two mode multiplexers. As a proof of concept, asymmetric directional couplers are employed to construct the mode multiplexers and de-multiplexers, balanced Mach-Zehnder interferometer is utilized to construct the 2 × 2 single-mode optical switches. The fabricated silicon 2 × 2 multimode optical switch has a broad optical bandwidth and can support four spatial modes. The link-crosstalk for all four modes is smaller than -18.8 dB. The inter-mode crosstalk for the same optical link is less than -22.1 dB. 40 Gbps data transmission is performed for all spatial modes and all optical links. The power penalties for the error-free switching (BER<10 -9 ) at 25 Gbps are less than 1.8 dB for all channels at the wavelength of 1550 nm. The power consumption of the device is 117.9 mW in the "cross" state and 116.2 mW in the "bar" state. The switching time is about 21 μs. This work enables large-capacity multimode photonic networks-on-chip.
NASA Astrophysics Data System (ADS)
Fang, Wei Jin; Huang, Xu Guang; Yang, Kai; Zhang, Xiao Min
2012-09-01
We propose and demonstrate a full duplex dense-wavelength-division-multiplexing radio-over-fiber (DWDM-ROF) system for transmitting 75-GHz W-band frequency multiple-input multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) signals with 12 Gbps downstream and 6 Gbps upstream. The downstream transmitting terminal is based on a three-channels sextupling-frequency scheme using an external modulation of a distributed feedback laser diode (DFB-LD) and dual drive Mach-Zehnder modulator (DD-MZM) for carrying downstream signals. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Without using costly W-band components in the transmitter, a 12 Gbps downstream transmission system operation at 75 GHz is experimentally validated. For the downstream transmission, a power penalty of less than 3 dB was observed after a 50 km single mode fiber (SMF) and 4 m wireless transmission at a bit error rate (BER) of 3.8×10-3. For the upstream transmission, we use a commercially available 1.5 GHz bandwidth reflective semiconductor optical amplifier (RSOA) to achieve 6 Gbps upstream traffic for 16 QAM-OFDM signals. A power penalty of 3 dB was observed after a 50 km SMF transmission at a BER of 3.8×10-3. The frequency of the local oscillator is reduced due to the frequency sextupling scheme. The cost of the proposed system is largely reduced.
Engineering quantum communication systems
NASA Astrophysics Data System (ADS)
Pinto, Armando N.; Almeida, Álvaro J.; Silva, Nuno A.; Muga, Nelson J.; Martins, Luis M.
2012-06-01
Quantum communications can provide almost perfect security through the use of quantum laws to detect any possible leak of information. We discuss critical issues in the implementation of quantum communication systems over installed optical fibers. We use stimulated four-wave mixing to generate single photons inside optical fibers, and by tuning the separation between the pump and the signal we adjust the average number of photons per pulse. We report measurements of the source statistics and show that it goes from a thermal to Poisson distribution with the increase of the pump power. We generate entangled photons pairs through spontaneous four-wave mixing. We report results for different type of fibers to approach the maximum value of the Bell inequality. We model the impact of polarization rotation, attenuation and Raman scattering and present optimum configurations to increase the degree of entanglement. We encode information in the photons polarization and assess the use of wavelength and time division multiplexing based control systems to compensate for the random rotation of the polarization during transmission. We show that time division multiplexing systems provide a more robust solution considering the values of PMD of nowadays installed fibers. We evaluate the impact on the quantum channel of co-propagating classical channels, and present guidelines for adding quantum channels to installed WDM optical communication systems without strongly penalizing the performance of the quantum channel. We discuss the process of retrieving information from the photons polarization. We identify the major impairments that limit the speed and distance of the quantum channel. Finally, we model theoretically the QBER and present results of an experimental performance assessment of the system quality through QBER measurements.
Hybrid WDM/OCDMA for next generation access network
NASA Astrophysics Data System (ADS)
Wang, Xu; Wada, Naoya; Miyazaki, T.; Cincotti, G.; Kitayama, Ken-ichi
2007-11-01
Hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) passive optical network (PON), where asynchronous OCDMA traffic transmits over WDM network, can be one potential candidate for gigabit-symmetric fiber-to-the-home (FTTH) services. In a cost-effective WDM/OCDMA network, a large scale multi-port encoder/decoder can be employed in the central office, and a low cost encoder/decoder will be used in optical network unit (ONU). The WDM/OCDMA system could be one promising solution to the symmetric high capacity access network with high spectral efficiency, cost effective, good flexibility and enhanced security. Asynchronous WDM/OCDMA systems have been experimentally demonstrated using superstructured fiber Bragg gratings (SSFBG) and muti-port OCDMA en/decoders. The total throughput has reached above Tera-bit/s with spectral efficiency of about 0.41. The key enabling techniques include ultra-long SSFBG, multi-port E/D with high power contrast ratio, optical thresholding, differential phase shift keying modulation with balanced detection, forward error correction, and etc. Using multi-level modulation formats to carry multi-bit information with single pulse, the total capacity and spectral efficiency could be further enhanced.
Fujiwara, Mikio; Wakabayashi, Ryota; Sasaki, Masahide; Takeoka, Masahiro
2017-02-20
We report a wavelength division multiplexed time-bin entangled photon pair source in telecom wavelength using a 10 μm radius Si ring resonator. This compact resonator has two add ports and two drop ports. By pumping one add port by a continuous laser, we demonstrate an efficient generation of two-wavelength division multiplexed time-bin entangled photon pairs in the telecom C-band, which come out of one drop port, and are then split into the signal and idler photons via a wavelength filter. The resonator structure enhances four-wave mixing for pair generation. Moreover, we demonstrate the double-port pumping where two counter propagating pump lights are injected to generate entanglement from the two drop ports simultaneously. We successfully observe the highly entangled outputs from both two drop ports. Surprisingly, the count rate at each drop port is even increased by twice that of the single-port pumping. Possible mechanisms of this observation are discussed. Our technique allows for the efficient use of the Si ring resonator and widens its functionality for variety of applications.
Fiber optical parametric amplifiers in optical communication systems
Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud
2015-01-01
The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588
Shared protection based virtual network mapping in space division multiplexing optical networks
NASA Astrophysics Data System (ADS)
Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie
2018-05-01
Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.
Analysis of secured Optical Orthogonal Frequency Division Multiplexed System
NASA Astrophysics Data System (ADS)
Gill, Harsimranjit Singh; Bhatia, Kamaljit Singh; Gill, Sandeep Singh
2017-05-01
In this paper, security issues for optical orthogonal frequency division multiplexed (OFDM) systems are emphasized. The encryption has been done on the data of coded OFDM symbols using data encryption standard (DES) algorithm before transmitting through the fiber. The results obtained justify that the DES provides better security to the input data without further bandwidth requirement. The data is transmitted to a distance of 1,000 km in a single-mode fiber with 16-quadrature amplitude modulation. The peak-to-average power ratio and optical signal-to-noise ratio of secure coded OFDM signal is fairly better than the conventional OFDM signal.
NASA Astrophysics Data System (ADS)
Lee, Kwanil; Lee, Sang Bae; Lee, Ju Han; Han, Young-Geun; Mun, Sil-Gu; Lee, Sang-Mook; Lee, Chang-Hee
2007-04-01
We propose and experimentally demonstrate a novel protection scheme for wavelength-division-multiplexed passive optical network (WDM-PON) employing colorless optical transceivers. The proposed network employs 2 × N arrayed waveguide grating (AWG) to utilize its routing characteristics. The colorless operation is achieved by using wavelength-locked Fabry-Perot laser diodes (FP-LDs) injected with spectrum-sliced amplified spontaneous emission (ASE) light. The experimental results show that the restoration can be achieved within 8 ms against the feeder fiber fault and the power penalty introduced by the restoration process is negligible.
Space division multiplexing chip-to-chip quantum key distribution.
Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo
2017-09-29
Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.
Li, Yihan; Kuse, Naoya; Fermann, Martin
2017-08-07
A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.
Statistical physics inspired energy-efficient coded-modulation for optical communications.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2012-04-15
Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Xie, Chongjin; Möller, Lothar; Kilper, Daniel C.; Mollenauer, Linn F.
2003-12-01
Interchannel cross-phase-modulation-induced polarization scattering (XPMIPS) and its effect on the performance of optical polarization mode dispersion (PMD) compensation in wavelength-division-multiplexed (WDM) systems are studied. The level of XPMIPS in long-haul WDM transmission systems is theoretically quantified, and its effect on optical PMD compensation is evaluated with numerical simulations. We show that in 10-Gbit/s ultra-long-haul dense WDM systems XPMIPS could reduce the PMD compensation efficiency by 50%, whereas for 40-Gbit/s systems the effect of XPMIPS is smaller.
Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Prosser, William; Percy, Daniel
2003-01-01
The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location determination. The multiplexer also identifies which channels are acquired by encoding TTL logic pulses onto the latter portion of the signals. This prototype system was demonstrated using pencil lead break (Hsu-Neilsen) sources on an aluminum plate. It performed as designed providing rapid low noise trigger based switching with encoded channel identification. this multiplexing approach is not limited to linear arrays, but can be easily extended to monitor sensors in planar ot three dimensional arrays. A 32 channel multiplexing system is under development that will allow arbitrary sensor placement. Another benefit of this multiplexing system is the reduction in the expense of data acquisition hardware. In addition, the reduced weight and power requirements are of extreme importance for proposed AE systems on aerospace vehicles.
NASA Astrophysics Data System (ADS)
Lin, Ming-Wei; Jovanovic, Igor
2016-09-01
We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses.
Ultrafast laser inscription of 3D components for spatial multiplexing
NASA Astrophysics Data System (ADS)
Thomson, Robert R.
2016-02-01
The thirst for bandwidth in telecommunications networks is becoming ever larger due to bandwidth hungry applications such as video-on-demand. To further increase the bandwidth capacity, engineers are now seeking to imprint information on the last remaining degree of freedom of the lightwave carrier - space. This has given rise to the field of Space Division Multiplexing (SDM). In essence, the concept of SDM simple; we aim to use the different spatial modes of an optical fibre as multiplexed data transmission channels. These modes could either be in the form of separate singlemodes in a multicore optical fibre, individual spatial modes of a multimode fibre, or indeed the individual spatial modes of a multimode multicore optical fibre. Regardless of the particular "flavour" of SDM in question, it is clear that significant interfacing issues exist between the optical fibres used in SDM and the conventional single-mode planar lightwave circuits that are essential to process the light (e.g. arrayed waveguide gratings and splitters), and efficient interconnect technologies will be required. One fabrication technology that has emerged as a possible route to solve these interconnection issues is ultrafast laser inscription (ULI), which relies on the use of focused ultrashort laser pulses to directly inscribe three-dimensional waveguide structures inside a bulk dielectric. In this paper, I describe some of the work that has been conducted around the world to apply the unique waveguide fabrication capabilities of ULI to the development of 3D photonic components for applications in SDM.
All-optical VPN utilizing DSP-based digital orthogonal filters access for PONs
NASA Astrophysics Data System (ADS)
Zhang, Xiaoling; Zhang, Chongfu; Chen, Chen; Jin, Wei; Qiu, Kun
2018-04-01
Utilizing digital filtering-enabled signal multiplexing and de-multiplexing, a cost-effective all-optical virtual private network (VPN) system is proposed, for the first time to our best knowledge, in digital filter multiple access passive optical networks (DFMA-PONs). Based on the DFMA technology, the proposed system can be easily designed to meet the requirements of next generation network's flexibility, elasticity, adaptability and compatibility. Through dynamic digital filter allocation and recycling, the proposed all-optical VPN system can provide dynamic establishments and cancellations of multiple VPN communications with arbitrary traffic volumes. More importantly, due to the employment of DFMA technology, the system is not limited to a fixed signal format and different signal formats such as pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM) and orthogonal frequency division multiplexing (OFDM) can be used. Moreover, one transceiver is sufficient to simultaneously transmit upstream (US)/VPN data to optical line terminal (OLT) or other VPN optical network units (ONUs), thus leading to great reduction in network constructions and operation expenditures. The proposed all-optical VPN system is demonstrated with the transceiver incorporating the formats of QAM and OFDM, which can be made transparent to downstream (DS), US and VPN communications. The bit error rates (BERs) of DS, US and VPN for OFDM signals are below the forward-error-correction (FEC) limit of 3 . 8 × 10-3 when the received optical powers are about -16.8 dBm, -14.5 dBm and -15.7 dBm, respectively.
Three-mode all-optical (de)multiplexing on a SOI chip
NASA Astrophysics Data System (ADS)
Le, Yan-Si; Wang, Zhi; Li, Zhi-Yong; Li, Ying; Li, Qiang; Cui, Can; Wu, Chong-Qing
2018-01-01
An on-chip three-mode division multiplexing circuit using a simple ADC-based TE0 & TE1 & TE2 (de)multiplexer is demonstrated to improve the link capacity of on-chip optical interconnects. The proposed (de)multiplexer does not contain any tapered waveguide which is different from the previous mode (de)multiplexer based on ADCs. Here, we choose multimode waveguide width first and then confirm corresponding width of the other two waveguides. Thus the bus waveguide without any tapers can not only reduce complexity of (de)multiplexer but also reduce difficulty of the fabrication. Our simulation results show that the hybrid multiplexer has relatively low loss and low crosstalk about -40 dB, -26.99 dB and -28.72 dB for each mode around 1550 nm with a width-variation w =± 25 nm. These properties make the proposed mode-(de)multiplexer suitable for application in high-capacity data transmission.
On-field measurement trial of 4×128 Gbps PDM-QPSK signals by linear optical sampling
NASA Astrophysics Data System (ADS)
Bin Liu; Wu, Zhichao; Fu, Songnian; Feng, Yonghua; Liu, Deming
2017-02-01
Linear optical sampling is a promising characterization technique for advanced modulation formats, together with digital signal processing (DSP) and software-synchronized algorithm. We theoretically investigate the acquisition of optical sampling, when the high-speed signal under test is either periodic or random. Especially, when the profile of optical sampling pulse is asymmetrical, the repetition frequency of sampling pulse needs careful adjustment in order to obtain correct waveform. Then, we demonstrate on-field measurement trial of commercial four-channel 128 Gbps polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signals with truly random characteristics by self-developed equipment. A passively mode-locked fiber laser (PMFL) with a repetition frequency of 95.984 MHz is used as optical sampling source, meanwhile four balanced photo detectors (BPDs) with 400 MHz bandwidth and four-channel analog-to-digital convertor (ADC) with 1.25 GS/s sampling rate are used for data acquisition. The performance comparison with conventional optical modulation analyzer (OMA) verifies that the self-developed equipment has the advantages of low cost, easy implementation, and fast response.
Polarization-multiplexing ghost imaging
NASA Astrophysics Data System (ADS)
Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu
2018-03-01
A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.
NASA Astrophysics Data System (ADS)
Mates, J. A. B.; Becker, D. T.; Bennett, D. A.; Dober, B. J.; Gard, J. D.; Hays-Wehle, J. P.; Fowler, J. W.; Hilton, G. C.; Reintsema, C. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.
2017-08-01
The number of elements in most cryogenic sensor arrays is limited by the technology available to multiplex signals from the arrays into a smaller number of wires and readout amplifiers. The largest demonstrated arrays of transition-edge sensor (TES) microcalorimeters contain roughly 250 detectors and use time-division multiplexing with Superconducting Quantum Interference Devices (SQUIDs). The bandwidth limits of this technology constrain the number of sensors per amplifier chain, a quantity known as the multiplexing factor, to several 10s. With microwave SQUID multiplexing, we can expand the readout bandwidth and enable much larger multiplexing factors. While microwave SQUID multiplexing of TES microcalorimeters has been previously demonstrated with small numbers of detectors, we now present a fully scalable demonstration in which 128 TES detectors are read out on a single pair of coaxial cables.
Quaternary pulse position modulation electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.
1991-01-01
The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (GPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.
Quaternary pulse position modulation electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.
1991-01-01
The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.
Phase division multiplexed EIT for enhanced temporal resolution.
Dowrick, T; Holder, D
2018-03-29
The most commonly used EIT paradigm (time division multiplexing) limits the temporal resolution of impedance images due to the need to switch between injection electrodes. Advances have previously been made using frequency division multiplexing (FDM) to increase temporal resolution, but in cases where a fixed range of frequencies is available, such as imaging fast neural activity, an upper limit is placed on the total number of simultaneous injections. The use of phase division multiplexing (PDM) where multiple out of phase signals can be injected at each frequency is investigated to increase temporal resolution. TDM, FDM and PDM were compared in head tank experiments, to compare transfer impedance measurements and spatial resolution between the three techniques. A resistor phantom paradigm was established to investigate the imaging of one-off impedance changes, of magnitude 1% and with durations as low as 500 µs (similar to those seen in nerve bundles), using both PDM and TDM approaches. In head tank experiments, a strong correlation (r > 0.85 and p < 0.001) was present between the three sets of measured transfer impedances, and no statistically significant difference was found in reconstructed image quality. PDM was able to image impedance changes down to 500 µs in the phantom experiments, while the minimum duration imaged using TDM was 5 ms. PDM offers a possible solution to the imaging of fast moving impedance changes (such as in nerves), where the use of triggering or coherent averaging is not possible. The temporal resolution presents an order of magnitude improvement of the TDM approach, and the approach addresses the limited spatial resolution of FDM by increasing the number of simultaneous EIT injections.
Cai, Tingdong; Gao, Guangzhen; Liu, Ying
2012-10-01
A multiplexed diode-laser sensor system based on second harmonic detection of wavelength modulation spectroscopy (WMS) is developed for application at elevated temperatures with two near-infrared diode lasers multiplexed using a frequency-division multiplexing scheme. One laser is tuned over a H(2)O line pair near 7079.176 and 7079.855 cm(-1), and another laser is tuned over a pair of CO(2) and CO lines near 6361.250 and 6361.344 cm(-1). Temperature and concentrations of H(2)O, CO(2), and CO could be measured simultaneously by this system. In order to remove the need for calibration and correct for transmission variation due to beam steering, mechanical misalignments, soot, and windows fouling, the WMS-1f normalized 2f method is used. Demonstration experiments are conducted in a heated static cell. The precision of temperature and the concentrations for H(2)O, CO(2), and CO are found to be 1.57%, 3.87%, 3.01%, and 3.58%, respectively. These results illustrate the potential of this sensor for applications at high temperatures.
Experimental demonstration of time- and mode-division multiplexed passive optical network
NASA Astrophysics Data System (ADS)
Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin
2017-07-01
A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.
Multiplexing of Radio-Frequency Single Electron Transistors
NASA Technical Reports Server (NTRS)
Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)
2001-01-01
We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.
NASA Astrophysics Data System (ADS)
Murshid, Syed; Alanzi, Saud; Hridoy, Arnob; Lovell, Greg; Parhar, Gurinder; Chakravarty, Abhijit; Chowdhury, Bilas
2014-09-01
Spatial Domain Multiplexing/Space Division Multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single mode pigtail laser sources of same wavelength into a carrier fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. In this endeavor we launch light from five different single mode pigtail laser sources at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation we get five distinct concentric donut shaped rings with negligible crosstalk at the output end of the fiber. These SDM channels also exhibit Orbital Angular Momentum (OAM), thereby adding an extra degree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.
Power-efficient method for IM-DD optical transmission of multiple OFDM signals.
Effenberger, Frank; Liu, Xiang
2015-05-18
We propose a power-efficient method for transmitting multiple frequency-division multiplexed (FDM) orthogonal frequency-division multiplexing (OFDM) signals in intensity-modulation direct-detection (IM-DD) optical systems. This method is based on quadratic soft clipping in combination with odd-only channel mapping. We show, both analytically and experimentally, that the proposed approach is capable of improving the power efficiency by about 3 dB as compared to conventional FDM OFDM signals under practical bias conditions, making it a viable solution in applications such as optical fiber-wireless integrated systems where both IM-DD optical transmission and OFDM signaling are important.
Decision-feedback detection strategy for nonlinear frequency-division multiplexing
NASA Astrophysics Data System (ADS)
Civelli, Stella; Forestieri, Enrico; Secondini, Marco
2018-04-01
By exploiting a causality property of the nonlinear Fourier transform, a novel decision-feedback detection strategy for nonlinear frequency-division multiplexing (NFDM) systems is introduced. The performance of the proposed strategy is investigated both by simulations and by theoretical bounds and approximations, showing that it achieves a considerable performance improvement compared to previously adopted techniques in terms of Q-factor. The obtained improvement demonstrates that, by tailoring the detection strategy to the peculiar properties of the nonlinear Fourier transform, it is possible to boost the performance of NFDM systems and overcome current limitations imposed by the use of more conventional detection techniques suitable for the linear regime.
NASA Astrophysics Data System (ADS)
Chaudhary, Sushank; Chaudhary, Neha; Sharma, Saurabh; Choudhary, BC
2017-12-01
Inter-Satellite communication is one of remarkable technologies that can be used to communicate between satellites. This work is focused to carry out the investigations of polarization scheme by incorporating dense wavelength division multiplexing (DWDM) scheme in inter-satellite communication system. A 20×6 Gbps data are transported over inter-satellite optical link having span of 5,000 km to realize the total data transmission of 120 Gbps. Moreover, results are also reported with the effect of RZ and NRZ modulation schemes. The performance of proposed inter-satellite communication link is measured in terms of signal-to-noise ratio, received power and eye diagrams.
Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Tang, Yeteng; Chen, Dalei
2016-08-10
We propose and experimentally demonstrate an optical stealth transmission system over a 200 GHz-grid wavelength-division multiplexing (WDM) network. The stealth signal is processed by spectral broadening, temporal spreading, and power equalizing. The public signal is suppressed by multiband notch filtering at the stealth channel receiver. The interaction between the public and stealth channels is investigated in terms of public-signal-to-stealth-signal ratio, data rate, notch-filter bandwidth, and public channel number. The stealth signal can transmit over 80 km single-mode fiber with no error. Our experimental results verify the feasibility of optical steganography used over the existing WDM-based optical network.
NASA Astrophysics Data System (ADS)
Lyu, WeiChao; Wang, Andong; Xie, Dequan; Zhu, Long; Guan, Xun; Wang, Jian; Xu, Jing
2018-05-01
We propose a novel architecture for wavelength-division-multiplexed passive optical network (WDM-PON) that can simultaneously circumvent both remodulation crosstalk and Rayleigh noise, based on self-homodyne detection and optical orthogonal frequency-division multiplexing (OFDM) remodulation. The proposed self-homodyne detection at optical network unit (ONU) requires neither frequency offset compensation nor phase noise compensation, and thus can significantly reduce system complexity and power consumption. Bidirectional transmission of 12.5 Gb/s down- and up-stream signals, via single 25 km single-mode fiber without dispersion compensation, is demonstrated in a proof-of-concept experiment.
Coherent UDWDM PON with joint subcarrier reception at OLT.
Kottke, Christoph; Fischer, Johannes Karl; Elschner, Robert; Frey, Felix; Hilt, Jonas; Schubert, Colja; Schmidt, Daniel; Wu, Zifeng; Lankl, Berthold
2014-07-14
In this contribution, we report on the experimental investigation of an ultra-dense wavelength-division multiplexing (UDWDM) upstream link with up to 700 × 2.488 Gb/s polarization-division multiplexing differential quadrature phase-shift keying parallel upstream user channels transmitted over 80 km of standard single-mode fiber. We discuss challenges of the digital signal processing in the optical line terminal arising from the joint reception of several upstream user channels. We present solutions for resource and cost-efficient realization of the required channel separation, matched filtering, down-conversion and decimation as well as realization of the clock recovery and polarization demultiplexing for each individual channel.
Analog nonlinear MIMO receiver for optical mode division multiplexing transmission.
Spalvieri, Arnaldo; Boffi, Pierpaolo; Pecorino, Simone; Barletta, Luca; Magarini, Maurizio; Gatto, Alberto; Martelli, Paolo; Martinelli, Mario
2013-10-21
The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.
Nyachionjeka, Kumbirayi
2014-01-01
In this paper, the performance and feasibility of a hybrid wavelength division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) system with 128 optical network units (ONUs) is analysed. In this system, triple play services (video, voice and data) are successfully communicated through a distance of up to 28 km. Moreover, we analysed and compared the performance of various modulation formats for different distances in the proposed hybrid WDM/TDM PON. NRZ rectangular emerged as the most appropriate modulation format for triple play transmission in the proposed hybrid PON. PMID:27382633
High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke
2017-04-01
We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.
NASA Astrophysics Data System (ADS)
Mollenauer, Linn F.; Grant, Andrew; Liu, Xiang; Wei, Xing; Xie, Chongjin; Kang, Inuk
2003-11-01
In an all-Raman amplified, recirculating loop containing 100-km spans, we have tested dense wavelength-division multiplexing at 10 Gbits/s per channel, using dispersion-managed solitons and a novel, periodic-group-delay-complemented dispersion-compensation scheme that greatly reduces the timing jitter from interchannel collisions. The achieved working distances are ~9000 and ~20,000 km for uncorrected bit error rates of <10-8 and <10-3, respectively, the latter corresponding to the use of ``enhanced'' forward error correction; significantly, these distances are very close to those achievable in single-channel transmission in the same system.
Ultra-Long-Distance Hybrid BOTDA/Ф-OTDR
Fu, Yun; Zhu, Richeng; Xue, Naitian; Lu, Chongyu; Zhang, Bin; Yang, Le; Atubga, David; Rao, Yunjiang
2018-01-01
In the distributed optical fiber sensing (DOFS) domain, simultaneous measurement of vibration and temperature/strain based on Rayleigh scattering and Brillouin scattering in fiber could have wide applications. However, there are certain challenges for the case of ultra-long sensing range, including the interplay of different scattering mechanisms, the interaction of two types of sensing signals, and the competition of pump power. In this paper, a hybrid DOFS system, which can simultaneously measure temperature/strain and vibration over 150 km, is elaborately designed via integrating the Brillouin optical time-domain analyzer (BOTDA) and phase-sensitive optical time-domain reflectometry (Ф-OTDR). Distributed Raman and Brillouin amplifications, frequency division multiplexing (FDM), wavelength division multiplexing (WDM), and time division multiplexing (TDM) are delicately fused to accommodate ultra-long-distance BOTDA and Ф-OTDR. Consequently, the sensing range of the hybrid system is 150.62 km, and the spatial resolution of BOTDA and Ф-OTDR are 9 m and 30 m, respectively. The measurement uncertainty of the BOTDA is ± 0.82 MHz. To the best of our knowledge, this is the first time that such hybrid DOFS is realized with a hundred-kilometer length scale. PMID:29587407
An IEEE802.15.4-Based System for Locating Children on Their School Commutes
NASA Astrophysics Data System (ADS)
Sugiura, Akihiko; Baba, Ryoichi; Kobayashi, Hideyuki
With the increasing number of crimes and accidents in which children are becoming involved, there is a growing demand for devices to safeguard children's security by detecting their locations on their way to and from school. This paper proposes a system that uses an IEEE802.15.4-standard network to detect children's locations. To overcome the susceptibility of radio interference from nearby wireless LANs, frequency division multiplexing is applied to this IEEE802.15.4-based network, toward improving data acquisition from terminal units. The effectiveness of the system was field-tested with elementary school students who used about 400 IEEE 802.15.4-compliant terminal units. An experiment verified that the use of frequency division multiplexing in an environment where radio interference by wireless LANs is strong allowed the network to double the success rate of information communication from terminal units relative to that without frequency division multiplexing. In the experiment for detecting elementary schoolers' arrival at and departure from school, the terminal detection rate was 99% and the terminal detection rate on the designated school routes was 90%. These results prove the effectiveness of the system in detecting locations.
NASA Astrophysics Data System (ADS)
Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi
2006-12-01
In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.
NASA Astrophysics Data System (ADS)
Benkler, Erik; Telle, Harald R.
2007-06-01
An improved phase-locked loop (PLL) for versatile synchronization of a sampling pulse train to an optical data stream is presented. It enables optical sampling of the true waveform of repetitive high bit-rate optical time division multiplexed (OTDM) data words such as pseudorandom bit sequences. Visualization of the true waveform can reveal details, which cause systematic bit errors. Such errors cannot be inferred from eye diagrams and require word-synchronous sampling. The programmable direct-digital-synthesis circuit used in our novel PLL approach allows flexible adaption of virtually any problem-specific synchronization scenario, including those required for waveform sampling, for jitter measurements by slope detection, and for classical eye-diagrams. Phase comparison of the PLL is performed at 10-GHz OTDM base clock rate, leading to a residual synchronization jitter of less than 70 fs.
Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN.
Ahlawat, Meenu; Bostani, Ameneh; Tehranchi, Amirhossein; Kashyap, Raman
2013-11-18
We experimentally demonstrate tunable dual channel broadcasting of a signal over the C-band for wavelength division multiplexed (WDM) optical networks. This is based on cascaded χ(2) nonlinear mixing processes in a specially engineered, 20-mm-long step-chirped periodically poled lithium niobate with a broad 28-nm second harmonic (SH) bandwidth in the 1.55-μm spectral range. A 10-GHz picosecond mode-locked laser was used as a signal along with a CW pump to generate two pulsed idlers, which are simultaneously tuned across the C-band by detuning of the pump wavelength within the broad SH bandwidth. Variable-input, variable-output scheme of tuned idlers is successfully achieved by tuning the signal wavelength. Pump or signal wavelength tuning of ~10 nm results in the idlers spreading across 30 nm in the C-band.
Improved wavelength coded optical time domain reflectometry based on the optical switch.
Zhu, Ninghua; Tong, Youwan; Chen, Wei; Wang, Sunlong; Sun, Wenhui; Liu, Jianguo
2014-06-16
This paper presents an improved wavelength coded time-domain reflectometry based on the 2 × 1 optical switch. In this scheme, in order to improve the signal-noise-ratio (SNR) of the beat signal, the improved system used an optical switch to obtain wavelength-stable, low-noise and narrow optical pulses for probe and reference. Experiments were set up to demonstrate a spatial resolution of 2.5m within a range of 70km and obtain the beat signal with line width narrower than 15 MHz within a range of 50 km in fiber break detection. A system for wavelength-division-multiplexing passive optical network (WDM-PON) monitoring was also constructed to detect the fiber break of different channels by tuning the current applied on the gating section of the distributed Bragg reflector (DBR) laser.
Ultra-High Capacity Silicon Photonic Interconnects through Spatial Multiplexing
NASA Astrophysics Data System (ADS)
Chen, Christine P.
The market for higher data rate communication is driving the semiconductor industry to develop new techniques of writing at smaller scales, while continuing to scale bandwidth at low power consumption. Silicon photonic (SiPh) devices offer a potential solution to the electronic interconnect bandwidth bottleneck. SiPh leverages the technology commensurate of decades of fabrication development with the unique functionality of next-generation optical interconnects. Finer fabrication techniques have allowed for manufacturing physical characteristics of waveguide structures that can support multiple modes in a single waveguide. By refining modal characteristics in photonic waveguide structures, through mode multiplexing with the asymmetric y-junction and microring resonator, higher aggregate data bandwidth is demonstrated via various combinations of spatial multiplexing, broadening applications supported by the integrated platform. The main contributions of this dissertation are summarized as follows. Experimental demonstrations of new forms of spatial multiplexing combined together exhibit feasibility of data transmission through mode-division multiplexing (MDM), mode-division and wavelength-division multiplexing (MDM-WDM), and mode-division and polarization-division multiplexing (MDM-PDM) through a C-band, Si photonic platform. Error-free operation through mode multiplexers and demultiplexers show how data can be viably scaled on multiple modes and with existing spatial domains simultaneously. Furthermore, we explore expanding device channel support from two to three arms. Finding that a slight mismatch in the third arm can increase crosstalk contributions considerably, especially when increasing data rate, we explore a methodical way to design the asymmetric y-junction device by considering its angles and multiplexer/demultiplexer arm width. By taking into consideration device fabrication variations, we turn towards optimizing device performance post-fabrication. Through ModePROP simulations, optimizing device performance dynamically post-fabrication is analyzed, through either electro-optical or thermo-optical means. By biasing the arm introducing the slight spectral offset, we can quantifiably improve device performance. Scaling bandwidth is experimentally demonstrated through the device at 3 modes, 2 wavelengths, and 40 Gb/s data rate for 240 Gb/s aggregate bandwidth, with the potential to reduce power penalty per the device optimization process we described. A main motivation for this on-chip spatial multiplexing is the need to reduce costs. As the laser source serves as the greatest power consumer in an optical system, mode-division multiplexing and other forms of spatial multiplexing can be implemented to push its potentially prohibitive cost metrics down. In order to demonstrate an intelligent platform capable of dynamically multicasting data and reallocating power as needed by the system, we must first initialize the switch fabric to control with an electronic interface. A dithering mechanism, whereby exact cross, bar, and sub-percentage states are enforced through the device, is described here. Such a method could be employed for actuating the device table of bias values to states automatically. We then employ a dynamic power reallocation algorithm through a data acquisition unit, showing real-time channel recovery for channels experiencing power loss by diverting power from paths that could tolerate it. The data that is being multicast through the system is experimentally shown to be error-free at 40 Gb/s data rate, when transmitting from one to three clients and going from automatic bar/cross states to equalized power distribution. For the last portion of this topic, the switch fabric was inserted into a high-performance computing system. In order to run benchmarks at 10 Gb/s data ontop of the switch fabric, a newer model of the control plane was implemented to toggle states according to the command issued by the server. Such a programmable mechanism will prove necessary in future implementations of optical subsystems embedded inside larger systems, like data centers. Beyond the specific control plane demonstrated, the idea of an intelligent photonic layer can be applied to alleviate many kinds of optical channel abnormalities or accommodate for switching based on different patterns in data transmission. Finally, the experimental demonstration of a coherent perfect absorption Si modulator is exhibited, showing a viable extinction ratio of 24.5 dB. Using this coherent perfect absorption mechanism to demodulate signals, there is the added benefit of differential reception. Currently, an automated process for data collection is employed at a faster time scale than instabilities present in fibers in the setup with future implementations eliminating the off-chip phase modulator for greater signal stability. The field of SiPh has developed to a stage where specific application domains can take off and compete according to industrial-level standards. The work in this dissertation contributes to experimental demonstration of a newly developing area of mode-division multiplexing for substantially increasing bandwidth on-chip. While implementing the discussed photonic devices in dynamic systems, various attributes of integrated photonics are leveraged with existing electronic technologies. Future generations of computing systems should then be designed by implementing both system and device level considerations. (Abstract shortened by ProQuest.).
Electronic-To-Optical-To-Electronic Packet-Data Conversion
NASA Technical Reports Server (NTRS)
Monacos, Steve
1996-01-01
Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.
Demi, Libertario; Verweij, Martin D; Van Dongen, Koen W A
2012-11-01
Real-time 2-D or 3-D ultrasound imaging systems are currently used for medical diagnosis. To achieve the required data acquisition rate, these systems rely on parallel beamforming, i.e., a single wide-angled beam is used for transmission and several narrow parallel beams are used for reception. When applied to harmonic imaging, the demand for high-amplitude pressure wave fields, necessary to generate the harmonic components, conflicts with the use of a wide-angled beam in transmission because this results in a large spatial decay of the acoustic pressure. To enhance the amplitude of the harmonics, it is preferable to do the reverse: transmit several narrow parallel beams and use a wide-angled beam in reception. Here, this concept is investigated to determine whether it can be used for harmonic imaging. The method proposed in this paper relies on orthogonal frequency division multiplexing (OFDM), which is used to create distinctive parallel beams in transmission. To test the proposed method, a numerical study has been performed, in which the transmit, receive, and combined beam profiles generated by a linear array have been simulated for the second-harmonic component. Compared with standard parallel beamforming, application of the proposed technique results in a gain of 12 dB for the main beam and in a reduction of the side lobes. Experimental verification in water has also been performed. Measurements obtained with a single-element emitting transducer and a hydrophone receiver confirm the possibility of exciting a practical ultrasound transducer with multiple Gaussian modulated pulses, each having a different center frequency, and the capability to generate distinguishable second-harmonic components.
NASA Astrophysics Data System (ADS)
He, Guobing; Gao, Yang; Xu, Yan; Ji, Lanting; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming; Wu, Yuanda
2018-05-01
A polymer mode multiplexer based on asymmetric couplers is theoretically designed and experimentally demonstrated. The proposed X-junction coupler is formed by waveguides overlapped with different crossing angles in the vertical direction. A beam propagation method is adopted to optimize the dimensional parameters of the mode multiplexer to convert LP01 mode of two lower waveguides to LP11a and LP21a mode of the upper waveguide. The ultraviolet lithography and wet chemical etching are used in the fabrication process. A conversion ratio over 98% for both LP11a and LP21a mode in the wavelength range from 1530 to 1570 nm are experimentally demonstrated. This mode multiplexer has potential in broadband mode-division multiplexing transmission systems.
Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B
2014-01-13
We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.
Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies.
Littler, Ian C M; Gray, Malcolm B; Chow, Jong H; Shaddock, Daniel A; McClelland, David E
2009-06-22
An integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pepsilon) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than -75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise. With appropriate packaging, such a multiplexed strain sensing system can form the core of a low frequency accelerometer or hydrophone array.
Pulse-excited, auto-zeroing multiple channel data transmission system
NASA Astrophysics Data System (ADS)
Fasching, G. E.
1985-02-01
A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.
Pulse-excited, auto-zeroing multiple channel data transmission system
Fasching, G.E.
1985-02-22
A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.
Pulse-excited, auto-zeroing multiple channel data transmission system
Fasching, George E.
1987-01-01
A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.
NASA Astrophysics Data System (ADS)
Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter
2016-03-01
Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2<=17. Because of the feedback the lateral (multimodal) spatial and angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.
Integrated-Optic Wavelength Multiplexer In Glass Fabricated By A Charge Controlled Ion Exchange
NASA Astrophysics Data System (ADS)
Klein, R.; Jestel, D.; Lilienhof, H. J.; Rottman, F.; Voges, E.
1989-02-01
Integrated-optic wavelength division multiplexing (WDM) is commonly used in communication systems. These WDM-devices are also well suited to build up optical fiber networks for both intensity and interferometric sensor types. The operation principle of our wavelength division multiplexing devise is based on the wavelength dependent two-mode interference in a two-moded waveguide, which is coupled adiabatically to the single-mode input and output strip waveguides. The single-mode input and output waveguides are connected via two Y-branches ( "'kJ- 1° branching angle ) with a two-moded intersection region. The ratio of the light powers in the single-mode output waveguides depends on wavelength . The two-mode interference within the two-moded center waveguide leads to an almost wavelength periodic transmission caracteristic . Dual-channel multiplexers/demultiplexers were fabricated by a charge controlled field assisted pottasium exchange in B-270 glass (Desag). The devices have a typical channel separation of 30 - 40 nm and a far-end crosstalk attenuation of better than 16 dB. The operation wavelength regions of the fabricated devices are 0.6 - 0.8 µm and 1.3 - 1.6 µm, respectively.
CWDM for very-short-reach and optical-backplane interconnections
NASA Astrophysics Data System (ADS)
Laha, Michael J.
2002-06-01
Course Wavelength Division Multiplexing (CWDM) provides access to next generation optical interconnect data rates by utilizing conventional electro-optical components that are widely available in the market today. This is achieved through the use of CWDM multiplexers and demultiplexers that integrate commodity type active components, lasers and photodiodes, into small optical subassemblies. In contrast to dense wavelength division multiplexing (DWDM), in which multiple serial data streams are combined to create aggregate data pipes perhaps 100s of gigabits wide, CWDM uses multiple laser sources contained in one module to create a serial equivalent data stream. For example, four 2.5 Gb/s lasers are multiplexed to create a 10 Gb/s data pipe. The advantages of CWDM over traditional serial optical interconnects include lower module power consumption, smaller packaging, and a superior electrical interface. This discussion will detail the concept of CWDM and design parameters that are considered when productizing a CWDM module into an industry standard optical interconnect. Additionally, a scalable parallel CWDM hybrid architecture will be described that allows the transport of large amounts of data from rack to rack in an economical fashion. This particular solution is targeted at solving optical backplane bottleneck problems predicted for the next generation terabit and petabit routers.
Optical Communication: Its History and Recent Progress
NASA Astrophysics Data System (ADS)
Agrawal, Govind P.
This chapter begins with a brief history of optical communication before describing the main components of a modern optical communication system. Specific attention is paid to the development of low-loss optical fibers as they played an essential role after 1975. The evolution of fiber-optic communication systems is described through its six generations over a 40-year time period ranging from 1975 to 2015. The adoption of wavelength-division multiplexing (WDM) during the 1990s to meet the demand fueled by the advent of the Internet is discussed together with the bursting of the telecom bubble in 2000. Recent advances brought by digital coherent technology and space-division multiplexing are also described briefly.
High-speed wavelength-division multiplexing quantum key distribution system.
Yoshino, Ken-ichiro; Fujiwara, Mikio; Tanaka, Akihiro; Takahashi, Seigo; Nambu, Yoshihiro; Tomita, Akihisa; Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Sasaki, Masahide; Tajima, Akio
2012-01-15
A high-speed quantum key distribution system was developed with the wavelength-division multiplexing (WDM) technique and dedicated key distillation hardware engines. Two interferometers for encoding and decoding are shared over eight wavelengths to reduce the system's size, cost, and control complexity. The key distillation engines can process a huge amount of data from the WDM channels by using a 1 Mbit block in real time. We demonstrated a three-channel WDM system that simultaneously uses avalanche photodiodes and superconducting single-photon detectors. We achieved 12 h continuous key generation with a secure key rate of 208 kilobits per second through a 45 km field fiber with 14.5 dB loss.
NASA Astrophysics Data System (ADS)
Wang, Kaihui; Li, Xinying; Yu, Jianjun
2017-09-01
DFT-S-orthogonal frequency division multiplexing (OFDM) and single-carrier (SC) modulation are two typical modulation formats in radio-over-fiber (RoF) systems. They may have respective advantages and disadvantages in different scenarios. Therefore, bit error ratio comparison results of these two modulation formats will be useful for designing and optimizing the practical RoF system. We experimentally compare these two modulation formats in a long wireless distance RoF system at W-band. It can be concluded that DFT-S-OFDM and SC modulation have similar performances in a RoF system with transmission distance over 80-km fiber and 224-m wireless link.
A novel survivable architecture for hybrid WDM/TDM passive optical networks
NASA Astrophysics Data System (ADS)
Qiu, Yang; Chan, Chun-Kit
2014-02-01
A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.
Yin, Jinde; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; Wu, Fan; Ding, Zhenyang
2013-10-01
We propose a new wavelength-division-multiplexing method for extrinsic fiber Fabry-Perot interferometric (EFPI) sensing in a polarized low-coherence interferometer configuration. In the proposed method, multiple LED sources are used with different center wavelengths, and each LED is used by a specific sensing channel, and therefore the spatial frequency of the low-coherence interferogram of each channel can be separated. A bandpass filter is used to extract the low-coherence interferogram of each EFPI channel, and thus the cavity length of each EFPI channel can be identified through demultiplexing. We successfully demonstrate the simultaneous demodulation of EFPI sensors with same nominal cavity length while maintaining high measurement precision.
Two-mode division multiplexing in a silicon-on-insulator ring resonator.
Dorin, Bryce A; Ye, Winnie N
2014-02-24
Mode-division multiplexing (MDM) is an emerging multiple-input multiple-output method, utilizing multimode waveguides to increase channel numbers. In the past, silicon-on-insulator (SOI) devices have been primarily focused on single-mode waveguides. We present the design and fabrication of a two-mode SOI ring resonator for MDM systems. By optimizing the device parameters, we have ensured that each mode is treated equally within the ring. Using adiabatic Bezier curves in the ring bends, our ring demonstrated a signal-to-crosstalk ratio above 18 dB for both modes at the through and drop ports. We conclude that the ring resonator has the potential for filtering and switching for MDM systems on SOI.
Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks.
Kim, Hoon
2010-01-18
We propose and demonstrate a pulsed-incoherent-light-injected Fabry-Perot laser diode (FP-LD) which generates incoherent return-to-zero (RZ) signals for wavelength-division-multiplexing passive optical networks. For the generation of the RZ signals, we first convert the continuous-wave (CW) amplified spontaneous emission (ASE) into an ASE pulse train with a pulse carver, spectrum-slice it into multiple channels with a waveguide grating router, and then inject them into FP-LDs for data modulation. Thanks to a wide slicing bandwidth of the injected incoherent light, the spectral linewidth of the generated RZ signals is determined by the slicing bandwidth, without being affected by the use of the RZ format. Thus, compared to incoherent non-return-to-zero (NRZ) signals generated with CW-ASE-injected FP-LDs, the RZ signals have a similar spectral linewidth but a wide timing margin between adjacent bits. Thus, the proposed transmitter can offer better dispersion tolerance than the NRZ signals. For example, our experimental demonstration performed at 1.25 Gb/s shows approximately 50% higher dispersion tolerance than the NRZ signals generated with CW ASE-injected FP-LDs. Despite the large slicing bandwidth of 0.67 nm for the injected ASE, we were able to transmit 1.25-Gb/s signals over 45-km standard single-mode fiber without dispersion compensation. The receiver sensitivity is also improved by 1.5 dB by using the RZ format.
Wang, Jing; Xuan, Yi; Qi, Minghao; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan
2015-05-01
A broadband and fabrication-tolerant on-chip scalable mode-division multiplexing (MDM) scheme based on mode-evolution counter-tapered couplers is designed and experimentally demonstrated on a silicon-on-insulator (SOI) platform. Due to the broadband advantage offered by mode evolution, the two-mode MDM link exhibits a very large, -1 dB bandwidth of >180 nm, which is considerably larger than most of the previously reported MDM links whether they are based on mode-interference or evolution. In addition, the performance metrics remain stable for large-device width deviations from the designed valued by -60 nm to 40 nm, and for temperature variations from -25°C to 75°C. This MDM scheme can be readily extended to higher-order mode multiplexing and a three-mode MDM link is measured with less than -10 dB crosstalk from 1.46 to 1.64 μm wavelength range.
Prieto-Blanco, Xesús; Montero-Orille, Carlos; Moreno, Vicente; Mateo, Eduardo F; Liñares, Jesús
2015-04-10
Mode-division multiplexing (MDM) in few-mode fibers is regarded as a promising candidate to increase optical network capacity. A fundamental element for MDM is a modal transformer to LP modes which can be implemented in a free-space basis by using multiregion phase plates, that is, LP plates. Likewise, several wavelengths have to be used due to wavelength multiplexing purposes, optical amplification tasks, and so on. In this work we show that efficient monolithic binary phase plates for different wavelengths can be fabricated by ion-exchange in glass and used for MDM tasks. We introduce an optical characterization method of the chromatic properties of such phase plates which combines the inverse Wentzel-Kramers-Brillouin (IWKB) together with Mach-Zehnder and Michelson-based interferometric techniques. The interferometric method provides a measurement of the phase step for several wavelengths, which characterizes the chromatic properties of the phase plate. Consequently, it is shown that the IWKB method allows us to design and characterize the phase plates in an easy and fast way.
NASA Astrophysics Data System (ADS)
Truong, Cao Dung; Trinh, M. Tuan; Dang, Hoai Bac; Nguyen, Van Tho
2017-02-01
We propose a polarization insensitive two-mode division (de)multiplexer based on a silicon-on-insulator platform operating with a broadband, low insertion and scattering loss, and small crosstalk. By using an asymmetric directional coupler, two-mode (de)multiplexing functions for both polarization TE and TM states can be realized by the numerical simulation. Simulated results using a three dimensional beam propagation method (3D-BPM) incorporated with an effective index method (EIM) show high performance of the device with an operation efficiency above 81.2% (i.e., insertion loss is less than 0.9 dB) in the range of ±5 nm around the central wavelength of 1550 nm. Fabrication tolerances also have proved suitability to current manufacture technologies for the planar waveguides. Besides a low scattering loss of the sidewall roughness and a little influence of dispersion, a small footprint can bring the device to applications of high bitrate and compact on-chip silicon photonic integrated circuits.
NASA Astrophysics Data System (ADS)
Jin, Wei; Zhang, Chongfu; Yuan, Weicheng
2016-02-01
We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.
Quantification of MDL-induced signal degradation in MIMO-OFDM mode-division multiplexing systems.
Tian, Yu; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Chen, Yuanxiang; He, Yongqi; Chen, Zhangyuan
2016-08-22
Mode-division multiplexing (MDM) transmission over few-mode optical fiber has emerged as a promising technology to enhance transmission capacity, in which multiple-input-multiple-output (MIMO) digital signal processing (DSP) after coherent detection is used to demultiplex the signals. Compared with conventional single-mode systems, MIMO-MDM systems suffer non-recoverable signal degradation induced by mode-dependent loss (MDL). In this paper, the MDL-induced signal degradation in orthogonal-frequency-division-multiplexing (OFDM) MDM systems is theoretically quantified in terms of mode-average error vector magnitude (EVM) through frequency domain norm analysis. A novel scalar MDL metric is proposed considering the probability distribution of the practical MDM input signals, and a closed-form expression for EVM measured after zero-force (ZF) MIMO equalization is derived. Simulation results show that the EVM estimations utilizing the novel MDL metric remain unbiased for unrepeated links. For a 6 × 100 km 20-mode MDM transmission system, the estimation accuracy is improved by more than 90% compared with that utilizing traditional condition number (CN) based MDL metric. The proposed MDL metric can be used to predict the MDL-induced SNR penalty in a theoretical manner, which will be beneficial for the design of practical MIMO-MDM systems.
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Reed, Stephen; Dong, Peng; Downer, Michael C.
2010-11-01
We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index "bubble" in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the "bubble". Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the "bubble" from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporal Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.
NASA Technical Reports Server (NTRS)
Chang, Chen J. (Inventor); Liaghati, Jr., Amir L. (Inventor); Liaghati, Mahsa L. (Inventor)
2018-01-01
Methods and apparatus are provided for telemetry processing using a telemetry processor. The telemetry processor can include a plurality of communications interfaces, a computer processor, and data storage. The telemetry processor can buffer sensor data by: receiving a frame of sensor data using a first communications interface and clock data using a second communications interface, receiving an end of frame signal using a third communications interface, and storing the received frame of sensor data in the data storage. After buffering the sensor data, the telemetry processor can generate an encapsulated data packet including a single encapsulated data packet header, the buffered sensor data, and identifiers identifying telemetry devices that provided the sensor data. A format of the encapsulated data packet can comply with a Consultative Committee for Space Data Systems (CCSDS) standard. The telemetry processor can send the encapsulated data packet using a fourth and a fifth communications interfaces.
Surface Acoustic Wave Tag-Based Coherence Multiplexing
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor); Malocha, Donald (Inventor); Saldanha, Nancy (Inventor)
2016-01-01
A surface acoustic wave (SAW)-based coherence multiplexing system includes SAW tags each including a SAW transducer, a first SAW reflector positioned a first distance from the SAW transducer and a second SAW reflector positioned a second distance from the SAW transducer. A transceiver including a wireless transmitter has a signal source providing a source signal and circuitry for transmitting interrogation pulses including a first and a second interrogation pulse toward the SAW tags, and a wireless receiver for receiving and processing response signals from the SAW tags. The receiver receives scrambled signals including a convolution of the wideband interrogation pulses with response signals from the SAW tags and includes a computing device which implements an algorithm that correlates the interrogation pulses or the source signal before transmitting against the scrambled signals to generate tag responses for each of the SAW tags.
Optical sensors and multiplexing for aircraft engine control
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul
1993-02-01
Time division multiplexing of spectral modulation fiber optic sensors for aircraft engine control is presented. The paper addresses the architectural properties, the accuracy, the benefits and problems of different type of sources, the spectral stability and update times using these sources, the size, weight, and power issues, and finally the technology needs regarding FADEC mountability. The fiber optic sensors include temperature, pressure, and position spectral modulation sensors.
A dual slope charge sampling analog front-end for a wireless neural recording system.
Lee, Seung Bae; Lee, Byunghun; Gosselin, Benoit; Ghovanloo, Maysam
2014-01-01
This paper presents a novel dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which amplifies neural signals by taking advantage of the charge sampling concept for analog signal conditioning, such as amplification and filtering. The presented DSCS-AFE achieves amplification, filtering, and sampling in a simultaneous fashion, while consuming very small amount of power. The output of the DSCS-AFE produces a pulse width modulated (PWM) signal that is proportional to the input voltage amplitude. A circular shift register (CSR) utilizes time division multiplexing (TDM) of the PWM pulses to create a pseudo-digital TDM-PWM signal that can feed a wireless transmitter. The 8-channel system-on-a-chip was fabricated in a 0.35-μm CMOS process, occupying 2.4 × 2.1 mm(2) and consuming 255 μW from a 1.8V supply. Measured input-referred noise for the entire system, including the FPGA in order to recover PWM signal is 6.50 μV(rms) in the 288 Hz~10 kHz range. For each channel, sampling rate is 31.25 kHz, and power consumption is 31.8 μW.
Qiu, Jiawei; Xia, Haiyun; Shangguan, Mingjia; Dou, Xiankang; Li, Manyi; Wang, Chong; Shang, Xiang; Lin, Shengfu; Liu, Jianjiang
2017-11-01
An all-fiber, eye-safe and micro-pulse polarization lidar is demonstrated with a polarization-maintaining structure, incorporating a single superconducting nanowire single-photon detector (SNSPD) at 1.5 μm. The time-division multiplexing technique is used to achieve a calibration-free optical layout. A single piece of detector is used to detect the backscatter signals at two orthogonal states in an alternative sequence. Thus, regular calibration of the two detectors in traditional polarization lidars is avoided. The signal-to-noise ratio of the lidar is guaranteed by using an SNSPD, providing high detection efficiency and low dark count noise. The linear depolarization ratio (LDR) of the urban aerosol is observed horizontally over 48 h in Hefei [N31°50'37'', E117°15'54''], when a heavy air pollution is spreading from the north to the central east of China. Phenomena of LDR bursts are detected at a location where a building is under construction. The lidar results show good agreement with the data detected from a sun photometer, a 532 nm visibility lidar, and the weather forecast information.
Yin, Ming; Ghovanloo, Maysam
2013-01-01
We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5-μm standard CMOS process and consumes 4.5 mW from ±1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of ~ 2.26 Mb/s. PMID:19497823
A Dual Slope Charge Sampling Analog Front-End for a Wireless Neural Recording System
Lee, Seung Bae; Lee, Byunghun; Gosselin, Benoit
2015-01-01
This paper presents a novel dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which amplifies neural signals by taking advantage of the charge sampling concept for analog signal conditioning, such as amplification and filtering. The presented DSCS-AFE achieves amplification, filtering, and sampling in a simultaneous fashion, while consuming very small amount of power. The output of the DSCS-AFE produces a pulse width modulated (PWM) signal that is proportional to the input voltage amplitude. A circular shift register (CSR) utilizes time division multiplexing (TDM) of the PWM pulses to create a pseudo-digital TDM-PWM signal that can feed a wireless transmitter. The 8-channel system-on-a-chip was fabricated in a 0.35-µm CMOS process, occupying 2.4 × 2.1 mm2 and consuming 255 µW from a 1.8V supply. Measured input-referred noise for the entire system, including the FPGA in order to recover PWM signal is 6.50 µVrms in the 288 Hz~10 kHz range. For each channel, sampling rate is 31.25 kHz, and power consumption is 31.8 µW. PMID:25570655
Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber.
Vuong, Jordi; Ramantanis, Petros; Frignac, Yann; Salsi, Massimiliano; Genevaux, Philippe; Bendimerad, Djalal F; Charlet, Gabriel
2015-01-26
In mode-division multiplexed (MDM) transmission systems, mode coupling is responsible for inter-modal crosstalk. We consider the transmission of modulated signals over a few-mode fiber (FMF) having low mode coupling and large differential mode group delay in the presence of a non-ideal fiber connection responsible for extra mode coupling. In this context, we first analytically derive the coupling matrix of the multimode connector and we numerically study the dependence of the matrix coefficients as a function of the butt-joint connection characteristics. The numerical results are then validated through an experiment with a five-mode setup. Finally, through numerical simulations, we assess the impact of the connector on the signal quality investigating different receiver digital signal processing (DSP) schemes.
NASA Astrophysics Data System (ADS)
Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.
2018-05-01
One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.
2008-01-01
Recently there has been a growth in the number of fiber optical sensors used for health monitoring in the hostile environment of commercial aircraft. Health monitoring to detect the onset of failure in structural systems from such causes as corrosion, stress corrosion cracking, and fatigue is a critical factor in safety as well in aircraft maintenance costs. This report presents an assessment of an analysis model of optical data networking architectures used for monitoring data signals among these optical sensors. Our model is focused on the design concept of the wavelength-division multiplexing (WDM) method since most of the optical sensors deployed in the aircraft for health monitoring typically operate in a wide spectrum of optical wavelengths from 710 to 1550 nm.
Colorless ONU implementation for WDM-PON using direct-detection optical OFDM
NASA Astrophysics Data System (ADS)
Feng, Min; Luo, Qing-long; Bai, Cheng-lin
2013-03-01
A novel architecture for the colorless optical network unit (ONU) is proposed and experimentally demonstrated with direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM). In this architecture, polarization-division multiplexing is used to reduce the cost at ONU. In optical line terminal (OLT), quadrature amplitude modulation (QAM) intensity-modulated OFDM signal with x-polarization at 10 Gbit/s is transmitted as downstream. At each ONU, the optical OFDM signal is demodulated with direct detection, and γ-polarization signal is modulated for upstream on-off keying (OOK) data at 5 Gbit/s. Simulation results show that the power penalty is negligible for both optical OFDM downstream and the on-off keying upstream signals after over 50 km single-mode fiber (SMF) transmission.
All optical OFDM transmission for passive optical networks
NASA Astrophysics Data System (ADS)
Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram
2017-06-01
This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.
Single-shot thermal ghost imaging using wavelength-division multiplexing
NASA Astrophysics Data System (ADS)
Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai
2018-01-01
Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.
Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K
2014-09-22
In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
Hybrid silica coarse wavelength-division multiplexer transmitter optical subassembly
NASA Astrophysics Data System (ADS)
An, Jun-Ming; Zhang, Jia-Shun; Wang, Liang-Liang; Zhu, Kaiwu; Sun, Bingli; Li, Yong; Hou, Jie; Li, Jian-Guang; Wu, Yuan-Da; Wang, Yue; Yin, Xiao-Jie
2018-01-01
Based on silica arrayed waveguide grating technology, a hybrid integrated transmitter optical subassembly was developed. Four direct-modulating distributed feedback lasers and four focusing microlenses were integrated to a coarse wavelength-division multiplexer (CWDM) on a CuW substrate. The four-channel silica-on-silicon CWDM was fabricated with 1.5% refractive index difference and 20-nm wavelength spacing. The experimental results showed that the output optical power was >3 mW with 45 mA of injection current, the slope efficiency was >0.0833 W/A, and the 3-dB bandwidth was broader than 18.15 GHz. The 1-dB compress points were higher than 18 and 15.8 dBm for frequency of 10 and 18 GHz, respectively.
System for producing chroma signals
NASA Technical Reports Server (NTRS)
Vorhaben, K. H.; Lipoma, P. C. (Inventor)
1977-01-01
A method for obtaining electronic chroma signals with a single scanning-type image device is described. A color multiplexed light signal is produced using an arrangement of dichroic filter stripes. In the particular system described, a two layer filter is used to color modulate external light which is then detected by an image pickup tube. The resulting time division multiplexed electronic signal from the pickup tube is converted by a decoder into a green color signal, and a single red-blue multiplexed signal, which is demultiplexed to produce red and blue color signals. The three primary color signals can be encoded as standard NTSC color signals.
NASA Astrophysics Data System (ADS)
Ruppe, John M.; Pei, Hanzhang; Chen, Siyun; Sheikhsofla, Morteza; Wilcox, Russell B.; Nees, John A.; Galvanauskas, Almantas
2017-03-01
We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10's of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited 300 fs duration using a standard diffraction-grating pulse compressor.
Chow, C W; Lin, Y H
2012-04-09
To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.
Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance
NASA Astrophysics Data System (ADS)
Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald
2008-11-01
As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhengyan; Zgadzaj, Rafal; Wang Xiaoming
2010-11-04
We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index 'bubble' in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the 'bubble'. Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the 'bubble' from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporalmore » Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.« less
Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors
NASA Astrophysics Data System (ADS)
Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.
2016-07-01
Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.
Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks.
Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Zhou, Peng; Tian, Yu; Ren, Fang; Yu, Jinyi; Ge, Dawei; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan
2015-12-14
In this paper, we propose a cost-effective, energy-saving mode-division-multiplexing passive optical network (MDM-PON) scheme utilizing self-homodyne detection for high-speed/capacity access network based on low modal-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). In the proposed scheme, one of the spatial modes is used to transmit a portion of signal carrier (namely pilot-tone) as the local oscillator (LO), while the others are used for signal-bearing channels. At the receiver, the pilot-tone and the signal can be separated without strong crosstalk and sent to the receiver for coherent detection. The spectral efficiency (SE) is significantly enhanced when multiple spatial channels are used. Meanwhile, the self-homodyne detection scheme can effectively suppress laser phase noise, which relaxes the requirement for the lasers line-width at the optical line terminal or optical network units (OLT/ONUs). The digital signal processing (DSP) at the receiver is also simplified since it removes the need for frequency offset compensation and complex phase correction, which reduces the computational complexity and energy consumption. Polarization division multiplexing (PDM) that offers doubled SE is also supported by the scheme. The proposed scheme is scalable to multi-wavelength application when wavelength MUX/DEMUX is utilized. Utilizing the proposed scheme, we demonstrate a proof of concept 4 × 40-Gb/s orthogonal frequency division multiplexing (OFDM) transmission over 55-km FMF using low modal-crosstalk two-mode FMF and MUX/DEMUX with error free operation. Compared with back to back case, less than 1-dB Q-factor penalty is observed after 55-km FMF of the four channels. Signal power and pilot-tone power are also optimized to achieve the optimal transmission performance.
Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.; Priest, David G.
2000-12-01
Large data processing environments in use today can require multi-gigabyte or terabyte capacity in the data communication infrastructure; these requirements are being driven by storage area networks with access to petabyte data bases, new architecture for parallel processing which require high bandwidth optical links, and rapidly growing network applications such as electronic commerce over the Internet or virtual private networks. These datacom applications require high availability, fault tolerance, security, and the capacity to recover from any single point of failure without relying on traditional SONET-based networking. These requirements, coupled with fiber exhaust in metropolitan areas, are driving the introduction of dense optical wavelength division multiplexing (DWDM) in data communication systems, particularly for large enterprise servers or mainframes. In this paper, we examine the technical requirements for emerging nextgeneration DWDM systems. Protocols for storage area networks and computer architectures such as Parallel Sysplex are presented, including their fiber bandwidth requirements. We then describe two commercially available DWDM solutions, a first generation 10 channel system and a recently announced next generation 32 channel system. Technical requirements, network management and security, fault tolerant network designs, new network topologies enabled by DWDM, and the role of time division multiplexing in the network are all discussed. Finally, we present a description of testing conducted on these networks and future directions for this technology.
NASA Astrophysics Data System (ADS)
Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik
2015-05-01
In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.
Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming
2015-02-09
An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.
NASA Astrophysics Data System (ADS)
Braun, Walter; Eglin, Peter; Abello, Ricard
1993-02-01
Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.
NASA Astrophysics Data System (ADS)
Zhang, Haoyuan; Ma, Xiurong; Li, Pengru
2018-04-01
In this paper, we develop a novel pilot structure to suppress transmitter in-phase and quadrature (Tx IQ) imbalance, phase noise and channel distortion for polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. Compared with the conventional approach, our method not only significantly improves the system tolerance of IQ imbalance as well as phase noise, but also provides higher transmission speed. Numerical simulations of PDM CO-OFDM system is used to validate the theoretical analysis under the simulation conditions: the amplitude mismatch 3 dB, the phase mismatch 15°, the transmission bit rate 100 Gb/s and 560 km standard signal-mode fiber transmission. Moreover, the proposed method is 63% less complex than the compared method.
NASA Astrophysics Data System (ADS)
Wei, Chao-Tsang; Shieh, Han-Ping D.
2005-10-01
In this paper, we report the in situ measurement of the temperature stability of narrow-band-pass filters on different types of substrate, for dense wavelength division multiplexing (DWDM) filters in optical-fiber transmission systems. The DWDM filters were designed as all-dielectric Fabry-Perot filters and fabricated by reactive ion-assisted deposition. Ta2O5 and SiO2 were used as high- and low-refractive-index layers, respectively, for constructing the DWDM filters. The accuracy and stability of the coating process were evaluated for fabricating the DWDM filters for the temperature stability of the center wavelength. The center wavelength shift was determined to be greatly dependent on the coefficient of thermal expansion of the substrate on which the filter is deposited.
NASA Astrophysics Data System (ADS)
Nguyen, HoangViet
2015-03-01
We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.
Optimization of few-mode-fiber based mode converter for mode division multiplexing transmission
NASA Astrophysics Data System (ADS)
Xie, Yiwei; Fu, Songnian; Zhang, Minming; Tang, M.; Shum, P.; Liu, Deming
2013-10-01
Few-mode-fiber (FMF) based mode division multiplexing (MDM) is a promising technique to further increase the transmission capacity of single mode fibers. We propose and numerically investigate a fiber-optical mode converter (MC) using long period gratings (LPGs) fabricated on the FMF by point-by-point CO2 laser inscription technique. In order to precisely excite three modes (LP01, LP11, and LP02), both untilted LPG and tilted LPG are comprehensively optimized through the length, index modulation depth, and tilt angle of the LPG in order to achieve a mode contrast ratio (MCR) of more than 20 dB with less wavelength dependence. It is found that the proposed MCs have obvious advantages of high MCR, low mode crosstalk, easy fabrication and maintenance, and compact size.
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
A channel estimation scheme for MIMO-OFDM systems
NASA Astrophysics Data System (ADS)
He, Chunlong; Tian, Chu; Li, Xingquan; Zhang, Ce; Zhang, Shiqi; Liu, Chaowen
2017-08-01
In view of the contradiction of the time-domain least squares (LS) channel estimation performance and the practical realization complexity, a reduced complexity channel estimation method for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) based on pilot is obtained. This approach can transform the complexity of MIMO-OFDM channel estimation problem into a simple single input single output-orthogonal frequency division multiplexing (SISO-OFDM) channel estimation problem and therefore there is no need for large matrix pseudo-inverse, which greatly reduces the complexity of algorithms. Simulation results show that the bit error rate (BER) performance of the obtained method with time orthogonal training sequences and linear minimum mean square error (LMMSE) criteria is better than that of time-domain LS estimator and nearly optimal performance.
NASA Astrophysics Data System (ADS)
Li, Jiao; Hu, Guijun; Gong, Caili; Li, Li
2018-02-01
In this paper, we propose a hybrid time-frequency domain sign-sign joint decision multimodulus algorithm (Hybrid-SJDMMA) for mode-demultiplexing in a 6 × 6 mode division multiplexing (MDM) system with high-order QAM modulation. The equalization performance of Hybrid-SJDMMA was evaluated and compared with the frequency domain multimodulus algorithm (FD-MMA) and the hybrid time-frequency domain sign-sign multimodulus algorithm (Hybrid-SMMA). Simulation results revealed that Hybrid-SJDMMA exhibits a significantly lower computational complexity than FD-MMA, and its convergence speed is similar to that of FD-MMA. Additionally, the bit-error-rate performance of Hybrid-SJDMMA was obviously better than FD-MMA and Hybrid-SMMA for 16 QAM and 64 QAM.
Wavelength division multiplexing of chaotic secure and fiber-optic communications.
Zhang, Jian-Zhong; Wang, An-Bang; Wang, Juan-Fen; Wang, Yun-Cai
2009-04-13
Wavelength division multiplexing (WDM) transmission of chaotic optical communication (COC) and conventional fiber-optic communication (CFOC) is numerically confirmed and analyzed. For an 80-km-long two-channel communication system, a 1-Gb/s secure message in COC channel and 10-Gb/s digital signal in CFOC channel are simultaneously achieved with 100 GHz channel spacing. Our numerical simulations demonstrate that the COC and CFOC can realize no-crosstalk transmission of 80 km when the peak power of CFOC channel is less than 8dBm. We also find that the crosstalk between COC and CFOC does not depend on channel spacing when the channel spacing exceeds 100GHz. Moreover, the crosstalk does not limit channel number by comparing the synchronization performance of COC in four- and six-channel WDM systems.
Receiver IQ mismatch estimation in PDM CO-OFDM system using training symbol
NASA Astrophysics Data System (ADS)
Peng, Dandan; Ma, Xiurong; Yao, Xin; Zhang, Haoyuan
2017-07-01
Receiver in-phase/quadrature (IQ) mismatch is hard to mitigate at the receiver via using conventional method in polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. In this paper, a novel training symbol structure is proposed to estimate IQ mismatch and channel distortion. Combined this structure with Gram Schmidt orthogonalization procedure (GSOP) algorithm, we can get lower bit error rate (BER). Meanwhile, based on this structure one estimation method is deduced in frequency domain which can achieve the estimation of IQ mismatch and channel distortion independently and improve the system performance obviously. Numerical simulation shows that the proposed two methods have better performance than compared method at 100 Gb/s after 480 km fiber transmission. Besides, the calculation complexity is also analyzed.
16-channel DWDM based on 1D defect mode nonlinear photonic crystal
NASA Astrophysics Data System (ADS)
Kalhan, Abhishek; Sharma, Sanjeev; Kumar, Arun
2018-05-01
We propose a sixteen-channel Dense Wavelength Division Multiplexer (DWDM), using the 1-D defect mode nonlinear photonic crystal which is a function of intensity as well as wavelength. Here, we consider an alternate layer of two semiconductor materials in which we found the bandgap of materials when defect layer is introduced then 16-channel dense wavelength division multiplexer is obtained within bandgap. From the theoretical analysis, we can achieve average quality factor of 7800.4, the uniform spectral line-width of 0.2 nm, crosstalk of -31.4 dB, central wavelength changes 0.07 nm/(1GW/cm2) and 100% transmission efficiency. Thus, Sixteen-channel DWDM has very high quality factor, low crosstalk, near 100% power transmission efficiency and small channel spacing (1.44 nm).
FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging
Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing
2016-01-01
In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830
FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.
Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing
2012-07-01
In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.
Power budget of direct-detection ultra-dense WDM-Nyquist-SCM PON with low-complexity SSBI mitigation
NASA Astrophysics Data System (ADS)
Soeiro, Ricardo O. J.; Alves, Tiago M. F.; Cartaxo, Adolfo V. T.
2017-07-01
The power budget (PB) of a direct-detection ultra-dense wavelength division/subcarrier multiplexing (SCM) passive optical network (PON) is assessed numerically for downstream, when a low-complexity iterative signal-to-signal beat interference (SSBI) mitigation technique is employed. Each SCM signal, inserted in a 12.5 GHz width optical channel, is comprised of two or three electrically generated and multiplexed 16-quadrature-amplitude-modulation (QAM) or 32-QAM Nyquist pulse-shaped subcarriers, each with a 7% forward error correction bit rate of 10.7 Gbit/s. The PB and maximum number of optical network units (ONUs) served by each optical line terminal (OLT) are compared with and without SSBI mitigation. When SSBI mitigation is realized, PB gains up to 4.5 dB are attained relative to the PB in the absence of SSBI mitigation. The PB gain enabled by the SSBI mitigation technique proposed in this work increases the number of ONUs served per OLT at least by a factor of 2, for the cases of higher spectral efficiency. In particular, for a SCM signal comprised of three subcarriers, the maximum number of ONUs served per OLT is between 2 and 32, and between 8 and 64, in the absence of SSBI mitigation, and when SSBI mitigation is employed, respectively, depending on the fiber length (up to 50 km) and order of QAM.
Frequency division multiplexed readout of TES detectors with baseband feedback
NASA Astrophysics Data System (ADS)
den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.
2012-09-01
SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.
Fiber optic multiplexed optical transmission systems for space vehicle launch facilities
NASA Technical Reports Server (NTRS)
Bell, C. H.
1975-01-01
Low loss Fiber Optic Cable is being evaluated as a potential future replacement for Kennedy Space Center's 13,000 mile Wideband cable system. In order to make economical use of the wide bandwidth characteristic of glass fibers, a Frequency Division Multiplexing (FDM) scheme has been devised to stack many analog and digital data channels on a single fiber. The Multiplexed Optical Transmission System (MOTS) will offer a unique flexibility of plug-in modularity to meet changing data and bandwidth requirements in addition to the standard 'goodies' of immunity to lightning and other EMI, RFI type interferences, and of smaller size and lighter weight.
Photonic Doppler Velocimetry Multiplexing Techniques: Evaluation of Photonic Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Daykin
This poster reports progress related to photonic technologies. Specifically, the authors developed diagnostic system architecture for a Multiplexed Photonic Doppler Velocimetry (MPDV) that incorporates frequency and time-division multiplexing into existing PDV methodology to provide increased channel count. Current MPDV design increases number of data records per digitizer channel 8x, and also operates as a laser-safe (Class 3a) system. Further, they applied heterodyne interferometry to allow for direction-of-travel determination and enable high-velocity measurements (>10 km/s) via optical downshifting. They also leveraged commercially available, inexpensive and robust components originally developed for telecom applications. Proposed MPDV architectures employ only commercially available, fiber-coupled hardware.
Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1992-01-01
A circuit switching architecture is described for a 30/20 GHz frequency division, multiple access uplink/time division multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Shalkhauser, Mary JO
1992-01-01
A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.
Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy
Klein, Alexander; Witzel, Oliver; Ebert, Volker
2014-01-01
We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508
A rocket-borne pulse-height analyzer for energetic particle measurements
NASA Technical Reports Server (NTRS)
Leung, W.; Smith, L. G.; Voss, H. D.
1979-01-01
The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased.
Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
NASA Astrophysics Data System (ADS)
Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li
2016-07-01
We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose-Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).
Method and apparatus for signal processing in a sensor system for use in spectroscopy
O'Connor, Paul [Bellport, NY; DeGeronimo, Gianluigi [Nesconset, NY; Grosholz, Joseph [Natrona Heights, PA
2008-05-27
A method for processing pulses arriving randomly in time on at least one channel using multiple peak detectors includes asynchronously selecting a non-busy peak detector (PD) in response to a pulse-generated trigger signal, connecting the channel to the selected PD in response to the trigger signal, and detecting a pulse peak amplitude. Amplitude and time of arrival data are output in first-in first-out (FIFO) sequence. An apparatus includes trigger comparators to generate the trigger signal for the pulse-receiving channel, PDs, a switch for connecting the channel to the selected PD, and logic circuitry which maintains the write pointer. Also included, time-to-amplitude converters (TACs) convert time of arrival to analog voltage and an analog multiplexer provides FIFO output. A multi-element sensor system for spectroscopy includes detector elements, channels, trigger comparators, PDs, a switch, and a logic circuit with asynchronous write pointer. The system includes TACs, a multiplexer and analog-to-digital converter.
Exploiting solitons in all-optical networks
NASA Astrophysics Data System (ADS)
Atieh, Ahmad K.
Two key components, the pulse generator and optical signal demultiplexer, needed for the implementation of all-optical soliton-based local area and wide area networks are investigated. The technology of generating a bright soliton pulse train from a sinusoidal pulse train produced as the beat signal of two distributed feedback laser diodes passed through a so-called comblike fiber structure is developed. A design methodology for this structure is discussed, and using this approach a soliton pulse source is constructed generating 1553 nm pulses at a repetition rate of 50 GHz, with pulses of full width at half maximum of 2.0 ps. The fiber structure used to generate the bright soliton pulse train employs the lowest average power for the beat signal ever reported in the literature, and the shortest length of fiber. The same structure (with a different design) is also used to produce a 47.6 GHz dark soliton pulse train with a full width at half maximum of 3.8 ps. This is the first reported use of this structure to generate dark solitons. It is shown that the comblike dispersion profile fiber structures may also be exploited for soliton pulse compression producing widths as short as 200 fs. Two approaches to implementation of optical signal demultiplexing are discussed. These are the nonlinear optical loop mirror (NOLM) and the separation of multilevel time division multiplexed signal pulses in the frequency domain by exploiting the relationship between the pulse's energy (i.e. pulse amplitude and width) and the Raman self-frequency shift. A modification of the NOLM scheme is investigated where feedback that adjusts the power of the control signal (by controlling the gain of an erbium-doped fiber amplifier introduced into the control signal input path) is employed to make the structure insensitive to the state of polarization of the signal and control pulses. In order to better understand the physical phenomena exploited in optical fiber soliton transmission and the above schemes, two experiments are conducted to measure the fiber nonlinear ratio (n2/Aeff) and the Raman time constant (TR) in single-mode fibers at 1550 nm. The fiber nonlinear ratio was measured for standard telecommunication fiber, dispersion shifted fiber, and dispersion compensating fiber. A value of 3.0 fs for the Raman time constant was measured and is recommended for soliton pulse propagation modeling in single-mode optical fibers.
14 CFR 171.319 - Approach elevation monitor system requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...
14 CFR 171.319 - Approach elevation monitor system requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...
14 CFR 171.319 - Approach elevation monitor system requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...
14 CFR 171.315 - Azimuth monitor system requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... an error in the time division multiplex synchronization of a particular azimuth function that the...). If the fault is not cleared within the time allowed, the ground equipment must be shut down. After...
14 CFR 171.315 - Azimuth monitor system requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... an error in the time division multiplex synchronization of a particular azimuth function that the...). If the fault is not cleared within the time allowed, the ground equipment must be shut down. After...
14 CFR 171.315 - Azimuth monitor system requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... an error in the time division multiplex synchronization of a particular azimuth function that the...). If the fault is not cleared within the time allowed, the ground equipment must be shut down. After...
14 CFR 171.319 - Approach elevation monitor system requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...
14 CFR 171.319 - Approach elevation monitor system requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...
Profiling of MOCVD- and MBE-grown VCSEL wafers for WDM sources
NASA Astrophysics Data System (ADS)
Sze, Theresa; Mahbobzadeh, A. M.; Cheng, Julian; Hersee, Stephen D.; Osinski, Marek; Brueck, Steven R. J.; Malloy, Kevin J.
1993-06-01
We compare vertical-cavity surface emitting lasers grown by molecular beam epitaxial methods to those grown by metal organic chemical vapor deposition methods as sources for wavelength-division multiplexing systems.
NASA Technical Reports Server (NTRS)
1980-01-01
Design features and performance parameters are described for three types of wideband multiple channel satellite transponders for use in a 30/20 GHz communications satellite, which provides high data rate trunking service to ten ground station terminals. The three types of transponder are frequency division multiplex (FDM), time division multiplex (TDM), and a hybrid transponder using a combination of FDM and TDM techniques. The wideband multiple beam trunking concept, the traffic distribution between the trunking terminals, and system design constraints are discussed. The receiver front end design, the frequency conversion scheme, and the local oscillator design are described including the thermal interface between the transponders and the satellite. The three designs are compared with regard to performance, weight, power, cost and initial technology. Simplified block diagrams of the baseline transponder designs are included.
Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko
2013-11-04
We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.
Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.
Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong
2015-04-15
A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie
2017-03-01
A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.
NASA Astrophysics Data System (ADS)
Su, Jun; Yang, Ning; Fan, Zhiqiang; Qiu, Qi
2017-10-01
We report on a fiber-optic delay-based quasidistributed temperature sensor with high precision. The device works by detecting the delay induced by the temperature instead of the spectrum. To analyze the working principle of this sensor, the thermal dependence of the fiber-optic delay was theoretically investigated and the delay-temperature coefficient was measured to be 42.2 ps/km°C. In this sensor, quasidistributed measurement of temperature could be easily realized by dense wavelength-division multiplexing and wavelength addressing. We built and tested a prototype quasidistributed temperature sensor with eight testing points equally distributed along a 32.61-km-long fiber. The experimental results demonstrate an average error of <0.1°C. These results prove that this quasidistributed temperature sensor is feasible and that it is a viable option for simple and economic temperature measurements.
Frequency-domain-independent vector analysis for mode-division multiplexed transmission
NASA Astrophysics Data System (ADS)
Liu, Yunhe; Hu, Guijun; Li, Jiao
2018-04-01
In this paper, we propose a demultiplexing method based on frequency-domain independent vector analysis (FD-IVA) algorithm for mode-division multiplexing (MDM) system. FD-IVA extends frequency-domain independent component analysis (FD-ICA) from unitary variable to multivariate variables, and provides an efficient method to eliminate the permutation ambiguity. In order to verify the performance of FD-IVA algorithm, a 6 ×6 MDM system is simulated. The simulation results show that the FD-IVA algorithm has basically the same bit-error-rate(BER) performance with the FD-ICA algorithm and frequency-domain least mean squares (FD-LMS) algorithm. Meanwhile, the convergence speed of FD-IVA algorithm is the same as that of FD-ICA. However, compared with the FD-ICA and the FD-LMS, the FD-IVA has an obviously lower computational complexity.
NASA Astrophysics Data System (ADS)
Nadal, Laia; Svaluto Moreolo, Michela; Fàbrega, Josep M.; Vílchez, F. Javier
2017-07-01
In this paper, we propose an advanced programmable sliceable-bandwidth variable transceiver (S-BVT) with polarization division multiplexing (PDM) capability as a key enabler to fulfill the requirements for future 5G networks. Thanks to its cost-effective optoelectronic front-end based on orthogonal frequency division multiplexing (OFDM) technology and direct-detection (DD), the proposed S-BVT becomes suitable for next generation highly flexible and scalable metro networks. Polarization beam splitters (PBSs) and controllers (PCs), available on-demand, are included at the transceivers and at the network nodes, further enhancing the system flexibility and promoting an efficient use of the spectrum. 40G-100G PDM transmission has been experimentally demonstrated, within a 4-node photonic mesh network (ADRENALINE testbed), implementing a simplified equalization process.
NASA Astrophysics Data System (ADS)
Liao, Luhua; Li, Lemin; Wang, Sheng
2006-12-01
We investigate the protection approach for dynamic multicast traffic under shared risk link group (SRLG) constraints in meshed wavelength-division-multiplexing optical networks. We present a shared protection algorithm called dynamic segment shared protection for multicast traffic (DSSPM), which can dynamically adjust the link cost according to the current network state and can establish a primary light-tree as well as corresponding SRLG-disjoint backup segments for a dependable multicast connection. A backup segment can efficiently share the wavelength capacity of its working tree and the common resources of other backup segments based on SRLG-disjoint constraints. The simulation results show that DSSPM not only can protect the multicast sessions against a single-SRLG breakdown, but can make better use of the wavelength resources and also lower the network blocking probability.
Cates, Joshua W; Bieniosek, Matthew F; Levin, Craig S
2017-01-01
Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu 1.8 Gd 0.2 SiO 5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.
NASA Astrophysics Data System (ADS)
Tian, Bo; Zhang, Qi; Ma, Jianxin; Tao, Ying; Shen, Yufei; Wang, Yang; Zhang, Geng; Zhou, Wenmao; Zhao, Yi; Pan, Xiaolong
2018-07-01
A polarization division multiplexed (PDM) microwave photonic link for the millimeter (MM)-wave signal with hybrid modulation scheme is proposed in this paper, which is based on the combination of quadrature amplitude modulation, multi-pulse pulse-position modulation and return to zero modulation (QAM-MPPM-RZ). In this scheme, the two orthogonal polarization states enable simultaneous transmission of four data flows, which can provide different services for users according to the data rate requirement. To generate hybrid QAM-MPPM-RZ mm-wave signal, the QAM mm-wave signal is directly modulated by MPPM-RZ signal without using digital signal processing (DSP) devices, which reduces the overhead of the encoding process. Then, the generated QAM-MPPM-RZ mm-wave signal is transmitted in PDM microwave photonic link based on SSB modulation. The sparsity characteristic of QAM-MPPM-RZ not only improves the power efficiency, but also decreases the degradation caused by the fiber chromatic dispersion. The simulation results show that, under the constraint of the same transmitted data rate, the PDM microwave photonic link with 50 GHz QAM-MPPM-RZ mm-wave signal achieves much lower levels of bit-error rate than ordinary 32-QAM. In addition, the increase of laser linewidth brings no additional impact to the proposed scheme.
Integrating IR detector imaging systems
NASA Technical Reports Server (NTRS)
Bailey, G. C. (Inventor)
1984-01-01
An integrating IR detector array for imaging is provided in a hybrid circuit with InSb mesa diodes in a linear array, a single J-FET preamplifier for readout, and a silicon integrated circuit multiplexer. Thin film conductors in a fan out pattern deposited on an Al2O3 substrate connect the diodes to the multiplexer, and thick film conductors also connect the reset switch and preamplifier to the multiplexer. Two phase clock pulses are applied with a logic return signal to the multiplexer through triax comprised of three thin film conductors deposited between layers. A lens focuses a scanned image onto the diode array for horizontal read out while a scanning mirror provides vertical scan.
Images multiplexing by code division technique
NASA Astrophysics Data System (ADS)
Kuo, Chung J.; Rigas, Harriett
Spread Spectrum System (SSS) or Code Division Multiple Access System (CDMAS) has been studied for a long time, but most of the attention was focused on the transmission problems. In this paper, we study the results when the code division technique is applied to the image at the source stage. The idea is to convolve the N different images with the corresponding m-sequence to obtain the encrypted image. The superimposed image (summation of the encrypted images) is then stored or transmitted. The benefit of this is that no one knows what is stored or transmitted unless the m-sequence is known. The recovery of the original image is recovered by correlating the superimposed image with corresponding m-sequence. Two cases are studied in this paper. First, the two-dimensional image is treated as a long one-dimensional vector and the m-sequence is employed to obtain the results. Secondly, the two-dimensional quasi m-array is proposed and used for the code division multiplexing. It is shown that quasi m-array is faster when the image size is 256 x 256. The important features of the proposed technique are not only the image security but also the data compactness. The compression ratio depends on how many images are superimposed.
Images Multiplexing By Code Division Technique
NASA Astrophysics Data System (ADS)
Kuo, Chung Jung; Rigas, Harriett B.
1990-01-01
Spread Spectrum System (SSS) or Code Division Multiple Access System (CDMAS) has been studied for a long time, but most of the attention was focused on the transmission problems. In this paper, we study the results when the code division technique is applied to the image at the source stage. The idea is to convolve the N different images with the corresponding m-sequence to obtain the encrypted image. The superimposed image (summation of the encrypted images) is then stored or transmitted. The benefit of this is that no one knows what is stored or transmitted unless the m-sequence is known. The recovery of the original image is recovered by correlating the superimposed image with corresponding m-sequence. Two cases are studied in this paper. First, the 2-D image is treated as a long 1-D vector and the m-sequence is employed to obtained the results. Secondly, the 2-D quasi m-array is proposed and used for the code division multiplexing. It is showed that quasi m-array is faster when the image size is 256x256. The important features of the proposed technique are not only the image security but also the data compactness. The compression ratio depends on how many images are superimposed.
Multiplexed operation of a micromachined ultrasonic droplet ejector array.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2007-10-01
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk between the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of approximately 5 microm diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.
Multiplexed operation of a micromachined ultrasonic droplet ejector array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2007-10-15
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk betweenmore » the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of {approx}5 {mu}m diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.« less
A TDM link with channel coding and digital voice.
NASA Technical Reports Server (NTRS)
Jones, M. W.; Tu, K.; Harton, P. L.
1972-01-01
The features of a TDM (time-division multiplexed) link model are described. A PCM telemetry sequence was coded for error correction and multiplexed with a digitized voice channel. An all-digital implementation of a variable-slope delta modulation algorithm was used to digitize the voice channel. The results of extensive testing are reported. The measured coding gain and the system performance over a Gaussian channel are compared with theoretical predictions and computer simulations. Word intelligibility scores are reported as a measure of voice channel performance.
Add/drop filters based on SiC technology for optical interconnects
NASA Astrophysics Data System (ADS)
Vieira, M.; Vieira, M. A.; Louro, P.; Fantoni, A.; Silva, V.
2014-03-01
In this paper we demonstrate an add/drop filter based on SiC technology. Tailoring of the channel bandwidth and wavelength is experimentally demonstrated. The concept is extended to implement a 1 by 4 wavelength division multiplexer with channel separation in the visible range. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure. Several monochromatic pulsed lights, separately or in a polychromatic mixture illuminated the device. Independent tuning of each channel is performed by steady state violet bias superimposed either from the front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the long and medium wavelength channels and quench strongly the others. Back violet background has the opposite behaviour. This nonlinearity provides the possibility for selective removal or addition of wavelengths. An optoelectronic model is presented and explains the light filtering properties of the add/drop filter, under different optical bias conditions.
Yen, Chih-Ta; Chen, Wen-Bin
2016-01-01
Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved. PMID:27618042
NASA Astrophysics Data System (ADS)
Jose, Tony; Narayanan, Vijayakumar
2018-03-01
Radio over fiber (RoF) systems use a large number of base stations (BSs) and a number of central stations (CSs), which are interlinked together to form the network. RoF systems use multiple wavelengths for communication between CSs or between CSs and BSs to facilitate the huge amount of data traffic due to the multiple services for a large number of users. When erbium-doped fiber amplifiers (EDFAs) are used as amplifiers in such wavelength-division multiplexed systems, the nonuniform gain spectrum of EDFAs causes instability to some of the channels while providing faithful amplification to other channels. To avoid this inconsistency, the gain spectrum of the amplifier needs to be uniform along the whole usable range of wavelengths. A gain contouring technique is proposed to provide uniform gain to all channels irrespective of wavelength. Optical add/drop multiplexers (OADMs) and different lengths of erbium-doped fibers are used to create such a gain contouring mechanism in the optical domain itself. The effect of a cascade of nonuniform gain amplifiers is studied, and the proposed system mitigates the adverse effects caused due to nonuniform gain-induced channel instability effectively.
NASA Astrophysics Data System (ADS)
Guo, Guodong; Hackney, Drew; Pankow, Mark; Peters, Kara
2017-04-01
A spectral profile division multiplexed fiber Bragg grating (FBG) sensor network is described in this paper. The unique spectral profile of each sensor in the network is identified as a distinct feature to be interrogated. Spectrum overlap is allowed under working conditions. Thus, a specific wavelength window does not need to be allocated to each sensor as in a wavelength division multiplexed (WDM) network. When the sensors are serially connected in the network, the spectrum output is expressed through a truncated series. To track the wavelength shift of each sensor, the identification problem is transformed to a nonlinear optimization problem, which is then solved by a modified dynamic multi-swarm particle swarm optimizer (DMS-PSO). To demonstrate the application of the developed network, a network consisting of four FBGs was integrated into a Kevlar woven fabric, which was under a quasi-static load imposed by an impactor head. Due to the substantial radial strain in the fabric, the spectrums of different FBGs were found to overlap during the loading process. With the developed interrogating method, the overlapped spectrum would be distinguished thus the wavelength shift of each sensor can be monitored.
Zhu, Ping; Jafari, Rana; Jones, Travis; Trebino, Rick
2017-10-02
We introduce a simple delay-scanned complete spatiotemporal intensity-and-phase measurement technique based on wavelength-multiplexed holography to characterize long, complex pulses in space and time. We demonstrate it using pulses emerging from multi-mode fiber. This technique extends the temporal range and spectral resolution of the single-frame STRIPED FISH technique without using an otherwise-required expensive ultranarrow-bandpass filter. With this technique, we measured the complete intensity and phase of up to ten fiber modes from a multi-mode fiber (normalized frequency V ≈10) over a ~3ps time range. Spatiotemporal complexities such as intermodal delay, modal dispersion, and material dispersion were also intuitively displayed by the retrieved results. Agreement between the reconstructed color movies and the monitored time-averaged spatial profiles confirms the validity to this delay-scanned STRIPED FISH method.
NASA Astrophysics Data System (ADS)
Yeh, C. H.; Chen, H. Y.; Liu, Y. L.; Chow, C. W.
2015-01-01
We propose and experimentally demonstrate a 380 (2×190) Mbps phosphor-light-emitting-diode (LED) based visible light communication (VLC) system by using 2×2 polarization-multiplexing design for in-building access applications. To the best of our knowledge, this is the first time of employing polarization-multiplexing to achieve a high VLC transmission capacity by using phosphor-based white-LED without optical blue filter. Besides, utilizing the optimum resistor-inductor-capacity (RLC) bias-tee design, it can not only perform the function of combining the direct-current (DC) and the electrical data signal, but also act as a simple LED-Tx circuit. No optical blue filter and complicated post-equalization are required at the Rx. Here, the orthogonal-frequency-division-multiplexing (OFDM) quadrature-amplitude-modulation (QAM) with bit-loading is employed to enhance the transmission data rate.
Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Chi, Nan
2013-06-15
We experimentally demonstrate 2×56 Gb/s two-channel polarization-division-multiplexing quadrature-phase-shift-keying signal delivery over 80 km single-mode fiber-28 and 2 m Q-band (33-50 GHz) wireless link, adopting antenna horizontal- (H-) and vertical-polarization (V-polarization) multiplexing. At the wireless receiver, classic constant-modulus-algorithm equalization based on digital signal processing can realize polarization demultiplexing and remove the crosstalk at the same antenna polarization. By adopting antenna polarization multiplexing, the signal baud rate and performance requirements for optical and wireless devices can be reduced but at the cost of double antennas and devices, while wireless transmission capacity can also be increased but at the cost of stricter requirements for V-polarization. The isolation is only about 19 dB when V-polarization deviation approaches 10°, which will affect high-speed (>50 Gb/s) wireless delivery.
The 10 Hottest Technologies in Telecom.
ERIC Educational Resources Information Center
Flanagan, Patrick
1997-01-01
Presents the fourth annual listing of the 10 "hottest" telecommunications technologies. Describes Web broadcasting, remote-access servers, extranets, Internet telephony, enterprise network directory services, Web site management tools, IP (Internet Protocols) switching, wavelength division multiplexing, digital subscriber lines, and…
Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin
2017-11-01
Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.
NASA Astrophysics Data System (ADS)
Xu, Naijun; Yang, Lingzhen; Zhang, Juan; Zhang, Xiangyuan; Wang, Juanfen; Zhang, Zhaoxia; Liu, Xianglian
2014-03-01
We propose a fault localization method for wavelength division multiplexing passive optical network (WDM-PON). A proof-of-concept experiment was demonstrated by utilizing the wavelength tunable chaotic laser generated from an erbium-doped fiber ring laser with a manual tunable fiber Bragg grating (TFBG) filter. The range of the chaotic lasing wavelength can cover the C-band. Basing on the TFBG filter, we can adjust the wavelength of the chaotic laser to match the WDM-PON channel with identical wavelength. We determined the fault location by calculating the cross-correlation between the reference and return signals. Analysis of the characteristics of the wavelength tunable chaotic laser showed that the breakpoint, the loose connector, and the mismatch connector could be precisely located. A dynamic range of approximately 23.8 dB and a spatial resolution of 4 cm, which was independent of the measuring range, were obtained.
NASA Astrophysics Data System (ADS)
Fischer, Ulrich H. P.; Höll, Sebastian; Haupt, Matthias; Joncic, Mladen
2015-10-01
Polymer optical fibers (POF) offer only transmission so far with one wavelength at 650 nm. In order to increase the overall transfer rate, the key element for wavelength division multiplexing (WDM) over POF will be presented. This element is a demultiplexer (DEMUX), which was designed in polymethylmethacrylate with an optical grating on an aspherical mirror to be produced by injection molding in a further development steps. The master was produced by diamond turning as a master for injection molding replication. The results of the different simulations followed by the development steps and the measurements of the prototype are presented. This prototype is used as a DEMUX in a WDM system with four wavelengths. In the WDM system, bit-error ratio (BER) measurements with an 8.26 Gb/s cumulated data rate in an offline processed discrete multitone modulation technique have been achieved over 100 m SI-POF at a BER of 10-3.
NASA Astrophysics Data System (ADS)
Chaudhary, Sushank; Amphawan, Angela
2017-11-01
In an attempt to meet the goal of distributing millimeter-wave (mm-wave) signals, recent years have witnessed significant relevance being given to combining radio frequency with optical fiber technologies. The future of radio-over-free-space-optics technology aims to build a universal platform for distributing millimeter waves for wireless local area networks without using expensive optical fibers. This work is focused on simultaneous transmission of four independent OFDM-based channels, each carrying 20 Gbps to 40 GHz data, by mode-division multiplexing of Laguerre-Gaussian mode with vortex lens and Hermite-Gaussian mode to realize a total transmission of 80 Gbps to 160 GHz data over 50-km free-space optical link. Moreover, the performance of the proposed system is also evaluated under the influence of various atmospheric turbulences, such as light fog, thin fog, and thick fog.
NASA Astrophysics Data System (ADS)
Passas, Georgios; Freear, Steven; Fawcett, Darren
2010-08-01
Orthogonal frequency division multiplexing (OFDM)-based feed-forward space-time trellis code (FFSTTC) encoders can be synthesised as very high speed integrated circuit hardware description language (VHDL) designs. Evaluation of their FPGA implementation can lead to conclusions that help a designer to decide the optimum implementation, given the encoder structural parameters. VLSI architectures based on 1-bit multipliers and look-up tables (LUTs) are compared in terms of FPGA slices and block RAMs (area), as well as in terms of minimum clock period (speed). Area and speed graphs versus encoder memory order are provided for quadrature phase shift keying (QPSK) and 8 phase shift keying (8-PSK) modulation and two transmit antennas, revealing best implementation under these conditions. The effect of number of modulation bits and transmit antennas on the encoder implementation complexity is also investigated.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun
2016-02-01
We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.
Hybrid WDM/TDM-PON With Wavelength-Selection-Free Transmitters
NASA Astrophysics Data System (ADS)
Shin, Dong Jae; Jung, Dae Kwang; Shin, Hong Seok; Kwon, Jin Wook; Hwang, Seongtaek; Oh, Yunje; Shim, Changsup
2005-01-01
A hybrid wavelength-division-multiplexed/time-division-multiplexed passive optical network serving 128 subscribers with wavelength-selection-free transmitters is presented by cascading 1x16 arrayed-waveguide gratings (AWGs) and 1x8 splitters. The wavelength-selection-free transmitter is an uncooled Fabry-Pérot laser diode (FP-LD) wavelength-locked to an externally injected narrow-band amplified spontaneous emission (ASE). Bit-error rates better than 10^-9 over temperature ranging from 0 to 60 °C are achieved in all 16 wavelength channels using a single FP-LD with an ASE injection of about -15 and -2 dBm in 622-Mb/s upstream and 1.25-Gb/s downstream transmissions over a 10-km feeder fiber, respectively. It is also reported that the ASE injection does not exert penalty upon burst-mode operations of the FP-LDs in the upstream.
NASA Astrophysics Data System (ADS)
Weng, Yi; He, Xuan; Yao, Wang; Pacheco, Michelle C.; Wang, Junyi; Pan, Zhongqi
2017-07-01
In this paper, we explored the performance of space-time block-coding (STBC) assisted multiple-input multiple-output (MIMO) scheme for modal dispersion and mode-dependent loss (MDL) mitigation in spatial-division multiplexed optical communication systems, whereas the weight matrices of frequency-domain equalization (FDE) were updated heuristically using decision-directed recursive least squares (RLS) algorithm for convergence and channel estimation. The proposed STBC-RLS algorithm can achieve 43.6% enhancement on convergence rate over conventional least mean squares (LMS) for quadrature phase-shift keying (QPSK) signals with merely 16.2% increase in hardware complexity. The overall optical signal to noise ratio (OSNR) tolerance can be improved via STBC by approximately 3.1, 4.9, 7.8 dB for QPSK, 16-quadrature amplitude modulation (QAM) and 64-QAM with respective bit-error-rates (BER) and minimum-mean-square-error (MMSE).
NASA Astrophysics Data System (ADS)
Wang, Zhongpeng; Zhang, Shaozhong; Chen, Fangni; Wu, Ming-Wei; Qiu, Weiwei
2017-11-01
A physical encryption scheme for orthogonal frequency-division multiplexing (OFDM) visible light communication (VLC) systems using chaotic discrete cosine transform (DCT) is proposed. In the scheme, the row of the DCT matrix is permutated by a scrambling sequence generated by a three-dimensional (3-D) Arnold chaos map. Furthermore, two scrambling sequences, which are also generated from a 3-D Arnold map, are employed to encrypt the real and imaginary parts of the transmitted OFDM signal before the chaotic DCT operation. The proposed scheme enhances the physical layer security and improves the bit error rate (BER) performance for OFDM-based VLC. The simulation results prove the efficiency of the proposed encryption method. The experimental results show that the proposed security scheme not only protects image data from eavesdroppers but also keeps the good BER and peak-to-average power ratio performances for image-based OFDM-VLC systems.
NASA Astrophysics Data System (ADS)
Kim, Sung-Man; Kwon, Ki-Keun
2017-07-01
The relatively unsatisfactory performance of optical wireless communication (OWC) with respect to WiFi and millimeter-wave communications has formed a key issue preventing its commercialization. We experimentally demonstrate an OWC technology using a combination of positive real-valued orthogonal frequency-division multiplexing (OFDM) and optical beamforming (OB). Due to the intensity-modulation and direct-detection aspects of OWC systems, a positive real-valued OFDM signal can be suitably utilized to maximize the OWC data rate. Further, the OB technique, which can focus laser light on a desired target, can be utilized to increase the OWC data rate and transmission distance. Our experimental results show that the received optical signal power and electrical signal increase by up to 42 and 25 dB, respectively. Further, the data rate increases by a factor of 200 with OB over the conventional approach.
Fiber-connected position localization sensor networks
NASA Astrophysics Data System (ADS)
Pan, Shilong; Zhu, Dan; Fu, Jianbin; Yao, Tingfeng
2014-11-01
Position localization has drawn great attention due to its wide applications in radars, sonars, electronic warfare, wireless communications and so on. Photonic approaches to realize position localization can achieve high-resolution, which also provides the possibility to move the signal processing from each sensor node to the central station, thanks to the low loss, immunity to electromagnetic interference (EMI) and broad bandwidth brought by the photonic technologies. In this paper, we present a review on the recent works of position localization based on photonic technologies. A fiber-connected ultra-wideband (UWB) sensor network using optical time-division multiplexing (OTDM) is proposed to realize high-resolution localization and moving the signal processing to the central station. A 3.9-cm high spatial resolution is achieved. A wavelength-division multiplexed (WDM) fiber-connected sensor network is also demonstrated to realize location which is independent of the received signal format.
Huang, Yongyang; Badar, Mudabbir; Nitkowski, Arthur; Weinroth, Aaron; Tansu, Nelson; Zhou, Chao
2017-01-01
Space-division multiplexing optical coherence tomography (SDM-OCT) is a recently developed parallel OCT imaging method in order to achieve multi-fold speed improvement. However, the assembly of fiber optics components used in the first prototype system was labor-intensive and susceptible to errors. Here, we demonstrate a high-speed SDM-OCT system using an integrated photonic chip that can be reliably manufactured with high precisions and low per-unit cost. A three-layer cascade of 1 × 2 splitters was integrated in the photonic chip to split the incident light into 8 parallel imaging channels with ~3.7 mm optical delay in air between each channel. High-speed imaging (~1s/volume) of porcine eyes ex vivo and wide-field imaging (~18.0 × 14.3 mm2) of human fingers in vivo were demonstrated with the chip-based SDM-OCT system. PMID:28856055
Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating
NASA Technical Reports Server (NTRS)
Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)
1994-01-01
A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.
NASA Astrophysics Data System (ADS)
Khan, Yousaf; Afridi, Muhammad Idrees; Khan, Ahmed Mudassir; Rehman, Waheed Ur; Khan, Jahanzeb
2014-09-01
Hybrid wavelength-division multiplexed/time-division multiplexed passive optical access networks (WDM/TDM-PONs) combine the advance features of both WDM and TDM PONs to provide a cost-effective access network solution. We demonstrate and analyze the transmission performances and power budget issues of a colorless hybrid WDM/TDM-PON scheme. A 10-Gb/s downstream differential phase shift keying (DPSK) and remodulated upstream on/off keying (OOK) data signals are transmitted over 25 km standard single mode fiber. Simulation results show error free transmission having adequate power margins in both downstream and upstream transmission, which prove the applicability of the proposed scheme to future passive optical access networks. The power budget confines both the PON splitting ratio and the distance between the Optical Line Terminal (OLT) and Optical Network Unit (ONU).
Rein, Keith D; Roy, Sukesh; Sanders, Scott T; Caswell, Andrew W; Schauer, Frederick R; Gord, James R
2016-08-10
A mid-infrared fiber-coupled laser system constructed around three time-division-multiplexed quantum-cascade lasers capable of measuring the absorption spectra of CO, CO2, and N2O at 100 kHz over a wide range of operating pressures and temperatures is demonstrated. This system is first demonstrated in a laboratory burner and then used to measure temperature, pressure, and concentrations of CO, CO2, and N2O as a function of time in a detonated mixture of N2O and C3H8. Both fuel-rich and fuel-lean detonation cases are outlined. High-temperature fluctuations during the blowdown are observed. Concentrations of CO are shown to decrease with time for fuel-lean conditions and increase for fuel-rich conditions.
A time and frequency synchronization method for CO-OFDM based on CMA equalizers
NASA Astrophysics Data System (ADS)
Ren, Kaixuan; Li, Xiang; Huang, Tianye; Cheng, Zhuo; Chen, Bingwei; Wu, Xu; Fu, Songnian; Ping, Perry Shum
2018-06-01
In this paper, an efficient time and frequency synchronization method based on a new training symbol structure is proposed for polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The coarse timing synchronization is achieved by exploiting the correlation property of the first training symbol, and the fine timing synchronization is accomplished by using the time-domain symmetric conjugate of the second training symbol. Furthermore, based on these training symbols, a constant modulus algorithm (CMA) is proposed for carrier frequency offset (CFO) estimation. Theoretical analysis and simulation results indicate that the algorithm has the advantages of robustness to poor optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD). The frequency offset estimation range can achieve [ -Nsc/2 ΔfN , + Nsc/2 ΔfN ] GHz with the mean normalized estimation error below 12 × 10-3 even under the condition of OSNR as low as 10 dB.
Single SOA based simultaneous amplitude regeneration for WDM-PDM RZ-PSK signals.
Wu, Wenhan; Yu, Yu; Zou, Bingrong; Yang, Weili; Zhang, Xinliang
2013-03-25
We propose and demonstrate all-optical amplitude regeneration for the wavelength division multiplexing and polarization division multiplexing (WDM-PDM) return-to-zero phase shift keying (RZ-PSK) signals using a single semiconductor optical amplifier (SOA) and subsequent filtering. The regeneration is based on the cross phase modulation (XPM) effect in the saturated SOA and the subsequent narrow filtering. The spectrum of the distorted signal can be broadened due to the phase modulation induced by the synchronous optical clock signal. A narrow band pass filter is utilized to extract part of the broadened spectrum and remove the amplitude noise, while preserving the phase information. The working principle for multi-channel and polarization orthogonality preserving is analyzed. 4-channel dual polarization signals can be simultaneously amplitude regenerated without introducing wavelength and polarization demultiplexing. An average power penalty improvement of 1.75dB can be achieved for the WDM-PDM signals.
NASA Astrophysics Data System (ADS)
Yu, Yajun; Sanchez, Nancy P.; Yi, Fan; Zheng, Chuantao; Ye, Weilin; Wu, Hongpeng; Griffin, Robert J.; Tittel, Frank K.
2017-05-01
A sensor system capable of simultaneous measurements of NO and NO2 was developed using a wavelength modulation-division multiplexing (WMDM) scheme and multi-pass absorption spectroscopy. A continuous wave (CW), distributed-feedback (DFB) quantum cascade laser (QCL) and a CW external-cavity (EC) QCL were employed for targeting a NO absorption doublet at 1900.075 cm-1 and a NO2 absorption line at 1630.33 cm-1, respectively. Simultaneous detection was realized by modulating both QCLs independently at different frequencies and demodulating the detector signals with LabView-programmed lock-in amplifiers. The sensor operated at a reduced pressure of 40 Torr and a data sampling rate of 1 Hz. An Allan-Werle deviation analysis indicated that the minimum detection limits of NO and NO2 can reach sub-ppbv concentration levels with averaging times of 100 and 200 s, respectively.
Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver
NASA Astrophysics Data System (ADS)
Wang, Chao; Yu, Hong-Yi; Zhu, Yi-Jun; Wang, Tao; Ji, Ya-Wei
2018-03-01
In this paper, a multiple light emitting diode (LED) chips parallel transmission (Multi-LED-PT) scheme for underwater visible light communication system with one photon-counting single photon avalanche diode (SPAD) receiver is proposed. As the lamp always consists of multi-LED chips, the data rate could be improved when we drive these multi-LED chips parallel by using the interleaver-division-multiplexing technique. For each chip, the on-off-keying modulation is used to reduce the influence of clipping. Then a serial successive interference cancellation detection algorithm based on ideal Poisson photon-counting channel by the SPAD is proposed. Finally, compared to the SPAD-based direct current-biased optical orthogonal frequency division multiplexing system, the proposed Multi-LED-PT system could improve the error-rate performance and anti-nonlinearity performance significantly under the effects of absorption, scattering and weak turbulence-induced channel fading together.
Du, Jing; Wang, Jian
2017-11-27
Here we design and fabricate a hybrid surface plasmon polarities (SPP) waveguide on the silicon-on-insulator (SOI) photonics platform. The designed hybrid SPP waveguide is composed of a metal ridge, an air gap, and a silicon ridge. We simulate the mode characteristics in the structure and design the waveguide with a wide air gap that can simplify the fabrication process and maintain the advantages of the hybrid SPP mode. The performance of ultrahigh-bandwidth data transmission through the proposed waveguide is then investigated using 161 wavelength-division multiplexing (WDM) channels, each carrying a 11.2-Gbit/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. The bit-error rates (BERs) of all 161 channels are less than 1e-3. The favorable results show the prospect of on-chip optical interconnection using the proposed hybrid SPP waveguide.
Pinkert, T J; Böll, O; Willmann, L; Jansen, G S M; Dijck, E A; Groeneveld, B G H M; Smets, R; Bosveld, F C; Ubachs, W; Jungmann, K; Eikema, K S E; Koelemeij, J C J
2015-02-01
Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil temperatures, measured at various depths by the Royal Netherlands Meteorology Institute (KNMI) are compared with observed frequency variations through this model. A comparison of a nine-day record of optical frequency measurements through the 2×298 km fiber link with soil temperature data shows qualitative agreement. A soil temperature model is used to predict the link stability over longer periods (days-months-years). We show that optical frequency dissemination is sufficiently stable to distribute and compare, e.g., rubidium frequency standards over standard DWDM optical fiber networks using unidirectional fibers.
Independent Orbiter Assessment (IOA): Analysis of the instrumentation subsystem
NASA Technical Reports Server (NTRS)
Howard, B. S.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Instrumentation Subsystem are documented. The Instrumentation Subsystem (SS) consists of transducers, signal conditioning equipment, pulse code modulation (PCM) encoding equipment, tape recorders, frequency division multiplexers, and timing equipment. For this analysis, the SS is broken into two major groupings: Operational Instrumentation (OI) equipment and Modular Auxiliary Data System (MADS) equipment. The OI equipment is required to acquire, condition, scale, digitize, interleave/multiplex, format, and distribute operational Orbiter and payload data and voice for display, recording, telemetry, and checkout. It also must provide accurate timing for time critical functions for crew and payload specialist use. The MADS provides additional instrumentation to measure and record selected pressure, temperature, strain, vibration, and event data for post-flight playback and analysis. MADS data is used to assess vehicle responses to the flight environment and to permit correlation of such data from flight to flight. The IOA analysis utilized available SS hardware drawings and schematics for identifying hardware assemblies and components and their interfaces. Criticality for each item was assigned on the basis of the worst-case effect of the failure modes identified.
Feng, Y.; Alonso-Mori, R.; Barends, T. R. M.; ...
2015-04-10
Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using amore » dedicated beam, with no significant differences in quality.« less
Lei, Yi; Li, Jianqiang; Wu, Rui; Fan, Yuting; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun
2017-06-01
Based on the observed random fluctuation phenomenon of speckle pattern across multimode fiber (MMF) facet and received optical power distribution across three output ports, we experimentally investigate the statistic characteristics of a 3×3 radio frequency multiple-input multiple-output (MIMO) channel enabled by mode division multiplexing in a conventional 50 µm MMF using non-mode-selective three-dimensional waveguide photonic lanterns as mode multiplexer and demultiplexer. The impacts of mode coupling on the MIMO channel coefficients, channel matrix, and channel capacity have been analyzed over different fiber lengths. The results indicate that spatial multiplexing benefits from the greater fiber length with stronger mode coupling, despite a higher optical loss.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Gao, Guanjun; Zhang, Jie; Fei, Aimei; Cvijetic, Milorad
2018-07-01
We have investigated and proposed the use of optical phase conjugation (OPC) technique to mitigate the impact of fiber nonlinearities in mode-division multiplexed transmission systems. Numerical simulations are performed for three wavelengths, each loaded with 200 Gb/s dual-polarization 16-level quadrature amplitude modulation (DP-16QAM) format, in weakly guided two-mode fiber. It is known that differential mode group delay (DMGD) in mode-division multiplexed (MDM) transmission systems could be beneficial for system performance of MDM system with MIMO compensation in place. On the other side, for MDM system with OPC in place, the presence of DMGD may limit the overall benefits since signal power evolution per spatial modes should be symmetrical at the system midpoint in order to realize an effective compensation of the nonlinear effects. Our simulation results show that in the reference case (in the absence of DMGD), the employment of OPC module would lead to an average Q-factor improvement of approximately 10 dB. At the same time, in the presence of DMGD, an average Q-factor improvement would be ∼2.8 dB for WDM case. In addition, due to asymmetrical signal power map, the penalties induced by a periodic amplification process cannot be ideally compensated by the midpoint insertion of OPC. However, by accounting the impacts of both DMGD and asymmetrical signal power map, the insertion of the OPC system will still lead to an average Q-factor improvement of ∼1 dB for WDM channel arrangement.
USDA-ARS?s Scientific Manuscript database
The objective of the study was to use band-based molecular methods including BOX-PCR (Polymerase Chain Reaction) and Pulsed-Field Gel Electrophoresis (PFGE) to determine if genetically related enterococci were found among different stores, food types, or years. Enterococci were also characterized f...
Low-cost coherent receiver for long-reach optical access network using single-ended detection.
Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao
2014-09-15
A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.
NASA Astrophysics Data System (ADS)
Qiao, Yaojun; Li, Ming; Yang, Qiuhong; Xu, Yanfei; Ji, Yuefeng
2015-01-01
Closed-form expressions of nonlinear interference of dense wavelength-division-multiplexed (WDM) systems with dispersion managed transmission (DMT) are derived. We carry out a simulative validation by addressing an ample and significant set of the Nyquist-WDM systems based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) subcarriers at a baud rate of 32 Gbaud per channel. Simulation results show the simple closed-form analytical expressions can provide an effective tool for the quick and accurate prediction of system performance in DMT coherent optical systems.
Design and test of a regenerative satellite transmultiplexer
NASA Astrophysics Data System (ADS)
Hung, Kenny King-Ming
1993-05-01
In a multiple access scheme for regenerative satellite communications, the bulk frequency division multiple access (FDMA) uplink signal is demodulated on board the satellite and then remodulated for time division multiplexing (TDM) downlink transmission. Conversion from frequency to time division multiplex format requires that the uplink signal be frequency demultiplexed and each individual carrier be subsequently demodulated. For thin-route application which consists of a large number of channels with fixed data rate, multicarrier demodulation can be accomplished efficiently by a digital transmultiplexer (TMUX) using a fast Fourier transform processor followed by a bank of per-channel processors. A time domain description of the TMUX algorithm is derived which elucidates how the TMUX functions. The per-channel processor performs timing and carrier recovery for optimum and coherent data detection. Timing recovery is necessarily achieved asynchronously by a filter coefficient interpolation. Carrier recovery is performed using an all-digital phase-locked loop. The combination of both timing and carrier loops is investigated for a multi-user system. The performance of the overall system is assessed over a multi-user, additive white Gaussian noise channel for a bit energy to noise power spectral density ratio down to zero dB.
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Ikeda, Kanami; Kodate, Kashiko
2012-10-01
Using a holographic disc memory on which a huge amount of data can be stored, we constructed an ultra-high-speed, all-optical correlation system. In this method, multiplex recording is, however, restricted to "one page" on "one spot." In addition, signal information must be normalized as data of the same size, even if the object data size is smaller. Therefore, this system is difficult to apply to part of the object data scene (i.e., partial scene searching and template matching), while maintaining high accessibility and programmability. In this paper, we develop a holographic correlation system by a time division recording method that increases the number of multiplex recordings on the same spot. Assuming that a four-channel detector is utilized, 15 parallel correlations are achieved by a time-division recording method. Preliminary correlation experiments with the holographic optical disc setup are carried out by high correlation peaks at a rotational speed of 300 rpm. We also describe the combination of an optical correlation system for copyright content management that searches the Internet and detects illegal contents on video sharing websites.
Prototype data terminal-multiplexer/demultiplexer
NASA Technical Reports Server (NTRS)
Leck, D. E.; Goodwin, J. E.
1972-01-01
The design and operation of a quad redundant data terminal and a multiplexer/demultiplexer (MDU) is described. The most unique feature is the design of the quad redundant data terminal. This is one of the few designs where the unit is fail/op, fail/op, fail/safe. Laboratory tests confirm that the unit will operate satisfactorily with the failure of three out of four channels. Although the design utilizes state-of-the-art technology, the waveform error checks, the voting techniques, and the parity bit checks are believed to be used in unique configurations. Correct word selection routines are also novel. The MDU design, while not redundant, utilizes, the latest state-of-the-art advantages of light coupler and interested amplifiers. Much of the technology employed was an evolution of prior NASA contracts related to the Addressable Time Division Data System. A good example of the earlier technology development was the development of a low level analog multiplexer, a high level analog multiplexer, and a digital multiplexer. A list of all drawings is included for reference and all schematic, block and timing diagrams are incorporated.
Reconfigurable optical multiplexer based on liquid crystals for polymer optical fiber networks
NASA Astrophysics Data System (ADS)
Lallana, P. C.; Vázquez, C.; Pena, J. M. S.; Vergaz, R.
2006-12-01
In this work, different novel 3×1 multiplexer structures for being used in polymer optical fiber networks are proposed. Designs are compact, scalable, and of low consumption, capable of operating in a large wavelength range simultaneously 660, 850, and 1300 nm, due to the use of nematic liquid crystal cells. Light that comes from each input port is handled independently and eight operation modes are possible. Control electronics has been made using a programmable integrated circuit. Electronic system makes available the managing of the optical stage using a computer. An additional four optical sensors have been included for allowing the optical status checking. Finally, a polarization independent multiplexer has been implemented and tested. Insertion losses less than 4 dB and isolation better than 23 dB have been measured. In addition, 30-ms and 15-ms setup and rise times have been obtained. The proposed multiplexer can be used in any polymer optical fiber network, even in perfluorinated graded index one, and it can be specially useful in optical sensor networks, or in coarse wavelength division multiplexing networks.
Highly efficient volume hologram multiplexing in thick dye-doped jelly-like gelatin.
Katarkevich, Vasili M; Rubinov, Anatoli N; Efendiev, Terlan Sh
2014-08-01
Dye-doped jelly-like gelatin is a thick-layer self-developing photosensitive medium that allows single and multiplexed volume phase holograms to be successfully recorded using pulsed laser radiation. In this Letter, we present a method for multiplexed recording of volume holograms in a dye-doped jelly-like gelatin, which provides significant increase in their diffraction efficiency. The method is based on the recovery of the photobleached dye molecule concentration in the hologram recording zone of gel, thanks to molecule diffusion from other unexposed gel areas. As an example, an optical recording of a multiplexed hologram consisting of three superimposed Bragg gratings with mean values of the diffraction efficiency and angular selectivity of ∼75% and ∼21', respectively, is demonstrated by using the proposed method.
Cates, Joshua W.; Bieniosek, Matthew F.; Levin, Craig S.
2017-01-01
Abstract. Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system’s back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a 4×4 array of SensL MicroFC-30035 SiPMs coupled to 2.9×2.9×20 mm3 Lu1.8Gd0.2SiO5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of 198±2 ps FWHM between the 16-pixel multiplexed detector array and a 2.9×2.9×20 mm3 LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance. PMID:28382312
Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler
NASA Astrophysics Data System (ADS)
Li, Wei; Zhang, Jian
2018-06-01
A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.
NASA Astrophysics Data System (ADS)
Kim, Stephan D.; Luo, Jiajun; Buchholz, D. Bruce; Chang, R. P. H.; Grayson, M.
2016-09-01
A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.
Kim, Stephan D; Luo, Jiajun; Buchholz, D Bruce; Chang, R P H; Grayson, M
2016-09-01
A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.
Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing
NASA Astrophysics Data System (ADS)
Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing
2014-12-01
In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.
NASA Astrophysics Data System (ADS)
Huo, Tiancheng; Qi, Li; Zhang, Buyun; Chen, Zhongping
2017-03-01
Light carries both spin and orbital angular momentum (OAM) and the superpositions of these two dynamical properties have found many applications. Many techniques exist to create such light sources but none allow their creation at the femtosecond fiber laser. Here we report on a novel mode-locked Ytterbium-doped fiber laser that generates femtosecond pulses with generalized vector vortex states. The controlled generation of such pulses such as azimuthally and radially polarized light with definite orbital angular momentum modes are demonstrated. A unidirectional ring cavity constructed with the Yb-doped fiber placed at the end of the fiber section to reduces unnecessary nonlinear effects is employed for self-starting operation. Pairs of diffraction gratings are used for compensating the normal group velocity dispersion of the fiber and other elements. Mode-locked operation is achieved based on nonlinear polarization evolution, which is mainly implemented with the single mode fiber, the bulk wave plates and the variable spiral plates (q-plate with topological charge q=0.5). The conversion from spin angular momentum to the OAM and reverse inside the laser cavity are realized by means of a quarter-wave plate and a q-plate so that the polarization control was mapped to OAM mode control. The fiber laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability and portability.
Sun, Tengfen; Liu, Minwen; Li, Yingchun; Wang, Min
2017-10-16
In this paper, we experimentally investigate the performance of crosstalk mitigation for 16-ary quadrature amplitude modulation orthogonal frequency division multiplexing (16QAM-OFDM) signals carrying orbital angular momentum (OAM) multiplexed free-space-optical communication (FSO) links using the pilot assisted Least Square (LS) algorithm. At the demodulating spatial light modulators (SLMs), we launch the distorted phase holograms which have the information of atmospheric turbulence obeying the modified Hill spectrum. And crosstalk can be introduced by these holograms with the experimental verification. The pilot assisted LS algorithm can efficiently improve the quality of system performance, the points of constellations get closer to the reference points and around two orders of magnitude improvement of bit-error rate (BER) is obtained.
Low-cost CWDM transmitter package
NASA Astrophysics Data System (ADS)
Bhandarkar, Navin; Castillega, Jaime
2005-03-01
A low-cost coarse-wavelength-division multiplexer (CWDM) transmitter that combines four channels (wavelengths) in the infrared spectrum (~1310 nm) in a small form-factor un-cooled package is demonstrated. The package utilizes precision molded optics to multiplex beams from four grating-outcoupled surface-emitting (GSE) lasers into a single beam suitable for coupling into multimode fiber. This paper summarizes the optical and opto-mechanical design, fabrication and assembly of prototypes, and optical, thermal and electrical measurement results of the prototypes. This unique design enables multiplexing of wavelengths without the use of filters, waveguides, couplers and fiber splicing. Commercial fabrication and alignment technology is used to manufacture the package, resulting in a more robust, reliable and low-cost transmitter. The transmitter package is enabled by the unique characteristics of the long-wavelength GSE laser.
NASA Astrophysics Data System (ADS)
Xin, Wei
1997-10-01
A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.
Multichannel demultiplexer/demodulator technologies for future satellite communication systems
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.
1992-01-01
NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.
Radar Based Navigation in Unknown Terrain
2012-12-31
localization and mapping ( SLAM ) approach. The radar processing algorithms detect strong, persistent, and stationary reflectors embedded in the...Global System for Mobile Communications . . . . . . . . . 2 LIDAR Light Detection and Ranging . . . . . . . . . . . . . . . . 2 SAR Synthetic Aperture...22 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 25 FDM Frequency Division Multiplexing
Particle field diagnose using angular multiplexing volume holography
NASA Astrophysics Data System (ADS)
Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua
2017-08-01
The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.
Qu, Zhen; Djordjevic, Ivan B
2017-04-03
A high-speed four-state continuous-variable quantum key distribution (CV-QKD) system, enabled by wavelength-division multiplexing, polarization multiplexing, and orbital angular momentum (OAM) multiplexing, is studied in the presence of atmospheric turbulence. The atmospheric turbulence channel is emulated by two spatial light modulators (SLMs) on which two randomly generated azimuthal phase patterns yielding Andrews' spectrum are recorded. The phase noise is mitigated by the phase noise cancellation (PNC) stage, and channel transmittance can be monitored directly by the D.C. level in our PNC stage. After the system calibration, a total SKR of >1.68 Gbit/s can be reached in the ideal system, featured with lossless channel and free of excess noise. In our experiment, based on commercial photodetectors, the minimum transmittances of 0.21 and 0.29 are required for OAM states of 2 (or -2) and 6 (or -6), respectively, to guarantee the secure transmission, while a total SKR of 120 Mbit/s can be obtained in case of mean transmittances.
About CIB | Division of Cancer Prevention
The Consortium was created to improve cancer screening, early detection of aggressive cancer, assessment of cancer risk and cancer diagnosis aimed at integrating multi-modality imaging strategies and multiplexed biomarker methodologies into a singular complementary approach. Investigator perform collaborative studies, exchange information, share knowledge and leverage common
NASA Astrophysics Data System (ADS)
Wang, Jianping; Zhang, Peiran; Lu, Huimin; Feng, LiFang
2017-06-01
An orthogonal frequency division multiplexing (OFDM) technique called flipped OFDM (flip-OFDM) is apposite for a visible light communication system that needs the transmitted signal to be real and positive. Flip-OFDM uses two consecutive OFDM subframes to transmit the positive and negative parts of the signal. However, peak-to-average power ratio (PAPR) for flip-OFDM is increased tremendously due to the low value of total average power that arises from many zero values in both the positive and flipped frames. We first analyze the performance of flip-OFDM and perform a comparison with the conventional DC-biased OFDM (DCO-OFDM); then we propose a flip-OFDM scheme combined with μ-law mapping to reduce the high PAPR. The simulation results show that the PAPR of the system is reduced about 17.2 and 5.9 dB when compared with the normal flip-OFDM and DCO-OFDM signals, respectively.
NASA Astrophysics Data System (ADS)
Lim, Kwon-Seob; Yu, Hong-Yeon; Park, Hyoung-Jun; Kang, Hyun Seo; Jang, Jae-Hyung
2016-06-01
Low-cost single-mode four-channel optical transmitter and receiver modules using the wavelength-division multiplexing (WDM) method have been developed for long-reach fiber optic applications. The single-mode four-channel WDM optical transmitter and receiver modules consist of two dual-wavelength optical transmitter and receiver submodules, respectively. The integration of two channels in a glass-sealed transistor outline-can package is an effective way to reduce cost and size and to extend the number of channels. The clear eye diagrams with more than about 6 dB of the extinction ratio and the minimum receiver sensitivity of lower than -16 dBm at a bit error rate of 10-12 have been obtained for the transmitter and receiver modules, respectively, at 5 Gbps/channel. The 4K ultrahigh definition contents have been transmitted over a 1-km-long single-mode fiber using a pair of proposed four-channel transmitter optical subassembly and receiver optical subassembly.
Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON
NASA Astrophysics Data System (ADS)
Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue
2014-12-01
WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.
Bi, Meihua; Xiao, Shilin; He, Hao; Yi, Lilin; Li, Zhengxuan; Li, Jun; Yang, Xuelin; Hu, Weisheng
2013-07-15
We propose a symmetric 40-Gb/s aggregate rate time and wavelength division multiplexed passive optical network (TWDM-PON) system with the capability of simultaneous downstream differential phase shift keying (DPSK) signal demodulation and upstream signal chirp management based on delay interferometer (DI). With the bi-pass characteristic of DI, we experimentally demonstrate the bidirectional transmission of signals at 10-Gb/s per wavelength, and achieve negligible power penalties after 50-km single mode fiber (SMF). For the uplink transmission with DI, a ~11-dB optical power budget improvement at a bit error ratio of 1e-3 is obtained and the extinction ratio (ER) of signal is also improved from 3.4 dB to 13.75 dB. Owing to this high ER, the upstream burst-mode transmitting is successfully presented in term of time-division multiplexing. Moreover, in our experiment, a ~38-dB power budget is obtained to support 256 users with 50-km SMF transmission.
NASA Astrophysics Data System (ADS)
Nakamura, Hirotaka; Suzuki, Hiro; Kani, Jun-Ichi; Iwatsuki, Katsumi
2006-05-01
This paper proposes and demonstrates a reliable wide-area wavelength-division-multiplexing passive optical network (WDM-PON) with a wavelength-shifted protection scheme. This protection scheme utilizes the cyclic property of 2 × N athermal arrayed-waveguide grating and two kinds of wavelength allocations, each of which is assigned for working and protection, respectively. Compared with conventional protection schemes, this scheme does not need a 3-dB optical coupler, thus leading to ensure the large loss budget that is suited for wide-area WDM-PONs. It also features a passive access node and does not have a protection function in the optical network unit (ONU). The feasibility of the proposed scheme is experimentally confirmed by the carrier-distributed WDM-PON with gigabit Ethernet interface (GbE-IF) and 10-GbE-IF, in which the ONU does not employ a light source, and all wavelengths for upstream signals are centralized and distributed from the central office.
NASA Astrophysics Data System (ADS)
Bindhaiq, Salem; Supa'at, Abu Sahmah M.; Zulkifli, Nadiatulhuda; Shaddad, Redhwan Q.; Mataria, Abdallah
2014-07-01
A high data transmission rate is the main requirement for next-generation telecommunication networks. A design for a 40 Gb/s time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 is presented. The use of a modulated grating Y-branch (MG-Y) laser is proposed as an upstream tunable colorless laser source to upgrade the optical network unit. The electronically tuned MG-Y externally modulated laser with a 10 Gb/s modulation rate is applied to a TWDM-PON and presented across a 3.2-nm tuning range. The performance of the proposed laser is analyzed in terms of bit error rate, eye diagram, and optical signal-to-noise ratio. The proposed TWDM-PON achieved an aggregated data rate of 40 Gb/s along 40 km of bidirectional fiber at a 1:128 splitting ratio without amplification and dispersion compensation.
NASA Technical Reports Server (NTRS)
Bates, Harry
1990-01-01
A number of optical communication lines are now in use at the Kennedy Space Center (KSC) for the transmission of voice, computer data, and video signals. Presently, all of these channels utilize a single carrier wavelength centered near 1300 nm. The theoretical bandwidth of the fiber far exceeds the utilized capacity. Yet, practical considerations limit the usable bandwidth. The fibers have the capability of transmitting a multiplicity of signals simultaneously in each of two separate bands (1300 and 1550 nm). Thus, in principle, the number of transmission channels can be increased without installing new cable if some means of wavelength division multiplexing (WDM) can be utilized. The main goal of these experiments was to demonstrate that a factor of 2 increase in bandwidth utilization can share the same fiber in both a unidirectional configuration and a bidirectional mode of operation. Both signal and multimode fiber are installed at KSC. The great majority is multimode; therefore, this effort concentrated on multimode systems.
Performance Enhancement of Bidirectional TWDM-PON by Rayleigh Backscattering Mitigation
NASA Astrophysics Data System (ADS)
Elewah, Ibrahim A.; Wadie, Martina N.; Aly, Moustafa H.
2018-01-01
A bidirectional time wavelength division multiplexing-passive optical network (TWDM-PON) with a centralized light source (CLS) is designed and evaluated. TWDM-PON is the promising solution for PON future expansion and migration. The most important issue that limits optical fiber transmission length is the interferometric noise caused by Rayleigh backscattering (RB). In this study, we demonstrate a TWDM-PON architecture with subcarrier at the remote node (RN) to mitigate the RB effect. A successful transmission with 8 optical channels is achieved using wavelength division multiplexing (WDM). Each optical channel is splitted into 8 time slots to achieve TWDM. The proposed scheme is operated over 20 km bidirectional single mode fiber (SMF). The proposed system has the advantage of expanding the downstream (DS) capacity to be 160 Gb/s (8 channels×20 Gb/s) and 20 Gb/s (8 channels×2.5 Gb/s) for the upstream (US) transmission capacity. This is accomplished by a remarkable bit error rate (BER) and low complexity.
[Study on high accuracy detection of multi-component gas in oil-immerse power transformer].
Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang
2013-12-01
In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.
NASA Astrophysics Data System (ADS)
Wu, Bin; Yin, Hongxi; Qin, Jie; Liu, Chang; Liu, Anliang; Shao, Qi; Xu, Xiaoguang
2016-09-01
Aiming at the increasing demand of the diversification services and flexible bandwidth allocation of the future access networks, a flexible passive optical network (PON) scheme combining time and wavelength division multiplexing (TWDM) with point-to-point wavelength division multiplexing (PtP WDM) overlay is proposed for the next-generation optical access networks in this paper. A novel software-defined optical distribution network (ODN) structure is designed based on wavelength selective switches (WSS), which can implement wavelength and bandwidth dynamical allocations and suits for the bursty traffic. The experimental results reveal that the TWDM-PON can provide 40 Gb/s downstream and 10 Gb/s upstream data transmission, while the PtP WDM-PON can support 10 GHz point-to-point dedicated bandwidth as the overlay complement system. The wavelengths of the TWDM-PON and PtP WDM-PON are allocated dynamically based on WSS, which verifies the feasibility of the proposed structure.
NASA Astrophysics Data System (ADS)
Wang, Hongyan
2017-04-01
This paper addresses the waveform optimization problem for improving the detection performance of multi-input multioutput (MIMO) orthogonal frequency division multiplexing (OFDM) radar-based space-time adaptive processing (STAP) in the complex environment. By maximizing the output signal-to-interference-and-noise-ratio (SINR) criterion, the waveform optimization problem for improving the detection performance of STAP, which is subjected to the constant modulus constraint, is derived. To tackle the resultant nonlinear and complicated optimization issue, a diagonal loading-based method is proposed to reformulate the issue as a semidefinite programming one; thereby, this problem can be solved very efficiently. In what follows, the optimized waveform can be obtained to maximize the output SINR of MIMO-OFDM such that the detection performance of STAP can be improved. The simulation results show that the proposed method can improve the output SINR detection performance considerably as compared with that of uncorrelated waveforms and the existing MIMO-based STAP method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurkin, N V; Konyshev, V A; Novikov, A G
2015-01-31
We have studied experimentally and using numerical simulations and a phenomenological analytical model the dependences of the bit error rate (BER) on the signal power and length of a coherent single-span communication line with transponders employing polarisation division multiplexing and four-level phase modulation (100 Gbit s{sup -1} DP-QPSK format). In comparing the data of the experiment, numerical simulations and theoretical analysis, we have found two optimal powers: the power at which the BER is minimal and the power at which the fade margin in the line is maximal. We have derived and analysed the dependences of the BER on themore » optical signal power at the fibre line input and the dependence of the admissible input signal power range for implementation of the communication lines with a length from 30 – 50 km up to a maximum length of 250 km. (optical transmission of information)« less
Improving performance of channel equalization in RSOA-based WDM-PON by QR decomposition.
Li, Xiang; Zhong, Wen-De; Alphones, Arokiaswami; Yu, Changyuan; Xu, Zhaowen
2015-10-19
In reflective semiconductor optical amplifier (RSOA)-based wavelength division multiplexed passive optical network (WDM-PON), the bit rate is limited by low modulation bandwidth of RSOAs. To overcome the limitation, we apply QR decomposition in channel equalizer (QR-CE) to achieve successive interference cancellation (SIC) for discrete Fourier transform spreading orthogonal frequency division multiplexing (DFT-S OFDM) signal. Using an RSOA with a 3-dB modulation bandwidth of only ~800 MHz, we experimentally demonstrate a 15.5-Gb/s over 20-km SSMF DFT-S OFDM transmission with QR-CE. The experimental results show that DFTS-OFDM with QR-CE attains much better BER performance than DFTS-OFDM and OFDM with conventional channel equalizers. The impacts of several parameters on QR-CE are investigated. It is found that 2 sub-bands in one OFDM symbol and 1 pilot in each sub-band are sufficient to achieve optimal performance and maintain the high spectral efficiency.
Würthwein, Thomas; Brinkmann, Maximilian; Hellwig, Tim; Fallnich, Carsten
2017-11-21
We present the simultaneous detection of the spectrum and the complete polarization state of a multiplex coherent anti-Stokes Raman scattering signal with a fast division-of-amplitude spectro-polarimeter. The spectro-polarimeter is based on a commercial imaging spectrograph, a birefringent wedge prism, and a segmented polarizer. Compared to the standard rotating-retarder fixed-analyzer spectro-polarimeter, only a single measurement is required and an up to 21-fold reduced acquisition time is shown. The measured Stokes parameters allow us to differentiate between vibrational symmetries and to determine the depolarization ratio ρ by data post-processing.
A reconfigurable multicarrier demodulator architecture
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Jamali, M. M.
1991-01-01
An architecture based on parallel and pipline design approaches has been developed for the Frequency Division Multiple Access/Time Domain Multiplexed (FDMA/TDM) conversion system. The architecture has two main modules namely the transmultiplexer and the demodulator. The transmultiplexer has two pipelined modules. These are the shared multiplexed polyphase filter and the Fast Fourier Transform (FFT). The demodulator consists of carrier, clock, and data recovery modules which are interactive. Progress on the design of the MultiCarrier Demodulator (MCD) using commercially available chips and Application Specific Integrated Circuits (ASIC) and simulation studies using Viewlogic software will be presented at the conference.
NASA Astrophysics Data System (ADS)
Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Claus, Richard O.
1995-05-01
Dielectric-multilayer-filter-based, optical-fiber temperature sensors based on differential spectral transmittance/reflectivity were shown experimentally. A resolution of 0.2 C was achieved over a measurement range of 30-120 C. The sensor was shown to possess low immunity to variations in light-source power and fiber-bending loss. A wavelength-division-multiplexed sensing system was also fabricated by cascading three such filters with distinct cutoff wavelengths along a single multimode fiber. A resolution of 0.5 C was achieved over a temperature spectrum of 50-100 C. Furthermore, cross talk between sensors was examined.
NASA Astrophysics Data System (ADS)
Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.
2017-07-01
We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N
We report the fabrication of narrowband frequency-selective filters for the 1.5-{mu}m telecom window, which include a single-mode polymer waveguide with a submicron Bragg grating inscribed by a helium-cadmium laser. The filters have a reflectance R > 98 % and a nearly rectangular reflection band with a bandwidth {Delta}{lambda}{approx}0.4nm. They can be used as components of optical multiplexers/demultiplexers for combining and separating signals in high-speed dense wavelength-division multiplexed optical fibre communication systems. (laser components)
A unique modulation system for two channel data transmission
NASA Technical Reports Server (NTRS)
Melrose, B. T.
1972-01-01
A simple low cost system is reported for the telemetry of information from meteorological rocket payloads including parachute borne systems. It uses S- or L-band microwave links with low cost oscillator type transmitters. An extension of this system to transmit two channels of data simultaneously by standard time and frequency multiplexing techniques as a sampled pulse is described. One channel is represented by the pulse repetition rate while the other channel is represented by the instantaneous duty cycle of the pulse train.
Spatiotemporal multiplexing based on hexagonal multicore optical fibres
Chekhovskoy, I. S.; Sorokina, M. A.; Rubenchik, A. M.; ...
2017-12-27
Based on a genetic algorithm, we have solved in this paper the problem of finding the parameters of optical Gaussian pulses which make their efficient nonlinear combining possible in one of the peripheral cores of a 7-core hexagonal fibre. Two approaches based on individual selection of peak powers and field phases of the pulses launched into the fibre are considered. Finally, the found regimes of Gaussian pulse combining open up new possibilities for the development of devices for controlling optical radiation.
Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton
NASA Astrophysics Data System (ADS)
Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming
2016-10-01
We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.
Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton
Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming
2016-01-01
We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems. PMID:27708427
Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton.
Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming
2016-10-06
We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.
Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon
2017-04-15
We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.
Nishiyama, Michiko; Igawa, Hirotaka; Kasai, Tokio; Watanabe, Naoyuki
2015-02-10
In this paper, we propose a delayed transmission/reflection ratiometric reflectometry (DTR(3)) scheme using a long-gauge fiber Bragg grating (FBG), which can be used for dynamic structural deformation monitoring of structures of between a few to tens of meters in length, such as airplane wings and helicopter blades. FBG sensors used for multipoint sensing generally employ wavelength division multiplexing techniques utilizing several Bragg central wavelengths; by contrast, the DTR(3) interrogator uses a continuous pulse array based on a pseudorandom number code and a long-gauge FBG utilizing a single Bragg wavelength and composed of simple hardware devices. The DTR(3) scheme can detect distributed strain at a 50 cm spatial resolution using a long-gauge FBG with a 100 Hz sampling rate. We evaluated the strain sensing characteristics of the long-gauge FBG when attached to a 2.5 m aluminum bar and a 5.5 m helicopter blade model, determining these structure natural frequencies in free vibration tests and their distributed strain characteristics in static tests.
A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems
NASA Astrophysics Data System (ADS)
Takata, Kenta; Marandi, Alireza; Hamerly, Ryan; Haribara, Yoshitaka; Maruo, Daiki; Tamate, Shuhei; Sakaguchi, Hiromasa; Utsunomiya, Shoko; Yamamoto, Yoshihisa
2016-09-01
Many tasks in our modern life, such as planning an efficient travel, image processing and optimizing integrated circuit design, are modeled as complex combinatorial optimization problems with binary variables. Such problems can be mapped to finding a ground state of the Ising Hamiltonian, thus various physical systems have been studied to emulate and solve this Ising problem. Recently, networks of mutually injected optical oscillators, called coherent Ising machines, have been developed as promising solvers for the problem, benefiting from programmability, scalability and room temperature operation. Here, we report a 16-bit coherent Ising machine based on a network of time-division-multiplexed femtosecond degenerate optical parametric oscillators. The system experimentally gives more than 99.6% of success rates for one-dimensional Ising ring and nondeterministic polynomial-time (NP) hard instances. The experimental and numerical results indicate that gradual pumping of the network combined with multiple spectral and temporal modes of the femtosecond pulses can improve the computational performance of the Ising machine, offering a new path for tackling larger and more complex instances.
Chen, Jiageng; Liu, Qingwen; He, Zuyuan
2017-09-04
We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.
NASA Astrophysics Data System (ADS)
Ko, Guen Bae; Lee, Jae Sung
2017-03-01
We propose a novel single transmission-line readout method for whole-body time-of-flight positron emission tomography applications, without compromising on performance. The basic idea of the proposed multiplexing method is the addition of a specially prepared tag signal ahead of the scintillation pulse. The tag signal is a square pulse that encodes photon arrival time and channel information. The 2D position of a silicon photomultiplier (SiPM) array is encoded by the specific width and height of the tag signal. A summing amplifier merges the tag and scintillation signals of each channel, and the final output signal can be acquired with a one-channel digitizer. The feasibility and performance of the proposed method were evaluated using a 1:1 coupled detector consisting of 4 × 4 array of LGSO crystals and 16 channel SiPM. The sixteen 3 mm LGSO crystals were clearly separated in the crystal-positioning map with high reliability. The average energy resolution and coincidence resolving time were 11.31 ± 0.55% and 264.7 ± 10.7 ps, respectively. We also proved that the proposed method does not degrade timing performance with increasing multiplexing ratio. The two types of LGSO crystals (L0.95GSO and L0.20GSO) in phoswich detector were also clearly identified with the high-reliability using pulse shape discrimination, thanks to the well-preserved pulse shape information. In conclusion, the proposed multiplexing method allows decoding of the 3D interaction position of gamma rays in the scintillation detector with single-line readout.
Ko, Guen Bae; Lee, Jae Sung
2017-03-21
We propose a novel single transmission-line readout method for whole-body time-of-flight positron emission tomography applications, without compromising on performance. The basic idea of the proposed multiplexing method is the addition of a specially prepared tag signal ahead of the scintillation pulse. The tag signal is a square pulse that encodes photon arrival time and channel information. The 2D position of a silicon photomultiplier (SiPM) array is encoded by the specific width and height of the tag signal. A summing amplifier merges the tag and scintillation signals of each channel, and the final output signal can be acquired with a one-channel digitizer. The feasibility and performance of the proposed method were evaluated using a 1:1 coupled detector consisting of 4 × 4 array of LGSO crystals and 16 channel SiPM. The sixteen 3 mm LGSO crystals were clearly separated in the crystal-positioning map with high reliability. The average energy resolution and coincidence resolving time were 11.31 ± 0.55% and 264.7 ± 10.7 ps, respectively. We also proved that the proposed method does not degrade timing performance with increasing multiplexing ratio. The two types of LGSO crystals (L 0.95 GSO and L 0.20 GSO) in phoswich detector were also clearly identified with the high-reliability using pulse shape discrimination, thanks to the well-preserved pulse shape information. In conclusion, the proposed multiplexing method allows decoding of the 3D interaction position of gamma rays in the scintillation detector with single-line readout.
A New Pulse Pileup Rejection Method Based on Position Shift Identification
NASA Astrophysics Data System (ADS)
Gu, Z.; Prout, D. L.; Taschereau, R.; Bai, B.; Chatziioannou, A. F.
2016-02-01
Pulse pileup events degrade the signal-to-noise ratio (SNR) of nuclear medicine data. When such events occur in multiplexed detectors, they cause spatial misposition, energy spectrum distortion and degraded timing resolution, which leads to image artifacts. Pulse pileup is pronounced in PETbox4, a bench top PET scanner dedicated to high sensitivity and high resolution imaging of mice. In that system, the combination of high absolute sensitivity, long scintillator decay time (BGO) and highly multiplexed electronics lead to a significant fraction of pulse pileup, reached at lower total activity than for comparable instruments. In this manuscript, a new pulse pileup rejection method named position shift rejection (PSR) is introduced. The performance of PSR is compared with a conventional leading edge rejection (LER) method and with no pileup rejection implemented (NoPR). A comprehensive digital pulse library was developed for objective evaluation and optimization of the PSR and LER, in which pulse waveforms were directly recorded from real measurements exactly representing the signals to be processed. Physical measurements including singles event acquisition, peak system sensitivity and NEMA NU-4 image quality phantom were also performed in the PETbox4 system to validate and compare the different pulse pile-up rejection methods. The evaluation of both physical measurements and model pulse trains demonstrated that the new PSR performs more accurate pileup event identification and avoids erroneous rejection of valid events. For the PETbox4 system, this improvement leads to a significant recovery of sensitivity at low count rates, amounting to about 1/4th of the expected true coincidence events, compared to the LER method. Furthermore, with the implementation of PSR, optimal image quality can be achieved near the peak noise equivalent count rate (NECR).
Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.
Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio
2010-08-02
We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.
Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.
Marti, J; Capmany, J
1996-12-20
We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.
A 16-channel cassette tape recorder system for clinical EEGs.
Barlow, J S
1975-02-01
A 16-channel EEG tape recorder system having a frequency response of DC-100 Hz for each channel is described. The system utilized standard commercially available highfidelity audio tape decks in conjunction with specially designed circuits for time-division multiplexing a balanced amplitude modulation
Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources
NASA Astrophysics Data System (ADS)
Marti, Javier; Capmany, Jose
1996-12-01
We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Tian, Qinghua; Tian, Feng; Qu, Zhaowei; Yan, Cheng; Khan, Muhammad Saad; Ahmad, Ibrar; Xin, Xiangjun
2015-11-01
We propose a technique for the generation of optical frequency comb from a single source, which reduces the costs of optical access networks. Two Mach-Zehnder modulators are cascaded with one phase modulator driven by radiofrequency signals. With 10-GHz frequency spacing, the generated 40 optical multicarriers have good tone-to-noise ratio with least excursions in their comb lines. The laser array at the optical line terminal of the conventional wavelength division multiplexed passive optical network (WDM-PON) system has been replaced with optical frequency comb generator (OFCG), which may result in cost-effective optical line terminal (OLT) supporting a large-capacity WDM-PON system. Of 40 carriers generated, each carrier carries 10 Gbps data based on differential phase-shift keying. Four hundred Gbps multiplexed data from all channels are successfully transmitted through a fiber span of 25 km with negligible power penalties. Part of the downlink signal is used in uplink transmission at optical network unit where intensity-modulated on-off keying is deployed for remodulation. Theoretical analysis of the proposed WDM-PON system based on OFCG are in good agreement with simulation results. The metrics considered for the analysis of the proposed OFCG in a WDM-PON system are power penalties of the full-duplex transmission, eye diagrams, and bit error rate.
MIMO capacities and outage probabilities in spatially multiplexed optical transport systems.
Winzer, Peter J; Foschini, Gerard J
2011-08-15
With wavelength-division multiplexing (WDM) rapidly nearing its scalability limits, space-division multiplexing (SDM) seems the only option to further scale the capacity of optical transport networks. In order for SDM systems to continue the WDM trend of reducing energy and cost per bit with system capacity, integration will be key to SDM. Since integration is likely to introduce non-negligible crosstalk between multiple parallel transmission paths, multiple-input multiple output (MIMO) signal processing techniques will have to be used. In this paper, we discuss MIMO capacities in optical SDM systems, including related outage considerations which are an important part in the design of such systems. In order to achieve the low-outage standards required for optical transport networks, SDM transponders should be capable of individually addressing, and preferably MIMO processing all modes supported by the optical SDM waveguide. We then discuss the effect of distributed optical noise in MIMO SDM systems and focus on the impact of mode-dependent loss (MDL) on system capacity and system outage. Through extensive numerical simulations, we extract scaling rules for mode-average and mode-dependent loss and show that MIMO SDM systems composed of up to 128 segments and supporting up to 128 modes can tolerate up to 1 dB of per-segment MDL at 90% of the system's full capacity at an outage probability of 10(-4). © 2011 Optical Society of America
Health monitoring of unmanned aerial vehicle based on optical fiber sensor array
NASA Astrophysics Data System (ADS)
Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande
2017-10-01
The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.
Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting
2016-01-01
The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry. PMID:27589754
Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting
2016-08-30
The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry.
NASA Astrophysics Data System (ADS)
Villa, Carlos; Kumavor, Patrick; Donkor, Eric
2008-04-01
Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.
NASA Astrophysics Data System (ADS)
Ozharar, Sarper
This thesis focuses on the generation and applications of stable optical frequency combs. Optical frequency combs are defined as equally spaced optical frequencies with a fixed phase relation among themselves. The conventional source of optical frequency combs is the optical spectrum of the modelocked lasers. In this work, we investigated alternative methods for optical comb generation, such as dual sine wave phase modulation, which is more practical and cost effective compared to modelocked lasers stabilized to a reference. Incorporating these comblines, we have generated tunable RF tones using the serrodyne technique. The tuning range was +/-1 MHz, limited by the electronic waveform generator, and the RF carrier frequency is limited by the bandwidth of the photodetector. Similarly, using parabolic phase modulation together with time division multiplexing, RF chirp extension has been realized. Another application of the optical frequency combs studied in this thesis is real time data mining in a bit stream. A novel optoelectronic logic gate has been developed for this application and used to detect an 8 bit long target pattern. Also another approach based on orthogonal Hadamard codes have been proposed and explained in detail. Also novel intracavity modulation schemes have been investigated and applied for various applications such as (a) improving rational harmonic modelocking for repetition rate multiplication and pulse to pulse amplitude equalization, (b) frequency skewed pulse generation for ranging and (c) intracavity active phase modulation in amplitude modulated modelocked lasers for supermode noise spur suppression and integrated jitter reduction. The thesis concludes with comments on the future work and next steps to improve some of the results presented in this work.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Ishino, H.; Kibayashi, A.; Kida, Y.; Hidehira, N.; Komatsu, K.; Hazumi, M.; Sato, N.; Sakai, K.; Yamamori, H.; Hirayama, F.; Kohjiro, S.
2018-04-01
We present the development of a frequency-domain multiplexing readout of kinetic inductance detectors (KIDs) for pulse signals with a self-trigger system. The KIDs consist of an array of superconducting resonators that have different resonant frequencies individually, allowing us to read out multiple channels in the frequency domain with a single wire using a microwave-frequency comb. The energy deposited to the resonators break Cooper pairs, changing the kinetic inductance and, hence, the amplitude and the phase of the probing microwaves. For some applications such as X-ray detections, the deposited energy is detected as a pulse signal shaped by the time constants of the quasiparticle lifetime, the resonator quality factor, and the ballistic phonon lifetime in the substrate, ranging from microseconds to milliseconds. A readout system commonly used converts the frequency-domain data to the time-domain data. For the short pulse signals, the data rate may exceed the data transfer bandwidth, as the short time constant pulses require us to have a high sampling rate. In order to overcome this circumstance, we have developed a KID readout system that contains a self-trigger system to extract relevant signal data and reduces the total data rate with a commercial off-the-shelf FPGA board. We have demonstrated that the system can read out pulse signals of 15 resonators simultaneously with about 10 Hz event rate by irradiating α particles from ^{241} Am to the silicon substrate on whose surface aluminum KID resonators are formed.
A novel combination of PBG cell for achieving HPF, BPF, and LPF in an electro-optic system
NASA Astrophysics Data System (ADS)
Tsao, Shyh-Lin; Lee, Wen-Ching
2004-10-01
In this paper, a novel Frequency Division Multiplexer (FDM) using Photonic Band Gap (PBG) cell combination concept circuit is proposed for achieving a 3-band FDM. The preliminary 3-band FDM structure is the combination of three PBG cells. The observable frequency response experimental results are presented. We also simulate and measure all the scattering parameters for the novel 3-band FDM. The disclosed method in this paper demonstrates the possibility for applying photonic bandgap structure in designing a frequency division device.
ERIC Educational Resources Information Center
Futhey, Tracy
2005-01-01
In this column, the author discusses the four key questions related to the National LambdaRail (NLR) networking technology. NLR uses Dense Wave Division Multiplexing (DWDM) to enable multiple networks to coexist on a national fiber footprint, and is owned and operated not by carriers, but by the research and education community. The NLR Board…
78 FR 16675 - First Technology Transitions; Policy Task Force Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... FEDERAL COMMUNICATIONS COMMISSION [GN Docket No. 13-5; DA 13-383] First Technology Transitions... workshops to analyze technology transitions from narrowband to broadband; from time-division multiplexing... capabilities of wireless and wireline (copper, fiber and coax) technologies today and in the future. 11:30 a.m...
Versatile analog pulse height computer performs real-time arithmetic operations
NASA Technical Reports Server (NTRS)
Brenner, R.; Strauss, M. G.
1967-01-01
Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.
Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert
High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO 3more » demultiplexer composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.« less
Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system
Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert; ...
2016-12-06
High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO 3more » demultiplexer composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.« less
A new OTDR based on probe frequency multiplexing
NASA Astrophysics Data System (ADS)
Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping
2013-12-01
Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.
Modified Dual Three-Pulse Modulation technique for single-phase inverter topology
NASA Astrophysics Data System (ADS)
Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.
2016-01-01
In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.
Ultrashort pulse energy distribution for propulsion in space
NASA Astrophysics Data System (ADS)
Bergstue, Grant Jared
This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.
Infrared Avionics Signal Distribution Using WDM
NASA Technical Reports Server (NTRS)
Atiquzzaman, Mohammed; Sluss, James J., Jr.
2004-01-01
Supporting analog RF signal transmission over optical fibers, this project demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment. We characterize the simultaneous transmission of four RF signals (channels) over a single optical fiber. At different points along a fiber optic backbone, these four analog channels are sequentially multiplexed and demultiplexed to more closely emulate the conditions in existing onboard aircraft. We present data from measurements of optical power, transmission response (loss and gain), reflection response, group delay that defines phase distortion, signal-to-noise ratio (SNR), and dynamic range that defines nonlinear distortion. The data indicate that WDM is very suitable for avionics applications.
NASA Technical Reports Server (NTRS)
New, S. R.
1981-01-01
The multiplexer-demultiplexer (MDM) project included the design, documentation, manufacture, and testing of three MDM Data Systems. The equipment is contained in 59 racks, and includes more than 3,000 circuit boards and 600 microprocessors. Spares, circuit card testers, a master set of programmable integrated circuits, and a program development system were included as deliverables. All three MDM's were installed, and were operationally tested. The systems performed well with no major problems. The progress and problems analysis, addresses schedule conformance, new technology, items awaiting government approval, and project conclusions are summarized. All contract modifications are described.
NASA Astrophysics Data System (ADS)
New, S. R.
1981-06-01
The multiplexer-demultiplexer (MDM) project included the design, documentation, manufacture, and testing of three MDM Data Systems. The equipment is contained in 59 racks, and includes more than 3,000 circuit boards and 600 microprocessors. Spares, circuit card testers, a master set of programmable integrated circuits, and a program development system were included as deliverables. All three MDM's were installed, and were operationally tested. The systems performed well with no major problems. The progress and problems analysis, addresses schedule conformance, new technology, items awaiting government approval, and project conclusions are summarized. All contract modifications are described.
Space-division multiplexing in optical fibres
NASA Astrophysics Data System (ADS)
Richardson, D. J.; Fini, J. M.; Nelson, L. E.
2013-05-01
Optical communication technology has been advancing rapidly for several decades, supporting our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data-carrying capacity of a single optical fibre. To achieve this, researchers have explored and attempted to optimize multiplexing in time, wavelength, polarization and phase. Commercial systems now utilize all four dimensions to send more information through a single fibre than ever before. The spatial dimension has, however, remained untapped in single fibres, despite it being possible to manufacture fibres supporting hundreds of spatial modes or containing multiple cores, which could be exploited as parallel channels for independent signals.
Multi-gigabit WDM optical networking for next generation avionics system communications
NASA Astrophysics Data System (ADS)
Gardner, Robert D.; Andonovic, I.; Hunter, D. K.; Hamoudi, A.; McLaughlin, A. J.; Aitchison, J. S.; Marsh, J. H.
2000-04-01
It is envisaged that photonic networking will play a significant role in improving performance and reliability in both civil and military avionics systems. Of all the available photonic multiplexing technologies, wavelength-division multiplexing (WDM) has been the primary focus of attention within mainstream telecommunications offering increased throughput at a reasonable cost, with scope for enhanced routing flexibility, connectivity and network survivability. A direct mapping of techniques and devices from the maturing telecommunications sector is, however, not possible because of the stringent requirements of systems operating in the hostile aerospace environment. This paper gives an outline of these requirements and discusses, in detail, the design and development of a multi-gigabit, broadband optical WDM network architecture, specifically for use on aerospace platforms. The paper will also discuss a key element in the system, the arrayed-waveguide grating (AWG) wavelength multiplexing component, which has been designed to allow operation over the full military temperature specification without environmental conditioning.
NASA Astrophysics Data System (ADS)
Dong, Bo; Han, Ming; Wang, Anbo
2012-06-01
A reliable and low-cost two-wavelength quadrature interrogating method has been developed to demodulate optical signals from diaphragm-based Fabry-Perot interferometric fiber optic sensors for multipoint partial discharge detection in power transformers. Commercial available fused-silica parts (a wafer, a fiber ferrule, and a mating sleeve) and a cleaved optical single mode fiber were bonded together to form an extrinsic Fabry-Perot acoustic sensor. Two lasers with center wavelengths separated by a quarter of the period of sensor interference fringes were used to probe acousticwave- induced diaphragm vibration. A coarse wavelength-division multiplexing (CWDM) add/drop multiplexer was used to separate the reflected two wavelengths before two photo detectors. Optical couplers were used to distribute mixed laser light to each sensor-detector module for multiplexing purpose. Sensor structure, detection system design and experiment results are presented.
High-Definition Optical Velocimetry: A New Diagnostic Paradigm for Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daykin, E; Diaz, A; Gallegos, C
This slide-show describes work done to address the challenge of high-definition optical velocimetry with hundred(s) of high-fidelity velocity vs. time measurements. After a review of the historical context and a general technical description of how optical velocimetry, particularly photonic Doppler velocimetry, works, the innovation of multiplexed photonic Doppler velocimetry (MPDV) is described as implemented with commercially available telecom products and dense wavelength division multiplexing (DWDM). High amplification of small signals allows for laser-safe operations. The authors have evaluated and leveraged telecom components– optical amplifiers, wavelength multiplexers, and seed lasers–to provide an economical, compact and rugged approach to system architecture. Fouriermore » transform data analysis is seen to be robust and capable of discriminating simultaneous data traces recorded onto a single digitizer channel. The authors successfully fielded demonstration MPDV system on shock driven experiments.« less
An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End
Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam
2015-01-01
An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP). PMID:27069422
An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.
Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam
2016-01-15
An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm 2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP).
Electronic switching circuit uses complementary non-linear components
NASA Technical Reports Server (NTRS)
Zucker, O. S.
1972-01-01
Inherent switching properties of saturable inductors and storage diodes are combined to perform large variety of electronic functions, such as pulse shaping, gating, and multiplexing. Passive elements replace active switching devices in generation of complex waveforms.
NASA Astrophysics Data System (ADS)
Murshid, Syed; Alanzi, Saud; Hridoy, Arnob; Lovell, Gregory L.; Parhar, Gurinder; Chakravarty, Abhijit; Chowdhury, Bilas
2016-06-01
Spatial domain multiplexing/space division multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single-mode pigtail laser sources of the same wavelength into a carrier multimode fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. We launch light from five different single-mode pigtail laser sources (of same wavelength) at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation, five distinct concentric donut-shaped rings with negligible crosstalk at the output end of the fiber were obtained. These SDM channels also exhibit orbital angular momentum (OAM), thereby adding an extradegree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.
Multi-core fiber amplifier arrays for intra-satellite links
NASA Astrophysics Data System (ADS)
Kechagias, Marios; Crabb, Jonathan; Stampoulidis, Leontios; Farzana, Jihan; Kehayas, Efstratios; Filipowicz, Marta; Napierala, Marek; Murawski, Michal; Nasilowski, Tomasz; Barbero, Juan
2017-09-01
In this paper we present erbium doped fibre (EDF) aimed at signal amplification within satellite photonic payload systems operating in C telecommunication band. In such volume-hungry applications, the use of advanced optical transmission techniques such as space division multiplexing (SDM) can be advantageous to reduce the component and cable count.
Feedforward Equalizers for MDM-WDM in Multimode Fiber Interconnects
NASA Astrophysics Data System (ADS)
Masunda, Tendai; Amphawan, Angela
2018-04-01
In this paper, we present new tap configurations of a feedforward equalizer to mitigate mode coupling in a 60-Gbps 18-channel mode-wavelength division multiplexing system in a 2.5-km-long multimode fiber. The performance of the equalization is measured through analyses on eye diagrams, power coupling coefficients and bit-error rates.
Design of thin-film photonic crystal waveguides
NASA Astrophysics Data System (ADS)
Silvestre, E.; Pottage, J. M.; Russell, P. St. J.; Roberts, P. J.
2000-08-01
We present numerical designs for single-mode leak-free photonic crystal waveguides exhibiting strongly anisotropic spatial and temporal dispersion. These structures may be produced quite simply by drilling regular arrays of holes into thin films of high refractive index, and permit the realization of highly compact optical elements and wavelength division multiplexing devices.
A 400 Gbps/100 m free-space optical link
NASA Astrophysics Data System (ADS)
Lin, Chun-Yu; Lu, Hai-Han; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Wang, Yun-Chieh; Chi, Jing-Kai
2017-02-01
A 400 Gbps/100 m free-space optical (FSO) link with dense-wavelength-division-multiplexing (DWDM)/space-division-multiplexing (SDM) techniques and a doublet lens scheme is proposed. To the best of our knowledge, this is the first time that a link adopting DWDM and SDM techniques and a doublet lens scheme has demonstrated a 400 Gbps/100 m FSO link. The experimental results show that the free-space transmission rate is significantly enhanced by the DWDM and SDM techniques, and the free-space transmission distance is greatly increased by the doublet lens scheme. A 16-channel FSO link with a total transmission rate of 400 Gbps (25 Gbps/λ × 16 λ = 400 Gbps) over a 100 m free-space link is successfully demonstrated. Such a 400 Gbps/100 m DWDM/SDM FSO link provides the advantages of optical wireless communications for high transmission rates and long transmission distances, which is very useful for high-speed and long-haul light-based WiFi (LiFi) applications.
NASA Astrophysics Data System (ADS)
Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen
2018-01-01
We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.
Fabrication of dense wavelength division multiplexing filters with large useful area
NASA Astrophysics Data System (ADS)
Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng
2006-08-01
Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.
NASA Astrophysics Data System (ADS)
Wang, Zhongpeng; Chen, Shoufa
2016-07-01
A physical encryption scheme for discrete Hartley transform (DHT) precoded orthogonal frequency division multiplexing (OFDM) visible-light communication (VLC) systems using frequency domain chaos scrambling is proposed. In the scheme, the chaos scrambling, which is generated by a modified logistic mapping, is utilized to enhance the physical layer of security, and the DHT precoding is employed to reduce of OFDM signal for OFDM-based VLC. The influence of chaos scrambling on peak-to-average power ratio (PAPR) and bit error rate (BER) of systems is studied. The experimental simulation results prove the efficiency of the proposed encryption method for DHT-precoded, OFDM-based VLC systems. Furthermore, the influence of the proposed encryption to the PAPR and BER of systems is evaluated. The experimental results show that the proposed security scheme can protect the DHT-precoded, OFDM-based VLC from eavesdroppers, while keeping the good BER performance of DHT-precoded systems. The BER performance of the encrypted and DHT-precoded system is almost the same as that of the conventional DHT-precoded system without encryption.
FTTH: the overview of existing technologies
NASA Astrophysics Data System (ADS)
Nowak, Dawid; Murphy, John
2005-06-01
The growing popularity of the Internet is the key driver behind the development of new access methods which would enable a customer to experience a true broadband. Amongst various technologies, the access methods based on the optical fiber are getting more and more attention as they offer the ultimate solution in delivering different services to the customers' premises. Three different architectures have been proposed that facilitate the roll out of Fiber-to-the-Home (FTTH) infrastructure. Point-to-point Ethernet networks are the most straightforward and already matured solution. Different flavors of Passive Optical Networks (PONs) with Time Division Multiplexing Access (TDMA) are getting more widespread as necessary equipment is becoming available on the market. The third main contender are PONs withWavelength DivisionMultiplexing Access (WDMA). Although still in their infancy, the laboratory tests show that they have many advantages over present solutions. In this paper we show a brief comparison of these three access methods. In our analysis the architecture of each solution is presented. The applicability of each system is looked at from different viewpoint and their advantages and disadvantages are highlighted.
Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON
NASA Astrophysics Data System (ADS)
Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling
2017-12-01
WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.
High-speed real-time OFDM transmission based on FPGA
NASA Astrophysics Data System (ADS)
Xiao, Xin; Li, Fan; Yu, Jianjun
2016-02-01
In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.
2 × 2 MIMO OFDM/OQAM radio signals over an elliptical core few-mode fiber.
Mo, Qi; He, Jiale; Yu, Dawei; Deng, Lei; Fu, Songnian; Tang, Ming; Liu, Deming
2016-10-01
We experimentally demonstrate a 4.46 Gb/s2×2 multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM)/OQAM radio signal over a 2 km elliptical core 3-mode fiber, together with 0.4 m wireless transmission. Meanwhile, to cope with differential channel delay (DCD) among involved MIMO channels, we propose a time-offset crosstalk cancellation algorithm to extend the DCD tolerance from 10 to 60 ns without using a circle prefix (CP), leading to an 18.7% improvement of spectral efficiency. For the purpose of comparison, we also examine the transmission performance of CP-OFDM signals with different lengths of CPs, under the same system configuration. The proposed algorithm is also effective for the DCD compensation of a radio signal over a 2 km 7-core fiber. These results not only demonstrate the feasibility of space division multiplexing for RoF application but also validate that the elliptical core few-mode fiber can provide the same independent channels as the multicore fiber.
W-band radio-over-fiber propagation of two optically encoded wavelength channels
NASA Astrophysics Data System (ADS)
Eghbal, Morad Khosravi; Shadaram, Mehdi
2018-01-01
We propose a W-band wavelength-division multiplexing (WDM)-over-optical code-division multiple access radio-over-fiber system. This system offers capacity expansion by increasing the working frequency to millimeter wave region and by introducing optical encoding and multiwavelength multiplexing. The system's functionality is investigated by software modeling, and the results are presented. The generated signals are data modulated at 10 Gb/s and optically encoded for two wavelength channels and transmitted with a 20-km length of fiber. The received signals are optically decoded and detected. Also, encoding has improved the bit error rate (BER) versus the received optical power margin for the WDM setting by about 4 dB. In addition, the eye-diagram shows that the difference between received optical power levels at the BER of 10-12 to 10-3 is about 1.3% between two encoded channels. This method of capacity improvement is significantly important for the next generation of mobile communication, where millimeter wave signals will be widely used to deliver data to small cells.
Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun
2016-12-12
In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds of scenarios, including fiber-only transmission and fiber-wireless hybrid transmission, were investigated by measuring error vector magnitude (EVM) performance for each stream and condition number (CN) of the channel matrix. The experimental results show that, SDM-based MMF link could offer a CN< 20dB well-conditioned MIMO channel over up to 1km fiber length within 0-6GHz, achieving as low as 2.38%, 2.97% and 2.11% EVM performance for 1km MMF link at 2.4GHz, 5.8GHz, and 200m MMF link followed by 1m air distance at 2.7GHz, respectively. These results indicate the possibility to distribute wireless MIMO signals over existing in-building commercially-available MMFs with enormous cost-saving.
Frequency division multiplexed radio-over-fiber transmission using an optically injected laser diode
NASA Astrophysics Data System (ADS)
Chan, Sze-Chun
2008-04-01
Nonlinear dynamics of semiconductor lasers have recently attracted much attention in the area of microwave photonics. By invoking the nonlinear dynamics of an optically injected laser diode, high-speed microwave oscillation can be generated using the period-one oscillation state. The oscillation is harnessed for application as a photonic microwave source in radio-over-fiber (RoF) systems. It is advantageous over conventional direct current modulation because it alleviates the modulation bandwidth limitation and naturally generates single sideband signals. The method is thus applicable to wireless communication systems even when the subcarrier frequency increases to 60 GHz. Because RoF is usually incorporated with standard wireless schemes that involve frequency division multiplexing (FDM), we investigate the performance of the optical injection system under simultaneous current injection of multiple data streams. Frequency mixings and competition for locking among subcarriers result in intermodulation distortion (IMD). The relative weightings of different channels should be optimized to ensure acceptable signal qualities. The results illustrate the feasibility of applying the optical injection system for FDM RoF transmission at high subcarrier frequencies.
An advanced optical system for laser ablation propulsion in space
NASA Astrophysics Data System (ADS)
Bergstue, Grant; Fork, Richard; Reardon, Patrick
2014-03-01
We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space-based missions.
High-speed pulse-shape generator, pulse multiplexer
Burkhart, Scott C.
2002-01-01
The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.
An All-Optical Access Metro Interface for Hybrid WDM/TDM PON Based on OBS
NASA Astrophysics Data System (ADS)
Segarra, Josep; Sales, Vicent; Prat, Josep
2007-04-01
A new all-optical access metro network interface based on optical burst switching (OBS) is proposed. A hybrid wavelength-division multiplexing/time-division multiplexing (WDM/TDM) access architecture with reflective optical network units (ONUs), an arrayed-waveguide-grating outside plant, and a tunable laser stack at the optical line terminal (OLT) is presented as a solution for the passive optical network. By means of OBS and a dynamic bandwidth allocation (DBA) protocol, which polls the ONUs, the available access bandwidth is managed. All the network intelligence and costly equipment is located at the OLT, where the DBA module is centrally implemented, providing quality of service (QoS). To scale this access network, an optical cross connect (OXC) is then used to attain a large number of ONUs by the same OLT. The hybrid WDM/TDM structure is also extended toward the metropolitan area network (MAN) by introducing the concept of OBS multiplexer (OBS-M). The network element OBS-M bridges the MAN and access networks by offering all-optical cross connection, wavelength conversion, and data signaling. The proposed innovative OBS-M node yields a full optical data network, interfacing access and metro with a geographically distributed access control. The resulting novel access metro architectures are nonblocking and, with an improved signaling, provide QoS, scalability, and very low latency. Finally, numerical analysis and simulations demonstrate the traffic performance of the proposed access scheme and all-optical access metro interface and architectures.
Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-03-20
Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.
Spacelab interface development test, volume 1, sections 1-6
NASA Technical Reports Server (NTRS)
Harris, L. H.
1979-01-01
Data recorded during the following tests is presented: pulse coded modulator master unit to Spacelab (S/L) interface, master timing unit to S/L interface, multiplexer-demultiplexer/serial input-output to S/L interface, and special tests.
CARS applications to combustion diagnostics
NASA Astrophysics Data System (ADS)
Eckbreth, Alan C.
1986-01-01
Attention is given to broadband or multiplex CARS of combustion processes, using pulsed lasers whose intensity is sufficiently great for instantaneous measurement of medium properties. This permits probability density functions to be assembled from a series of single-pulse measurements, on the basis of which the true parameter average and the magnitude of the turbulent fluctuations can be ascertained. CARS measurements have been conducted along these lines in diesel engines, gas turbine combustors, scramjets, and solid rocket propellants.
Thermally multiplexed polymerase chain reaction.
Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R
2015-07-01
Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.
Cost-effective TCM-based WDM-PON for highly asymmetric traffic conditions.
Lee, Danbi; Kwon, Won-Bae; Chae, Chang-Joon; Park, Chang-Soo
2015-11-16
A time compression multiplexing (TCM)-based wavelength division multiplexing passive optical network (WDM-PON) using a reflective semiconductor optical amplifier (RSOA) is proposed, and its feasibility is experimentally demonstrated. In the proposed system, the RSOA pre-amplifies a 10 Gb/s downstream signal and modulates the RSOA output, wavelength-locked to the downstream signal, with a 1.25 Gb/s upstream signal simultaneously. The sensitivity of the downstream signal is improved by about 3 dB through the RSOA. The downstream and upstream signals have power penalties of about 0.1 dB and 1.1 dB, respectively, at bit error rates (BERs) of 10(-9) after 20 km transmission.
Optical communication beyond orbital angular momentum
Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew
2016-01-01
Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799
Quantum metropolitan optical network based on wavelength division multiplexing.
Ciurana, A; Martínez-Mateo, J; Peev, M; Poppe, A; Walenta, N; Zbinden, H; Martín, V
2014-01-27
Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.
Continuous-variable quantum key distribution with 1 Mbps secure key rate.
Huang, Duan; Lin, Dakai; Wang, Chao; Liu, Weiqi; Fang, Shuanghong; Peng, Jinye; Huang, Peng; Zeng, Guihua
2015-06-29
We report the first continuous-variable quantum key distribution (CVQKD) experiment to enable the creation of 1 Mbps secure key rate over 25 km standard telecom fiber in a coarse wavelength division multiplexers (CWDM) environment. The result is achieved with two major technological advances: the use of a 1 GHz shot-noise-limited homodyne detector and the implementation of a 50 MHz clock system. The excess noise due to noise photons from local oscillator and classical data channels in CWDM is controlled effectively. We note that the experimental verification of high-bit-rate CVQKD in the multiplexing environment is a significant step closer toward large-scale deployment in fiber networks.
Reconfigurable microwave photonic repeater for broadband telecom missions: concepts and technologies
NASA Astrophysics Data System (ADS)
Aveline, M.; Sotom, M.; Barbaste, R.; Benazet, B.; Le Kernec, A.; Magnaval, J.; Ginestet, P.; Navasquillo, O.; Piqueras, M. A.
2017-11-01
Thales Alenia Space has elaborated innovative telecom payload concepts taking benefit from the capabilities of photonics and so-called microwave photonics. The latter consists in transferring RF/microwave signals on optical carriers and performing processing in the optical domain so as to benefit from specific attributes such as wavelength-division multiplexing or switching capabilities.
Wideband optical sensing using pulse interferometry.
Rosenthal, Amir; Razansky, Daniel; Ntziachristos, Vasilis
2012-08-13
Advances in fabrication of high-finesse optical resonators hold promise for the development of miniaturized, ultra-sensitive, wide-band optical sensors, based on resonance-shift detection. Many potential applications are foreseen for such sensors, among them highly sensitive detection in ultrasound and optoacoustic imaging. Traditionally, sensor interrogation is performed by tuning a narrow linewidth laser to the resonance wavelength. Despite the ubiquity of this method, its use has been mostly limited to lab conditions due to its vulnerability to environmental factors and the difficulty of multiplexing - a key factor in imaging applications. In this paper, we develop a new optical-resonator interrogation scheme based on wideband pulse interferometry, potentially capable of achieving high stability against environmental conditions without compromising sensitivity. Additionally, the method can enable multiplexing several sensors. The unique properties of the pulse-interferometry interrogation approach are studied theoretically and experimentally. Methods for noise reduction in the proposed scheme are presented and experimentally demonstrated, while the overall performance is validated for broadband optical detection of ultrasonic fields. The achieved sensitivity is equivalent to the theoretical limit of a 6 MHz narrow-line width laser, which is 40 times higher than what can be usually achieved by incoherent interferometry for the same optical resonator.
Xia, Haiyun; Shangguan, Mingjia; Wang, Chong; Shentu, Guoliang; Qiu, Jiawei; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei
2016-11-15
For the first time, to the best of our knowledge, a compact, eye-safe, and versatile direct detection Doppler lidar is developed using an upconversion single-photon detection method at 1.5 μm. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the robust stability. Using integrated-optic components, the conservation of etendue of the optical receiver is achieved by manufacturing a fiber-coupled periodically poled lithium niobate waveguide and an all-fiber Fabry-Perot interferometer (FPI). The double-edge technique is implemented by using a convert single-channel FPI and a single upconversion detector, incorporating a time-division multiplexing method. The backscatter photons at 1548.1 nm are converted into 863 nm via mixing with a pump laser at 1950 nm. The relative error of the system is less than 0.1% over nine weeks. In experiments, atmospheric wind and visibility over 48 h are detected in the boundary layer. The lidar shows good agreement with the ultrasonic wind sensor, with a standard deviation of 1.04 m/s in speed and 12.3° in direction.
Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih
2016-04-21
Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.
Zhang, Lu; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Popov, Sergei; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia
2018-04-01
We propose a spectrally efficient digitized radio-over-fiber (D-RoF) system by grouping highly correlated neighboring samples of the analog signals into multidimensional vectors, where the k-means clustering algorithm is adopted for adaptive quantization. A 30 Gbit/s D-RoF system is experimentally demonstrated to validate the proposed scheme, reporting a carrier aggregation of up to 40 100 MHz orthogonal frequency division multiplexing (OFDM) channels with quadrate amplitude modulation (QAM) order of 4 and an aggregation of 10 100 MHz OFDM channels with a QAM order of 16384. The equivalent common public radio interface rates from 37 to 150 Gbit/s are supported. Besides, the error vector magnitude (EVM) of 8% is achieved with the number of quantization bits of 4, and the EVM can be further reduced to 1% by increasing the number of quantization bits to 7. Compared with conventional pulse coding modulation-based D-RoF systems, the proposed D-RoF system improves the signal-to-noise-ratio up to ∼9 dB and greatly reduces the EVM, given the same number of quantization bits.
Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.
Islim, Mohamed Sufyan; Haas, Harald
2016-05-30
The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM).
A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping
2017-01-01
A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.
Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna
2014-03-01
This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.
Optical micro-cavities on silicon
NASA Astrophysics Data System (ADS)
Dai, Daoxin; Liu, Erhu; Tan, Ying
2018-01-01
Silicon-based optical microcavities are very popular for many applications because of the ultra-compact footprint, easy scalability, and functional versatility. In this paper we give a discussion about the challenges of the optical microcavities on silicon and also give a review of our recent work, including the following parts. First, a near-"perfect" high-order MRR optical filter with a box-like filtering response is realized by introducing bent directional couplers to have sufficient coupling between the access waveguide and the microrings. Second, an efficient thermally-tunable MRR-based optical filter with graphene transparent nano-heater is realized by introducing transparent graphene nanoheaters. Thirdly, a polarization-selective microring-based optical filter is realized to work with resonances for only one of TE and TM polarizations for the first time. Finally, a on-chip reconfigurable optical add-drop multiplexer for hybrid mode- /wavelength-division-multiplexing systems is realized for the first time by monolithically integrating a mode demultiplexer, four MRR optical switches, and a mode multiplexer.
Large CMOS imager using hadamard transform based multiplexing
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; Wadsworth, Mark V.
2005-01-01
We have developed a concept design for a large (10k x 10k) CMOS imaging array whose elements are grouped in small subarrays with N pixels in each. The subarrays are code-division multiplexed using the Hadamard Transform (HT) based encoding. The Hadamard code improves the signal-to-noise (SNR) ratio to the reference of the read-out amplifier by a factor of N^1/2. This way of grouping pixels reduces the number of hybridization bumps by N. A single chip layout has been designed and the architecture of the imager has been developed to accommodate the HT base multiplexing into the existing CMOS technology. The imager architecture allows for a trade-off between the speed and the sensitivity. The envisioned imager would operate at a speed >100 fps with the pixel noise < 20 e-. The power dissipation would be 100 pW/pixe1. The combination of the large format, high speed, high sensitivity and low power dissipation can be very attractive for space reconnaissance applications.
NASA Astrophysics Data System (ADS)
Rablau, Corneliu; Bredthauer, Lance
2007-10-01
Aside from the more traditional data, voice and e-mail communications, new bandwidth intensive applications in the larger consumer markets, such as music, digital pictures and movies, have led to an explosive increase in the demand for transmission capacity for optical communications networks. This has resulted in a widespread deployment of Dense Wavelength Division Multiplexing (DWDM) as a means of increasing the communications capacity by multiplexing and transmitting signals of different wavelengths (establishing multiple communication channels) through a single strand of fiber. We report on the design, assembly and characterization of a 50-GHz, 80-channel Mux-Demux module for DWDM systems. The module has been assembled from two commercially available 100 GHz, 40-channel Array Waveguide Grating (AWG) modules and a 50-GHz to 100-GHz interleaver. Relevant performance parameters such as insertion loss, channel uniformity, next-channel isolation (crosstalk) and integrated cross-talk are presented and discussed in contrast with the performance of other competing technologies such as Thin-Film-Filter-based Mux-Demux devices.
Experimental multiplexing of quantum key distribution with classical optical communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei
2015-02-23
We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across themore » entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.« less
Differential pulse amplitude modulation for multiple-input single-output OWVLC
NASA Astrophysics Data System (ADS)
Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.
2015-01-01
White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.
2002-05-01
technology for polarization-maintaining fiber amplification and an ultrashort pulsed fiber laser to Calmar Optcom. Calmar Optcom will be manufacturing...June 1995. This facility is made up of 56 laser beams and is single pulsed (4 nanosecond pulse ). This facil- ity provides intense radiation for studying...plasma interactions, in- tense laser -electron beam interactions, and intense laser -matter interactions. The division is building a repetitively pulsed (5
The CARFAX road traffic information system
NASA Astrophysics Data System (ADS)
Sandell, R. S.
1984-02-01
A description of the development work and field trials which led to the completion of the dedicated traffic information service "CARFAX' is presented. The system employs a single medium frequency channel, and involves a network of low powered transmitters that operate in time division multiplex to provide traffic announcements. A description of the network distribution, equipment test, results and future system utilization is included.
10Gbps monolithic silicon FTTH transceiver without laser diode for a new PON configuration.
Zhang, Jing; Liow, Tsung-Yang; Lo, Guo-Qiang; Kwong, Dim-Lee
2010-03-01
A new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU) are proposed, eliminating the need for an internal laser source in ONU. The Si transceiver is fully monolithic, includes integrated wavelength division multiplexing (WDM) filters, modulators (MOD) and photo-detectors (PD), and demonstrates low-cost high volume manufacturability.
NASA Astrophysics Data System (ADS)
Xu, Yuming; Yu, Jianjun; Li, Xinying; Xiao, Jiangnan
2017-07-01
We experimentally demonstrate 4 lanes of 416-Gb/s discrete multi-tone (DMT) transmission with 50-GHz channel spacing. This is the first demonstration of 4 × 100 G transmission with less than 100-GHz channel spacing and it can be compatible with dense wavelength division multiplexing (DWDM).
Multiplex Microsphere Immunoassays for the Detection of IgM and IgG to Arboviral Diseases
Basile, Alison J.; Horiuchi, Kalanthe; Panella, Amanda J.; Laven, Janeen; Kosoy, Olga; Lanciotti, Robert S.; Venkateswaran, Neeraja; Biggerstaff, Brad J.
2013-01-01
Serodiagnosis of arthropod-borne viruses (arboviruses) at the Division of Vector-Borne Diseases, CDC, employs a combination of individual enzyme-linked immunosorbent assays and microsphere immunoassays (MIAs) to test for IgM and IgG, followed by confirmatory plaque-reduction neutralization tests. Based upon the geographic origin of a sample, it may be tested concurrently for multiple arboviruses, which can be a cumbersome task. The advent of multiplexing represents an opportunity to streamline these types of assays; however, because serologic cross-reactivity of the arboviral antigens often confounds results, it is of interest to employ data analysis methods that address this issue. Here, we constructed 13-virus multiplexed IgM and IgG MIAs that included internal and external controls, based upon the Luminex platform. Results from samples tested using these methods were analyzed using 8 different statistical schemes to identify the best way to classify the data. Geographic batteries were also devised to serve as a more practical diagnostic format, and further samples were tested using the abbreviated multiplexes. Comparative error rates for the classification schemes identified a specific boosting method based on logistic regression “Logitboost” as the classification method of choice. When the data from all samples tested were combined into one set, error rates from the multiplex IgM and IgG MIAs were <5% for all geographic batteries. This work represents both the most comprehensive, validated multiplexing method for arboviruses to date, and also the most systematic attempt to determine the most useful classification method for use with these types of serologic tests. PMID:24086608
Preliminary Assessment of Microwave Readout Multiplexing Factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croce, Mark Philip; Koehler, Katrina Elizabeth; Rabin, Michael W.
2017-01-23
Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must bemore » operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.« less
NASA Astrophysics Data System (ADS)
Katz, O.; Natan, A.; Silberberg, Y.; Rosenwaks, S.
2008-04-01
We demonstrate a single-beam, standoff (>10m) detection and identification of various materials including minute amounts of explosives under ambient light conditions. This is obtained by multiplex coherent anti-Stokes Raman scattering spectroscopy (CARS) using a single femtosecond phase-shaped laser pulse. We exploit the strong nonresonant background for amplification of the backscattered resonant CARS signals by employing a homodyne detection scheme. The simple and highly sensitive spectroscopic technique has a potential for hazardous materials standoff detection applications.
A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs
Cevik, Taner
2013-01-01
One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684
10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication.
Kong, Meiwei; Lv, Weichao; Ali, Tariq; Sarwar, Rohail; Yu, Chuying; Qiu, Yang; Qu, Fengzhong; Xu, Zhiwei; Han, Jun; Xu, Jing
2017-08-21
The availability of the underwater wireless optical communication (UWOC) based on red (R), green (G) and blue (B) lights makes the realization of the RGB wavelength division multiplexing (WDM) UWOC system possible. By properly mixing RGB lights to form white light, the WDM UWOC system has prominent potentiality for simultaneous underwater illumination and high-speed communication. In this work, for the first time, we experimentally demonstrate a 9.51-Gb/s WDM UWOC system using a red-emitting laser diode (LD), a single-mode pigtailed green-emitting LD and a multi-mode pigtailed blue-emitting LD. By employing 32-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) modulation in the demonstration, the red-light, the green-light and the blue-light LDs successfully transmit signals with the data rates of 4.17 Gb/s, 4.17 Gb/s and 1.17 Gb/s, respectively, over a 10-m underwater channel. The corresponding bit error rates (BERs) are 2.2 × 10 -3 , 2.0 × 10 -3 and 2.3 × 10 -3 , respectively, which are below the forward error correction (FEC) threshold of 3.8 × 10 -3 .
NASA Astrophysics Data System (ADS)
Jeon, Sie-Wook; Kim, Youngbok; Park, Chang-Soo
2012-01-01
We propose and demonstrate a long-reach wavelength division multiplexed-passive optical networks (WDM-PON) based on reflective semiconductor optical amplifiers (RSOAs) with easy maintenance of the optical source. Unlike previous studies the proposed WDM-PON uses two RSOAs: one for wavelength-selected light generation to provide a constant seed light to the second RSOA, the other for active external modulation. This method is free from intensity-fluctuated power penalties inherent to directly modulated single-RSOA sources, making long-reach transmission possible. Also, the wavelength of the modulated signal can easily be changed for the same RSOA by replacing the external feedback reflector, such as a fiber Bragg grating, or via thermal tuning. The seed light has a high-side-mode suppression ratio (SMSR) of 45 dB, and the bit error rate (BER) curve reveals that the upstream 1.25-Gb/s nonreturn-to-zero (NRZ) signal with a pseudo-random binary sequence (PRBS) of length of 215-1 has power penalties of 0.22 and 0.69 dB at BERs of 10-9 after 55-km and 110-km transmission due to fiber dispersion, respectively.
Analysis of physical layer performance of hybrid optical-wireless access network
NASA Astrophysics Data System (ADS)
Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.
2011-09-01
The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.
NASA Astrophysics Data System (ADS)
Song, Jingjing; Yang, Chuanchuan; Zhang, Qingxiang; Ma, Zhuang; Huang, Xingang; Geng, Dan; Wang, Ziyu
2015-09-01
Higher capacity and larger scales have always been the top targets for the evolution of optical access networks, driven by the ever-increasing demand from the end users. One thing that started to attract wide attention not long ago, but with at least equal importance as capacity and scale, is energy efficiency, a metric essential nowadays as human beings are confronted with severe environmental issues like global warming, air pollution, and so on. Here, different from the conventional energy consumption analysis of tree-topology networks, we propose an effective energy consumption calculation method to compare the energy efficiency of the tree-topology 10 gigabit ethernet passive optical network (10G-EPON) and ring-topology time- and wavelength-division-multiplexed passive optical network (TWDM-PON), two experimental networks deployed in China. Numerical results show that the ring-topology TWDM-PON networks with 2, 4, 8, and 16 wavelengths are more energy efficient than the tree-topology 10G-EPON, although 10G-EPON consumes less energy. Also, TWDM-PON with four wavelengths is the most energy-efficient network candidate and saves 58.7% more energy than 10G-EPON when fully loaded.
NASA Astrophysics Data System (ADS)
Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula
2018-04-01
A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.
Channel estimation in few mode fiber mode division multiplexing transmission system
NASA Astrophysics Data System (ADS)
Hei, Yongqiang; Li, Li; Li, Wentao; Li, Xiaohui; Shi, Guangming
2018-03-01
It is abundantly clear that obtaining the channel state information (CSI) is of great importance for the equalization and detection in coherence receivers. However, to the best of the authors' knowledge, in most of the existing literatures, CSI is assumed to be perfectly known at the receiver. So far, few literature discusses the effects of imperfect CSI on MDM system performance caused by channel estimation. Motivated by that, in this paper, the channel estimation in few mode fiber (FMF) mode division multiplexing (MDM) system is investigated, in which two classical channel estimation methods, i.e., least square (LS) method and minimum mean square error (MMSE) method, are discussed with the assumption of the spatially white noise lumped at the receiver side of MDM system. Both the capacity and BER performance of MDM system affected by mode-dependent gain or loss (MDL) with different channel estimation errors have been studied. Simulation results show that the capacity and BER performance can be further deteriorated in MDM system by the channel estimation, and an 1e-3 variance of channel estimation error is acceptable in MDM system with 0-6 dB MDL values.
NASA Astrophysics Data System (ADS)
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2016-04-01
The past decade has seen the phenomenal usage of orthogonal frequency division multiplexing (OFDM) in the wired as well as wireless communication domains, and it is also proposed in the literature as a future proof technique for the implementation of flexible resource allocation in cognitive optical networks. Fiber impairment assessment and adaptive compensation becomes critical in such implementations. A comprehensive analytical model for impairments in OFDM-based fiber links is developed. The proposed model includes the combined impact of laser phase fluctuations, fiber dispersion, self phase modulation, cross phase modulation, four-wave mixing, the nonlinear phase noise due to the interaction of amplified spontaneous emission with fiber nonlinearities, and the photodetector noises. The bit error rate expression for the proposed model is derived based on error vector magnitude estimation. The performance analysis of the proposed model is presented and compared for dispersion compensated and uncompensated backbone/backhaul links. The results suggest that OFDM would perform better for uncompensated links than the compensated links due to the negligible FWM effects and there is a need for flexible compensation. The proposed model can be employed in cognitive optical networks for accurate assessment of fiber-related impairments.
Optical switch based on thermocapillarity
NASA Astrophysics Data System (ADS)
Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa
2001-11-01
Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.
Improved Dynamic Lightpath Provisioning for Large Wavelength-Division Multiplexed Backbones
NASA Astrophysics Data System (ADS)
Kong, Huifang; Phillips, Chris
2007-07-01
Technology already exists that would allow future optical networks to support automatic lightpath configuration in response to dynamic traffic demands. Given appropriate commercial drivers, it is possible to foresee carrier network operators migrating away from semipermanent provisioning to enable on-demand short-duration communications. However, with traditional lightpath reservation protocols, a portion of the lightpath is idly held during the signaling propagation phase, which can significantly reduce the lightpath bandwidth efficiency in large wavelength-division multiplexed backbones. This paper proposes a prebooking mechanism to improve the lightpath efficiency over traditional reactive two-way reservation protocols, consequently liberating network resources to support higher traffic loads. The prebooking mechanism predicts the time when the traffic will appear at the optical cross connects, and intelligently schedules the lightpath components such that resources are only consumed as necessary. We describe the proposed signaling procedure for both centralized and distributed control planes and analyze its performance. This paper also investigates the aggregated flow length characteristics with the self-similar incident traffic and examines the effects of traffic prediction on the blocking probability as well as the ability to support latency sensitive traffic in a wide-area environment.
NASA Astrophysics Data System (ADS)
Tian, Yue; Leng, Lufeng; Su, Yikai
2008-11-01
All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.
BER analysis of SS-WDM based FSO system for Vellore weather conditions
NASA Astrophysics Data System (ADS)
Prabu, K.; Charanya, S.; Jain, Mehul; Guha, Debapriya
2017-11-01
Spectrum Slicing Wavelength Division Multiplexing (SS-WDM) has been advanced to boost the long distance communication in FSO channel which assists immense bit rate due to its high capacity and efficiency. It is a substitute to WDM systems having multiple coherent lasers with different wavelengths which is expensive. This paper is subjected to investigate the characteristics and quality of communication links of data rate 1.56 GB/s and wavelength of 1550 nm. The SS-WDM technique has been inspected for 4, 8 and 16 channels to increase the performance of communication under various weather conditions. The proposed model is susceptible to system degradation due to turbulences where wind velocity, refractive index and height of buildings have been majorly focused. A case study has been experimented on how the height of buildings around VIT, Vellore campus interfere the transmission of light in free space. Based on the above study, the results shows that the benefits of spectrum slicing wavelength division multiplexing (SS-WDM) have been worked up on for the climatic conditions which enhance performance of system. Moreover, the graphs plotted against bit error rate (BER), attenuation and distance makes the analysis better which highlights the characteristic features of SS-WDM.
Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks
NASA Astrophysics Data System (ADS)
Luo, Hongbin; Li, Lemin; Yu, Hongfang
2006-12-01
Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.
Free-calcium distribution and calcium pulses in rat peripheral macrophages
NASA Astrophysics Data System (ADS)
Yu, Yanhua; Xing, Da; Tang, Yonghong; Jin, Ying
2000-10-01
With Laser Confocal Scanning Microscope (LCSM) system, three aspects of characteristics of free cytoplasmic calcium in rat peripheral macrophages are studied. One is the Ca2+ concentration in different area in the same cell. Second is the Ca2+ concentration in the same area in different dividing stage. Third is the feature of calcium pulses evoked by Kcl or pH changing. The results show that even in one cell, the evolution of the Ca2+ concentration is not the same in a different area. In the same area, the nucleolus Ca2+ concentration in division breaking stage is much higher than that in division stage. From the experiment phenomena, we conclude that Kcl itself can not evoke calcium pulses in the unexcitable macrophage, but the change of pH can trig calcium pulses in the same cells.
Fiber Grating Environmental Sensing System
Schulz, Whitten L.; Udd, Eric
2003-07-29
Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.
High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology
NASA Technical Reports Server (NTRS)
Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Parker, Allen R. Jr. (Inventor); Hamory, Philip J (Inventor); Chan, Hon Man (Inventor)
2017-01-01
The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.
Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya
2017-09-18
This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.
Finite-dimensional modeling of network-induced delays for real-time control systems
NASA Technical Reports Server (NTRS)
Ray, Asok; Halevi, Yoram
1988-01-01
In integrated control systems (ICS), a feedback loop is closed by the common communication channel, which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other control loops and management functions. Due to asynchronous time-division multiplexing in the network access protocols, time-varying delays are introduced in the control loop, which degrade the system dynamic performance and are a potential source of instability. The delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of the ICS.
A Chaos MIMO-OFDM Scheme for Mobile Communication with Physical-Layer Security
NASA Astrophysics Data System (ADS)
Okamoto, Eiji
Chaos communications enable a physical-layer security, which can enhance the transmission security in combining with upper-layer encryption techniques, or can omit the upper-layer secure protocol and enlarges the transmission efficiency. However, the chaos communication usually degrades the error rate performance compared to unencrypted digital modulations. To achieve both physical-layer security and channel coding gain, we have proposed a chaos multiple-input multiple-output (MIMO) scheme in which a rate-one chaos convolution is applied to MIMO multiplexing. However, in the conventional study only flat fading is considered. To apply this scheme to practical mobile environments, i.e., multipath fading channels, we propose a chaos MIMO-orthogonal frequency division multi-plexing (OFDM) scheme and show its effectiveness through computer simulations.
Experimental GMPLS-Based Provisioning for Future All-Optical DPRing-Based MAN
NASA Astrophysics Data System (ADS)
Mu�oz, Ra�l; V�ctor Mart�nez Rivera, Ricardo; Sorribes, Jordi; Junyent Giralt, Gabriel
2005-10-01
Given the abundance and strategic importance of ring fiber plants in metropolitan area networks (MANs), and the accelerating growth of Internet traffic, it is crucial to extend the existing Internet protocol (IP)-based generalized multiprotocol label switching (GMPLS) framework to provision dynamic wavelength division multiplexing (WDM) optical rings. Nevertheless, the emerging GMPLS-based lightpath provisioning does not cover the intricacies of optical rings. No GMPLS standard exists for optical add-drop multiplexer (OADM) rings, relying instead upon proprietary static solution. The objective of this paper is to propose and evaluate novel GMPLS-based lightpath signaling and wavelength reservation schemes specifically designed for dedicated protection ring (DPRing)-based MANs. Performance evaluation has been carried out in a GMPLS-based testbed named ADRENALINE.
Diversity of Salmonella isolates from central Florida surface waters.
McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D
2014-11-01
Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Diversity of Salmonella Isolates from Central Florida Surface Waters
McEgan, Rachel; Chandler, Jeffrey C.; Goodridge, Lawrence D.
2014-01-01
Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. PMID:25172861
Pulsed Acoustic Vortex Sensing System : Volume 1. Hardware Design
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
NASA Astrophysics Data System (ADS)
Kachhatiya, Vivek; Prince, Shanthi
2016-12-01
In this paper, we have proposed and simulated optical time division multiplexed passive optical network (TDM-PON) using delayed optical amplitude modulation (AM). Eight upstream wavelengths are demonstrated to show optical time wavelength division multiplexed (TWDM) by combining optical network units (ONU) users data at the remote node (RN). Each ONU generates 2.5 Gb/s user data, and it is modulated using novel return to zero (RZ) delayed AM. Optical TDM aggregates 10 Gb/s data per wavelength from four 2.5 Gb/s upstream user data, which facilitates four different ONU data on the same wavelength as 10 Gb/s per upstream wavelength and, simplify the laser requirements (2.5 Gb/s) at each optical network unit (ONU) transmitter. Upstream optical TWDM-PON is investigated for eight wavelengths with wavelength spacing of 100 GHz. Novel optical TDM for upstream increased the number of the simultaneous user to fourfold from conventional TWDM-PON using delayed AM with a high-quality-factor of received signal. Despite performance degradation due to different fiber reach and dispersion compensation technique, Optical TWDM link shows significant improvement regarding receiver sensitivity when compared with common TWDM link. Hence, it offers optimistic thinking to show optical TDM at this phase as one of the future direction, where complex digital signal processing (DSP) and coherent optical communication are frequently demonstrated to serve the access network. Downstream side conventional TWDM eight wavelengths are multiplexed at the OLT and sent downstream to serve distributed tunable ONU receivers through an optical distribution network (ODN). Each downstream wavelengths are modulated at the peak rate of 10 Gb/s using non-return to zero external modulation (NRZ-EM). The proposed architecture is cost efficient and supports high data rates as well as ;pay as you grow; network for both service providers and the users perspectives. Users are classified into two categories viz home-user and business-user, with an option for easy up-gradation. Proposed architecture operates on next generation passive optical network stage 2 (NG-PON2) wavelength plan, with symmetrical data rate. Downstream performance is investigated by comparing, high power laser source with a conventional laser source and the L-band Erbium-doped fiber amplifier (EDFA) of gain 10 dB and 20 dB. Downstream eight wavelengths perform error-free up to 40 Km fiber reach and 1024 splitting points. Power budget of the proposed architecture incorporates the N1, N2, E1 and E2 optical path loss class.
Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei
2014-01-01
Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325
NASA Technical Reports Server (NTRS)
Ingels, F.; Schoggen, W. O.
1981-01-01
Several methods for increasing bit transition densities in a data stream are summarized, discussed in detail, and compared against constraints imposed by the 2 MHz data link of the space shuttle high rate multiplexer unit. These methods include use of alternate pulse code modulation waveforms, data stream modification by insertion, alternate bit inversion, differential encoding, error encoding, and use of bit scramblers. The psuedo-random cover sequence generator was chosen for application to the 2 MHz data link of the space shuttle high rate multiplexer unit. This method is fully analyzed and a design implementation proposed.
Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong
2014-09-01
To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.
Bhatjiwale, M; Bhatjiwale, M; Naik, L D; Chopade, P
2018-05-29
Trigeminal neuralgia and deafferentation neuropathic pain, or trigeminal neuropathy, are different symptomatologies, rarely reported to present together. The case of a 65-year-old gentleman suffering from trigeminal neuralgia of the maxillary and mandibular division is reported. He first underwent an infraorbital neurectomy that was complicated by deafferentation neuropathic pain, whilst his mandibular neuralgia continued. He was treated successfully for both the neuropathic and neuralgic symptoms in the same session using ultra-extended euthermic pulsed radiofrequency treatment for the maxillary division (V2) and radiofrequency thermocoagulation for the mandibular division (V3). This report is novel in describing the use of dual modalities in the same session for two distinct coexisting clinical entities in two different divisions of the same cranial nerve. The use of ultra-extended pulsed radiofrequency treatment for neuropathic pain in this case is also unique. Nearly 2years after the procedure, the patient continues to have complete pain relief. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Design of an Optical OR Gate using Mach-Zehnder Interferometers
NASA Astrophysics Data System (ADS)
Choudhary, Kuldeep; Kumar, Santosh
2018-04-01
The optical switching phenomenon enhances the speed of optical communication systems. It is widely used in the wavelength division multiplexing (WDM). In this work, an optical OR gate is proposed using the Mach-Zehnder interferometer (MZI) structure. The detailed derivation of mathematical expression have been shown. The analysis is carried out by simulating the proposed device with MATLAB and Beam propagation method.
Hardware Development and Error Characterization for the AFIT RAIL SAR System
This research is focused on updating the Air Force Institute of Technology (AFIT) Radar Instrumentation Lab (RAIL)Synthetic Aperture Radar ( SAR ...collections from a receiver in motion. Secondly, orthogonal frequency-division multiplexing (OFDM) signals are used to form ( SAR ) images in multiple...experimental and simulation configurations. This research analyses, characterizes and attempts compensation of relevant SAR image error sources, such as Doppler
High-Speed Optical Wide-Area Data-Communication Network
NASA Technical Reports Server (NTRS)
Monacos, Steve P.
1994-01-01
Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.
Performance analysis of Integrated Communication and Control System networks
NASA Technical Reports Server (NTRS)
Halevi, Y.; Ray, A.
1990-01-01
This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.
Ocean Variability Effects on Underwater Acoustic Communications
2012-09-30
2000. [2] B. Li, J. Huang, S. Zhou, K. Ball, M. Stojanovic, L. Freitag, and P. Willett. MIMO - OFDM for high rate underwater acoustic...alternative to orthogonal frequency-division multiplexing ( OFDM ) [2], we developed a multiband transceiver, where a wide frequency band is divided into...multiple separated sub-bands. These sub- bands are several kilohertz in width, much wider than OFDM sub-carriers used in underwater channels
Blind Equalization and Fading Channel Signal Recovery of OFDM Modulation
2011-03-01
Square LTI Linear Time Invariant MIMO Multiple-Input Multiple-Output OFDM Orthogonal Frequency-Division Multiplexing QPSK Quadrature Phase-Shift...AND FADING CHANNEL SIGNAL RECOVERY OF OFDM MODULATION by Anthony G. Stranges March 2011 Thesis Co-Advisors: Roberto Cristi Frank Kragh...Master’s Thesis 4. TITLE AND SUBTITLE Blind Equalization and Fading Channel Signal Recovery of OFDM Modulation 6. AUTHOR(S) Anthony G. Stranges
MURI: Impact of Oceanographic Variability on Acoustic Communications
2012-09-30
ACSSC.2010.5757934 (2010). [published] [50] K. Tu, T.M. Duman, J.G. Proakis, and M. Stojanovic, “Cooperative MIMO - OFDM communications: Receiver...considered across bands of frequencies in the range 1-50 kHz. Multiple source and receiver cases ( MIMO ) will be of particular interest. Validating...Parabolic Equation (PE) acoustic models. Communication receiver design has included processors for orthogonal frequency division multiplexing ( OFDM
Designing Two-Layer Optical Networks with Statistical Multiplexing
NASA Astrophysics Data System (ADS)
Addis, B.; Capone, A.; Carello, G.; Malucelli, F.; Fumagalli, M.; Pedrin Elli, E.
The possibility of adding multi-protocol label switching (MPLS) support to transport networks is considered an important opportunity by telecom carriers that want to add packet services and applications to their networks. However, the question that arises is whether it is suitable to have MPLS nodes just at the edge of the network to collect packet traffic from users, or also to introduce MPLS facilities on a subset of the core nodes in order to exploit packet switching flexibility and multiplexing, thus providing induction of a better bandwidth allocation. In this article, we address this complex decisional problem with the support of a mathematical programming approach. We consider two-layer networks where MPLS is overlaid on top of transport networks-synchronous digital hierarchy (SDH) or wavelength division multiplexing (WDM)-depending on the required link speed. The discussions' decisions take into account the trade-off between the cost of adding MPLS support in the core nodes and the savings in the link bandwidth allocation due to the statistical multiplexing and the traffic grooming effects induced by MPLS nodes. The traffic matrix specifies for each point-to-point request a pair of values: a mean traffic value and an additional one. Using this traffic model, the effect of statistical multiplexing on a link allows the allocation of a capacity equal to the sum of all the mean values of the traffic demands routed on the link and only the highest additional one. The proposed approach is suitable to solve real instances in reasonable time.
All-optical wavelength conversion for mode division multiplexed superchannels.
Gong, Jiaxin; Xu, Jing; Luo, Ming; Li, Xiang; Qiu, Ying; Yang, Qi; Zhang, Xinliang; Yu, Shaohua
2016-04-18
We report in this work the first all-optical wavelength conversion (AOWC) of a mode division multiplexed (MDM) superchannel consisting of 2N modes by dividing the superchannel into N single-mode (SM) tributaries, wavelength converting N SM signals using well developed SM-AOWC techniques, and finally combining the N SM tributaries back to an MDM superchannel at the converted wavelength, inspired by the idea of using SM filtering techniques to filter multimode signals in astronomy. The conversions between multimode and SM are realized by 3D laser-writing photonic lanterns and SM-AOWCs are realized based on polarization insensitive four wave mixing (FWM) configuration in N semiconductor optical amplifiers (SOAs). As a proof of concept demonstration, the conversion of a 6-mode MDM superchannel with each mode modulated with orthogonal frequency division multiplexed (OFDM) quadrature phase-shift keying (QPSK)/16 quadrature amplitude modulation (QAM) signals is demonstrated in this work, indicating that the scheme is transparent to data format, polarization and compatible with multi-carrier signals. Data integrity of the converted superchannel has been verified by using coherent detection and digital signal processing (DSP). Bit error rates (BERs) below the forward error correction (FEC) hard limit (3.8 × 10-3) have been obtained for QPSK modulation at a net bitrate of 104.2 Gbit/s and BERs below the soft decision FEC threshold (1.98 × 10-2) have been achieved for 16-QAM format, giving a total aggregate bit rate of 185.8 Gbit/s when taking 20% coding overhead into account. Add and drop functionalities that usually come along with wavelength conversion in flexible network nodes have also been demonstrated. The working conditions of the SOAs, especially the pump and signal power levels, are critical for the quality of the converted signal and have been thoroughly discussed. The impact of imbalanced FWM conversion efficiency among different SM tributaries has also been analyzed. This work illustrates a promising way to perform all-optical signal processing for MDM superchannels.
Multiplex electric discharge gas laser system
NASA Technical Reports Server (NTRS)
Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)
1987-01-01
A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.
Optical delay encoding for fast timing and detector signal multiplexing in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford
2015-08-15
Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less
Pulsed acoustic vortex sensing system volume III: PAVSS operation and software documentation
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
Pulsed Acoustic Vortex Sensing System : Volume 2, Studies of Improved PAVSS Processing Techniques
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
Pulsed acoustic vortex sensing system volume IV: PAVSS program summary and recommendations
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. : This volu...
Compact pulse width modulation circuitry for silicon photomultiplier readout.
Bieniosek, M F; Olcott, P D; Levin, C S
2013-08-07
The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.