Science.gov

Sample records for pulse duration modulation

  1. Solid-state pulse forming module with adjustable pulse duration

    NASA Astrophysics Data System (ADS)

    Wang, Langning; Liu, Jinliang; Qiu, Yongfeng; Chu, Xu; Zhang, Qingmeng

    2017-03-01

    A new solid-state pulse forming module is described in this paper. The pulse forming module is fabricated on a glass ceramic substrate, with the dimension of 250 mm × 95 mm × 4 mm. By changing the copper strips used in the pulse forming modules, the pulse duration of the obtained pulsed can range from 80 ns to 140 ns. Both the simulation and tests show that the pulse forming module has a good pulse forming ability. Under a high voltage in microsecond's time, the new pulse forming modules can hold off a voltage up to 25 kV higher than that of the previous study. In addition, future optimization for the field enhancement near the thin electrode edge has been proposed and simulated.

  2. [An integral chip for the multiphase pulse-duration modulation used for voltage changer in biomedical microprocessor systems].

    PubMed

    Balashov, A M; Selishchev, S V

    2004-01-01

    An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.

  3. Changes in Auditory Nerve Responses Across the Duration of Sinusoidally Amplitude-Modulated Electric Pulse-Train Stimuli

    PubMed Central

    Miller, Charles A.; Abbas, Paul J.; Robinson, Barbara K.; Woo, Jihwan

    2010-01-01

    Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F0 amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F0 amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F0 amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F0 measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures. PMID:20632064

  4. Effects of pulse duration on magnetostimulation thresholds

    SciTech Connect

    Saritas, Emine U.; Goodwill, Patrick W.; Conolly, Steven M.

    2015-06-15

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations

  5. Period and pulse duration with "strobe" lights

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer

    2016-01-01

    Strobe lights have traditionally been discussed in The Physics Teacher in the context of stop action strobe photography. During the Halloween season most department and hardware stores sell inexpensive, compact "strobe" lights (although these can be found online year round). These lights generally sell for under 10 and usually employ LED lights. Most such devices have a rotary switch to adjust the rate at which the LED bulbs flash. This rotary switch is not calibrated—i.e., it has no markings to indicate the rate, but in general the greater the rotation of the switch from the off position, the faster the rate of flashing. We show how these simple devices can be used with a light sensor to study both the frequency of flashing and the duration of the light pulse. We briefly discuss if these devices are truly strobe lights.

  6. Position modulation with random pulses.

    PubMed

    Yao, Min; Korotkova, Olga; Ding, Chaoliang; Pan, Liuzhan

    2014-06-30

    A new class of sources generating ensemble of random pulses is introduced based on superposition of the mutual coherence functions of several Multi-Gaussian Schell-model sources that separately are capable of shaping the propagating pulse's average intensity into flat profiles with adjustable duration and edge sharpness. Under certain conditions that we discuss in detail such superposition allows for production of a pulse ensemble that after a sufficiently long propagation distance in a dispersive medium reshapes its average intensity from an arbitrary initial profile to a train whose parts have flat intensities of different levels and durations and can be either temporarily separated or adjacent.

  7. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    PubMed

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  8. Pulse-duration dependent sequential double ionization by elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Deng, Yongju; Liu, Dan

    2016-05-01

    Using a fully classical model, we have studied sequential double ionization of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that the joint electron momentum distributions in the minor elliptical direction depend strongly on the pulse duration. From pulse number N = 4 to 10, the clustering regions of the joint electron momentum increase with the pulse duration. For even larger pulse durations, the clustering region does not increase further but the population of the joint electron momentum in these regions changes with the pulse duration. Back analysis of double ionization trajectories shows the phenomenon of multiple ionization bursts and the pulse duration-dependent multiple ionization bursts of the second electron is responsible for the evolution of the joint electron momentum distribution with the pulse duration.

  9. Driver sensitivity to brake pulse duration and magnitude.

    PubMed

    Lee, J D; McGehee, D V; Brown, T L; Nakamoto, J

    2007-06-01

    Adaptive cruise control (ACC) requires that the driver intervene in situations that exceed the capability of ACC. A brake pulse might provide a particularly compatible means of alerting the driver to situations in which the acceleration authority of the ACC has been exceeded. This study examined the sensitivity of the driver to brake pulses of five different amplitudes (0.01-0.025 g) and five different durations (50-800 ms). Drivers were sensitive to accelerations as low as 0.015 g. Pulse duration interacted with pulse amplitude, such that moderate duration pulses were more detectable than long and short duration pulses at intermediate levels of pulse amplitude. A power function with an exponent of 1.0 accounted for 99% of the variance in drivers' sensitivity to pulse amplitude; however, a power function with an exponent of 0.23 accounted for only 70% of the variance in drivers' sensitivity to pulse duration. These results can help designers create ACC algorithms and develop brake pulse warnings.

  10. Electropermeabilization of mammalian cells to macromolecules: control by pulse duration.

    PubMed Central

    Rols, M P; Teissié, J

    1998-01-01

    Membrane electropermeabilization to small molecules depends on several physical parameters (pulse intensity, number, and duration). In agreement with a previous study quantifying this phenomenon in terms of flow (Rols and Teissié, Biophys. J. 58:1089-1098, 1990), we report here that electric field intensity is the deciding parameter inducing membrane permeabilization and controls the extent of the cell surface where the transfer can take place. An increase in the number of pulses enhances the rate of permeabilization. The pulse duration parameter is shown to be crucial for the penetration of macromolecules into Chinese hamster ovary cells under conditions where cell viability is preserved. Cumulative effects are observed when repeated pulses are applied. At a constant number of pulses/pulse duration product, transfer of molecules is strongly affected by the time between pulses. The resealing process appears to be first-order with a decay time linearly related to the pulse duration. Transfer of macromolecules to the cytoplasm can take place only if they are present during the pulse. No direct transfer is observed with a postpulse addition. The mechanism of transfer of macromolecules into cells by electric field treatment is much more complex than the simple diffusion of small molecules through the electropermeabilized plasma membrane. PMID:9726943

  11. Tailored terahertz pulses from a laser-modulated electron beam.

    PubMed

    Byrd, J M; Hao, Z; Martin, M C; Robin, D S; Sannibale, F; Schoenlein, R W; Zholents, A A; Zolotorev, M S

    2006-04-28

    We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse.

  12. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    SciTech Connect

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Zholents, A.A.; Zolotorev, M.S.

    2006-04-28

    We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse.

  13. A simple technique for individual picosecond laser pulse duration measurements

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.

    1976-01-01

    We describe here a simple nonlinear optic technique for the measurement of the duration of individual picosecond pulses. The accuracy and relative simplicity of the technique increase with the number of pulses measured. An experimental test of the basis of the technique is described.

  14. Inductively stabilized, long pulse duration transverse discharge apparatus

    DOEpatents

    Sze, Robert C.

    1986-01-01

    An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high energy, high efficiency, long-pulsed laser outputs to be obtained. The present apparatus has been demonstrated with rare-gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

  15. Pulse amplitude modulated chlorophyll fluorometer

    DOEpatents

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  16. A regenerative CO2 amplifier with controlled pulse duration

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Kazakov, K. Kh.; Sorochenko, V. R.; Shakir, Iu. A.

    1991-03-01

    The paper reports the development of a regenerative TEA CO2 amplifier with the pulse duration in a train controlled within the range from 10 to 40 ns, the interval between the pulses amounting to 110 ns and their total energy amounting to 4 J. Laser radiation screening by an optical-air-breakdown plasma in a lens telescope focus was used to form the injected pulse. Good reproduction of the temporal parameters of the injected pulse was achieved by virtue of the injection of radiation from a frequency stabilized CW CO2-laser into the master oscillator.

  17. TDR Using Autocorrelation and Varying-Duration Pulses

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Mullinex, Pam; Huang, PoTien; Santiago, Josephine; Mata, Carlos; Zavala, Carlos; Lane, John

    2008-01-01

    In an alternative to a prior technique of time-domain-reflectometry (TDR) in which very short excitation pulses are used, the pulses have very short rise and fall times and the pulse duration is varied continuously between a minimum and a maximum value. In both the present and prior techniques, the basic idea is to (1) measure the times between the generation of excitation pulses and the reception of reflections of the pulses as indications of the locations of one or more defects along a cable and (2) measure the amplitudes of the reflections as indication of the magnitudes of the defects. In general, an excitation pulse has a duration T. Each leading and trailing edge of an excitation pulse generates a reflection from a defect, so that a unique pair of reflections is associated with each defect. In the present alternative technique, the processing of the measured reflection signal includes computation of the autocorrelation function R(tau) identical with fx(t)x(t-tau)dt where t is time, x(t) is the measured reflection signal at time t, and taus is the correlation interval. The integration is performed over a measurement time interval short enough to enable identification and location of a defect within the corresponding spatial interval along the cable. Typically, where there is a defect, R(tau) exhibits a negative peak having maximum magnitude for tau in the vicinity of T. This peak can be used as a means of identifying a leading-edge/trailing-edge reflection pair. For a given spatial interval, measurements are made and R(tau) computed, as described above, for pulse durations T ranging from the minimum to the maximum value. The advantage of doing this is that the effective signal-to-noise ratio may be significantly increased over that attainable by use of a fixed pulse duration T.

  18. Pulse duration dependence of atomic sequential double ionization by circular laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Chen, Liangyuan; Li, Yingbin

    2016-09-01

    Using classical ensemble method, we have investigated the pulse duration dependence of sequential double ionization (SDI) of Ar atoms driven by circularly polarized laser pulses. The results show that the ion momentum distribution of Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from single-ring to double-ring structure, and finally to the single-ring structure. Back analysis of double ionization trajectories shows that the variation of the ring structure originates from the dependence of the ionization time of the second electron on the pulse duration. Moreover, our calculations clearly manifest the subcycle electron emission in sequential double ionization by circularly polarized laser pulses.

  19. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    SciTech Connect

    Misochko, O. V.

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  20. Local field effect as a function of pulse duration

    SciTech Connect

    Novitsky, Denis V.

    2010-07-15

    In this brief report we give semiclassical consideration to the role of pulse duration in the observation of local field effects in the regime of optical switching. We show that the main parameter governing local field influence is the ratio of peak Rabi frequency corresponding to medium inversion and Lorentz frequency of the medium. To obtain significant local field effect, this parameter should be near unity that is valid only for long enough pulses. We also discuss the role of relaxation and pulse shape in this process.

  1. Tailored terahertz pulses from a laser-modulated electronbeam

    SciTech Connect

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Zholents, A.A.; Zolotorev, M.S.

    2006-03-06

    We present a new method to generate steady and tunable,coherent, broadband terahertz radiation from a relativistic electron beammodulated by a femtosecond laser. We have demonstrated this in theelectron storage ring at the Advanced Light Source. Interaction of anelectron beam with a femtosecond laser pulse copropagating through awiggler modulates the electron energies within a short slice of theelectron bunch with about the same duration of the laser pulse. The bunchdevelops a longitudinal density perturbation due to the dispersion ofelectron trajectories, and the resulting hole emits short pulses oftemporally and spatially coherent terahertz pulses synchronized to thelaser. We present measurements of the intensity and spectra of thesepulses. This technique allows tremendous flexibility in shaping theterahertz pulse by appropriate modulation of the laser pulse.

  2. Influence of pulse duration on ultrashort laser pulse ablation of biological tissues.

    PubMed

    Kim, B M; Feit, M D; Rubenchik, A M; Joslin, E J; Celliers, P M; Eichler, J; Da Silva, L B

    2001-07-01

    Ablation characteristics of ultrashort laser pulses were investigated for pulse durations in the range of 130 fs-10 ps. Tissue samples used in the study were dental hard tissue (dentin) and water. We observed differences in ablation crater morphology for craters generated with pulse durations in the 130 fs-1 ps and the 5 ps-10 ps range. For the water experiment, the surface ablation and subsequent propagation of stress waves were monitored using Mach-Zehnder interferometry. For 130 fs-1 ps, energy is deposited on the surface while for longer pulses the beam penetrates into the sample. Both studies indicate that a transition occurs between 1 and 5 ps.

  3. Ultracold atom interferometry with pulses of variable duration

    NASA Astrophysics Data System (ADS)

    Ivannikov, Valentin

    2017-03-01

    We offer interferometry models for thermal ensembles with one-body losses and the phenomenological inclusion of perturbations covering most of the thermal atom experiments. A possible extension to the many-body case is briefly discussed. The Ramsey pulses are assumed to have variable durations and the detuning during the pulses is distinguished from the detuning during evolution. Consequently, the pulses are not restricted to resonant operation and give more flexibility to optimize the interferometer to particular experimental conditions. On this basis another model is devised in which the contrast loss due to the unequal one-body population decays is canceled by the application of a nonstandard splitting pulse. For the importance of its practical implications, an analogous spin-echo model is also provided. The developed models are suitable for the analysis of atomic clocks and a broad range of sensing applications; they are particularly useful for trapped-atom interferometers.

  4. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  5. Synchronization tracking in pulse position modulation receiver

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    1987-01-01

    A clock pulse generator for decoding pulse position modulation in an optical communication receiver is synchronized by a delay tracking loop which multiplies impulses of a data pulse by the square wave clock pulses from the generator to produce positive impulses when the clock pulse is of one level, and negative impulses when the clock pulse is of another level. A delay tracking loop integrates the impulses and produces an error signal that adjusts the delay so the clock pulses will be synchronized with data pulses. A dead-time tau sub d is provided between data pulses of an interval tau sub p in the data pulse period tau. When synchronized, the average number of positive impulses integrated will equal the average number of negative impulses over the continuous stream of data pulses.

  6. Reciprocity in long pulse duration laser interactions with polymers

    NASA Astrophysics Data System (ADS)

    Marchant, A. L.; Snelling, H. V.

    2012-05-01

    The laser irradiation of polyimide Kapton HN (PI), polyetheretherketone (PEEK), polyethyleneterephthalate (PET) and polypropylene (PP) by long pulse, radio frequency excited, CO2 laser radiation has been studied. In the pulse duration range 47-757 µs the minimum pulse energy required to damage the surface is found to be independent of exposure time. Hence, the threshold fluence is also independent of pulse duration; the same effect is achieved through the application of long pulses at low irradiance as shorter ones at higher irradiance. The values of these threshold fluences have been found to be 8.15 J cm-2, 5.36 J cm-2, 3.39 J cm-2 and 9.63 J cm-2 for PI, PEEK, PET and PP, respectively. The details of this behaviour have been analysed through calculations of the laser-induced temperature rise and the application of an Eyring-type rate law for the thermal decomposition of polyimide and PEEK and by considering the melting points of PP and PET.

  7. Effects of pulse duration on muscle fatigue during electrical stimulation inducing moderate-level contraction.

    PubMed

    Jeon, Woohyoung; Griffin, Lisa

    2017-09-01

    Neuromuscular electrical stimulation (NMES) is used to prevent muscle atrophy. However, the effect of pulse duration modulation for reducing muscle fatigue and pain is unknown. Two 2-minute stimulation protocols were applied to the knee extensors of 10 healthy individuals. In 1 session, a long pulse duration (1,000 μs) and a low current amplitude (LL), set to evoke 25% maximal voluntary contraction at 30 Hz, were applied. The other session was identical except that a short pulse duration (200 μs) and a high current amplitude (SH) were used. Muscle fatigue was lower for LL than for SH (P < 0.01). Force recovery rate was higher for LL than for SH (P < 0.05). Pain scores were also lower for LL than for SH (P < 0.05). The use of 1-ms pulse durations reduces fatigue and pain during NMES for moderate-level contractions compared with 200-μs durations. Muscle Nerve, 2017. © 2017 Wiley Periodicals, Inc.

  8. Modeling short pulse duration shock initiation of solid explosives

    SciTech Connect

    Tarver, C.M.; Hallquist, J.O.; Erickson, L.M.

    1985-06-27

    The chemical reaction rate law in the ignition and growth model of shock initiation and detonation of solid explosives is modified so that the model can accurately simulate short pulse duration shock initiation. The reaction rate law contains three terms to model the ignition of hot spots by shock compression, the slow growth of reaction from these isolated hot spots, and the rapid completion of reaction as the hot spots coalesce. Comparisons for PBX 9404 between calculated and experimental records are presented for the electric gun mylar flyer plate system, the minimum priming charge test, embedded manganin pressure and particle velocity gauges, and VISAR particle velocity measurements for a wide variety of input pressures, rise times and pulse durations. The ignition and growth model is now a fully developed phenomenological tool that can be applied with confidence to almost any hazard, vulnerability or explosive performance problem. 27 refs., 16 figs., 2 tabs.

  9. Pulse Duration of Seeded Free-Electron Lasers

    DOE PAGES

    Finetti, Paola; Hoppner, Hauke; Allaria, Enrico; ...

    2017-06-16

    The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seededmore » FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. Finally, the measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.« less

  10. Progress toward a microsecond duration, repetitively pulsed, intense- ion beam

    SciTech Connect

    Davis, H.A.; Olson, J.C.; Reass, W.A.; Coates, D.M.; Hunt, J.W.; Schleinitz, H.M.; Lovberg, R.H.; Greenly, J.B.

    1996-07-01

    A number of intense ion beams applications are emerging requiring repetitive high-average-power beams. These applications include ablative deposition of thin films, rapid melt and resolidification for surface property enhancement, advanced diagnostic neutral beams for the next generation of Tokamaks, and intense pulsed-neutron sources. We are developing a 200-250 keV, 15 kA, 1 {mu}s duration, 1-30 Hz intense ion beam accelerator to address these applications.

  11. Pulsed infrared laser irradiation of biological tissue: effect of pulse duration and repetition rate

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Chundru, Ravi K.; Samanani, Salim A.; Tibbetts, Todd A.; Welch, Ashley J.

    1993-07-01

    Pulsed laser ablation is a trade off between minimizing thermal damage (for relatively long pulses) and mechanical damage (for relatively short pulses) to tissue adjacent to the ablation crater. Often it is not known what the optimal laser parameters are for a specific application, since clinically used parameters have at least partially been dictated by physical limitations of the laser devices. We recently obtained a novel type of cryogenic continuous wave holmium:YAG laser ((lambda) equals 2.09 micrometers ) with a galvanometric drive outcouple mirror that acts as a Q-switch. This unique device provides pulse repetition rates from a few Hz up to kHz and the pulse length is variable from microsecond(s) to ms. The effect of pulse duration and repetition rate on the thermal response of chicken breast is documented using temperature measurements with a thermal camera. We varied the pulse width from 10 microsecond(s) to 5 ms and fond that these pulse durations can be considered impulses of thermalized optical energy. In this paper some theoretical considerations of the pulse length will be described that support the experimental data. It was also found that even at 1 pulse per second thermal superposition occurs, indicating a much longer thermal relaxation time than predicted by a simple time constant model.

  12. A Long Pulse Solid State Induction Modulator

    SciTech Connect

    Cassel, R

    2004-05-04

    The Next Linear Collider accelerator is developing a high efficiency, highly reliable, and low cost pulsed-power modulator to drive the NLC 500KV, 230A X band klystrons. The induction of fractional turn transformer is most applicable for short pulse width of less than 1.5 microseconds due to the size of the induction cores involved. This paper will cover the techniques SLAC is developing to use the induction modulator in longer pulse operation of up to 15 microseconds. The 3 microseconds SLAC design as will, as the proposals for wider pulse application will be discussed.

  13. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration

    PubMed Central

    Watson, Meghan; Sawan, Mohamad

    2016-01-01

    Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP) recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100–200 Hz or pulse duration from 0.18–0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters. PMID:27442588

  14. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration.

    PubMed

    Watson, Meghan; Sawan, Mohamad; Dancause, Numa

    2016-01-01

    Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP) recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100-200 Hz or pulse duration from 0.18-0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters.

  15. Pulse laser assist optical tweezers (PLAT) with long-duration pulse laser

    NASA Astrophysics Data System (ADS)

    Maeda, Saki; Sugiura, Tadao; Minato, Kotaro

    2011-07-01

    Optical tweezers is a technique to trap and to manipulate micron sized objects under a microscope by radiation pressure force exerted by a laser beam. Optical tweezers has been utilized for single-molecular measurements of force exerted by molecular interactions and for cell palpation. To extend applications of optical tweezers we have developed a novel optical tweezers system combined with a pulse laser. We utilize a pulse laser (Q-switched Nd: YAG laser, wavelength of 1064 nm) to assist manipulations by conventional optical tweezers with a continuous wave (CW) laser. The pulse laser beam is introduced into the same optics for conventional optical tweezers. In principle, instantaneous radiation force is proportional to instantaneous power of laser beam. As a result, pulse laser beam generates strong instantaneous force on an object to be manipulated. If the radiation force becomes strong enough to get over an obstacle structure and/or to be released from adhesion, the object will be free from these difficulties. We investigate the effect of pulse laser assistance with changing pulse duration of the laser. We report optimum pulse duration of 100 ns to 200 ns deduced from motion analysis of a particle in a beam spot. Our goal is to realize in-vivo manipulation and operation of a cell. For this purpose we need to reduce light energy of pulse laser beam and to avoid laser induced breakdown caused by strong light field. So we have developed a pulse laser with 160-ns pulse duration and have confirmed that availability on manipulation of living cells.

  16. Optimal pseudorandom pulse position modulation ladar waveforms.

    PubMed

    Fluckiger, David U; Boland, Brian F; Marcus, Eran

    2015-03-20

    An algorithm for generating optimal pseudorandom pulse position modulation (PRPPM) waveforms for ladar ranging is presented. Bistatic ladar systems using Geiger-mode avalanche photodiodes require detection of several pulses in order to generate sufficient target statistics to satisfy some detection decision rule. For targets with large initial range uncertainty, it becomes convenient to transmit a pulse train with large ambiguity range. One solution is to employ a PRPPM waveform. An optimal PRPPM waveform will have minimal sidelobes: equivalent to 1 or 0 counts after the pulse correlation filter (compression). This can be accomplished by generating PRPPM pulse trains with optimal or minimal sidelobe autocorrelation.

  17. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    DOEpatents

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  18. Generation of modulated microchip laser pulses

    NASA Astrophysics Data System (ADS)

    Almabouada, F.; Aiadi, K. E.; Louhibi, D.

    2015-01-01

    Modulated 532 nm laser pulses were generated by a Nd:YVO4 microchip laser and a KTP crystal end-pumped by a 808 nm laser diode. The interest in such works arise from the efficiency of this type of laser in several applications. To obtain the desired type of the modulated laser pulses, the electrical circuit of the laser diode was designed so as to enable varying their driving signal and current values. Different modulated signals were used, such as square wave, sine wave, and burst mode pulses. Varying the peak drive current, the duty cycle, and the number of pulses allowed us to adjust the laser energy. For the burst mode experiment, the pulse energy obtained was about 1.2 μJ.

  19. Route to the minimum pulse duration in normal-dispersion fiber lasers

    PubMed Central

    Chong, Andy; Renninger, William H.; Wise, Frank W.

    2011-01-01

    The factors that control the pulse duration in all-normal-dispersion lasers are identified. To minimize the pulse duration, the cavity dispersion should be as small as possible. For fixed dispersion, increasing pulse energy leads to shorter, but more-structured, pulses. Experiments performed with ordinary single-mode fiber at 1 μm wavelength agree reasonably with numerical simulations, and produce clean ~80-fs pulses. The simulations indicate that 30-fs pulses can be reached at higher energies. PMID:19015693

  20. Note: Compact helical pulse forming line for the generation of longer duration rectangular pulse

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Deb, P.; Sharma, Archana; Shukla, R.; Prabaharan, T.; Adhikary, B.; Shyam, A.

    2012-06-01

    The helical pulsed forming line (PFL) can generate longer duration rectangular pulse in a smaller length. A compact PFL using helical water line is designed and experimentally investigated. The impedance of the helical PFL is 22 Ω. The compactness is achieved in terms of reduction in length of the PFL by a factor of 5.5 using helical water PFL as compared to coaxial water PFL of same length. The helical PFL was pulsed charged to 200 kV using a high voltage pulse transformer in 4.5 μs and discharged into the matched 22 Ω resistive load through a self-breakdown pressurized spark gap switch. The rectangular voltage pulse of 100 kV, 260 ns (FWHM) is measured across the load. The effect of reduction in water temperature on the pulse width is also studied experimentally. The increase in pulse width up to 7% more is observed by reducing the temperature of the deionized water to 5 °C. It will further reduce the length of the PFL and make the system small for compact pulsed power drivers.

  1. Note: compact helical pulse forming line for the generation of longer duration rectangular pulse.

    PubMed

    Sharma, Surender Kumar; Deb, P; Sharma, Archana; Shukla, R; Prabaharan, T; Adhikary, B; Shyam, A

    2012-06-01

    The helical pulsed forming line (PFL) can generate longer duration rectangular pulse in a smaller length. A compact PFL using helical water line is designed and experimentally investigated. The impedance of the helical PFL is 22 [ohm sign]. The compactness is achieved in terms of reduction in length of the PFL by a factor of 5.5 using helical water PFL as compared to coaxial water PFL of same length. The helical PFL was pulsed charged to 200 kV using a high voltage pulse transformer in 4.5 μs and discharged into the matched 22 Ω resistive load through a self-breakdown pressurized spark gap switch. The rectangular voltage pulse of 100 kV, 260 ns (FWHM) is measured across the load. The effect of reduction in water temperature on the pulse width is also studied experimentally. The increase in pulse width up to 7% more is observed by reducing the temperature of the deionized water to 5 °C. It will further reduce the length of the PFL and make the system small for compact pulsed power drivers.

  2. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Ricard, A.; Hecq, M.

    2006-01-01

    High-power pulsed magnetron discharges have drawn an increasing interest as an approach to produce highly ionized metallic vapor. In this paper we propose to study how the plasma composition and the deposition rate are influenced by the pulse duration. The plasma is studied by time-resolved optical emission and absorption spectroscopies and the deposition rate is controlled thanks to a quartz microbalance. The pulse length is varied between 2.5 and 20 {mu}s at 2 and 10 mTorr in pure argon. The sputtered material is titanium. For a constant discharge power, the deposition rate increases as the pulse length decreases. With 5 {mu}s pulse, for an average power of 300 W, the deposition rate is {approx}70% of the deposition rate obtained in direct current magnetron sputtering at the same power. The increase of deposition rate can be related to the sputtering regime. For long pulses, self-sputtering seems to occur as demonstrated by time-resolved optical emission diagnostic of the discharge. In contrary, the metallic vapor ionization rate, as determined by absorption measurements, diminishes as the pulses are shortened. Nevertheless, the ionization rate is in the range of 50% for 5 {mu}s pulses while it lies below 10% in the case of a classical continuous magnetron discharge.

  3. Method and apparatus for the production of pre pulse free smooth laser radiation pulses of variable pulse duration

    SciTech Connect

    Witte, K. J.; Fill, E.; Scrlac, W.

    1985-04-30

    The pulse duration of an iodine laser is adjusted between 400 ps and 20 ns primarily by changing the resonator length in the range of about 2 cm to about 100 cm and secondarily by the ratio of excitation energy to threshold energy of the laser. Iodine laser pulses without pre-pulse and substructure are achieved in that the gas pressure of the laser gas of the iodine laser is adapted to the resonator length in order to limit the band width of the amplification and thus the band width of the pulse to be produced. The longer are the laser pulses to be produced the lower is the pressure chosen. A prerequisite for the above results is that the excitation of the iodine laser occurs extremely rapidly. This is advantageously achieved by photo-dissociation of a perfluoroalkyl iodide as CF/sub 3/I by means of laser providing sufficiently short output pumping pulses, e.g. an excimer laser, as a KrF laser or XeCl laser or a frequency-multiplied Nd-glass or Nd-YAG laser, or a N/sub 2/ laser (in combination with t-C/sub 4/F/sub 9/I as laser medium). In addition to the substantial advantage of the easy variability of the pulse duration the method additionally has a number of further advantages, namely pre-pulse-free rise of the laser pulse up to the maximum amplitude; exchange of the laser medium between two pulses is not necessary at pulse repetition rates below about 1 hertz; high pulse repetion rates obtainable with laser gas regeneration; switching elements for isolating a laser oscillator from a subsequent amplifier cascade for the purpose of avoiding parasitic oscillations are not as critical as with flashlamp-pumped lasers.

  4. Pulse width modulation inverter with battery charger

    DOEpatents

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  5. Pulse width modulation inverter with battery charger

    NASA Technical Reports Server (NTRS)

    Slicker, James M. (Inventor)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  6. Generation of individually modulated femtosecond pulse string by multilayer volume holographic gratings.

    PubMed

    Yan, Xiaona; Gao, Lirun; Yang, Xihua; Dai, Ye; Chen, Yuanyuan; Ma, Guohong

    2014-10-20

    A scheme to generate individually modulated femtosecond pulse string by multilayer volume holographic grating (MVHG) is proposed. Based on Kogelnik's coupled-wave theory and matrix optics, temporal and spectral expressions of diffracted field are given when a femtosecond pulse is diffracted by a MVHG. It is shown that the number of diffracted sub-pulses in the pulse string equals to the number of grating layers of the MVHG, peak intensity and duration of each diffracted sub-pulse depend on thickness of the corresponding grating layer, whereas pulse interval between adjacent sub-pulses is related to thickness of the corresponding buffer layer. Thus by modulating parameters of the MVHG, individually modulated femtosecond pulse string can be acquired. Based on Bragg selectivity of the volume grating and phase shift provided by the buffer layers, we give an explanation on these phenomena. The result is useful to design MVHG-based devices employed in optical communications, pulse shaping and processing.

  7. Optimisation of thulium fibre laser parameters with generation of pulses by pump modulation

    SciTech Connect

    Obronov, I V; Larin, S V; Sypin, V E

    2015-07-31

    The formation of relaxation pulses of a thulium fibre laser (λ = 1.9 μm) by modulating the power of a pump erbium fibre laser (λ = 1.55 μm) is studied. A theoretical model is developed to find the dependences of pulse duration and peak power on different cavity parameters. The optimal cavity parameters for achieving the minimal pulse duration are determined. The results are confirmed by experimental development of a laser emitting pulses with a duration shorter than 10 ns, a peak power of 1.8 kW and a repetition rate of 50 kHz. (control of radiation parameters)

  8. Three-Level 48-Pulse STATCOM with Pulse Width Modulation

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Srinivas, Kadagala Venkata

    2016-03-01

    In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.

  9. Autonomous radar pulse modulation classification using modulation components analysis

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Qiu, Zhaoyang; Zhu, Jun; Tang, Bin

    2016-12-01

    An autonomous method for recognizing radar pulse modulations based on modulation components analysis is introduced in this paper. Unlike the conventional automatic modulation classification methods which extract modulation features based on a list of known patterns, this proposed method classifies modulations by the existence of basic modulation components including continuous frequency modulations, discrete frequency codes and discrete phase codes in an autonomous way. A feasible way to realize this method is using the features of abrupt changes in the instantaneous frequency rate curve which derived by the short-term general representation of phase derivative. This method is suitable not only for the basic radar modulations but also for complicated and hybrid modulations. The theoretical result and two experiments demonstrate the effectiveness of the proposed method.

  10. On pulse duration of self-terminating lasers

    SciTech Connect

    Bokhan, P A

    2011-02-28

    The problem of the maximum pulse duration {tau}{sub max} of self-terminating lasers is considered. It is shown that the duration depends on the transition probability in the laser channel, on the decay rate of the resonant state in all other channels, and on the excitation rate of the metastable state. As a result, {tau}{sub max} is found to be significantly shorter than previously estimated. The criteria for converting the 'self-terminating' lasing to quasi-cw lasing are determined. It is shown that in the case of nonselective depopulation of the metastable state, for example in capillary lasers or in a fast flow of the active medium gas, it is impossible to obtain continuous lasing. Some concrete examples are considered. It is established that in several studies of barium vapour lasers ({lambda} = 1.5 {mu}m) and nitrogen lasers ({lambda} = 337 nm), collisional lasing is obtained by increasing the relaxation rate of the metastable state in collisions with working particles (barium atoms and nitrogen molecules). (lasers)

  11. Frequency modulation of semiconductor disk laser pulses

    SciTech Connect

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  12. Anodal Transcranial Pulsed Current Stimulation: The Effects of Pulse Duration on Corticospinal Excitability

    PubMed Central

    2015-01-01

    The aim is to investigate the effects of pulse duration (PD) on the modulatory effects of transcranial pulsed current (tPCS) on corticospinal excitability (CSE). CSE of the dominant primary motor cortex (M1) of right first dorsal interosseous muscle was assessed by motor evoked potentials, before, immediately, 10, 20 and 30 minutes after application of five experimental conditions: 1) anodal transcranial direct current stimulation (a-tDCS), 2) a-tPCS with 125 ms pulse duartion (a-tPCSPD = 125), 3) a-tPCS with 250 ms pulse duration (a-tPCSPD = 250), 4) a-tPCS with 500 ms pulse duration (a-tPCSPD = 500) and 5) sham a-tPCS. The total charges were kept constant in all experimental conditions except sham condition. Post-hoc comparisons indicated that a-tPCSPD = 500 produced larger CSE compared to a-tPCSPD = 125 (P<0.0001), a-tPCSPD = 250 (P = 0.009) and a-tDCS (P = 0.008). Also, there was no significant difference between a-tPCSPD = 250 and a-tDCS on CSE changes (P>0.05). All conditions except a-tPCSPD = 125 showed a significant difference to the sham group (P<0.006). All participants tolerated the applied currents. It could be concluded that a-tPCS with a PD of 500ms induces largest CSE changes, however further studies are required to identify optimal values. PMID:26177541

  13. Propagation of frequency-modulated pulses in active one-dimensional photonic crystals

    SciTech Connect

    Zolotovskii, I O; Korobko, D A; Ostatochnikov, V A

    2015-02-28

    The propagation of frequency-modulated pulses in onedimensional photonic crystals with gain is considered. A correct expression is derived for the delay time of the pulse maximum. This expression takes into account the input pulse characteristics: duration, frequency modulation and spectrum position in the photonic band gap. The analytical results are basically in agreement with the results of numerical simulation. The influence of gain in the photonic-crystal structure is considered. It is shown that the parameters of a transmitted pulse can be controlled by changing the inputpulse frequency modulation. (nonlinear optical phenomena)

  14. Simple circuit produces high-speed, fixed duration pulses

    NASA Technical Reports Server (NTRS)

    Garrahan, N. M.

    1965-01-01

    Circuit generates an output pulse of fixed width from a variable width input pulse. The circuit consists of a tunnel diode in parallel with an inductance driven by a constant current generator. It is used for pulsed communication equipment design.

  15. Coherent pulse position modulation quantum cipher

    SciTech Connect

    Sohma, Masaki; Hirota, Osamu

    2014-12-04

    On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption.

  16. Coherent pulse position modulation quantum cipher

    NASA Astrophysics Data System (ADS)

    Sohma, Masaki; Hirota, Osamu

    2014-12-01

    On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption.

  17. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.; Meguid, S. A.

    2016-07-01

    This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.

  18. Solid-state pulse modulator for a 1.7-MW X-band magnetron

    NASA Astrophysics Data System (ADS)

    Choi, Jaegu; Shin, Yong-Moon; Choi, Young-Wook; Kim, Kwan-Ho

    2014-05-01

    Medical linear accelerators (LINAC) for cancer treatment require pulse modulators to generate high-power pulses with a fast rise time, flat top and short duration to drive high-power magnetrons. Solid-state pulse modulators (SSPM) for medical LINACs that use high power semiconductor switches with high repetition rates, high stability and long lifetimes have been introduced to replace conventional linear-type pulse generators that use gaseous discharge switches. In this paper, the performance of a developed SSPM, which mainly consists of a capacitor charger, an insulatedgate bipolar transistor (IGBT)-capacitor stack and a pulse transformer, is evaluated with a dummy load and an X-band magnetron load. A theoretical analysis of the pulse transformer, which is a critical element of the SSPM, is carried out. The output pulse has a fast rise time and low droop, such that the modulator can drive the X-band magnetron.

  19. Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser.

    PubMed

    Parlette, Eric C; Groff, William F; Kinshella, Matthew J; Domankevitz, Yacov; O'Neill, Jennifer; Ross, E Victor

    2006-02-01

    Leg veins can be effectively treated with lasers. However, the optimal pulse duration for small leg veins has not been established in human studies with a Nd:YAG laser. The purpose of this study was to investigate a range of pulse durations to determine an optimal pulse duration for clearance of leg veins. After mapping and photo documentation of the leg veins to be treated, a variable pulse duration Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser (3-100 milliseconds) was used in a single test site session. Pulse durations of 3, 20, 40, 60, 80, and 100 milliseconds were used. At the 3-week follow-up, the optimal pulse duration was defined as that pulse duration which resulted in the most complete clearance of vessels with the least side effects. Up to 20 vessels were then treated using the established "optimal" pulse duration. Final evaluation was at 16 weeks after the initial visit. Three blinded observers rated the percent of vessels completely cleared based on initial and final photographs. Eighteen patients completed the study. Fluence thresholds for immediate vessel changes varied depending on spot size and vessel diameter, with larger fluences required for smaller spot sizes and smaller vessels. Shorter pulse durations (< or =20 milliseconds) were associated with occasional spot sized purpura and spot sized post-inflammatory hyperpigmentation. Longer pulse durations (40-60 milliseconds) achieved superior vessel elimination with less post-inflammatory hyperpigmentation. With a single laser treatment, 71% of the treated vessels cleared. Compared to shorter pulses (<20 milliseconds), longer pulses may provide gentler heating of the vessel and a greater ratio of contraction to thrombosis. Copyright 2005 Wiley-Liss, Inc.

  20. Programmable Pulse-Position-Modulation Encoder

    NASA Technical Reports Server (NTRS)

    Zhu, David; Farr, William

    2006-01-01

    A programmable pulse-position-modulation (PPM) encoder has been designed for use in testing an optical communication link. The encoder includes a programmable state machine and an electronic code book that can be updated to accommodate different PPM coding schemes. The encoder includes a field-programmable gate array (FPGA) that is programmed to step through the stored state machine and code book and that drives a custom high-speed serializer circuit board that is capable of generating subnanosecond pulses. The stored state machine and code book can be updated by means of a simple text interface through the serial port of a personal computer.

  1. Measuring the effective pulse duration of nanosecond and femtosecond laser pulses for laser-induced damage experiments

    NASA Astrophysics Data System (ADS)

    Zorila, Alexandru; Rusen, Laurentiu; Stratan, Aurel; Nemes, George

    2013-05-01

    We report on our approach to measure the quantity named effective pulse duration as defined in the ISO 21254-1:2011 standard, which deals with laser-induced damage (LID) threshold measurements. The approach is applied to measure pulses from two laser sources: an injection-seeded electro-optically Q-switched Nd:YAG nanosecond system with 10-Hz pulse repetition frequency, and a fully integrated Ti:sapphire laser with 150-400 fs and 2-kHz pulse repetition frequency. For comparison, the full-width-half-maximum (FWHM) of the same pulses is also measured. The analysis and description of the measurement process, the experimental results, and the corresponding uncertainties are presented. A smaller combined uncertainty is obtained for the effective pulse duration than for the FWHM-defined pulse duration for each time scale involved in experiments. This suggests that the effective pulse duration is the appropriate parameter to characterize the pulse duration in LID experiments.

  2. Modulation of tactile duration judgments by emotional pictures

    PubMed Central

    Shi, Zhuanghua; Jia, Lina; Müller, Hermann J.

    2012-01-01

    Judging the duration of emotional stimuli is known to be influenced by their valence and arousal values. However, whether and how perceiving emotion in one modality affects time perception in another modality is still unclear. To investigate this, we compared the influence of different types of emotional pictures—a picture of threat, disgust, or a neutral picture presented at the start of a trial—on temporal bisection judgments of the duration of a subsequently presented vibrotactile stimulus. We found an overestimation of tactile duration following exposure to pictures of threat, but not pictures of disgust (even though these scored equally high on arousal), in a short-range temporal bisection task (range 300/900 ms). Follow-up experiments revealed that this duration lengthening effect was abolished when the range to be bisected was increased (1000/1900 ms). However, duration overestimation was maintained in the short-range bisection task regardless of whether the interval between the visual and tactile events was short or long. This pattern is inconsistent with a general arousal interpretation of duration distortion and suggests that crossmodal linkages in the processing of emotions and emotional regulation are two main factors underlying the manifestation of crossmodal duration modulation. PMID:22654742

  3. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros; Hüller, Stefan

    2013-11-01

    An adaptive method of controlling parametric instabilities in laser produced plasmas is proposed. It involves fast temporal modulation of a laser pulse on the fastest instability's amplification time scale, adapting to changing and unknown plasma conditions. These pulses are comprised of on and off sequences having at least one or two orders of magnitude contrast between them. Such laser illumination profiles are called STUD pulses for Spike Trains of Uneven Duration and Delay. The STUD pulse program includes scrambling the speckle patterns spatially in between the laser spikes. The off times allow damping of driven waves. The scrambling of the hot spots allows tens of damping times to elapse before hot spot locations experience recurring high intensity spikes. Damping in the meantime will have healed the scars of past growth. Another unique feature of STUD pulses on crossing beams is that their temporal profiles can be interlaced or staggered, and their interactions thus controlled with an on-off switch and a dimmer.

  4. The Role of Pulse Duration and Stimulation Duration in Maximizing the Normalized Torque During Neuromuscular Electrical Stimulation

    PubMed Central

    GORGEY, ASHRAF S.; DUDLEY, GARY A.

    2008-01-01

    STUDY DESIGN Controlled laboratory study. OBJECTIVES To determine the effects of pulse duration and stimulation duration on the evoked torque after controlling for the activated area by using magnetic resonance imaging (MRI). BACKGROUND Neuromuscular electrical stimulation (NMES) is commonly used in the clinic without considering the physiological implications of its parameters. METHODS AND MEASURES Seven able-bodied, college students (mean ± SD age, 28 ± 4 years) participated in this study. Two NMES protocols were applied to the knee extensor muscle group in a random order. Protocol A applied 100-Hz, 450-microsecond pulses for 5 minutes in a 3-seconds-on 3-seconds-off duty cycle. Protocol B applied 60-Hz, 250-microsecond pulses for 5 minutes in a 10-seconds-on 20-seconds-off duty cycle. The amplitude of the current was similar in both protocols. Torque, torque time integral, and normalized torque for the knee extensors were measured for both protocols. MRI scans were taken prior to, and immediately after, each protocol to measure the cross-sectional area of the stimulated muscle. RESULTS The skeletal muscle cross-sectional areas activated after both protocols were similar. The longer pulse duration in protocol A elicited 22% greater torque output than that of protocol B (P<.05). After considering the activated area in both protocols, the normalized torque with protocol A was 38% greater than that with protocol B (P<.05). Torque time integral was 21% greater with protocol A (P=.029). Protocol B failed to maintain torque at the start and the end of the 10-second activation. CONCLUSIONS Longer pulse duration, but not stimulation duration, resulted in a greater evoked and normalized torque compared to the shorter pulse duration, even after controlling for the activated muscular CSA with both protocols. LEVEL OF EVIDENCE Therapy, level 5. PMID:18678958

  5. Copper bromide vapour laser with an output pulse duration of up to 320 ns

    SciTech Connect

    Gubarev, F A; Fedorov, K V; Evtushenko, G S; Fedorov, V F; Shiyanov, D V

    2016-01-31

    We report the development of a copper bromide vapour laser with an output pulse duration of up to 320 ns. To lengthen the pulse, the discharge current was limited using a compound switch comprising a pulsed hydrogen thyratron and a tacitron. This technique permits limiting the excitation of the working levels at the initial stage of the discharge development to lengthen the inversion lifetime. The longest duration of a laser pulse was reached in tubes 25 and 50 mm in diameter for a pulse repetition rate of 2 – 4 kHz. (lasers and laser beams)

  6. Influence of pulse duration on mechanical effects after laser-induced breakdown in water

    NASA Astrophysics Data System (ADS)

    Noack, Joachim; Hammer, Daniel X.; Noojin, Gary D.; Rockwell, Benjamin A.; Vogel, Alfred

    1998-06-01

    The influence of the pulse duration on the mechanical effects following laser-induced breakdown in water was studied at pulse durations between 100 fs and 100 ns. Breakdown was generated by focusing laser pulses into a cuvette containing distilled water. The pulse energy corresponded to 6-times breakdown threshold energy. Plasma formation and shock wave emission were studied photographically. The plasma photographs show a strong influence of self-focusing on the plasma geometry for femtosecond pulses. Streak photographic recording of the shock propagation in the immediate vicinity of the breakdown region allowed the measurement of the near-field shock pressure. At the plasma rim, shock pressures between 3 and 9 GPa were observed for most pulse durations. The shock pressure rapidly decays proportionally to r-(2⋯3) with increasing distance r from the optical axis. At a 6 mm distance of the shock pressure has dropped to (8.5±0.6) MPa for 76 ns and to <0.1 MPa for femtosecond pulses. The radius of the cavitation bubble is reduced from 2.5 mm (76 ns pulses) to less than 50 μm for femtosecond pulses. Mechanical effects such as shock wave emission and cavitation bubble expansion are greatly reduced for shorter laser pulses, because the energy required to produce breakdown decreases with decreasing pulse duration, and because a larger fraction of energy is required to overcome the heat of vaporization with femtosecond pulses.

  7. Tunable WDM sampling pulse streams using a spatial phase modulator in a biased pulse shaper.

    PubMed

    Sinefeld, David; Shayovitz, Dror; Golani, Ori; Marom, Dan M

    2014-02-01

    We generate transform-limited WDM optical sampling pulse bursts by filtering ultrashort pulses from a mode-locked laser. A phase spatial light modulator (SLM) is used in a biased pulse shaper to circumvent the need to modulate with 2π phase wraps, which are known to limit the phase response. The arrangement compresses and retimes user-selectable bandwidths from the optical short pulse source with precise control of pulse bandwidth, pulse stream rates, and duty cycle.

  8. Dynamics of frequency-modulated soliton-like pulses in a longitudinally inhomogeneous, anomalous group velocity dispersion fibre amplifier

    SciTech Connect

    Zolotovskii, Igor' O; Korobko, D A; Okhotnikov, Oleg G; Sysolyatin, A A; Fotiadi, A A

    2012-09-30

    We examine conditions for the formation and amplification of frequency-modulated soliton-like pulses in longitudinally inhomogeneous, anomalous group velocity dispersion fibres. The group velocity dispersion profiles necessary for the existence and amplification of such pulses in active fibres are identified and the pulse duration and chirp are determined as functions of propagation distance. (optical fibres, lasers and amplifiers. properties and applications)

  9. Investigation on the impact of pulse duration for laser induced lithotripsy

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Kiris, Tugba; Fiedler, Sebastian; Scheib, Gabriel; Kuznetsova, Julia; Pongratz, Thomas

    2014-03-01

    Objective: In-vitro investigation of Ho:YAG-laser induced stone fragmentation was performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. Materials and Methods: An innovative Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long- or short pulse mode was tested with regard to its fragmentation properties. The pulse duration depends on the specific laser parameter used. Fragmentation tests (hand held, hands free, single pulse induced crater) on artificial BEGO-Stones and fiber burn back tests were performed under reproducible experimental conditions. Additionally, the repulsion of long versus short laser pulses was compared using the pendulum set-up. Results: Differences in fragmentation rates between the two pulse duration regimes were seen. The difference was, however, not statistically significant. Using long pulse mode, the fiber burn back is nearly negligible while in short pulse mode an increased burn back was seen. The results of the pendulum test showed that the deviation induced by the momentum of shorter pulses is increased compared to longer pulses. Conclusion: Long pulse-mode showed reduced side effects like repulsion and fiber burn back in comparison to short pulse-mode while fragmentation rates remained at a comparable level. Lower push back and reduced burn back of longer laser pulses may results in better clinical outcome of laser lithotripsy and more convenient handling during clinical use.

  10. Laser lift-off scribing of the CZTSe thin-film solar cells at different pulse durations

    DOE PAGES

    Markauskas, Edgaras; Gečys, Paulius; Repins, Ingrid; ...

    2017-04-27

    Here, the transition to fully sized solar modules requires additional three-step laser structuring processes to preserve small-scale cell efficiencies over the large areas. The adjacent cell isolation (the P3 scribe) was found to be the most sensitive process in the case of laser induced damage. The laser induced layer lift-off mechanism seems to be a very attractive process for the P3 patterning, since almost all the laser affected material is removed by mechanical spallation. However, a laser induced layer spallation behavior together with scribe electrical validation under the different laser pulse durations was not investigated extensively in the past. Therefore,more » we report our novel results on the P2 and P3 laser lift-off processing of the Cu2ZnSn(S, Se4) (CZTSe) thin-film solar cells covering the pulse duration range from 300 fs to 60 ps. Shorter sub-ps pulses enabled us to process smaller P2 and P3 craters, although the lift-off threshold fluences were higher compared to the longer ps pulses. In the case of the layer lift-off, the laser radiation had to penetrate through the layer stack down to the CZTSe/Mo interface. At shorter sub-ps pulses, the nonlinear effects triggered absorption of the laser radiation in the bulk of the material, resulting in increased damage of the CZTSe layer. The Raman measurements confirmed the CZTSe surface stoichiometry changes for shorter pulses. Furthermore, shorter pulses induced higher electrical conductivity of a scribe, resulting in lower photo-electrical efficiency during the mini-module simulation. In the case of the P3 lift-off scribing, the 10 ps pulses were more favorable than shorter femtosecond pulses.« less

  11. Effects of pulse duration and overlapping factor on melting ratio in preplaced pulsed Nd:YAG laser cladding

    NASA Astrophysics Data System (ADS)

    Farnia, Amirreza; Malek Ghaini, Farshid; Sabbaghzadeh, Jamshid

    2013-01-01

    Melting ratio is known as a suitable factor to illustrate the effects of process parameters on the clad profile in order to provide a proper process design. However, the definition of melting ratio based on continuous irradiation of energy does not accommodate for pulse parameters. Hence, in order to study the effects of pulse parameters, such as pulse duration and overlapping factor, the definition of melting ratio is restated for pulsed laser process based on energy density concept. Carbon steel was cladded with Stellite 6 by scanning a 400 W pulsed Nd:YAG laser over a preplaced layer of powder paste. The results show that the trends of clad profiles variations can be explained using the restated definition. The results also show two different ranges for the effects of pulse duration and overlapping factor on melting ratio.

  12. Single pulse TMS differentially modulates reward behavior.

    PubMed

    Stanford, Arielle D; Luber, Bruce; Unger, Layla; Cycowicz, Yael M; Malaspina, Dolores; Lisanby, Sarah H

    2013-12-01

    Greater knowledge of cortical brain regions in reward processing may set the stage for using transcranial magnetic stimulation (TMS) as a treatment in patients with avolition, apathy or other drive-related symptoms. This study examined the effects of single pulse (sp) TMS to two reward circuit targets on drive in healthy subjects. Fifteen healthy subjects performed the monetary incentive delay task (MID) while receiving fMRI-guided spTMS to either inferior parietal lobe (IPL) or supplemental motor area (SMA). The study demonstrated decreasing reaction times (RT) for increasing reward. It also showed significant differences in RT modulation for TMS pulses to the IPL versus the SMA. TMS pulses during the delay period produced significantly more RT slowing when targeting the IPL than those to the SMA. This RT slowing carried over into subsequent trials without TMS stimulation, with significantly slower RTs in sessions that had targeted the IPL compared to those targeting SMA. The results of this study suggest that both SMA and IPL are involved in reward processing, with opposite effects on RT in response to TMS stimulation. TMS to these target cortical regions may be useful in modulating reward circuit deficits in psychiatric populations. © 2013 Published by Elsevier Ltd.

  13. [Electric pulse duration and windows effect of nuclear envelope].

    PubMed

    Wu, Minghe; Yang, Hongchun; Zhang, Yi; Zheng, Xlaoming; Zeng, Gang; Tan, Yafang; Sun, Yunqing; Zou, Heng

    2011-06-01

    Nuclear envelope voltages of T cells were analyzed with a lumped circuitry for cells in combination with frequency domain power density of Gaussian pulses and monocycle pulses. According to the differences in geometric and electric parameters between normal and malignant T cells, circuitry analysis was performed. Theoretical evaluations indicated that apoptosis of malignant T cells was of feasibility, which could be applied in cancer therapy. The evaluations were in accord with the published experimental findings.

  14. Chaotic carrier pulse position modulation communication system and method

    DOEpatents

    Abarbanel, Henry D. I.; Larson, Lawrence E.; Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.; Volkovskii, Alexander R.

    2001-01-01

    A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.

  15. High power laser pulses with voltage controlled durations of 400 - 1000 ps.

    PubMed

    Harth, F; Ulm, T; Lührmann, M; Knappe, R; Klehr, A; Hoffmann, Th; Erbert, G; L'huillier, J A

    2012-03-26

    We report on the generation and amplification of pulses with pulse widths of 400 - 1000 ps at 1064 nm. For pulse generation an ultra-fast semiconductor modulator is used that modulates a cw-beam of a DFB diode laser. The pulse lengths could be adjusted by the use of a voltage control. The pulses were amplified in a solid state Nd:YVO₄ regenerative amplifier to an average power of up to 47.7 W at 100 - 816 kHz.

  16. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.

    PubMed

    Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald

    2015-04-01

    In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.

  17. Point source of UV-radiation with a frequency of 1 khz and short pulse duration

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Tarasenko, V. F.; Shut'ko, Yu. V.; Erofeev, M. V.

    2012-04-01

    Radiation of the discharge plasma from a nanosecond breakdown in a nonuniform electric field of short interelectrode gaps is investigated. Voltage pulses with incident wave amplitude of ~10 kV, pulse duration of ~1 ns (FWHM), and pulse front duration of ~0.2 ns are used. It is demonstrated that for pulsed-periodic breakdown of the gap 0.5 mm long in air at atmospheric pressure, the main contribution to plasma radiation give lines of the electrode material and the continuum, and the maximum radiation intensity is registered in the region of 200-300 nm, where ~40% of total radiation energy is concentrated.

  18. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOEpatents

    MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.

    1988-01-01

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  19. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOEpatents

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  20. The effects of pulse duration on ablation pressure driven by laser radiation

    SciTech Connect

    Zhou, Lei; Li, Xiao-Ya Zhu, Wen-Jun; Wang, Jia-Xiang; Tang, Chang-Jian

    2015-03-28

    The effects of laser pulse duration on the ablation pressure induced by laser radiation are investigated using Al target. Numerical simulation results using one dimensional radiation hydro code for laser intensities from 5×10{sup 12}W/cm{sup 2} to 5×10{sup 13}W/cm{sup 2} and pulse durations from 0.5 ns to 20 ns are presented. These results suggest that the laser intensity scaling law of ablation pressure differs for different pulse durations. And the theoretical analysis shows that the effects of laser pulse duration on ablation pressure are mainly caused by two regimes: the unsteady-state flow and the radiative energy loss to vacuum.

  1. Numerical investigation of pulse-modulated atmospheric radio frequency discharges in helium under different duty cycles

    SciTech Connect

    Sun Jizhong; Ding Zhengfen; Li Xuechun; Wang Dezhen; Wang Qi

    2011-12-15

    Experiments observed that the pulse duty cycle has effects on the plasma homogeneity in pulse-modulated radio frequency (rf) discharges. In this paper, pulse-modulated rf (13.56 MHz) helium discharges are theoretically investigated using a two dimensional fluid model. With the pulse period being fixed to 15 {mu}s, it is found that when the pulse-on duration is over 4 {mu}s, i.e., the duty cycle is larger than approximately 27%, the discharge transits from an inhomogeneous to a homogeneous mode in every specific part of each pulse cycle under currently-used simulation parameters. More quantitative analysis shows that the discharge becomes more homogeneous as the duty cycle is increased but does not reach complete homogeneity. Possible reasons for the homogeneity improvement are discussed.

  2. Influence Pulse Duration Methodical Error of Determination of Thermal Translucent Materials Laser Flash Method

    NASA Astrophysics Data System (ADS)

    Katz, Mark M.; Katz, Ilija M.

    2016-02-01

    The analysis of errors in the determination of thermal diffusivity of a typical semiconductor material - Germany, due to radiative energy transfer in the heated layer of material, under conditions consistent with the implementation of the method under the influence of the laser pulse on the surface of the collimated laser pulse of finite duration.

  3. Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration

    PubMed Central

    Blanche, Pierre-Alexandre; Lynn, Brittany; Churin, Dmitriy; Kieu, Khanh; Norwood, Robert A.; Peyghambarian, Nasser

    2016-01-01

    The development of a single mode fiber-based pulsed laser with variable pulse duration, energy, and repetition rate has enabled the characterization of photorefractive polymer (PRP) in a previously inaccessible regime located between millisecond and microsecond single pulse illumination. With the addition of CW and nanosecond pulse lasers, four wave mixing measurements covering 9 orders of magnitudes in pulse duration are reported. Reciprocity failure of the diffraction efficiency according to the pulse duration for a constant energy density is observed and attributed to multiple excitation, transport and trapping events of the charge carriers. However, for pulses shorter than 30 μs, the efficiency reaches a plateau where an increase in energy density no longer affects the efficiency. This plateau is due to the saturation of the charge generation at high peak power given the limited number of sensitizer sites. The same behavior is observed in two different types of devices composed of the same material but with or without a buffer layer covering one electrode, which confirm the origin of these mechanisms. This new type of measurement is especially important to optimize PRP for applications using short pulse duration. PMID:27364998

  4. Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level.

    PubMed

    Sroka, Ronald; Pongratz, Thomas; Scheib, Gabriel; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Bader, Markus J

    2015-04-01

    Holmium-YAG (Ho:YAG) laser lithotripsy is a multi-pulse treatment modality with stochastic effects on the fragmentation. In vitro investigation on the single-pulse-induced effects on fiber, repulsion as well as fragmentation was performed to identify potential impacts of different Ho:YAG laser pulse durations. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long- or short-pulse mode was tested with regard to fiber burn back, the repulsion capacity using an underwater pendulum setup and single-pulse-induced fragmentation capacity using artificial (BEGO) stones. The laser parameters were chosen in accordance with clinical application modes (laser fiber: 365 and 200 µm; output power: 4, 6 and 10 W in different combinations of energy per pulse and repetition rate). Evaluation parameters were reduction in fiber length, pendulum deviation and topology of the crater. Using the long-pulse mode, the fiber burn back was nearly negligible, while in short-pulse mode, an increased burn back could be observed. The results of the pendulum test showed that the deviation induced by the momentum of short pulses was by factor 1.5-2 higher compared to longer pulses at identical energy per pulse settings. The ablation volumes induced by single pulses either in short-pulse or long-pulse mode did not differ significantly although different crater shapes appeared. Reduced stone repulsion and reduced laser fiber burn back with longer laser pulses may result in a more convenient handling during clinical application and thus in an improved clinical outcome of laser lithotripsy.

  5. Multifunction audio digitizer. [producing direct delta and pulse code modulation

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr. (Inventor)

    1974-01-01

    An illustrative embodiment of the invention includes apparatus which simultaneously produces both direct delta modulation and pulse code modulation. An input signal, after amplification, is supplied to a window comparator which supplies a polarity control signal to gate the output of a clock to the appropriate input of a binary up-down counter. The control signals provide direct delta modulation while the up-down counter output provides pulse code modulation.

  6. Strength-Duration Relationship in Paired-pulse Transcranial Magnetic Stimulation (TMS) and Its Implications for Repetitive TMS.

    PubMed

    Shirota, Yuichiro; Sommer, Martin; Paulus, Walter

    2016-01-01

    Paired-pulse protocols have played a pivotal role in neuroscience research using transcranial magnetic stimulation (TMS). Stimulus parameters have been optimized over the years. More recently, pulse width (PW) has been introduced to this field as a new parameter, which may further fine-tune paired-pulse protocols. The relationship between the PW and effectiveness of a stimulus is known as the "strength-duration relationship". To test the "strength-duration relationship", so as to improve paired-pulse TMS protocols, and to apply the results to develop new repetitive TMS (rTMS) methods. Four protocols were investigated separately: short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), short-interval intracortical facilitation (SICF) and long-interval intracortical inhibition (LICI). First, various stimulus parameters were tested to identify those yielding the largest facilitation or inhibition of the motor evoked potential (MEP) in each participant. Using these parameters, paired-pulse stimulations were repeated every five seconds for 30 minutes (repetitive paired-pulse stimulation, rPPS). The after-effects of rPPS were measured using MEP amplitude as an index of motor-cortical excitability. Altogether, the effect of changing PW was similar to that of changing the stimulus intensity in the conventional settings. The best parameters were different for each participant. When these parameters were used, rPPS based on either SICF or ICF induced an increase in MEP amplitude. PW was introduced as a new parameter in paired-pulse TMS. Modulation of PW influenced the results of paired-pulse protocols. rPPS using facilitatory protocols can be a good candidate to induce enhancement of motor-cortical excitability. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Improved safety of retinal photocoagulation with a shaped beam and modulated pulse

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel

    2010-02-01

    Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.

  8. Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude.

    PubMed

    Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J

    2004-03-01

    Combining optimal control theory with a new RF limiting step produces pulses with significantly reduced duration and improved performance for a given maximum RF amplitude compared to previous broadband excitation by optimized pulses (BEBOP). The resulting pulses tolerate variations in RF homogeneity relevant for standard high-resolution NMR probes. Design criteria were transformation of Iz-->Ix over resonance offsets of +/-20kHz and RF variability of +/-5%, with a pulse length of 500 micros and peak RF amplitude equal to 17.5 kHz. Simulations transform Iz to greater than 0.995 Ix, with phase deviations of the final magnetization less than 2 degrees, over ranges of resonance offset and RF variability that exceed the design targets. Experimental performance of the pulse is in excellent agreement with the simulations. Performance tradeoffs for yet shorter pulses or pulses with decreased digitization are also investigated.

  9. Pulse modulator developments in support of klystron testing at SLAC

    SciTech Connect

    Koontz, R.F.; Cassel, R.; de Lamare, J.; Ficklin, D.; Gold, S.; Harris, K.

    1993-04-01

    Several families of high power klystrons in S- and X-Band are being developed in the Klystron Laboratory at SLAC. To support these developments, a number of new pulse modulators are being designed from scratch, or upgraded from existing laboratory test modulators. This paper outlines the modulator parameters available in the SLAC Klystron Laboratory, and discusses two new modulators that are under construction.

  10. High-resolution ac-pulse modulated electrohydrodynamic jet printing on highly insulating substrates

    NASA Astrophysics Data System (ADS)

    Wei, Chuang; Qin, Hantang; Ramírez-Iglesias, Nakaira A.; Chiu, Chia-Pin; Lee, Yuan-shin; Dong, Jingyan

    2014-04-01

    This paper presents a new high-resolution ac-pulse modulated electrohydrodynamic (EHD)-jet printing technology on highly insulating substrates for drop-on-demand fabrication of electrical features and interconnects using silver nanoink. In traditional EHD-jet printing, the remained charge of the printed droplets changes the electrostatic field distribution and interrupts the follow-on printing behavior, especially for highly insulating substrates which have slow charge decay rates. The residue charge makes the control of EHD-jet printing very challenging for high-resolution continuous features. In this paper, by using modulated ac-pulsed voltage, the EHD-jet printing process switches the charge polarity of the consequent droplets to neutralize the charge on the substrate. The effect of the residue charge is minimized, which enables high-resolution printing of continuous patterns. Moreover, by modulating the pulse frequency, voltage, and duration, the EHD-jet printing behavior can be controlled with respect to printing speed/frequency and droplet size. Printing frequency is directly controlled by the pulse frequency, and the droplet dimension is controlled by the voltage and the duration of the pulse. We demonstrated that ac-pulse modulated EHD-jet printing can overcome the long-predicated charge accumulation problem on highly insulating substrates, and potentially be applied to many flexible electronics applications.

  11. Coherence control of pulse trains by spectral phase modulation

    NASA Astrophysics Data System (ADS)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Setälä, Tero; Friberg, Ari T.

    2017-09-01

    We propose a technique to control the spectral and temporal coherence properties of pulsed beams of light via time-dependent manipulation of the spectral phase. Modulation schemes for the generation of partially coherent pulse trains from a train of fully coherent pulses are presented. The feasibility of experimental realization of the method is confirmed by numerical estimates.

  12. Global synchronization of parallel processors using clock pulse width modulation

    SciTech Connect

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  13. Pulse compression techniques to improve modulated pulsed laser line scan systems

    NASA Astrophysics Data System (ADS)

    Lee, Robert W.; Nash, Justin K.; Cochenour, Brandon M.; Mullen, Linda J.

    2015-05-01

    A modulated pulse laser imaging system has been developed which utilizes coded/chirped RF modulation to mitigate the adverse effects of optical scattering in degraded visual underwater environments. Current laser imaging techniques employ either short pulses or single frequency modulated pulses to obtain both intensity and range images. Systems using short pulses have high range resolution but are susceptible to scattering due to the wide bandwidth nature of the pulse. Range gating can be used to limit the effects of backscatter, but this can lead to blind spots in the range image. Modulated pulse systems can help suppress the contribution from scattered light in generated imagery without gating the receiver. However, the use of narrowband, single tone modulation results in limited range resolution where small targets are camouflaged within the background. This drives the need for systems which have high range resolution while still suppressing the effects of scattering caused by the environment. Coded/chirped modulated pulses enable the use of radar pulse compression techniques to substantially increase range resolution while also providing a way to discriminate the object of interest from the light scattered from the environment. Linearly frequency chirped waveforms and phase shift keyed barker codes were experimentally investigated to determine the effects that pulse compression would have on intensity/range data. The effect of modulation frequency on the data produced with both wideband and narrowband modulation was also investigated. The results from laboratory experiments will be presented and compared to model predictions.

  14. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  15. Refractive-diffractive dispersion compensation for optical vortex beams with ultrashort pulse durations.

    PubMed

    Musigmann, Manfred; Jahns, Jürgen; Bock, Martin; Grunwald, Ruediger

    2014-11-01

    Wave fields, which are described mathematically by higher order Bessel functions, carry an orbital angular momentum and thus represent particular types of optical vortex beams with helical wavefronts. For the generation of such vortex beams, one may use, for instance, diffractive spiral axicons. Diffraction, however, leads invariably to strong dispersion, which is detrimental for ultrashort pulses since it leads to severe pulse broadening. This pulse broadening can be minimized or reduced completely (at least, in a specific plane of propagation) if the pulses propagate additionally through a medium with normal refractive dispersion. The refractive-diffractive generation of ultrashort vortex pulses was demonstrated earlier for a pulse duration of approximately 8 fs [Opt. Lett.37, 3804 (2012)10.1364/OL.37.003804OPLEDP0146-9592]. Here, we present an analytical description of the generation and propagation of these vortex beams and of the refractive-diffractive compensation of the dispersion.

  16. Ventricular myocyte injury by high-intensity electric field: Effect of pulse duration.

    PubMed

    Prado, Luiza Ns; Goulart, Jair T; Zoccoler, Marcelo; Oliveira, Pedro X

    2016-04-01

    Although high-intensity electric fields (HEF) application is currently the only effective therapy available to terminate ventricular fibrillation, it may cause injury to cardiac cells. In this study we determined the relation between HEF pulse length and cardiomyocyte lethal injury. We obtained lethality curves by survival analysis, which were used to determine the value of HEF necessary to kill 50% of cells (E50) and plotted a strength-duration (SxD) curve for lethality with 10 different durations: 0.1, 0.2, 0.5, 1, 3, 5, 10, 20, 35 and 70 ms. For the same durations we also obtained an SxD curve for excitation and established an indicator for stimulatory safeness (stimulation safety factor - SSF) as the ratio between the SxD curve for lethality and one for excitation. We found that the lower the pulse duration, the higher the HEF intensity required to cell death. Contrary to expectations, the highest SSF value does not correspond to the lowest pulse duration but to the one of 0.5 ms. As defibrillation threshold has been described as duration-dependent, our results imply that the use of shorter stimulus duration - instead of the one typically used in the clinic (10 ms) - might increase defibrillation safeness.

  17. Are long stimulus pulse durations the answer to improving spatial resolution in retinal prostheses?

    PubMed Central

    Petoe, Matthew A.

    2016-01-01

    Retinal prostheses can provide artificial vision to patients with degenerate retinae by electrically stimulating the remaining inner retinal neurons. The evoked perception is generally adequate for light localization, but of limited spatial resolution owing to the indiscriminate activation of multiple retinal cell types, leading to distortions in the perceived image. Here we present a perspective on a recent work by Weitz and colleagues who demonstrate a focal confinement of retinal ganglion cell (RGC) activation when using extended pulse durations in the stimulation waveform. Using real-time calcium imaging, they provide evidence that long pulse durations selectively stimulate inner retinal neurons, whilst avoiding unwanted axonal activations. The application of this stimulation technique may provide enhanced spatial resolution for retinal prosthesis users. These experiments provide a robust analysis of the effects of increasing pulse duration and introduce the potential for alternative stimulation paradigms in retinal prostheses. PMID:27942525

  18. Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration

    NASA Astrophysics Data System (ADS)

    Cunning, B. V.; Brown, C. L.; Kielpinski, D.

    2011-12-01

    Saturable absorbers are a key component for mode-locking femtosecond lasers. Polymer films containing graphene flakes have recently been used in transmission as laser mode-lockers but suffer from high nonsaturable loss, limiting their application in low-gain lasers. Here, we present a saturable absorber mirror based on a film of pure graphene flakes. The device is used to mode lock an erbium-doped fiber laser, generating pulses with state-of-the-art, sub-200-fs duration. The laser characteristic indicates that the film exhibits low nonsaturable loss (13% per pass) and large absorption modulation depth (45% of low-power absorption).

  19. Dependence of Nd:YAG laser derusting and passivation of iron artifacts on pulse duration

    NASA Astrophysics Data System (ADS)

    Osticioli, Iacopo; Siano, Salvatore

    2013-11-01

    In this work laser derusting and passivation process of iron objects of conservation interest were investigated. In particular, the effects induced by laser irradiation of three lasers with different temporal emission regimes were studied, exhibiting very different behavior. Nd:YAG(1064 nm) laser systems were employed in the experiments: a Q-Switching laser with pulse duration of 8 ns, a Long Q-Switching laser with pulse duration of 120 ns and a Short Free Running pulse duration in a range of 40-120 μs. These lasers are commonly used in conservation. Lasers treatments were applied on iron samples subjected to natural weathering in outdoor conditions for about five years. Moreover some experiments were also performed on metallic parts of an original chandelier from the seventies as well as on a deeply corroded Roman sword. Results obtained reveals that longer pulse duration leads to phase changes on the rust layer and a homogeneous black-grayish coating is formed on the surface (identified as magnetite) after treatment. Whereas, QS laser pulses are capable to induce ablation of the corrosion layer exposing the pure metal underneath. Finally, LQS interaction includes deep ablation with localized micro-melting of the metal surface and partial transformation of the residual mineral areas was observed. The irradiation results were characterized through optical and BS- ESEM along with Raman spectroscopy, which allowed a clear phenomenological differentiation among the three operating regimes and provided information on their optimal exploitation in restoration of iron artifacts.

  20. Emission from Polymethyl Methacrylate Irradiated by a Beam of Runaway Electrons of Subnanosecond Pulse Durations

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Beloplotov, D. V.; Tarasenko, V. F.

    2016-08-01

    Spectral and amplitude-temporal characteristics of emission from polymethyl methacrylate (fiberglass, PMMA) irradiated with a beam of runaway electrons of subnanosecond duration are investigated. It is found that at the beam current pulse duration within 200-600 ps at half maximum and the beam current density 10-200 A/cm2, the intensity maximum is registered at the wavelength ~490 nm and the emission pulse FWHM in the visible spectrum is ~1.5 ns at the half width. It is shown that the main contribution into the emission comes from luminescence.

  1. Effects of Biphasic Current Pulse Frequency, Amplitude, Duration and Interphase Gap on Eye Movement Responses to Prosthetic Electrical Stimulation of the Vestibular Nerve

    PubMed Central

    Davidovics, Natan S.; Fridman, Gene Y.; Chiang, Bryce; Della Santina, Charles C.

    2011-01-01

    An implantable prosthesis that stimulates vestibular nerve branches to restore sensation of head rotation and vision-stabilizing reflexes could benefit individuals disabled by bilateral loss of vestibular (inner ear balance) function. We developed a prosthesis that partly restores normal function in animals by delivering pulse frequency modulated (PFM) biphasic current pulses via electrodes implanted in semicircular canals. Because the optimal stimulus encoding strategy is not yet known, we investigated effects of varying biphasic current pulse frequency, amplitude, duration and interphase gap on vestibulo-ocular reflex (VOR) eye movements in chinchillas. Increasing pulse frequency increased response amplitude while maintaining a relatively constant axis of rotation. Increasing pulse amplitude (range 0–325 μA) also increased response amplitude but spuriously shifted eye movement axis, probably due to current spread beyond the target nerve. Shorter pulse durations (range 28–340 μs) required less charge to elicit a given response amplitude and caused less axis shift than longer durations. Varying interphase gap (range 25–175 μs) had no significant effect. While specific values reported herein depend on microanatomy and electrode location in each case, we conclude that PFM with short duration biphasic pulses should form the foundation for further optimization of stimulus encoding strategies for vestibular prostheses intended to restore sensation of head rotation. PMID:20813652

  2. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser.

    PubMed

    Luo, Zhi-Chao; Cao, Wen-Jun; Lin, Zhen-Bin; Cai, Ze-Rong; Luo, Ai-Ping; Xu, Wen-Cheng

    2012-11-15

    The pulse dynamics operating in dissipative soliton resonance (DSR) region is experimentally investigated in a fiber ring laser. With the increase of pump power, the pulse profile transit from sech-like to rectangular shape was observed. The generated pulse in DSR region exhibits the conventional soliton spectrum with sideband generation. The duration-tuning range of the rectangular pulse is up to the cavity roundtrip time. Particularly, during the process of pulse duration broadening it was found that the rectangular pulse would trap a weak pulse generated from cw background. The obtained results may be useful for better understanding the DSR phenomenon.

  3. Influence of the Nd:YAG laser pulse duration on the temperature of primary enamel.

    PubMed

    Valério, R A; da Cunha, V S; Galo, R; de Lima, F A; Bachmann, L; Corona, S A M; Borsatto, M C

    2015-01-01

    The aim of this study is to evaluate the temperature change on specimens of primary enamel irradiated with different pulse duration of Nd:YAG laser. Fifteen sound primary molars were sectioned mesiodistally, resulting in 30 specimens (3.5 × 3.5 × 2.0 mm). Two small holes were made on the dentin surface in which K-type thermocouples were installed to evaluate thermal changes. Specimens were randomly assigned in 3 groups (n = 10): A = EL (extra long pulse, 10.000 μs), B = LP (long pulse, 700 μs), and C = SP (short pulse, 350 μs). Nd:YAG laser (λ = 1.064 μm) was applied at contact mode (10 Hz, 0.8 W, 80 mJ) and energy density of 0.637 mJ/mm(2). Analysis of variance (ANOVA) was performed for the statistical analysis (P = 0.46). Nd:YAG laser pulse duration provided no difference on the temperature changes on primary enamel, in which the following means were observed: A = EL (23.15°C ± 7.75), B = LP (27.33°C ± 11.32), and C = SP (26.91°C ± 12.85). It can be concluded that the duration of the laser pulse Nd:YAG increased the temperature of the primary enamel but was not influenced by different pulse durations used in the irradiation.

  4. Influence of the Nd:YAG Laser Pulse Duration on the Temperature of Primary Enamel

    PubMed Central

    Valério, R. A.; da Cunha, V. S.; Galo, R.; de Lima, F. A.; Bachmann, L.; Corona, S. A. M.; Borsatto, M. C.

    2015-01-01

    The aim of this study is to evaluate the temperature change on specimens of primary enamel irradiated with different pulse duration of Nd:YAG laser. Fifteen sound primary molars were sectioned mesiodistally, resulting in 30 specimens (3.5 × 3.5 × 2.0 mm). Two small holes were made on the dentin surface in which K-type thermocouples were installed to evaluate thermal changes. Specimens were randomly assigned in 3 groups (n = 10): A = EL (extra long pulse, 10.000 μs), B = LP (long pulse, 700 μs), and C = SP (short pulse, 350 μs). Nd:YAG laser (λ = 1.064 μm) was applied at contact mode (10 Hz, 0.8 W, 80 mJ) and energy density of 0.637 mJ/mm2. Analysis of variance (ANOVA) was performed for the statistical analysis (P = 0.46). Nd:YAG laser pulse duration provided no difference on the temperature changes on primary enamel, in which the following means were observed: A = EL (23.15°C ± 7.75), B = LP (27.33°C ± 11.32), and C = SP (26.91°C ± 12.85). It can be concluded that the duration of the laser pulse Nd:YAG increased the temperature of the primary enamel but was not influenced by different pulse durations used in the irradiation. PMID:25874244

  5. Optimal pulse durations for the treatment of leg telangiectasias with an alexandrite laser.

    PubMed

    Ross, E V; Meehan, K J; Gilbert, S; Domankevitz, Y

    2009-02-01

    Determine optimal settings using a long pulse 755 nm alexandrite laser in the treatment of superficial leg veins. STUDY DESIGN\\ Fifteen patients with Fitzpatrick skin types I-III with telangiectasia ranging from 0.2 to 1.0 mm were enrolled. Spot size varied from 3 to 6 mm. Pulse durations ranged from 3 to 100 milliseconds. For each pulse duration, test sites were performed to determine threshold radiant exposures using persistent bluing and/or immediate stenosis (closure) as the clinical endpoint. Test sites were re-evaluated 21 days later. Optimal settings, those that resulted in the greatest clearance with minimal side effects (pain, purpura, epidermal damage, pigment changes), were used to treat a larger area of like-sized vessels. Follow-up evaluations were conducted 12 weeks after a single treatment using the optimal setting. Polarized digital photographs were obtained at each visit. Improvement was determined by blinded evaluation of pre/post-treatment photographs. Fourteen patients completed the study. Radiant exposure thresholds for immediate vessel changes depended on vessel diameter, with larger radiant exposures required for smaller spot sizes and smaller vessels. The average threshold radiant exposure for closure was 89 J/cm(2). The optimal pulse duration was 60 milliseconds for most of the patients. With this pulse width, clearance approached 65% 12 weeks after a single treatment. Transient hyperpigmentation occurred in four patients. Increasing the pulse duration improved epidermal tolerance and decreased the likelihood of purpura. By lengthening the pulsewidth beyond 3 milliseconds, a long pulse alexandrite laser achieves satisfactory clearance with an improved side effect profile. (c) 2009 Wiley-Liss, Inc.

  6. Influence of the Pulse Duration in the Anthropomorphic Test Device (ATD) Lower-Leg Loading Mechanics

    DTIC Science & Technology

    2015-08-01

    mitigating floor mat, the Finite Element Analysis ( FEA ) was conducted in various loading conditions. Through the FEA’s results, the pulse-duration...1 2.2 Loading Conditions in the FEA .......................................................................................... 4 2.3 Lower...3.1 FEA Results ......................................................................................................................... 9 3.2

  7. Simulation of the Melting Volume in Thin Molybdenum Films as a Function of the Laser Pulse Duration

    NASA Astrophysics Data System (ADS)

    Sotrop, J.; Domke, M.; Kersch, A.; Huber, H. P.

    The interaction of a laser pulse with molybdenum is studied over a wide range of pulse durations from 5 fs to 100 ps using the two-temperature-model (TTM) at constant energy density. The TTM is used to calculate the electron and lattice temperature dynamics and the resulting melting volume. The results show, the maximum melting volume is reached at a pulse duration of 10 ps. The electron heat transfer is dominant for the ultra-short pulse regime below 10 ps, while the lattice heat transfer is influenced by longer pulse durations.

  8. THz Pulse Duration Influence on High Energy Level Excitation Due to Cascade Mechanism

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Zagursky, Dmitry Yu.; Zakharova, Irina G.

    2017-04-01

    We study influence of an incident broadband THz pulse duration on the spectral features of a signal transmitted through/reflected from a substance covered by a disordered structure by means of computer simulation. It is well-known that under real conditions, the results of a standard THz TDS undergo various factors. For example, a substance under investigation can be put into a bulk medium with ordinary properties. This often results in the distortion of the reflected/transmitted pulse spectra and hence, one may reveal additional absorption frequencies which can be thought as belonging to a dangerous substance. An issue from this situation may be a substance emission spectrum using. As we showed the emission frequencies appear due to the cascade mechanism of higher energy level excitation. In this paper we study the incident THz pulse duration influence on the emission frequencies manifestation.

  9. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    PubMed Central

    Engel, Robin; Düsterer, Stefan; Brenner, Günter; Teubner, Ulrich

    2016-01-01

    For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded. PMID:26698053

  10. Influence of the cubic spectral phase of high-power laser pulses on their self-phase modulation

    SciTech Connect

    Ginzburg, V N; Kochetkov, A A; Yakovlev, I V; Mironov, S Yu; Shaykin, A A; Khazanov, E A

    2016-02-28

    Spectral broadening of high-power transform-limited laser pulses under self-phase modulation in a medium with cubic nonlinearity is widely used to reduce pulse duration and to increase its power. It is shown that the cubic spectral phase of the initial pulse leads to a qualitatively different broadening of its spectrum: the spectrum has narrow peaks and broadening decreases. However, the use of chirped mirrors allows such pulses to be as effectively compressed as transform-limited pulses. (nonlinear optical phenomena)

  11. Characteristics of moderate current vacuum discharge triggered by multipicosecond and nanosecond duration laser pulses

    SciTech Connect

    Moorti, A.; Kumbhare, S.R.; Naik, P.A.; Gupta, P.D.; Romanov, I.V.; Korobkin, Yu.V.; Rupasov, A.A.; Shikanov, A.S.

    2005-02-15

    A comparative study of the characteristics of moderate-current ({approx}10 kA), low-energy ({<=}20 J) vacuum discharge triggered by multipicosecond and nanosecond duration laser pulses is performed. Temporal profiles of the x-ray emission, discharge current, and anode voltage measured in vacuum discharge created between a planar titanium cathode and a conical point-tip anode are observed to be quite different for the two regimes of the laser pulse duration. While cathode plasma jet pinching is clearly observed in the discharge created by low-energy ({approx}5 mJ), 27 ps full width at half-maximum (FWHM) laser pulses, a feeble pinching occurred for 4 ns (FWHM) laser pulses only above a threshold energy of {approx}250 mJ. In addition to the multiple K-shell x-ray pulses emitted from the titanium anode up to 100 ns, evidence of a much harder x-ray component (h{nu}>100 keV) is also seen in the discharge triggered by picosecond laser pulses.

  12. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    PubMed

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Copyright © 2013 Wiley Periodicals, Inc.

  13. Simultaneous optimization of power and duration of radio-frequency pulse in PARACEST MRI.

    PubMed

    Rezaeian, Mohammad-Reza; Hossein-Zadeh, Gholam-Ali; Soltanian-Zadeh, Hamid

    2016-07-01

    Chemical exchange saturation transfer (CEST) MRI is increasingly used to probe mobile proteins and microenvironment properties, and shows great promise for tumor and stroke diagnosis. The CEST effect is complex and depends not only on the CEST agent concentration, exchange rates, the characteristic of the magnetization transfer (MT), and the relaxation properties of the tissue, but also varies with the experimental conditions such as radio-frequency (RF) pulse power and duration. The RF pulse is one of the most important factors that promote the CEST effect for biological properties such as pH, temperature and protein content, especially for contrast agents with intermediate to fast exchange rates. The CEST effect is susceptible to the RF duration and power. The present study aims at determining the optimal power and the corresponding optimal duration (that maximize the CEST effect) using an off-resonance scheme through a new definition of the CEST effect. This definition is formulated by solving the Bloch-McConnell equation through the R1ρ method (based on the eigenspace solution) for both of the MT and CEST effects as well as their interactions. The proposed formulations of the optimal RF pulse power and duration are the first formulations in which the MT effect is considered. The extracted optimal RF pulse duration and power are compared with those of the MTR asymmetry model in two- and three-pool systems, using synthetic data that are similar to the muscle tissue. To validate them further, the formulations are compared with the empirical formulation of the CEST effect and other findings of the previous researches. By extending our formulations, the optimal power and the corresponding optimal duration (in the biological systems with many chemical exchange sites) can be determined.

  14. Design of compact Marx module with square pulse output

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Xie, Weiping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Jiang, Ping

    2016-07-01

    Compact pulsed power system based on compact Marx generator is widely used in terms of drive resistance and capacitive loads. This system usually adopts high performance components such as high energy density capacitors, compact switches, and integrated structure. Traditional compact Marx generator can only output double-exponential pulse profile. In this paper a compact, low-impedance Marx module which can output rectangular pulse profile is design and tested. This module has multiple circuits of different discharge frequencies in parallel to generate quasi-rectangular pulse. Discharge characteristic of an ideal module with infinite branches is calculated theoretically. A module with two branches has been designed and tested. Test results show that the impedance of the module is 1.2 Ω. When charging voltage is 100.6 kV and load resistance is 1 Ω, the peak output pulse is 45.2 kV voltage, the peak power is about 2 GW, the pulse width is about 130 ns, and the rise time is about 35 ns. The energy density and power density of the module are 15 kJ/m3 and 140 GW/m3, respectively.

  15. The Nature of Emission from Optical Breakdown Induced by Pulses of fs and ns Duration

    SciTech Connect

    Carr, C W; Feit, M D; Rubenchik, A M; Demange, P; Kucheyev, S; Shirk, M D; Radousky, H B; Demos, S G

    2004-11-09

    Spectral emission from optical breakdown in the bulk of a transparent dielectric contains information about the nature of the breakdown medium. We have made time resolved measurements of the breakdown induced emission caused by nanosecond and femtosecond infrared laser pulses. We previously demonstrated that the emission due to ns pulses is blackbody in nature allowing determination of the fireball temperature and pressure during and after the damage event. The emission due to femtosecond pulse breakdown is not blackbody in nature; two different spectral distributions being noted. In one case, the peak spectral distribution occurs at the second harmonic of the incident radiation, in the other the distribution is broader and flatter and presumably due to continuum generation. The differences between ns and fs breakdown emission can be explained by the differing breakdown region geometries for the two pulse durations. The possibility to use spectral emission as a diagnostic of the emission region morphology will be discussed.

  16. Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth.

    PubMed

    Izzo, Agnella D; Walsh, Joseph T; Ralph, Heather; Webb, Jim; Bendett, Mark; Wells, Jonathon; Richter, Claus-Peter

    2008-04-15

    We have pioneered what we believe is a novel method of stimulating cochlear neurons, using pulsed infrared radiation, based on the hypothesis that optical radiation can provide more spatially selective stimulation of the cochlea than electric current. Very little of the available optical parameter space has been used for optical stimulation of neurons. Here, we use a pulsed diode laser (1.94 microm) to stimulate auditory neurons of the gerbil. Radiant exposures measured at CAP threshold are similar for pulse durations of 5, 10, 30, and 100 micros, but greater for 300-micros-long pulses. There is evidence that water absorption of optical radiation is a significant factor in optical stimulation. Heat-transfer-based analysis of the data indicates that potential structures involved in optical stimulation of cochlear neurons have a dimension on the order of approximately 10 microm. The implications of these data could direct further research and design of an optical cochlear implant.

  17. Light pulse duration differentially regulates mouse locomotor suppression and phase shifts.

    PubMed

    Morin, Lawrence P; Studholme, Keith M

    2014-10-01

    Brief exposure of mice to nocturnal light causes circadian rhythm phase shifts, simultaneously inducing locomotor suppression, a drop in body temperature, and associated sleep. The exact nature of the relationship between these light-induced responses is uncertain, although locomotor suppression and phase shift magnitudes are related to stimulus irradiance. Whether stimulus duration has similar effects is less clear. Here, the relationship between stimulus duration and response magnitude was evaluated further using 100 µW/cm(2) white light-emitting diode pulses administered for 30, 300, 1200, or 3000 sec. The results show that, in general, shorter pulses yielded smaller responses and larger pulses yielded larger responses. However, the 300-sec pulse failed to augment locomotor suppression compared with the effect of a 30-sec pulse (44.7 ± 4.8 vs 40.6 ± 2.0 min) but simultaneously induced much larger phase shifts (1.28 ± 0.20 vs 0.52 ± 0.11 h). The larger phase shifts induced by the 300-sec stimulus did not differ from those induced by either the 1200- or 3000-sec pulses (1.43 ± 0.10 and 1.30 ± 0.17 h, respectively). The results demonstrate differential photic regulation of the two response types. Pulses ranging from 300 to 3000 sec produce equal phase shifts (present data); pulses ranging from 30 to 600 sec produce equal locomotor suppression levels. Greater suppression can occur additively in response to pulses of 1200 sec or more (present data), but this is not true for phase shifts. Nocturnal light appears to trigger a fixed duration event, locomotor suppression, or phase shift, with the latter followed by a light-refractory interval during which locomotor suppression can additively increase. The results also provide further support for the view that temporal integration of photic energy applies, at best, across a limited set of stimulus durations for both light-induced locomotor suppression/sleep and phase shift regulation.

  18. Laser ablation of GaAs in liquid: the role of laser pulse duration

    NASA Astrophysics Data System (ADS)

    De Bonis, Angela; Galasso, Agostino; Santagata, Antonio; Teghil, Roberto

    2016-01-01

    The synthesis of gallium arsenide (GaAs) nanoparticles has attracted wide scientific and technological interest due to the possibility of tuning the GaAs NP (nanoparticle) band gap across the visible spectrum and their consequent use in optoelectronic devices. In recent years, laser ablation in liquid (LAL) has been widely used for the preparation of colloidal solutions of semiconducting and metallic nanoparticles, thanks to its flexibility. With the aim of highlighting the key role played by laser pulse duration on the ablation mechanism and on the properties of the obtained materials, laser ablation of a gallium arsenide target in acetone was performed using laser sources operating in two different temporal regimes: Nd:glass laser (λ   =  527 nm, pulse duration of 250 fs and frequency repetition rate of 10 Hz) and Nd:YAG laser (λ   =  532 nm, pulse duration of 7 ns and frequency repetition rate of 10 Hz). The ablation process was studied following the dynamics of the laser induced shock waves (SWs) and cavitation bubbles (CBs) by fast shadowgraphy, showing that CB dimension and lifetime is related to the laser pulse length. A characterization of the obtained materials by TEM (transmission electron microscopy) and microRaman spectroscopy have shown that quite spherical gallium oxide/GaAs nanoparticles can be obtained by nanosecond laser ablation. On the other hand, pure polycrystalline GaAs nanoparticles can be produced by using an ultrashort laser source.

  19. Influence of excitation pulse duration of dielectric barrier discharges on biomedical applications

    NASA Astrophysics Data System (ADS)

    Hirschberg, J.; Omairi, T.; Mertens, N.; Helmke, A.; Emmert, S.; Viöl, W.

    2013-04-01

    Two dielectric barrier discharges created in atmospheric pressure air were compared to investigate influences of excitation pulse duration on plasma parameters. A plasma source with a pulsed excitation and pulse durations in the µs range as well as a source with pulse durations in the ns range were investigated. An aluminum plate with skin lipids of the stratum corneum on the one hand and an aluminum needle without lipids for operating in the single filamentary mode on the other hand were used as opposite electrodes. The optical emission spectroscopy was arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Vibrational temperatures were calculated in a range 2200-2600 K, rotational temperatures were measured from 300 up to 600 K. In addition, the electron temperatures (7-15 eV) and the reduced electric fields (280-800 Td) were estimated. Electric parameters were detected by both current and voltage measurements with a resulting range 200-500 mW of dissipated power.

  20. Effects of pulse duration and areal density on ultrathin foil acceleration

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Ji Liangliang; Wang Fengchao; Wen Meng; Wang Wenpeng; Xu Jiancai; Yu Yahong

    2010-06-15

    The influence of laser pulse duration and areal density of target in the interaction of a circularly polarized pulse with an ultrathin overdense foil is investigated. One-dimensional particle-in-cell simulation shows that with an appropriate laser-pulse rising front, the light pressure acceleration regime is effective even though the thin foil is transparent. As the laser intensity evolves, three stages in the acceleration process can be identified: at first the total reflection of the laser pulse, followed by partial reflection, and then near total reflection again due to the Doppler effect. The influences of the rising front of laser pulse and areal density of the ultrathin foil are investigated. It is found that an optimal laser pulse rising front exists for obtaining high (saturation) ion energy with the same laser energy within a short time. An optimal areal density also exists for obtaining the highest energy. For the same laser pulse, a higher areal density or a higher density with same areal density is more appropriate for obtaining a stationary state for making light pressure acceleration mechanism more effective.

  1. Speech perception with interaction-compensated simultaneous stimulation and long pulse durations in cochlear implant users.

    PubMed

    Schatzer, Reinhold; Koroleva, Inna; Griessner, Andreas; Levin, Sergey; Kusovkov, Vladislav; Yanov, Yuri; Zierhofer, Clemens

    2015-04-01

    Early multi-channel designs in the history of cochlear implant development were based on a vocoder-type processing of frequency channels and presented bands of compressed analog stimulus waveforms simultaneously on multiple tonotopically arranged electrodes. The realization that the direct summation of electrical fields as a result of simultaneous electrode stimulation exacerbates interactions among the stimulation channels and limits cochlear implant outcome led to the breakthrough in the development of cochlear implants, the continuous interleaved (CIS) sampling coding strategy. By interleaving stimulation pulses across electrodes, CIS activates only a single electrode at each point in time, preventing a direct summation of electrical fields and hence the primary component of channel interactions. In this paper we show that a previously presented approach of simultaneous stimulation with channel interaction compensation (CIC) may also ameliorate the deleterious effects of simultaneous channel interaction on speech perception. In an acute study conducted in eleven experienced MED-EL implant users, configurations involving simultaneous stimulation with CIC and doubled pulse phase durations have been investigated. As pairs of electrodes were activated simultaneously and pulse durations were doubled, carrier rates remained the same. Comparison conditions involved both CIS and fine structure (FS) strategies, either with strictly sequential or paired-simultaneous stimulation. Results showed no statistical difference in the perception of sentences in noise and monosyllables for sequential and paired-simultaneous stimulation with doubled phase durations. This suggests that CIC can largely compensate for the effects of simultaneous channel interaction, for both CIS and FS coding strategies. A simultaneous stimulation paradigm has a number of potential advantages over a traditional sequential interleaved design. The flexibility gained when dropping the requirement of

  2. Pulse Shaped Constant Envelope 8-PSK Modulation Study

    NASA Technical Reports Server (NTRS)

    Tao, Jianping; Horan, Sheila

    1997-01-01

    This report provides simulation results for constant envelope pulse shaped 8 Level Phase Shift Keying (8 PSK) modulation for end to end system performance. In order to increase bandwidth utilization, pulse shaping is applied to signals before they are modulated. This report provides simulation results of power spectra and measurement of bit errors produced by pulse shaping in a non-linear channel with Additive White Gaussian Noise (AWGN). The pulse shaping filters can placed before (Type B) or after (Type A) signals are modulated. Three kinds of baseband filters, 5th order Butterworth, 3rd order Bessel and Square-Root Raised Cosine with different BTs or roll off factors, are utilized in the simulations. The simulations were performed on a Signal Processing Worksystem (SPW).

  3. Superposed pulse amplitude modulation for visible light communication.

    PubMed

    Li, J F; Huang, Z T; Zhang, R Q; Zeng, F X; Jiang, M; Ji, Y F

    2013-12-16

    We propose and experimentally demonstrate a novel modulation scheme called superposed pulse amplitude modulation (SPAM) which is low-cost, insensitive to non-linearity of light emitting diode (LED). Multiple optical pulses transmit parallelly from different spatial position in the LED array and overlap linearly in free space to realize SPAM. With LED arrangement, the experimental results show that using the modulation we proposed the data rate of 120 Mbit/s with BER 1 × 10(-3) can be achieved with an optical blue filter and RC post-equalization.

  4. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  5. Electro-Optical Modulator Bias Control Using Bipolar Pulses

    NASA Technical Reports Server (NTRS)

    Farr, William; Kovalik, Joseph

    2007-01-01

    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the

  6. Injection seeded single-frequency pulsed Nd:YAG laser resonated by an intracavity phase modulator.

    PubMed

    Zhang, Junxuan; Zhu, Xiaolei; Zang, Huaguo; Ma, Xiuhua; Yin, Suyong; Li, Shiguang; Chen, Weibiao

    2014-11-01

    A reliable single frequency Q-switched Nd:YAG laser is developed by using a lithium niobate crystal as the intracavity phase modulator. Successful injection seeding is performed by adopting an electro-optic crystal in an effectively simplified cavity arrangement. The laser is capable of producing 4.8 mJ pulse-energy at 400 Hz repetition rate with nearly Fourier-transform-limited spectral linewidth. The pulse duration is approximately 25 ns, and the beam quality factor M2 is less than 1.3.

  7. Modulation techniques for deep-space pulse-position modulation (PPM) optical communication

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Robinson, Deborah L.

    1988-01-01

    The extremely energy-efficient pulse-position modulation (PPM) format is being actively developed as a basis for optical communications with deep-space probes. Attention is presently given to different modulation schemes for the efficient production of laser pulses over a broad range of repetition rates. Both Q-switching and cavity dumping modulation methods are available for the envisioned diode-pumped Nd:YAG laser source. Numerical calculation results are presented for cavity-dumping.

  8. Modulation techniques for deep-space pulse-position modulation (PPM) optical communication

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Robinson, Deborah L.

    1988-01-01

    The extremely energy-efficient pulse-position modulation (PPM) format is being actively developed as a basis for optical communications with deep-space probes. Attention is presently given to different modulation schemes for the efficient production of laser pulses over a broad range of repetition rates. Both Q-switching and cavity dumping modulation methods are available for the envisioned diode-pumped Nd:YAG laser source. Numerical calculation results are presented for cavity-dumping.

  9. Laser Pulse Duration Is Critical For the Generation of Plasmonic Nanobubbles

    PubMed Central

    2015-01-01

    Plasmonic nanobubbles (PNBs) are transient vapor nanobubbles generated in liquid around laser-overheated plasmonic nanoparticles. Unlike plasmonic nanoparticles, PNBs’ properties are still largely unknown due to their highly nonstationary nature. Here we show the influence of the duration of the optical excitation on the energy efficacy and threshold of PNB generation. The combination of picosecond pulsed excitation with the nanoparticle clustering provides the highest energy efficacy and the lowest threshold fluence, around 5 mJ cm–2, of PNB generation. In contrast, long excitation pulses reduce the energy efficacy of PNB generation by several orders of magnitude. Ultimately, the continuous excitation has the minimal energy efficacy, nine orders of magnitude lower than that for the picosecond excitation. Thus, the duration of the optical excitation of plasmonic nanoparticles can have a stronger effect on the PNB generation than the excitation wavelength, nanoparticle size, shape, or other “stationary” properties of plasmonic nanoparticles. PMID:24916057

  10. Optimal repetition rate and pulse duration studies for two photon imaging

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Smyth, Connor J. C. P.; Praveen, Bavishna B.; Appleton, Paul; Thomson, Calum; Swift, Samuel; Wilcox, Keith G.

    2017-02-01

    Multiphoton imaging (MPI) is an important fluorescence microscopy technique that allows deep tissue and in-vivo imaging with high selectivity. According to theory, two-photon signal is proportional to the product of the peak power and the average power, allowing optimization of key imaging parameters of the excitation laser, such as average power, repetition rate and pulse duration. Recent progress in compact ultrafast lasers including femtosecond fiber lasers and optically pumped semiconductor lasers makes direct control of these parameters possible. In order to investigate the optimum laser parameters for two photon imaging we experimentally study the effects of repetition rate between 2.85 and 90 MHz and pulse duration between 336 fs and 3.5 ps on two photon signal in SYTOX Green labeled mouse intestine sections at 1030 nm. We found that the optimum repetition rate for this sample is in the range 20 - 40 MHz, depending on average power, and that the pulse duration has no effect on the MPI signal provided that the average power can be adjusted to keep the product of average and peak power constant.

  11. Influence of Oceanic Synoptic Eddies on the Duration of Modal Acoustic Pulses

    NASA Astrophysics Data System (ADS)

    Makarov, D. V.; Kon'kov, L. E.; Petrov, P. S.

    2016-12-01

    We consider the problem of scattering of the modal acoustic pulses from synoptic eddies with allowance for the influence of the field of internal waves. The ray formalism in terms of the action-angle variables is used. The synoptic-eddy induced distortion of the sound-speed profile is shown to enhance the scattering of certain ray bundles from internal waves. The formulas allowing one to identify the modal pulses corresponding to such ray bundles are derived. These pulses differ from the other ones by increased duration. This fact can be used for obtaining additional information during acoustic tomography. The model of the underwater acoustic channel in the Sea of Japan is considered as an example.

  12. Liquid assisted ablation of zirconium for the growth of LIPSS at varying pulse durations and pulse energies by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Bashir, Shazia; Rafique, M. Shahid; Husinsky, Wolfgang

    2015-04-01

    Investigations have been performed to explore the optimized conditions for the growth of Laser Induced Periodic Surface Structures (LIPSS) by varying pulse durations and pulse energies during ultrashort pulsed laser ablation of zirconium (Zr). The Ti: Sapphire laser with central wavelength of 800 nm, maximum pulse energy of 1 mJ is used to ablate Zr targets in the wet environment of ethanol. Scanning Electron Microscope (SEM) analysis was performed for central as well as the peripheral ablated area to characterize nano and microstructures formed on the Zr surface. Raman spectroscopy was carried out to explore the chemical and compositional changes produced in laser ablated Zr. In order to explore the effect of varying pulse durations ranging from 25 to 100 fs, targets were exposed to 1000 succeeding pulses keeping the pulse energy constant at 600 μJ. The micrographs of peripheral ablated areas reveal the formation of nano scale ripples or Laser Induced Periodic Surface Structures (LIPSS) for all pulse durations. LIPSS are more distinct and well organized for the shortest pulse duration of 25 fs. Whereas, LIPSS become diffused and indistinct with the increase in the pulse duration. This is the clear indication that shortest pulse duration (in our case 25 fs) is most suitable for the growth of nanoscale ripples. In order to explore the effect of varying pulse energies on the growth of LIPSS, targets were exposed to 1000 succeeding pulses with energies ranging from 200 μJ to 600 μJ for a pulse duration of 25 fs. In the peripheral ablated areas LIPSS are grown for all pulse energies. For the lowest pulse energy of 200 μJ, LIPSS are distinct and well defined. For intermediate energies of 300 and 400 μJ they become diffused and indistinct. For higher pulse energies of 500 and 600 μJ, their appearance again becomes well defined and distinct. For central ablated areas LIPSS are grown but their appearance diffuses with increasing pulse energies. For the highest pulse

  13. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.

    PubMed

    Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying

    2017-02-01

    Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.

  14. System parameters germane to relativistic klystron amplifiers: how the utility of pulse energy depends on pulse duration, the target, and the atmosphere

    NASA Astrophysics Data System (ADS)

    Myers, John M.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) at a variety of carrier wavelengths and pulse durations appear feasible to supply microwave pulses to an array of antennas acting as a beam weapon against targets at or above 100 km in altitude. In order to avoid voltage breakdown in the atmosphere, the array area must be large enough to converge the beam, producing a higher energy flux on target than at intermediate altitudes susceptible to breakdown. The area required depends on the physics of atmospheric ionization and on the pulse duration and the carrier wavelength of the RKA. A quantitative statement of the dependence of array area on relevant parameters is presented. The energy per RKA pulse that is usable without delay lines is determined here as a function of RKA pulse duration and wavelength. Changing the pulse length from 160 ns to 1 microsecond(s) and shortening the wavelength raise the energy usable without delay lines by a factor of 1000.

  15. Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction

    NASA Astrophysics Data System (ADS)

    Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.

    2017-02-01

    Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.

  16. Pulse-Width-Modulating Driver for Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  17. Pulse-Width-Modulating Driver for Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  18. Optimum Pulse Duration and Radiant Exposure for Vascular Laser Therapy of Dark port-wine Skin: A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Tunnell, James W.; Wang, Lihong V.; Anvari, Bahman

    2003-03-01

    Laser therapy for cutaneous hypervascular malformations such as port-wine stain birthmarks is currently not feasible for dark-skinned individuals. We study the effects of pulse duration, radiant exposure, and cryogen spray cooling (CSC) on the thermal response of skin, using a Monte Carlo based optical-thermal model. Thermal injury to the epidermis decreases with increasing pulse duration during irradiation at a constant radiant exposure; however, maintaining vascular injury requires that the radiant exposure also increase. At short pulse durations, only a minimal increase in radiant exposure is necessary for a therapeutic effect to be achieved because thermal diffusion from the vessels is minimal. However, at longer pulse durations the radiant exposure must be greatly increased. There exists an optimum pulse duration at which minimal damage to the epidermis and significant injury within the targeted vasculature occur. For example, the model predicts optimum pulse durations of approximately 1.5, 6, and 20 ms for vessel diameters of 40, 80, and 120 μm, respectively. Optimization of laser pulse duration and radiant exposure in combination with CSC may offer a means to treat cutaneous lesions in dark-skinned individuals.

  19. Modulation instability of laser pulse in magnetized plasma

    SciTech Connect

    Jha, Pallavi; Kumar, Punit; Raj, Gaurav; Upadhyaya, Ajay K.

    2005-12-15

    Modulation instability of a laser pulse propagating through transversely magnetized underdense plasma is studied. It is observed that interaction of laser radiation with plasma in the presence of uniform magnetic field results in an additional perturbed transverse plasma current density along with the relativistic and ponderomotive nonlinear current densities, thus affecting the modulational interaction. In the plane wave limit it is observed that modulational interaction is more stable for magnetized plasma as compared to the unmagnetized case. The analysis shows that there is a significant reduction in the growth rate of modulation instability over a given range of unstable wave numbers due to magnetization of plasma.

  20. Efficient generation of mode-locked pulses in Nd:YVO4 with a pulse duration adjustable between 34 ps and 1 ns.

    PubMed

    Lührmann, Markus; Theobald, Christian; Wallenstein, Richard; L'huillier, Johannes A

    2009-04-13

    We report on the generation of highly stable active continuous mode-locked pulses in diode pumped Nd:YVO(4) with an adjustable pulse duration between 34 ps and 1 ns. With this laser an average output power of up to 7.3 W with an excellent stability and beam quality with a M(2)-value of < 1.1 is obtained. For all pulse durations the pulses were within a factor of 1.15 above the Fourier limit. Due to these characteristics the presented system is an attractive oscillator for OPCPA concepts.

  1. Combinatorial gene regulation by modulation of relative pulse timing

    PubMed Central

    Lin, Yihan; Sohn, Chang Ho; Dalal, Chiraj K.; Cai, Long; Elowitz, Michael B.

    2015-01-01

    Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might modulate the relative timing of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 pulsed in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signaling and regulatory systems of the cell. PMID:26466562

  2. Effects of temporal laser profile on the emission spectra for underwater laser-induced breakdown spectroscopy: Study by short-interval double pulses with different pulse durations

    SciTech Connect

    Tamura, Ayaka Matsumoto, Ayumu; Nishi, Naoya; Sakka, Tetsuo; Nakajima, Takashi; Ogata, Yukio H.; Fukami, Kazuhiro

    2015-01-14

    We investigate the effects of temporal laser profile on the emission spectra of laser ablation plasma in water. We use short-interval (76 ns) double pulses with different pulse durations of the composing two pulses for the irradiation of underwater target. Narrow atomic spectral lines in emission spectra are obtained by the irradiation, where the two pulses are wide enough to be merged into a single-pulse-like temporal profile, while deformed spectra are obtained when the two pulses are fully separated. The behavior of the atomic spectral lines for the different pulse durations is consistent with that of the temporal profiles of the optical emission intensities of the plasma. All these results suggest that continuous excitation of the plasma during the laser irradiation for ∼100 ns is a key to obtain narrow emission spectral lines.

  3. Tailored terahertz pulses from a laser-modulated electronbeam

    SciTech Connect

    Martin, Michael C.; Byrd, John; Hao, Zhao; Robin, David; Sannibale,Fernando; Schoenlein, Robert W.; Zholents, Alexander; Zolotorev, Max

    2005-07-19

    Interaction of an electron beam with a femtosecond laserpulseco-propagating through a wiggler modulates the electronenergieswithin a short slice of the electron bunch comparable with the durationof the laser pulse (Figure 1). Propagating around an electron storagering, this bunch develops a longitudinal density perturbation due to thedispersion of electron trajectories. Figure 1 shows how this createsfemtosecond electron bunch wings which are used for femtosecond x-raylight. In addition, this density perturbation emits temporally andspatially coherent tera-hertz pulses whichare inherently synchronized tothe modulating laser. This gives us a new way to study coherentsynchrotron radaition, and creates an opportunity for tuning the THzemmission specifically for the needs of a given experiment.

  4. Pulse-Modulation Scheme For Voice And Telemetry

    NASA Technical Reports Server (NTRS)

    Mills, William J.

    1993-01-01

    Pulse-modulation scheme provides for transmission of 1 channel of voice information along with 16 channels of serially multiplexed analog iotelemetric information, all on single radio-frequency carrier signal. Encoder/multiplexer combination effects PMD scheme, in which biotelemetry encoded in time-division multiplex PIM, while voice encoded in PWM. Combination of PIM and PWM encoding called "pulse modulated data" or PMD. Principal advantage of scheme simplicity: comodulation of voice along with biotelemetry involves minimal additional circuitry in transmitter. In receiver, biotelemetric data extracted by ordinary PIM-encoding circuitry, not affected by voice PWM; and simple PWM decoder added to receiver to recover voice.

  5. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    NASA Technical Reports Server (NTRS)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  6. Ablation Study of WC and PCD Composites Using 10 Picosecond and 1 Nanosecond Pulse Durations at Green and Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Eberle, Gregory; Wegener, Konrad

    An ablation study is carried out to compare 10 picosecond and 1 nanosecond pulse durations as well as 532 nanometre and 1064 nanometre wavelengths at each corresponding pulse duration. All laser parameters are kept constant in order to understand the influence of pulse duration and wavelength independently. The materials processed according to the electronic band structure are a metal and an insulator/metal composite, i.e. tungsten carbide and polycrystalline diamond composite respectively. After laser processing said materials, the ablation rate and surface roughness are determined. Analysis into the ablation behaviour between the various laser parameters and the materials processed is given, with a particular emphasis on the graphitisation of diamond.

  7. Analysis of pulse modulation format in coded BOTDA sensors.

    PubMed

    Soto, Marcelo A; Bolognini, Gabriele; Di Pasquale, Fabrizio

    2010-07-05

    A theoretical and experimental analysis of the impact of pulse modulation format on Brillouin optical time-domain analysis (BOTDA) sensors using pulse coding techniques has been carried out. Pulse coding with conventional non-return-to-zero (NRZ) modulation format is shown to induce significant distortions in the measured Brillouin gain spectrum (BGS), especially in proximity of abrupt changes in the fiber gain spectra. Such an effect, as confirmed by the theoretical analysis, is due to acoustic wave pre-excitation and non-uniform gain which depends on the bit patterns defined by the different codewords. A successful use of pulse coding techniques then requires to suitably optimize the employed modulation format in order to avoid spurious oscillations causing severe penalties in the attained accuracy. Coding technique with return-to-zero (RZ) modulation format is analyzed under different duty-cycle conditions for a 25 km-long sensing scheme, showing that low duty-cycle values are able to effectively suppress the induced distortions in the BGS and allow for spatially-accurate, high-resolution strain and temperature measurements being able to fully exploit the provided coding gain (approximately 7.2 dB along 25 km distance) with unaltered spatial resolution (1 meter). Although Simplex coding is used in our analysis, the validity of the results is general and can be directly applied to any intensity-modulation coding scheme.

  8. Control of shape memory alloy actuator using pulse width modulation

    NASA Astrophysics Data System (ADS)

    Ma, N.; Song, G.

    2003-10-01

    Shape memory alloys (SMA), in particular nickel-titanium alloy (or nitinol), have been used as actuators in some astronautic, aeronautic and industrial applications. The future will see more SMA application if less energy is required for actuation. This paper presents the design and experimental results of control of an SMA actuator using pulse width modulation (PWM) to reduce the energy consumption by the SMA actuator. A SMA wire test stand is used in this research. Open-loop testing of the SMA wire actuator is conducted to study the effect of the PWM parameters. Based on test results and parameter analysis of the pulse width (PW) modulator, a PW modulator is designed to modulate a proportional plus derivative (PD) controller. Experiments demonstrate that control of the SMA actuator using PWM effectively saves actuation energy while maintaining the same control accuracy as compared to continuous PD control. PWM also demonstrates robustness to external disturbances. A comparison with a pulse width pulse frequency modulator is also presented.

  9. TW-class hollow-fiber compressor with tunable pulse duration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boehle, Frederik; Vernier, Aline; Kretschmar, Martin; Jullien, Aurélie; Kovacs, Mate; Romero, Rosa M.; Crespo, Helder M.; Simon, Peter; Nagy, Tamas; Lopez-Martens, Rodrigo

    2017-05-01

    CEP-stable few-cycle light pulses find numerous applications in attosecond science, most notably the production of isolated attosecond pulses for studying ultrafast electronic processes in matter [1]. Scaling up the pulse energy of few-cycle pulses could extend the scope of applications to even higher intensity processes, such as attosecond dynamics of relativistic plasma mirrors [2]. Hollow fiber compressors are widely used to produce few-cycle pulses with excellent spatiotemporal quality [3], where octave-spanning broadened spectra can be temporally compressed to sub-2-cycle duration [4,5]. Several tricks help increase the output energy: using circularly polarized light [6], applying a pressure gradient along the fiber [7] or even temporal multiplexing [8]. The highest pulse energy of 5 mJ at 5 fs pulse duration was achieved by using a hollow fiber in pressure gradient mode [9] but in this case no CEP stabilization was achieved, which is crucial for most applications of few-cycle pulses. Nevertheless, it did show that in order to scale up the peak power, the effective length and area mode of the fiber had to be increased proportionally, thereby requiring the use of longer waveguides with larger apertures. Thanks to an innovative design utilizing stretched flexible capillaries [10], we recently demonstrated the generation CEP-stable sub-4fs pulses with 3mJ energy using a 2m length 450mm bore hollow fiber in pressure gradient mode [11]. Here, we show that a stretched hollow-fiber compressor operated in pressure gradient mode can generate relativistic intensity pulses with continuously tunable waveform down to almost a single cycle (3.5fs at 750nm central wavelength). The pulses are characterized online using an integrated d-scan device directly under vacuum [12]. While the pulse shape is tuned, all other pulse characteristics, such as energy, pointing stability and focal distribution remain the same on target, making it possible to explore the dynamics of plasma

  10. Modulated Pulsed Laser Sources for Imaging Lidars

    DTIC Science & Technology

    2007-10-01

    manufactured by QPC. This C-mount device has a monolithic semiconductor amplifier allowing the package to output up to 1.5 Watts at 1064 nm with linewidths ɘ.1...pulsed driver based on the avalanche transistor circuit being used for gain switching, a 1064 nm DFB laser manufactured by QPC and a DBR -style laser...available now that may provide the needed power. An example of such a laser is the QPC C-mount monolithic oscillator/amplifier which can output 1.5

  11. Impacts of cross-phase modulation on modulation instability of Airy pulses

    NASA Astrophysics Data System (ADS)

    Cheng, Yingkai; Fu, Xiquan; Bai, Yanfeng

    2016-10-01

    The modulation instability (MI) of Airy pulses with the influence of cross-phase modulation is studied based on the coupled nonlinear Schrödinger equations in nonlinear media. The main lobe of Airy pulses can be manifested as breakup of MI under interaction with higher power pumped solitons, although the power of Airy pulses is small. By comparing the main lobe's gain spectrum of MI, the gain spectrum has gradually improved with the increase of power of pumped solitons. The gain spectrum of MI of the main lobe is inversely proportional to the truncation coefficient, and then it gradually approaches to that of Gauss pulses with the truncation coefficient increasing to 1. For the side lobes of Airy pulses, there are similar MI but smaller gain spectrum than the main lobe when the pumped solitons is overlapping with corresponding ones of Airy pulses.

  12. Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MQW laser/MQW electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Takada, A.; Sato, K.; Saruwatari, M.; Yamamoto, M.

    1994-05-01

    Actively modelocked pulses are generated from a 1.59 micron MQW laser integrated with an MQW electroabsorption modulator driven at the monolithic cavity frequency. The pulse width is controlled from 39 ps to 0.55 ps by changing the inverse bias voltage applied to the electroabsorption modulator and by linear pulse compression using a fiber.

  13. Pulse-Population Modulation For Induction Machines

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Low-frequency synthesizer developed to provide low-frequency waveform by synthesis from high-frequency power system. Waveform assembled by allowing conduction of discrete half cycles of high-frequency carrier. Frequency of synthesized wave controlled by pulse pattern. By controlling relationship between slip and stator frequencies, one operates induction motor either as motor or generator. Such bidirectional energy transducer used as starter/generator for engine, or as servo-mechanism for control of acceleration and deceleration. Other advantages include operation under controlled voltage-to-frequency ratios to maintain high-efficiency and high power factor, and no reflection of low-frequency noise into 20-kHz distribution bus.

  14. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  15. Effects of the pulse duration in laser modification of nano-sized WTi film on Si substrate

    NASA Astrophysics Data System (ADS)

    Petrović, Suzana; Peruško, D.; Milovanović, D.; Kovač, J.; Čekada, M.; Panjan, P.; Gaković, B.; Trtica, M.

    2010-07-01

    A study of morphological and composition changes of the WTi/Si system induced by nanosecond and picosecond laser pulses is presented. A 190 nm thick WTi film was deposited on a silicon substrate of n-type (100). The pulsed laser systems used were: nanosecond TEA CO2 laser (emission, 10.6 µm pulse FWHM; pulse duration 120 ns) and picosecond Nd:YAG laser (emission, 532 nm pulse FWHM; pulse duration 40 ps). During experiments the used fluences (Φ) had similar values, Φ1 = 20 J cm - 2 in case of the TEA CO2 laser and Φ2 = 16 J cm - 2 for the Nd:YAG laser. The laser-induced morphological and composition modifications showed a dependence on pulse duration. Generally, the following morphological changes were observed: (i) ablation/exfoliation of the WTi thin film, (ii) appearance of hydrodynamic features such as resolidified material, and (iii) formation of nano-sized grains and globules. Overall morphological modifications were more pronounced after the picosecond laser action. The surface composition analysis showed a quite different distribution of sample components depending on the pulse duration. Formation of the silicon dioxide (SiO2) was recorded only in the case of irradiation of the WTi/Si system by picosecond laser pulses.

  16. Atomic ionization by intense laser pulses of short duration: Photoelectron energy and angular distributions

    SciTech Connect

    Dondera, M.

    2010-11-15

    We introduce an adequate integral representation of the wave function in the asymptotic region, valid for the stage postinteraction between a one-electron atom and a laser pulse of short duration, as a superposition of divergent radial spherical waves. Starting with this representation, we derive analytic expressions for the energy and angular distributions of the photoelectrons and we show their connection with expressions used before in the literature. Using our results, we propose a method to extract the photoelectron distributions from the time dependence of the wave function at large distances. Numerical results illustrating the method are presented for the photoionization of hydrogenlike atoms from the ground state and several excited states by extreme ultraviolet pulses with a central wavelength of 13.3 nm and several intensities around the value I{sub 0}{approx_equal}3.51x10{sup 16} W/cm{sup 2}.

  17. Fearful Faces Modulate Looking Duration and Attention Disengagement in 7-Month-Old Infants

    ERIC Educational Resources Information Center

    Peltola, Mikko J.; Leppanen, Jukka M.; Palokangas, Tiina; Hietanen, Jari K.

    2008-01-01

    The present study investigated whether facial expressions modulate visual attention in 7-month-old infants. First, infants' looking duration to individually presented fearful, happy, and novel facial expressions was compared to looking duration to a control stimulus (scrambled face). The face with a novel expression was included to examine the…

  18. Adiabatic quantum computing with phase modulated laser pulses

    PubMed Central

    Goswami, Debabrata

    2005-01-01

    Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865

  19. Raman-pulse-duration effect in gravity gradiometers composed of two atom interferometers

    NASA Astrophysics Data System (ADS)

    Shao, Cheng-Gang; Mao, De-Kai; Zhou, Min-Kang; Tan, Yu-Jie; Chen, Le-Le; Luo, Jun; Hu, Zhong-Kun

    2015-11-01

    We investigated the Raman-pulse-duration effect in a gravity gradiometer with two atom interferometers. Since the two atom clouds in the gradiometer experience different gravitational fields, it is hard to compensate for the Doppler shifts of the two clouds simultaneously by chirping the frequency of a common Raman laser. This leads to an appreciable phase shift. The magnitude of the phase shift relative to the differential phase shift of the two interferometers is in an order of τ /T , and cannot be neglected in the precision measurements such as measuring the gravity gradient and the Newtonian gravitational constant.

  20. Modulation Recognition Algorithms for Intentional Modulation on Pulse (IMOP) Applications

    DTIC Science & Technology

    2001-12-01

    Defence Research E~tabl1~hmcm UtLma DREO TR 200H 11 P517628.PDF [Page: 9 of 56] IV Somma ire Recemment, l’mteret du developpement de techmques pour...Theoretic Approach The dechlon theoretic approach rs based on certam statistics of the the sample sequence for di ~LIIlllmation between the modulation

  1. Intensity-Duration Relation in the Bartlett-Lewis Rectangular Pulse Model

    NASA Astrophysics Data System (ADS)

    Ritschel, Christoph; Rust, Henning; Ulbrich, Uwe; Névir, Peter

    2015-04-01

    For several hydrological modelling tasks precipitation time series with a high (sub-daily) resolution are indispensable. This data is, however, not always available and thus replaced by model data. A canonical class of stochastic models for sub-daily precipitation is the class of Poisson cluster processes, e.g. the Bartlett-Lewis rectangular pulse model (BLRPM). The BLRPM has been shown to be able to well reproduce certain characteristics found in observations. Our focus is on intensity-duration relationship which are of particular importance in the context of hydrological modelling. We analyse several high resolution precipitation time series (5min) from Berlin and derive empirical intensity-duration relations for several return levels of intensities (intensity-duration-frequency curves, IDF curves). In a second step, we investigate to what extend the variants of a BLRPM are able to reproduce these relations (i.e., the IDF curves) for different situations (e.g., seasons) and for the various return-levels of intensities. By means of a sensitivity study with the BLRPM, we investigate to what extend the ability to reproduce the intensity-duration relationships is related to certain relations between the model parameters. Such relations are typically useful to reduce the complexity of the model and thus robustify and facilitate parameter estimation.

  2. Measurements of pulse modulation in an ECM

    NASA Astrophysics Data System (ADS)

    Ronald, K.; Cross, A. W.; Phelps, A. D. R.; He, W.; Whyte, C. G.; Thomson, J.; Rafferty, E.; Konoplev, I. V.

    2004-08-01

    We report on experiments which have recently been conducted at the University of Strathclyde investigating rapid amplitude modulations occurring in the microwave output radiation of an electron cyclotron maser (ECM). The experiment used an electron beam injected from a co-axial diode with knife-edged graphite cathode in the fringing field of an adjustable magnet system producing a beam of up to 175 kV and 140 A. The time evolution of the electron beam was measured as the cathode plasma expanded using a Faraday cup in conjunction with upstream beam interceptors as a function of the magnetic compression ratio. The ECM cavity was configured so that its length and the length of the interaction space could be readily adjusted. The microwave output signal was studied using special fast rectifying diode detectors, a high performance deep memory oscilloscope and cut-off filters. Steady-state output was observed at high magnetic compression ratios (16:1) at a frequency of 16 GHz corresponding to cyclotron resonant maser (CRM) coupling between the beam and the radiation in the expected TE 1,2 mode. At lower compression ratios modulation was observed after an initial steady-state period and shown by antenna pattern measurements to be associated with transverse mode competition in the microwave cavity.

  3. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    PubMed

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  4. Effect of Reverse Pulse Current Duration on the Corrosion and Wear Performance of Ni-W Nanolaminate Coatings

    NASA Astrophysics Data System (ADS)

    Shreeram, Devesh Dadhich; Bedekar, Vikram; Li, Shengxi; Jagtap, Rohit; Cong, Hongbo; Doll, Gary L.

    2017-08-01

    The effects of varying the reverse pulse current duration (τ = 0 s, 1 s, 5 s, and 10 s) were evaluated on the composition, crystallinity, hardness, corrosion resistance, and tribological performance of nanolaminate Ni-W coatings deposited by pulsed reverse current electrodeposition. With the deposition conditions used in this study, it was found that a reverse current duration of τ = 1 s produced a coating that was both highly corrosion resistant and wear resistant.

  5. Laser-fired contact formation on metallized and passivated silicon wafers under short pulse durations

    NASA Astrophysics Data System (ADS)

    Raghavan, Ashwin S.

    The objective of this work is to develop a comprehensive understanding of the physical processes governing laser-fired contact (LFC) formation under microsecond pulse durations. Primary emphasis is placed on understanding how processing parameters influence contact morphology, passivation layer quality, alloying of Al and Si, and contact resistance. In addition, the research seeks to develop a quantitative method to accurately predict the contact geometry, thermal cycles, heat and mass transfer phenomena, and the influence of contact pitch distance on substrate temperatures in order to improve the physical understanding of the underlying processes. Finally, the work seeks to predict how geometry for LFCs produced with microsecond pulses will influence fabrication and performance factors, such as the rear side contacting scheme, rear surface series resistance and effective rear surface recombination rates. The characterization of LFC cross-sections reveals that the use of microsecond pulse durations results in the formation of three-dimensional hemispherical or half-ellipsoidal contact geometries. The LFC is heavily alloyed with Al and Si and is composed of a two-phase Al-Si microstructure that grows from the Si wafer during resolidification. As a result of forming a large three-dimensional contact geometry, the total contact resistance is governed by the interfacial contact area between the LFC and the wafer rather than the planar contact area at the original Al-Si interface within an opening in the passivation layer. By forming three-dimensional LFCs, the total contact resistance is significantly reduced in comparison to that predicted for planar contacts. In addition, despite the high energy densities associated with microsecond pulse durations, the passivation layer is well preserved outside of the immediate contact region. Therefore, the use of microsecond pulse durations can be used to improve device performance by leading to lower total contact resistances

  6. Wavelength modulation spectroscopy with a pulsed quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Manne, Jagadeeshwari; Lim, Alan; Jäger, Wolfgang; Tulip, John

    2010-12-01

    A pulsed distributed feedback quantum cascade laser (QCL) operating near 957 cm-1 was employed in wavelength modulation mode for spectroscopic trace gas sensing applications. The laser was excited with short current pulses (5-10 ns) with < 2% duty cycle. The pulse amplitude was modulated with a linear sub-threshold current ramp at 20 Hz resulting in a ~ 2.5 cm-1 frequency scan, which is typically wider than what has been reported for these lasers, and would allow one to detect molecular absorption features with line widths up to 1 cm-1. A demodulation approach followed by numerical filtering was utilized to improve the signal-to-noise ratio. We then superimposed a sine wave current modulation at 10 kHz onto the 20 Hz current ramp. The resulting high frequency temperature modulation of the distributed feedback (DFB) structure results in wavelength modulation (WM). The set-up was tested by recording relatively weak absorption lines of carbon dioxide. We demonstrated a minimum detectable absorbance of 10-5 for this spectrometer. Basic instrument performance and optimization of the experimental parameters for sensitivity improvement are discussed.

  7. High-Power fiber amplifier with widely tunable repetition rate, fixed pulse duration, and multiple output wavelengths.

    PubMed

    Schrader, Paul E; Farrow, Roger L; Kliner, Dahv A V; Fève, Jean-Philippe; Landru, Nicolas

    2006-11-27

    We report a pulsed, fiber-amplified microchip laser providing widely tunable repetition rate (7.1 - 27 kHz) with constant pulse duration (1.0 ns), pulse energy up to 0.41 mJ, linear output polarization, diffraction-limited beam quality (M(2) < 1.2), and < 1% pulse-energy fluctuations. The pulse duration was shown to minimize nonlinear effects that cause temporal and spectral distortion of the amplified pulses. This source employs passive Q-switching, single-stage single-pass amplification, and cw pumping, thus offering high efficiency, simplicity, and compact, rugged packaging for use in practical applications. The high peak power and high beam quality make this system an ideal pump source for nonlinear frequency conversion, and we demonstrated efficient harmonic generation and optical parametric generation of wavelengths from 213 nm to 4.4 mum with Watt-level output powers.

  8. Pulse duration determines levels of Hsp70 induction in tissues following laser irradiation

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Contag, Christopher H.

    2011-07-01

    Induction of heat shock protein (Hsp) expression correlates with cytoprotection, reduced tissue damage, and accelerated healing in animal models. Since Hsps are transcriptionally activated in response to stress, they can act as stress indicators in burn injury or surgical procedures that produce heat and thermal change. A fast in vivo readout for induction of Hsp transcription in tissues would allow for the study of these proteins as therapeutic effect mediators and reporters of thermal stress/damage. We used a transgenic reporter mouse in which a luciferase expression is controlled by the regulatory region of the inducible 70 kilodalton (kDa) Hsp as a rapid readout of cellular responses to laser-mediated thermal stress/injury in mouse skin. We assessed the pulse duration dependence of the Hsp70 expression after irradiation with a CO2 laser at 10.6 μm in wavelength over a range of 1000 to 1 ms. Hsp70 induction varied with changes in laser pulse durations and radiant exposures, which defined the ranges at which thermal activation of Hsp70 can be used to protect cells from subsequent stress, and reveals the window of thermal stress that tissues can endure.

  9. Effect of pulse duration and strain rate on incipient spall fracture in copper

    SciTech Connect

    Johnson, J.N.; Gray, G.T. III; Bourne, N.K.

    1999-11-01

    Data are presented on real time (VISAR) measurements of the spall fracture of copper for various pulse durations and tensile strain rates at the spall plane. The impactors consist of Teflon, {ital Y}-cut quartz, and a tungsten heavy alloy. VISAR data are compared with finite-difference calculations employing a rate-dependent void-growth model. The data and comparisons show little dependence of the onset of void growth on either pulse duration or tensile strain rate. Also, it is shown that hydrodynamics (wave propagation properties) involving the transmission of the spall signal from the spall plane to the free surface (plane of the VISAR measurement) can mask slight differences in the void-growth or fracture response. In addition, new results are presented for the elastic description of planar wave propagation in {ital Y}-cut quartz; expressions are given for the six independent stress components to second order in infinitesimal Lagrangian strains. A discussion with regard to additional use of {ital Y}-cut quartz in impact experiments is presented. {copyright} {ital 1999 American Institute of Physics.}

  10. Soft demodulation to the optical pulse position modulated signals

    NASA Astrophysics Data System (ADS)

    Zhou, Tian-hua; Chen, Wei-biao

    2009-07-01

    The optical Pulse Position Modulation (PPM) is applied widely in Free Space Optical communication (FSO) with the low average power and the high peak power. The transmitted PPM information depends on the location of the coming optical pulse signals in fixed period. Both receiver and transmitter should been kept in time slot synchronization and frame synchronization in demodulation. Because the channel is very complex, the received optical pulse width will be stretched randomly. We design and realize one digital PPM modulation receiver with high sensitivity using the technology of PMT, A/D converter, and DSP. It is suitable to the total digital optical receiver with random time slots and random pulse width. The paper will mainly discuss the realization of the soft demodulation behind A/D converter. The key of PPM digital soft modulation is the establishment of the synchronization that involves the segment synchronization, the fame synchronization and the bit synchronization. The synchronization can be obtained by seeking for the frame head in data frames. Based on the estimation of received waveform characteristics, we adopt a matched filter without the best factors firstly. Thereafter, their errors will be self-adapted while finding the synchronization head. Considering the real-time need, we choose the reduced mode of maximum likelihood function judgment finally. In the experiments, results with high sensitivity and low bit error rate have been achieved.

  11. Frequency modulation and compression of optical pulses in an optical fibre with a travelling refractive-index wave

    SciTech Connect

    Zolotovskii, I O; Lapin, V A; Sementsov, D I

    2016-01-31

    We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)

  12. Population transfer by an amplitude-modulated pulse

    SciTech Connect

    Vitanov, N.V.; Yatsenko, L.P.; Bergmann, K.

    2003-10-01

    We propose a technique for coherent population inversion of a two-state system, which uses an amplitude-modulated pulse. In the modulation-free adiabatic basis, the modulation introduces oscillating interaction between the adiabatic states. In a second rotating-wave approximation picture, this oscillating interaction induces a pair of level crossings between the energies of the adiabatic states if the modulation frequency is chosen appropriately. By suitably offsetting the modulation with respect to the center of the pulse, one can make the modulation act only in the vicinity of one of these crossings. In a higher-order adiabatic basis, this crossing shows up as an avoided crossing between the energies of the higher-order adiabatic states. As a result robust and efficient population transfer can be achieved between the adiabatic states, and hence, between the original bare states. We derive analytically the conditions on the interaction parameters for this technique and verify them with numerical simulations. Possible experimental implementations are discussed.

  13. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds.

    PubMed

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-08-14

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion.

  14. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-08-01

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion.

  15. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds

    PubMed Central

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-01-01

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion. PMID:26271602

  16. The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI.

    PubMed

    Yeh, Chun-Hung; Tournier, J-Donald; Cho, Kuan-Hung; Lin, Ching-Po; Calamante, Fernando; Connelly, Alan

    2010-06-01

    An essential step for fibre-tracking is the accurate estimation of neuronal fibre orientations within each imaging voxel, and a number of methods have been proposed to reconstruct the orientation distribution function based on sampling three-dimensional q-space. In the q-space formalism, very short (infinitesimal) gradient pulses are the basic requirement to obtain the true spin displacement probability density function. On current clinical MR systems however, the diffusion gradient pulse duration (delta) is inevitably finite due to the limit on the achievable gradient intensity. The failure to satisfy the short gradient pulse (SGP) requirement has been a recurrent criticism for fibre orientation estimation based on the q-space approach. In this study, the influence of a finite delta on the DW signal measured as a function of gradient direction is described theoretically and demonstrated through simulations and experimental models. Our results suggest that the current practice of using long delta for DW imaging on human clinical MR scanners, which is enforced by hardware limitations, might in fact be beneficial for estimating fibre orientations. For a given b-value, the prolongation of delta is advantageous for estimating fibre orientations for two reasons: first, it leads to a boost in DW signal in the transverse plane of the fibre. Second, it stretches out the shape of the measured diffusion profile, which improves the contrast between DW orientations. This is especially beneficial for resolving crossing fibres, as this contrast is essential to discriminate between different fibre directions.

  17. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration

    PubMed Central

    Weitz, Andrew C.; Nanduri, Devyani; Behrend, Matthew R.; Gonzalez-Calle, Alejandra; Greenberg, Robert J.; Humayun, Mark S.; Chow, Robert H.; Weiland, James D.

    2015-01-01

    Retinal prosthetic implants are the only approved treatment for retinitis pigmentosa, a disease of the eye that causes blindness through gradual degeneration of photoreceptors. An array of microelectrodes triggered by input from a camera stimulates surviving retinal neurons, each electrode acting as a pixel. Unintended stimulation of retinal ganglion cell axons causes patients to see large, oblong shapes of light, rather than focal spots, making it difficult for them to perceive forms. To address this problem, we performed calcium imaging in isolated retinas and mapped the patterns of cells activated by different electrical stimulation protocols. We found that pulse durations two orders of magnitude longer than those typically used in existing implants stimulate inner retinal neurons while avoiding activation of ganglion cell axons, thus confining retinal responses to the site of the electrode. We show that multielectrode stimulation with 25-ms pulses can pattern letters on the retina corresponding to a Snellen acuity of 20/312. We validated our findings in a patient with an implanted epiretinal prosthesis by demonstrating that 25-ms pulses evoke focal spots of light. PMID:26676610

  18. Ultrashort Two-Photon-Absorption Laser-Induced Fluorescence in Nanosecond-Duration, Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob Brian

    Absolute number densities of atomic species produced by nanosecond duration, repetitively pulsed electric discharges are measured by two-photon absorption laser-induced fluorescence (TALIF). Relatively high plasma discharge pulse energies (=1 mJ/pulse) are used to generate atomic hydrogen, oxygen, and nitrogen in a variety of discharge conditions and geometries. Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF). Fs-TALIF offers a number of advantages compared to more conventional ns-pulse-duration laser systems, including better accuracy of direct quenching measurements in challenging environments, significantly reduced photolytic interference including photo-dissociation and photo-ionization, higher signal and increased laser-pulse bandwidth, the ability to collect two-dimensional images of atomic species number densities with far greater spatial resolution compared with more conventional diagnostics, and much higher laser repetition rates allowing for more efficient and accurate measurements of atomic species number densities. In order to fully characterize the fs-TALIF diagnostic and compare it with conventional ns-TALIF, low pressure (100 Torr) ns-duration pulsed discharges are operated in mixtures of H2, O2, and N2 with different buffer gases including argon, helium, and nitrogen. These discharge conditions are used to demonstrate the capability for two-dimensional imaging measurements. The images produced are the first of their kind and offer quantitative insight into spatially and temporally resolved kinetics and transport in ns-pulsed discharge plasmas. The two-dimensional images make possible comparison with high-fidelity plasma kinetics models of the presented data. The comparison with the quasi-one-dimensional kinetic model show good spatial and temporal agreement. The same diagnostics are used at atmospheric pressure, when atomic oxygen fs-TALIF is performed in an atmospheric-pressure plasma jet (APPJ). Here, the

  19. Different pulse pattern generation by frequency detuning in pulse modulated actively mode-locked ytterbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, He; Chen, Sheng-Ping; Si, Lei; Zhang, Bin; Jiang, Zong-Fu

    2015-10-01

    We report the results of our recent experimental investigation of the modulation frequency detuning effect on the output pulse dynamics in a pulse modulated actively mode-locked ytterbium doped fiber laser. The experimental study shows the existence of five different mode-locking states that mainly depend on the modulation frequency detuning, which are: (a) amplitude-even harmonic/fundamental mode-locking, (b) Q-switched harmonic/fundamental mode-locking, (c) sinusoidal wave modulation mode, (d) pulses bundle state, and (e) noise-like state. A detailed experimental characterization of the output pulses dynamics in each operating mode is presented.

  20. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  1. Successful management of a refractory case of postoperative herniorrhaphy pain with extended duration pulsed radiofrequency

    PubMed Central

    Thapa, D; Ahuja, V; Verma, P; Das, C

    2016-01-01

    Chronic postsurgical pain (CPSP) is a distressful condition following hernia surgery. A 25-year-old, 55 kg male patient presented with severe pain on the right side of the lower abdomen that radiated to the testicle and the inner side of the thigh. Patient was symptomatic since 5 months following inguinal herniorrhaphy surgery. The pain was not relieved with pharmacological and interventional nerve blocks. An ultrasound-guided ilioinguinal-iliohypogastric (II-IH) block with extended duration (42°C, four cycles of 120 s each) pulsed radiofrequency (PRF) and a diagnostic genital branch of genitofemoral nerve (GGFN) block provided pain relief. After 1-month, an extended duration PRF in GGFN resulted in complete resolution of symptoms. During a regular follow-up of 9 months, patient reported an improved quality-of-life. We believe the successful management of CPSP following hernia repair with single extended duration PRF of II-IH and GGFN has not been described in the literature. PMID:26955321

  2. The effect of pulse duration on laser-induced damage by 1053-nm light in potassium dihydrogen phosphate crystals

    SciTech Connect

    Cross, D A; Braunstein, M R; Carr, C W

    2006-11-27

    Laser induced damage in potassium dihydrogen phosphate (KDP) has previously been shown to depend significantly on pulse duration for 351-nm Gaussian pulses. In this work we studied the properties of damage initiated by 1053-nm temporally Gaussian pulses with 10ns and 3ns FWHM durations. Our results indicate that the number of damage sites induced by 1053-nm light scales with pulse duration ({tau}) as ({tau}{sub 1}/{tau}{sub 2}){sup 0.17} in contrast to the previously reported results for 351-nm light as ({tau}{sub 1}/{tau}{sub 2}){sup 0.35}. This indicates that damage site formation is significantly less probable at longer wavelengths for a given fluence.

  3. The critical parameters of the thermal explosion micro hot-spot model dependence on the pulse duration

    NASA Astrophysics Data System (ADS)

    Kalenskii, A. V.; Zvekov, A. A.; Galkina, E. V.

    2017-05-01

    The dependencies of critical laser initiation energy density of pentaerythritol tetranitrate (PETN) - aluminum nanoparticles, PETN - cobalt nanoparticles and lead azide - lead nanoparticles on pulse duration were calculated in terms of the refined micro hot-spot model. It was shown that the absorption efficiency of the laser irradiation taken into account makes the initiation criterion change. According to the calculation results, the criterion in the limit of short pulses is energy density matching the experimental data. If the neodymium pulses duration is less than 50 ns, the radius of the nanoparticles with highest temperature varies insignificantly. The expression for the critical hot-spot temperature dependence on the pulse duration was derived. The conclusion was made that the model refining with nanoparticles absorption efficiency dependence on their radius is sufficient for the “small particles’ paradox” solution.

  4. Comparative clinical trial of 2 carbon dioxide resurfacing lasers with varying pulse durations. 100 microseconds vs 1 millisecond.

    PubMed

    Duke, D; Khatri, K; Grevelink, J M; Anderson, R R

    1998-10-01

    To compare the clinical and histological effects of 2 carbon dioxide lasers with different pulse durations and to evaluate the effect of carbon dioxide laser pulse duration on postprocedure erythema, wound healing, and efficacy of wrinkle treatment. Prospective, randomized, comparative clinical trial. A university-affiliated hospital-based laser center. Thirty-five patients with facial wrinkles were enrolled in the study. Treatment sites included 15 perioral, 14 periorbital areas, and 6 full face. A 2-sided comparison was performed. One side of the study site was treated with the TruPulse laser (Tissue Technologies, Palomar Medical Products Inc, Lexington, Mass). The other side of the study site was treated with the UltraPulse 5000 laser (Coherent Medical Inc, Palo Alto, Calif). The 2 sides were treated to equivalent tissue effects rather than maintaining the number of passes. Photographs of the treatment areas at baseline, week 1, week 2, month 2, and month 6 were evaluated by a 5-member panel for degree of erythema, amount of edema, and percentage of wrinkle improvement. Silicon skin casts for profilometry measurements before and after the treatment were compared. To evaluate skin shrinkage, surface area before and after treatment of square tattoos on both cheeks of the full-face patients were computed using a digital imaging system. Histological sections before and after the procedure were analyzed. At week 1, 75% of the patients had more erythema on the UltraPulse than TruPulse sides. The difference in erythema (TruPulse less than UltraPulse) between the 2 treatment sides was clinically mild yet statistically significant for weeks 1 (P = .05) and 2 (P = .05). Although observed results favored the UltraPulse over the TruPulse, the difference in efficacy between the 2 lasers did not reach statistical significance. Compared with the longer pulse-duration carbon dioxide laser, the shorter pulse-duration carbon dioxide laser, used with higher energy and more passes

  5. All solid-state mode-locked flashlamp pumped Nd:YAG laser system with selectable pulse duration

    NASA Astrophysics Data System (ADS)

    Kubecek, Vaclav; Diels, Jean-Claude; Stintz, Andreas; Jelinkova, Helena; Dombrovsky, Andrej; Cech, Miroslav

    2005-04-01

    All solid state mode-locked flashlamp pumped Nd:YAG laser system with selectable pulse duration was developed based on the oscillator where a single semiconductor structure containing a multiple-quantum-well was used as a saturable absorber for mode-locking, and energy limiter for passive negative feedback. Single pulse selection from various parts of extended 200 ns long Q-switched pulse train enables the changing of pulse duration before entering into three stages of laser amplifiers. Using of additional acousto-optic mode-locker, stability enhancement of the output pulses was obtained and the amplitude fluctuations were reduced below 5%. The exploitation of the solid state saturable absorber and limiter integrated in the single element improved significantly the long term characteristics of the laser system which can be therefore used for various applications as a satellite laser ranging, spectroscopy, or medicine.

  6. Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium

    NASA Astrophysics Data System (ADS)

    Feizpour, Amir; Dmochowski, Greg; Steinberg, Aephraim M.

    2016-01-01

    Electromagnetically induced transparency (EIT) has been proposed as a way to greatly enhance cross-phase modulation, with the possibility of leading to few-photon-level optical nonlinearities [Schmidt and Imamoglu, Opt. Lett. 21, 1936 (1996), 10.1364/OL.21.001936]. This enhancement grows as the transparency window width, ΔEIT, is narrowed. Decreasing ΔEIT, however, has been shown to increase the response time of the nonlinear medium. This suggests that, for a given pulse duration, the nonlinearity would diminish once the window width became narrower than this pulse bandwidth. We show that this is not the case: the peak phase shift saturates but does not decrease. We show that in the regimes of most practical interest—narrow EIT windows perturbed by short signal pulses—the enhancement offered by EIT is not only in the magnitude of the nonlinear phase shift but also in its increased duration. That is, for the case of signal pulses much shorter (temporally) than the inverse EIT bandwidth, the narrow window serves to prolong the effect of the passing signal pulse, leading to an integrated phase shift that grows linearly with 1 /ΔEIT ; this continued growth of the integrated phase shift improves the detectability of the phase shift, in principle, without bound. For many purposes, it is this detectability which is of more interest than the absolute magnitude of the peak phase shift. We present analytical expressions based on a linear time-invariant model that accounts for the temporal behavior of the cross-phase modulation for several parameter ranges of interest. We conclude that in order to optimize the detectability of the EIT-based cross-phase shift, one should use the narrowest possible EIT window and a signal pulse that is as broadband as the excited-state linewidth and detuned by half a linewidth.

  7. Capacity of the Generalized Pulse-Position Modulation Channel

    NASA Technical Reports Server (NTRS)

    Hamkins, J.; Klimesh, M.; McElience, R.; Moision, B.

    2005-01-01

    We show the capacity of a generalized pulse-position modulation (PPM) channel, where the input vectors may be any set that allows a transitive group of coordinate permutations, is achieved by a uniform input distribution. We derive a simple expression in terms of the Kullback Leibler distance for the binary case, and the asymptote in the PPM order. We prove a sub-additivity result for the PPM channel and use it to show PPM capacity is monotonic in the order.

  8. Two Serial Data to Pulse Code Modulation System Interfaces

    NASA Technical Reports Server (NTRS)

    Hamory, Phil

    2006-01-01

    Two pulse code modulation (PCM) system interfaces for asynchronous serial data are described. One interface is for global positioning system (GPS) data on the NASA Dryden Flight Research Center (DFRC) F-15B (McDonnell Douglas Corporation, St. Louis, Missouri) airplane, tail number 836 (F-15B/836). The other is for flight control computer data on the duPont Aerospace (La Jolla, California) DP-1, a 53-percent scale model of the duPont Aerospace DP-2.

  9. Design of Optical Pulse Position Modulation (PPM) Translating Receiver

    SciTech Connect

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    M-ary pulse position modulation (M-ary PPM) signaling is a means of transmitting multiple bits per symbol in an intensity modulated/direct detection (IM/DD) system. PPM is used in applications with average power limitations. In optical communication systems, PPM becomes challenging to implement at gigabit rates and/or large M, since pulsed signaling requires higher electronic processing bandwidths than the fundamental transmission rate. they have thus been exploring techniques for PPM communications using optical processing. Previous work described a transmitter algorithm that directly translates a bit sequence of N digital bits to the optical pulse position m for any M = 2{sup N}. It has been considerably more difficult to define a similar receiver algorithm that translates the received optical pulse position directly back to a bit sequence with minimal electronic processing. Designs for specific Ms (e.g., 4-ary) have been shown and implemented, but are difficult to scale to larger M. In this work, they present for the first time a generalized PPM translating receiver that is applicable to all M and data rates.

  10. A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

    SciTech Connect

    W.A. REASS; J.D. DOSS; R.F. GRIBBLE

    2001-06-01

    This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.

  11. The influence of pre-melting in laser drilling with temporally modulated pulse

    NASA Astrophysics Data System (ADS)

    Duan, Wenqiang; Wang, Kedian; Dong, Xia; Mei, Xuesong; Wang, Wenjun; Fan, Zhengjie; Lv, Jing

    2016-05-01

    Laser drilling by temporally modulated pulse is a promising technique and has many advantages compared with normal pulse drilling. In this work, the effect of modulated pulse comprising pre-heating front and sharp trail was mainly studied. The function of the former was to pre-melt the radiated material, and the latter was to expel the liquid melt from the molten pool, thus to form a blind hole. While the trail subpulse was kept constant, the difference in the pre-heating subpulse parameter could cause a considerable influence on the hole quality and drilling efficiency. The depth and volume of the molten pool were proportional to the pre-heating energy, and inversely proportional to the pre-heating duration. With pre-heating subpulses of proper parameters, the sharp trail subpulse was very effective in expelling the melt liquid, leaving only a small quantity of melt to re-solidify as the recast layer, which was observably thinner compared with the holes drilled using the normal pulse mode. In the pre-melting process, the directional melt flow and heat conduction were found to be the reasons why the deep melting phenomenon had occurred.

  12. Arbitrary waveform modulated pulse EPR at 200 GHz

    NASA Astrophysics Data System (ADS)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 < 1 MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  13. Behavioral limits of auditory temporal resolution in the rat: amplitude modulation and duration discrimination.

    PubMed

    Kelly, Jack B; Cooke, James E; Gilbride, Patrick C; Mitchell, Craig; Zhang, Huiming

    2006-05-01

    Thresholds for detecting the presence of amplitude modulation in a noise carrier were determined for rats using conditioned avoidance procedures. There was a progressive increase in threshold with modulation rates between 5 Hz and 2 kHz. Further tests were conducted to determine difference thresholds for detecting an increase in modulation rate for standard rates of 10, 50, and 100 Hz. The size of the difference threshold increased progressively as the standard rate increased. In addition, thresholds for detecting an increase in the duration of a noise burst were determined for various standard durations. The difference thresholds were constant for values between 10 and 50 ms but increased progressively, with standard durations between 0.1 and 1.0 s.

  14. Resonant transfer of large momenta from finite-duration pulse sequences

    NASA Astrophysics Data System (ADS)

    Fekete, J.; Chai, S.; Gardiner, S. A.; Andersen, M. F.

    2017-03-01

    We experimentally investigate the atom optics kicked particle at quantum resonance using finite duration kicks. Even though the underlying process is quantum interference, it can be well described by an ɛ -pseudoclassical model. The ɛ -pseudoclassical model agrees well with our experiments for a wide range of parameters. We investigate the parameters yielding maximal momentum transfer to the atoms and find that this occurs in the regime where neither the short pulse approximation nor the Bragg condition is valid. Nonetheless, the momentum transferred to the atoms can be predicted using a simple scaling law, which provides a powerful tool for choosing optimal experimental parameters. We demonstrate this in a measurement of the Talbot time (from which h /M can be deduced), in which we coherently split atomic wave functions into superpositions of momentum states that differ by 200 photon recoils. Our work may provide a convenient way to implement large momentum difference beam splitters in atom interferometers.

  15. Development and performance of pulse-width-modulated static inverter and converter modules

    NASA Technical Reports Server (NTRS)

    Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.

    1971-01-01

    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.

  16. Materials processing by use of a Ti:Sapphire laser with automatically-adjustable pulse duration

    NASA Astrophysics Data System (ADS)

    Kamata, M.; Imahoko, T.; Ozono, K.; Obara, M.

    We have developed an automatic pulsewidth-adjustable femtosecond Ti:Sapphire laser system that can generate an output of 50 fs-1 ps in duration, and sub-mJ/pulse at a repetition rate of 1 kpps. The automatic pulse compressor enables one to control the pulsewidth in the range of 50 fs-1 ps by use of a personal computer (PC). The compressor can change the distance in-between and the tilt angle of the grating pairs by use of two stepping motors and two piezo-electric transducer(PZT) driven actuators, respectively. Both are controlled by a PC. Therefore, not only control of the pulsewidth, but also of the optical chirp becomes easy. By use of this femtosecond laser system, we fabricated a waveguide in fused quartz. The numerical aperture is chosen to 0.007 to loosely focus the femtosecond laser. The fabricated waveguides are well controllable by the incident laser pulsewidth. We also demonstrated the ablation processing of hydroxyapatite (Ca10(PO4)6(OH)2), which is a key component of human tooth and human bone for orthopedics and dentistry. With pulsewidth tunable output from 50 fs through 2 ps at 1 kpps, the chemical content of calcium and phosphorus is kept unchanged before and after 50-fs-2-ps laser ablation. We also demonstrated the precise ablation processing of human tooth enamel with 2 ps Ti:Sapphire laser.

  17. Sensitivity to pulse phase duration in cochlear implant listeners: Effects of stimulation mode

    PubMed Central

    Chatterjee, Monita; Kulkarni, Aditya M.

    2014-01-01

    The objective of this study was to investigate charge-integration at threshold by cochlear implant listeners using pulse train stimuli in different stimulation modes (monopolar, bipolar, tripolar). The results partially confirmed and extended the findings of previous studies conducted in animal models showing that charge-integration depends on the stimulation mode. The primary overall finding was that threshold vs pulse phase duration functions had steeper slopes in monopolar mode and shallower slopes in more spatially restricted modes. While the result was clear-cut in eight users of the Cochlear CorporationTM device, the findings with the six user of the Advanced BionicsTM device who participated were less consistent. It is likely that different stimulation modes excite different neuronal populations and/or sites of excitation on the same neuron (e.g., peripheral process vs central axon). These differences may influence not only charge integration but possibly also temporal dynamics at suprathreshold levels and with more speech-relevant stimuli. Given the present interest in focused stimulation modes, these results have implications for cochlear implant speech processor design and protocols used to map acoustic amplitude to electric stimulation parameters. PMID:25096116

  18. Double-pulse single-longitudinal-mode operation of injection-seeded laser using intracavity phase modulator

    NASA Astrophysics Data System (ADS)

    Zhang, Junxuan; Zhu, Xiaolei; Zang, Huaguo; Li, Shiguang; Ma, Xiuhua; Liu, Jiqiao; Chen, Weibiao

    2017-04-01

    A single-longitudinal-mode (SLM) double-pulse injection-seeded neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was established utilizing an RbTiOPO4 electro-optic crystal to modulate the optical path of the slave resonator for generating a resonance condition. The Q-switcher was fired twice during every pump period. This enabled the laser to emit a pair of SLM laser pulses with a time separation of 200 μs. Each pulse had a pulse energy of 13 mJ at 50-Hz repetition rate, pulse duration of 20±0.5 ns, and linewidth of 30±0.3 MHz (within 2 min). The beam quality factor of M2 was <1.22. A frequency jitter of 1.4 MHz was obtained within 2 min.

  19. Hybrid modulation driving power technology for pulsed laser fuze

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin; Zhang, He

    2016-10-01

    According to the requirement of the long range detection of the circumferential detection system of the laser fuze, a hybrid modulated pulsed laser driving power supplying for APD avalanche photodiode is designed. The working principle of the laser circumferential detection system is analyzed, and the APD is selected as the photoelectric detector according to the measurement equation of the circumferential detection system. According to the different kinds of APD requirements for high voltage power supply, the principle of boost converter is analyzed. By using PWM and PFM hybrid modulation type power supply technology, PWM modulation is applied in low rising voltage. When the voltage is required to achieve more than 100V, PFM mode boost is chosen. Simulation of the output voltages which are 85V and 200V of the two modes respectively is made. The PCB circuit board is processed to verify the experiment. The experimental results show that the hybrid modulation pulse laser drive power supply can meet the requirements of all kinds of APD power supply. The circuit board can be used in the detection of laser fuze with different target distance, and has wide application prospect.

  20. Duobinary pulse shaping for frequency chirp enabled complex modulation.

    PubMed

    Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William

    2016-09-01

    The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.

  1. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation

    NASA Astrophysics Data System (ADS)

    Ith, M.; Pratisto, H.; Altermatt, H. J.; Frenz, M.; Weber, H. P.

    1994-12-01

    The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.

  2. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit

    SciTech Connect

    Waldecker, Lutz Bertoni, Roman; Ernstorfer, Ralph

    2015-01-28

    We present the design and implementation of a highly compact femtosecond electron diffractometer working at electron energies up to 100 keV. We use a multi-body particle tracing code to simulate electron bunch propagation through the setup and to calculate pulse durations at the sample position. Our simulations show that electron bunches containing few thousands of electrons per bunch are only weakly broadened by space-charge effects and their pulse duration is thus close to the one of a single-electron wavepacket. With our compact setup, we can create electron bunches containing up to 5000 electrons with a pulse duration below 100 fs on the sample. We use the diffractometer to track the energy transfer from photoexcited electrons to the lattice in a thin film of titanium. This process takes place on the timescale of few-hundred femtoseconds and a fully equilibrated state is reached within 1 ps.

  3. Dependence the Integrated Energy of the Electromagnetic Response from Excitation Pulse Duration for Epoxy Samples With Sand Filler

    NASA Astrophysics Data System (ADS)

    Surzhikov, V. P.; Demikhova, A. A.

    2017-01-01

    Results of research of influence of the excitation pulse duration on the parameters of the electromagnetic response of epoxy samples with filler the quartz sand presented in the paper. The electric component of a response was registered by the capacitive sensors using a differential amplifier. Measurements were carried out at two frequencies of the master generator of 65 kHz and 74 kHz. The pulse duration was changing from 10 to 100 microseconds. The stepped sort of dependence of the integrated oscillations energy in the response from duration of the excitation pulse was discovered. The conclusion was made about the determining role of the normal oscillations in formation of such dependence.

  4. Nyquist 4-ary pulse amplitude modulation scheme based on electrical Nyquist pulse shaping and fiber Bragg grating filter

    NASA Astrophysics Data System (ADS)

    Liu, Na; Chen, Xue; Ju, Cheng; Zhang, Qi; Wang, Huitao

    2015-04-01

    Intensity modulation and direct detection signal are sensitive to power fading and nonlinear intersymbol interference (ISI) induced by modulator chirp, fiber dispersion, and square-law photo-detection. We propose and experimentally demonstrate a Nyquist 4-ary pulse amplitude modulation and direct detection scheme relying on pulse-shaping with an electrical filter and optical equalization with a vestigial-sideband (VSB) filter in the transmitter. The power fading could be eliminated by using the VSB filter. Compared with conventional 4-ary pulse amplitude modulation, the Nyquist signal has a stronger resistance to nonlinear ISI.

  5. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  6. Note: Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air

    SciTech Connect

    Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.; Lomaev, M. I.; Balzovsky, E. V.

    2012-08-15

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be {approx}25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach {approx}25 ps too.

  7. INTERACTION OF LASER RADIATION WITH MATTER: Effect of the pulse duration on graphitisation of diamond during laser ablation

    NASA Astrophysics Data System (ADS)

    Kononenko, Vitalii V.; Kononenko, Taras V.; Pimenov, S. M.; Sinyavskii, M. N.; Konov, Vitalii I.; Dausinger, F.

    2005-03-01

    Processes of graphitisation of laser-irradiated polycrystalline diamond surface exposed to multipulse irradiation are studied experimentally. The thickness of the laser-modified layer as a function of the laser-pulse duration ranging from 100 fs to 1.5 μs and the effect of the radiation wavelength on this thickness are studied. It is shown that the diamond graphitisation during multipulse laser ablation is a thermally stimulated process. The dependences of the diamond-ablation rates on the radiation energy density under the action of laser pulses of various durations are presented.

  8. Fractal Reference Signals in Pulse-Width Modulation

    NASA Technical Reports Server (NTRS)

    Lurie, Boris; Lurie, Helen

    2005-01-01

    A report proposes the use of waveforms having fractal shapes reminiscent of sawteeth (in contradistinction to conventional regular sawtooth waveforms) as reference signals for pulse-width modulation in control systems for thrusters of spacecraft flying in formation. Fractal reference signals may also be attractive in some terrestrial control systems - especially those in which pulse-width modulation is used for precise control of electric motors. The report asserts that the use of fractal reference signals would enable the synchronous control of several variables of a spacecraft formation, such that consumption of propellant would be minimized, intervals between thruster firings would be long (as preferred for performing scientific observations), and delays in controlling large-thrust maneuvers for retargeting would be minimized. The report further asserts that whereas different controllers would be needed for different modes of operation if conventional pulsewidth modulation were used, the use of fractal reference signals would enable the same controller to function nearly optimally in all regimes of operation, so that only this one controller would be needed.

  9. Optical pulse-burst position modulation for antenna beam forming

    NASA Astrophysics Data System (ADS)

    Shemer, Amir; Zalevsky, Zeev; Zach, Shlomo

    2009-04-01

    We present a realization of an optically controlled pulse-burst position modulator to be used for a radio-frequency photonic circuit aiming to produce beam forming for a Radar-transmitting antenna. The configuration uses a set of fiber ring resonators that contain erbium-doped fiber amplifiers. By controlling the pumping in each loop, the gain of the doped fibers is changed, which results with a change in the resonators" finesses. In the end of each optical path, the optical signal is sampled and converted to an electronic signal while an electronic subtraction is performed between the outputs of the two resonators. Because each resonator has different and controlled finesse, the subtraction results in an output pulse burst with varied position.

  10. Optical modulation of astrocyte network using ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Yoon, Jonghee; Ku, Taeyun; Chong, Kyuha; Ryu, Seung-Wook; Choi, Chulhee

    2012-03-01

    Astrocyte, the most abundant cell type in the central nervous system, has been one of major topics in neuroscience. Even though many tools have been developed for the analysis of astrocyte function, there has been no adequate tool that can modulates astrocyte network without pharmaceutical or genetic interventions. Here we found that ultrashort pulsed laser stimulation can induce label-free activation of astrocytes as well as apoptotic-like cell death in a dose-dependent manner. Upon irradiation with high intensity pulsed lasers, the irradiated cells with short exposure time showed very rapid mitochondria fragmentation, membrane blebbing and cytoskeletal retraction. We applied this technique to investigate in vivo function of astrocyte network in the CNS: in the aspect of neurovascular coupling and blood-brain barrier. We propose that this noninvasive technique can be widely applied for in vivo study of complex cellular network.

  11. Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations

    SciTech Connect

    Tamura, Ayaka Matsumoto, Ayumu; Nishi, Naoya; Sakka, Tetsuo; Fukami, Kazuhiro

    2015-05-07

    We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of the short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.

  12. Dual-Pulse Pulse Position Modulation (DPPM) for Deep-Space Optical Communications: Performance and Practicality Analysis

    NASA Technical Reports Server (NTRS)

    Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel

    2012-01-01

    Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.

  13. Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: An experimental study

    PubMed Central

    Anbarasan, Selvam; Baraneedharan, Ulaganathan; Paul, Solomon FD; Kaur, Harpreet; Rangaswami, Subramoniam; Bhaskar, Emmanuel

    2016-01-01

    Background: Pulsed electromagnetic field (PEMF) is used to treat bone and joint disorders for over 30 years. Recent studies demonstrate a significant effect of PEMF on bone and cartilage proliferation, differentiation, synthesis of extracellular matrix (ECM) and production of growth factors. The aim of this study is to assess if PEMF of low frequency, ultralow field strength and short time exposure have beneficial effects on in-vitro cultured human chondrocytes. Materials and Methods: Primary human chondrocytes cultures were established using articular cartilage obtained from knee joint during joint replacement surgery. Post characterization, the cells were exposed to PEMF at frequencies ranging from 0.1 to 10 Hz and field intensities ranging from 0.65 to 1.95 μT for 60 min/day for 3 consecutive days to analyze the viability, ECM component synthesis, proliferation and morphology related changes post exposure. Association between exposure doses and cellular effects were analyzed with paired't’ test. Results: In-vitro PEMF exposure of 0.1 Hz frequency, 1.95 μT and duration of 60 min/day for 3 consecutive days produced the most favorable response on chondrocytes viability (P < 0.001), ECM component production (P < 0.001) and multiplication. Exposure of identical chondrocyte cultures to PEMFs of 0.65 μT field intensity at 1 Hz frequency resulted in less significant response. Exposure to 1.3 μT PEMFs at 10 Hz frequency does not show any significant effects in different analytical parameters. Conclusions: Short duration PEMF exposure may represent a new therapy for patients with Osteoarthritis (OA). PMID:26955182

  14. Current mode pulse width modulation/pulse position modulation based on phase lock loop

    NASA Astrophysics Data System (ADS)

    Wisartpong, Pichet; Silaphan, Vorapong; Kurutach, Sunee; Wardkein, Paramote

    2017-05-01

    In this paper, the fully integrated CMOS current mode PLL with current input injects at the place of input or output of the loop filter without summing amplifier circuit. It functions as PPM and PWM circuit is present. In addition, its frequency response is an analysis which electronic tuning BPF and LPF are obtained. The proposed circuit has been designed with 0.18 μm CMOS technology. The simulation results of this circuit can be operated at 2.5 V supply voltage, at center frequency 100 MHz. The linear range of input current can be adjusted from 43 μA to 109 μA, and the corresponding duty cycle of pulse width output is from 93% to 16% and the normalized pulse position is from 0.93 to 0.16. The power dissipation of this circuit is 4.68 mW with the total chip area is 28 μm × 60 μm.

  15. Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms.

    PubMed

    Dorrer, Christophe; Kang, Inuk

    2002-08-01

    We demonstrate a simple technique for simultaneous and complete characterization of the optical pulses and temporal modulators commonly used in telecommunication. The electric field of a pulse and the response of a modulator are obtained from the analysis of the two-dimensional spectrogram of the pulse gated by the modulator. The measurement sensitivity is greatly improved compared with the conventional nonlinear optical techniques. Trains of picosecond pulses as weak as 10(-17)J are accurately characterized with an electroabsorption modulator as the temporal gate. The time-resolved transmission and phase of the modulator are also presented.

  16. Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Atwood, Bryan; Su, Yu; Limkrailassiri, Kevin; Nettleton, John E.; Goldberg, Lew; Cole, Brian J.; Hough, Nathaniel

    2015-02-01

    A highly compact and low power consuming Q-switch module was developed based on a fast single-axis MEMS mirror, for use in eye-safe battery-powered laser range finders The module's 1.6mm x 1.6mm mirror has <99% reflectance at 1535nm wavelength and can achieve mechanical angle slew rates of over 500 rad/sec when switching the Er/Yb:Glass lasing cavity from pumping to lasing state. The design targeted higher efficiency, smaller size, and lower cost than the traditional Electro-Optical Q-Switch. Because pulse-on-demand capability is required, resonant mirrors cannot be used to achieve the needed performance. Instead, a fast point-to-point analog single-axis tilt actuator was designed with a custom-coated high reflectance (HR) mirror to withstand the high intra-cavity laser fluence levels. The mirror is bonded on top of the MEMS actuator in final assembly. A compact MEMS controller was further implemented with the capability of autonomous on-demand operation based on user-provided digital trigger. The controller is designed to receive an external 3V power supply and a digital trigger and it consumes ~90mW during the short switching cycle and ~10mW in standby mode. Module prototypes were tested in a laser cavity and demonstrated high quality laser pulses with duration of ~20ns and energy of over 3mJ.

  17. Development of a 3 tesla - 10 Hz pulsed magnet-modulator system

    SciTech Connect

    Krausse, G.J.; Butterfield, K.B.

    1984-01-01

    In order to support the experimental work done at the Los Alamos Meson Physics Facility new instrumentation and data collection systems of advanced design are developed on a regular basis. Within the instrumentation system for an experiment at LAMPF, The Photo-Excitation of the H/sup -/ Ion Resonances, there exists a need for a pulsed air-core electromagnet and modulator system. The magnet must be capable of producing a field strength of 0 to 3T in a volume of 3.5 cm/sup 3/. In addition it must be radiation resistant, have a uniform field, operate in a high vacuum with little or no outgassing, and the physical layout of the magnet must provide minimal azimuthal obstruction to both the ion and laser beams. The modulator must be capable of producing up to a 15KA pulse with duration of two ..mu..s at a maximum repetition rate of 10 Hz. Modulator layout must be extremely reliable so that data collection time is not lost during the experiment. This paper describes in detail the development of the system.

  18. Ignition of pressed granular explosives due to short-duration pulse loading

    NASA Astrophysics Data System (ADS)

    Miller, Christopher; Kim, Seokpum; Zhou, Min

    2015-06-01

    We report the results of micromechanical simulations of a series of experiments on the ignition of pressed granular HMX under loading due to impact by thin flyers. The conditions analyzed concern loading pulses on the order of 50 nanoseconds to 1 microsecond and impact velocities on the order of 200-1600 m/s. The materials studied have average grain sizes of 50-200 microns. The model provides phenomenological account of defects in the forms of microcracks, voids, interfacial debonding, and constituent property variations and material attributes including constituent shock and non-shock responses, fracture, internal contact, frictional heating, and heat conduction. The analysis focuses on the development of hotspots under different material settings and loading conditions. In particular, a hotspot-based ignition criterion developed recently is employed to determine the probability of ignition of each material design under combinations of impact velocity and load duration. The results of parametric studies are compared with experimental observations reported in the literature. AFRL

  19. Plasma processes in water under effect of short duration pulse discharges

    NASA Astrophysics Data System (ADS)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  20. Optimization of Pulsed-DEER Measurements for Gd-Based Labels: Choice of Operational Frequencies, Pulse Durations and Positions, and Temperature

    SciTech Connect

    Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.; Kaminker, I.; Goldfarb, D.; Walter, E. D.; Song, Y.; Meade, T. J.

    2012-12-29

    In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimal temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.

  1. Pulse-duration memory effect in NbSe3 and comparison with numerical simulations of phase organization

    NASA Astrophysics Data System (ADS)

    Jones, T. C.; Wu, Xinlei; Simpson, C. R., Jr.; Clayhold, J. A.; McCarten, J. P.

    2000-04-01

    The oscillatory response of the 59 K charge density wave (CDW) in NbSe3 to a sequence of current pulses was investigated as a function of pulse height and pulse width. Of the 16 samples investigated, seven clearly exhibited the learned behavior commonly referred to as the pulse-duration memory effect (PDME). These seven samples, after training, learned the length of the pulse, and always finished the pulse at a minimum in the voltage oscillation (maximum CDW velocity). Contrary to previous reports, we observe the PDME for pulse heights much greater than threshold. We find that as the number of metastable states accessible to the CDW during the low portion of the drive pulse is decreased, the PDME degrades. We summarize the qualitative differences between the theory of phase organization and the observed experimental data. To facilitate this comparison we have performed numerical simulations of the Fukayama-Lee-Rice (FLR) model in both the weak and strong pinning limits in an attempt to reproduce the learned response. We find no evidence for phase organization (no learning) in the weak pinning limit; also the wave forms generated in the strong pinning limit differ qualitatively from the experimental data. This comparative study suggests that the theoretical description of the PDME requires further investigation, and the importance of amplitude collapse and boundary conditions demand future examination.

  2. Compact direct space-to-time pulse shaping with a phase-only spatial light modulator.

    PubMed

    Mansuryan, T; Kalashyan, M; Lhermite, J; Suran, E; Kermene, V; Barthelemy, A; Louradour, F

    2011-05-01

    A very compact and innovative pulse shaper is proposed and demonstrated. The standard architecture for pulse shaping that is composed of diffraction gratings associated with an amplitude-phase spatial light modulator (SLM) is replaced by a single phase-only SLM. It acts as a pulse stretcher and as an amplitude and phase modulator at the same time. Preliminary experiments demonstrate the accurate control of amplitude and phase of shaped pulses.

  3. Dependence of the molecular iodine B-state predissociation induced by a femtosecond laser pulse on pulse phase modulation

    SciTech Connect

    Kostyukevich, Yu I; Umanskii, Stanislav Ya

    2011-12-31

    The processes of pumping and laser-induced predissociation of B-states of the I{sub 2} molecule under the action of femtosecond laser pulses are considered theoretically. An analytical formula is derived, which describes the dependence of the predissociation on such parameters of femtosecond pulses as spectral chirp, spectral width and delay time between pulses. The formula is used to calculate numerically the dependence of the predissociation yield on the parameters of the phase modulation of the pump pulse and coupling pulse.

  4. Toxicity of magnesium pulses to tropical freshwater species and the development of a duration-based water quality guideline.

    PubMed

    Hogan, Alicia C; Trenfield, Melanie A; Harford, Andrew J; van Dam, Rick A

    2013-09-01

    Six freshwater species (Chlorella sp., Lemna aequinoctialis, Amerianna cumingi, Hydra viridissima, Moinodaphnia macleayi, and Mogurnda mogurnda) were exposed to 4-h, 8-h, and 24-h Mg pulses in natural creek water. Magnesium toxicity to all species increased with exposure duration; however, the extent of increase and the nature of the relationship differed greatly between species. Based on median inhibitory concentrations (IC50s), and compared with continuous exposure data from a previous study, the increase in toxicity with increasing exposure duration from 4 h to continuous (72-144 h) ranged from approximately 2-fold for Chlorella sp. and H. viridissima to greater than 40-fold for A. cumingi. Moreover, the form of the relationship between Mg toxicity and duration ranged from linear or near-linear to exponential for different species. The life-stage at which M. macleayi was exposed was important, with cladocerans pulsed at the onset of reproductive maturity being approximately 4 times more sensitive (based on IC50s) than younger than 6-h-old neonates. Species sensitivity distributions were constructed for the 4-h, 8-h, and 24-h pulse durations, from which 99% species protection guideline values (95% confidence limits [CLs]) of 94 (6.4-1360) mg/L, 14 (0.5-384) mg/L, and 8.0 (0.5-144) mg/L Mg, respectively, were derived. These values were plotted against exposure duration (h) and polynomial interpolation used to derive a guideline value for any pulse duration within the range assessed.

  5. A randomized side-by-side study comparing alexandrite laser at different pulse durations for port wine stains.

    PubMed

    Carlsen, Berit C; Wenande, Emily; Erlendsson, Andres M; Faurschou, Annesofie; Dierickx, Christine; Haedersdal, Merete

    2017-01-01

    Pulsed dye laser (PDL) represents the gold-standard treatment for port wine stains (PWS). However, approximately 20% of patients are poor responders and yield unsatisfactory end-results. The Alexandrite (Alex) laser may be a therapeutic alternative for selected PWS subgroups, but optimal laser parameters are not known. The aim of this study was to assess clinical PWS clearance and safety of Alex laser at a range of pulse durations. Sixteen individuals (14 previously PDL-treated) with deep red (n = 4), purple macular (n = 5) and purple hypertrophic (n = 7) PWS were included. Four side-by-side test areas were marked within each lesion. Three test areas were randomized to Alex laser at pulse durations of 3, 5, or 10 ms (8 mm spot, DCD 60/40), while the fourth was untreated. The lowest effective fluence to create purpura within the entire test spot was titrated and applied to intervention areas. Standardized clinical photographs were taken prior to, immediately after laser exposure and at 6-8 weeks follow up. Clinical PWS clearance and laser-related side effects were assessed using clinical photos. Alex laser at 3, 5, and 10 ms pulse durations demonstrated significant clearance compared to untreated controls (P < 0.001). Three milli second pulse duration exhibited improved clearance versus 5 ms (P = 0.016) and 10 ms (P = 0.004), while no difference between five and 10 ms was shown (P = 0.063). Though not significant, good responders (>50% clearance) were more likely to have purple hypertrophic PWS (5/7) compared to purple macular (2/5) and deep red lesions (1/4). Eight laser-exposed test areas (17%) developed hypopigmented atrophic scarring. Side effects tended to be more frequently observed with 5 ms (n = 4) and 10 ms (n = 3) versus 3 ms pulse duration (n = 1). Correspondingly, 3 ms was associated with a superior (n = 6) or comparable (n = 10) overall cosmetic appearance for all individuals. Alex

  6. Laser pulse duration dependence of blister formation on back-radiated Ti thin films for BB-LIFT

    NASA Astrophysics Data System (ADS)

    Goodfriend, N. T.; Starinskiy, S. V.; Nerushev, O. A.; Bulgakova, N. M.; Bulgakov, A. V.; Campbell, E. E. B.

    2016-03-01

    The influence of the laser pulse duration on the mechanism of blister formation in the particle transfer technique, blister-based laser-induced forward transfer, was investigated. Pulses from a fs Ti:Sapphire laser (120 fs, 800 nm) and from a ns Nd:YAG laser (7 ns, 532 nm) were used to directly compare blister formation on thin titanium films of ca. 300 nm thickness, deposited on glass. The different blister morphologies were compared and contrasted by using optical microscopy and atomic force microscopy. The results provide evidence for different blister formation mechanisms: for fs pulses the mechanism is predominantly ablation at the metal-glass interface accompanied by confined plasma expansion and deformation of the remaining metal film; for ns pulses it is heating accompanied by thermal expansion of the metal film.

  7. Microresurfacing using the variable-pulse erbium:YAG laser: a comparison of the 0.5- and 4-ms pulse durations.

    PubMed

    Christian, Mary M

    2003-06-01

    Laser resurfacing has become less popular because of its long recovery time, significant discomfort, and potential risks. Microsurfacing employs the use of single-pass erbium:YAG (Er:YAG) "mini peels," which may be performed serially. The purpose of this study was to evaluate the efficacy and patient acceptance of microresurfacing Er:YAG peels in treating facial photodamage. The variable-pulse Er:YAG system was used and was allowed a comparison of the 0.5- and 4-ms pulse widths. Six female patients underwent eight microresurfacing peels in a split-face fashion using the 0.5- and 4.0-ms pulse durations of a variable-pulse Er:YAG laser. Patients returned at postoperative Days 3 to 4 and 7 for clinical evaluation and Mexameter measurements. There were no significant differences in healing or postoperative erythema between the 0.5- and 4-ms pulse durations on postoperative Day 7. The average time to reepithelialization was 3.6 days. In a 1-year postoperative interview, four of six patients said that they would undergo the peel again periodically, and five of six stated they had maintained some level of improvement. Microresurfacing is an effective and well-tolerated procedure. Benefits include its tolerability under topical anesthesia, limited down time, and high patient satisfaction.

  8. Working memory distortions of duration perception are modulated by attentional tags.

    PubMed

    Pan, Yi; Hou, Xiu

    2016-03-01

    Recent research has shown that the contents of working memory can alter our perceptual experiences of visual matching stimuli. However, it is possible that different kinds of working memory representations may distort visual perception in different ways. In the present study, we associated working memory representations with different attentional tags and then examined their effects on perceived duration. The results showed that working memory representations prolonged apparent duration when they were tagged as a target and shortened perceived duration when they were tagged as a distractor. This is the first demonstration that attentional tags can modulate working memory effects on perceptual experience. We conclude that the influences of working memory on visual perception are determined not only by what information to be held in memory, but also by how the information is represented in memory.

  9. Positive symptoms and duration of illness predict functional laterality and attention modulation in schizophrenia.

    PubMed

    Løberg, E-M; Jørgensen, H A; Green, M F; Rund, B R; Lund, A; Diseth, A; Oie, M; Hugdahl, K

    2006-04-01

    Dichotic listening (DL) performance in schizophrenia, reflecting hemispheric asymmetry and the functional integrity of the left temporal lobe, can vary with clinical characteristics. Previous studies have not taken the co-linearity of clinical variables into account. The aim of the present study was to evaluate the roles of positive symptoms and duration of illness in DL through Structural Equation Modeling (SEM), thus allowing for complex relationships between the variables. We pooled patients from four previous DL studies to create a heterogeneous group of 129 schizophrenic patients, all tested with a consonant-vowel syllables DL procedure that included attentional instructions. A model where positive symptoms predicted a laterality component and duration of illness predicted an attention component in DL was confirmed. Positive symptoms predicted reduced functional laterality, suggesting involvement of left temporal lobe language processing. Duration of illness predicted impaired attention modulation, possibly reflecting the involvement of frontotemporal networks.

  10. Nanostructuring of sapphire using time-modulated nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.

    2017-02-01

    The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.

  11. Effects of duration of electric pulse on in vitro development of cloned cat embryos with human artificial chromosome vector.

    PubMed

    Do, Ltk; Wittayarat, M; Terazono, T; Sato, Y; Taniguchi, M; Tanihara, F; Takemoto, T; Kazuki, Y; Kazuki, K; Oshimura, M; Otoi, T

    2016-12-01

    The current applications for cat cloning include production of models for the study of human and animal diseases. This study was conducted to investigate the optimal fusion protocol on in vitro development of transgenic cloned cat embryos by comparing duration of electric pulse. Cat fibroblast cells containing a human artificial chromosome (HAC) vector were used as genetically modified nuclear donor cells. Couplets were fused and activated simultaneously with a single DC pulse of 3.0 kV/cm for either 30 or 60 μs. Low rates of fusion and embryo development to the blastocyst stage were observed in the reconstructed HAC-transchromosomic embryos, when the duration of fusion was prolonged to 60 μs. In contrast, the prolongation of electric pulse duration improved the embryo development and quality in the reconstructed control embryos without HAC vector. Our results suggested that the optimal parameters of electric pulses for fusion in cat somatic cell nuclear transfer vary among the types used for donor cells. © 2016 Blackwell Verlag GmbH.

  12. Copper vapour laser with an efficient semiconductor pump generator having comparable pump pulse and output pulse durations

    SciTech Connect

    Yurkin, A A

    2016-03-31

    We report the results of experimental studies of a copper vapour laser with a semiconductor pump generator capable of forming virtually optimal pump pulses with a current rise steepness of about 40 A ns{sup -1} in a KULON LT-1.5CU active element. To maintain the operating temperature of the active element's channel, an additional heating pulsed oscillator is used. High efficiency of the pump generator is demonstrated. (lasers)

  13. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging.

    PubMed

    Ben Neriah, Asaf; Paster, Amir

    2017-09-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging.

    PubMed

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  16. Effect of pulse duration on the acoustic frequency emissions during the laser-induced breakdown of atmospheric air.

    PubMed

    Manikanta, E; Vinoth Kumar, L; Venkateshwarlu, P; Leela, Ch; Kiran, P Prem

    2016-01-20

    Acoustic shock waves (ASWs) in the frequency range of 30-120 kHz generated during laser-induced breakdown (LIB) of ambient air using 7 ns and 30 ps pulse durations are studied. The specific frequency range and peak amplitudes are observed to be different for nanosecond (ns) and picosecond (ps) LIB. The ASW frequencies for ps-LIB lie between 90 and 120 kHz with one dominant peak, whereas for ns-LIB, two dominant peaks with frequencies in the 30-70 kHz and 80-120 kHz range are observed. These frequencies are observed to be laser pulse intensity dependent. With increasing energy of ns laser pulses, acoustic frequencies move toward the audible frequency range. The variation in the acoustic parameters, such as peak-to-peak pressures, signal energy, frequency and acoustic pulse widths as a function of laser energy, for two different pulse durations are presented in detail and compared. The acoustic emissions are observed to be higher for ns-LIB than ps-LIB, indicating higher conversion efficiency of optical energy into mechanical energy.

  17. Porcine skin visible lesion thresholds for near-infrared lasers including modeling at two pulse durations and spot sizes.

    PubMed

    Cain, C P; Polhamus, G D; Roach, W P; Stolarski, D J; Schuster, K J; Stockton, K L; Rockwell, B A; Chen, Bo; Welch, A J

    2006-01-01

    With the advent of such systems as the airborne laser and advanced tactical laser, high-energy lasers that use 1315-nm wavelengths in the near-infrared band will soon present a new laser safety challenge to armed forces and civilian populations. Experiments in nonhuman primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular, and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser safety standards have traditionally been based on experimental data, and there is scant data for this wavelength. We are reporting minimum visible lesion (MVL) threshold measurements using a porcine skin model for two different pulse durations and spot sizes for this wavelength. We also compare our measurements to results from our model based on the heat transfer equation and rate process equation, together with actual temperature measurements on the skin surface using a high-speed infrared camera. Our MVL-ED50 thresholds for long pulses (350 micros) at 24-h postexposure are measured to be 99 and 83 J cm(-2) for spot sizes of 0.7 and 1.3 mm diam, respectively. Q-switched laser pulses of 50 ns have a lower threshold of 11 J cm(-2) for a 5-mm-diam top-hat laser pulse.

  18. Porcine skin visible lesion thresholds for near-infrared lasers including modeling at two pulse durations and spot sizes

    NASA Astrophysics Data System (ADS)

    Cain, Clarence P.; Polhamus, Garrett D.; Roach, William P.; Stolarski, David J.; Schuster, Kurt J.; Stockton, Kevin; Rockwell, Benjamin A.; Chen, Bo; Welch, Ashley J.

    2006-07-01

    With the advent of such systems as the airborne laser and advanced tactical laser, high-energy lasers that use 1315-nm wavelengths in the near-infrared band will soon present a new laser safety challenge to armed forces and civilian populations. Experiments in nonhuman primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular, and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser safety standards have traditionally been based on experimental data, and there is scant data for this wavelength. We are reporting minimum visible lesion (MVL) threshold measurements using a porcine skin model for two different pulse durations and spot sizes for this wavelength. We also compare our measurements to results from our model based on the heat transfer equation and rate process equation, together with actual temperature measurements on the skin surface using a high-speed infrared camera. Our MVL-ED50 thresholds for long pulses (350 µs) at 24-h postexposure are measured to be 99 and 83 Jcm-2 for spot sizes of 0.7 and 1.3 mm diam, respectively. Q-switched laser pulses of 50 ns have a lower threshold of 11 Jcm-2 for a 5-mm-diam top-hat laser pulse.

  19. Influences of impedance matching network on pulse-modulated radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Xu, K.; Sun, B.; Ding, Z. F.

    2012-08-15

    Pulse-modulated RF atmospheric pressure glow discharges (APDGs) were investigated in recent years to reduce the thermal accumulation and extend the operation region of the stable alpha glow mode. Different pulse-modulated voltage and current waveforms were acquired in previous experiments, but no attention was paid to the interpretation. We investigated this issue and associated phenomenon via positive and negative feedback effects derived from varying the series capacitor in the inversely L-shaped matching network used in our pulse-modulated RF APGD source. The evolutions of pulse-modulated RF waveforms were found to be associated with the feedback region and the pulsed plasma absorbed RF power. In the positive feedback region, pulse-modulated RF APGDs are relatively stable. In the negative feedback region, wide spikes as well as undershoots occur in RF voltage and current waveforms and the plasma absorbed RF power. In case of a high RF power discharge with a low modulation frequency, the pulse-modulated RF APGD is extinguished and re-ignited due to the enhanced undershoot during the initial pulse phase. The pulse-modulated RF APGD can transit from positive to negative feedback region in a range of series capacitance. Experimental results are discussed by the aid of equivalent circuit, negative and positive feedback effects.

  20. Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61fs pulse duration.

    PubMed

    Tian, Wenlong; Wang, Zhaohua; Wei, Long; Peng, Yingnan; Zhang, Jinwei; Zhu, Zheng; Zhu, Jiangfeng; Han, Hainian; Jia, Yulei; Zheng, Lihe; Xu, Jun; Wei, Zhiyi

    2014-08-11

    A stable diode pumped Kerr-lens mode-locked (KLM) Yb:LuYSiO5 (Yb:LYSO) laser of generating 61 fs pulses at a central wavelength of 1055.4 nm is experimentally demonstrated. This is, to the best of our knowledge, the first demonstration of femtosecond KLM operation in Yb:LYSO laser, and it is believed that 61 fs is the shortest pulse duration ever produced from an Yb-doped orthosilicate laser. The average output power of the mode-locked laser is 40 mW and the repetition rate is 113 MHz.

  1. Shuttle extravehicular activity signal processor pulse amplitude modulation decommutator

    NASA Technical Reports Server (NTRS)

    Noble, D. E.; Conrad, W. M.

    1974-01-01

    To provide data with long-term stability and accuracy, the pulse amplitude modulation (PAM) decommutator was synchronized to the PAM-return to zero wavetrain, and each channel was sampled with a common sample and hold circuit and digitized sequentially. The digital value of each channel was then scaled by the digital value of the calibration channels. The corrected digital value of each channel was stored for one complete frame and then transferred to the multiplexer-demultiplexer at a high rate in one block of serial digital data. A test model was built to demonstrate this design approach taken for the PAM decom and performance data was provided. The accuracies obtained with various signal to noise ratios are shown.

  2. Discrete pulse modulation strategies for high-frequency inverter systems

    SciTech Connect

    Venkataramanan, G. . Dept. of Electrical Engineering); Divan, D.M. . Dept. of Electrical and Computer Engineering); Jahns, T.M. )

    1993-07-01

    High-performance high-frequency inverter systems for UPS applications represent a demanding application that cannot be easily realized using conventional hard-switched PWM inverter topologies. Adoption of typical soft-switched inverters such as the resonant dc link inverter require the use of discrete pulse modulation strategies. New controller structures are necessary to cope with stringent voltage regulation and distortion constraints in the presence of unbalanced and nonlinear loads. This paper presents a controller that utilizes load current feed-forward strategy with a cost function current regulator to achieve excellent transient performance characteristics. Voltage regulation is ensured using a synchronous frame regulator. Detailed simulation and experimental results verifying the concepts are presented. Although this paper focuses on soft-switching inverters, the control concepts can be applied to conventional hard-switching inverters as well.

  3. Discrete pulse modulation strategies for high-frequency inverter systems

    NASA Astrophysics Data System (ADS)

    Venkataramanan, Giri; Divan, Deepakraj M.; Jahns, Thomas M.

    1993-07-01

    High-performance, high-frequency inverter systems for UPS (uninterruptible power system) applications cannot be easily realized using conventional hard-switched PWM inverter topologies. Adoption of typical soft-switched inverters such as the resonant dc link inverter require the use of discrete pulse modulation strategies. New controller structures are necessary to cope with stringent voltage regulation and distortion constraints in the presence of unbalanced and nonlinear loads. A controller that utilizes a load current feedforward strategy with a cost function current regulator to achieve excellent transient performance characteristics is presented. Voltage regulation is ensured using a synchronous frame regulator. Detailed simulation and experimental results verifying the concepts are presented. Although this work focuses on soft-switching inverters, the control concepts can be applied to conventional hard-switching inverters as well.

  4. Picosecond pulses of variable duration from a high-power passively mode-locked Nd:YVO(4) laser free of spatial hole burning.

    PubMed

    Nadeau, Marie-Christine; Petit, Stéphane; Balcou, Philippe; Czarny, Romain; Montant, Sébastien; Simon-Boisson, Christophe

    2010-05-15

    We report on a high-power passively mode-locked TEM(00)Nd:YVO(4) oscillator, 888 nm diode-pumped, with pulse durations adjustable between 46 ps and 12 ps. The duration tunability was obtained by varying the output coupler (OC) transmission while avoiding resorting to spatial hole burning (SHB) for pulse shortening. At a repetition rate of 91 MHz and for an output power ranging from 15 Wto45 W, we produced SHB-free 12-ps-to32-ps-long pulses. Within this range of power, these are the shortest pulse durations obtained directly from Nd:YVO(4) oscillators.

  5. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband

    DOEpatents

    Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA

    2012-01-24

    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  6. Lidar-radar velocimetry using a pulse-to-pulse coherent rf-modulated Q-switched laser.

    PubMed

    Vallet, M; Barreaux, J; Romanelli, M; Pillet, G; Thévenin, J; Wang, L; Brunel, M

    2013-08-01

    An rf-modulated pulse train from a passively Q-switched Nd:YAG laser has been generated using an extra-cavity acousto-optic modulator. The rf modulation reproduces the spectral quality of the local oscillator. It leads to a high pulse-to-pulse phase coherence, i.e., phase memory, over thousands of pulses. The potentialities of this transmitter for lidar-radar are demonstrated by performing Doppler velocimetry on indoor moving targets. The experimental results are in good agreement with a model based on elementary signal processing theory. In particular, we show experimentally and theoretically that lidar-radar is a promising technique that allows discrimination between translation and rotation movements. Being independent of the laser internal dynamics, this scheme can be applied to any Q-switched laser.

  7. Timing and duration of the Melt-Water Pulse 1A

    NASA Astrophysics Data System (ADS)

    Deschamps, P.; Durand, N.; Bard, E. G.; Hamelin, B.; Camoin, G.; Thomas, A. L.; Henderson, G. M.; Okuno, J.; Yokoyama, Y.

    2011-12-01

    Studying past sea levels provides invualuable information to further our understanding of ice-sheets' response to climate forcing. So far, the most complete and accurate sea-level record that encompassed the period between the Last Glacial Maximum and the present day is based on cores drilled offshore the Barbados coral reef. This record suggests a non-monotonous sea-level rise punctuated by dramatic accelerations, the so-called Melt Water Pulse events, that correspond to massive inputs of continental ice. The most extreme of these events, the MWP1-A, initially identified in the coral-based sea level record from the Barbados island, suggests a sea-level rise of ~20 meters between 14.1 and 13.6 ka. However, this event remains enigmatic and controversial. The temporal relationship between the MWP1-A and the abrupt climatic events that punctuated the last deglaciation is a subject of controversial debates. Several records are consistent with its occurrence, but no broad agreement emerges about its timing. Finally, large uncertainties surrounding the amplitude and timing of this Melt-Water Pulse 1A have raised doubts about the ice source responsible for such a step in sea-level rise and have questioned its temporal and causal relationships with the Bølling - Older Dryas - Allerød alternance, a major climatic oscillation during the last deglaciation. Consequently, it remains a key issue to fully confirm the existence, timing and amplitude of the MWP-1A by a precise coral reef record. The recent IODP Expedition 310 Tahiti Sea Level offers a unique opportunity to fully confirm the existence, timing and amplitude of the MWP-1A by a precise coral reef record. U-Th ages obtained on shallow to deeper corals collected during the IODP Expedition 310 offshore Tahiti Island extend the previous Tahiti sea-level and allow to document the sea-level rise during the key period of the MWP-1A. Our results confirm the occurrence of an acceleration of the sea-level rise during that

  8. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  9. Picosecond optical pulse generation at gigahertz rates by direct modulation of a semiconductor laser

    NASA Technical Reports Server (NTRS)

    Auyeung, J.

    1981-01-01

    We report the generation of picosecond pulses by the direct modulation of a buried heterostructure GaAlAs diode laser. Pulse width of 28 ps is achieved at a repetition frequency of 2.5 GHz. Pulse width dependence on the experimental parameters is described.

  10. Ultrawideband monocycle pulse generation based on polarization modulator and low speed electrical NRZ signal

    NASA Astrophysics Data System (ADS)

    Sun, Guodan; Zhang, Qiufang; Wang, Quan

    2015-07-01

    A novel ultrawideband (UWB) monocycle pulse generation system by modulating a polarization modulator (PolM) with a low speed electrical nonreturn-to-zero (NRZ) signal is proposed, which significantly reduce the bandwidth requirement of the driving signal. At each bit transition of the input NRZ signal, two polarity-reversed Gaussian pulses are generated. By properly setting the delay between these two Gaussian pulses, an optical UWB monocycle pulse can be generated. Biphase modulation (BPM) can be realized by electrically switching the polarization direction at the output of PolM, if an electrically tunable arbitrary wave plate (AWP) is employed.

  11. A new minimum fluorescence parameter, as generated using pulse frequency modulation, compared with pulse amplitude modulation: Falpha versus Fo.

    PubMed

    Wright, A Harrison; DeLong, John M; Franklin, Jeffrey L; Lada, Rajasekaran R; Prange, Robert K

    2008-09-01

    The minimum fluorescence parameter (Falpha), generated using the new pulse frequency modulation (PFM) technology, was compared with the minimum fluorescence parameter (Fo), generated by pulse amplitude modulation (PAM), in response to a reversible low-oxygen stress in 'Honeycrisp'trade mark (HC) apples (Malus domestica) and an irreversible osmotic stress induced by water loss in two grape (Vitis spp.) cultivars ('L'Acadie' (LAc) and 'Thompson Seedless' (TS)). The minimum fluorescence values produced by both fluorometer types in response to a reversible low-oxygen stress in apples were indistinguishable: both Fo and Falpha increased when O2 levels were lowered below the anaerobic compensation point (ACP); when gas levels returned to normoxia both parameters dipped below, then returned to, the original fluorescence baseline. The two parameters also responded similarly to the irreversible osmotic stress in grapes: in both cultivars, Falpha and Fo first decreased before reaching an inflection point at approximately 20% mass loss and then increased towards a second inflection point. However, the two parameters were not analogous under the irreversible osmotic stress; most notably, the relative Falpha values appeared to be lower than Fo during the later stages of dehydration. This was likely due to the influence of the Fm parameter and an overestimation of Falpha when measuring the fluorescence from healthy and responsive chloroplasts as found in grapes experiencing minimal water loss, but not in grapes undergoing moderate to severe dehydration. An examination of the data during a typical PFM scan reveals this fluorometer system may yield new fluorescence information with interesting biological applications.

  12. Generation of microseconds-duration square pulses in a passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Tonghui; Jia, Dongfang; Liu, Ying; Wang, Zhaoying; Yang, Tianxin

    2015-12-01

    An ultra-wide tunable square pulse operating in dissipative soliton resonance (DSR) region has been experimentally investigated in a passively mode-locked figure-of-eight fiber laser. In our experiment, by simply increasing the pump power, the pulse width can be tuned in an ultra-wide range from 135 ns to 2272 ns without wave-breaking while the peak power remains almost constant. The maximum output single pulse energy is 236.8 nJ at the pump power of 508 mW. A 960 m highly nonlinear fiber (HNLF) is employed to realize widely tunable square pulse in the DSR region. To the best of our knowledge, this is the widest tunable range of pulse width in any all-fiber passively mode-locked fiber laser.

  13. The impact of pulsed RFI on the coded BER performance of the nonlinear satellite communication channel. [with BPSK modulation

    NASA Technical Reports Server (NTRS)

    Weinberg, A.

    1981-01-01

    An examination is conducted of the coded bit error rate (BER) performance of a satellite communication system in which binary phase-shift-keyed (BPSK) modulation is employed, pulsed CW or pulsed noise RFI is present, and the transponder contains a nonlinearity characterized by arbitrary AM/AM and AM/PM characteristics; the RFI pulse duration is further assumed to exceed that of the information symbol. Computed performance curves consider several hypothetical RFI scenarios in which either a hard limiter or an 8 dB clipper represent the transponder amplitude nonlinearity. Results demonstrate the potential seriousness of RFI duty cycles as low as 2 percent, and the fact that CW represents the most severe form of interference.

  14. The impact of pulsed RFI on the coded BER performance of the nonlinear satellite communication channel. [with BPSK modulation

    NASA Technical Reports Server (NTRS)

    Weinberg, A.

    1981-01-01

    An examination is conducted of the coded bit error rate (BER) performance of a satellite communication system in which binary phase-shift-keyed (BPSK) modulation is employed, pulsed CW or pulsed noise RFI is present, and the transponder contains a nonlinearity characterized by arbitrary AM/AM and AM/PM characteristics; the RFI pulse duration is further assumed to exceed that of the information symbol. Computed performance curves consider several hypothetical RFI scenarios in which either a hard limiter or an 8 dB clipper represent the transponder amplitude nonlinearity. Results demonstrate the potential seriousness of RFI duty cycles as low as 2 percent, and the fact that CW represents the most severe form of interference.

  15. A modulated pulse laser for underwater detection, ranging, imaging, and communications

    NASA Astrophysics Data System (ADS)

    Cochenour, Brandon; Mullen, Linda; Muth, John

    2012-06-01

    A new, modulated-pulse, technique is currently being investigated for underwater laser detection, ranging, imag- ing, and communications. This technique represents a unique marriage of pulsed and intensity modulated sources. For detection, ranging, and imaging, the source can be congured to transmit a variety of intensity modulated waveforms, from single-tone to pseudorandom code. The utility of such waveforms in turbid underwater envi- ronments in the presence of backscatter is investigated in this work. The modulated pulse laser may also nd utility in underwater laser communication links. In addition to exibility in modulation format additional variable parameters, such as macro-pulse width and macro-pulse repetition rate, provide a link designer with additional methods of optimizing links based on the bandwidth, power, range, etc. needed for the application. Initial laboratory experiments in simulated ocean waters are presented.

  16. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    DTIC Science & Technology

    2015-02-01

    Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210...ARL-TR-7210 February 2015 Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module Gregory K...TYPE Final 3. DATES COVERED (From - To) 07/2013–09/2013 4. TITLE AND SUBTITLE Thermal Simulation of Switching Pulses in an Insulated Gate

  17. Methods of Optimal Control of Laser-Plasma Instabilities Using Spike Trains of Uneven Duration and Delay (STUD Pulses)

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros

    2013-10-01

    We have recently introduced and extensively studied a new adaptive method of LPI control. It promises to extend the effectiveness of laser as inertial fusion drivers by allowing active control of stimulated Raman and Brillouin scattering and crossed beam energy transfer. It breaks multi-nanosecond pulses into a series of picosecond (ps) time scale spikes with comparable gaps in between. The height and width of each spike as well as their separations are optimization parameters. In addition, the spatial speckle patterns are changed after a number of successive spikes as needed (from every spike to never). The combination of these parameters allows the taming of parametric instabilities to conform to any desired reduced reflectivity profile, within the bounds of the performance limitations of the lasers. Instead of pulse shaping on hydrodynamical time scales, far faster (from 1 ps to 10 ps) modulations of the laser profile will be needed to implement the STUD pulse program for full LPI control. We will show theoretical and computational evidence for the effectiveness of the STUD pulse program to control LPI. The physics of why STUD pulses work and how optimization can be implemented efficiently using statistical nonlinear optical models and techniques will be explained. We will also discuss a novel diagnostic system employing STUD pulses that will allow the boosted measurement of velocity distribution function slopes on a ps time scale in the small crossing volume of a pump and a probe beam. Various regimes from weak to strong coupling and weak to strong damping will be treated. Novel pulse modulation schemes and diagnostic tools based on time-lenses used in both microscope and telescope modes will be suggested for the execution of the STUD pule program. Work Supported by the DOE NNSA-OFES Joint Program on HEDLP and DOE OFES SBIR Phase I Grants.

  18. Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration

    NASA Astrophysics Data System (ADS)

    Kapoyko, Yury A.; Drozdov, Arkadiy A.; Kozlov, Sergei A.; Zhang, Xi-Cheng

    2016-09-01

    Simple arithmetic dependencies of the velocity of the mass center motion and the root-mean-square duration of initially single-cycle, two-cycle, and Gaussian pulses with a random number of oscillations under the pulse envelope are derived depending on their center frequency, initial duration, and peak field amplitude, as well as on dispersive and nonlinear characteristics of homogeneous isotropic dielectric media. In media with normal group dispersion, it is shown that due to nonresonant dispersion the square of the few-cycle pulse duration increases with distance inversely proportional to the fourth power of the number of input pulse cycles. In media with normal group dispersion, the square of the pulse duration is inversely proportional to the number of input pulse cycles due to cubic nonlinearity. In media with anomalous group dispersion, it is shown that due to cubic nonlinearity, few-cycle pulse self-compression decreases with the reduction of the number of cycles in the initial pulse. This pulse self-compression effect has a threshold nature and terminates at a fixed number of cycles of the input pulse. Such a number of cycles is determined by the input intensity and the central frequency of the pulse, as well as by the dispersive and nonlinear characteristics of the medium.

  19. J-modulated ADEQUATE experiments using different kinds of refocusing pulses.

    PubMed

    Thiele, Christina M; Bermel, Wolfgang

    2007-10-01

    Owing to the recent developments concerning residual dipolar couplings (RDCs), the interest in methods for the accurate determination of coupling constants is renascenting. We intended to use the J-modulated ADEQUATE experiment by Kövér et al. for the measurement of (13)C - (13)C coupling constants at natural abundance. The use of adiabatic composite chirp pulses instead of the conventional 180 degrees pulses, which compensate for the offset dependence of (13)C 180 degrees pulses, led to irregularities of the line shapes in the indirect dimension causing deviations of the extracted coupling constants. This behaviour was attributed to coupling evolution, during the time of the adiabatic pulse (2 ms), in the J-modulation spin echo. The replacement of this pulse by different kinds of refocusing pulses indicated that a pair of BIPs (broadband inversion pulses), which behave only partially adiabatic, leads to correct line shapes and coupling constants conserving the good sensitivity obtained with adiabatic pulses.

  20. Research of a fractional-turn ratio saturable pulse transformer and its application in a microsecond-range pulse modulator

    NASA Astrophysics Data System (ADS)

    Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong

    2017-06-01

    As a combination device for a step-up pulse transformer and a magnetic switch, the saturable pulse transformer is widely used in pulsed-power and plasma technology. A fractional-turn ratio saturable pulse transformer is constructed and analyzed in this paper. Preliminary experimental results show that if the primary energy storage capacitors are charged to 300 V, an output voltage of about 19 kV can be obtained across the capacitor connected to the secondary windings of a fractional-turn ratio saturable pulse transformer. Theoretical and experimental results reveal that this kind of pulse transformer is not only able to integrate a step-up transformer and a magnetic switch into one device, but can also lower the saturable inductance of its secondary windings, thus leading to the relatively high step-up ratio of the pulse transformer. Meanwhile, the application of the fractional-turn ratio saturable pulse transformer in a μs range pulse modulator as a voltage step-up device and main switch is also included in this paper. The demonstrated experiments display that an output voltage with an amplitude of about 29 kV, and a 1.6 μs pulse width can be obtained across a 3500 Ω resistive load, based on a pulse modulator, if the primary energy storage capacitors are charged to 300 V. This compact fractional-turn ratio saturable pulse transformer can be applied in many other fields such as surface treatment, corona plasma generation and dielectric barrier discharge.

  1. Testing a scale pulsed modulator for an IEC neutron source into a resistive load

    SciTech Connect

    Dale, Gregory E; Wheat, Robert M; Aragonez, Robert

    2009-01-01

    A 1/10th scaled prototype pulse modulator for an Inertial Electrostatic Confinement (IEC) neutron source has been designed and tested at Los Alamos National Laboratory (LANL). The scaled prototype modulator is based on a solid-state Marx architecture and has an output voltage of 13 kV and an output current of 10 A. The modulator has a variable pulse width between 50 {micro}s and 1 ms with < 5% droop at all pulse widths. The modulator operates with a duty factor up to 5% and has a maximum pulse repetition frequency of 1 kHz. The use of a solid-state Marx modulator in this application has several potential benefits. These benefits include variable pulse width and amplitude, inherent switch overcurrent and transient overvoltage protection, and increased efficiency over DC supplies used in this application. Several new features were incorporated into this design including inductorless charging, fully snubberless operation, and stage fusing. The scaled prototype modulator has been tested using a 1 k{Omega} resistive load. Test results are given. Short (50 {micro}s) and long (1 ms) pulses are demonstrated as well as high duty factor operation (1 kHz rep rate at a 50 {micro}s pulse width for a 5% duty factor). Pulse agility of the modulator is demonstrated through turning the individual Marx stages on and off in sequence producing ramp, pyramid, and reverse pyramid waveforms.

  2. Compact Pulse Width Modulation Circuitry for Silicon Photomultiplier Readout

    PubMed Central

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-01-01

    The adoption of solid state photo-detectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analog channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTC), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal to noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analog switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid state photomultiplier (PS-SSPM). Results show a 4×4 array 0.9mm×0.9mm×15mm of LYSO crystals being identified on the 5mm×5mm PS-SSPM at room temperature with no degradation for 2-fold multiplexing. In principle, much larger multiplexing ratios are

  3. Compact pulse width modulation circuitry for silicon photomultiplier readout.

    PubMed

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-08-07

    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger

  4. Chronotype modulates sleep duration, sleep quality, and social jet lag in shift-workers.

    PubMed

    Juda, Myriam; Vetter, Céline; Roenneberg, Till

    2013-04-01

    This study explores chronotype-dependent tolerance to the demands of working morning, evening, and night shifts in terms of social jet lag, sleep duration, and sleep disturbance. A total of 238 shift-workers were chronotyped with the Munich ChronoType Questionnaire for shift-workers (MCTQ(Shift)), which collects information about shift-dependent sleep duration and sleep timing. Additionally, 94 shift-workers also completed those items of the Sleep Questionnaire from the Standard Shift-Work Index (SSI) that assess sleep disturbances. Although all participants worked morning, evening, and night shifts, subsamples differed in rotation direction and speed. Sleep duration, social jet lag, and sleep disturbance were all significantly modulated by the interaction of chronotype and shift (mixed-model ANOVAs). Earlier chronotypes showed shortened sleep duration during night shifts, high social jet lag, as well as higher levels of sleep disturbance. A similar pattern was observed for later chronotypes during early shifts. Age itself only influenced sleep duration and quality per se, without showing interactions with shifts. We found that workers slept longer in fast, rotating shift schedules. Since chronotype changes with age, investigations on sleep behavior and circadian misalignment in shift-workers have to consider chronotype to fully understand interindividual and intraindividual variability, especially in view of the current demographic changes. Given the impact of sleep on health, our results stress the importance of chronotype both in understanding the effects of shift-work on sleep and in devising solutions to reduce shift-work-related health problems.

  5. Trellis-coded pulse amplitude modulation for indoor visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Yang, Aiying; Wu, Yongsheng; Feng, Lihui; Sun, Yu-nan; Li, Yankun

    2013-12-01

    Trellis-coded pulse-amplitude modulation (TC-PAM) is applied in visible light communication (VLC) system using RGB-LED. Based on natural modulation, we propose a modified modulation to yield performance enhancement. Further, a decoding method of combing soft-decision Viterbi algorithm with most significant bit (MSB) decoding is developed. Finally, the results of Monte-Carlo simulation are presented to verify the best modulation and decoding method among the mentioned modulation and decoding techniques.

  6. Phase modulation of insulin pulses enhances glucose regulation and enables inter-islet synchronization

    PubMed Central

    Lee, Boah; Song, Taegeun; Lee, Kayoung; Kim, Jaeyoon; Han, Seungmin; Berggren, Per-Olof; Ryu, Sung Ho; Jo, Junghyo

    2017-01-01

    Insulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation. In the present study, we measured Ca2+ oscillations in islets as a proxy for insulin pulses, and we observed their frequency and shape changes under constant/alternating glucose stimuli. Here we asked how the phase modulation of insulin pulses contributes to glucose regulation. To directly answer this question, we developed a phenomenological oscillator model that drastically simplifies insulin secretion, but precisely incorporates the observed phase modulation of insulin pulses in response to glucose stimuli. Then, we mathematically modeled how insulin pulses regulate the glucose concentration in the body. The model of insulin oscillation and glucose regulation describes the glucose-insulin feedback loop. The data-based model demonstrates that the existence of phase modulation narrows the range within which the glucose concentration is maintained through the suppression/enhancement of insulin secretion in conjunction with the amplitude modulation of this secretion. The phase modulation is the response of islets to glucose perturbations. When multiple islets are exposed to the same glucose stimuli, they can be entrained to generate synchronous insulin pulses. Thus, we conclude that the phase modulation of insulin pulses is essential for glucose regulation and inter-islet synchronization. PMID:28235104

  7. Phase modulation of insulin pulses enhances glucose regulation and enables inter-islet synchronization.

    PubMed

    Lee, Boah; Song, Taegeun; Lee, Kayoung; Kim, Jaeyoon; Han, Seungmin; Berggren, Per-Olof; Ryu, Sung Ho; Jo, Junghyo

    2017-01-01

    Insulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation. In the present study, we measured Ca2+ oscillations in islets as a proxy for insulin pulses, and we observed their frequency and shape changes under constant/alternating glucose stimuli. Here we asked how the phase modulation of insulin pulses contributes to glucose regulation. To directly answer this question, we developed a phenomenological oscillator model that drastically simplifies insulin secretion, but precisely incorporates the observed phase modulation of insulin pulses in response to glucose stimuli. Then, we mathematically modeled how insulin pulses regulate the glucose concentration in the body. The model of insulin oscillation and glucose regulation describes the glucose-insulin feedback loop. The data-based model demonstrates that the existence of phase modulation narrows the range within which the glucose concentration is maintained through the suppression/enhancement of insulin secretion in conjunction with the amplitude modulation of this secretion. The phase modulation is the response of islets to glucose perturbations. When multiple islets are exposed to the same glucose stimuli, they can be entrained to generate synchronous insulin pulses. Thus, we conclude that the phase modulation of insulin pulses is essential for glucose regulation and inter-islet synchronization.

  8. Dual Data Pulse Width Modulator for Radio Frequency Identification Biosensor Signal Modulation

    NASA Astrophysics Data System (ADS)

    Kim, Boram; Nakazato, Kazuo

    2013-04-01

    A dual data pulse width modulator is proposed and demonstrated for radio frequency identification (RFID) biosensor signal modulation. Simultaneous wireless measurement of two sensors can be carried out using this circuit, in which two analog signals are modulated and transmitted in a single clock cycle. The measured modulation sensitivity of the two input channels is 84.69 and 85.16 µs/V and the dynamic range is 55.6 and 63.5 dB, respectively. Here, redox potential and temperature are measured wirelessly using the proposed circuit. Temperature change measurement shows a sensitivity of 9.501 µs/°C in the range of 25-40 °C. The measured redox potential shows fairly good linearity for a concentration ratio of hexacyanoferrate (III) to (II) ranging from 10-2 to 102 and the slope is 58.0 mV/decade, almost the same as the theoretical value. The chip area and power consumption are 0.36 mm2 and 650 µW, respectively, using 1.2-µm, 2-metal, 2-poly CMOS technology.

  9. Unsupervised learning approach to adaptive differential pulse code modulation.

    PubMed

    Griswold, N C; Sayood, K

    1982-04-01

    This research is concerned with investigating the problem of data compression utilizing an unsupervised estimation algorithm. This extends previous work utilizing a hybrid source coder which combines an orthogonal transformation with differential pulse code modulation (DPCM). The data compression is achieved in the DPCM loop, and it is the quantizer of this scheme which is approached from an unsupervised learning procedure. The distribution defining the quantizer is represented as a set of separable Laplacian mixture densities for two-dimensional images. The condition of identifiability is shown for the Laplacian case and a decision directed estimate of both the active distribution parameters and the mixing parameters are discussed in view of a Bayesian structure. The decision directed estimators, although not optimum, provide a realizable structure for estimating the parameters which define a distribution which has become active. These parameters are then used to scale the optimum (in the mean square error sense) Laplacian quantizer. The decision criteria is modified to prevent convergence to a single distribution which in effect is the default condition for a variance estimator. This investigation was applied to a test image and the resulting data demonstrate improvement over other techniques using fixed bit assignments and ideal channel conditions.

  10. Pulsed klystrons with feedback controlled mod-anode modulators

    SciTech Connect

    Reass, William A; Baca, David M; Jerry, Davis L; Rees, Daniel E

    2009-01-01

    This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.

  11. Experimental studies of breakdown characteristics in pulse-modulated radio-frequency atmospheric discharge

    NASA Astrophysics Data System (ADS)

    Huo, W. G.; Zhang, X.; Gu, J. L.; Ding, Z. F.

    2016-12-01

    The influences of the pulse off-time on the breakdown voltage of the first pulse and the stable pulse discharge (having repeatedly undergone a process of ignition, maintenance, and extinction) are experimentally investigated in a pulse-modulated radio-frequency atmospheric pressure argon discharge. The experimental results show that the first pulse discharge breakdown voltage decreases, but the stable pulse discharge breakdown voltage increases with increasing the pulse off-time. In a large region of the pulse off-time, the luminescence property of the initial breakdown stage is studied using a high speed camera. The captured images at different pulse off-times demonstrate that the gas breakdown exhibits five key characteristics: single-point random breakdown, multi-point random breakdown, stable uniform breakdown, stable glow mixed with pattern breakdown, and stable nonuniform pattern breakdown. The physical reasons for these results are discussed.

  12. Propagation of the pulsed electron beam of nanosecond duration in gas composition of high pressure

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2015-11-01

    This paper presents the results of the investigation of the propagation of an electron beam in the high-pressure gas compositions (50, 300, and 760 Torr): sulfur hexafluoride and hydrogen, sulfur hexafluoride and nitrogen, sulfur hexafluoride and argon. The experiments have been performed using the TEA-500 laboratory accelerator. The main parameters of the accelerator are as follows: an accelerating voltage of 500 kV; an electron beam current of 10 kA; a pulse width at half maximum of 60 ns; a pulse energy of 200 J; a pulse repetition rate of up to 5 pulses per second, a beam diameter of 5 cm. The pulsed electron beam was injected into a 55 cm metal drift tube. The drift tube is equipped with three reverse-current shunts with simultaneous detecting of signals. The obtained results of the investigation make it possible to conclude that the picture of the processes occurring in the interaction of an electron beam in the high-pressure gas compositions is different from that observed in the propagation of the electron beam in the low-pressure gas compositions (1 Torr).

  13. Dependence of the absorption of pulsed CO2-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    NASA Astrophysics Data System (ADS)

    Bl/aŻejowski, Jerzy; Gruzdiewa, Ludwika; Rulewski, Jacek; Lampe, Frederick W.

    1995-05-01

    The absorption of three lines [P(20), 944.2 cm-1; P(14), 949.2 cm-1; and R(24), 978.5 cm-1] of the pulsed CO2 laser (0001-1000 transition) by SiH4 was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO2 laser. The experimental dependencies show deviations from the phenomenological Beer-Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer-Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  14. Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation.

    PubMed

    Huang, Y P; Wang, J S; Huang, K N; Ho, C T; Huang, J D; Young, M S

    2007-06-01

    A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the "measurement pulse" in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40 kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2 mm at a range of 50-500 mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  15. Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation

    SciTech Connect

    Huang, Y. P.; Wang, J. S.; Huang, K. N.; Ho, C. T.; Huang, J. D.; Young, M. S.

    2007-06-15

    A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the ''measurement pulse'' in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40 kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2 mm at a range of 50-500 mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  16. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    NASA Astrophysics Data System (ADS)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  17. An investigation of fatigue phenomenon in the upper limb muscle due to short duration pulses in an FES system

    NASA Astrophysics Data System (ADS)

    Naeem, Jannatul; Wong Azman, Amelia; Khan, Sheroz; Mohd Mustafah, Yasir

    2013-12-01

    Functional Electrical Stimulation (FES) is a method of artificially stimulating muscles or nerves in order to result in contraction or relaxation of muscles. Many studies have shown that FES system has helped patients to live a better lives especially those who are suffering from physical mobility. Unfortunately, one of the main limitations of an FES system besides of its high cost is largely due to muscle fatigue. Muscle fatigue will affect the training duration which could delay patients' recovery rate. In this paper, we analyzed the occurrence of this fatigue phenomenon in terms of stimulator parameters such as amplitude, frequency, pulse width and pulse shape. The objective of this investigation is to identify other key features of the FES system parameters in order to prolong the training duration among patients. The experiment has been done on a healthy person for the duration of one minute and later the muscles response will be observed. Resultant muscle response is recorded as force using force resistive sensor. The experimental results show muscles will get fatigue at a different rate as the frequency increases. The experiment also shows that the duty cycle is reciprocal to the resultant force.

  18. Faraday rotation and polarization-modulated intense femtosecond laser pulses in a field-ionizing gaseous medium

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Liu, J.

    2014-10-01

    In this paper we investigate the propagation of an intense linearly polarized laser through an ionizing gaseous medium in the presence of an axial strong magnetic field, addressing the modulation of laser polarization. Our simulation indicates that the laser polarization can be dramatically modulated and shows complicated temporal patterns (Lissajous curves). This striking phenomenon can be attributed to the collective movement of ionized electrons, in contrast to the traditional Faraday rotation in which the rotation angle of the laser polarization derived from the linear response of the medium is time independent. We take the weighted average of the rotation angle over the whole pulse duration and find that it explicitly relies on strong magnetic strength as well as the incident laser intensity. Our finding has implications in strong magnetic diagnosis, laser intensity calibration, and the generation of polarization-modulated light sources.

  19. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  20. High-power pulsed thulium fiber oscillator modulated by stimulated Brillouin scattering

    SciTech Connect

    Tang, Yulong Xu, Jianqiu

    2014-01-06

    A pulsed ∼2-μm thulium-doped fiber laser passively modulated by distributed stimulated Brillouin scattering achieves 10.2 W average power and >100 kHz repetition rate with a very simple all-fiber configuration. The maximum pulse energy and peak power surpass 100 μJ and 6 kW, respectively. Another distinct property is that the pulse width is clamped around 17 ns at all power levels. All the average-power, pulse energy, and peak power show the highest values from passively modulated fiber lasers in all wavelength regions.

  1. Effect of pulse-modulated microwaves on fullerene ion production with electron cyclotron resonance ion source.

    PubMed

    Asaji, T; Uchida, T; Minezaki, H; Oshima, K; Racz, R; Muramatsu, M; Biri, S; Kitagawa, A; Kato, Y; Yoshida, Y

    2012-02-01

    Fullerene plasmas generated by pulse-modulated microwaves have been investigated under typical conditions at the Bio-Nano electron cyclotron resonance ion source. The effect of the pulse modulation is distinct from that of simply structured gases, and then the density of the fullerene plasmas increased as decreasing the duty ratio. The density for a pulse width of 10 μs at the period of 100 μs is 1.34 times higher than that for CW mode. We have studied the responses of fullerene and argon plasmas to pulsed microwaves. After the turnoff of microwave power, fullerene plasmas lasted ∼30 times longer than argon plasmas.

  2. Programmable phase control of femtosecond pulses by use of a nonpixelated spatial light modulator.

    PubMed

    Dorrer, C; Salin, F; Verluise, F; Huignard, J P

    1998-01-01

    Programmable spectral phase modulation of femtosecond pulses by use of a nonpixelated spatial light modulator is reported. This light valve, based on the optical addressing of a continuous layer of liquid crystal, allows the operation of spectral phase modulation when optical frequency components are spatially dispersed within a grating-and-lenses pulse-shaping apparatus. Characterization and feedback control of this device were determined by use of spectral interferometry. Demonstrations of the capabilities of this device are given in the spectral and the temporal domains, and recompression of chirped pulses was performed.

  3. Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: the impact of pulse duration.

    PubMed

    Semenov, Iurii; Xiao, Shu; Pakhomova, Olga N; Pakhomov, Andrei G

    2013-09-01

    Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca(2+)-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200-300 nM, the transients were amplified by calcium-induced calcium release. We conclude that nanosecond stimuli mimic Ca2+ signaling while bypassing the usual receptor- and channels-mediated cascades. The recruitment of the intracellular Ca2+ can be controlled by the duration of the stimulus.

  4. Selective removal of composite sealants with near-ultraviolet laser pulses of nanosecond duration.

    PubMed

    Louie, Tiffany M; Jones, Robert S; Sarma, Anupama V; Fried, Daniel

    2005-01-01

    It is often necessary to replace pit and fissure sealants and composite restorations. This task is complicated by the necessity for complete removal of the remaining composite to enable suitable adhesion of new composite. Previous studies have shown that 355-nm laser pulses from a frequency-tripled Nd:YAG laser can selectively remove residual composite after orthodontic bracket removal on enamel surfaces. Our objective is to determine if such laser pulses are suitable for selective removal of composite pit and fissure sealants and restorations. Optical coherence tomography is used to acquire optical cross sections of the occlusal topography nondestructively before sealant application, after sealant application, and after sealant removal. Thermocouples are used to monitor the temperature in the pulp chamber during composite removal under clinically relevant ablation rates, i.e., 30 Hz and 30 mJ/pulse. At an irradiation intensity of 1.3 J/cm2, pit and fissure sealants are completely removed without visible damage to the underlying enamel. At intensities above 1.5 J/cm2, incident laser pulses remove the resin layer while at the same time preferentially etching the surface of the enamel. Temperature excursions in the pulp chamber of extracted teeth are limited to less than 5 degrees C if air-cooling is used during the rapid removal (1 to 2 min) of sealants, water-cooling is not necessary. Selective removal of composite restorative materials is possible without damage to the underlying sound tooth structure.

  5. Control of the photoelectron dynamics for the effective conversion of short-pulse, frequency-modulated optical radiation into X-ray radiation

    SciTech Connect

    Silaev, A A; Meshkov, O V; Emelin, M Yu; Vvedenskii, N V; Ryabikin, M Yu

    2015-05-31

    We report a theoretical investigation of high-order harmonic generation (HHG) in the ionisation of atoms by nonlinear frequency-modulated laser pulses of short duration. It is shown that the reduction in the instantaneous value of the laser pulse frequency can lead to a significant increase in the width of the plateau in the HHG spectrum. We have found optimal parameters of frequency modulation at which photons with energies of 1 keV are efficiently generated at a relatively low laser-pulse intensity. High HHG efficiency at optimal parameters is explained by the peculiarities of atomic ionisation dynamics and acceleration of photoelectrons by a frequency-modulated laser field. (extreme light fields and their applications)

  6. Universal Near-Infrared and Mid-Infrared Optical Modulation for Ultrafast Pulse Generation Enabled by Colloidal Plasmonic Semiconductor Nanocrystals.

    PubMed

    Guo, Qiangbing; Yao, Yunhua; Luo, Zhi-Chao; Qin, Zhipeng; Xie, Guoqiang; Liu, Meng; Kang, Jia; Zhang, Shian; Bi, Gang; Liu, Xiaofeng; Qiu, Jianrong

    2016-09-21

    Field effect relies on the nonlinear current-voltage relation in semiconductors; analogously, materials that respond nonlinearly to an optical field can be utilized for optical modulation. For instance, nonlinear optical (NLO) materials bearing a saturable absorption (SA) feature an on-off switching behavior at the critical pumping power, thus enabling ultrafast laser pulse generation with high peak power. SA has been observed in diverse materials preferably in its nanoscale form, including both gaped semiconductor nanostructures and gapless materials like graphene; while the presence of optical bandgap and small carrier density have limited the active spectral range and intensity. We show here that solution-processed plasmonic semiconductor nanocrystals exhibit superbroadband (over 400 THz) SA, meanwhile with large modulation depth (∼7 dB) and ultrafast recovery (∼315 fs). Optical modulators fabricated using these plasmonic nanocrystals enable mode-locking and Q-switching operation across the near-infrared and mid-infrared spectral region, as exemplified here by the pulsed lasers realized at 1.0, 1.5, and 2.8 μm bands with minimal pulse duration down to a few hundreds of femtoseconds. The facile accessibility and superbroadband optical nonlinearity offered by these nonconventional plasmonic nanocrystals may stimulate a growing interest in the exploiting of relevant NLO and photonic applications.

  7. Analysis of Mg spectral features produced by irradiations of laser pulses with different contrast and pulse durations

    NASA Astrophysics Data System (ADS)

    Stafford, A.; Safronova, A. S.; Safronova, U. I.; Kantsyrev, V. L.; Faenov, A. Y.; Wiewior, P.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Paudel, Y.

    2014-03-01

    Experiments performed at the Leopard Laser Facility at the Nevada Terawatt Facility of the University of Nevada, Reno have produced K-shell Mg spectra with complex satellite features. K-shell Mg spectra were collected from experiments comprised of three different conditions related to laser pulse and contrast. Two spectrometers were fielded: a survey convex spectrometer with a potassium hydrogen phthalate (KAP) crystal (R ˜ 300) and a high resolution focusing spectrometer with spatial resolution using a spherically bent mica crystal (R ˜ 3000). These spectra included dielectronic satellite (DS) lines that were investigated using the quasi-relativistic many-body perturbation theory (MZ) code for previously identified transitions from autoionizing 2lnl‧ states in He-like Mg and new transitions involving autoionizing 1s3lnl‧ states in Li-like Mg and 1s3l3l‧3l″ in Be-like Mg calculated using the Hartree-Fock-relativistic method (COWAN code). Radiative and non-radiative data are combined to obtain branching ratios, intensities and effective emission rate coefficients of DS lines. Synthetic spectra were matched to experimental data to identify strong satellite structures to the Heβ (7.8507 Å) and Lyα (8.4192 Å) resonance transitions.

  8. Multi-phase modulation for nematic liquid crystal on silicon backplane spatial light modulators using pulse-width modulation driving scheme

    NASA Astrophysics Data System (ADS)

    Lee, Yongmin; Gourlay, James; Hossack, William J.; Underwood, Ian; Walton, Anthony J.

    2004-06-01

    In phase modulating diffractive optical devices multi-phase modulation provides improved performance over binary modulation. Multi-phase modulation can be achieved by using nematic liquid crystal spatial light modulators (NLCSLM) with pulse-width modulation driven from a binary CMOS backplane. This paper presents the characteristics and the driving scheme of the 512 × 512 Si-backplane SLM for the implementation of the multi-phase modulation while comparing the binary and four-level phase holograms. Diffraction efficiency of 39.7% for binary grating and 72.9% for four-level blazed grating were obtained at the spatial frequency 1.56 lines/mm.

  9. GPU-based parallel clustered differential pulse code modulation

    NASA Astrophysics Data System (ADS)

    Wu, Jiaji; Li, Wenze; Kong, Wanqiu

    2015-10-01

    Hyperspectral remote sensing technology is widely used in marine remote sensing, geological exploration, atmospheric and environmental remote sensing. Owing to the rapid development of hyperspectral remote sensing technology, resolution of hyperspectral image has got a huge boost. Thus data size of hyperspectral image is becoming larger. In order to reduce their saving and transmission cost, lossless compression for hyperspectral image has become an important research topic. In recent years, large numbers of algorithms have been proposed to reduce the redundancy between different spectra. Among of them, the most classical and expansible algorithm is the Clustered Differential Pulse Code Modulation (CDPCM) algorithm. This algorithm contains three parts: first clusters all spectral lines, then trains linear predictors for each band. Secondly, use these predictors to predict pixels, and get the residual image by subtraction between original image and predicted image. Finally, encode the residual image. However, the process of calculating predictors is timecosting. In order to improve the processing speed, we propose a parallel C-DPCM based on CUDA (Compute Unified Device Architecture) with GPU. Recently, general-purpose computing based on GPUs has been greatly developed. The capacity of GPU improves rapidly by increasing the number of processing units and storage control units. CUDA is a parallel computing platform and programming model created by NVIDIA. It gives developers direct access to the virtual instruction set and memory of the parallel computational elements in GPUs. Our core idea is to achieve the calculation of predictors in parallel. By respectively adopting global memory, shared memory and register memory, we finally get a decent speedup.

  10. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning.

    PubMed

    Andrieu, Patrice; Billot, Pierre-Édouard; Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors.

  11. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels.

    PubMed

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S; Klyachko, Vitaly A

    2013-02-20

    Loss of FMRP causes fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx, and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation independent and are mediated selectively by BK channels via interaction of FMRP with BK channel's regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology.

  12. Long-term adaptation effects of highly familiar faces are modulated by adaptation duration.

    PubMed

    Strobach, Tilo; Ditye, Thomas; Carbon, Claus-Christian

    2011-01-01

    Adaptation to manipulated versions of face images can induce strong adaptation effects in face perception and the adjustment of memory representations has been suggested to underlie this effect. In previous studies such effects have been observed after short as well as long delays between adaptation and test (5 min and 24 h) and they were evident in face images identical to the adapting stimuli as well as in new images of the same individual and in faces that were not shown during adaptation (factor transferability). By using regression analysis, here we show that adaptation duration modulates the size of the adaptation effect, which was evident after both short and long time delays and across all levels of transferability tested.

  13. Vibrotactile Sensory Substitution for Object Manipulation: Amplitude versus Pulse Train Frequency Modulation

    PubMed Central

    Stepp, Cara E.; Matsuoka, Yoky

    2012-01-01

    Incorporating sensory feedback with prosthetic devices is now possible, but the optimal methods of providing such feedback are still unknown. The relative utility of amplitude and pulse train frequency modulated stimulation paradigms for providing vibrotactile feedback for object manipulation was assessed in 10 participants. The two approaches were studied during virtual object manipulation using a robotic interface as a function of presentation order and a simultaneous cognitive load. Despite the potential pragmatic benefits associated with pulse train frequency modulated vibrotactile stimulation, comparison of the approach with amplitude modulation indicates that amplitude modulation vibrotactile stimulation provides superior feedback for object manipulation. PMID:21997322

  14. Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James

    2017-01-01

    The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).

  15. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  16. Signal to Noise Ratios of Pulsed and Sinewave Modulated Direct Detection Lidar for IPDA Measurements

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    The signal-to-noise ratios have been derived for IPDA lidar using a direct detection receiver for both pulsed and sinewave laser modulation techniques, and the results and laboratory measurements are presented

  17. Modulated pulse laser with pseudorandom coding capabilities for underwater ranging, detection, and imaging.

    PubMed

    Cochenour, Brandon; Mullen, Linda; Muth, John

    2011-11-20

    Optical detection, ranging, and imaging of targets in turbid water is complicated by absorption and scattering. It has been shown that using a pulsed laser source with a range-gated receiver or an intensity modulated source with a coherent RF receiver can improve target contrast in turbid water. A blended approach using a modulated-pulse waveform has been previously suggested as a way to further improve target contrast. However only recently has a rugged and reliable laser source been developed that is capable of synthesizing such a waveform so that the effect of the underwater environment on the propagation of a modulated pulse can be studied. In this paper, we outline the motivation for the modulated-pulse (MP) concept, and experimentally evaluate different MP waveforms: single-tone MP and pseudorandom coded MP sequences.

  18. TASK-1 channels may modulate action potential duration of human atrial cardiomyocytes.

    PubMed

    Limberg, Sven H; Netter, Michael F; Rolfes, Caroline; Rinné, Susanne; Schlichthörl, Günter; Zuzarte, Marylou; Vassiliou, Timon; Moosdorf, Rainer; Wulf, Hinnerk; Daut, Jürgen; Sachse, Frank B; Decher, Niels

    2011-01-01

    Atrial fibrillation is the most common arrhythmia in the elderly, and potassium channels with atrium-specific expression have been discussed as targets to treat atrial fibrillation. Our aim was to characterize TASK-1 channels in human heart and to functionally describe the role of the atrial whole cell current I(TASK-1). Using quantitative PCR, we show that TASK-1 is predominantly expressed in the atria, auricles and atrio-ventricular node of the human heart. Single channel recordings show the functional expression of TASK-1 in right human auricles. In addition, we describe for the first time the whole cell current carried by TASK-1 channels (I(TASK-1)) in human atrial tissue. We show that I(TASK-1) contributes to the sustained outward current I(Ksus) and that I(TASK-1) is a major component of the background conductance in human atrial cardiomyocytes. Using patch clamp recordings and mathematical modeling of action potentials, we demonstrate that modulation of I(TASK-1) can alter human atrial action potential duration. Due to the lack of ventricular expression and the ability to alter human atrial action potential duration, TASK-1 might be a drug target for the treatment of atrial fibrillation. Copyright © 2011 S. Karger AG, Basel.

  19. Frequency and Duration Modulate Anticarcinogenic Effects of a Physical Training in the Colon.

    PubMed

    Fernandes, C; Marini, T; Frajacomo, F T T; Jordao, A A; Garcia, S B; Kannen, V

    2015-08-01

    Physical exercise has proven protective against colon carcinogenesis. We sought to clarify whether the frequency and duration of physical training were key factors for its anticarcinogenic effects on the colon. Either sedentary or physically trained male Wistar rats (n=82) were either exposed or not to the carcinogen dimethylhidrazine (DMH). The first protocol investigated whether swimming for 60 min in different frequencies modulates antipreneoplastic effects of physical training. Another protocol then explored whether the duration for training 5 times a week impacts on the development of colon preneoplastic lesions. After 8 weeks, serum and colon samples were collected and analyzed afterwards. Swimming once a week for 60 min did not promote those anticarcinogenic effects found in rats trained 5 times weekly. Such weekly sustained physical training not only decreased the development of colon preneoplastic, but also epithelial proliferation, and subepithelial cyclooxygenase 2 (COX-2) expression. Interestingly, a 5 time per week training for less than 60 min was not as protective against colon carcinogenesis as swimming for 90 min. This 90 min training indeed reduced serum cholesterol and triglycerides levels, as well as colonic lipid peroxidation in carcinogen-exposed rats. Our collective data suggest anticarcinogenic effects of physical exercises are potentially promoted when training 5 times a week for at least 60 min.

  20. TASK-1 Channels May Modulate Action Potential Duration of Human Atrial Cardiomyocytes

    PubMed Central

    Limberg, Sven H.; Netter, Michael F.; Rolfes, Caroline; Rinné, Susanne; Schlichthörl, Günter; Zuzarte, Marylou; Vassiliou, Timon; Moosdorf, Rainer; Wulf, Hinnerk; Daut, Jürgen; Sachse, Frank B.; Decher, Niels

    2011-01-01

    Background/Aims: Atrial fibrillation is the most common arrhythmia in the elderly, and potassium channels with atrium-specific expression have been discussed as targets to treat atrial fibrillation. Our aim was to characterize TASK-1 channels in human heart and to functionally describe the role of the atrial whole cell current ITASK-1. Methods and Results: Using quantitative PCR, we show that TASK-1 is predominantly expressed in the atria, auricles and atrio-ventricular node of the human heart. Single channel recordings show the functional expression of TASK-1 in right human auricles. In addition, we describe for the first time the whole cell current carried by TASK-1 channels (ITASK-1) in human atrial tissue. We show that ITASK-1 contributes to the sustained outward current IKsus and that ITASK-1 is a major component of the background conductance in human atrial cardiomyocytes. Using patch clamp recordings and mathematical modeling of action potentials, we demonstrate that modulation of ITASK-1 can alter human atrial action potential duration. Conclusion: Due to the lack of ventricular expression and the ability to alter human atrial action potential duration, TASK-1 might be a drug target for the treatment of atrial fibrillation. PMID:22178873

  1. Transcranial electrical brain stimulation modulates neuronal tuning curves in perception of numerosity and duration

    PubMed Central

    Javadi, Amir Homayoun; Brunec, Iva K.; Walsh, Vincent; Penny, Will D.; Spiers, Hugo J.

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method with many putative applications and reported to effectively modulate behaviour. However, its effects have yet to be considered at a computational level. To address this we modelled the tuning curves underlying the behavioural effects of stimulation in a perceptual task. Participants judged which of the two serially presented images contained more items (numerosity judgement task) or was presented longer (duration judgement task). During presentation of the second image their posterior parietal cortices (PPCs) were stimulated bilaterally with opposite polarities for 1.6 s. We also examined the impact of three stimulation conditions on behaviour: anodal right-PPC and cathodal left-PPC (rA-lC), reverse order (lA-rC) and no-stimulation condition. Behavioural results showed that participants were more accurate in numerosity and duration judgement tasks when they were stimulated with lA-rC and rA-lC stimulation conditions respectively. Simultaneously, a decrease in performance on numerosity and duration judgement tasks was observed when the stimulation condition favoured the other task. Thus, our results revealed a double-dissociation of laterality and task. Importantly, we were able to model the effects of stimulation on behaviour. Our computational modelling showed that participants' superior performance was attributable to a narrower tuning curve — smaller standard deviation of detection noise. We believe that this approach may prove useful in understanding the impact of brain stimulation on other cognitive domains. PMID:25130301

  2. Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

    SciTech Connect

    Ding, Y.; Behrens, C.; Coffee, R.; Decker, F. -J.; Emma, P.; Field, C.; Helml, W.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J.

    2015-06-22

    We report experimental studies of generating and controlling femtosecond x-ray pulses in free-electron lasers (FELs) using an emittance spoiling foil. By selectivity spoiling the transverse emittance of the electron beam, the output pulse duration or double-pulse separation is adjusted with a variable size single or double slotted foil. Measurements were performed with an X-band transverse deflector located downstream of the FEL undulator, from which both the FEL lasing and emittance spoiling effects are observed directly.

  3. GABAergic inhibition modulates intensity sensitivity of temporally patterned pulse trains in the inferior collicular neurons in big brown bats.

    PubMed

    Luan, Rui-Hong; Wu, Fei-Jian; Jen, Philip H-S; Sun, Xin-De

    2007-12-25

    The echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals with duration, amplitude, repetition rate, and sweep structure changing systematically during interception of their prey. In the present study, the sound stimuli of temporally patterned pulse trains at three different pulse repetition rates (PRRs) were used to mimic the sounds received during search, approach, and terminal stages of echolocation. Electrophysiological method was adopted in recordings from the inferior colliculus (IC) of midbrain. By means of iontophoretic application of bicuculline, the effect of GABAergic inhibition on the intensity sensitivity of IC neurons responding to three different PRRs of 10, 30 and 90 pulses per second (pps) was examined. The rate-intensity functions (RIFs) were acquired. The dynamic range (DR) of RIFs was considered as a criterion of intensity sensitivity. Comparing the average DR of RIFs at different PRRs, we found that the intensity sensitivity of some neurons improved, but that of other neurons decayed when repetition rate of stimulus trains increased from 10 to 30 and 90 pps. During application of bicuculline, the number of impulses responding to the different pulse trains increased under all stimulating conditions, while the DR differences of RIFs at different PRRs were abolished. The results indicate that GABAergic inhibition was involved in modulating the intensity sensitivity of IC neurons responding to pulse trains at different PRRs. Before and during bicuculline application, the percentage of changes in responses was maximal in lower stimulus intensity near to the minimum threshold (MT), and decreased gradually with the increment of stimulus intensity. This observation suggests that GABAergic inhibition contributes more effectively to the intensity sensitivity of the IC neurons responding to pulse trains at lower sound level.

  4. Altered gene expression in cultured microglia in response to simulated blast overpressure: possible role of pulse duration.

    PubMed

    Kane, Michael J; Angoa-Pérez, Mariana; Francescutti, Dina M; Sykes, Catherine E; Briggs, Denise I; Leung, Lai Yee; VandeVord, Pamela J; Kuhn, Donald M

    2012-07-26

    Blast overpressure has long been known to cause barotrauma to air-filled organs such as lung and middle ear. However, experience in Iraq and Afghanistan is revealing that individuals exposed to explosive munitions can also suffer traumatic brain injury (TBI) even in the absence of obvious external injury. The interaction of a blast shock wave with the brain in the intact cranial vault is extremely complex making it difficult to conclude that a blast wave interacts in a direct manner with the brain to cause injury. In an attempt to "isolate" the shock wave and test its primary effects on cells, we exposed cultured microglia to simulated blast overpressure in a barochamber. Overpressures ranging from 15 to 45 psi did not change microglial Cox-2 levels or TNF-α secretion nor did they cause cell damage. Microarray analysis revealed increases in expression of a number of microglial genes relating to immune function and inflammatory responses to include Saa3, Irg1, Fas and CxCl10. All changes in gene expression were dependent on pulse duration and were independent of pressure. These results indicate that microglia are mildly activated by blast overpressure and uncover a heretofore undocumented role for pulse duration in this process.

  5. Altered Gene Expression in Cultured Microglia in Response to Simulated Blast Overpressure: Possible Role of Pulse Duration

    PubMed Central

    Kane, Michael J.; Angoa-Pérez, Mariana; Francescutti, Dina M.; Sykes, Catherine E.; Briggs, Denise I.; Leung, Lai Yee; VandeVord, Pamela J.; Kuhn, Donald M.

    2012-01-01

    Blast overpressure has long been known to cause barotrauma to air-filled organs such as lung and middle ear. However, experience in Iraq and Afghanistan is revealing that individuals exposed to explosive munitions can also suffer traumatic brain injury (TBI) even in the absence of obvious external injury. The interaction of a blast shock wave with the brain in the intact cranial vault is extremely complex making it difficult to conclude that a blast wave interacts in a direct manner with the brain to cause injury. In an attempt to “isolate” the shock wave and test its primary effects on cells, we exposed cultured microglia to simulated blast overpressure in a barochamber. Overpressures ranging from 15–45 psi did not change microglial Cox-2 levels or TNF-α secretion nor did they cause cell damage. Microarray analysis revealed increases in expression of a number of microglial genes relating to immune function and inflammatory responses to include Saa3, Irg1, Fas and CxCl10. All changes in gene expression were dependent on pulse duration and were independent of pressure. These results indicate that microglia are mildly activated by blast overpressure and uncover a heretofore undocumented role for pulse duration in this process. PMID:22698585

  6. Rational Pulse-Shaping Filters for Almost MSK-Like Modulation

    DTIC Science & Technology

    1985-03-22

    OQPSK 3 MSK-like Formats 4 3. THE CLASS OF BASEBAND PULSE FUNCTIONS OPTIMIZED 5 4. THE OPTIMIZATION CRITERION 7 Optimization Constraints to...of an OQPSK Process 29 in RATIONAL PULSE-SHAPING FILTERS FOR ALMOST MSK-LIKE MODULATION 1. INTRODUCTION MSK-like modulation formats are those...filters. i DATA l2Tl q DATA ’ I I ARM FILTERS \\ — sin wjt Fig. 1 — Conventional QPSK implementation OQPSK Attempts in the data

  7. Multi-pulse multi-delay (MPMD) multiple access modulation for UWB

    DOEpatents

    Dowla, Farid U.; Nekoogar, Faranak

    2007-03-20

    A new modulation scheme in UWB communications is introduced. This modulation technique utilizes multiple orthogonal transmitted-reference pulses for UWB channelization. The proposed UWB receiver samples the second order statistical function at both zero and non-zero lags and matches the samples to stored second order statistical functions, thus sampling and matching the shape of second order statistical functions rather than just the shape of the received pulses.

  8. Fraunhofer type diffraction of phase-modulated broad-band femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Dakova, A. M.; Kovachev, L. M.; Kovachev, K. L.; Y Dakova, D.

    2015-03-01

    Attosecond optical pulses with one-two cycles under the envelope diffract in nonparaxial regime on several diffraction lengths. Their intensity profile takes a form similar to Fraunhofer distribution. An analytical theory was developed, where was pointed, that such type of diffraction depends on the spectral width of the optical pulse. In this paper is shown that even for a broad-band phase-modulated femtosecond pulses the diffraction is also of Fraunhofer type.

  9. Pulse duration effects on laser-assisted electron transfer cross section for He2+ ions colliding with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Domínguez-Gutiérrez, Francisco Javier; Cabrera-Trujillo, Remigio

    2014-08-01

    We study the effect of the pulse duration for an ultra-fast and intense laser on the fundamental process of electron capture by analyzing the excitation probability into the n = 2 and n = 3 states when He2+ collides with atomic hydrogen in the 0.05-10 keV/amu energy range, a region of interest for diagnostic processes on plasma and fusion power reactors. We solve the time-dependent Schrödinger equation to calculate the electron capture probability by means of a finite-differences, as well as by an electron-nuclear dynamics approach. In particular, we study the effects of 1, 3, 6, and 10 fs laser pulses at FWHM, wavelength of 780 nm and intensity of 3.5 × 1012 W/cm2. We report good agreement for the laser-free state and total electron transfer cross-sections when compared to available theoretical and experimental data. The effect of the laser pulse on the electron capture probability as a function of the impact parameter is such that the charge exchange probability increases considerably in the impact parameter radial region with an increase in the amplitude oscillations and a phase shift on the Stückelberg oscillations. We find an increase on the total electron exchange cross-section for low projectile collision energy when compared to the laser-free case with a minimal effect at high collision energies. We find that the 1 fs laser pulse has a minimal effect, except for very low collision energies. Although in general, the longer the laser pulse, the larger the electron capture probability, at very low collision energies all pulse widths have an effect. For processes in the atto-second region, our findings suggest that to enhance the laser-assisted charge exchange, the best region for short pulses is at very low collision energies. We also find that the s and p state charge exchange cross section are equally affected. We provide a qualitative discussion of these findings.

  10. Dual temporal pitch percepts from acoustic and electric amplitude-modulated pulse trains.

    PubMed

    McKay, C M; Carlyon, R P

    1999-01-01

    Two experiments examined the perception of unmodulated and amplitude-modulated pulse trains by normally hearing listeners and cochlear implantees. Four normally hearing subjects listened to acoustic pulse trains, which were band-pass filtered between 3.9 and 5.3 kHz. Four cochlear implantees, all postlinguistically deaf users of the Mini System 22 implant, listened to current pulse trains produced at a single electrode position. In the first experiment, a set of nine loudness-balanced unmodulated stimuli with rates between 60 and 300 Hz were presented in a multidimensional scaling task. The resultant stimulus spaces for both subject groups showed a single dimension associated with the rate of the stimuli. In the second experiment, a set of ten loudness-balanced modulated stimuli was constructed, with carrier rates between 140 and 300 Hz, and modulation rates between 60 and 150 Hz. The modulation rates were integer submultiples of the carrier rates, and each modulation period consisted of one higher-intensity pulse and one or more identical lower-intensity pulses. The modulation depth of each stimulus was adjusted so that its pitch was judged to be higher or lower 50% of the time than that of an unmodulated pulse train having a rate equal to the geometric mean of the carrier and modulation rates. A multidimensional scaling task with these ten stimuli resulted in two-dimensional stimulus spaces, with dimensions corresponding to carrier and modulation rates. A further investigation with one normally hearing subject showed that the perceptual weighting of the two dimensions varied systematically with modulation depth. It was concluded that, when filtered appropriately, acoustic pulse trains can be used to produce percepts in normal listeners that share common features with those experienced by subjects listening through one channel of a cochlear implant, and that the central auditory system can extract two temporal patterns arising from the same cochlear location.

  11. A compact pulse shape discriminator module for large neutron detector arrays

    NASA Astrophysics Data System (ADS)

    Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.

    2008-11-01

    A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.

  12. Synchrotron X-ray Powder Diffraction and Absorption Spectroscopy in Pulsed Magnetic Fields with Milliseconds Duration

    NASA Astrophysics Data System (ADS)

    Vanacken, J.; Detlefs, C.; Mathon, O.; Frings, P.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Dominguez, M.-C.; Herczeg, J.; Bras, W.; Moshchalkov, V. V.; Rikken, G.

    2007-03-01

    X-ray Powder Diffraction and X-ray Absorption Spectroscopy experiments (WAS) and X-ray magnetic circular dichroism (XMCD) experiments were carried out at the ESRF DUBBLE beam line (BM26) and at the energy dispersive beam line (ID24), respectively. A mobile pulse generator, developed at the LNCMP, delivered 110kJ to the load coil, which was sufficient to generate peak fields of 30T with a rise time of about 5 ms. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 4.2K and 300K. Powder diffraction patterns of TbVO4 were recorded in a broad temperature range using 21 keV monochromatic X-rays and using an on-line image plate detector. We observed the suppression of the Jahn-Teller structural distortion in TbVO4 due to the high magnetic pulsed field. XAS spectra could be measured and finite XMCD signals, directly proportional to the magnetic moment on the Gd absorber atom, were measured in thin Gd foils. Thanks to its element and orbital selectivity, XMCD proofs to be very useful in probing the magnetic properties and due to the strong brilliance of the synchrotron beam, the signals can be measured even in the ms range.

  13. The Pulse Width Modulator ASIC for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Carr, Gregory A.; Wester, Gene W.; Lam, Barbara; Bennett, Johnny; Franco, Lauro; Woo, Erika

    2004-01-01

    The Jet Propulsion Laboratory has started the development of a Pulse Width Modulator Application Specific Integrated Circuit (PWMA). This development is leveraging the previous development of the Switch Control ASIC (SCA). The purpose of the development is to provide the control for a selected range of power converter topologies and to meet the stringent environmental requirements of deep space missions. The PWMA will include several power control functions that are not normally included on the off-the-shelf components available today. One key functional requirement is the ability to implement an N + K redundant power converter with the ability to control the charging of a battery. Other applications will be the typical point of load isolated and non-isolated power converters. The purpose the development is not only to provide a much needed flight part, but also to accelerate the engineering process by using a standard cell library from previous ASIC developments. Under previous developments with Boeing and Lockheed Martin, JPL has produced three ASICs. Each ASIC has been implemented by using an analog standard cell library. One such development was the SCA, which is design to provide a floating power switch control. The functional verification of this ASIC has been completed and the cells used have been targeted for the new development of the PWMA. The primary function of the PWMA is to provide the control function of a point of load power converter. The design is an isolated 60 W converter with a 33 V output. In architecting the design, several functions were left up to the power converter design in order to make the ASIC more generic. The ASIC can be used for several power converter topologies and power levels. Some additional features have been added to the ASIC to provide the interfaces for multi-phase topologies and battery control functions. An N+K fault tolerant strategy has been implemented in order to provide the battery control functions. The PWMA has

  14. The Pulse Width Modulator ASIC for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Carr, Gregory A.; Wester, Gene W.; Lam, Barbara; Bennett, Johnny; Franco, Lauro; Woo, Erika

    2004-01-01

    The Jet Propulsion Laboratory has started the development of a Pulse Width Modulator Application Specific Integrated Circuit (PWMA). This development is leveraging the previous development of the Switch Control ASIC (SCA). The purpose of the development is to provide the control for a selected range of power converter topologies and to meet the stringent environmental requirements of deep space missions. The PWMA will include several power control functions that are not normally included on the off-the-shelf components available today. One key functional requirement is the ability to implement an N + K redundant power converter with the ability to control the charging of a battery. Other applications will be the typical point of load isolated and non-isolated power converters. The purpose the development is not only to provide a much needed flight part, but also to accelerate the engineering process by using a standard cell library from previous ASIC developments. Under previous developments with Boeing and Lockheed Martin, JPL has produced three ASICs. Each ASIC has been implemented by using an analog standard cell library. One such development was the SCA, which is design to provide a floating power switch control. The functional verification of this ASIC has been completed and the cells used have been targeted for the new development of the PWMA. The primary function of the PWMA is to provide the control function of a point of load power converter. The design is an isolated 60 W converter with a 33 V output. In architecting the design, several functions were left up to the power converter design in order to make the ASIC more generic. The ASIC can be used for several power converter topologies and power levels. Some additional features have been added to the ASIC to provide the interfaces for multi-phase topologies and battery control functions. An N+K fault tolerant strategy has been implemented in order to provide the battery control functions. The PWMA has

  15. The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces

    SciTech Connect

    Negres, R A; Norton, M A; Liao, Z M; Cross, D A; Bude, J D; Carr, C W

    2009-10-29

    Past work in the area of laser-induced damage growth has shown growth rates to be primarily dependent on the laser fluence and wavelength. More recent studies suggest that growth rate, similar to the damage initiation process, is affected by a number of additional parameters including pulse duration, pulse shape, site size, and internal structure. In this study, we focus on the effect of pulse duration on the growth rate of laser damage sites located on the exit surface of fused silica optics. Our results demonstrate, for the first time, a significant dependence of growth rate at 351 nm on pulse duration from 1 ns to 15 ns as {tau}{sup 0.3} for sites in the 50-100 {micro}m size range.

  16. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4μm with pulse duration of 26 μs

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-02-01

    Several studies over the past 20 years have identified that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-µs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase and the pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for TEA lasers and too short for RF-excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the J5-V laser for microvia drilling which can produce laser pulses greater than 100 mJ in energy at 9.4-μm with a pulse duration of 26-µs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate enamel and dentin. The onset of plasma shielding does not occur until the fluence exceeds 100 J/cm2 allowing efficient ablation at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions.

  17. High-power passively mode-locked Nd:YVO4 oscillator with adjustable pulse duration between 46 ps and 12 ps

    NASA Astrophysics Data System (ADS)

    Nadeau, Marie-Christine; Petit, Stéphane; Balcou, Philippe; Czarny, Romain; Montant, Sébastien; Simon-Boisson, Christophe

    2010-05-01

    We report on a high-power, passively mode-locked, TEM00 Nd:YVO4 oscillator with adjustable pulse duration between 46 and 12ps. The laser is end-pumped by an 888nm laser diode and mode-locking is achieved with a semiconductor saturable absorber mirror (SESAM). The laser has a repetition rate of 91MHz and the M2 beam quality factor is better than 1.2 at 15ps. At the optimum output coupler, it provides a maximum average output power of 45W with 32ps pulse duration. In literature, the presence of spatial hole burning (SHB) often helps to shorten the pulse length down to few picoseconds. However, SHB might be an issue for some specific application requiring e.g. low noise picosecond oscillators. In this contribution, we demonstrate that it is possible to shorten the pulse duration by lowering the intracavity losses without SHB. Pulse tunability from 46 to 12ps is achieved by changing the output coupler of the cavity while staying in the continuous-wave mode-locked regime. Pulse duration is almost linear with the output coupler transmission and increases from 12 to 32ps with average output power ranging from 15 to 45W. In this range of output power, we demonstrate the shortest pulses directly from a Nd:YVO4 oscillator.

  18. A Novel Pulse-Based Modulation Technique for Wideband Low Power Communication with Neuroprosthetic Devices

    PubMed Central

    Inanlou, Farzad; Kiani, Mehdi

    2011-01-01

    Pulse Harmonic Modulation (PHM) is a novel pulse-based (carrierless) modulation method for wideband, low power data transmission across inductive telemetry links that operate in the near-field domain. PHM utilizes two or more unidentical pulses during each bit period to minimize intersymbol interference (ISI). In this paper, we describe the PHM concept and demonstrate its operation with a proof-of-concept prototype, which achieves a data rate of 5.2 Mbps at 1 cm coil separation with a bit error rate (BER) of 10−6. PMID:21096070

  19. A novel pulse-based modulation technique for wideband low power communication with neuroprosthetic devices.

    PubMed

    Inanlou, Farzad; Kiani, Mehdi; Ghovanloo, Maysam

    2010-01-01

    Pulse Harmonic Modulation (PHM) is a novel pulse-based (carrierless) modulation method for wideband, low power data transmission across inductive telemetry links that operate in the near-field domain. PHM utilizes two or more unidentical pulses during each bit period to minimize inter-symbol interference (ISI). In this paper, we describe the PHM concept and demonstrate its operation with a proof-of-concept prototype, which achieves a data rate of 5.2 Mbps at 1 cm coil separation with a bit error rate (BER) of 10(-6).

  20. All-optical DAC using counter-propagating optical and electrical pulses in a Mach-Zehnder modulator.

    PubMed

    Lowery, Arthur James

    2014-10-20

    A novel method of converting binary-level electrical pulses into multi-level optical pulses using only a conventional traveling-wave optical modulator is presented. The method provides low inter-pulse interference due to the counter-propagating pulses, low amplitude noise, and a timing jitter determined chiefly by the quality of the optical pulse source. The method only requires one electrical drive per modulator and provides low-jitter variable-amplitude optical pulses that are suitable for shaping into a wide variety of modulation formats using a programmable optical filter.

  1. Intense-Field Ionization of Monoaromatic Hydrocarbons using Radiation Pulses of Ultrashort Duration: Monohalobenzenes and Azabenzenes

    NASA Astrophysics Data System (ADS)

    Scarborough, T.; Strohaber, J.; Foote, D.; McAcy, C.; Uiterwaal, C. J.

    2014-04-01

    Using 50-fs, 800-nm pulses, we study the intense-field ionization and fragmentation of the monohalobenzenes C6H5-X (X=F, Cl, Br, I) and of the heterocyclics azabenzene C5H5N (pyridine) and the three diazabenzenes C4H4N2 (pyridazine, pyrimidine, and pyrazine). Avoiding focal intensity averaging we find indications of resonance-enhanced MPI. In the monohalobenzenes the propensity for fragmentation increases for increasing Z: fluorobenzene yields predominantly C6H5Fn+, while iodobenzene yields atomic ions with charges up to I8+. We ascribe this to the heavy-atom effect: the large charge of the heavy halogens' nuclei induces ultrafast intersystem crossing to dissociative triplet states.

  2. Lidar sensing of the atmosphere with gigawatt laser pulses of femtosecond duration

    SciTech Connect

    Bukin, O A; Golik, S S; Il'in, A A; Kulchin, Yu N; Lisitsa, V V; Shmirko, K A; Babii, M Yu; Kolesnikov, A V; Kabanov, A M; Matvienko, G G; Oshlakov, V K

    2014-06-30

    We present the results of sensing of the atmosphere in the condition of a transition 'continent – ocean' zone by means of gigawatt femtosecond pulses of the fundamental and second harmonics of a Ti : sapphire laser. In the regime of multi-frequency sensing (supercontinuum from the fundamental harmonic) the emission lines of the first positive system of the nitrogen molecule B{sup 3}Π{sub g} – A{sup 3}Σ{sub u}{sup +} have been recorded, while the sensing using of the second harmonic have revealed the possibility of detecting the lines of Raman scattering of nitrogen (λ = 441 nm). The intensity ratio of the line of Raman scattering of nitrogen and the line of elastic scattering at the wavelength of λ = 400 nm amounts to 5.6 × 10{sup -4}. (extreme light fields and their applications)

  3. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1996-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  4. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1994-02-15

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.

  5. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1994-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  6. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1996-01-23

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

  7. Bromodeoxyuridine-mediated radiosensitization in hum glioma: The effect of concentration, duration, and fluoropyrimidine modulation

    SciTech Connect

    McLaughlin, P.W.; Lawrence, T.S.; Seabury, H.

    1994-10-15

    To define the relative influence of duration of exposure, concentration, and modulation by fluorodeoxyuridines (FdUrd) on the incorporation of 5-bromo-2-deoxyuridine (BrdUrd) into DNA of human malignant glioma line (D-54) in vitro and in vivo. In vitro studies: an established human malignant glioma line (D-54)was exposed to a clinically achievable concentration of BrdUrd to model intravenous (1 {mu}M BrdUrd) and intraarterial (4 {mu}MBrdUrd) conditions. The influence of modulation was assessed using 1 nM FdUrd. Incorporation of BrdUrd, radiosensitization, and cytotoxicity were determined after 24, 72, and 120 h drug exposures. In Vivo studies: nude mice bearing D-54 xenografts were infused with BrdUrd at 100 mg/kg/day for 7 and 14 days or BrdUrd at 400 mg/kg/day for 5 days. The influence of modulation was assessed by combining 100 mg/kg/day of BrdUrd with 0.1, 0.3 and 1 mg/kg/day FdUrd for 7 days. Incorporation of BrddUrd into the DNA of tumor, gut, and marrow were determined. In Vitro: thymidine replacement and radiosensitization were a function of concentration, and incorporation began to plateau after 2 to 3 population doublings. Modulation with 1 nM FdUrd significantly increased incorporation. Radiosensitization was a linear function of thymidine replacement under all conditions tested. In Vivo: infusion with 400 mg/kg/day for 5 days resulted in greater tumor incorporation (10.3 {plus_minus} 0.4% thymidine replaced) than treatment with 100 mg/kg/day for 14 days (6.0 {plus_minus} 0.6% of thymidine replaced) than treatment with 100 mg/kg/day for 14 days for 14 days (6.0 {plus_minus} 0.6% of thymidine replaced). Infusion of FdUrd with BrdUrd increased normal tissue incorporation of BrdUrd, but failed to increase BrdUrd incorporation in tumor cells. These results suggest that relatively short, high dose rate infusions may be preferable to long, low dose rate infusions. 33 refs., 5 figs., 2 tabs.

  8. Pulsed ultrasound modulated optical tomography with harmonic lock-in holography detection.

    PubMed

    Ruan, Haowen; Mather, Melissa L; Morgan, Stephen P

    2013-07-01

    A method that uses digital heterodyne holography reconstruction to extract scattered light modulated by a single-cycle ultrasound (US) burst is demonstrated and analyzed. An US burst is used to shift the pulsed laser frequency by a series of discrete harmonic frequencies which are then locked on a CCD. The analysis demonstrates that the unmodulated light's contribution to the detected signal can be canceled by appropriate selection of the pulse repetition frequency. It is also shown that the modulated signal can be maximized by selecting a pulse sequence which consists of a pulse followed by its inverted counterpart. The system is used to image a 12 mm thick chicken breast with 2 mm wide optically absorbing objects embedded at the midplane. Furthermore, the method can be revised to detect the nonlinear US modulated signal by locking at the second harmonic US frequency.

  9. Evolution dynamics of charge state distribution in neon interaction with x-ray pulses of variant intensities and durations

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2015-03-01

    The level population and charge state distribution (CSD) of the neon atomic system interacting with x-ray pulses of variant intensities and durations at a central photon energy of 1110 eV are investigated by solving the time-dependent rate equations. The laser beam has a circular spot size with a Gaussian intensity pattern and the time history of the intensity is represented by Gaussian distribution in time. As an example, the CSD as a function of time is given at different distances from the spot center for an x-ray beam of intensity 1.5 × 1017 W/cm2 and duration 75 fs (fs) for a spot size of 1 μm (full width at half maximum). The final CSD after averaging over the space and time is compared with a recent experiment and good agreement is found between the theory and experiment. Then systematic investigations are carried out to study the evolution of CSD with a wide range of intensity from 1.0 × 1015 W/cm2 to 1.0 × 1019 W/cm2 and duration from 30 fs to 100 fs. The results show that at intensities lower than 1.0 × 1015 W/cm2, the CSD shows a typical physical picture of weak x-ray photoionization of the neutral atomic neon. At higher intensity, i.e., larger than 5.0 × 1016 W/cm2, the dominant ionization stages are Ne7+ and Ne8+, while the fractions of ions in the Ne3+-Ne6+ stages are low for all laser durations and intensities.

  10. A new six-pulse two-dimensional electron spin echo envelope modulation (ESEEM) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, R.; Zhong, Y. C.; Noble, C. J.; Pilbrow, J. R.; Hutton, D. R.

    1995-05-01

    A new six-pulse two-dimensional electron spin echo envelope modulation (2D ESEEM) method is introduced. It is based on augmenting the five-pulse sequence proposed by Gemperle, Schweiger and Ernst with an additional π pulse. It is shown that the intensity ratio of cross peaks to diagonal peaks is significantly enhanced compared with the four-pulse 2D ESEEM method of Höfer, Grupp, Nebenführ and Mehring. A single crystal of KCl doped with Fe(CN) 63- is used to demonstrate this new 2D ESEEM spectroscopy together with an effective phase cycling scheme.

  11. Acousto-optic modulation by pulsed optical excitation: implications to imaging in turbid media.

    PubMed

    Paul, Joseph S; Sen, Deep; Dokos, Socrates

    2010-08-15

    We show that the transient response of acoustically modulated optical flux in a turbid medium irradiated by a pulsed point source of light is delayed in time relative to the light-alone flux obtained in the absence of acoustic modulation. The time delay is shown to result from an initial phase of flux reversal, as determined by the time point of the input pulse onset with reference to the ultrasound cycle. Both the time delay and amplitude of modulation are shown to be dependent on the effective attenuation coefficient of the medium. Application of a periodic train of excitation pulses spaced at equal intervals at, or in multiples of, the ultrasound period enables a time-locked detection of the modulated light, without the deleterious effects caused by speckle artifacts.

  12. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK channels

    PubMed Central

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A.; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S.; Klyachko, Vitaly A.

    2013-01-01

    SUMMARY Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation-independent and are mediated selectively by BK channels via interaction of FMRP with BK channel’s regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology. PMID:23439122

  13. Histological and molecular analysis of the long-pulse 1,064-nm Nd:YAG laser irradiation on the ultraviolet-damaged skin of hairless mice: In association with pulse duration change.

    PubMed

    Rhee, Do Young; Cho, Hong Il; Park, Gyeong-Hun; Moon, Hye-Rim; Chang, Sung Eun; Won, Chong Hyun; Jung, Joon Min; Park, Ki-Young; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Lee, Deug-Chan; Goo, Boncheol

    2016-01-01

    Nonablative lasers have been widely used to improve photodamaged skin, although the mechanism underlying dermal collagen remodeling remains unclear. To investigate the effects and the molecular mechanisms of long-pulse neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on dermal collagen remodeling in association with different pulse durations. Five hairless mice were pretreated with ultraviolet B irradiation for 8 weeks. The dorsal quadrant of each mouse was then irradiated twice at 1-week intervals at a pulse duration of 1 ms, 12 ms, or 50 ms, and a constant fluence of 20 J/cm(2). The levels of dermal collagen, mRNAs of procollagens, matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs), and various growth factors were analyzed after 4 weeks. Long-pulse Nd:YAG treatment increased the dermal collagen level. A substantial increase in the level of procollagens, MMPs, TIMPs, and various growth factors was also observed irrespective of pulse duration, with a trend toward maximal increase at a pulse duration of 12 ms. Long-pulse 1,064-nm Nd:YAG laser irradiation promotes wound-healing process, which is characterized by the induction of growth factor expression and subsequent increase in MMPs and TIMPs, followed by matrix remodeling as confirmed by new procollagen production.

  14. Pulse-modulated light source for psychometric and vision experiments.

    PubMed

    Scholfield, C N; Murdock, M

    1987-03-01

    Light-emitting diodes (LED) of various colours were used to produce accurately controllable light sources. Variable light intensity was obtained by applying 800-ns current pulses to the LEDs at frequencies 1-1000 kHz using a single potentiometer. These current pulses were generated from an oscillator which was voltage-controlled from a potentiometer and an antilogarithmic amplifier. Its output was gated to produce an optional flicker of 1-100 Hz. The light intensity was indicated by a frequency meter connected to the oscillator. The reading of this was found to linearly indicate light intensity.

  15. High-power sources with smoothly adjustable pulse duration for powering gas-discharge tubes of laser pumping systems

    NASA Astrophysics Data System (ADS)

    Vakulenko, V. M.; Ivanov, L. P.; Ganshin, Y. A.; Karpyshev, I. L.; Korneyev, V. A.

    1985-10-01

    A series of power supplies for gas-discharge tubes in laser pumping systems has been developed on the basis of the same circuit but with different levels of partial discharge of the capacitive energy storing device. The charger converts the a.c. network voltage into a constant current, very efficiently and at the same charging rate regardless of the discharge level. An overall size and weight reduction is made possible by an intermediate frequency conversion from 50 Hz to 1 kHz, which also allows raising the repetition rate of output pulses. The charger consists of an inverter and a rectifier. The parallel-type inverter includes a thyristor-diode bridge with capacitors and a transformer, and a choke coil, for converting the sine-wave a.c. network voltage into a higher-frequency (1 kHz) square-wave alternating one after the first rectifying it. An important feature here is stiff overvoltage suppression, especially across the switching capacitors, during wide swings such as from no load to full load. The rectifier includes a 300/1000 V step-up transformer with another thyristor-diode bridge and a choke coil in series. A discharge commutator across the rectifier output shunted by a filter-capacitance ensures proper cutoff of the charge discharge current and corresponding control of the pulse duration.

  16. Effect of coil orientation on strength–duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation

    PubMed Central

    D’Ostilio, Kevin; Goetz, Stefan M.; Hannah, Ricci; Ciocca, Matteo; Chieffo, Raffaella; Chen, Jui-Cheng A.; Peterchev, Angel V.; Rothwell, John C.

    2016-01-01

    Objective To compare the strength–duration (S–D) time constants of motor cortex structures activated by current pulses oriented posterior–anterior (PA) or anterior–posterior (AP) across the central sulcus. Methods Motor threshold and input–output curve, along with motor evoked potential (MEP) latencies, of first dorsal interosseus were determined at pulse widths of 30, 60, and 120 μs using a controllable pulse parameter (cTMS) device, with the coil oriented PA or AP. These were used to estimate the S–D time constant and we compared with data for responses evoked by cTMS of the ulnar nerve at the elbow. Results The S–D time constant with PA was shorter than for AP stimulation (230.9 ± 97.2 vs. 294.2 ± 90.9 μs; p < 0.001). These values were similar to those calculated after stimulation of ulnar nerve (197 ± 47 μs). MEP latencies to AP, but not PA stimulation were affected by pulse width, showing longer latencies following short duration stimuli. Conclusion PA and AP stimuli appear to activate the axons of neurons with different time constants. Short duration AP pulses are more selective than longer pulses in recruiting longer latency corticospinal output. Significance More selective stimulation of neural elements may be achieved by manipulating pulse width and orientation. PMID:26077634

  17. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  18. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  19. Picosecond pulse duration laser treatment for dermal melanocytosis in Asians : A retrospective review.

    PubMed

    Ohshiro, Takafumi; Ohshiro, Toshio; Sasaki, Katsumi; Kishi, Kazuo

    2016-06-29

    Background and aims: Recently novel picosecond duration lasers (ps-lasers) have been developed for the treatment of multicolored and recalcitrant tattoos, and safety and efficacy have been reported. We therefore hypothesized that the ps-laser could be an alternative treatment for dermal pigmented lesions and performed a retrospective review to evaluate the efficacy and safety of the ps-laser. Subjects and methods: A retrospective photographic review of 10 patients with dermal pigmented lesions was performed (ages from 4 months to 52 yr), 6 nevus of Ota, 3 ectopic Mongolian spots and 1 Mongolian spots. The patients were treated in the Ohshiro Clinic with picosecond 755 nm alexandrite laser (ps-Alex laser) and picosecond 1064 nm Nd:YAG laser (ps-Nd:YAG laser) from April 2014 to December 2015 (ps-Alex laser, 7 patients; ps-Nd:YAG laser, 3 patients, 1 to 3 treatment sessions). Improvement was evaluated as percentage of pigmentation clearance comparing the baseline findings with those at 3 months after the final treatment using a five category grading scale: Poor, 0-24%; Fair, 25-49%; Good, 50-74%; Excellent, 75-94%; and Complete, 95-100% improvement. Adverse events were also assessed. Results: All ten patients obtained clinical improvement ranging from fair to excellent. Treatment with the ps-Alex laser caused transient hyperpigmentation followed by improvement to complete resolution at 3 months follow-up. The ps-Nd:YAG laser caused severe transient erythema and swelling but no post-inflammatory hyperpigmentation. Conclusions: Our results suggest that the 755 nm and 1064 nm ps-lasers are efficacious for the treatment of dermal pigment lesions, with minimum adverse events.

  20. Picosecond pulse duration laser treatment for dermal melanocytosis in Asians : A retrospective review

    PubMed Central

    Ohshiro, Toshio; Sasaki, Katsumi; Kishi, Kazuo

    2016-01-01

    Background and aims: Recently novel picosecond duration lasers (ps-lasers) have been developed for the treatment of multicolored and recalcitrant tattoos, and safety and efficacy have been reported. We therefore hypothesized that the ps-laser could be an alternative treatment for dermal pigmented lesions and performed a retrospective review to evaluate the efficacy and safety of the ps-laser. Subjects and methods: A retrospective photographic review of 10 patients with dermal pigmented lesions was performed (ages from 4 months to 52 yr), 6 nevus of Ota, 3 ectopic Mongolian spots and 1 Mongolian spots. The patients were treated in the Ohshiro Clinic with picosecond 755 nm alexandrite laser (ps-Alex laser) and picosecond 1064 nm Nd:YAG laser (ps-Nd:YAG laser) from April 2014 to December 2015 (ps-Alex laser, 7 patients; ps-Nd:YAG laser, 3 patients, 1 to 3 treatment sessions). Improvement was evaluated as percentage of pigmentation clearance comparing the baseline findings with those at 3 months after the final treatment using a five category grading scale: Poor, 0–24%; Fair, 25–49%; Good, 50–74%; Excellent, 75–94%; and Complete, 95–100% improvement. Adverse events were also assessed. Results: All ten patients obtained clinical improvement ranging from fair to excellent. Treatment with the ps-Alex laser caused transient hyperpigmentation followed by improvement to complete resolution at 3 months follow-up. The ps-Nd:YAG laser caused severe transient erythema and swelling but no post-inflammatory hyperpigmentation. Conclusions: Our results suggest that the 755 nm and 1064 nm ps-lasers are efficacious for the treatment of dermal pigment lesions, with minimum adverse events. PMID:27721561

  1. Development of Modulator Pulse Stability Measurement Device and Test Results at SLAC

    SciTech Connect

    Huang, C.; Burkhart, C.; Kemp, M.; Morris, B.; Beukers, T.; Ciprian, R.; Nguyen, M.; /SLAC

    2011-08-19

    In this paper, the development of a pulse stability measurement device is presented. The measurement accuracy is better than 250uV, about 4.2ppm of a typical 60V input pulse. Pulse signals up to +/- 80V peak can be measured. The device works together with an oscilloscope. The primary function of the measurement device is to provide a precision offset, such that variations in the flattop of the modulator voltage pulse can be accurately resolved. The oscilloscope records the difference between the pulse flattop and the reference for a series of waveforms. The scope math functions are utilized to calculate the rms variations over the series. The frequency response of the device is characterized by the measured cutoff frequency of about 6.5MHz. In addition to detailing the design and calibration of the precision pulse stability device, measurements of SLAC line-type linac modulators and recently developed induction modulators will be presented. Factors affecting pulse stability will be discussed.

  2. The polyphase resonant converter modulator for pulse power and plasma applications

    SciTech Connect

    Reass, W. A.; Baca, D. M.; Doss, James D.; Gribble, R.; North, W. R.

    2002-01-01

    This paper describes a new technique to generate high voltage pulses (100 kV and up) with high peak power (10 MW and up) and high average power (1 MW and up) from a low voltage input source (e.g. +/- 1.2 kV). This technology is presently being used to provide cathode pulse modulation for the Spallation Neutron Source (SNS) accelerator klystron RF amplifiers, which operate to 140 kV 11 MW peak power and 1.1 MW average power. The design of the modulator, referred to as the Polyphase Resonant Converter-Modulator takes advantage of high-power component advances, in response to the needs of the traction motor industry (in particular, railroad locomotives), such as Insulated Gate Bipolar Transistors (IGBT's) and self-clearing metallized hazy polypropylene capacitors. In addition, the use of amorphous nanocrystalline transformer core alloy permits high frequency voltage and current transformation with low loss and small size. Other unique concepts embodied in the converter-modulator topology are polyphase resonant voltage multiplication and resonant rectification. These techniques further reduce size and improve electrical efficiency. Because of the resonant conversion techniques, electronic 'crowbars' and other load protective networks are not required. A shorted load detunes the circuit resonance and little power transfer can occur. This yields a high-power, high-voltage system that is inherently self-protective. To provide regulated output voltages, Pulse Width Modulation (PWM) of the individual IGBT pulses is used. A Digital signal Processor (DSP) is used to control the IGBT's, with adaptive feed forward and feedback control algorithms that improve pulse fidelity. The converter-modulator has many attributes that make it attractive to various pulse power and plasma applications such as high power RF sources, neutral beam modulators, and various plasma applications. This paper will review the design as used for the SNS accelerator and speculate on related plasma

  3. UWB doublet signal generation and modulation based on DFB laser under optical pulses injection

    NASA Astrophysics Data System (ADS)

    Chen, Dalei; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zhou, Hua; Zhao, Jiyong; Huang, Long; Zhu, Huatao; Wang, Peng

    2016-05-01

    In this paper, a novel scheme to generate ultra-wideband (UWB) doublet signals based on the cross-gain modulation (XGM) effect in the DFB lasers is proposed and experimentally demonstrated, the modulation and transmission of the generated UWB doublet signals are also researched. In the proposed system, a gain-switched laser (GSL) is used as a master laser (ML) and the optical pulses from the ML are optically injected into two paralleled DFB lasers, which are used as slave lasers (SL). Then the outputs from the SLs are detected by a balanced photodiode (BPD) to generate the Bi-phased UWB signals. By properly setting the system parameters, UWB signals with various modulation formats such as on-off keying (OOK), pulse amplitude modulation (PAM) as well as the phase-shift keying (PSK) can be generated. In addition, fiber transmission of the modulated UWB signals is also experimentally investigated.

  4. Multi-function Mach-Zehnder modulator for pulse shaping and generation.

    PubMed

    Gao, Jing; Wu, Hui

    2016-09-19

    We present a multi-function electronic-photonic integrated circuit (EPIC) design which exploits a new operation mode of a Mach-Zehnder modulator (MZM). Different from the conventional design, the two arms of the modulator are driven by time-shifted signals of tunable amplitude. We study its operation in the linear and quadratic regions where the MZM is biased at π/2 and π initial phase difference, respectively. In the linear region, the modulator sums the waveforms of the driving signals in the two arms, which can be used to add pre-emphasis function to the modulator, and hence it obviates an electrical pre-emphasis driver. Furthermore, when operating in the quadratic region, the modulator can produce optical pulses with tunable pulse width at double clock rate. Prototype circuits are designed first using a suit of device, electromagnetic simulators to build compact models, and then importing into a photonic circuit simulator for complete circuit performance evaluation.

  5. A Pulse Power Modulator System for Commercial High Power Ion Beam Surface Treatment Applications

    SciTech Connect

    Barrett, D.M.; Cockreham, B.D.; Dragt, A.J.; Ives, H.C.; Neau, E.L.; Reed, K.W.; White, F.E.

    1999-05-24

    The Ion Beam Surface Treatment (lBESTrM) process utilizes high energy pulsed ion beams to deposit energy onto the surface of a material allowing near instantaneous melting of the surface layer. The melted layer typically re-solidifies at a very rapid rate which forms a homogeneous, fine- grained structure on the surface of the material resulting in significantly improved surface characteristics. In order to commercialize the IBESTTM process, a reliable and easy-to-operate modulator system has been developed. The QM-I modulator is a thyratron-switched five-stage magnetic pulse compression network which drives a two-stage linear induction adder. The adder provides 400 kV, 150 ns FWHM pulses at a maximum repetition rate of 10 pps for the acceleration of the ion beam. Special emphasis has been placed upon developing the modulator system to be consistent with long-life commercial service.

  6. Combinatorial pulse position modulation for power-efficient free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven

    1993-01-01

    A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.

  7. [Metrology of pulse modulated electromagnetic fields with diode-type meters].

    PubMed

    Kubacki, Roman; Kieliszek, Jarosław; Sobiech, Jaromir; Puta, Robert

    2007-01-01

    Electromagnetic field meters used for occupational and general public health protection are commonly calibrated in the continuous wave conditions, but a large number of medical devices, mobile base station antennas and radars generate pulse modulated fields. The results of an analysis of additional errors of pulse fields measurements by diode-type meters (EMR 200/300, PMM and MEH) are presented in this paper.

  8. Shaping pulses using frequency conversion with a modulated picosecond free electron laser

    SciTech Connect

    Hooper, B.A.; Madey, J.M.J.

    1995-12-31

    Computer simulations and experiments indicate that we can shape the infrared picosecond pulses of the Mark III FEL in amplitude, frequency, and phase. Strongly modulated fundamental and second harmonic pulses have been generated by operating the Mark III FEL in the regime of strong sideband growth. In this paper, we present the results of simulations and experiments for second harmonic generation with fundamental inputs from 2 to 3 {mu}m.

  9. Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Bakos, J. S.; Djotyan, G. P.; Ignácz, P. N.; Kedves, M. Á.; Serényi, M.; Sörlei, Zs.; Szigeti, J.; Tóth, Z.

    2006-07-01

    The spatial displacement of the 85Rb atoms in a Magneto-Optical Trap (MOT) under the influence of series of frequency modulated light pulse pairs propagating opposite to each other is measured as a function of the time elapsed after the start of the pulse train, and compared with the results of simulations. Adiabatic excitation and consecutive de-excitation take place between the ground 52S1/2 (F=3) and the 52P3/2 (F'=2, 3, 4) excited levels as the result of the interaction. The displacement of the 85Rb atoms is calculated as the solution of simple equation of motion where the expelling force is that arising from the action of the frequency modulated light pulses. The restoring and friction forces of the MOT are taken into account also. The system of Bloch equations for the density matrix elements is solved numerically for transitions between six working hyperfine levels of the atom interacting with the sequence of the frequency modulated laser pulses. According to these simulations, the momentum transferred by one pulse pair is always smaller than the expected 2ħk, (1) where ħ is the Plank constant and k=2π/λ where λ is the wavelength, (2) having a maximum value in a restricted region of variation of the laser pulse peak intensity and the chirp.

  10. On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model

    NASA Astrophysics Data System (ADS)

    Zhang, Yuantao; Liu, Yu; Liu, Bing

    2017-08-01

    Pulse modulation provides a new way to tailor the electron density, electron energy and gas temperature in atmospheric radio-frequency (rf) discharges. In this paper, by increasing the rf frequency to several hundreds of MHz, or even much higher to the range of GHz, a very strong peak current in the first period (PCFP) with much larger electron energy can be formed during the power-on phase, which is not observed in the common pulse modulation discharges at a rf frequency of 13.56 MHz. The PIC-MCC model is explored to unveil the generation mechanism of PCFP, and based on the simulation data a larger voltage increasing rate over a quarter of a period and the distribution of electron density just before the power-on phase are believed to play key roles; the PCFP is usually produced in the microplasma regime driven by the pulsed power supply. The effects of duty cycle and pulse modulation frequency on the evolution of PCFP are also discussed from the computational data. Therefore, the duty cycle and pulse modulation frequency can be used to optimize the generation of PCFP and high-energy electrons.

  11. Optical 40 GHz pulse source module based on a monolithically integrated mode locked DBR laser

    NASA Astrophysics Data System (ADS)

    Huettl, B.; Kaiser, R.; Kroh, M.; Schubert, C.; Jacumeit, G.; Heidrich, H.

    2005-11-01

    In this paper the performance characteristics of compact optical 40 GHz pulse laser modules consisting of a monolithic mode-locked MQW DBR laser on GaInAsP/InP are reported. The monolithic devices were fabricated as tunable multi-section buried heterostructure lasers. A DBR grating is integrated at the output port of an extended cavity in order to meet the standardized ITU wavelength channels allocated in the spectral window around 1.55 μm in optical high speed communication networks. The fabricated 40 GHz lasers modules not only emit short optical pulses (< 1.5 ps) with very low amplitude noise (<1.5 %) and phase noise levels (timing jitter: 50 fs) but also enable good pulse-to-pulse phase and long-term stability. A wavelength tuning range of 6 nm is possible and large locking bandwidths between 100 ... 260 MHz are observed. All data have been achieved by operating the lasers in a hybrid mode-locking scheme with a required minimum micro-wave power of only 12 dBm for pulse synchronization. Details on laser chip architecture and module performance are summarized and the results of a stable and error free module performance in first 160 Gb/s (4 x 40 Gb/s OTDM) RZ-DPSK transmission experiments are presented.

  12. Control of a shape memory alloy actuator using pulse width (PW) modulation

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Song, Gangbing

    2002-07-01

    Shape memory alloy (SMA)s, in particular the nickel-titanium alloy (or Nitinol), have been used as actuators in some astronautic, aeronautic and industrial applications. Future will see more SMA application if less energy is required for actuation. This paper presents the design and experimental results of control of an SMA actuator using Pulse Width (PW) Modulation to reduce the energy consumption by the SMA actuator. An SMA wire test stand is used in this research. Open-loop testing of the SMA wire actuator is conducted to study the effect of the PWM parameters. Based on results of testing results and parameter analysis of the PW modulator, a PW modulator is designed to modulate a Proportional plus Derivative (PD) controller. Experiments demonstrate that control of the SMA actuator using PW modulation effectively save actuation energy whiling maintaining same control accuracy as compared to continuous PD control. PW modulator also demonstrates robustness to external disturbances. A comparison with pulse width pulse frequency (PWPF) modulator is also presented.

  13. Characterization of the RHEPP 1 {mu}s magnetic pulse compression module

    SciTech Connect

    Harjes, C.; Adcock, J.; Martinez, L.; Van DeValde, D.; Wavrik, R.; Laderach, G.; Pena, G.

    1993-08-01

    The technology for pulsed power based high average power accelerators is being developed in the RHEPP (Repetitive High Energy Pulsed Power) project. This technology base uses magnetic pulse compression to generate repetitive, high peak power pulses. The 1 {mu}s pulse compressor accepts 3400 V rms, 120 Hz input power from a 600-kW alternator and delivers unipolar {approximately}1 {mu}s rise time, 260 kV pulses to the RHEPP pulse forming line at a rate of 120 pps. The compressor consists of 5 stages of pulse compression with a 15 to 260 kV step up transformer between stages 2 and 3. Magnetic switches are used throughout the compressor because such switches seem to offer the potential of meeting the lifetime requirements of high average power systems. Thermal and electrical data has been acquired to characterize the compressor during several long duration runs (some over 1 million shots). A description of the compressor and its components along with data and a discussion of the compressors performance are presented.

  14. Molecular detrapping and band narrowing with high frequency modulation of pulsed field electrophoresis.

    PubMed Central

    Turmel, C; Brassard, E; Slater, G W; Noolandi, J

    1990-01-01

    In high electric fields, megabase DNA fragments are found to be trapped, i.e. to enter or migrate in the gel only very slowly, if at all, leading to very broad electrophoretic bands and loss of separation. As a consequence, low electric fields are usually used to separate these molecules by pulsed field electrophoretic methods. We report here that high-frequency pulses eliminate the molecular trapping found in continuous fields. When high frequency pulses are used to modulate the longer pulses used in pulsed field electrophoresis, narrower bands result, and higher fields can be used. We suggest that this is due to effects that occur on the length scale of a single pore. Images PMID:2408015

  15. Experimental studies of the overshoot and undershoot in pulse-modulated radio-frequency atmospheric discharge

    SciTech Connect

    Huo, W. G.; Li, R. M.; Shi, J. J.; Ding, Z. F.

    2016-08-15

    The overshoot and undershoot of the applied voltage on the electrodes, the discharge current, and radio frequency (RF) power were observed at the initial phase of pulse-modulated (PM) RF atmospheric pressure discharges, but factors influencing the overshoot and undershoot have not been fully elucidated. In this paper, the experimental studies were performed to seek the reasons for the overshoot and undershoot. The experimental results show that the overshoot and undershoot are associated with the pulse frequency, the rise time of pulse signal, and the series capacitor C{sub s} in the inversely L-shaped matching network. In the case of a high RF power discharge, these overshoot and undershoot become serious when shortening the rise time of a pulse signal (5 ns) or operating at a moderate pulse frequency (500 Hz or 1 kHz).

  16. Development of a width-modulated pulse rebalance electronics loop for strapdown gyroscopes

    NASA Technical Reports Server (NTRS)

    Blalock, T. V.; Kennedy, E. J.; Mcknight, R. D.

    1973-01-01

    A new width modulated pulse rebalance electronics loop was developed for use with strapdown gyroscopes. Advantages of the width modulated binary over the ternary loop are the following: (1) The H-switch is easier to implement; (2) torque is applied in finely quantized increments; (3) the analog-to-digital conversion for data generation is inside the loop and is directly determined by the torque pulse; (4) on part of the loop compensation network bypasses the gyroscope; and (5) the torquer is fed constant power.

  17. High pulse repetition frequency fiber-coupled laser-diode module

    NASA Astrophysics Data System (ADS)

    Shi, Guangyuan; Li, Song; Huang, Ke; Zheng, Guoxing

    2016-12-01

    A practical and simple approach of achieving a high pulse repetition frequency fiber-coupled laser-diode device is demonstrated both by experiment and TRACEPRO software simulation, which is obtained by beam collimating, spatial beam combining, and polarization beam combining based on multiple cycle-emitting pulsed laser-diode emitters. Using this method, fiber-coupled laser-diode module output pulse repetition frequency from the multimode fiber with 200-μm core diameter and 0.22 numerical aperture can reach 300 kHz, and the coupling efficiency is beyond 72%. This technique has superiors of great flexibility, low cost, and high reliability for wide applications.

  18. High-resolution width-modulated pulse rebalance electronics for strapdown gyroscopes and accelerometers

    NASA Technical Reports Server (NTRS)

    Kennedy, E. J.; Blalock, T. V.; Bryan, W. L.; Rush, K.

    1974-01-01

    Three different rebalance electronic loops were designed, implemented, and evaluated. The loops were width-modulated binary types using a 614.4 kHz keying signal; they were developed to accommodate the following three inertial sensors with the indicated resolution values: (1) Kearfott 2412 accelerometer - resolution = 260 micro-g/data pulse, (2) Honeywell GG334 gyroscope - resolution = 3.9 milli-arc-sec/data pulse, (3) Kearfott 2401-009 accelerometer - resolution = 144 milli-g/data pulse. Design theory, details of the design implementation, and experimental results for each loop are presented.

  19. The influence of temporal pulse train modulation during laser percussion drilling

    NASA Astrophysics Data System (ADS)

    Low, D. K. Y.; Li, L.; Byrd, P. J.

    2001-03-01

    The temporal pulse train modulation during laser percussion drilling was found to effect significant changes to the material ejection processes. In particular, distinct differences in the material ejection processes have been observed between a temporal pulse train shaping technique termed as sequential pulse delivery pattern control (SPDPC) and the normal delivery pattern (NDP), wherein the parameters of successive laser pulses were constant. Due to the reduced upward material removal fractions in SPDPC drilling, the spatter deposition area was reduced from approximately 6.7 to 2.7 mm2. In addition, the melt layer thicknesses at the hole bottom were significantly increased from 11-61 to 18- 369 μm. Such changes were identified as being due to the low laser pulse intensities before beam breakthrough associated with the SPDPC method. It was observed that the use of the linearly increasing SPDPC method increased the downward material removal fractions, from 20% to 28% observed in NDP drilling, to 34%-39%. Such an increase in the downward material ejection mechanism in SPDPC drilling was identified as being primarily due to the pointed blind-hole profile generated before the onset of beam breakthrough. The work has shown that modulating the entire pulse train in laser percussion drilling could control the material ejection processes. Furthermore, the fundamental elements of the SPDPC technique are given in terms of the rate of energy deposition and total pulse train energy.

  20. Generation of ultrashort pulses with minimum duration of 90\\ {\\text{fs}} in a hybrid mode-locked erbium-doped all-fibre ring laser

    NASA Astrophysics Data System (ADS)

    Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.

    2016-11-01

    Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.

  1. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.

  2. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    SciTech Connect

    Castillo-Negrete, Diego del; Blazevski, Daniel

    2016-04-15

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.

  3. Modeling of Pulses Having Arbitrary Amplitude and Frequency Modulation.

    DTIC Science & Technology

    1980-03-01

    function, fi(t), has been discussed in great detail in Section II. The linearized amplitude modulation, 1(t), is given by: (IV-6) vo A +h( -) TO’ # where "A...10. LCDR Francis Martin Lunney, USN 6143 Gatsby Green Columbia, Maryland 21045 149

  4. A scheme of pulse compression lidar with enhanced modulated bandwidth for detection through scattering media

    NASA Astrophysics Data System (ADS)

    Yang, Cheng-hua; Zhang, Yong; Jin, Chen-fei; Xu, Lu; Yang, Xu; Wang, Qiang; Liu, Yue-hao; Zhao, Yuan

    2016-12-01

    This paper presents a scheme of pulse compression lidar with enhanced electrical modulated bandwidth. An ultra-wideband linear frequency modulated signal with a bandwidth of 50 GHz is generated using femtosecond laser and superimposed linear chirp fiber Bragg gratings in the transmitter, which separates the echo of the target from the backward scattered noise with low modulated frequency. An optical pulse compression system based on a negative dispersion fiber Bragg grating is used to compress the ultra-wideband linear frequency modulated signal in the receiver. SNR and range resolution of the proposed scheme are numerically simulated to prove its feasibility. The simulation results indicate that an enhancement of SNR by 15.8 dB can be achieved using the scheme, and the range resolution of the scheme increases from 0.68 m to 0.0027 m. It is therefore concluded that the proposed scheme is suitable for detection through scattering media.

  5. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  6. Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses.

    PubMed

    Guyot, Stéphane; Ferret, Eric; Boehm, Jean-Baptiste; Gervais, Patrick

    2007-01-25

    The effects of electric field (EF) treatments on Saccharomyces cerevisiae viability were investigated using a PG200 electroporator (Hoefer Scientific Instrument, San Fransisco, CA, USA) with specific attention to induced thermal effects on cell death. Lethal electric fields (1.5 kV cm(-1) for 5 s) were shown to cause heat variations in the cell suspension medium (water+glycerol), while corresponding classical thermal treatments at equivalent temperatures had no effect on the cells viability. Variations of the electrical conductivity of the intra- and extracellular matrix caused by ions and solutes transfer across the membrane were shown to be involved in the observed heating. The results permitted to build a theoretical model for the temperature variations induced by electric fields. Using this model and the electrical conductivity of the different media, a plausible explanation of the cell death induced by low-intensity electric fields with long-duration pulses has been proposed. Indeed, cell mortality could in part be caused by direct and indirect effects of electric fields. Direct effects are related to well known electromechanical phenomena, whereas indirect effects are related to secondary thermal stress caused by plasma membrane thermoporation. This thermoporation was attributed to electrical conductivity variations and the corresponding intracellular heating.

  7. Expanding range of pulsed range sensors with active projection from spatial light modulators

    NASA Astrophysics Data System (ADS)

    Xun, Xiaodong; Su, Wei; Cohn, Robert W.; Hassebrook, Laurence G.; Lau, Daniel L.

    2006-05-01

    LIDAR-based systems measure the time-of-flight of a laser source onto the scene and back to the sensor, building a wide field of view 3D raster image, but as a scanning process, there are problems associated with motion inside the scene over the duration of the scan. By illuminating the entire scene simultaneously using a broad laser pulse, a 2D camera equipped with a high speed shutter can measure the time-of-flight over the entire field of view (FOV), thereby, recording an instantaneous snap-shot of the entire scene. However, spreading the laser reduces the range. So what is required is a programmable system that can track multiple regions of interest by varying the field of regard to (1) a single direction, (2) the entire FOV, or (3) intermediate views of interest as required by the evolving scene environment. In this project, the investigators intend to add this variable illumination capability to existing instantaneous ranging hardware by using a liquid crystal spatial light modulator (SLM) beam steering system that adaptively varies the (single or multi) beam intensity profiles and pointing directions. For autonomous satellite rendezvous, docking, and inspection, the system can perform long-range sensing with a narrow FOV while being able to expand the FOV as the target object approaches the sensor. To this end in a previous paper, we analyzed the performance of a commercially available TOF sensor (3DVSystems' Zmini) in terms of the depth sensitivity versus target range and albedo. In this paper, we will analyze the laser system specifications versus range of field-of-view when beam steering is performed by means of a Boulder Nonlinear Systems' phase-only liquid crystal SLM. Experimental results show that the adjustable laser beam FOV extensively compensate the reflected image grayscale from objects at long range, and prove the feasibility of expanding range with the projection from the SLM.

  8. [The design of an OEM module-based hand-hold pulse oximeter].

    PubMed

    Zhou, H; Feng, H; Du, K

    1997-03-01

    This paper describes the software and hardware design of an OEM module-based hand-hold pulse oximeter. The instrument has the features of compact structure, reliable performance, having all the necessary functions, providing measurements on any patients and low power consumption. It is possible to make this instrument as a commercial product in shorter period.

  9. All-fibre sensing loop using pulse-modulated light-emitting diode

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.

    1985-01-01

    A sensing system is presented which includes a pulse-modulated light-emitting diode (LED) and an all-fibre-optic loop generating a reference signal in the time domain. The basic principle of operation and parameters are introduced, and some properties of such a system are experimentally examined using a microbend sensor.

  10. Curling probe measurement of electron density in pulse-modulated plasma

    SciTech Connect

    Pandey, Anil; Nakamura, Keiji; Sugai, Hideo; Sakakibara, Wataru; Matsuoka, Hiroyuki

    2014-01-13

    The electron density n{sub e} of stationary plasma can be easily obtained on the basis of the resonance frequency f of a curling probe (CP) measured by a network analyzer (NWA). However, in pulsed plasma with discharge period T, the n{sub e} and f values periodically change with time. This study extends the conventional CP technique to a time-resolved measurement of the pulse-modulated electron density. The condition necessary for the measurement is revealed to be synchronization of NWA with the pulse modulation, which is expressed as (n − 1)T/T{sub SWP} = integer (1, 2, …) for a number n of data point and sweep time T{sub SWP}.

  11. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  12. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS.

    PubMed

    Diwakar, Prasoon K; Harilal, Sivanandan S; LaHaye, Nicole L; Hassanein, Ahmed; Kulkarni, Pramod

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes.

  13. Testing a Scaled Pulsed Modulator for an IEC Neutron Source into a Resistive Load

    DTIC Science & Technology

    2009-06-01

    National Laboratory (LANL). The scaled prototype modulator is based on a solid-state Marx architecture and has an output voltage of 13 kV and an output...duty factor up to 5% and has a maximum pulse repetition frequency of 1 kHz. The use of a solid-state Marx modulator in this application has several...agility of the modulator is demonstrated through turning the individual Marx stages on and off in sequence producing ramp, pyramid, and reverse pyramid waveforms.

  14. Generation of energetic protons in the interaction of Gaussian laser pulses with surface modulated targets

    SciTech Connect

    Wang, W. Q.; Yin, Y. Yu, T. P.; Hu, L. X.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Xu, H.

    2014-12-15

    The radiation pressure acceleration of protons in the interaction of Gaussian laser pulses and surface modulated targets is examined by multi-dimensional particle-in-cell simulations. It is shown that strong longitudinal quasi-static magnetic field is generated on the modulated surface of the target, which significantly enhances the transverse diffusion of electrons. This is beneficial for suppressing the transverse Rayleigh-Taylor instability. Finally, the surface of the accelerated proton beams becomes smoother than that in the case of the planar target, and a final mono-energetic proton beam is obtained by using the surface modulated target.

  15. The COMET: A 6-MV, 400-kJ, magnetically-switched pulse-power module

    NASA Astrophysics Data System (ADS)

    Neau, E. L.

    The Inertial Confinement Fusion program at Sandia National Laboratories (SNL) is based on the use of large, economical, multi-module, multimegavolt accelerators to drive ion beam generating diodes or imploding plasma loads. This type of accelerator uses several stages of pulse time compression to raise the peak power to the multi-terrawatt level. Pulsed power accelerators have traditionally relied on the ionization of a gaseous, liquid, or solid material, through one or several channels, to connect one pulse compression stage to a succeeding stage. The large change in inductance of a region enclosing a saturable ferri or ferromagnetic material can, with proper design, be substituted for the more conventional switching techniques in certain applications. The use of amorphous METGLAS 2606SC saturable cores, based on earlier system studies, as a possible low-loss repetitive substitute for the self-closing water switches used in the final stages of one class of the pulse power accelerators was investigated.

  16. Flat-top temporal and spatial profiles femtosecond pulse beam generated by phase only modulating

    NASA Astrophysics Data System (ADS)

    Nie, Yong-ming; Liu, Jun-hui; Huang, Pu-hua; Tang, Ji-zhen; Yang, Xuehua; Ma, Hao-tong; Li, Xiu-jian

    2013-09-01

    The method for generating temporal flat-top waveform and spatial flat-top profile femtosecond pulse beam by phase and polarization controlling is proposed and demonstrated. Based on direct wave front phase modulating, flat-top spatial intensity distribution can be obtained. Combining a folded 4f zero-dispersion system with a polarization controlling setup, the temporal flat-top waveform is generated. Experimental results indicate that for the input both temporal and spatial Gaussian pulse beam with 363 fs temporal width and 1.5 mm beam waist, the temporal width of the output shaped pulse beam is 1.2 ps and 1.9mm beam waist, and the rms variation is about 9.2%, which prove that the temporal flat-top and spatial flat-top femtosecond pulse beam can be generated effectively.

  17. Experimental study on the single event effects in pulse width modulators by laser testing

    NASA Astrophysics Data System (ADS)

    Wen, Zhao; Xiaoqiang, Guo; Wei, Chen; Hongxia, Guo; Dongsheng, Lin; Hanning, Wang; Yinhong, Luo; Lili, Ding; Yuanming, Wang

    2015-11-01

    This paper presents single event effect (SEE) characteristics of UC1845AJ pulse width modulators (PWMs) by laser testing. In combination with analysis to map PWM circuitry in the microchip dies, the typical SEE response waveforms for laser pulses located in different circuit blocks of UC1845AJ are obtained and the SEE mechanisms are analyzed. The laser SEE test results show that there are some differences in the SEE mechanisms of different circuit blocks, and phase shifts or changes in the duty cycles of few output pulses are the main SEE behaviors for UC1845AJ. In addition, a new SEE behavior which manifests as changes in the duty cycles of many output pulses is revealed. This means that an SEE hardened design should be considered.

  18. Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator.

    PubMed

    Adany, Peter; Price, E Shane; Johnson, Carey K; Zhang, Run; Hui, Rongqing

    2009-03-01

    A voltage-controlled birefringent cell based on ceramic PMN-PT material is used to enable fast intensity modulation of femtosecond laser pulses in the 800 nm wavelength window. The birefringent cell based on a PMN-PT compound has comparatively high electro-optic response, allowing for a short interaction length of 3 mm and thus very small size, low attenuation of 0.16 dB, and negligible broadening for 100 fs optical pulses. As an application example, agile wavelength tuning of optical pulses is demonstrated using the soliton self-frequency shift in a photonic crystal fiber. By dynamically controlling the optical power into the fiber, this system switches the wavelength of 100 fs pulses from 900 nm to beyond 1120 nm with less than 5 micros time. In addition, a feedback system stabilizes the wavelength drift against external conditions resulting in high wavelength stability.

  19. A novel pulse compression algorithm for frequency modulated active thermography using band-pass filter

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnendu; Roy, Deboshree; Tuli, Suneet

    2017-05-01

    This paper proposes a novel pulse compression algorithm, in the context of frequency modulated thermal wave imaging. The compression filter is derived from a predefined reference pixel in a recorded video, which contains direct measurement of the excitation signal alongside the thermal image of a test piece. The filter causes all the phases of the constituent frequencies to be adjusted to nearly zero value, so that on reconstruction a pulse is obtained. Further, due to band-limited nature of the excitation, signal-to-noise ratio is improved by suppressing out-of-band noise. The result is similar to that of a pulsed thermography experiment, although the peak power is drastically reduced. The algorithm is successfully demonstrated on mild steel and carbon fibre reference samples. Objective comparisons of the proposed pulse compression algorithm with the existing techniques are presented.

  20. Laser ablation of skull tissue using transverse excited 9.6-μm CO2 lasers with pulse durations of 1-100 μs

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Fried, Daniel

    2000-06-01

    Craniotomy using a drill and saw frequently results in fragmentation of the skull plate. Lasers have the potential to remove the skull plate intact. TE CO2 lasers operating at the peak absorption wavelength of bone ((lambda) equals 9.6 micrometer) and with pulse durations of 5 - 10 microseconds, approximately the thermal relaxation time in hard tissue, produced high ablation rates and minimal peripheral thermal damage. Both thick (2 mm) and thin (250 micrometer) bovine skull samples were perforated and the ablation rates calculated. Results were compared with Q-switched and free- running Er:YAG lasers ((lambda) equals 2.94 micrometer, (tau) p equals 150 ns and 150 microseconds). The CO2 laser perforated thick sections at ablation rates of 10 - 15 micrometer per pulse and fluences of approximately 6 J/cm2. There was no discernible thermal damage and no need for water irrigation during ablation. Pulse durations >= 20 microseconds resulted in significant tissue charring which increased with the pulse duration. Although the Er:YAG laser produced ablation rates of approximately 100 micrometer per pulse, fluences > 30 J/cm2 were required to perforate thick samples, and thermal damage measured 25 - 40 micrometer. In summary, the novel 5 - 10 microsecond pulse length of the TE CO2 laser is long enough to avoid a marked reduction in the ablation rate due to plasma formation and short enough to avoid peripheral thermal damage through thermal diffusion during the laser pulse. Further studies with the TE CO2 laser are warranted for potential clinical application craniotomy procedures.

  1. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    NASA Astrophysics Data System (ADS)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  2. Formation and amplification of subfemtosecond x-ray pulses in a plasma medium of hydrogenlike ions with a modulated resonant transition

    NASA Astrophysics Data System (ADS)

    Akhmedzhanov, T. R.; Antonov, V. A.; Morozov, Anatoly; Goltsov, Alexander; Scully, Marlan; Suckewer, Szymon; Kocharovskaya, Olga

    2017-09-01

    Coherent intense attosecond x-ray pulses could lead to a fast dynamical imaging of biological macromolecules and other material nanostructures with a unique combination of a record high temporal and spatial resolution. Plasma-based x-ray laser sources are capable of producing high-energy x-ray pulses but with relatively long picosecond duration. The sources based on high-harmonic generation (HHG) of a laser field allow one to produce much shorter pulses but of lower energy. We suggest two different paths towards intense subfemtosecond x-ray sources: (i) via efficient transformation of the picosecond radiation of the x-ray plasma lasers into the trains of subfemtosecond pulses in a resonantly absorbing medium, and (ii) via amplification of HHG radiation in the active medium of the x-ray plasma lasers. We show that essentially the same technique can be used for realization of both paths. This technique is a modulation of the parameters of the resonant transition (accordingly in absorbing or amplifying medium) produced under the action of a sufficiently strong infrared or optical field. We propose experimental realization of the suggested technique in the passive and/or active media of (i) Li iii ions modulated by the mid-IR laser field and (ii) C vi ions modulated by the optical laser radiation.

  3. High efficiency WCDMA power amplifier with Pulsed Load Modulation (PLM) technique

    NASA Astrophysics Data System (ADS)

    Liao, Shu-Hsien

    In wireless communication, high data rate complex modulation is used for spectral efficiency. However, power efficiency of power amplifier degrades when complex modulation is applied. Therefore, efficiency enhancement is necessary to maintain the performance. However, conventional efficiency enhancement schemes are nonlinear and performance improvement can only be optimized over a small range of power level. In order to preserve linearity and power efficiency, we propose a new digital power amplification technique "Pulsed Load Modulation (PLM)" for high efficiency and linear amplification. The PLM technique realizes load impedance modulation in digital fashion which is insensitive to device nonlinearity. Furthermore, the optimum power efficiency can be maintained over a wide range of output power. In this work, a PLM power amplifier module has been fabricated and to demonstrate the ability of PLM to provide high efficiency and linear amplification.

  4. Higher-order modulations of fs laser pulses for GHz frequency domain photon migration system.

    PubMed

    Lin, Huang-Yi; Cheng, Nanyu; Tseng, Sheng-Hao; Chan, Ming-Che

    2014-02-24

    Except the fundamental modulation frequency, by higher-order-harmonic modulations of mode-locked laser pulses and a simple frequency demodulation circuit, a novel approach to GHz frequency-domain-photon-migration (FDPM) system was reported. With this novel approach, a wide-band modulation frequency comb is available without any external modulation devices and the only electronics to extract the optical attenuation and phase properties at a selected modulation frequency in FDPM systems are good mixers and lock-in devices. This approach greatly expands the frequency range that could be achieved by conventional FDPM systems and suggests that our system could extract much more information from biological tissues than the conventional FDPM systems. Moreover, this demonstration will be beneficial for discerning the minute change of tissue properties.

  5. IEEE Conference Record of 1980 Fourteenth Pulse Power Modulator Symposium, 3-5 June 1980.

    DTIC Science & Technology

    1980-01-01

    rise time, short duration electron oxygen . The analyses suggest that the use of high beam pulse that allows observation of the intrinsic pressure...nitrogen gas ( l.0lxl0 6 Pa - 10 at*), with a properties of the gas dielectric. The electrical and small percentage of oxygen , which is an electronegative...that of nitrogen and oxygen and so initial experiments will be performed with combinations Introduction of these two elements. After a thorough

  6. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br2 down to 13 μs

    NASA Astrophysics Data System (ADS)

    Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P.

    2015-05-01

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  7. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br{sub 2} down to 13 μs

    SciTech Connect

    Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P.

    2015-05-15

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br{sub 2} and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br{sub 2}. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  8. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br2 down to 13 μs.

    PubMed

    Lam, Jessica; Rennick, Christopher J; Softley, Timothy P

    2015-05-01

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80,000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  9. Optimizing the performance of modulated pulse laser systems for imaging and ranging applications

    NASA Astrophysics Data System (ADS)

    Mullen, L.; Lee, R.; Illig, D.

    2017-05-01

    Blue-green laser systems are being developed for optical imaging and ranging in the underwater environment. The imaging application requires high range resolution to distinguish between multiple targets in the scene or between multiple target features, while the ranging application benefits from measurements with high range accuracy. The group at the Naval Air Warfare Center Aircraft Division (NAWCAD) in Patuxent River, MD has been investigating the merging of wideband radar modulation schemes with a pulsed laser system for underwater imaging and ranging applications. For the imaging application, the narrow peak produced by pulse compression at the receiver offers enhanced range resolution relative to traditional short pulse approaches. For ranging, the selection of modulation frequency bands approaching 1GHz provides backscatter and forward scatter suppression and enhanced range accuracy. Both passband and baseband digital processing have been applied to data collected in laboratory water tank experiments. The results have shown that the choice of processing scheme has a significant impact on optimizing the performance of modulated pulse laser systems for either imaging or ranging applications. These different processing schemes will be discussed, and results showing the effect of the processing schemes for imaging and ranging will be presented.

  10. Nonlinear modulational stability and propagation of an electromagnetic pulse in a two-component, neutral plasma

    SciTech Connect

    Kates, R.E.; Kaup, D.J.

    1989-11-10

    Nonlinear effects are studied including possible modulational instability of an intense electromagnetic pulse propagating through a fully-ionized, unmagnetized plasma. The envelope is shown to evolve over long time scales in general according to a vector form of the well-known cubic nonlinear Schroedinger (NLS) equation. Three distinct nonlinear effects contribute terms cubic in the amplitude and thus can be of comparable magnitude: ponderomotive forces, relativistic corrections, and harmonic generation. Influence of an ambient magnetic field on the nonlinear modulational stability of circularly polarized electromagnetic pulses in a two-component, neutral plasma; the nonlinear modulational stability properties of plasma electromagnetic pulses are extended to include the presence of an ambient magnetic field Bo parallel to the direction of propagation. The positive component may consist of either positrons or singularly charged ions, and specific assumptions or approximations are made concerning the mass ratio of the components. Approximate solutions are derived which describe the evolution of a circularly polarized pulse. The envelope is shown to evolve over long time scales according to the cubic nonlinear Schroedinger (NLS) equation.

  11. Ultrafast saturation of electronic-resonance-enhanced coherent anti-Stokes Raman scattering and comparison for pulse durations in the nanosecond to femtosecond regime

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Roy, Sukesh; Gord, James R.

    2016-02-01

    The saturation threshold of a probe pulse in an ultrafast electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman spectroscopy (CARS) configuration is calculated. We demonstrate that while the underdamping condition is a sufficient condition for saturation of ERE-CARS with the long-pulse excitations, a transient gain must be achieved to saturate the ERE-CARS signal for the ultrafast probe regime. We identify that the area under the probe pulse can be used as a definitive parameter to determine the criterion for a saturation threshold for ultrafast ERE-CARS. From a simplified analytical solution and a detailed numerical calculation based on density-matrix equations, the saturation threshold of ERE-CARS is compared for a wide range of probe-pulse durations from the 10-ns to the 10-fs regime. The theory explains both qualitatively and quantitatively the saturation thresholds of resonant transitions and also gives a predictive capability for other pulse duration regimes. The presented criterion for the saturation threshold will be useful in establishing the design parameters for ultrafast ERE-CARS.

  12. CMOS in-pixel optical pulse frequency modulator

    NASA Astrophysics Data System (ADS)

    Nel, Nicolaas E.; du Plessis, M.; Joubert, T.-H.

    2016-02-01

    This paper covers the design of a complementary metal oxide semiconductor (CMOS) pixel readout circuit with a built-in frequency conversion feature. The pixel contains a CMOS photo sensor along with all signal-to-frequency conversion circuitry. An 8×8 array of these pixels is also designed. Current imaging arrays often use analog-to-digital conversion (ADC) and digital signal processing (DSP) techniques that are off-chip1. The frequency modulation technique investigated in this paper is preferred over other ADC techniques due to its smaller size, and the possibility of a higher dynamic range. Careful considerations are made regarding the size of the components of the pixel, as various characteristics of CMOS devices are limited by decreasing the scale of the components2. The methodology used was the CMOS design cycle for integrated circuit design. All components of the pixel were designed from first principles to meet necessary requirements of a small pixel size (30×30 μm2) and an output resolution greater than that of an 8-bit ADC. For the photodetector, an n+-p+/p-substrate diode was designed with a parasitic capacitance of 3 fF. The analog front-end stage was designed around a Schmitt trigger circuit. The photo current is integrated on an integration capacitor of 200 fF, which is reset when the Schmitt trigger output voltage exceeds a preset threshold. The circuit schematic and layout were designed using Cadence Virtuoso and the process used was the AMS CMOS 350 nm process using a power supply of 5V. The simulation results were confirmed to comply with specifications, and the layout passed all verification checks. The dynamic range achieved is 58.828 dB per pixel, with the output frequencies ranging from 12.341kHz to 10.783 MHz. It is also confirmed that the output frequency has a linear relationship to the photocurrent generated by the photodiode.

  13. Copropagation of coupled laser pulses in magnetized plasmas: Modulational instability and coupled solitons

    NASA Astrophysics Data System (ADS)

    Borhanian, Jafar; Aghaei Golijan, Hassan

    2017-03-01

    The nonlinear propagation of two circularly polarized strong laser pulses in a magnetized plasma is considered. In a weakly relativistic regime, it is shown that the evolution of amplitudes of the laser pulses is governed by two coupled cubic nonlinear Schrödinger (NLS) equations. The modulational instability of coupled plane wave solutions is investigated based on coupled NLS equations. The dependence of the growth rate on relevant parameters of the system is addressed. The possibility of formation of various kinds of coupled solitary wave solutions in magnetized and unmagnetized cases is considered, and the variation of the profile of these solutions with different parameters is explored.

  14. The paired-pulse index: a measure of hippocampal dentate granule cell modulation.

    PubMed

    Bronzino, J D; Blaise, J H; Morgane, P J

    1997-01-01

    This study was undertaken to assess whether the paired-pulse index (PPI) is an effective measure of the modulation of dentate granule cell excitability during normal development. Paired-pulse stimulations of the perforant path were, therefore, used to construct a PPI for 15-, 30-, and 90-day old, freely moving male rats. Significant age-dependent differences in the PPI were obtained. Fifteen-day old rats showed significantly less inhibition at short interpulse intervals [interpulse interval (IPI): 20 to 30 msec), a lack of facilitation at intermediate IPIs (50 to 150 msec), and significantly less inhibition at longer IPIs (300 to 1,000 msec) than adults.

  15. Short optical pulse generated by integrated MQW DBR laser/EA-modulator

    NASA Astrophysics Data System (ADS)

    Chen, Young-Kai; Tanbun-Ek, Tawee; Logan, Ralph A.; Tate, A. R.; Sergent, A. M.; Wecht, K. W.; Sciortino, Paul F., Jr.; Raybon, Gregory; Froberg, Nan M.; Johnson, Anthony M.

    1994-05-01

    We report on the generation of short optical pulses by utilizing the non-linear absorption characteristics of a multiple quantum well (MQW) electro-absorption modulator, which is monolithically integrated with a MQW wavelength-tunable distributed Bragg reflector (DBR) laser on a single chip. Optical pulses as short as 39 ps and 15 ps have been generated at a repetition rate of 3 GHz and 10 GHz, respectively, with a broad tuning range of 5.4 nm near 1554 nm lasing wavelength.

  16. Modulation of extraordinary optical transmission through nanohole arrays using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Pearce, Kellie; Dehde, Robin; Spreen, Anika; Späth, Christian; Wendl, Maximilian; Schmidt, Jürgen; Kleineberg, Ulf

    2016-04-01

    We use three dimensional finite-difference-time-domain simulations to study the dynamics of extraordinary optical transmission through arrays of nanoholes in 200 nm-thick Au films on silicon nitride substrates. By diving the light source into two identical 5 femtosecond pulses and tuning the relative delay between them, we are able to modulate both the intensity and spectra of the transmitted light on ultrashort time scales. Simulations demonstrate that the intensity and distribution of the electric fields on the surface of the film and within the nanoholes are altered by changing the pulse delay.

  17. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE PAGES

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay

  18. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    SciTech Connect

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter is $\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$ that determines the length scale, $1/\\gamma$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $\\omega \\gg 1$, or small parallel thermal conductivities, $\\chi_\\parallel \\ll 1$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $\\gamma$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay of modulated heat

  19. Influence of the Duration of Thermal Action on the Errors in Determining the Thermophysical Characteristics of Ceramic Materials by a Laser Pulse Method

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Kats, M. D.

    2016-05-01

    An analysis of the errors involved in determining the thermophysical characteristics of a special-purpose ceramic material — zirconium carbide — is made. It is shown that the errors of determining the heat capacity and thermal diffusivity of the indicated material under conditions corresponding to the implementation of the laser pulse method vary nonmonotonically depending on the pulse duration. The possibility of attaining minimum values of methodical errors by appropriately selecting the thickness of a sample and of the time of its heating is shown.

  20. The Relationship Between Duration of Postrotary Nystagmus and Driver Behavior: Learning Theory Module.

    ERIC Educational Resources Information Center

    Geier, Suzanne Smith; Young, Barbara

    It was hypothesized that behavior patterns, learned early in life and maintained by almost continuous reinforcement, are determined by basic physiology, which in this study is represented by the duration of postrotary nystagmus (involuntary eyeball movement following rotational stimulation). The Southern California Postrotary Nystagmus Test was…

  1. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    PubMed

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Single-shot laser pulse reconstruction based on self-phase modulated spectra measurements

    PubMed Central

    Anashkina, Elena A.; Ginzburg, Vladislav N.; Kochetkov, Anton A.; Yakovlev, Ivan V.; Kim, Arkady V.; Khazanov, Efim A.

    2016-01-01

    We report a method for ultrashort pulse reconstruction based only on the pulse spectrum and two self-phase modulated (SPM) spectra measured after pulse propagation through thin media with a Kerr nonlinearity. The advantage of this method is that it is a simple and very effective tool for characterization of complex signals. We have developed a new retrieval algorithm that was verified by reconstructing numerically generated fields, such as a complex electric field of double pulses and few-cycle pulses with noises, pedestals and dips down to zero spectral intensity, which is challenging for commonly used techniques. We have also demonstrated a single-shot implementation of the technique for the reconstruction of experimentally obtained pulses. This method can be used for high power laser systems operating in a single-shot mode in the optical, near- and mid-IR spectral ranges. The method is robust, low cost, stable to noise, does not require a priori information, and has no ambiguity related to time direction. PMID:27646027

  3. Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance.

    PubMed

    Iliopoulos, Fivos; Nierhaus, Till; Villringer, Arno

    2014-03-01

    Although noise is usually considered to be harmful for signal detection and information transmission, stochastic resonance (SR) describes the counterintuitive phenomenon of noise enhancing the detection and transmission of weak input signals. In mammalian sensory systems, SR-related phenomena may arise both in the peripheral and the central nervous system. Here, we investigate behavioral SR effects of subliminal electrical noise stimulation on the perception of somatosensory stimuli in humans. We compare the likelihood to detect near-threshold pulses of different intensities applied on the left index finger during presence vs. absence of subliminal noise on the same or an adjacent finger. We show that (low-pass) noise can enhance signal detection when applied on the same finger. This enhancement is strong for near-threshold pulses below the 50% detection threshold and becomes stronger when near-threshold pulses are applied as brief trains. The effect reverses at pulse intensities above threshold, especially when noise is replaced by subliminal sinusoidal stimulation, arguing for a peripheral direct current addition. Unfiltered noise applied on longer pulses enhances detection of all pulse intensities. Noise applied to an adjacent finger has two opposing effects: an inhibiting effect (presumably due to lateral inhibition) and an enhancing effect (most likely due to SR in the central nervous system). In summary, we demonstrate that subliminal noise can significantly modulate detection performance of near-threshold stimuli. Our results indicate SR effects in the peripheral and central nervous system.

  4. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator.

    PubMed

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-20

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200 mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230 fs, which is caused by the spatial-temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.

  5. Single-shot laser pulse reconstruction based on self-phase modulated spectra measurements

    NASA Astrophysics Data System (ADS)

    Anashkina, Elena A.; Ginzburg, Vladislav N.; Kochetkov, Anton A.; Yakovlev, Ivan V.; Kim, Arkady V.; Khazanov, Efim A.

    2016-09-01

    We report a method for ultrashort pulse reconstruction based only on the pulse spectrum and two self-phase modulated (SPM) spectra measured after pulse propagation through thin media with a Kerr nonlinearity. The advantage of this method is that it is a simple and very effective tool for characterization of complex signals. We have developed a new retrieval algorithm that was verified by reconstructing numerically generated fields, such as a complex electric field of double pulses and few-cycle pulses with noises, pedestals and dips down to zero spectral intensity, which is challenging for commonly used techniques. We have also demonstrated a single-shot implementation of the technique for the reconstruction of experimentally obtained pulses. This method can be used for high power laser systems operating in a single-shot mode in the optical, near- and mid-IR spectral ranges. The method is robust, low cost, stable to noise, does not require a priori information, and has no ambiguity related to time direction.

  6. 948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Boivinet, S.; Lecourt, J.-B.; Hernandez, Y.; Fotiadi, A.; Mégret, P.

    2014-05-01

    We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is inserted in a Fabry-Perot laser cavity. In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of 100m length fiber and a delivered pulse duration of few picosecondes. Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse, are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking regime is achieved, the laser delivers linearly polarized pulses in a very stable way. Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear mirror and its operation are studied.

  7. 180 mJ, long-pulse-duration, master-oscillator power amplifier with linewidth less than 25.6 kHz for laser guide stars.

    PubMed

    Wang, Chunhua; Zhang, Xiang; Ye, Zhibin; Liu, Chong; Chen, Jun

    2013-07-01

    A high-energy single-frequency hundred-microsecond long-pulse solid-state laser is demonstrated, which features an electro-optically modulated seed laser and two-stage double-passed pulse-pumped solid-state laser rod amplifier. Laser output with energy of 180 mJ, repetition rate of 50 Hz, and pulse width of 150 μs is achieved. The laser linewidth is measured to be less than 25.52 kHz by a fiber delay self-heterodyne method. In addition, a closed-loop controlling system is adopted to lock the center wavelength. No relaxation oscillation spikes appear in the pulse temporal profile, which is beneficial for further amplification.

  8. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron.

    PubMed

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  9. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron

    NASA Astrophysics Data System (ADS)

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  10. Fibre laser system providing generation of frequency-modulated pulses with a spectral width exceeding the gain linewidth

    NASA Astrophysics Data System (ADS)

    Zolotovskii, I. O.; Korobko, D. A.; Stoliarov, D. A.

    2016-12-01

    We propose an improved scheme of an amplifier similariton laser with a spectral width of the output significantly exceeding the gain linewidth. In the system, an additional dispersion element is inserted into the cavity to provide a local increase in the peak pulse power. The proposed scheme allows a reduction of pulse duration and an increase in peak power of the output pulse after compression.

  11. Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession

    NASA Astrophysics Data System (ADS)

    Kerr, M.; Hobbs, G.; Johnston, S.; Shannon, R. M.

    2016-01-01

    In a search for periodic variation in the arrival times of pulses from 151 young, energetic pulsars, we have identified seven cases of modulation consistent with one or two harmonics of a single fundamental with time-scale 0.5-1.5 yr. We use simulations to show that these modulations are statistically significant and of high quality (sinusoidal) even when contaminated by the strong stochastic timing noise common to young pulsars. Although planetary companions could induce such modulation, the large implied masses and 2:1 mean motion resonances challenge such an explanation. Instead, the modulation is likely to be intrinsic to the pulsar, arising from quasi-periodic switching between stable magnetospheric states, and we propose that precession of the neutron star may regulate this switching.

  12. Correlated electron dynamics of nonsequential double ionization by few-cycle laser pulses with different time durations

    NASA Astrophysics Data System (ADS)

    Yu, Benhai; Li, Yingbin; Tang, Qingbin; Hua, Duanyang; Jia, Shasha

    2015-10-01

    With the fully classical ensemble model, we investigate the correlated electron dynamics of nonsequential double ionization (NSDI) by few-cycle laser pulses at 3T (T is the laser cycle) and compared it with the 6T case. For the 6T laser pulse, the momentum distribution of correlated electron in the direction parallel to the laser polarization exhibits a V-like structure which has been observed in the experiment. [Camus et al., Phys. Rev. Lett. 108, 073003 (2012)]. However, for the 3T laser pulse, the momentum distribution shows a surprising arc-like structure. Meanwhile, the correlated electron momentum spectrum in the direction perpendicular to the laser polarization shows a more stronger anticorrelated behavior for the 3T laser pulse than that of the 6T laser pulse. By analyzing all the classical trajectories of NSDI, for the 3T laser pulse, the contribution to NSDI only comes from the first return and the latter returns are completely supressed, which is different from the case of the 6T laser pulse where not only the first return but also the latter returns contribute to the NSDI events. Moreover, the recolliding energies are often higher for the 3T laser pulse than that of the 6T laser pulse due to a more rapid turn on of laser field for the 3T laser pulse which plays a key role for the arc-like structure. The more energetic recollisions that occur in the 3T laser pulse lead to greater anticorrelation in the transverse momenta than is observed in the 6T laser pulse with less energetic recollisions.

  13. 1030-nm diode-laser-based light source delivering pulses with nanojoule energies and picosecond duration adjustable by mode locking or pulse gating operation

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Liero, A.; Wenzel, H.; Bugge, F.; Brox, O.; Fricke, J.; Ressel, P.; Knigge, A.; Heinrich, W.; Tränkle, G.

    2017-02-01

    A new compact 1030 nm picosecond light source which can be switched between pulse gating and mode locking operation is presented. It consists of a multi-section distributed Bragg reflector (DBR) laser, an ultrafast multisection optical gate and a flared power amplifier (PA), mounted together with high frequency electronics and optical elements on a 5×4 cm micro bench. The master oscillator (MO) is a 10 mm long ridge wave-guide (RW) laser consisting of 200 μm long saturable absorber, 1500 μm long gain, 8000 μm long cavity, 200 μm long DBR and 100 μm long monitor sections. The 2 mm long optical gate consisting of several RW sections is monolithically integrated with the 4 mm long gain-guided tapered amplifier on a single chip. The light source can be switched between pulse gating and passive mode locking operation. For pulse gating all sections of the MO (except of the DBR and monitor sections) are forward biased and driven by a constant current. By injecting electrical pulses into one section of the optical gate the CW beam emitted by the MO is converted into a train of optical pulses with adjustable widths between 250 ps and 1000 ps. Peak powers of 20 W and spectral linewidths in the MHz range are achieved. Shorter pulses with widths between 4 ps and 15 ps and peak powers up to 50 W but larger spectral widths of about 300 pm are generated by mode locking where the saturable absorber section of the MO is reversed biased. The repetition rate of 4.2 GHz of the pulse train emitted by the MO can be reduced to values between 1 kHz and 100 MHz by utilizing the optical gate as pulse picker. The pulse-to-pulse distance can be controlled by an external trigger source.

  14. [Modulating effect of weak combined magnetic fields on duration of mealworm beetle Tenebrio molitor metamorphosis stage].

    PubMed

    Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E

    2014-01-01

    It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.

  15. The Progress of SBIR Supported R& D of Solid State Pulse Modulators

    SciTech Connect

    Koontz, R

    2004-05-04

    The Small Business Innovative Research (SBIR) grant program funded by the US Department of Energy makes a number of awards each year for R&D in the field of accelerator technology including high power pulse modulators and their components. This paper outlines program requirements, and reviews some of the awards made in the last three years in support of high power modulator systems and solid state switching. A number of award recipients are presenting the results of their SBIR R&D at this workshop.

  16. Generation of a sequence of frequency-modulated pulses in longitudinally inhomogeneous optical waveguides

    NASA Astrophysics Data System (ADS)

    Zolotovskii, I. O.; Lapin, V. A.; Sementsov, D. I.; Stolyarov, D. A.

    2017-03-01

    The conditions for the generation and efficient amplification of frequency-modulated soliton-like wave packets in longitudinally inhomogeneous active optical waveguides have been studied. The possibility of forming a sequence of pico- and subpicosecond pulses from quasi-continuous radiation in active and passive optical waveguides with the group-velocity dispersion (GVD) changing over the waveguide length is considered. The behavior of a wave packet in the well-developed phase of modulation instability with a change in the waveguide inhomogeneity parameters has been investigated based on the numerical analysis.

  17. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive

    NASA Astrophysics Data System (ADS)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.

    2010-05-01

    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  18. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    PubMed

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns.

  19. Implementation and initial test result of a prototype solid state modulator for pulsed magnetron

    SciTech Connect

    Dake, Vishal; Mangalvedekar, H.A.; Tillu, Abhijit; Dixit, Kavita P.; Sarukte, Hemant

    2014-07-01

    A solid-state modulator rated for 50 kV, 120A, 4μs and 250 Hz has been designed. The discharging circuit of the modulator is being tested at ∼ 33 kV, 40-80A, at a maximum pulse repetition rate of 30 pps. The paper discusses development and testing of prototype discharging circuit on resistive load and magnetron. The technique used for measurement of pulse transformer leakage inductance, distributed capacitance and stray primary circuit series inductance will also be discussed in detail. It is necessary to have Energy Storage Capacitors with low ESL for these applications (ESL < 40 nH). The method used for evaluating the ESL of locally available metalized polypropylene capacitors will also be presented. (author)

  20. Application of pulse frequency modulation photosensors to subretinal artificial retina implantation

    NASA Astrophysics Data System (ADS)

    Kagawa, Keiichiro; Yoshida, Norikatsu; Furumiya, Tetsuo; Ohta, Jun; Nunoshita, Masahiro

    2001-10-01

    In this paper we discuss an application of CMOS photo-sensor array chip using pulse frequency modulation (PFM) to sub-retinal implantation to recover human vision. PFM with integration mode as photo-sensing circuit is used to realize enough dynamic range and compatibility with signals in real retina. To effectively stimulate the retinal cells, we have designed a PFM circuit with limited bandwidth of output pulses and two kinds of pulse shaping circuits with digital waveform memory and pixel-level output amplitude tuner. We have fabricated a PFM photo-sensing test circuits with a standard 0.35 micrometers CMOS technology to measure its basic characteristics, and have demonstrated a large dynamic range of around 40 dB.

  1. Modulation of the QT interval duration in hypertension with antihypertensive treatment.

    PubMed

    Klimas, Jan; Kruzliak, Peter; Rabkin, Simon W

    2015-07-01

    The duration of the QT interval as measured by 12-lead electrocardiography is a measure of myocardial repolarization and is widely used to describe cardiac abnormalities, to determine the presence of cardiac toxicity and to evaluate drug safety. In hypertension, the QT interval is a predictor of the risk of both coronary events and cardiovascular death, after adjusting for the effects of additional risk factors. The mechanism of QT interval prolongation is multifactorial and includes cardiomyocyte hypertrophy and increased left ventricular mass, with accompanying changes in left ventricular transmural dispersion of repolarization, as well as changes in the tone of the autonomic nervous system of some patients with hypertension and mechano-electrical feedback, although this mechanism is less likely. Antihypertensive drugs vary in their effect on QT interval duration. The mechanisms underlying their effect depend on changes in left ventricular mass and autonomic nervous system tone, as well as changes in the activity of cardiac ion channels. Although blood pressure reduction is the primary goal of antihypertensive drug therapy and although the choice of antihypertensive drug treatment regimens varies among different individuals, the data regarding the disparate effects of antihypertensive drugs on the duration of the QT interval warrant consideration when implementing long-term pharmacotherapy for hypertension.

  2. Quaternary pulse position modulation electronics for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.

    1991-01-01

    The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.

  3. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-900 series system

    NASA Astrophysics Data System (ADS)

    Raphael, David

    1995-06-01

    This handbook explicates the hardware and software properties of a time division multiplex system. This system is used to sample analog and digital data. The data is then merged with frame synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information in this handbook is required by users to design congruous interface and attest effective utilization of this encoder system. Aydin Vector provides all of the components for these systems to Goddard Space Flight Center/Wallops Flight Facility.

  4. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark; Epel, Boris; Sundramoorthy, Subramanian; Tipikin, Dmitriy; Halpern, Howard J.

    2016-11-01

    In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7 MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30 dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26 MHz and using sinusoidal modulation at 480 kHz.

  5. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-900 series system

    NASA Technical Reports Server (NTRS)

    Raphael, David

    1995-01-01

    This handbook explicates the hardware and software properties of a time division multiplex system. This system is used to sample analog and digital data. The data is then merged with frame synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information in this handbook is required by users to design congruous interface and attest effective utilization of this encoder system. Aydin Vector provides all of the components for these systems to Goddard Space Flight Center/Wallops Flight Facility.

  6. Single pulse TMS-induced modulations of resting brain neurodynamics encoded in EEG phase.

    PubMed

    Stamoulis, Catherine; Oberman, Lindsay M; Praeg, Elke; Bashir, Shahid; Pascual-Leone, Alvaro

    2011-06-01

    Integration of electroencephalographic (EEG) recordings and transcranial magnetic stimulation (TMS) provides a useful framework for quantifying stimulation-induced modulations of neural dynamics. Amplitude and frequency modulations by different TMS protocols have been previously investigated, but the study of stimulation-induced effects on EEG phase has been more limited. We examined changes in resting brain dynamics following single TMS pulses, focusing on measures in the phase domain, to assess their sensitivity to stimulation effects. We observed a significant, approximately global increase in EEG relative phase following prolonged (>20 min) single-pulse TMS. In addition, we estimated higher rates of phase fluctuation from the slope of estimated phase curves, and higher numbers of phase resetting intervals following TMS over motor cortex, particularly in frontal and centro-parietal/parietal channels. Phase changes were only significantly different from their pre-TMS values at the end of the stimulation session, which suggests that prolonged single-pulse TMS may result in cumulative changes in neural activity reflected in the phase of the EEG. This is a novel result, as prior studies have reported only transient stimulation-related effects in the amplitude and frequency domains following single-pulse TMS.

  7. Photonic monocycle pulse generation and modulation for ultra-wideband-over-fiber application

    NASA Astrophysics Data System (ADS)

    Fu, Songnian; Zhong, Wen-De; Shum, P.; Li, Jianqiang; Xu, Kun

    2008-11-01

    In order to integrate local ultra-wideband (UWB) environment into fixed wired networks or wireless wide-area infrastructures and eliminate the high cost of microwave electrical circuits or devices, UWB-over-fiber systems have emerged to exploit the advantages offered by optical fiber. We experimentally demonstrate a photonic UWB monocycle pulse generation and pulse position modulation (PPM). The UWB monocycle pulse with inverse polarity can be generated based on the two differently-biased Mach-Zehnder modulators, subsequently the PPM of the UWB monocycle pulse is realized through the nonlinear polarization rotation (NPR) arising in a semiconductor optical amplifier (SOA). We proposed and experimentally demonstrated an effective procedure to generate and maintain a linear output state of polarization (SOP) during the course of the nonlinear polarization rotation (NPR) of an SOA. High performance of polarization switching can be achieved. The proposed scheme is more preferable for the UWB-over-fiber applications due to its compact size and high stability.

  8. Single Pulse TMS-Induced Modulations of Resting Brain Neurodynamics Encoded in EEG Phase

    PubMed Central

    Oberman, Lindsay M.; Praeg, Elke; Bashir, Shahid; Pascual-Leone, Alvaro

    2012-01-01

    Integration of electroencephalographic (EEG) recordings and transcranial magnetic stimulation (TMS) provides a useful framework for quantifying stimulation-induced modulations of neural dynamics. Amplitude and frequency modulations by different TMS protocols have been previously investigated, but the study of stimulation-induced effects on EEG phase has been more limited. We examined changes in resting brain dynamics following single TMS pulses, focusing on measures in the phase domain, to assess their sensitivity to stimulation effects. We observed a significant, approximately global increase in EEG relative phase following prolonged (>20 min) single-pulse TMS. In addition, we estimated higher rates of phase fluctuation from the slope of estimated phase curves, and higher numbers of phase resetting intervals following TMS over motor cortex, particularly in frontal and centro-parietal/parietal channels. Phase changes were only significantly different from their pre-TMS values at the end of the stimulation session, which suggests that prolonged single-pulse TMS may result in cumulative changes in neural activity reflected in the phase of the EEG. This is a novel result, as prior studies have reported only transient stimulation-related effects in the amplitude and frequency domains following single-pulse TMS. PMID:21203817

  9. Measurement of the laser pulse width on the microscope objective plane by modulated autocorrelation method.

    PubMed

    Cannone, F; Chirico, G; Baldini, G; Diaspro, A

    2003-05-01

    We report on the construction details of a compact autocorrelator set-up for the measurement of the width of infrared laser pulses at the focal plane of a microscope for two-photon excitation fluorescence imaging. One of the novelties of the set-up, which leads to an improved measurement accuracy, is the use of a modulation technique that is achieved by mounting one of the interferometer mirrors on a loudspeaker driven by a sinusoidal bias at low frequency. A non-linear least-square routine selects only that part of the fluorescence signal that is modulated at the same frequency as the loudspeaker bias. To further increase the accuracy, the laser pulse width is obtained from a series of measurements at different values of the modulation bias. The autocorrelator is a compact single bread-board (10 x 20 cm); it is PC-controlled both for the acquisition and the analysis of the data and can be coupled to different ports of the microscope. The increase in the pulse width measured for three different ports of the microscope is well accounted for by the group velocity dispersion and the glass thickness of the optics found along these paths.

  10. Pulse-number discrimination by Cope's gray treefrog (Hyla chrysoscelis) in modulated and unmodulated noise

    PubMed Central

    Vélez, Alejandro; Linehan-Skillings, Betsy Jo; Gu, Yuwen; Sun, Yuting; Bee, Mark A.

    2013-01-01

    In Cope's gray treefrog (Hyla chrysoscelis), thresholds for recognizing conspecific calls are lower in temporally modulated noise backgrounds compared with unmodulated noise. The effect of modulated noise on discrimination among different conspecific calls is unknown. In quiet, females prefer calls with relatively more pulses. This study tested the hypotheses that noise impairs selectivity for longer calls and that processes akin to dip listening in modulated noise can ameliorate this impairment. In two-stimulus choice tests, female subjects were allowed to choose between an average-length call and a shorter or longer alternative. Tests were replicated at two signal levels in quiet and in the presence of chorus-shaped noise that was unmodulated, modulated by a sinusoid, or modulated by envelopes resembling natural choruses. When subjects showed a preference, it was always for the relatively longer call. Noise reduced preferences for longer calls, but the magnitude of this reduction was unrelated to whether the noise envelope was modulated or unmodulated. Together, the results are inconsistent with the hypothesis that dip listening improves a female gray treefrog's ability to select longer calls in modulated compared with unmodulated noise. PMID:24116442

  11. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control.

    PubMed

    Lin, C-C K; Liu, W-C; Chan, C-C; Ju, M-S

    2012-04-01

    The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal.

  12. Electrically Elicited Muscle Torque: Comparison Between 2500-Hz Burst-Modulated Alternating Current and Monophasic Pulsed Current.

    PubMed

    Scott, Wayne; Adams, Cheryl; Cyr, Shantelle; Hanscom, Brianna; Hill, Kevin; Lawson, Jeffrey; Ziegenbein, Colin

    2015-12-01

    Single-blind, block-randomization crossover design. To compare the knee extensor muscle torque production elicited with 2500-Hz burst-modulated alternating current (BMAC) and with a monophasic pulsed current (MPC) at the maximum tolerated stimulation intensity. Neuromuscular electrical stimulation (NMES) is often used for strengthening the quadriceps following knee surgery. Strength gains are dependent on muscle torque production, which is primarily limited by discomfort. Burst-modulated alternating current stimulation is a clinically popular waveform for NMES. Prior research has established that MPC with a relatively long pulse duration is effective for high muscle torque production. Participants in this study were 20 adults with no history of knee injury. A crossover design was used to randomize the order in which each participant's dominant or nondominant lower extremity received NMES and the waveform (MPC or BMAC) this limb received. Stimulation intensity was incrementally increased until participants reached their maximum tolerance. The torque produced was converted to a percentage of each participant's maximum volitional isometric contraction of the respective limb. A general linear model for a 2-treatment, 2-period crossover design was utilized to analyze the results. The mean ± SD electrically induced percent maximum volitional isometric contraction at maximal participant tolerance was 49.5% ± 19.6% for MPC and 29.8% ± 12.4% for BMAC. This difference was statistically significant (P = .002) after accounting for treatment order and limb, which had no effect on torque production. Neuromuscular stimulation using MPC may be more efficacious than using BMAC to achieve a high torque output in patients with quadriceps weakness.

  13. Apamin Sensitive Potassium Current Modulates Action Potential Duration Restitution and Arrhythmogenesis of Failing Rabbit Ventricles

    PubMed Central

    Hsieh, Yu-Cheng; Chang, Po-Cheng; Hsueh, Chia-Hsiang; Lee, Young Soo; Shen, Changyu; Weiss, James N.; Chen, Zhenhui; Ai, Tomohiko; Lin, Shien-Fong; Chen, Peng-Sheng

    2013-01-01

    Background Apamin-sensitive K currents (IKAS) are upregulated in heart failure (HF). We hypothesize that apamin can flatten action potential duration restitution (APDR) curve and reduce ventricular fibrillation (VF) duration in failing ventricles. Methods and Results We simultaneously mapped membrane potential and intracellular Ca (Cai) in 7 rabbits hearts with pacing-induced HF and in 7 normal hearts. A dynamic pacing protocol was used to determine APDR at baseline and after apamin (100 nM) infusion. Apamin did not change APD80 in normal ventricles, but prolonged APD80 in failing ventricles at either long (≥300 ms) or short (≤170 ms) pacing cycle length (PCL), but not at intermediate PCL. The maximal slope of APDR curve was 2.03 [95% CI, 1.73 to 2.32] in failing ventricles and 1.26 [95% CI, 1.13 to 1.40] in normal ventricles at baseline (p=0.002). After apamin administration, the maximal slope of APDR in failing ventricles decreased to 1.43 [95% CI, 1.01 to 1.84] (p=0.018) whereas no significant changes were observed in normal ventricles. During VF in failing ventricles, the number of phase singularities (baseline vs apamin, 4.0 vs 2.5), dominant frequency (13.0 Hz vs 10.0 Hz), and VF duration (160 s vs 80 s) were all significantly (p<0.05) decreased by apamin. Conclusions Apamin prolongs APD at long and short, but not at intermediate PCL in failing ventricles. IKAS upregulation may be antiarrhythmic by preserving the repolarization reserve at slow heart rate, but is proarrhythmic by steepening the slope of APDR curve which promotes the generation and maintenance of VF. PMID:23420832

  14. Apamin-sensitive potassium current modulates action potential duration restitution and arrhythmogenesis of failing rabbit ventricles.

    PubMed

    Hsieh, Yu-Cheng; Chang, Po-Cheng; Hsueh, Chia-Hsiang; Lee, Young Soo; Shen, Changyu; Weiss, James N; Chen, Zhenhui; Ai, Tomohiko; Lin, Shien-Fong; Chen, Peng-Sheng

    2013-04-01

    Apamin-sensitive K currents (I(KAS)) are upregulated in heart failure. We hypothesize that apamin can flatten action potential duration restitution (APDR) curve and can reduce ventricular fibrillation duration in failing ventricles. We simultaneously mapped membrane potential and intracellular Ca (Ca(i)) in 7 rabbit hearts with pacing-induced heart failure and in 7 normal hearts. A dynamic pacing protocol was used to determine APDR at baseline and after apamin (100 nmol/L) infusion. Apamin did not change APD(80) in normal ventricles, but prolonged APD(80) in failing ventricles at either long (≥300 ms) or short (≤170 ms) pacing cycle length, but not at intermediate pacing cycle length. The maximal slope of APDR curve was 2.03 (95% confidence interval, 1.73-2.32) in failing ventricles and 1.26 (95% confidence interval, 1.13-1.40) in normal ventricles at baseline (P=0.002). After apamin administration, the maximal slope of APDR in failing ventricles decreased to 1.43 (95% confidence interval, 1.01-1.84; P=0.018), whereas no significant changes were observed in normal ventricles. During ventricular fibrillation in failing ventricles, the number of phase singularities (baseline versus apamin, 4.0 versus 2.5), dominant frequency (13.0 versus 10.0 Hz), and ventricular fibrillation duration (160 versus 80 s) were all significantly (P<0.05) decreased by apamin. Apamin prolongs APD at long and short, but not at intermediate pacing cycle length in failing ventricles. I(KAS) upregulation may be antiarrhythmic by preserving the repolarization reserve at slow heart rate, but is proarrhythmic by steepening the slope of APDR curve, which promotes the generation and maintenance of ventricular fibrillation.

  15. Generation of 0.5 mJ, few-cycle laser pulses by an adaptive phase modulator.

    PubMed

    Wang, He; Wu, Yi; Li, Chengquan; Mashiko, Hiroki; Gilbertson, Steve; Chang, Zenghu

    2008-09-15

    Previously, pulses shorter than 4 fs were generated by compressing white light from gas-filled hollow-core fibers with adaptive phase modulators; however, the energy of the few-cycle pulses was limited to 15 microJ. Here, we report the generation of 550 microJ, 5 fs pulses by using a liquid crystal spatial light modulator in a grating-based 4f system. The high pulse energy was obtained by improving the throughput of the phase modulator and by increasing the input laser energy. When the pulses were used in high harmonic generation, it was found that the harmonic spectra depend strongly on the high order spectral phases of the driving laser fields.

  16. [Effect of low intensity pulse-modulated electromagnetic radiation on activity of alkaline phosphatase in blood serum].

    PubMed

    Pashovkina, M S; Akoev, I G

    2001-01-01

    The change in alkaline phosphotase activity in vitro with frequencies modulation at low intensity of pulse-modulated electromagnetic radiation was experimentally shown (EMR, 2375 MHz, intensity: 0.8, 8.0; 40.0 microW/cm2; range modulation: 30-310 Hz; time of interaction: 1-3 min). Revealed effects could be regarded as an evidence of informative character of interaction of modulated EMR.

  17. Source duration of stress and water-pressure induced seismicity derived from experimental analysis of P wave pulse width in granite

    NASA Astrophysics Data System (ADS)

    Masuda, K.

    2013-12-01

    Pulse widths of P waves in granite, measured in the laboratory, were analyzed to investigate source durations of rupture processes for water-pressure induced and stress-induced microseismicity. Much evidence suggests that fluids in the subsurface are intimately linked to faulting processes. Studies of seismicity induced by water injection are thus important for understanding the trigger mechanisms of earthquakes as well as for engineering applications such as hydraulic fracturing of rocks at depth for petroleum extraction. Determining the cause of seismic events is very important in seismology and engineering; however, water-pressure induced seismic events are difficult to distinguish from those induced by purely tectonic stress. To investigate this problem, we analyzed the waveforms of acoustic emissions (AEs) produced in the laboratory by both water-pressure induced and stress-induced microseismicity. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of about 70% of fracture strength, to the rock sample under 40 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emissions (AEs) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 17 MPa until macroscopic fracture occurred. We analysed AE waveforms produced by stress-induced AEs which occurred before the water-injection and by water-pressure induced AEs which occurred after the water-injection. Pulse widths were measured from the waveform traces plotted from the digital data. To investigate the source duration of the rupture process, we estimated the pulse width at the source and normalized by event magnitude to obtain a scaled pulse width at the source. After the effects of event size and hypocentral distance were removed from observed pulse widths, the ratio of the scaled source durations of water

  18. Filamentation of a phase-modulated pulse under conditions of normal, anomalous and zero group velocity dispersion

    SciTech Connect

    Chekalin, S V; Kompanets, V O; Smetanina, E O; Spirkov, A I; Kandidov, V P

    2014-06-30

    We have investigated experimentally and numerically the influence of the initial temporal phase modulation of a pulse on the spatiotemporal intensity distribution and the frequency-angular spectrum of femtosecond laser pulses with self-channelling in a condensed medium. We have detected a decrease in the intensity of divergent anti-Stokes frequency components during filamentation of radiation under conditions of normal group-velocity dispersion (GVD) and strong phase modulation. In the zero-GVD regime under conditions of the phase modulation of radiation, the spatiotemporal transformation of the pulse is similar to that in the normal-GVD regime, which leads to a qualitative change in the supercontinuum spectrum. In the anomalous-GVD regime, a sequence of 'light bullets' is formed in the filament for both a phase-modulated and a transform-limited pulse. (extreme light fields and their applications)

  19. 1064-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshitaka; Takada, Kan; Kageyama, Takeo; Tanaka, Shin; Kondo, Hayato; Kanbe, Satoshi; Maeda, Yasunari; Mochida, Reio; Nishi, Kenichi; Yamamoto, Tsuyoshi; Takemasa, Keizo; Sugawara, Mitsuru; Arakawa, Yasuhiko

    2014-12-01

    Semiconductor DFB (Distributed feedback) laser diodes with an operating wavelength of 1064 nm, which is suitable for pulse-on-demand fiber laser, have been developed. The stable performance of CW and nanosecond/picosecond pulsed operation is reviewed. By applying gain-switching operation with a simple direct modulation technique, 50-ps pulse generation with a stable spectral single-mode property was obtained. For the efficient amplification of the obtained 50-ps pulse, a monolithic semiconductor optical amplifier (SOA) was integrated into the DFB lasers. An improved peak power of 300 mW at 50-ps pulse was observed with limited optical noise injection when the synchronous modulation technique of the DFB and the SOA was employed. Short cavity lasers showed a high-frequency response compared to the original DFB lasers and achieved a short pulse width of 13 ps by standard gain-switched operation.

  20. Levels of attention and task difficulty in the modulation of interval duration mismatch negativity

    PubMed Central

    Campbell, Alana M.; Davalos, Deana B.

    2015-01-01

    Time perception has been described as a fundamental skill needed to engage in a number of higher level cognitive processes essential to successfully navigate everyday life (e.g., planning, sequencing, etc.) Temporal processing is often thought of as a basic neural process that impacts a variety of other cognitive processes. Others, however, have argued that timing in the brain can be affected by a number of variables such as attention and motivation. In an effort to better understand timing in the brain at a basic level with minimal attentional demands, researchers have often employed use of the mismatch negativity (MMN). MMN, specifically duration MMN (dMMN) and interval MMN (iMMN) have been popular methods for studying temporal processing in populations for which attention or motivation may be an issue (e.g., clinical populations, early developmental studies). There are, however, select studies which suggest that attention may in fact modify both temporal processing in general and the MMN event-related potential. It is unclear the degree to which attention affects MMN or whether the effects differ depending on the complexity or difficulty of the MMN paradigm. The iMMN indexes temporal processing and is elicited by introducing a deviant interval duration amid a series of standards. A greater degree of difference in the deviant from the standard elicits a heightened iMMN. Unlike past studies, in which attention was intentionally directed toward a closed-captioned move, the current study had participants partake in tasks involving varying degrees of attention (passive, low, and high) with varying degrees of deviants (small, medium, and large) to better understand the role of attention on the iMMN and to assess whether level of attention paired with changes in task difficulty differentially influence the iMMN electrophysiological responses. Data from 19 subjects were recorded in an iMMN paradigm. The amplitude of the iMMN waveform showed an increase with attention

  1. Levels of attention and task difficulty in the modulation of interval duration mismatch negativity.

    PubMed

    Campbell, Alana M; Davalos, Deana B

    2015-01-01

    Time perception has been described as a fundamental skill needed to engage in a number of higher level cognitive processes essential to successfully navigate everyday life (e.g., planning, sequencing, etc.) Temporal processing is often thought of as a basic neural process that impacts a variety of other cognitive processes. Others, however, have argued that timing in the brain can be affected by a number of variables such as attention and motivation. In an effort to better understand timing in the brain at a basic level with minimal attentional demands, researchers have often employed use of the mismatch negativity (MMN). MMN, specifically duration MMN (dMMN) and interval MMN (iMMN) have been popular methods for studying temporal processing in populations for which attention or motivation may be an issue (e.g., clinical populations, early developmental studies). There are, however, select studies which suggest that attention may in fact modify both temporal processing in general and the MMN event-related potential. It is unclear the degree to which attention affects MMN or whether the effects differ depending on the complexity or difficulty of the MMN paradigm. The iMMN indexes temporal processing and is elicited by introducing a deviant interval duration amid a series of standards. A greater degree of difference in the deviant from the standard elicits a heightened iMMN. Unlike past studies, in which attention was intentionally directed toward a closed-captioned move, the current study had participants partake in tasks involving varying degrees of attention (passive, low, and high) with varying degrees of deviants (small, medium, and large) to better understand the role of attention on the iMMN and to assess whether level of attention paired with changes in task difficulty differentially influence the iMMN electrophysiological responses. Data from 19 subjects were recorded in an iMMN paradigm. The amplitude of the iMMN waveform showed an increase with attention

  2. PCI data acquisition and signal processing hardware modules for long pulse operation

    SciTech Connect

    Sousa, J.; Batista, A.J.N.; Combo, A.; Pereira, R.; Correia, Miguel; Cruz, N.; Carvalho, P.; Correia, Carlos; Varandas, C.A.F.

    2004-10-01

    A set of PCI instrumentation modules was developed at the EURATOM/IST Association. The modules were engineered around a reconfigurable hardware core which permits one to reduce the development time of instrument for new applications, provide support for long time or even continuous operation, and is able to perform real-time digital signal processing. The core was engineered at low cost and the modules incorporate a high number of channels, which contribute to reduce the total cost per channel. Field results are as expected in terms of performance both in data throughput and input characteristics. Currently, a 2 MSPS, 14-bit, eight channel galvanic isolated transient recorder; a 200 MSPS, 8-bit, four channel pulse digitizer; an eight channel time-to-digital-converter with a resolution of 0.4 ns, and a reconfigurable hardware expandable board, are implemented.

  3. Jitter model and signal processing techniques for pulse width modulation optical recording

    NASA Technical Reports Server (NTRS)

    Liu, Max M.-K.

    1991-01-01

    A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.

  4. Pulse position modulation for a subcarrier-multiplexed optical fiber transmission system

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, V. R.; Ghassemlooy, Zabih F.

    1996-11-01

    Subcarrier multiplexed (SCM) optical network s offer a near to medium term alternative solution over high cost, evolving digital technology to distribute broadband services. Majority of existing systems are based on analogue optical transmission techniques and their principle disadvantage is the sensitivity to noise and system nonlinearities. Therefore, conventional SCM systems impose stringent noise and linearity requirements and as a result their performance is limited. A simple and attractive solution is to introduce an appropriate second stage modulator in order to improve the receiver sensitivity, hence the system performance.In this paper a SCM optical transmission system employing pulse position modulation as a second stage modulator, for transmission of video, audio and data channels is reported. Signal to noise ratio measurements obtained shows an improvement in optical receiver sensitivity compared with standard SCM systems.

  5. A Pulsed Modulator Power Supply for the g-2 Muon Storage Ring Injection Kicker

    SciTech Connect

    Mi,J.; Lee, Y.Y.; Morse, W. M.; Pai, C.; Pappas, G.; Sanders, R.; Semertzidis, Y.

    1999-03-29

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. this paper discusses the modulator design, construction and operation.

  6. A PULSED MODULATOR POWER SUPPLY FOR THE G-2 MUON STORAGE RING INJECTION KICKER.

    SciTech Connect

    MI,J.LEE,Y.Y.MORSE,W.M.PAI,C.I.PAPPAS,G.C.SANDERS,Y.SEMERTIZIDIS,Y.,ET AL.

    2003-03-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

  7. Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI.

    PubMed

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2013-09-23

    We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

  8. Laser-Plasma Instability Control Using TPulse fixed vs Imax fixed Spike Trains of Uneven Duration and Delay: The Path to Green ICF Using STUD Pulses

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros; Hüller, Stefan; Meezan, Nathan; Hammer, Jim; Heebner, John

    2016-10-01

    We have studied the behavior of laser-plasma instabilities (LPI) as a function of seed noise (varied over seven orders of magnitude) and Rosenbluth gain exponent at the average intensity (varied over a decade) for structured laser beams with and without STUD pulse mitigation. We will show that for each section of the NIF ICF pulse, there are preferred configurations of STUD pulses, whether they be fixed duration of fixed peak intensity, so that maximum use is made of STUD pulse flexibility for LPI control. The duty cycle, hot spot scrambling rate, and cutting a hot spot into pieces (by switching the lasers on and off on the ps time scale), are the three main tools. We explore a variety of phase transitions in reflectivity behavior and in the amplification profile of plasma perturbations. We compare cases where amplification bursts are reinforced coherently or are healed, lead to brush fires or are tamed. The STUD pulse program is best suited for Green light implementation since Green offers higher bandwidth, more energy, and higher damage thresholds. We plan to test these ideas on the Jupiter Laser Facility at LLNL at the pair of 200J lasers level next. Work supported by a Grant from the DOE NNSA-FES Joint Program on HEDP and by LLNL.

  9. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    SciTech Connect

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Ishino, M.; Kawachi, T.

    2015-11-15

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  10. Duration perception of visual and auditory oddball stimuli: does judgment task modulate the temporal oddball effect?

    PubMed

    Birngruber, Teresa; Schröter, Hannes; Ulrich, Rolf

    2014-04-01

    The duration of rare stimuli (oddballs) presented within a stream of homogenous standards tends to be overestimated. This temporal oddball effect (OE) has been attributed to perceptual processes. The OE is usually assessed with a comparative judgment task. It has been argued, however, that this task is prone to decision biases. The present experiments employed comparative and equality judgments, since it has been suggested that equality judgments are less vulnerable to such biases. Experiments 1a and 1b used visual stimuli, and Experiment 2 auditory stimuli. The results provide no strong evidence for decision biases influencing the OE. In addition, computational modeling clearly suggests that the equality judgment is not particularly suited to distinguish between perceptual and decisional effects. Taken together, the pattern of the present results is most consistent with a perceptual origin of the OE.

  11. Transformation of the frequency-modulated continuous-wave field into a train of short pulses by resonant filters

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.

    2017-03-01

    The resonant filtering method transforming the frequency-modulated radiation field into a train of short pulses is proposed to be applied in the optical domain. Effective frequency modulation can be achieved by using an electro-optic modulator. Due to frequency modulation, a narrow-spectrum cw radiation field is seen by the resonant filter as a comb of equidistant spectral components separated by the modulation frequency. Tuning a narrow-bandwidth filter in resonance with the n th spectral component of the comb transforms the radiation field into bunches of pulses, with n pulses in each bunch. The transformation is explained by the interference of the coherently scattered resonant component of the field with the whole comb. Constructive interference results in the formation of pulses, while destructive interference is seen as dark windows between pulses. It is indicated that the optimal thickness of the resonant filter is several orders of magnitude smaller than the necessary thickness of the dispersive filters used before in the optical domain to produce short pulses from the frequency-modulated field.

  12. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    PubMed

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions.

  13. Trepanning drilling of stainless steel using a high-power Ytterbium-doped fiber ultrafast laser: influence of pulse duration on hole geometry and processing quality

    NASA Astrophysics Data System (ADS)

    Lopez, John; Dijoux, Mathieu; Devillard, Raphael; Faucon, Marc; Kling, Rainer

    2014-03-01

    Percussion drilling is a well-established technique for several applicative markets such as for aircraft and watch industries. Lamp pumped solid state lasers and more recently fiber lasers, operating in millisecond or nanosecond regimes, are classically used for these applications. However, due to their long pulse duration, these technologies are not suitable for emerging applicative market such as fuel injectors for automotive industry. Only the ultrashort laser technology, combined with special drilling optics like trepanning head, has the potential to fulfill the needs for this new market in terms of processing quality, custom-shape capabilities and short drilling time. Although numerous papers dealing with percussion drilling have been reported in the literature, only few papers are dedicated to trepanning drilling. In this context, we present some results on the influence of pulse duration on gas-assisted laser drilling of stainless steel using a trepanning head and a high power Ytterbium doped fiber ultrafast laser (20W). The influence of pulse energy (7- 64μJ), fluence (3-25 J/cm2), drilling time (1-20s), processing gas pressure and drilling strategy will be discussed as well.

  14. Laser assisted removal of synthetic painting-conservation materials using UV radiation of ns and fs pulse duration: Morphological studies on model samples

    NASA Astrophysics Data System (ADS)

    Pouli, P.; Nevin, A.; Andreotti, A.; Colombini, P.; Georgiou, S.; Fotakis, C.

    2009-02-01

    In an effort to establish the optimal parameters for the cleaning of complex layers of polymers (mainly based on acrylics, vinyls, epoxys known as Elvacite, Laropal, Paraloid B72, among others) applied during past conservation treatments on the surface of wall paintings, laser cleaning tests were performed with particular emphasis on the plausible morphological modifications induced in the remaining polymeric material. Pulse duration effects were studied using laser systems of different pulse durations ( ns and fs) at 248 nm. Prior to tests on real fragments from the Monumental Cemetery in Pisa (Italy) which were coated with different polymers, attention was focused on the study of model samples consisting of analogous polymer films cast on quartz disks. Ultraviolet irradiation is strongly absorbed by the studied materials both in ns and fs irradiation regimes. However, it is demonstrated that ultrashort laser pulses result in reduced morphological alterations in comparison to ns irradiation. In addition, the dependence of the observed alterations on the chemical composition of the consolidation materials in both regimes was examined. Most importantly, it was shown that in this specific conservation problem, an optimum cleaning process may rely not only on the minimization of laser-induced morphological changes but also on the exploitation of the conditions that favour the disruption of the adhesion between the synthetic material and the painting.

  15. Effect of level, duration, and inter-pulse interval of 1-2 kHz sonar signal exposures on harbor porpoise hearing.

    PubMed

    Kastelein, Ronald A; Hoek, Lean; Gransier, Robin; Rambags, Martijn; Claeys, Naomi

    2014-07-01

    Safety criteria for underwater low-frequency active sonar sounds produced during naval exercises are needed to protect harbor porpoise hearing. As a first step toward defining criteria, a porpoise was exposed to sequences consisting of series of 1-s, 1-2 kHz sonar down-sweeps without harmonics (as fatiguing noise) at various combinations of average received sound pressure levels (SPLs; 144-179 dB re 1 μPa), exposure durations (1.9-240 min), and duty cycles (5%-100%). Hearing thresholds were determined for a narrow-band frequency-swept sine wave centered at 1.5 kHz before exposure to the fatiguing noise, and at 1-4, 4-8, 8-12, 48, 96, 144, and 1400 min after exposure, to quantify temporary threshold shifts (TTSs) and recovery of hearing. Results show that the inter-pulse interval of the fatiguing noise is an important parameter in determining the magnitude of noise-induced TTS. For the reported range of exposure combinations (duration and SPL), the energy of the exposure (i.e., cumulative sound exposure level; SELcum) can be used to predict the induced TTS, if the inter-pulse interval is known. Exposures with equal SELcum but with different inter-pulse intervals do not result in the same induced TTS.

  16. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  17. The pulse-train auditory aftereffect and the perception of rapid amplitude modulations.

    PubMed

    Gutschalk, Alexander; Micheyl, Christophe; Oxenham, Andrew J

    2008-02-01

    Prolonged listening to a pulse train with repetition rates around 100 Hz induces a striking aftereffect, whereby subsequently presented sounds are heard with an unusually "metallic" timbre [Rosenblith et al., Science 106, 333-335 (1947)]. The mechanisms responsible for this auditory aftereffect are currently unknown. Whether the aftereffect is related to an alteration of the perception of temporal envelope fluctuations was evaluated. Detection thresholds for sinusoidal amplitude modulation (AM) imposed onto noise-burst carriers were measured for different AM frequencies (50-500 Hz), following the continuous presentation of a periodic pulse train, a temporally jittered pulse train, or an unmodulated noise. AM detection thresholds for AM frequencies of 100 Hz and above were significantly elevated compared to thresholds in quiet, following the presentation of the pulse-train inducers, and both induced a subjective auditory aftereffect. Unmodulated noise, which produced no audible aftereffect, left AM detection thresholds unchanged. Additional experiments revealed that, like the Rosenblith et al. aftereffect, the effect on AM thresholds does not transfer across ears, is not eliminated by protracted training, and can last several tens of seconds. The results suggest that the Rosenblith et al. aftereffect is related to a temporary alteration in the perception of fast temporal envelope fluctuations in sounds.

  18. 180 MW/180 KW pulse modulator for S-band klystron of LUE-200 linac of IREN installation of JINR

    NASA Astrophysics Data System (ADS)

    Su, Kim Dong; Sumbaev, A. P.; Shvetsov, V. N.

    2014-09-01

    The offer on working out of the pulse modulator with 180 MW pulse power and 180 kW average power for pulse S-band klystrons of LUE-200 linac of IREN installation at the Laboratory of neutron physics (FLNP) at JINR is formulated. Main requirements, key parameters and element base of the modulator are presented. The variant of the basic scheme on the basis of 14 (or 11) stage 2 parallel PFN with the thyratron switchboard (TGI2-10K/50) and six parallel high voltage power supplies (CCPS Power Supply) is considered.

  19. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khudyakov, D. V.; Borodkin, A. A.; Lobach, A. S.; Vartapetov, S. K.

    2015-09-01

    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes.

  20. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes

    SciTech Connect

    Khudyakov, D V; Borodkin, A A; Vartapetov, S K; Lobach, A S

    2015-09-30

    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes. (lasers)

  1. Development of Pulse Position Modulation/Optical CDMA (PPM/O-CDMA) for Gb/s Fiber Optic Networking

    SciTech Connect

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V; Lennon, W J

    2006-05-25

    Pulse position modulation (PPM) in lasercom systems is known to provide potential advantages over other modulation schemes. [1]. In PPM, a periodic time frame is established and data is transmitted by placing a pulse in any one of several subintervals (or ''slots'') within each frame. In PPM/O-CDMA all users use the same frame structure and each transmits its unique address code in place of the PPM pulse. The advantage of PPM as a pulsed signal format is that (1) a single pulse can transmit multiple bits during each frame; (2) decoding (determining which subinterval contains the pulse) is by comparison rather than threshold tests (as in on-off-keying); (3) each user transmits in only a small fraction of the frame, hence the multi-access interference (MAI) of any user statistically spreads over the entire frame time, reducing the chance of overlap with any other user; and (4) under an average power constraint, increasing frame time increases the peak pulse power (i.e., PPM trades average power for peak power). The most straightforward approach to implementing PPM/O-CDMA data modulator inserts the PPM pulse modulation first, then imposes the O-CDMA coding. A pulsed PPM modulator converts bits (words) into pulse positions. In the case of wavelength/time (W/T) matrix codes, multi-wavelength pulses are generated at the beginning of each frame, at the frame rate. For M-ary PPM, a block of k bits represents M = 2{sup k} unique interval positions in the frame corresponding to M-l specific time delays (the zero delay is also a position). PPM modulation is achieved by shifting the initial pulse into an interval position with delay D(i) (i=0,1,2,..,M-1). The location of a pulse position (selection of a delay) therefore identifies a unique k-bit word in the frame. At the receiver, determining which delay occurs relative to the frame start time decodes the data word. The probability of pulse overlap between two users decreases with M, which therefore decreases the probability

  2. RF-modulated pulsed fiber optic lidar transmitter for improved underwater imaging and communications

    NASA Astrophysics Data System (ADS)

    Kimpel, F.; Chen, Y.; Fouron, J.-L.; Akbulut, M.; Engin, D.; Gupta, S.

    2011-03-01

    We present results on the design, development and initial testing of a fiber-optic based RF-modulated lidar transmitter operating at 532nm, for underwater imaging application in littoral waters. The design implementation is based on using state-of-the-art high-speed FPGAs, thereby producing optical waveforms with arbitrary digital-RF-modulated pulse patterns with carrier frequencies >= 3GHz, with a repetition rate of 0.5-1MHz, and with average powers >=5W (at 532nm). Use of RF-modulated bursts above 500MHz, instead of single optical pulse lidar detection, reduces the effect of volumetric backscatter for underwater imaging application, leading to an improved signal-to-noise-ratio (SNR) and contrast, for a given range. Initial underwater target detection tests conducted at Patuxent River Naval Air Station, MD, in a large water-tank facility, validates the advantages of this hybrid-lidar-radar (HLR) approach for improved underwater imaging, over a wide range of turbidity levels and both white and black targets. The compact, robust and power-efficient fiber laser architecture lends very well to lidar sensor integration on unmanned-underwater-vehicle (UUV) platforms. HLR transmitters can also provide similar advantages in active-sensing situations dominated by continuous backscatter, e.g. underwater communications, imaging through smoke and fire environment, rotor-craft landing in degraded visual environment, and pointing-tracking of active-EO sensors through fog.

  3. Long-duration high-efficiency operation of a continuously pulsed copper laser utilizing copper bromide as a lasant

    NASA Technical Reports Server (NTRS)

    Chen, C. J.; Bhanji, A. M.; Russell, G. R.

    1978-01-01

    A copper laser utilizing copper bromide as a lasant and neon as the buffer gas has been operated at an average laser power of between 16 and 19.5 W for a period of 68 h. Lasing was attained at a pulsing rate of 16.7 kHz in a quartz discharge tube 2.5-cm in diameter with an electrode separation of 200 cm. The laser energy/pulse and peak power/pulse corresponding to an average power of 19.5 W are 1.2 mJ and 30 kW, respectively. The ratio of laser power at 510.6 and 578.2 nm varied from 3.9 to 1.1 corresponding to a total average laser power of 4 and 18 W, respectively. The highest wall plug and capacitor efficiency measured during 68 h of operation were 0.7 and 1.1%, respectively.

  4. Direct-detection optical communication with color coded pulse position modulation signaling

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1985-01-01

    The performance characteristics of a direct-detection optical communication system which is based on a laser transmitter which produces single light pulses at selected nonoverlapping optical center frequencies are discussed. The signal format, called color coded pulse position modulation (CCPPM), uses more of the total available response bandwidth characteristics of the photodetector than does ordinary PPM signaling. The advantages of CCPPM signaling are obtained at the expense of an increased optical bandwidth of the transmitted signal and a more complicated transmitter and receiver structure. When the signal format is used in conjunction with block length Reed-Solomon codes, high data rates and reliable high-speed optical communications under conditions of optimal energy efficiency are obtained.

  5. Direct-detection optical communication with color coded pulse position modulation signaling

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1985-01-01

    The performance characteristics of a direct-detection optical communication system which is based on a laser transmitter which produces single light pulses at selected nonoverlapping optical center frequencies are discussed. The signal format, called color coded pulse position modulation (CCPPM), uses more of the total available response bandwidth characteristics of the photodetector than does ordinary PPM signaling. The advantages of CCPPM signaling are obtained at the expense of an increased optical bandwidth of the transmitted signal and a more complicated transmitter and receiver structure. When the signal format is used in conjunction with block length Reed-Solomon codes, high data rates and reliable high-speed optical communications under conditions of optimal energy efficiency are obtained.

  6. The effects of power on-off durations of pulsed ultrasound on the destruction of cancer cells.

    PubMed

    Fang, H Y; Tsai, K C; Cheng, W H; Shieh, M J; Lou, P J; Lin, W L; Chen, W S

    2007-06-01

    Low-intensity ultrasound irradiation is a potential method for suppressing cancer cell proliferation, inducing apoptosis and delivering specific cytotoxic genes or drugs into tumors topographically in future cancer therapies. However, ultrasound attenuates rapidly in tissue and produces heat. Pulsed ultrasound is frequently used to minimize pain and possible thermal damage to the surrounding normal tissue during therapy, since it results in smaller temperature increases. This study compared three pulsed-ultrasound strategies for destroying cancer cells, measuring their induced temperature increases to determine the optimal pulsing parameters. We performed three types of experiment, involving ultrasound with (1) a fixed duty cycle of 50% with variable on- and off-times, (2) a fixed off-time with variable on-times, and (3) a fixed on-time with variable off-times. The results show that for different types of cultured cells (HeLa, HT-29, Ca9-22 and fibroblast) exposed to ultrasound of the same frequency (1 MHz) and energy, long pulses combined with off-times that are 5-10 times longer (on-/-off-times pairs of 5/25, 25/250, or 250/2500 ms/ms) cause significant cell destruction whilst avoiding temperature increases of more than 1.5 degrees C. Furthermore, the correlation between the temperature increase and the percentage of surviving cells is low. Pulsed ultrasound with a long on-time and an even longer off-time exerts a high cytotoxic effect but a smaller temperature increase compared with non-pulsed ultrasound. This indicates that the cytotoxic effects observed in the current study were not purely due to the thermal effects of the ultrasound.

  7. Antibodies with beta-adrenergic activity from chronic chagasic patients modulate the QT interval and M cell action potential duration

    PubMed Central

    Medei, Emiliano Horacio; Nascimento, José H.M.; Pedrosa, Roberto C.; Barcellos, Luciane; Masuda, Masako O.; Sicouri, Serge; Elizari, Marcelo V.; Campos de Carvalho, Antonio C.

    2009-01-01

    Aims The aim of this study was to investigate whether the sera from chronic chagasic patients (CChPs) with beta-1 adrenergic activity (Ab-β) can modulate ventricular repolarization. Beta-adrenergic activity has been described in CChP. It increases the L-type calcium current and heart rate in isolated hearts, but its effects on ventricular repolarization has not been described. Methods and results In isolated rabbit hearts, under pacing condition, QT interval was measured under Ab-β perfusion. Beta-adrenergic activity was also tested in guinea pig ventricular M cells. Furthermore, the immunoglobulin fraction (IgG-β) of the Ab-β was tested on Ito, ICa, and Iks currents in rat, rabbit, and guinea pig myocytes, respectively. Beta-adrenergic activity shortened the QT interval. This effect was abolished in the presence of propranolol. In addition, sera from CChP without beta-adrenergic activity (Ab-β) did not modulate QT interval. The M cell action potential duration (APD) was reversibly shortened by Ab-β. Atenolol inhibited this effect of Ab-β, and Ab- did not modulate the AP of M cells. Ito was not modulated by isoproterenol nor by IgG-β. However, IgG-β increased ICa and IKs. Conclusion The shortening of the QT interval and APD in M cells and the increase of IKs and ICa induced by IgG-β contribute to repolarization changes that may trigger malignant ventricular arrhythmias observed in patients with chronic chagasic or idiopathic cardiomyopathy. PMID:18515284

  8. Cross modulation method of transformation of the spatial coherence of pulsed laser radiation in a nonlinear medium

    SciTech Connect

    Kitsak, M A; Kitsak, A I

    2008-04-30

    The cross modulation method of transformation of the spatial coherence of low-power pulsed laser radiation in a nonlinear medium is proposed. The method is realised experimentally in a multimode optical fibre. The estimates of the degree of spatial coherence of radiation subjected to the phase cross modulation demonstrated the high efficiency of this radiation decorrelation mechanism. (control of laser radiation parameters)

  9. High-intensity interval training: Modulating interval duration in overweight/obese men

    PubMed Central

    Smith-Ryan, Abbie E.; Melvin, Malia N.; Wingfield, Hailee L.

    2015-01-01

    Introduction High-intensity interval training (HIIT) is a time-efficient strategy shown to induce various cardiovascular and metabolic adaptations. Little is known about the optimal tolerable combination of intensity and volume necessary for adaptations, especially in clinical populations. Objectives In a randomized controlled pilot design, we evaluated the effects of two types of interval training protocols, varying in intensity and interval duration, on clinical outcomes in overweight/obese men. Methods Twenty-five men [body mass index (BMI) > 25 kg·m2] completed baseline body composition measures: fat mass (FM), lean mass (LM) and percent body fat (%BF) and fasting blood glucose, lipids and insulin (IN). A graded exercise cycling test was completed for peak oxygen consumption (VO2peak) and power output (PO). Participants were randomly assigned to high-intensity short interval (1MIN-HIIT), high-intensity interval (2MIN-HIIT) or control groups. 1MIN-HIIT and 2MIN-HIIT completed 3 weeks of cycling interval training, 3 days/week, consisting of either 10 × 1 min bouts at 90% PO with 1 min rests (1MIN-HIIT) or 5 × 2 min bouts with 1 min rests at undulating intensities (80%–100%) (2MIN-HIIT). Results There were no significant training effects on FM (Δ1.06 ± 1.25 kg) or %BF (Δ1.13% ± 1.88%), compared to CON. Increases in LM were not significant but increased by 1.7 kg and 2.1 kg for 1MIN and 2MIN-HIIT groups, respectively. Increases in VO2peak were also not significant for 1MIN (3.4 ml·kg−1·min−1) or 2MIN groups (2.7 ml·kg−1·min−1). IN sensitivity (HOMA-IR) improved for both training groups (Δ −2.78 ± 3.48 units; p < 0.05) compared to CON. Conclusion HIIT may be an effective short-term strategy to improve cardiorespiratory fitness and IN sensitivity in overweight males. PMID:25913937

  10. High-intensity interval training: Modulating interval duration in overweight/obese men.

    PubMed

    Smith-Ryan, Abbie E; Melvin, Malia N; Wingfield, Hailee L

    2015-05-01

    High-intensity interval training (HIIT) is a time-efficient strategy shown to induce various cardiovascular and metabolic adaptations. Little is known about the optimal tolerable combination of intensity and volume necessary for adaptations, especially in clinical populations. In a randomized controlled pilot design, we evaluated the effects of two types of interval training protocols, varying in intensity and interval duration, on clinical outcomes in overweight/obese men. Twenty-five men [body mass index (BMI) > 25 kg · m(2)] completed baseline body composition measures: fat mass (FM), lean mass (LM) and percent body fat (%BF) and fasting blood glucose, lipids and insulin (IN). A graded exercise cycling test was completed for peak oxygen consumption (VO2peak) and power output (PO). Participants were randomly assigned to high-intensity short interval (1MIN-HIIT), high-intensity interval (2MIN-HIIT) or control groups. 1MIN-HIIT and 2MIN-HIIT completed 3 weeks of cycling interval training, 3 days/week, consisting of either 10 × 1 min bouts at 90% PO with 1 min rests (1MIN-HIIT) or 5 × 2 min bouts with 1 min rests at undulating intensities (80%-100%) (2MIN-HIIT). There were no significant training effects on FM (Δ1.06 ± 1.25 kg) or %BF (Δ1.13% ± 1.88%), compared to CON. Increases in LM were not significant but increased by 1.7 kg and 2.1 kg for 1MIN and 2MIN-HIIT groups, respectively. Increases in VO2peak were also not significant for 1MIN (3.4 ml·kg(-1) · min(-1)) or 2MIN groups (2.7 ml · kg(-1) · min(-1)). IN sensitivity (HOMA-IR) improved for both training groups (Δ-2.78 ± 3.48 units; p < 0.05) compared to CON. HIIT may be an effective short-term strategy to improve cardiorespiratory fitness and IN sensitivity in overweight males.

  11. Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15-70 ps

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Vyhlídal, David; Kubeček, Václav

    2016-12-01

    In this paper the optimization of a continuously diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively mode-locked using semiconductor saturable absorber mirror is presented. In the previous results the Nd:GdVO4 laser system generating 30 ps pulses with the average output power of 6.9 W at the repetition rate of 200 MHz at the wavelength of 1063 nm was reported. Now we are demonstrating up to three times increase of peak power due to the optimization of mode-matching in the laser resonator. Depending on the oscillator configuration we obtained the stable continuously mode-locked operation with pulses having selectable duration from 15 ps to 70 ps with the average output power of 7 W and the repetition rate of 150 MHz.

  12. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  13. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors

    PubMed Central

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418

  14. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-600 series system

    NASA Astrophysics Data System (ADS)

    Currier, S. F.; Powell, W. R.

    1986-08-01

    The hardware and software characteristics of a time division multiplex system are described. The system is used to sample analog and digital data. The data is merged with synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information presented herein is required by users to design compatible interfaces and assure effective utilization of this encoder system. GSFC/Wallops Flight Facility has flown approximately 50 of these systems through 1984 on sounding rockets with no inflight failures. Aydin Vector manufactures all of the components for these systems.

  15. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-600 series system

    NASA Technical Reports Server (NTRS)

    Currier, S. F.; Powell, W. R.

    1986-01-01

    The hardware and software characteristics of a time division multiplex system are described. The system is used to sample analog and digital data. The data is merged with synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information presented herein is required by users to design compatible interfaces and assure effective utilization of this encoder system. GSFC/Wallops Flight Facility has flown approximately 50 of these systems through 1984 on sounding rockets with no inflight failures. Aydin Vector manufactures all of the components for these systems.

  16. Modeling of testosterone regulation by pulse-modulated feedback: An experimental data study

    NASA Astrophysics Data System (ADS)

    Mattsson, Per; Medvedev, Alexander

    2013-10-01

    The continuous part of a hybrid (pulse-modulated) model of testosterone feedback regulation is extended with infinite-dimensional and nonlinear dynamics, to better explain the testosterone concentration profiles observed in clinical data. A linear least-squares based optimization algorithm is developed for the purpose of detecting impulses of gonadotropin-realsing hormone from measured concentration of luteinizing hormone. The parameters in the model are estimated from hormone concentration measured in human males, and simulation results from the full closed-loop system are provided.

  17. Distributed optical fiber sensor based on modulated dual-pulse probe signal

    NASA Astrophysics Data System (ADS)

    Sun, Wenhui; Fang, Gaosheng; Chen, Xinwei; Wu, Pengsheng; Wang, Kai

    2016-01-01

    A distributed fiber sensor based on Rayleigh scattering is described which converts vibration-induced optical phase changes into optical intensity variations by using modulated dual-pulses injected into sensing fiber. Phase generated carrier algorithm is used to permit arctangent operation to demodulate the phase information along the sensing fiber. The demonstrated sensor is capable of probing dynamic acoustic or vibration disturbances over 10km of sensing length with spatial resolution of 6m and large signal to noise ratio. The background noise of our system is estimated about 1×10-3 rad/√Hz.

  18. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.

    PubMed

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.

  19. Compression of phase-modulated microwave pulse by chain of ring cavities

    SciTech Connect

    Petelin, M.I.; Tai, M.L.

    1995-07-05

    To compress phase-modulated microwave pulses, it is proposed to use a chain of ring resonant cavities differing in eigen-frequencies and Q-factors. Both space-time and spectrum approaches are fit to explain the method. The power gain in principle is not limited, but practically may be up to 10--15 times. Either closed or, to avoid the RF breakdown, quasi-optical cavities can be used. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal

    NASA Astrophysics Data System (ADS)

    Alekseev, A. E.; Vdovenko, V. S.; Gorshkov, B. G.; Potapov, V. T.; Simikin, D. E.

    2014-11-01

    A novel configuration of a phase-sensitive optical time-domain reflectometer (OTDR) utilizing dual-pulse phase modulations of the probe signal is presented and experimentally demonstrated. The proposed modulation method enables one to perform the demodulation and reconstruction of an external perturbation signal which impacts the fiber using the phase diversity technique. The proposed phase-sensitive OTDR has some advantages in comparison with conventional solutions, which are discussed. The feasibility of a double pulse OTDR with phase modulation is demonstrated and theoretically proved.

  1. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse

    NASA Astrophysics Data System (ADS)

    Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.

    2014-01-01

    The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  2. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R; Prince, Benjamin D; Roy, Sukesh; Gord, James R

    2014-01-14

    The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  3. Ultrasound-modulated optical imaging using a photorefractive interferometer and a powerful long pulse laser

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2009-02-01

    Ultrasound-modulated optical imaging is an emerging biodiagnostic technique which provides the optical spectroscopic signature and the spatial localization of an optically absorbing object embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. The practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must satisfy the biomedical safety limits. In this paper, we propose to use a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source allows illuminating the tissues mainly during the transit time of the ultrasonic wave. A single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue. When pumped by high intensity laser pulses, such an interferometer provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation encountered in biomedical applications. Consequently, the combination of a large-etendue photorefractive interferometer with a high-power pulsed laser could allow obtaining both the sensitivity and the fast response time necessary for biomedical applications. Measurements performed in 30- and 60-mm thick optical phantoms made of titanium dioxide particles dispersed in sunflower oil are presented. Results obtained in 30- and 60-mm thick chicken breast samples are also reported.

  4. Performance of Multiple Pulse Multiple Delay Modulated UWB Signals in a Multiple Access Indoor Wireless Channel

    SciTech Connect

    Nekoogar, F

    2003-06-12

    In this paper, the performance of a two user UWB multiple access (UWB-MA) system based on multiple-pulse multiple-delay (MPMD) modulation scheme in an indoor wireless channel is evaluated by computer simulations. The indoor multipath propagation channel model used in this study is based on the modified statistical Saleh-Valenzuela model proposed by Foerester and Li from Intel. The simulation results indicate that the multipath performance of MPMD modulated signals in a multiple access system outperforms the nonmultipath case as the number of autocorrelation function (ACF) sampling points increases for each user. This is an unusual but important result, since MPMD receiver exploits multipath phenomenon in indoor wireless channels to increase the BER performance, hence the transmission rate in a UWB-MA system.

  5. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes.

    PubMed

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-06

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  6. Effect of Stochastic Modulation of Inter-Pulse Interval During Stimulated Isokinetic Leg Extension

    PubMed Central

    Aksöz, Efe Anil; Laubacher, Marco; Binder-Macleod, Stuart; Hunt, Kenneth J.

    2016-01-01

    Recumbent cycling exercise achieved by functional electrical stimulation (FES) of the paralyzed leg muscles is effective for cardiopulmonary and musculoskeletal conditioning after spinal cord injury, but its full potential has not yet been realized. Mechanical power output and efficiency is very low and endurance is limited due to early onset of muscle fatigue. The aim of this work was to compare stochastic modulation of the inter-pulse interval (IPI) to constant-frequency stimulation during an isokinetic leg extension task similar to FES-cycling. Seven able-bodied subjects participated: both quadriceps muscles were stimulated (n = 14) with two activation patterns (P1-constant frequency, P2-stochastic IPI). There was significantly higher power output with P2 during the first 30 s (p = 0.0092), the last 30 s (p = 0.018) and overall (p = 0.0057), but there was no overall effect on fatiguability when stimulation frequency was randomly modulated. PMID:27990242

  7. Non-parametric PCM to ADM conversion. [Pulse Code to Adaptive Delta Modulation

    NASA Technical Reports Server (NTRS)

    Locicero, J. L.; Schilling, D. L.

    1977-01-01

    An all-digital technique to convert pulse code modulated (PCM) signals into adaptive delta modulation (ADM) format is presented. The converter developed is shown to be independent of the statistical parameters of the encoded signal and can be constructed with only standard digital hardware. The structure of the converter is simple enough to be fabricated on a large scale integrated circuit where the advantages of reliability and cost can be optimized. A concise evaluation of this PCM to ADM translation technique is presented and several converters are simulated on a digital computer. A family of performance curves is given which displays the signal-to-noise ratio for sinusoidal test signals subjected to the conversion process, as a function of input signal power for several ratios of ADM rate to Nyquist rate.

  8. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    PubMed Central

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments. PMID:28059148

  9. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  10. Apoptotic cell death during Drosophila oogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure.

    PubMed

    Sagioglou, Niki E; Manta, Areti K; Giannarakis, Ioannis K; Skouroliakou, Aikaterini S; Margaritis, Lukas H

    2016-01-01

    Present generations are being repeatedly exposed to different types and doses of non-ionizing radiation (NIR) from wireless technologies (FM radio, TETRA and TV stations, GSM and UMTS phones/base stations, Wi-Fi networks, DECT phones). Although there is controversy on the published data regarding the non-thermal effects of NIR, studies have convincingly demonstrated bioeffects. Their results indicate that modulation, intensity, exposure duration and model system are important factors determining the biological response to irradiation. Attempting to address the dependence of NIR bioeffectiveness on these factors, apoptosis in the model biological system Drosophila melanogaster was studied under different exposure protocols. A signal generator was used operating alternatively under Continuous Wave (CW) or Frequency Modulation (FM) emission modes, at three power output values (10 dB, 0, -10 dB), under four carrier frequencies (100, 395, 682, 900 MHz). Newly emerged flies were exposed either acutely (6 min or 60 min on the 6th day), or repeatedly (6 min or 60 min daily for the first 6 days of their life). All exposure protocols resulted in an increase of apoptotic cell death (ACD) observed in egg chambers, even at very low electric field strengths. FM waves seem to have a stronger effect in ACD than continuous waves. Regarding intensity and temporal exposure pattern, EMF-biological tissue interaction is not linear in response. Intensity threshold for the induction of biological effects depends on frequency, modulation and temporal exposure pattern with unknown so far mechanisms. Given this complexity, translating such experimental data into possible human exposure guidelines is yet arbitrary.

  11. The growth cones of Aplysia sensory neurons: Modulation by serotonin of action potential duration and single potassium channel currents.

    PubMed

    Belardetti, F; Schacher, S; Kandel, E R; Siegelbaum, S A

    1986-09-01

    Serotonin (5-HT) closes a specific K channel ("S") in the cell body of Aplysia sensory neurons, resulting in a slow excitatory postsynaptic potential and spike broadening. To determine whether the S channel is present and can be modulated in processes of the neuron other than the cell body, we studied the effects of 5-HT on growth cones of sensory neurons in culture by using the patch-clamp technique. Simultaneous application of 5-HT to the cell body and to the growth cones of sensory neurons produced, in both, a slow depolarization of approximately 5 mV. Also, 5-HT produced a lengthening of the duration of action potential in the growth cone and cell body by 20-30%. Similar effects were observed in isolated growth cones that had been severed from the rest of the neuron, implying that the growth cones contain all the molecular components (i.e., receptors, channels, cAMP cascade) necessary for 5-HT action. Cell-attached patch-clamp recordings demonstrated the presence of S channels in sensory neuron growth cones. Application of serotonin to the bath produced long-lasting all-or-none closures of these channels in a manner identical to the previously characterized action of 5-HT in the cell body. Thus, channel modulation is not restricted to the cell body and probably occurs throughout the sensory neuron. This strengthens the view that S-channel modulation may also occur at the sensory neuron presynaptic terminal, where it could play a role in the presynaptic facilitation produced by 5-HT.

  12. Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses.

    PubMed

    Nemoto, Natsuki; Higuchi, Takuya; Kanda, Natsuki; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2014-07-28

    We have developed an electro-optic (EO) sampling method with polarization modulation of probe pulses; this method allows us to measure the direction of a terahertz (THz) electric-field vector with a precision of 0.1 mrad in a data acquisition time of 660 ms using a 14.0-kHz repetition rate pulsed light source. Through combination with a THz time-domain spectroscopy technique, a time-dependent two-dimensional THz electric field was obtained. We used a photoelastic modulator for probe-polarization modulation and a (111)-oriented zincblende crystal as the EO crystal. Using the tilted pulse front excitation method with stable regeneratively amplified pulses, we prepared stable and intense THz pulses and performed pulse-by-pulse analog-to-digital conversion of the signals. These techniques significantly reduced statistical errors and enabled sub-mrad THz polarization measurements. We examined the performance of this method by measuring a wire-grid polarizer as a sample. The present method will open a new frontier of high-precision THz polarization sensitive measurements.

  13. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  14. Modulation of Osteogenesis in Human Mesenchymal Stem Cells by Specific Pulsed Electromagnetic Field Stimulation

    PubMed Central

    Tsai, Ming-Tzu; Li, Wan-Ju; Tuan, Rocky S.; Chang, Walter H.

    2009-01-01

    Human mesenchymal stem cells (hMSCs) are a promising candidate cell type for regenerative medicine and tissue engineering applications by virtue of their capacity for self-renewal and multipotent differentiation. Our intent was to characterize the effect of pulsed electromagnetic fields (PEMFs) on the proliferation and osteogenic differentiation of hMSCs in vitro. hMSCs isolated from the bone marrow of adult patients were cultured with osteogenic medium for up to 28 days and exposed to daily PEMF stimulation with single, narrow 300 μs quasi-rectangular pulses with a repetition rate of 7.5 Hz. Relatively greater cell numbers were observed at late stages of osteogenic culture with PEMF exposure. The production of alkaline phosphatase (ALP), an early marker of osteogenesis, was significantly enhanced at day 7 with PEMF treatment in both basal and osteogenic cultures as compared to untreated controls. Furthermore, the expressions of other early osteogenic genes, including Runx2/Cbfa1 and ALP, were also partially modulated by PEMF exposure, indicating that osteogenesis in hMSCs was associated with the specific PEMF stimulation. Based on ALP and alizarin red S staining, the accumulation of ALP protein produced by the hMSCs as well as calcium deposits reached their highest levels at day 28. Our results indicate that extremely low frequency PEMF stimulation may play a modulating role in hMSC osteogenesis. Taken together, these findings provide insights on the development of PEMF as an effective technology for regenerative medicine. PMID:19274753

  15. Single Event Effects Testing of the Linfinity SG1525A Pulse Width Modulator Controller

    NASA Technical Reports Server (NTRS)

    Howard, J. W., Jr.; Carts, M. A.; LaBel, K. A.; Forney, J. D.; Irwin, T. L.

    2003-01-01

    Pulse Width Modulator (PWM) Controllers are the heart of switching power supply systems in development today. The PWMs considered here have the same integration advantages as many other controllers but it also includes the interface drivers for the follow-on power Field Effect Transistors (FET). Previous work on these types of devices looked into the required test methodologies [ 11 and the impact of radiation on the soft start and shutdown circuits of typically incorporated in the technology [2]. Taking advantage of this previous work this study was undertaken to determine the single event destructive and transient susceptibility of the Linfinity SG1525A Pulse Width Modulator Controller. The device was monitored for transient interruptions in the output signals and for destructive events induced by exposing it to a heavy ion beam at the Texas A&M University Cyclotron Single Event Effects Test Facility. After exposing these devices to the beam, a new upset mode has been identified that can lead to catastrophic power supply system failure if this event would occur while drive power FETs off the two device outputs. The devices and the test methods used will be described first. This will be followed by a brief description of the data collected to date (not all data can be presented with the length constraints of the summary) and a summary of the key results.

  16. Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation

    NASA Astrophysics Data System (ADS)

    Vermeulen, Nathalie; Castelló-Lurbe, David; Cheng, JinLuo; Pasternak, Iwona; Krajewska, Aleksandra; Ciuk, Tymoteusz; Strupinski, Wlodek; Thienpont, Hugo; Van Erps, Jürgen

    2016-10-01

    We experimentally demonstrate a negative Kerr nonlinearity for quasiundoped graphene. Hereto, we introduce the method of chirped-pulse-pumped self-phase modulation and apply it to graphene-covered silicon waveguides at telecom wavelengths. The extracted Kerr-nonlinear index for graphene equals n2 ,gr=-10-13 m2 /W . Whereas the sign of n2 ,gr turns out to be negative in contrast to what has been assumed so far, its magnitude is in correspondence with that observed in earlier experiments. Graphene's negative Kerr nonlinearity strongly impacts how graphene should be exploited for enhancing the nonlinear response of photonic (integrated) devices exhibiting a positive nonlinearity. It also opens up the possibility of using graphene to annihilate unwanted nonlinear effects in such devices, to develop unexplored approaches for establishing Kerr processes, and to extend the scope of the "periodic poling" method often used for second-order nonlinearities towards third-order Kerr processes. Because of the generic nature of the chirped-pulse-pumped self-phase modulation method, it will allow fully characterizing the Kerr nonlinearity of essentially any novel (2D) material.

  17. Optical Receiver for Coherently Detected Pulse-Position Modulated Signals in the Presence of Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Munoz Fernandez, M.; Vilnrotter, V. A.

    2005-05-01

    Performance analysis and experimental verification of a coherent free-space optical communications receiver in the presence of simulated atmospheric turbulence is presented. Bit-error rate (BER) performance of ideal coherent detection is analyzed in Section II, and the laboratory equipment and experimental setup used to carry out these experiments are described. The key components include two lasers operating at a 1064-nm wavelength for use with coherent detection, a 16-element (4 x 4) focal-plane detector array, and a data acquisition and signal processing assembly needed to sample and collect the data and analyze the results. The detected signals are combined using the least-mean-square (LMS) algorithm. In Section III, convergence of the algorithm for experimentally obtained signal tones in the presence of atmospheric turbulence is demonstrated. In Section IV, adaptive combining of experimentally obtained heterodyned pulse-position modulated (PPM) signals with pulse-to-pulse coherence, in the presence of simulated spatial distortions resembling atmospheric turbulence, is demonstrated. The adaptively combined PPM signals are phased up via an LMS algorithm suitably optimized to operate with PPM in the presence of additive shot noise. A convergence analysis of the algorithm is presented, and results with both computer-simulated and experimentally obtained PPM signals are analyzed.

  18. Adaptive Bessel-autocorrelation of ultrashort pulses with phase-only spatial light modulators

    NASA Astrophysics Data System (ADS)

    Huferath-von Luepke, Silke; Bock, Martin; Grunwald, Ruediger

    2009-06-01

    Recently, we proposed a new approach of a noncollinear correlation technique for ultrashort-pulsed coherent optical signals which was referred to as Bessel-autocorrelator (BAC). The BAC-principle combines the advantages of Bessellike nondiffracting beams like stable propagation, angular robustness and self-reconstruction with the principle of temporal autocorrelation. In comparison to other phase-sensitive measuring techniques, autocorrelation is most straightforward and time-effective because of non-iterative data processing. The analysis of nonlinearly converted fringe patterns of pulsed Bessel-like beams reveals their temporal signature from details of fringe envelopes. By splitting the beams with axicon arrays into multiple sub-beams, transversal resolution is approximated. Here we report on adaptive implementations of BACs with improved phase resolution realized by phase-only liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs). Programming microaxicon phase functions in gray value maps enables for a flexible variation of phase and geometry. Experiments on the diagnostics of few-cycle pulses emitted by a mode-locked Ti:sapphire laser oscillator at wavelengths around 800 nm with 2D-BAC and angular tuned BAC were performed. All-optical phase shift BAC and fringe free BAC approaches are discussed.

  19. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2007-08-01

    Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.

  20. Modeling and calibration of pulse-modulation based ToF imaging systems

    NASA Astrophysics Data System (ADS)

    Süss, Andreas; Varga, Gabor; Marx, Michael; Fürst, Peter; Gläsener, Stefan; Tiedke, Wolfram; Jung, Melanie; Spickermann, Andreas; Hosticka, Bedrich J.

    2016-03-01

    Conversely to the continuous wave indirect time-of-flight (CW-iToF) imaging scheme, pulsed modulation ToF (PM-iToF) imaging is a promising depth measurement technique for operation at high ambient illumination. It is known that non-linearity and finite charge-transfer speed impact trueness and precision of ToF systems.1-3 As pulses are no Eigenfunctions to the shutter system, this issue is especially pronounced in pulsed modulation.2, 3 Despite these effects, it is possible to find analytical expressions founded on physical observations that map scenery parameters such as depth information, reflectance and ambient light level to sensor output.3, 4 In the application, the inverse of this map has to be evaluated. In PM-iToF, an inverse function cannot be yielded in a direct manner, as models proposed in the literature were transcendental.3, 4 For a limited range an approximating linearization can be performed to yield depth information.5 To extend the usable range, recently, an alternative approach that indirectly approximates the inverse function was presented.6 This method was founded on 1D doping concentration profiles, which, however, are typically not made available to end users. Also, limitations of the 1D approximation as well as stability are yet to be explored. This work presents a calibration methodology that copes with detector insufficiencies such as finite charge transfer speed. Contrarily to the state of the art, no prior knowledge on details of the underlying devices is required. The work covers measurement setup, a benchmark of various calibration schemes and deals with issues such as overfitting or defect pixels.