Sample records for pulse duration time

  1. Temporal selectivity by single neurons in the torus semicircularis of Batrachyla antartandica (Amphibia: Leptodactylidae).

    PubMed

    Penna, M; Lin, W Y; Feng, A S

    2001-12-01

    We investigated the response selectivities of single auditory neurons in the torus semicircularis of Batrachyla antartandica (a leptodactylid from southern Chile) to synthetic stimuli having diverse temporal structures. The advertisement call for this species is characterized by a long sequence of brief sound pulses having a dominant frequency of about 2000 Hz. We constructed five different series of synthetic stimuli in which the following acoustic parameters were systematically modified, one at a time: pulse rate, pulse duration, pulse rise time, pulse fall time, and train duration. The carrier frequency of these stimuli was fixed at the characteristic frequency of the units under study (n=44). Response patterns of TS units to these synthetic call variants revealed different degrees of selectivity for each of the temporal variables. A substantial number of neurons showed preference for pulse rates below 2 pulses s(-1), approximating the values found in natural advertisement calls. Tonic neurons generally showed preferences for long pulse durations, long rise and fall times, and long train durations. In contrast, phasic and phasic-burst neurons preferred stimuli with short duration, short rise and fall times and short train durations.

  2. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    PubMed

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  3. Effects of pulse duration on magnetostimulation thresholds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saritas, Emine U., E-mail: saritas@ee.bilkent.edu.tr; Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800; National Magnetic Resonance Research Center

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number ofmore » cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations. Results: The magnetostimulation limits decreased with increasing pulse duration (T{sub pulse}). For T{sub pulse} < 18 ms, the thresholds were significantly higher than at the longest pulse durations (p < 0.01, paired Wilcoxon signed-rank test). The normalized magnetostimulation threshold (B{sub Norm}) vs duration curve at all three frequencies agreed almost identically, indicating that the observed effect is independent of the operating frequency. At the shortest pulse duration (T{sub pulse} ≈ 2 ms), the thresholds were approximately 24% higher than at the asymptotes. The thresholds decreased to within 4% of their asymptotic values for T{sub pulse} > 20 ms. These trends were well characterized (R{sup 2} = 0.78) by a stretched exponential function given by B{sub Norm}=1+αe{sup −(T{sub p}{sub u}{sub l}{sub s}{sub e}/β){sup γ}}, where the fitted parameters were α = 0.44, β = 4.32, and γ = 0.60. Conclusions: This work shows for the first time that the magnetostimulation thresholds decrease with increasing pulse duration, and that this effect is independent of the operating frequency. Normalized threshold vs duration trends are almost identical for a 20-fold range of frequencies: the thresholds are significantly higher at short pulse durations and settle to within 4% of their asymptotic values for durations longer than 20 ms. These results emphasize the importance of matching the human-subject experiments to the imaging conditions of a particular setup. Knowing the dependence of the safety limits to all contributing factors is critical for increasing the time-efficiency of imaging systems that utilize time-varying magnetic fields.« less

  4. FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.

    PubMed

    Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan

    2018-01-01

    The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

  5. Simultaneous multislice refocusing via time optimal control.

    PubMed

    Rund, Armin; Aigner, Christoph Stefan; Kunisch, Karl; Stollberger, Rudolf

    2018-02-09

    Joint design of minimum duration RF pulses and slice-selective gradient shapes for MRI via time optimal control with strict physical constraints, and its application to simultaneous multislice imaging. The minimization of the pulse duration is cast as a time optimal control problem with inequality constraints describing the refocusing quality and physical constraints. It is solved with a bilevel method, where the pulse length is minimized in the upper level, and the constraints are satisfied in the lower level. To address the inherent nonconvexity of the optimization problem, the upper level is enhanced with new heuristics for finding a near global optimizer based on a second optimization problem. A large set of optimized examples shows an average temporal reduction of 87.1% for double diffusion and 74% for turbo spin echo pulses compared to power independent number of slices pulses. The optimized results are validated on a 3T scanner with phantom measurements. The presented design method computes minimum duration RF pulse and slice-selective gradient shapes subject to physical constraints. The shorter pulse duration can be used to decrease the effective echo time in existing echo-planar imaging or echo spacing in turbo spin echo sequences. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; ...

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  7. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  8. Temperature variation during apicectomy with Er:YAG laser.

    PubMed

    Bodrumlu, Emre; Keskiner, Ilker; Sumer, Mahmut; Sumer, A Pinar; Telcıoglu, N Tuba

    2012-08-01

    The purpose of this in vitro study was to evaluate the generated temperature of the Er:YAG laser, with three different pulse durations for apicectomy, compared with tungsten bur and surgical saw. Apicectomy is an endodontic surgery performed to remove the root apex and curette adjacent periapical tissue because of lesions of the apical area that are not healing properly. Sixty single-rooted extracted human teeth were resected by three cutting methods: tungsten bur, surgical saw, and Er:YAG laser irradiation with three different pulse durations; pulse duration 50 μs, pulse duration 100 μs, and pulse duration 300 μs. Teflon-insulated, type K thermocouples were used to measure temperature changes during the apicectomy process. Data were analyzed using the general linear models procedure of the SPSS statistical software program. Although there was no statistically significant difference for the mean values of temperature changes at 1 mm away to the cutting site of teeth, there was statistically significant difference among groups for the mean values of temperature changes at 3 mm away to the cutting site of teeth. Additionally, there was statistically significant difference among groups for the total time required for apicectomy. The laser irradiation with pulse duration 50 μs appears to have the lowest temperature rise and the shortest time required for apicectomy of the three pulse durations. However, Er:YAG laser for apicectomy in all pulse durations could be used safely for resection in endodontics in the presence of sufficient water.

  9. Method for distance determination using range-gated imaging suitable for an arbitrary pulse shape

    NASA Astrophysics Data System (ADS)

    Kabashnikov, Vitaly; Kuntsevich, Boris

    2017-10-01

    A method for distance determination with the help of range-gated viewing systems suitable for the arbitrary shape of the illumination pulse is proposed. The method is based on finding the delay time at which maximum of the return pulse energy takes place. The maximum position depends on the pulse and gate durations and, generally speaking, on the pulse shape. If the pulse length is less than or equal to the gate duration, the delay time appropriate to the maximum does not depend on the pulse shape. At equal pulse and gate durations, there is a strict local maximum, which turns into a plateau when pulse is shorter than gate duration. A delay time appropriate to the strict local maximum or the far boundary of the plateau (where non-strict maximum is) is directly related to the distance to the object. These findings are confirmed by analytical relationships for trapezoid pulses and numerical results for the real pulse shape. To verify the proposed method we used a vertical wall located at different distances from 15 to 120m as an observed object. Delay time was changing discretely in increments of 5 ns. Maximum of the signal was determined by visual observation of the object on the monitor screen. The distance defined by the proposed method coincided with the direct measurement with accuracy 1- 2m, which is comparable with the delay time step multiplied by half of the light velocity. The results can be useful in the development of 3-D vision systems.

  10. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  11. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  12. Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells

    NASA Astrophysics Data System (ADS)

    He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2018-05-01

    The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2  <  1.18.

  13. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes.

    PubMed

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C T Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-02-09

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.

  14. Smoothed spectra for enhanced dispersion-free pulse duration reduction of passively Q-switched microchip lasers.

    PubMed

    Lehneis, R; Jauregui, C; Steinmetz, A; Limpert, J; Tünnermann, A

    2014-02-01

    We present an enhanced technique for dispersion-free pulse shortening, which exploits the interplay of different third-order nonlinear effects in a waveguide structure. When exceeding a certain value of the pulse energy coupled into the waveguide, the typical oscillations of self-phase modulation (SPM)-broadened spectra vanish during pulse propagation. Such smoothed spectra ensure a high pulse quality of the spectrally filtered and, therefore, temporally shortened pulses independently of the filtering position. A reduction of the pulse duration from 138 to 24 ps has been achieved while preserving a high temporal quality. To the best of our knowledge, the nonlinear smoothing of SPM-broadened spectra is used in the context of dispersion-free pulse duration reduction for the first time.

  15. Human auditory event-related potentials predict duration judgments.

    PubMed

    Bendixen, Alexandra; Grimm, Sabine; Schröger, Erich

    2005-08-05

    Internal clock models postulate a pulse accumulation process underlying timing activities, with more accumulated pulses resulting in longer perceived durations. We investigated whether this accumulation is reflected in the amplitude of event-related brain potentials (ERPs) elicited by auditory stimuli with durations of 400-600 ms. In a duration discrimination paradigm, we found more negative amplitudes to physically identical stimuli when they were judged as longer than the memorized standard duration (500 ms) as compared to being classified as shorter. This sustained negativity was already developing during the first 100 ms after stimulus onset. It could not be explained as a bias to respond with a particular hand (lateralized readiness potential), but rather reflects a processing difference between the tones to be judged as shorter or longer. Our results are in line with models of time processing which assume that higher numbers of accumulated pulses of a temporal processor result in an increase in perceived duration.

  16. Strong and Long Makes Short: Strong-Pump Strong-Probe Spectroscopy.

    PubMed

    Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang

    2011-01-20

    We propose a new time-domain spectroscopic technique that is based on strong pump and probe pulses. The strong-pump strong-probe (SPSP) technique provides temporal resolution that is not limited by the durations of the pump and probe pulses. By numerically exact simulations of SPSP signals for a multilevel vibronic model, we show that the SPSP signals exhibit electronic and vibrational beatings on time scales which are significantly shorter than the pulse durations. This suggests the possible application of SPSP spectroscopy for the real-time investigation of molecular processes that cannot be temporally resolved by pump-probe spectroscopy with weak pump and probe pulses.

  17. Initial Breakdown Pulse Parameters in Intracloud and Cloud-to-Ground Lightning Flashes

    NASA Astrophysics Data System (ADS)

    Smith, E. M.; Marshall, T. C.; Karunarathne, S.; Siedlecki, R.; Stolzenburg, M.

    2018-02-01

    This study analyzes the largest initial breakdown (IB) pulse in flashes from four storms in Florida; data from three sensor arrays are used. The range-normalized, zero-to-peak amplitude of the largest IB pulse was determined along with its altitude, duration, and timing within each flash. Appropriate data were available for 40 intracloud (IC) and 32 cloud-to-ground (CG) flashes. Histograms of amplitude of the largest IB pulse by flash type were similar, with mean (median) values of 1.49 (1.05) V/m for IC flashes and -1.35 (-0.87) V/m for CG flashes. The largest IB pulse in 30 IC flashes showed a weak inverse relation between pulse amplitude and altitude. Amplitude of the largest IB pulse for 25 CG flashes showed no altitude correlation. Duration of the largest IB pulse in ICs averaged twice as long as in CGs (96 μs versus 46 μs), and all of the CG durations were <100 μs. Among the ICs, there is a positive relation between largest IB pulse duration and amplitude; the linear correlation coefficient is 0.385 with outliers excluded. The largest IB pulse in IC flashes typically occurred at a longer time after the first IB pulse (average 4.1 ms) than was the case in CG flashes (average 0.6 ms). In both flash types, the largest IB pulse was the first IB pulse in about 30% of the cases. In one storm all 42 IC flashes with triggered data had IB pulses.

  18. Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation.

    PubMed

    Connaughton, M A; Taylor, M H; Fine, M L

    2000-05-01

    To categorize variation in disturbance calls of the weakfish Cynoscion regalis and to understand their generation, we recorded sounds produced by different-sized fish, and by similar-sized fish at different temperatures, as well as muscle electromyograms. Single, simultaneous twitches of the bilateral sonic muscles produce a single sound pulse consisting of a two- to three-cycle acoustic waveform. Typical disturbance calls at 18 degrees C consist of trains of 2-15 pulses with a sound pressure level (SPL) of 74 dB re 20 microPa at 10 cm, a peak frequency of 540 Hz, a repetition rate of 20 Hz and a pulse duration of 3.5 ms. The pulse duration suggests an incredibly short twitch time. Sound pressure level (SPL) and pulse duration increase and dominant frequency decreases in larger fish, whereas SPL, repetition rate and dominant frequency increase and pulse duration decreases with increasing temperature. The dominant frequency is inversely related to pulse duration and appears to be determined by the duration of muscle contraction. We suggest that the lower dominant frequency of larger fish is caused by a longer pulse (=longer muscle twitch) and not by the lower resonant frequency of a larger swimbladder.

  19. Initial Breakdown Pulse Amplitudes in Intracloud and Cloud-to-Ground Lightning Flashes

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Smith, E. M.; Stolzenburg, M.; Karunarathne, S.; Siedlecki, R. D., II

    2017-12-01

    This study analyzes the largest initial breakdown (IB) pulse in flashes from three storms in Florida. The study was motivated in part by the possibility that IB pulses of IC flashes may cause of terrestrial gamma-ray flashes (TGFs). The range-normalized, zero-to-peak amplitude of the largest IB pulse within each flash was determined along with its altitude, duration, and occurrence time in the flash. Appropriate data were available for 40 intracloud (IC) and 32 cloud-to-ground (CG) flashes. Histograms of the magnitude of the largest IB pulse amplitude by flash type were similar, with mean (median) values of 1.49 (1.05) V/m for IC flashes and -1.35 (-0.87) V/m for CG flashes. The mean amplitude of the largest IC IB pulses are substantially smaller (roughly an order of magnitude smaller) than the few known pulse amplitudes of TGF events and TGF candidate events. The largest IB pulse in 30 IC flashes showed a weak inverse relation between pulse amplitude and altitude. Amplitude of the largest IB pulse for 25 CG flashes showed no altitude correlation. Duration of the largest IB pulse in ICs averaged twice as long as in CGs (96 μs versus 46 μs); all of the CG durations were <100 μs. Among the ICs, there is a positive relation between largest IB pulse duration and amplitude; the linear correlation coefficient is 0.385 with outliers excluded. The largest IB pulse in IC flashes typically occurred at a longer time after the first IB pulse (average 4.1 ms) than was the case in CG flashes (average 0.6 ms). In both flash types, the largest IB pulse was the first IB pulse in about 30% of the cases.

  20. Temporal concentrations of cortisol and LH in virgin ewes acutely exposed to rams during the transition into the breeding season.

    PubMed

    McCosh, R B; Berry, E M; Wehrman, M E; Redden, R R; Hallford, D M; Berardinelli, J G

    2015-03-01

    The objectives of this study were to determine if exposing seasonally anovular ewes to rams would alter patterns of cortisol concentrations, and if these changes are associated with changes in characteristics of LH concentrations. Seasonally anestrous ewes were assigned to be exposed to rams (RE; n=11) or wethers (NE; n=12). Blood samples were collected at 15-min intervals beginning 120 min before introduction of males (time=0 min), and continued for 360 min after male exposure. Characteristics of cortisol and LH concentrations included: mean and baseline concentrations, pulse amplitude, duration, frequency, and time to first pulse. Mean and baseline cortisol concentrations, and cortisol pulse amplitude, frequency, and time to first pulse after male exposure did not differ between RE and NE ewes. Cortisol pulse duration was longer (P<0.05) in RE ewes than in NE ewes. Mean LH and LH pulse amplitude, duration, and time to first pulse after male exposure did not differ between RE and NE ewes. Baseline LH concentrations and LH pulse frequency were greater (P<0.05) in RE than in NE ewes. In RE ewes, but not NE ewes, LH pulse frequency tended to increase (P=0.06) as pulse frequency of cortisol decreased. In conclusion, exposing ewes to mature rams during the transition into the breeding season increased LH pulse frequency which hastened ovulatory activity. However, the results do not support the hypothesis that changes in cortisol concentrations plays a significant role in the 'ram effect'. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Kinetics of transmembrane transport of small molecules into electropermeabilized cells.

    PubMed

    Pucihar, Gorazd; Kotnik, Tadej; Miklavcic, Damijan; Teissié, Justin

    2008-09-15

    The transport of propidium iodide into electropermeabilized Chinese hamster ovary cells was monitored with a photomultiplier tube during and after the electric pulse. The influence of pulse amplitude and duration on the transport kinetics was investigated with time resolutions from 200 ns to 4 ms in intervals from 400 micros to 8 s. The transport became detectable as early as 60 micros after the start of the pulse, continued for tens of seconds after the pulse, and was faster and larger for higher pulse amplitudes and/or longer pulse durations. With fixed pulse parameters, transport into confluent monolayers of cells was slower than transport into suspended cells. Different time courses of fluorescence increase were observed during and at various times after the pulse, reflecting different transport mechanisms and ongoing membrane resealing. The data were compared to theoretical predictions of the Nernst-Planck equation. After a delay of 60 micros, the time course of fluorescence during the pulse was approximately linear, supporting a mainly electrophoretic solution of the Nernst-Planck equation. The time course after the pulse agreed with diffusional solution of the Nernst-Planck equation if the membrane resealing was assumed to consist of three distinct components, with time constants in the range of tens of microseconds, hundreds of microseconds, and tens of seconds, respectively.

  2. Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Junjie; Zeng Bin; Yu Yongli

    2010-11-15

    We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecondmore » pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.« less

  3. Acoustic transients in pulsed holmium laser ablation: effects of pulse duration

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Delacretaz, Guy P.; Jansen, E. Duco; Welch, Ashley J.; Frenz, Martin

    1995-01-01

    The goal of this work was to study the influence of pulse duration on acoustic transient generation in holmium laser ablation. For this, the generation and collapse of cavitation bubbles induced by Q-switched and free-running laser pulses delivered under water were investigated. Polyacrylamide gel of 84% water content served as a model for soft tissue. This gel is a more realistic tissue phantom than water because it mimics not only the optical properties but also the mechanical properties of tissue. The dynamics of bubble formation inside the clear gel were observed by 1 ns time resolved flash videography. A polyvinylidenefluoride (PVDF) needle probe transducer measured absolute values of pressure amplitudes. Pressure wave generation by cavitation bubble collapse was observed in all phantoms used. Maximum pressures of more than 180 bars at 1 mm from the collapse center were observed in water and high water-contents gels with a pulse energy of 200 mJ and a 400 micrometers fiber. A strong dependency of the bubble collapse pressure on the pulse duration for constant pulse energy was observed in gel as well as in water. For pulse durations longer than 400 microsecond(s) a 90% reduction of pressure amplitudes relative to 100 microsecond(s) pulses was found. This suggests that optimization of pulse duration offers a degree of freedom allowing us to minimize the risk of acoustical damage in medical applications like arthroscopy and angioplasty.

  4. Improved safety of retinal photocoagulation with a shaped beam and modulated pulse

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel

    2010-02-01

    Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.

  5. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Self-action of a high-power 10-μm laser radiation in gases: control of the pulse duration and generation of hot electrons

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Platonenko, Viktor T.; Sterzhantov, A. F.

    2009-07-01

    The propagation of ultrashort 10-μm laser pulses of power exceeding the critical self-focusing power in xenon and air is numerically simulated. It is shown that the pulse duration in certain regimes in xenon can be decreased by 3-4 times simultaneously with the increase in the pulse power by 2-3 times. It is found that the average energy of electrons in a filament upon filamentation of 10-μm laser pulses in air can exceed 200 eV. The features of the third harmonic and terahertz radiation generation upon filamentation are discussed.

  6. Spatiotemporal interference of photoelectron wave packets and the time scale of nonadiabatic transitions in the high-frequency regime

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai

    2016-10-01

    The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. 17, 073005 (2015), 10.1088/1367-2630/17/7/073005] is applied to further study a detachment dynamics of a model negative ion in one dimension in the high-frequency regime. This method is based on the Floquet approach, but the time dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photon absorption or emission, but also a nonadiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schrödinger equation, and the underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we explore two more aspects of the detachment dynamics, which were not considered in our previous work. First, we determine the features of both a spatial and temporal interference of photoelectron wave packets in a photon-absorption process. We conclude that both of the interference mechanisms are universal in ionization dynamics in the high-frequency regime. Second, we extract a pulse duration which maximizes a yield of the nonadiabatic transition as a function of a pulse duration. It is shown that it becomes maximum when the pulse duration is comparable to a time scale of an electron.

  7. MORTALITY IN SMALL ANIMALS EXPOSED IN A SHOCK TUBE TO "SHARP"-RISING OVERPRESSURES OF 3-4 MSEC DURATION. Technical Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, D.R.; Goldizen, V.C.; Clare, V.R.

    1961-06-15

    A total of 661 animals was exposed to sharp''-rising overpressures of 3 to 4 msec duration using a shock tube of novel design which produced a pressure pulse similar to that obtained with high explosives. The reflected shock overpressures associated with 50% lethality were 29.0, rabbit, respectively. Other observations included the time of death in mortally wounded animals and gross pathological lesions likely to contribute to mortality. Selected data from the literature bearing upon the influence of overpressure and pulse duration on lethality were reviewed. These included pulse durations ranging from less than 1 msec to 8 sec. The criticalmore » pulse duration, that duration shorter than which the overpressures required for mortality increases sharply, was noted to depend upon animal size and to be of the order of many hundreds of microseconds to very few milliseconds for smaller'' animals and a few to many tens of milliseconds for larger'' animals. (auth)« less

  8. A compact nanosecond pulse generator for DBD tube characterization.

    PubMed

    Rai, S K; Dhakar, A K; Pal, U N

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  9. A compact nanosecond pulse generator for DBD tube characterization

    NASA Astrophysics Data System (ADS)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  10. Autoionizing states driven by stochastic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mouloudakis, G.; Lambropoulos, P.

    2018-01-01

    We have examined the profile of an isolated autoionizing resonance driven by a pulse of short duration and moderately strong field. The analysis has been based on stochastic differential equations governing the time evolution of the density matrix under a stochastic field. Having focused our quantitative analysis on the 2{{s}}2{{p}}({}1{{P}}) resonance of helium, we have investigated the role of field fluctuations and of the duration of the pulse. We report surprisingly strong distortion of the profile, even for peak intensity below the strong field limit. Our results demonstrate the intricate connection between intensity and pulse duration, with the latter appearing to be the determining influence, even for a seemingly short pulse of 50 fs. Further effects that would arise under much shorter pulses are discussed.

  11. Nonlinear resonance scattering of femtosecond X-ray pulses on atoms in plasmas

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.; Moroz, N. N.

    2017-11-01

    It is shown that for sufficiently short pulses the resonance scattering probability becomes a nonlinear function of the pulse duration. For fs X-ray pulses scattered on atoms in plasmas maxima and minima develop in the nonlinear regime whereas in the limit of long pulses the probability becomes linear and turns over into the standard description of the electromagnetic pulse scattering. Numerical calculations are carried out in terms of a generalized scattering probability for the total time of pulse duration including fine structure splitting and ion Doppler broadening in hot plasmas. For projected X-ray monocycles, the generalized nonlinear approach differs by 1-2 orders of magnitude from the standard theory.

  12. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  13. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4-μm with a pulse duration of 26-μs

    PubMed Central

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-01-01

    Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521

  14. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    PubMed

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  15. Dispersion-free pulse duration reduction of passively Q-switched microchip lasers.

    PubMed

    Lehneis, R; Steinmetz, A; Jauregui, C; Limpert, J; Tünnermann, A

    2012-11-01

    We present a dispersion-free method for the pulse duration reduction of passively Q-switched microchip laser (MCL) seed sources. This technique comprises two stages: one that carries out the self-phase modulation induced spectral broadening in a waveguide structure and a subsequent spectral filtering stage in order to shorten the pulses in time domain. The setup of a proof-of-principle experiment consists of a fiber-amplified passively Q-switched MCL, a passive single-mode fiber used as nonlinear element in which the spectrum is broadened, and a reflective volume-Bragg-grating acting as bandpass filter. A reduction of the pulse duration from 118 to 32 ps with high temporal quality has been achieved with this setup.

  16. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center.

    PubMed

    Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz

    2013-12-01

    Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

  17. The influence of bat echolocation call duration and timing on auditory encoding of predator distance in noctuoid moths.

    PubMed

    Gordon, Shira D; Ter Hofstede, Hannah M

    2018-03-22

    Animals co-occur with multiple predators, making sensory systems that can encode information about diverse predators advantageous. Moths in the families Noctuidae and Erebidae have ears with two auditory receptor cells (A1 and A2) used to detect the echolocation calls of predatory bats. Bat communities contain species that vary in echolocation call duration, and the dynamic range of A1 is limited by the duration of sound, suggesting that A1 provides less information about bats with shorter echolocation calls. To test this hypothesis, we obtained intensity-response functions for both receptor cells across many moth species for sound pulse durations representing the range of echolocation call durations produced by bat species in northeastern North America. We found that the threshold and dynamic range of both cells varied with sound pulse duration. The number of A1 action potentials per sound pulse increases linearly with increasing amplitude for long-duration pulses, saturating near the A2 threshold. For short sound pulses, however, A1 saturates with only a few action potentials per pulse at amplitudes far lower than the A2 threshold for both single sound pulses and pulse sequences typical of searching or approaching bats. Neural adaptation was only evident in response to approaching bat sequences at high amplitudes, not search-phase sequences. These results show that, for short echolocation calls, a large range of sound levels cannot be coded by moth auditory receptor activity, resulting in no information about the distance of a bat, although differences in activity between ears might provide information about direction. © 2018. Published by The Company of Biologists Ltd.

  18. Optical stimulation of the hearing and deaf cochlea under thermal and stress confinement condition

    NASA Astrophysics Data System (ADS)

    Schultz, M.; Baumhoff, P.; Kallweit, N.; Sato, M.; Krüger, A.; Ripken, T.; Lenarz, T.; Kral, A.

    2014-03-01

    There is a controversy, to which extend cochlear stimulation with near infrared laser pulses at a wavelength of 1860 nm is based on optoacoustic stimulation of intact hair cells or -in contrast- is based on direct stimulation of the nerve cells in absence of functional hair cells. Thermal and stress confinement conditions apply, because of the pulse duration range (5 ns, 10 μs-20 ms) of the two lasers used. The dependency of the signal characteristics on pulse peak power and pulse duration was investigated in this study. The compound action potential (CAP) was measured during stimulation of the cochlea of four anaesthetized guinea pigs, which were hearing at first and afterwards acutely deafened using intracochlear neomycin-rinsing. For comparison hydrophone measurements in a water tank were performed to investigate the optoacoustic signals at different laser interaction regimes. With rising pulse peak power CAPs of the hearing animals showed first a threshold, then a positively correlated and finally a saturating dependency. CAPs also showed distinct responses at laser onset and offset separated with the pulse duration. At pulse durations shorter than physiological response times the signals merged. Basically the same signal characteristics were observed in the optoacoustic hydrophone measurements, scaled with the sensitivity and response time of the hydrophone. Taking together the qualitative correspondence in the signal response and the absence of any CAPs in deafened animals our results speak in favor of an optoacoustic stimulation of intact hair cells rather than a direct stimulation of nerve cells.

  19. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    NASA Astrophysics Data System (ADS)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  20. Demodulator for binary-phase modulated signals having a variable clock rate

    NASA Technical Reports Server (NTRS)

    Wu, Ta Tzu (Inventor)

    1976-01-01

    Method and apparatus for demodulating binary-phase modulated signals recorded on a magnetic stripe on a card as the card is manually inserted into a card reader. Magnetic transitions are sensed as the card is read and the time interval between immediately preceeding basic transitions determines the duration of a data sampling pulse which detects the presence or absence of an intermediate transition pulse indicative of two respective logic states. The duration of the data sampling pulse is approximately 75 percent of the preceeding interval between basic transitions to permit tracking succeeding time differences in basic transition intervals of up to approximately 25 percent.

  1. Multiplexer and time duration measuring circuit

    DOEpatents

    Gray, Jr., James

    1980-01-01

    A multiplexer device is provided for multiplexing data in the form of randomly developed, variable width pulses from a plurality of pulse sources to a master storage. The device includes a first multiplexer unit which includes a plurality of input circuits each coupled to one of the pulse sources, with all input circuits being disabled when one input circuit receives an input pulse so that only one input pulse is multiplexed by the multiplexer unit at any one time.

  2. A table-top monochromator for tunable femtosecond XUV pulses generated in a semi-infinite gas cell: Experiment and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conta, A. von; Huppert, M.; Wörner, H. J.

    2016-07-15

    We present a new design of a time-preserving extreme-ultraviolet (XUV) monochromator using a semi-infinite gas cell as a source. The performance of this beamline in the photon-energy range of 20 eV–42 eV has been characterized. We have measured the order-dependent XUV pulse durations as well as the flux and the spectral contrast. XUV pulse durations of ≤40 fs using 32 fs, 800 nm driving pulses were measured on the target. The spectral contrast was better than 100 over the entire energy range. A simple model based on the strong-field approximation is presented to estimate different contributions to the measured XUVmore » pulse duration. On-axis phase-matching calculations are used to rationalize the variation of the photon flux with pressure and intensity.« less

  3. Theoretical exploration of control factors for the high-order harmonic generation (HHG) spectrum in two-color field.

    PubMed

    Huang, Xinting; Yang, Dapeng; Yao, Li

    2014-09-15

    In this work, the laser-parameter effects on the high-order harmonic generation (HHG) spectrum and attosecond trains by mixing two-color laser field, a visible light field of 800 nm and a mid-infrared (mid-IR) laser pulses of 2400 nm, are theoretically demonstrated for the first time. Different schemes are applied to discuss the function of intensity, carrier-envelope phase (CEP) and pulse duration on the generation of an isolated attosecond pulse. As a consequence, an isolated 16as pulse is obtained by Fourier transforming an ultrabroad XUV continuum of 208 eV with the fundamental field of duration of 6 fs, 9×10(14)W/cm2 of intensity, the duration of 12 fs, the CEPs of the two driving pulses of -π and the relative strength ratio √R=0.2. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ablation of steel by microsecond pulse trains

    NASA Astrophysics Data System (ADS)

    Windeler, Matthew Karl Ross

    Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 mus +/- 1.1 us and the exponential decays with a rate of 64 mus +/- 15 us. The phenomenological model offers an interpretation of the material removal process.

  5. A Conversion Formula for Comparing Pulse Oximeter Desaturation Rates Obtained with Different Averaging Times

    PubMed Central

    Vagedes, Jan; Bialkowski, Anja; Wiechers, Cornelia; Poets, Christian F.; Dietz, Klaus

    2014-01-01

    Objective The number of desaturations determined in recordings of pulse oximeter saturation (SpO2) primarily depends on the time over which values are averaged. As the averaging time in pulse oximeters is not standardized, it varies considerably between centers. To make SpO2 data comparable, it is thus desirable to have a formula that allows conversion between desaturation rates obtained using different averaging times for various desaturation levels and minimal durations. Methods Oxygen saturation was measured for 170 hours in 12 preterm infants with a mean number of 65 desaturations <90% per hour of arbitrary duration by using a pulse oximeter in a 2–4 s averaging mode. Using 7 different averaging times between 3 and 16 seconds, the raw red-to-infrared data were reprocessed to determine the number of desaturations (D). The whole procedure was carried out for 7 different minimal desaturation durations (≥1, ≥5, ≥10, ≥15, ≥20, ≥25, ≥30 s) below SpO2 threshold values of 80%, 85% or 90% to finally reach a conversion formula. The formula was validated by splitting the infants into two groups of six children each and using one group each as a training set and the other one as a test set. Results Based on the linear relationship found between the logarithm of the desaturation rate and the logarithm of the averaging time, the conversion formula is: D2 = D1 (T2/T1)c, where D2 is the desaturation rate for the desired averaging time T2, and D1 is the desaturation rate for the original averaging time T1, with the exponent c depending on the desaturation threshold and the minimal desaturation duration. The median error when applying this formula was 2.6%. Conclusion This formula enables the conversion of desaturation rates between different averaging times for various desaturation thresholds and minimal desaturation durations. PMID:24489887

  6. A conversion formula for comparing pulse oximeter desaturation rates obtained with different averaging times.

    PubMed

    Vagedes, Jan; Bialkowski, Anja; Wiechers, Cornelia; Poets, Christian F; Dietz, Klaus

    2014-01-01

    The number of desaturations determined in recordings of pulse oximeter saturation (SpO2) primarily depends on the time over which values are averaged. As the averaging time in pulse oximeters is not standardized, it varies considerably between centers. To make SpO2 data comparable, it is thus desirable to have a formula that allows conversion between desaturation rates obtained using different averaging times for various desaturation levels and minimal durations. Oxygen saturation was measured for 170 hours in 12 preterm infants with a mean number of 65 desaturations <90% per hour of arbitrary duration by using a pulse oximeter in a 2-4 s averaging mode. Using 7 different averaging times between 3 and 16 seconds, the raw red-to-infrared data were reprocessed to determine the number of desaturations (D). The whole procedure was carried out for 7 different minimal desaturation durations (≥ 1, ≥ 5, ≥ 10, ≥ 15, ≥ 20, ≥ 25, ≥ 30 s) below SpO2 threshold values of 80%, 85% or 90% to finally reach a conversion formula. The formula was validated by splitting the infants into two groups of six children each and using one group each as a training set and the other one as a test set. Based on the linear relationship found between the logarithm of the desaturation rate and the logarithm of the averaging time, the conversion formula is: D2 = D1 (T2/T1)(c), where D2 is the desaturation rate for the desired averaging time T2, and D1 is the desaturation rate for the original averaging time T1, with the exponent c depending on the desaturation threshold and the minimal desaturation duration. The median error when applying this formula was 2.6%. This formula enables the conversion of desaturation rates between different averaging times for various desaturation thresholds and minimal desaturation durations.

  7. Evidence for and implications of self-healing pulses of slip in earthquake rupture

    USGS Publications Warehouse

    Heaton, T.H.

    1990-01-01

    Dislocation time histories of models derived from waveforms of seven earthquakes are discussed. In each model, dislocation rise times (the duration of slip for a given point on the fault) are found to be short compared to the overall duration of the earthquake (??? 10%). However, in many crack-like numerical models of dynamic rupture, the slip duration at a given point is comparable to the overall duration of the rupture; i.e. slip at a given point continues until information is received that the rupture has stopped propagating. Alternative explanations for the discrepancy between the short slip durations used to model waveforms and the long slip durations inferred from dynamic crack models are: (1) the dislocation models are unable to resolve the relatively slow parts of earthquake slip and have seriously underestimated the dislocations for these earthquakes; (2) earthquakes are composed of a sequence of small-dimension (short duration) events that are separated by locked regions (barriers); (3) rupture occurs in a narrow self-healing pulse of slip that travels along the fault surface. Evidence is discussed that suggests that slip durations are indeed short and that the self-healing slip-pulse model is the most appropriate explanation. A qualitative model is presented that produces self-healing slip pulses. The key feature of the model is the assumption that friction on the fault surface is inversely related to the local slip velocity. The model has the following features: high static strength of materials (kilobar range), low static stress drops (in the range of tens of bars), and relatively low frictional stress during slip (less than several hundreds of bars). It is suggested that the reason that the average dislocation scales with fault length is because large-amplitude slip pulses are difficult to stop and hence tend to propagate large distances. This model may explain why seismicity and ambient stress are low along fault segments that have experienced large earthquakes. It also qualitatively explains why the recurrence time for large earthquakes may be irregular. ?? 1990.

  8. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse

    NASA Astrophysics Data System (ADS)

    Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.

    2014-01-01

    The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  9. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R; Prince, Benjamin D; Roy, Sukesh; Gord, James R

    2014-01-14

    The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  10. Treatment of infantile hemangiomas with the 595-nm pulsed dye laser using different pulse widths in an Asian population.

    PubMed

    Tay, Yong-Kwang; Tan, Siew-Kiang

    2012-02-01

    The pulsed dye laser (PDL) using varying fluences and pulse durations have been used to treat hemangiomas. This study aims to examine the efficacy and safety of the 595-nm PDL for the treatment of infantile hemangiomas using short (1.5-3 milliseconds) versus long (10 milliseconds) pulse durations and high fluences. This is a retrospective study of patients with hemangiomas (n = 23) treated with the 595-nm PDL from 2003 to 2007. The parameters used for the short pulse duration group (n = 15) were 7-mm spot size, fluence 10-13.5 J/cm(2) and dynamic cooling device (DCD) spray duration of 50 milliseconds and delay of 30 milliseconds. For the long pulse duration group (n = 8), parameters were 7-mm spot size, fluence 10.5-14.5 J/cm(2) and DCD spray duration of 40 milliseconds and delay of 20 milliseconds. The number of treatments required to achieve complete or near complete resolution of the hemangioma ranged from 3 to 14 for the short pulse duration group (mean: 8) and for the long pulse duration group, 4-14 treatments (mean: 9). For both groups, more treatments were needed to achieve clearance of mixed hemangiomas (n = 13) compared to superficial hemangiomas (n = 10) (on average, 4-5 treatments more). Erythema, edema, and purpura lasted for about a week in the short pulse duration group but only 2 days in the long pulse duration group. There was no ulceration or hypertrophic scarring noted in both groups. Both short and long pulse durations using moderately high fluences are equally effective in the treatment of infantile hemangiomas. Shorter pulse durations had a slightly higher incidence of side effects compared to longer pulse duration in our patients with darker phototypes. Hemangiomas are tumors with relatively large diameter blood vessels and this provides the basis for the use of longer pulse durations. Copyright © 2012 Wiley Periodicals, Inc.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification.more » As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.« less

  12. Ultrasound use during cardiopulmonary resuscitation is associated with delays in chest compressions.

    PubMed

    Huis In 't Veld, Maite A; Allison, Michael G; Bostick, David S; Fisher, Kiondra R; Goloubeva, Olga G; Witting, Michael D; Winters, Michael E

    2017-10-01

    High-quality chest compressions are a critical component of the resuscitation of patients in cardiopulmonary arrest. Point-of-care ultrasound (POCUS) is used frequently during emergency department (ED) resuscitations, but there has been limited research assessing its benefits and harms during the delivery of cardiopulmonary resuscitation (CPR). We hypothesized that use of POCUS during cardiac arrest resuscitation adversely affects high-quality CPR by lengthening the duration of pulse checks beyond the current cardiopulmonary resuscitation guidelines recommendation of 10s. We conducted a prospective cohort study of adults in cardiac arrest treated in an urban ED between August 2015 and September 2016. Resuscitations were recorded using video equipment in designated resuscitation rooms, and the use of POCUS was documented and timed. A linear mixed-effects model was used to estimate the effect of POCUS on pulse check duration. Twenty-three patients were enrolled in our study. The mean duration of pulse checks with POCUS was 21.0s (95% CI, 18-24) compared with 13.0s (95% CI, 12-15) for those without POCUS. POCUS increased the duration of pulse checks and CPR interruption by 8.4s (95% CI, 6.7-10.0 [p<0.0001]). Age, body mass index (BMI), and procedures did not significantly affect the duration of pulse checks. The use of POCUS during cardiac arrest resuscitation was associated with significantly increased duration of pulse checks, nearly doubling the 10-s maximum duration recommended in current guidelines. It is important for acute care providers to pay close attention to the duration of interruptions in the delivery of chest compressions when using POCUS during cardiac arrest resuscitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    NASA Astrophysics Data System (ADS)

    Yousef, Adel K. M.; Taha, Ziad. A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  14. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer

    NASA Astrophysics Data System (ADS)

    Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui

    2018-06-01

    Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.

  15. Time delay measurement in the frequency domain

    DOE PAGES

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; ...

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible bymore » simply extending the data acquisition time.« less

  16. Hydrodynamic Determinants of Cell Necrosis and Molecular Delivery Produced by Pulsed Laser Microbeam Irradiation of Adherent Cells

    PubMed Central

    Compton, Jonathan L.; Hellman, Amy N.; Venugopalan, Vasan

    2013-01-01

    Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180–1100 ps and pulse energies of 0.5–10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of pulse energy and pulse duration. These results provide a mechanistic foundation and design strategy applicable to a broad range of laser-based cellular manipulation procedures. PMID:24209868

  17. Diode end-pumped passively Q-switched Tm:YAP laser with 1.85-mJ pulse energy.

    PubMed

    Sebbag, Daniel; Korenfeld, Arik; Ben-Ami, Udi; Elooz, David; Shalom, Eran; Noach, Salman

    2015-04-01

    Passive Q switching of a Tm:YAP solid-state laser at 1935 nm with Cr:ZnSe and Cr:ZnS polycrystalline saturable absorbers is demonstrated for the first time, to the best of our knowledge. With Cr:ZnS, a maximum pulse energy of 1.85 mJ is obtained for a pulse duration of 35.8 ns, resulting in a peak power of 51.7 kW. With Cr:ZnSe, the achieved pulse energy of 1.55 mJ with a pulse duration of 42.2 ns leads to 36.7-kW peak power. These high pulse energies, together with the unique lasing wavelength at 1935 nm, make this laser a promising tool for biomedical and microsurgery applications.

  18. Optimization of passively mode-locked quasi-continuously diode-pumped Nd:GdVO4 laser in bounce geometry

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav

    2015-01-01

    In this paper the operation of pulsed diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively modelocked using semiconductor saturable absorber mirror (SAM), generating microjoule level picosecond pulses at wavelength of 1063 nm, is reported. Optimization of the output coupling for generation either Q-switched mode locked pulse trains or cavity dumped single pulses with maximum energy was performed, which resulted in extraction of single pulses as short as 10 ps and energy of 20 uJ. In comparison with the previous results obtained with this Nd:GdVO4 oscillator and saturable absorber in transmission mode, the achieved pulse duration is five times shorter. Using different absorbers and parameters of single pulse extraction enables generation of the pulses with duration up to 100 ps with the energy in the range from 10 to 20 μJ.

  19. Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge.

    PubMed

    Grissom, William A; Setsompop, Kawin; Hurley, Samuel A; Tsao, Jeffrey; Velikina, Julia V; Samsonov, Alexey A

    2017-10-01

    To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. MULTI-CHANNEL PULSE HEIGHT ANALYZER

    DOEpatents

    Boyer, K.; Johnstone, C.W.

    1958-11-25

    An improved multi-channel pulse height analyzer of the type where the device translates the amplitude of each pulse into a time duration electrical quantity which is utilized to control the length of a train of pulses forwarded to a scaler is described. The final state of the scaler for any one train of pulses selects the appropriate channel in a magnetic memory in which an additional count of one is placed. The improvement consists of a storage feature for storing a signal pulse so that in many instances when two signal pulses occur in rapid succession, the second pulse is preserved and processed at a later time.

  1. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also slightly outperformed the other MRC models with respect to the intensity-frequency relationship. To assess the performance of the coupled Poisson rectangular pulse and constrained cascade model, precipitation events were stochastically generated by the Poisson rectangular pulse model and then disaggregated by the constrained cascade model. We found that the coupled model performs satisfactorily in terms of the temporal pattern of the precipitation time series, event characteristics and the intensity-frequency relationship.

  2. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  3. Modeling magnetization transfer effects of Q2TIPS bolus saturation in multi-TI pulsed arterial spin labeling.

    PubMed

    Petr, Jan; Schramm, Georg; Hofheinz, Frank; Langner, Jens; van den Hoff, Jörg

    2014-10-01

    To estimate the relaxation time changes during Q2TIPS bolus saturation caused by magnetization transfer effects and to propose and evaluate an extended model for perfusion quantification which takes this into account. Three multi inversion-time pulsed arterial spin labeling sequences with different bolus saturation duration were acquired for five healthy volunteers. Magnetization transfer exchange rates in tissue and blood were obtained from control image saturation recovery. Cerebral blood flow (CBF) obtained using the extended model and the standard model was compared. A decrease of obtained CBF of 6% (10%) was observed in grey matter when the duration of bolus saturation increased from 600 to 900 ms (1200 ms). This decrease was reduced to 1.6% (2.8%) when the extended quantification model was used. Compared with the extended model, the standard model underestimated CBF in grey matter by 9.7, 15.0, and 18.7% for saturation durations 600, 900, and 1200 ms, respectively. Results for simulated single inversion-time data showed 5-16% CBF underestimation depending on blood arrival time and bolus saturation duration. Magnetization transfer effects caused by bolus saturation pulses should not be ignored when performing quantification as they can cause appreciable underestimation of the CBF. Copyright © 2013 Wiley Periodicals, Inc.

  4. Homogenization of Vehicle Fleet Frontal Crash Pulses from 2000–2010

    PubMed Central

    Locey, Caitlin M.; Garcia-Espana, J. Felipe; Toh, Akira; Belwadi, Aditya; Arbogast, Kristy B.; Maltese, Matthew R.

    2012-01-01

    Full-scale vehicle crash tests are performed globally to assess vehicle structure and restraint system performance. The crash pulse, captured by accelerometers mounted within the occupant compartment, measures the motion of the vehicle during the impact event. From an occupant’s perspective, the crash pulse is the inertial event to which the vehicle’s restraint systems must respond in order to mitigate the forces and accelerations that act on a passenger, and thus reduce injury risk. The objective of this study was to quantify the characteristics of crash pulses for different vehicle types in the contemporary North American fleet, and delineate current trends in crash pulse evolution. NHTSA and Transport Canada crash test databases were queried for full-frontal rigid barrier crash tests of passenger vehicles model year 2000–2010 with impact angle equaling zero degrees. Acceleration-time histories were analyzed for all accelerometers attached to the vehicle structure within the occupant compartment. Custom software calculated the following crash pulse characteristics (CPCs): peak deceleration, time of peak deceleration, onset rate, pulse duration, and change in velocity. Vehicle body types were classified by adapting the Highway Loss Data Institute (HLDI) methodology, and vehicles were assigned a generation start year in place of model year in order to more accurately represent structural change over time. 1094 vehicle crash tests with 2795 individual occupant compartment-mounted accelerometers were analyzed. We found greater peak decelerations and and shorter pulse durations across multiple vehicle types in newer model years as compared to older. For midsize passenger cars, large passenger cars, and large SUVs in 56 km/h rigid barrier tests, maximum deceleration increased by 0.40, 0.96, and 1.57 g/year respectively, and pulse duration decreased by 0.74, 1.87, and 2.51 ms/year. We also found that the crash pulse characteristics are becoming more homogeneous in the modern vehicle fleet; the range of peak deceleration values for all vehicle classes decreased from 17.1 g in 1997–1999 generation start years to 10.7 g in 2009–2010 generation years, and the pulse duration range decreased from 39.5 ms to 13.4 ms for the same generation year groupings. This latter finding suggests that the designs of restraint systems may become more universally applicable across vehicle body types, since the occupant compartment accelerations are not as divergent for newer vehicles. PMID:23169139

  5. Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Leung, Loh-Shan; Leng, Theodore; Brown, Jefferson; Paulus, Yannis M.; Schuele, Georg; Palanker, Daniel

    2011-02-01

    Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are investigated: (a) decreasing the central irradiance of the laser beam and (b) temporally modulating the pulse. An annular beam with adjustable central irradiance was created by coupling a 532-nm laser into a 200-μm core multimode optical fiber at a 4-7 deg angle to normal incidence. Pulse shapes were optimized using a computational model, and a waveform generator was used to drive a PASCAL photocoagulator (532 nm), producing modulated laser pulses. Acute thresholds for mild coagulation and rupture were measured in Dutch-Belted rabbit in vivo with an annular beam (154-163 μm retinal diameter) and modulated pulse (132 μm, uniform irradiance ``flat-top'' beam) with 2-50 ms pulse durations. Thresholds with conventional constant-power pulse and a flat-top beam were also determined. Both annular beam and modulated pulse provided a 28% increase in TW at 10-ms duration, affording the same TW as 20-ms pulses with conventional parameters.

  6. A novel approach to estimating nitrous oxide emissions during wetting events from single-timepoint flux measurements

    USDA-ARS?s Scientific Manuscript database

    Precipitation and irrigation induce pulses of N2O emissions in agricultural soils, but the magnitude, duration, and timing of these pulses remain uncertain. This uncertainty makes it difficult to accurately extrapolate emissions from unmeasured time periods using static chambers sampled manually. Fu...

  7. Modified Blumlein pulse-forming networks for bioelectrical applications.

    PubMed

    Romeo, Stefania; Sarti, Maurizio; Scarfì, Maria Rosaria; Zeni, Luigi

    2010-07-01

    Intense nanosecond pulsed electric fields (nsPEFs) have been shown to induce, on intracellular structures, interesting effects dependent on electrical exposure conditions (pulse length and amplitude, repetition frequency and number of pulses), which are known in the literature as "bioelectrical effects" (Schoenbach et al., IEEE Trans Plasma Sci 30:293-300, 2002). In particular, pulses with a shorter width than the plasma membrane charging time constant (about 100 ns for mammalian cells) can penetrate the cell and trigger effects such as permeabilization of intracellular membranes, release of Ca(2+) and apoptosis induction. Moreover, the observed effects have led to exploration of medical applications, like the treatment of melanoma tumors (Nuccitelli et al., Biochem Biophys Res Commun 343:351-360, 2006). Pulsed electric fields allowing such effects usually range from several tens to a few hundred nanoseconds in duration and from a few to several tens of megavolts per meter in amplitude (Schoenbach et al., IEEE Trans Diel Elec Insul 14:1088-1109, 2007); however, the biological effects of subnanosecond pulses have been also investigated (Schoenbach et al., IEEE Trans Plasma Sci 36:414-422, 2008). The use of such a large variety of pulse parameters suggests that highly flexible pulse-generating systems, able to deliver wide ranges of pulse durations and amplitudes, are strongly required in order to explore effects and applications related to different exposure conditions. The Blumlein pulse-forming network is an often-employed circuit topology for the generation of high-voltage electric pulses with fixed pulse duration. An innovative modification to the Blumlein circuit has been recently devised which allows generation of pulses with variable amplitude, duration and polarity. Two different modified Blumlein pulse-generating systems are presented in this article, the first based on a coaxial cable configuration, matching microscopic slides as a pulse-delivery system, and the other based on microstrip transmission lines and designed to match cuvettes for the exposure of cell suspensions.

  8. High-order harmonic generation of CO and N2 molecules under linearly- and bi circularly-polarized laser pulses by TD-DFT

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-07-01

    We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.

  9. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  10. Theoretical Studies of Defects in Tetrahedral Semiconductors.

    DTIC Science & Technology

    1980-08-01

    pulse. The exact time of the maximal sur- has been measured by Shvarev et al. [I I at 1.0, face temperature depends on pulse duration, thermal 0.7 and...0.4 lAn from 57.50 off normal incidence. diffusivity (which is generally T dependent ), pulse Auston et al. (81 reported the time resolved reflec- shape...surface occur 30 to 40 ns after the peak of their 25 ns HWHM or ripples on the surface or a temperature depend - gaussian pulse rather than within

  11. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  12. Efficiency Enhancement in DC Pulsed Gas Discharge Memory Panel

    NASA Astrophysics Data System (ADS)

    Okamoto, Yukio

    1983-01-01

    Much improvement in the luminous efficiency of a dc pulsed gas discharge memory panel for color TV display was achieved by shortening the sustaining pulse duration. High energy electrons can thus be produced in the pulsed discharge with fast rise times. Calculated optimum value of E/P in a Xe gas discharge is 7-8 V/cm\\cdotTorr.

  13. XUV pulse effect on signal modulations of harmonic spectra from H2+ and T2+

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Hang; Kapteyn, Henry J.; Feng, April Y.

    2018-05-01

    The effects of signal modulations on the molecular high-order harmonic generations in H2^{+ } and T2+ have been theoretically investigated. It is found that with the introduction of the XUV pulse, due to the absorption of the extra XUV photons in the recombination process, multiplateaus on the harmonic spectra, separated by the XUV photon energy can be found. Moreover, this multiplateau structure is insensitive to the wavelength of the XUV pulse. In shorter pulse duration, the intensities of the multiplateaus from H2+ are higher than those from T2+; while in longer pulse duration, the opposite results can be found. Finally, by changing the delay time of the XUV pulse, the signal modulations (including the amplitude and the frequency modulations) of the multiplateaus can be controlled.

  14. PULSE RATE DIVIDER

    DOEpatents

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  15. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation

    NASA Astrophysics Data System (ADS)

    Ith, M.; Pratisto, H.; Altermatt, H. J.; Frenz, M.; Weber, H. P.

    1994-12-01

    The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.

  16. Simulation of time-dispersion spectral device with sample spectra accumulation

    NASA Astrophysics Data System (ADS)

    Zhdanov, Arseny; Khansuvarov, Ruslan; Korol, Georgy

    2014-09-01

    This research is conducted in order to design a spectral device for light sources power spectrum analysis. The spectral device should process radiation from sources, direct contact with radiation of which is either impossible or undesirable. Such sources include jet blast of an aircraft, optical radiation in metallurgy and textile industry. In proposed spectral device optical radiation is guided out of unfavorable environment via a piece of optical fiber with high dispersion. It is necessary for analysis to make samples of analyzed radiation as short pulses. Dispersion properties of such optical fiber cause spectral decomposition of input optical pulses. The faster time of group delay vary the stronger the spectral decomposition effect. This effect allows using optical fiber with high dispersion as a major element of proposed spectral device. Duration of sample must be much shorter than group delay time difference of a dispersive system. In the given frequency range this characteristic has to be linear. The frequency range is 400 … 500 THz for typical optical fiber. Using photonic-crystal fiber (PCF) gives much wider spectral range for analysis. In this paper we propose simulation of single pulse transmission through dispersive system with linear dispersion characteristic and quadratic-detected output responses accumulation. During simulation we propose studying influence of optical fiber dispersion characteristic angle on spectral measurement results. We also consider pulse duration and group delay time difference impact on output pulse shape and duration. Results show the most suitable dispersion characteristic that allow choosing the structure of PCF - major element of time-dispersion spectral analysis method and required number of samples for reliable assessment of measured spectrum.

  17. 152 fs nanotube-mode-locked thulium-doped all-fiber laser

    PubMed Central

    Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2016-01-01

    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps2, and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials. PMID:27374764

  18. Evolution of optical force on two-level atom by ultrashort time-domain dark hollow Gaussian pulse

    NASA Astrophysics Data System (ADS)

    Cao, Xiaochao; Wang, Zhaoying; Lin, Qiang

    2017-09-01

    Based on the analytical expression of the ultrashort time-domain dark hollow Gaussian (TDHG) pulse, the optical force on two-level atoms induced by a TDHG pulse is calculated in this paper. The phenomena of focusing or defocusing of the light force is numerical analyzed for different detuning, various duration time, and different order of the ultrashort pulse. The transverse optical force can change from a focusing force to a defocusing force depending on the spatial-temporal coupling effect as the TDHG pulses propagating in free space. Our results also show that the initial phase of the TDHG pulse can significantly changes the envelope of the optical force.

  19. Effect of nonlinear absorption on self focusing of short laser pulse in a plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok

    2012-06-01

    Paraxial theory of self focusing of short pulse laser in a plasma under transient and saturating effects of nonlinearity and nonlinear absorption is developed. The absorption is averaged over the cross-section of the beam and is different for different time segments of the pulse. The electron temperature includes cumulative effect of previous history of temporal profile of pulse intensity, however, the ambipolar diffusion is taken to be faster than the heating time. The relaxation effect causes self-distortion of the pulse temporal profile where as the nonlinear absorption weakens self focusing. For the pulses of duration comparable to the electron ion collision time, the front part of the pulse gets defocused where as the latter part undergoes periodic self focusing.

  20. Method and Apparatus for Reading Two Dimensional Identification Symbols Using Radar Techniques

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F., Jr. (Inventor); Roxby, Donald L. (Inventor)

    2003-01-01

    A method and apparatus are provided for sensing two-dimensional identification marks provided on a substrate or embedded within a substrate below a surface of the substrate. Micropower impulse radar is used to transmit a high risetime, short duration pulse to a focussed radar target area of the substrate having the two dimensional identification marks. The method further includes the steps of listening for radar echoes returned from the identification marks during a short listening period window occurring a predetermined time after transmission of the radar pulse. If radar echoes are detected, an image processing step is carried out. If no radar echoes are detected, the method further includes sequentially transmitting further high risetime, short duration pulses, and listening for radar echoes from each of said further pulses after different elapsed times for each of the further pulses until radar echoes are detected. When radar echoes are detected, data based on the detected echoes is processed to produce an image of the identification marks.

  1. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    PubMed

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  2. Calculation and manipulation of the chirp rates of high-order harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, M.; Mauritsson, J.; Schafer, K.J.

    2005-01-01

    We calculate the linear chirp rates of high-order harmonics in argon, generated by intense, 810 nm laser pulses, and explore the dependence of the chirp rate on harmonic order, driving laser intensity, and pulse duration. By using a time-frequency representation of the harmonic fields we can identify several different linear chirp contributions to the plateau harmonics. Our results, which are based on numerical integration of the time-dependent Schroedinger equation, are in good agreement with the adiabatic predictions of the strong field approximation for the chirp rates. Extending the theoretical analysis in the recent paper by Mauritsson et al. [Phys. Rev.more » A 70, 021801(R) (2004)], we also manipulate the chirp rates of the harmonics by adding a chirp to the driving pulse. We show that the chirp rate for harmonic q is given by the sum of the intrinsic chirp rate, which is determined by the new duration and peak intensity of the chirped driving pulse, and q times the external chirp rate.« less

  3. Boosting laser-ion acceleration with multi-picosecond pulses

    PubMed Central

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-01-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm−2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines. PMID:28211913

  4. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M.; Suits, Arthur G.

    2014-11-01

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  5. Note: a short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator.

    PubMed

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M; Suits, Arthur G

    2014-11-01

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  6. "Bird Song Metronomics": Isochronous Organization of Zebra Finch Song Rhythm.

    PubMed

    Norton, Philipp; Scharff, Constance

    2016-01-01

    The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a "signal-derived pulse," or pulse(S), of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulse(S) significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulse(P)), as yet untested. Strikingly, in our study, pulses(S) that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulse(S) periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music.

  7. “Bird Song Metronomics”: Isochronous Organization of Zebra Finch Song Rhythm

    PubMed Central

    Norton, Philipp; Scharff, Constance

    2016-01-01

    The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a “signal-derived pulse,” or pulseS, of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulseS significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulseP), as yet untested. Strikingly, in our study, pulsesS that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulseS periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music. PMID:27458334

  8. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S., E-mail: namba@hiroshima-u.ac.jp; Hasegawa, N.; Kishimoto, M.

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IRmore » laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.« less

  9. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.

    PubMed

    Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan

    2010-12-01

    Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.

  10. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    NASA Astrophysics Data System (ADS)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  11. Photodiode Preamplifier for Laser Ranging With Weak Signals

    NASA Technical Reports Server (NTRS)

    Abramovici, Alexander; Chapsky, Jacob

    2007-01-01

    An improved preamplifier circuit has been designed for processing the output of an avalanche photodiode (APD) that is used in a high-resolution laser ranging system to detect laser pulses returning from a target. The improved circuit stands in contrast to prior such circuits in which the APD output current pulses are made to pass, variously, through wide-band or narrow-band load networks before preamplification. A major disadvantage of the prior wide-band load networks is that they are highly susceptible to noise, which degrades timing resolution. A major disadvantage of the prior narrow-band load networks is that they make it difficult to sample the amplitudes of the narrow laser pulses ordinarily used in ranging. In the improved circuit, a load resistor is connected to the APD output and its value is chosen so that the time constant defined by this resistance and the APD capacitance is large, relative to the duration of a laser pulse. The APD capacitance becomes initially charged by the pulse of current generated by a return laser pulse, so that the rise time of the load-network output is comparable to the duration of the return pulse. Thus, the load-network output is characterized by a fast-rising leading edge, which is necessary for accurate pulse timing. On the other hand, the resistance-capacitance combination constitutes a lowpass filter, which helps to suppress noise. The long time constant causes the load network output pulse to have a long shallow-sloping trailing edge, which makes it easy to sample the amplitude of the return pulse. The output of the load network is fed to a low-noise, wide-band amplifier. The amplifier must be a wide-band one in order to preserve the sharp pulse rise for timing. The suppression of noise and the use of a low-noise amplifier enable the ranging system to detect relatively weak return pulses.

  12. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical frameworkmore » that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.« less

  13. Long pulse production from short pulses

    DOEpatents

    Toeppen, J.S.

    1994-08-02

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  14. Measurement of surface stay times for physical adsorption of gases. Ph.D. Thesis - Va. Univ.; [using molecular beam time of flight technique

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1973-01-01

    A molecular beam time-of-flight technique is studied as a means of determining surface stay times for physical adsorption. The experimental approach consists of pulsing a molecular beam, allowing the pulse to strike an adsorbing surface and detecting the molecular pulse after it has subsequently desorbed. The technique is also found to be useful for general studies of adsorption under nonequilibrium conditions including the study of adsorbate-adsorbate interactions. The shape of the detected pulse is analyzed in detail for a first-order desorption process. For mean stay times, tau, less than the mean molecular transit times involved, the peak of the detected pulse is delayed by an amount approximately equal to tau. For tau much greater than these transit times, the detected pulse should decay as exp(-t/tau). However, for stay times of the order of the transit times, both the molecular speed distributions and the incident pulse duration time must be taken into account.

  15. GRB Diversity vs. Utility as Cosmological Probes

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Scargle, J. D.; Bonnell, J. T.; Nemiroff, R. J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent detections of apparent gamma-ray burst (GRB) counterparts in optical and radio wavebands strongly favor the cosmological distance scale, at least for some GRBs, opening the possibility of GRBs serving as cosmological probes. But GRBs exhibit great diversity: in total duration; in number, width and pulse configuration; and in pulse and overall spectral evolution. However, it is possible that a portion of this behavior reflects a luminosity distribution, and possible that evolution of with cosmic time introduces dispersion into the average GRB characteristics -- issues analogous to those encountered with quasars. The temporal domain offers a rich avenue to investigate this problem. When corrected for assumed spectral redshift, time dilation of event durations, pulse widths, and intervals between pulses must yield the same time-dilation factor as a function of peak flux, or else a luminosity distribution may be the cause of observed time dilation effects. We describe results of burst analysis using an automated, Bayesian-based algorithm to determine burst temporal characteristics for different peak flux groups, and derived constraints on any physical process that would introduce a luminosity distribution.

  16. Influence of different approaches for dynamical performance optimization of monolithic passive colliding-pulse mode-locked laser diodes emitting around 850 nm

    NASA Astrophysics Data System (ADS)

    Prziwarka, T.; Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Weyers, M.; Knigge, A.; Tränkle, G.

    2018-02-01

    Monolithic laser diodes which generate short infrared pulses in the picosecond and sub-picosecond ranges with high peak power are ideal sources for many applications like e.g. THz-time-domain spectroscopy (TDS) scanning systems. The achievable THz bandwidth is limited by the length of the optical pulses. Due to the fact that colliding-pulse mode locking (CPM) leads to the shortest pulses which could reached by passive mode locking, we experimentally investigated in detail the dynamical and electro optical performance of InGaAsP based quantum well CPM laser diodes with well-established vertical layer structures. Simple design modifications whose implementation is technically easy were realized. Improvements of the device performance in terms of pulse duration, output power, and noise properties are presented in dependence on the different adaptions. From the results we extract an optimized configuration with which we have reached pulses with durations of ≍1.5 ps, a peak power of > 1 W and a pulse-to-pulse timing jitter < 200 fs. The laser diodes emit pulses at a wavelength around 850 nm with a repetition frequency of ≍ 12.4 GHz and could be used as pump source for GaAs antennas to generate THz-radiation. Approaches for reducing pulse width, increasing output power, and improving noise performance are described.

  17. Molecular isomerization induced by ultrashort infrared pulses. II. Pump-dump isomerization using pairs of time-delayed half-cycle pulses.

    PubMed

    Uiberacker, Christoph; Jakubetz, Werner

    2004-06-22

    We investigate population transfer across the barrier in a double-well potential, induced by a pair of time-delayed single-lobe half-cycle pulses. We apply this setup both to a one-dimensional (1D) quartic model potential and to a three-dimensional potential representing HCN-->HNC isomerization. Overall the results for the two systems are similar, although in the 3D system some additional features appear not seen in the 1D case. The generic mechanism of population transfer is the preparation by the pump pulse of a wave packet involving delocalized states above the barrier, followed by the essentially 1D motion of the delocalized part of wave packet across the barrier, and the eventual de-excitation by the dump pulse to localized states in the other well. The correct timing is given by the well-to-well passage time of the wave packet and its recurrence properties, and by the signs of the field lobes which determine the direction and acceleration or deceleration of the wave packet motion. In the 3D system an additional pump-pump-dump mechanism linked to wave packet motion in the reagent well can mediate isomerization. Since the transfer time and the pulse durations are of the same order of magnitude, there is also a marked dependence of the dynamics and the transfer yield on the pulse duration. Our analysis also sheds light on the pronounced carrier envelope phase dependence previously observed for isomerization and molecular dissociation with one-cycle and sub-one-cycle pulses. (c) 2004 American Institute of Physics.

  18. Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding.

    PubMed

    Steinmetz, Alexander; Nodop, Dirk; Martin, Andreas; Limpert, Jens; Tünnermann, Andreas

    2010-09-01

    We present an efficient, simple, and passive technique for the reduction of timing jitter in passively Q-switched microchip lasers via self-injection seeding using a fiber delay line. The presented approach mitigates one inherent issue of passively Q-switched lasers without the need for active stabilization. At a repetition rate of a few hundred kilohertz and pulse duration of approximately 200 ps delivered by a microchip laser, the rms jitter is reduced from several nanoseconds down to 20 ps, hence, significantly below the pulse duration of the laser source.

  19. Phosphorus-free mode-locked semiconductor laser with emission wavelength 1550 nm

    NASA Astrophysics Data System (ADS)

    Kolodeznyi, E. S.; Novikov, I. I.; Babichev, A. V.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Gadzhiev, I. M.; Buyalo, M. S.; Usikova, A. A.; Ilynskaya, N. D.; Bougrov, V. E.; Egorov, A. Yu

    2017-11-01

    We have fabricated passive mode-locked laser diodes based on strained InGaAlAs/InGaAs/InP heterostructures with crystal lattice mismatch parameter of +1.0 % between quantum well and barrier. The laser with temperature stabilization at 18 °C was demonstrated 10.027 GHz optical pulse repetition rate with 6 ps pulse duration time. Timing jitter of optical pulses in mode-locked regime was 0.145 ps.

  20. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    NASA Astrophysics Data System (ADS)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  1. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  2. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; Dehope, William J; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M

    2016-06-21

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  3. Demonstration of periodic nanostructure formation with less ablation by double-pulse laser irradiation on titanium

    NASA Astrophysics Data System (ADS)

    Furukawa, Yuki; Sakata, Ryoichi; Konishi, Kazuki; Ono, Koki; Matsuoka, Shusaku; Watanabe, Kota; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji

    2016-06-01

    By pairing femtosecond laser pulses (duration ˜40 fs and central wavelength ˜810 nm) at an appropriate time interval, a laser-induced periodic surface structure (LIPSS) is formed with much less ablation than one formed with a single pulse. On a titanium plate, a pair of laser pulses with fluences of 70 and 140 mJ/cm2 and a rather large time interval (>10 ps) creates a LIPSS with an interspace of 600 nm, the same as that formed by a single pulse of 210 mJ/cm2, while the double pulse ablates only 4 nm, a quarter of the ablation depth of a single pulse.

  4. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOEpatents

    MacPherson, David C.; Nelson, Loren D.; O'Brien, Martin J.

    1996-01-01

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength.

  5. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOEpatents

    MacPherson, D.C.; Nelson, L.D.; O`Brien, M.J.

    1996-12-10

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength. 30 figs.

  6. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.

    PubMed

    Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying

    2017-02-01

    Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.

  7. Excitation of atoms and ions in plasmas by ultra-short electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Sakhno, S. V.; Svita, S. Yu; Lisitsa, V. S.

    2017-02-01

    The problem of atoms and ions diagnostics in rarefied and dense plasmas by ultrashort laser pulses (USP) is under consideration. The application of USP provides: 1) excitation from ground states due to their carrier frequency high enough, 2) penetration into optically dense media due to short pulses duration. The excitation from ground atomic states increases sharply populations of excited atomic states in contrast with standard laser induced fluorescence spectroscopy based on radiative transitions between excited atomic states. New broadening parameter in radiation absorption, namely inverse pulse duration time 1/τ appears in addition to standard line-shape width in the profile G(ω). The Lyman-beta absorption spectra for USP are calculated for Holtsmark static broadening mechanism. Excitation of highly charged H-like ions in hot plasmas is described by both Gaussian shapes for Doppler broadening and pulse spectrum resulting in analytical absorption line-shape. USP penetration into optically thick media and corresponding excitation probability are calculated. It is shown a great effect of USP duration on excitation probabilities in optically thick media. The typical situations for plasma diagnostics by USP are discussed in details.

  8. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan

    2014-11-15

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercialmore » fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.« less

  9. Cutaneous pain effects induced by Nd:YAG and CO2 laser stimuli

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Rui; Yu, Guang-Yuan; Yang, Zai-Fu; Chen, Hong-Xia; Hu, Dong-Dong; Zou, Xian-Biao

    2012-12-01

    The near infrared laser technique can activate cutaneous nociceptors with high specificity and reproducibility and be used in anti-riot equipment. This study aimed to explore cutaneous pain effect and determine the threshold induced by Nd:YAG and CO2 laser stimuli. The corresponding wavelength was 1.32μm and 10.6μm. The pain effect was assessed in three healthy subjects (1 woman and 2 men) on the skin of dorsum of both hands. The energy of each pulse and whether the subjects felt a painful sensation after each stimulus were recorded. A simplified Bliss Method was used to calculate the pain threshold which were determined under three pulse durations for Nd:YAG laser and one pulse duration for CO2 laser. As a result the pain thresholds were determined to be 5.6J/cm2, 5.4J/cm2 and 5.0J/cm2 respectively when using Nd:YAG laser, 4.0mm beam diameter, 8ms, 0.1s and 1s pulse duration. The pain threshold was 1.0J/cm2 when using CO2 laser, 4.0mm beam diameter and 0.1s pulse duration. We concluded that the threshold of cutaneous pain elicited by 1.32μm laser was independent upon the pulse duration when the exposure time ranged from 8ms to 1s. Under the same exposure condition, the threshold of cutaneous pain elicited by 1.32μm laser was higher than that elicited by 10.6μm laser.

  10. Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V., E-mail: arora@rrcat.gov.in; Naik, P. A.; Chakera, J. A.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Timore » (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.« less

  11. Scaling of echolocation call parameters in bats.

    PubMed

    Jones, G

    1999-12-01

    I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.

  12. First Electromagnetic Pulse Associated with a Gravitational-wave Event: Profile, Duration, and Delay

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Liu, Tong; Lin, Jie; Wang, Xiang-Gao; Gu, Wei-Min; Liang, En-Wei

    2018-04-01

    We study the first electromagnetic (EM) pulse after the gravitational-wave (GW) chirp signal, focusing on its profile and duration. It is found that the light curve, especially the steep decay (SD) phase, can be very different by adopting different viewing angles θ view of the jet shell. For an on-axis jet with a power-law radiation spectrum, the observed flux in the SD is proportional to {t}obs}-2-β with β being the spectral index and t obs being the observer time. Here, t obs = 0 is set at the time we observe the jet being ejected from the central engine. The SD may become steep by increasing θ view. We also study the bolometric luminosity L from a jet shell with a non-power-law radiation spectrum. For an on-axis jet, L ∝ t obs ‑3 is found in the SD. However, the SD is steeper than L\\propto {t}obs}-3 for radiation from an off-axis jet. The higher value of the θ view is, the steeper SD would be. Then, we suggest that the SD phase can be used to discriminate an off-axis jet from an on-axis jet. The reason for the above behaviors is discussed. In addition, we find that the duration of first EM pulse is close to its peak time, especially for θ view ∼ 20°. This result is consistent with that found in GW 170817/GRB 170817A. Thus, the jet corresponding to the prompt emission of GRB 170817A should be ejected immediately after the merger. Our results also reveal that the duration of the first EM pulse can provide information on the time to search for GWs.

  13. Accurate Control of Josephson Phase Qubits

    DTIC Science & Technology

    2016-04-14

    1 We begin by noting that g50 is a valid choice for a pulse . This corresponds to applying no electromagnetic radiation for some time. Working with...population during the pulse sequence. The total operation time is equal to n(2p/dv)1t ~where t is the total duration of the electromagnetic radiation... pulse . In the next section we show how transient populations in the third energy level can be highly undesirable in the presence of high tunneling rates

  14. Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback

    NASA Astrophysics Data System (ADS)

    Terrien, Soizic; Krauskopf, Bernd; Broderick, Neil G. R.; Andréoli, Louis; Selmi, Foued; Braive, Rémy; Beaudoin, Grégoire; Sagnes, Isabelle; Barbay, Sylvain

    2017-10-01

    A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable regime, we show that a single optical perturbation can trigger a train of pulses that is sustained for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior characteristic of a noise-induced process driven by uncorrelated white noise present in the system. The comparison of experimental observations with theoretical and numerical analysis of a minimal model yields excellent agreement. Importantly, the random switch-off process takes place between two attractors of different nature: an equilibrium and a periodic orbit. Our analysis shows that there is a small time window during which the pulsations are very sensitive to noise, and this explains the observed strong bias toward switch-off. These results raise the possibility of all optical control of the pulse train duration that may have an impact for practical applications in photonics and may also apply to the dynamics of other noise-driven excitable systems with delayed feedback.

  15. Monolithic hybrid optics for focusing ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuchs, U.

    2014-03-01

    Almost any application of ultrashort laser pulses involves focusing them in order to reach high intensities and/or small spot sizes as needed for micro-machining or Femto-LASIK. Hence, it is indispensable to be able to understand pulse front distortion caused by real world optics. Focusing causes pulse front distortion due to aberrations, dispersion and diffraction. Thus, the spatio-temporal profile of ultrashort laser is altered, which increases automatically the pulse duration and the focusing spot. Consequently, the main advantage of having ultrashort laser pulses - pulse durations way below 100 fs - can be lost in that one last step of the experimental set-up by focusing them unfavorable. Since compensating for dispersion, aberration and diffraction effects is quite complicated and not always possible, we pursue a different approach. We present a specially designed monolithic hybrid optics comprising refraction and diffraction effects for tight spatial and temporal focusing of ultrashort laser pulses. Both aims can be put into practice by having a high numerical aperture (NA = 0.35) and low internal dispersion at the same time. The focusing properties are very promising, due to a design, which provides diffraction limited focusing for 100 nm bandwidth at 780 nm center wavelength. Thus, pulses with durations as short as 10 fs can be focused without pulse front distortion. The outstanding performance of this optics is shown in theory and experimentally. Above that, such focusing optics are easily adapted to their special purpose - changing the center wavelength, achromatic bandwidth or even correcting for focusing into material is possible.

  16. Mining CRRES IDM Pulse Data and CRRES Environmental Data to Improve Spacecraft Charging/Discharging Models and Guidelines

    NASA Technical Reports Server (NTRS)

    Brautigam, D. H.; Frederickson, A. R.

    2004-01-01

    One can truly predict the charging and pulsing in space over a year's time using only the physics that worked for periods of an hour and less in prior publications. All portions of the task were achieved, including the optional portion of determining a value for conductivity that best .t the data. Fortran statements were developed that are required for the NUMIT runs to work with this kind of data from space. In addition to developing the Fortran for NUMIT, simple correlations between the IDM pulsing history and the space radiation were observed because we now have a better characterization of the space radiation. The study showed that: (1) the new methods for measurement of charge storage and conduction in insulators provide the correct values to use for prediction of charging and pulsing in space; (2) the methods in NUMIT that worked well for time durations less than hours now work well for durations of months; (3) an average spectrum such as AE8 is probably not a good guide for predicting pulsing in space one must take time dependence into account in order to understand insulator pulsing; and (4) the old method for predicting pulse rates in space that was based on the CRRES data could be improved to include dependencies on material parameters.

  17. Distance Determination by Gated Viewing Systems Taking into Account the Illuminating Pulse Shape

    NASA Astrophysics Data System (ADS)

    Gorobets, V. A.; Kuntsevich, B. F.; Shabrov, D. V.

    2017-11-01

    For gated viewing systems with triangular and trapezoidal illuminating pulses, we have obtained the range-intensity profiles (RIPs) of the signal as the time delay was varied between the leading edges of the gate pulse and the illuminating pulse. We have established that if the duration of the illuminating pulse Δtlas is less than or equal to the duration of the gate pulse ΔtIC, then the expressions for the characteristic distances are the same as for rectangular pulses and they can be used to determine the distance to objects. When Δtlas > ΔtIC, in the case of triangular illuminating pulses the RIP is bell-shaped. For trapezoidal pulses, the RIP is bell-shaped with or without a plateau section. We propose an empirical method for determining the characteristic distances to the RIP maximum and the boundary points for the plateau section, which we then use to calculate the distance to the object. Using calibration constants, we propose a method for determining the distance to an object and we have experimentally confirmed the feasibility of this method.

  18. How short are ultra short light pulses? (looking back to the mid sixties)

    NASA Astrophysics Data System (ADS)

    Weber, H. P.; Dändliker, R.

    2010-09-01

    With the arrival of mode locking for Q-switched lasers to generate ultra short light pulses, a method to measure their expected time duration in the psec range was needed. A novel method, based on an intensity correlation measurement using optical second harmonic generation, was developed. Other reported approaches for the same purpose were critically analysed. Theoretical and subsequent experimental studies lead to surprising new insight into the ultra fast temporal behaviour of broadband laser radiation: Any non mode locked multimode emission of a laser consists of random intensity fluctuations with duration of the total inverse band width of emitted radiation. However, it was shown, that with mode locking isolated ultra short pulses of psec duration can be generated. This article summarizes activities performed in the mid sixties at the University of Berne, Switzerland.

  19. New 40Ar/ 39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: Implications for duration of flood basalt eruption episodes

    NASA Astrophysics Data System (ADS)

    Barry, T. L.; Self, S.; Kelley, S. P.; Reidel, S.; Hooper, P.; Widdowson, M.

    2010-08-01

    Grande Ronde Basalt (GRB) lavas represent the most voluminous eruptive pulse of the Columbia River-Snake River-Yellowstone hotspot volcanism. With an estimated eruptive volume of 150,000 km 3, GRB lavas form at least 66% of the total volume of the Columbia River Basalt Group. New 40Ar/ 39Ar dates for GRB lavas reveal they were emplaced within a maximum period of 0.42 ± 0.18 My. A well-documented stratigraphy indicates at least 110 GRB flow fields (or individual eruptions), and on this basis suggests an average inter-eruption hiatus of less than 4000 years. Isotopic age-dating cannot resolve time gaps between GRB eruptions, and it is difficult to otherwise form a picture of the durations of eruptions because of non-uniform weathering in the top of flow fields and a general paucity of sediments between GR lavas. Where sediment has formed on top of GRB lavas, it varies in thickness from zero to 20-30 cm of silty to fine-sandy material, with occasional diatomaceous sediment. Individual GRB eruptions varied considerably in volume but many were greater than 1000 km 3 in size. Most probably eruptive events were not equally spaced in time; some eruptions may have followed short periods of volcanic repose (perhaps 10 2 to 10 3 of years), whilst others could have been considerably longer (many 1000 s to > 10 4 years). Recent improvements in age-dating for other continental flood basalt (CFB) lava sequences have yielded estimates of total eruptive durations of less than 1 My for high-volume pulses of lava production. The GRB appears to be a similar example, where the main pulse occupied a brief period. Even allowing for moderate to long-duration pahoehoe flow field production, the amount of time the system spends in active lava-producing mode is small — less than c. 2.6% (based on eruption durations of approximately 10,000 years, compared to the duration of the entire eruptive pulse of c. 420,000 years). A review of available 40Ar/ 39Ar data for the major voluminous phases of the Columbia River Basalt Group suggests that activity of the Steens Basalt-Imnaha Basalt-GRB may have, at times, been simultaneous, with obvious implications for climatic effects. Resolving intervals between successive eruptions during CFB province construction, and durations of main eruptive pulses, remains vital to determining the environmental impact of these huge eruptions.

  20. Effects of pulse durations and environments on femtosecond laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, Shizhen; Ding, Renjie; Yao, Caizhen; Liu, Hao; Wan, Yi; Wang, Jingxuan; Ye, Yayun; Yuan, Xiaodong

    2018-04-01

    The influence of pulse durations (35fs and 260 fs) and environments (air and vacuum) on the laser-induced damage thresholds (LIDTs) and ablation rates of 304 stainless steel were studied. Two distinct ablation regimes were obtained from the ablation rate curves. At low fluence regime, the ablation rates were similar in spite of the differences of pulse durations and experiment environments. At high fluence regime, the ablation rates of 35 fs pulse duration in vacuum were obviously higher than others. The ablation craters showed smooth edges, moth-eye such as structures, and laser-induced periodic surface structures (LIPSSs). At a fixed fluence, the periods of LIPSSs decreased monotonously in their mean spatial period between 700 nm (5 pulses) and 540 nm (200 pulses) with the increase of pulse numbers in air with 35 fs pulse duration. The formation mechanisms of moth-eye like structures and LIPSSs were also discussed.

  1. A stochastical event-based continuous time step rainfall generator based on Poisson rectangular pulse and microcanonical random cascade models

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph

    2017-04-01

    Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30

  2. ELECTRIC PULSE GENERATOR

    DOEpatents

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  3. Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Ayaka, E-mail: atamura@hiroshima-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya

    2015-05-07

    We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of themore » short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.« less

  4. Femtosecond parabolic pulse shaping in normally dispersive optical fibers.

    PubMed

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; Díez, Antonio; Andrés, Miguel

    2013-07-29

    Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

  5. Demonstration of periodic nanostructure formation with less ablation by double-pulse laser irradiation on titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Yuki; Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502; Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011

    By pairing femtosecond laser pulses (duration ∼40 fs and central wavelength ∼810 nm) at an appropriate time interval, a laser-induced periodic surface structure (LIPSS) is formed with much less ablation than one formed with a single pulse. On a titanium plate, a pair of laser pulses with fluences of 70 and 140 mJ/cm{sup 2} and a rather large time interval (>10 ps) creates a LIPSS with an interspace of 600 nm, the same as that formed by a single pulse of 210 mJ/cm{sup 2}, while the double pulse ablates only 4 nm, a quarter of the ablation depth of a single pulse.

  6. Self-stimulation in the rat: quantitative characteristics of the reward pathway.

    PubMed

    Gallistel, C R

    1978-12-01

    Quantitative characteristics of the neural pathway that carries the reinforcing signal in electrical self-stimulation of the brain were established by finding which combinations of stimulation parameters give the same performance in a runway. The reward for each run was a train of evenly spaced monophasic cathodal pulses from a monopolar electrode. With train duration and pulse frequency held constant, the required current was a hyperbolic function of pulse duration, with chronaxie c approximately 1.5 msec. With pulse duration held constant, the required strength of the train (the charge delivered per second) was a hyperbolic function of train duration, with chronaxie C approximately 500 msec. To a first approximation, the values of c and C were independent of the choice either of train duration and pulse frequency or of pulse duration, respectively. Hence, the current intensity required by any choice of train duration, pulse frequency, and pulse duration dependent on only two basic parameters, c and C, and one quantity, Qi, the required impulse charge. These may reflect, respectively, current integration by directly excited neurons; temporal integration of neural activity by synaptic processes in a neural network; and the peak of the impulse response of the network, assuming that the network has linear dynamics and that the reward depends on the peak of the output of the network.

  7. Developing Si(Li) nuclear radiation detectors by pulsed electric field treatment

    NASA Astrophysics Data System (ADS)

    Muminov, R. A.; Radzhapov, S. A.; Saimbetov, A. K.

    2009-08-01

    Fabrication of Si(Li) nuclear radiation detectors using lithium ion drift under the action of a pulsed electric field is considered. Optimum treatment regime parameters are determined, including the pulse amplitude, duration, and repetition rate. Experimental data are presented, which show that the ion drift in a pulsed electric field decreases the semiconductor bulk compensation time by a factor of two to four and significantly increases the efficiency of detectors.

  8. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.

    PubMed

    Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald

    2015-04-01

    In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.

  9. Optically Isolated Control of the MOCHI LabJet High Power Pulsed Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Carroll, Evan; Quinley, Morgan; von der Linden, Jens; You, Setthivoine

    2014-10-01

    The MOCHI LabJet experiment designed to investigate the dynamics of astrophysical jets at the University of Washington, requires high energy pulsed power supplies for plasma generation and sustainment. Two 600 μ F, 10 kV DC, pulse forming, power supplies have been specifically developed for this application. For safe and convenient user operation, the power supplies are controlled remotely with optical isolation. Three input voltage signals are required for relay actuation, adjusting bank charging voltage, and to fire the experiment: long duration DC signals, long duration user adjustable DC signals and fast trigger pulses with < μ s rise times. These voltage signals are generated from National Instruments timing cards via LabVIEW and are converted to optical signals by coupling photodiodes with custom electronic circuits. At the experiment, the optical signals are converted back to usable voltage signals using custom circuits. These custom circuits and experimental set-up are presented. This work is supported by US DOE Grant DE-SC0010340.

  10. Self-calibrating d-scan: measuring ultrashort laser pulses on-target using an arbitrary pulse compressor.

    PubMed

    Alonso, Benjamín; Sola, Íñigo J; Crespo, Helder

    2018-02-19

    In most applications of ultrashort pulse lasers, temporal compressors are used to achieve a desired pulse duration in a target or sample, and precise temporal characterization is important. The dispersion-scan (d-scan) pulse characterization technique usually involves using glass wedges to impart variable, well-defined amounts of dispersion to the pulses, while measuring the spectrum of a nonlinear signal produced by those pulses. This works very well for broadband few-cycle pulses, but longer, narrower bandwidth pulses are much more difficult to measure this way. Here we demonstrate the concept of self-calibrating d-scan, which extends the applicability of the d-scan technique to pulses of arbitrary duration, enabling their complete measurement without prior knowledge of the introduced dispersion. In particular, we show that the pulse compressors already employed in chirped pulse amplification (CPA) systems can be used to simultaneously compress and measure the temporal profile of the output pulses on-target in a simple way, without the need of additional diagnostics or calibrations, while at the same time calibrating the often-unknown differential dispersion of the compressor itself. We demonstrate the technique through simulations and experiments under known conditions. Finally, we apply it to the measurement and compression of 27.5 fs pulses from a CPA laser.

  11. Pulse transit time reveals drug kinetics on vascular changes affected by propofol.

    PubMed

    Lan, Yuan-Chun; Shen, Ching-Hui; Kang, Hsung-Ming; Chong, Fok-Ching

    2012-01-01

    Pulse transit time (PTT) is the duration in which a pulse wave travels between two arterial sites within the same cardiac cycle. The aim of our study is to use PTT to examine propofol's effects on the vascular system. Methods. We collected data from 50 healthy women, between 28 and 51 years old, who underwent gynaecological surgery under general anaesthesia. The general anaesthesia was induced with propofol injection (2 mg/kg). PTT measurements were obtained from the R-wave of electrocardiogram and the pulse wave of photoplethysmograph. Two PTT values were obtained; one before (the control) and the other after propofol injection. The results were analysed by Student's t-test. Results. After propofol injection, the PTT was prolonged. The change in the PTT value from that of baseline was significant statistically (P < 0.05, by Student's t-test). The PTT change over time correlated with the degree of vasodilatation over time. Monitoring of PTT not only revealed the magnitude of vascular changes but also demonstrated the onset of vascular dilation, its peak and duration. We conclude that PTT is a useful guide in monitoring the drug kinetics of propofol.

  12. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.

    2014-11-01

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourth Stokes Raman components. For the KGd(WO4)2 (high dispersion) and Ba(NO3)2 (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes - anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes - anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium.

  13. Long pulse production from short pulses

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).

  14. Duration-sensitive neurons in the inferior colliculus of horseshoe bats: adaptations for using CF-FM echolocation pulses.

    PubMed

    Luo, Feng; Metzner, Walter; Wu, Feijian; Wu, Feijian J; Zhang, Shuyi; Zhang, Shuyi Y; Chen, Qicai; Chen, Qicai C

    2008-01-01

    The present study examines duration-sensitive neurons in the inferior colliculus (IC) of the least horseshoe bat, Rhinolophus pusillus, from China. In contrast to other bat species tested for duration selectivity so far, echolocation pulses emitted by horseshoe bats are generally longer and composed of a long constant-frequency (CF) component followed by a short downward frequency-modulated (FM) sweep (CF-FM pulse). We used combined CF-FM pulses to analyze the differential effects that these two pulse components had on the duration tuning in neurons of the horseshoe bat's IC. Consistent with results from other mammals, duration-sensitive neurons found in the least horseshoe bat fall into three main classes: short-pass, band-pass, and long-pass. Using a CF stimulus alone, 54% (51/95) of all IC neurons showed at least one form of duration selectivity at one or more stimulus intensities. In 65 of the 95 IC neurons tested with CF pulses, we were also able to test their duration selectivity for a combined CF-FM pulse, which increased the ratio of duration-sensitive neurons to 66% (43/65). Seven to 15 neurons that failed to show duration tuning for CF bursts became duration sensitive for CF-FM pulses, with most of them exhibiting short-pass (depending on stimulus intensity, between 4 and 8 neurons) or band-pass tuning (1-3 neurons). Increasing stimulus intensities did not affect the duration tuning in 53% (23/43) of duration-sensitive neurons for CF bursts and in about 26% (7/27) for CF-FM stimuli. In the remaining neurons, increasing sound levels generally reduced the ratio of duration-sensitive neurons to 33% for CF and 37% for CF-FM stimulation. In those that remained duration sensitive, louder CF bursts shortened best durations in band-pass neurons and cutoff durations in short- and long-pass neurons, whereas louder CF-FM stimuli reduced the cutoff durations only in short-pass neurons. Bandwidths of band-pass neurons were not significantly affected by any stimulus configuration, with only a slight trend for increasing bandwidths for louder CF bursts (but not CF-FM stimuli). Best durations and cutoff durations reached higher values than those in the other bat species examined so far and roughly match the longer durations of echolocation pulses emitted by horseshoe bats. Therefore presentation of a CF-FM stimulus improved the duration sensitivity in IC neurons by increasing the ratio of duration-tuned neurons and making them less susceptible to changes in signal intensity.

  15. Room-temperature Q-switched Tm:BaY2F8 laser pumped by CW diode laser

    NASA Astrophysics Data System (ADS)

    Coluccelli, Nicola; Galzerano, Gianluca; Laporta, Paolo; Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro

    2006-02-01

    We report on the realization of CW diode-pumped Tm:BaY2F8 Q-switched laser at 1.93 µm. Active Q-switching was obtained by means of an intracavity Pockels cell. A functional characterization of the laser performance is presented with particular attention to output energy, pulse duration, pulse stability, and wavelength tunability. Pulses with time duration as short as 170 ns were demonstrated at the minimum repetition rate of 5 Hz with an energy of 3.2 mJ (corresponding to a peak power of 19 kW). A wavelength tunability range from 1905 nm to 1990 nm has been observed.

  16. Quantitative comparison of inflammatory infiltrate and linear contraction in human skin treated with 90-microsecond pulsed and 900-microsecond dwell time carbon dioxide lasers.

    PubMed

    Bucalo, B D; Moy, R L

    1998-12-01

    Skin resurfacing with 90-microsecond pulse duration carbon dioxide (CO2) resurfacing lasers has been reported to have shorter duration of erythema compared with skin resurfacing with 900-microsecond dwell time lasers. The presence of inflammatory infiltrate following resurfacing may correlate with the persistence of this erythema. Furthermore, skin treated with the 90-microsecond pulse duration laser and the 900-microsecond dwell time lasers both result in equivalent improvement of rhytids in the treated skin. To quantitative the inflammatory cell infiltrate and linear contraction of skin treated with the 90-microsecond pulsed and 900-microsecond dwell time CO2 lasers at intervals of 2 and 4 weeks after treatment. Volunteers were recruited from patients who were planning to undergo full face laser resurfacing under general anesthesia. Informed consent was obtained from all volunteers. In the posterior auricular areas of all volunteers, four separate rectangular areas were marked using a skin marking pen and a template. Two rectangular areas behind the right ear were treated with 6 passes of the 90-microsecond laser and two rectangular areas behind the left ear were treated with the 900-microsecond dwell time laser. The resurfaced areas were wiped with a moist cotton swab and then patted dry with dry gauze between passes. Contraction measurements of the resurfaced areas were taken before and immediately after laser treatment and again at 2 and 4 weeks following treatment. Punch biopsies were also performed at 2 and 4 weeks after treatment in an area of skin different from where contraction measurements were taken. The number of inflammatory cells present in the skin at 2 and 4 weeks after laser resurfacing are greater for skin resurfaced with a 900-microsecond dwell time laser than a 90-microsecond pulse time laser. Linear contraction of skin immediately after treatment was 18% greater with the 900-microsecond dwell time laser than with the 90-microsecond pulsed laser. The difference in the amount of contraction produced by the lasers tended to decrease over time. At 4 weeks there was a 10% difference in mean linear contraction between the two laser types. Increased numbers of inflammatory cells in skin resurfaced with the 900-microsecond dwell time laser may explain the observed persistence of erythema associated with the 900-microsecond dwell time laser. Measurable linear contraction produced by the 900-microsecond dwell time laser was initially 18% greater than the 90-microsecond pulse laser. This difference tends to decrease over time.

  17. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  18. Pulsed writing of solid state holograms.

    NASA Technical Reports Server (NTRS)

    Gaylord, T. K.; Rabson, T. A.; Tittel, F. K.; Quick, C. R.

    1973-01-01

    The pulsed writing of volume holograms in lithium niobate is reported, both with 200-nsec and 20-nsec duration pulses. This information is of particular interest in high capacity information storage applications since it indicates that writing times at least as short as 20-nsec are readily possible. A series of pulses was used in each case, and the diffraction efficiency was monitored using a He-Ne laser operating at 6328 A and aligned to its corresponding Bragg angle.

  19. High-energy long duration frequency-doubled Nd:YAG laser and application to venous occlusion

    NASA Astrophysics Data System (ADS)

    Zhang, Laiming; Yang, Guilong; Li, Dianjun; Lu, Qipeng; Gu, Huadong; Zhu, Linlin; Zhao, Zhenwu; Li, Xin; Tang, Yuguo; Guo, Jin

    2005-01-01

    Laser treatment represents an attractive option to other methods of vessel diseases especially varicose veins. A long pulse (30~50ms) 532nm laser (Fig.1) is used in our experiments with the pulse duration matching the thermal relaxation time of the vessels and the green laser matching the absorption spectrum peak of the blood. Laser irradiates nude vein vessels directly or exterior skin to finish operation faster and to acquire the practical data for upper enteron varicose vein treatment in several animal experiments performed in vivo. The 5J-energy pulse allows us to finely occlude rabbit or dog"s vein vessels up to 2 mm in diameter when irradiating them off external skin (Fig.2). Blood vessels are occluded at once and later biopsy specimens show the immediate and long-term lasting occlusion effect. While irradiating vessels directly (Fig.3), the vessels are usually irradiated to perforate, detailed causes are still under investigation. Animal experiments show long pulse green laser therapy is a safe and effective solution to the vein"s occlusion, which promises such laser with high energy of each pulse and 30~50 ms duration is an ideal candidate for vessel diseases treatment.

  20. The effect of signal duration on the underwater hearing thresholds of two harbor seals (Phoca vitulina) for single tonal signals between 0.2 and 40 kHz.

    PubMed

    Kastelein, Ronald A; Hoek, Lean; Wensveen, Paul J; Terhune, John M; de Jong, Christ A F

    2010-02-01

    The underwater hearing sensitivities of two 2-year-old female harbor seals were quantified in a pool built for acoustic research by using a behavioral psycho-acoustic technique. The animals were trained only to respond when they detected an acoustic signal ("go/no-go" response). Detection thresholds were obtained for pure tone signals (frequencies: 0.2-40 kHz; durations: 0.5-5000 ms, depending on the frequency; 59 frequency-duration combinations). Detection thresholds were quantified by varying the signal amplitude by the 1-up, 1-down staircase method, and were defined as the stimulus levels, resulting in a 50% detection rate. The hearing thresholds of the two seals were similar for all frequencies except for 40 kHz, for which the thresholds differed by, on average, 3.7 dB. There was an inverse relationship between the time constant (tau), derived from an exponential model of temporal integration, and the frequency [log(tau)=2.86-0.94 log(f);tau in ms and f in kHz]. Similarly, the thresholds increased when the pulse was shorter than approximately 780 cycles (independent of the frequency). For pulses shorter than the integration time, the thresholds increased by 9-16 dB per decade reduction in the duration or number of cycles in the pulse. The results of this study suggest that most published hearing thresholds

  1. Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes.

    PubMed

    Morimoto, Takeshi; Kanda, Hiroyuki; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Kitaguchi, Yoshiyuki; Nishida, Kohji; Fujikado, Takashi

    2014-01-01

    Transcorneal electrical stimulation (TES) activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm) were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all). The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.

  2. The influence of prepulse level on the 3p-3s XUV laser output from Ne-like ions of Zn, Cu and Ni

    NASA Astrophysics Data System (ADS)

    MacPhee, A. G.; Lewis, C. L. S.; Warwick, P. J.; Weaver, I.; Jaeglé, P.; Carillon, A.; Jamelot, G.; Klisnick, A.; Rus, B.; Zeitoun, Ph.; Nantel, M.; Goedkindt, P.; Sebban, S.; Tallents, G. J.; Demir, A.; Holden, M.; Krishnan, J.

    1997-02-01

    We have studied the effect of prepulses in enhancing the efficiency of generating ASE beams in soft X-ray laser plasma amplifiers based on pumping Ne-like ions. Slab targets were irradiated with a weak prepulse followed by a main plasma heating pulse of nanosecond duration. Time-integrated: time and spectrally resolved and time and angularly resolved lasing emissions on the 3p-3s ( J = 0-1) XUV lasing lines of Ne-like Ni, Cu and Zn at wavelengths 232 Å, 221 Å and 212 Å respectively have been monitored. Measurements were made for pre-pulse/main-pulse intensity ratios from 10 -5-10 -1 and for pump delay times of 2 ns and 4.5 ns. Zinc is shown to exhibit a peak in output intensity at ˜ 2 × 10 -3 pre-pulse fraction for a 4.5 ns pump delay, with a main pulse pump intensity of ˜ 1.3 × 10 13W cm -2 on a 20 mm target. The Zn lasing emission had a duration of ˜ 240 ps and this was insensitive to prepulse fraction. The J = 0-1 XUV laser output for nickel and copper increased monotonically with prepulse fraction, with copper targets showing least sensitivity to either prepulse level or prepulse to main pulse delay. Under the conditions of the study, the pre-pulse level was observed to have no significant influence on the output intensity of the 3p-3s ( J = 2-1) lines of any of the elements investigated.

  3. Weakfish sonic muscle: influence of size, temperature and season.

    PubMed

    Connaughton, M A; Fine, M L; Taylor, M H

    2002-08-01

    The influence of temperature, size and season on the sounds produced by the sonic muscles of the weakfish Cynoscion regalis are categorized and used to formulate a hypothesis about the mechanism of sound generation by the sonic muscle and swimbladder. Sounds produced by male weakfish occur at the time and location of spawning and have been observed in courtship in captivity. Each call includes a series of 6-10 sound pulses, and each pulse expresses a damped, 2-3 cycle acoustic waveform generated by single simultaneous twitches of the bilateral sonic muscles. The sonic muscles triple in mass during the spawning season, and this hypertrophy is initiated by rising testosterone levels that trigger increases in myofibrillar and sarcoplasmic cross-sectional area of sonic muscle fibers. In response to increasing temperature, sound pressure level (SPL), dominant frequency and repetition rate increase, and pulse duration decreases. Likewise, SPL and pulse duration increase and dominant frequency decreases with fish size. Changes in acoustic parameters with fish size suggest the possibility that drumming sounds act as an 'honest' signal of male fitness during courtship. These parameters also correlate with seasonally increasing sonic muscle mass. We hypothesize that sonic muscle twitch duration rather than the resonant frequency of the swimbladder determines dominant frequency. The brief (3.5 ms), rapidly decaying acoustic pulses reflect a low-Q, broadly tuned resonator, suggesting that dominant frequency is determined by the forced response of the swimbladder to sonic muscle contractions. The changing dominant frequency with temperature in fish of the same size further suggests that frequency is not determined by the natural frequency of the bladder because temperature is unlikely to affect resonance. Finally, dominant frequency correlates with pulse duration (reflecting muscle twitch duration), and the inverse of the period of the second cycle of acoustic energy approximates the recorded frequency. This paper demonstrates for the first time that the dominant frequency of a fish sound produced by a single muscle twitch is apparently determined by the velocity of the muscle twitch rather than the natural frequency of the swimbladder.

  4. Efficient method to design RF pulses for parallel excitation MRI using gridding and conjugate gradient

    PubMed Central

    Feng, Shuo

    2014-01-01

    Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns. PMID:24834420

  5. Efficient method to design RF pulses for parallel excitation MRI using gridding and conjugate gradient.

    PubMed

    Feng, Shuo; Ji, Jim

    2014-04-01

    Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.

  6. High speed, high current pulsed driver circuit

    DOEpatents

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  7. A high-power synthesized ultrawideband radiation source

    NASA Astrophysics Data System (ADS)

    Efremov, A. M.; Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-09-01

    A high-power ultrawideband radiation source has been developed which is capable of synthesizing electromagnetic pulses with different frequency bands in free space. To this end, a new circuit design comprising a four-channel former of bipolar pulses of durations 2 and 3 ns has been elaborated and conditions for the stable operation of gas gaps of independent channels without external control pulses have been determined. Each element of the 2 × 2 array of combined antennas is driven from an individual channel of the pulse former. Antennas excited by pulses of the same duration are arranged diagonally. Two radiation synthesis modes have been examined: one aimed to attain ultimate field strength and the other aimed to attain an ultimate width of the radiation spectrum. The modes were changed by changing the time delay between the 2-ns and 3-ns pulses. For the first mode, radiation pulses with a frequency band of 0.2-0.8 GHz and an effective potential of 500 kV have been obtained. The synthesized radiation pulses produced in the second mode had an extended frequency band (0.1-1 GHz) and an effective potential of 220 kV. The pulse repetition frequency was 100 Hz.

  8. Cavitation bubble dynamics during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.

  9. Commercial mode-locked vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  10. Optothermal transfer simulation in laser-irradiated human dentin.

    PubMed

    Moriyama, Eduardo H; Zangaro, Renato A; Lobo, Paulo D C; Villaverde, Antonio Balbin; Pacheco, Marcos T; Watanabe, Ii-Sei; Vitkin, Alex

    2003-04-01

    Laser technology has been studied as a potential replacement to the conventional dental drill. However, to prevent pulpal cell damage, information related to the safety parameters using high-power lasers in oral mineralized tissues is needed. In this study, the heat distribution profiles at the surface and subsurface regions of human dentine samples irradiated with a Nd:YAG laser were simulated using Crank-Nicolson's finite difference method for different laser energies and pulse durations. Heat distribution throughout the dentin layer, from the external dentin surface to the pulp chamber wall, were calculated in each case, to investigate the details of pulsed laser-hard dental tissue interactions. The results showed that the final temperature at the pulp chamber wall and at the dentin surface are strongly dependent on the pulse duration, exposure time, and the energy contained in each pulse.

  11. Controlled dipole-dipole interactions between K Rydberg atoms in a laser-chopped effusive beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutteruf, M. R.; Jones, R. R.

    2010-12-15

    We explore pulsed-field control of resonant dipole-dipole interactions between K Rydberg atoms. A laser-based atomic beam chopper is used to reduce the relative velocities of Rydberg atoms excited from an effusive thermal source. Resonant energy transfer (RET) between pairs of atoms is controlled via Stark tuning of the relevant Rydberg energy levels. Resonance line shapes in the electric field dependence of the RET probability are used to determine the effective temperature of the sample. We demonstrate that the relative atom velocities can be reduced to the point where the duration of the electric-field tuning pulses, and not the motion ofmore » neighboring atoms, defines the interaction time for each pair within the ensemble. Coherent, transform-limited broadening of the resonance line shape is observed as the tuning pulse duration is reduced below the natural time scale for collisions.« less

  12. Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon

    NASA Astrophysics Data System (ADS)

    Sen, WANG; Dezheng, YANG; Feng, LIU; Wenchun, WANG; Zhi, FANG

    2018-07-01

    Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra, and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of {{{N}}}2({{C}}{}3{{\\Pi }}{{g}}\\to {{B}}{}3{{\\Pi }}{{g}},{{Δ }}{{ν }}=-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary. The electron density is determined to be 1016 cm‑3 according to the Stark broadening effect of the H α line.

  13. Free-time and fixed end-point optimal control theory in dissipative media: application to entanglement generation and maintenance.

    PubMed

    Mishima, K; Yamashita, K

    2009-07-07

    We develop monotonically convergent free-time and fixed end-point optimal control theory (OCT) in the density-matrix representation to deal with quantum systems showing dissipation. Our theory is more general and flexible for tailoring optimal laser pulses in order to control quantum dynamics with dissipation than the conventional fixed-time and fixed end-point OCT in that the optimal temporal duration of laser pulses can also be optimized exactly. To show the usefulness of our theory, it is applied to the generation and maintenance of the vibrational entanglement of carbon monoxide adsorbed on the copper (100) surface, CO/Cu(100). We demonstrate the numerical results and clarify how to combat vibrational decoherence as much as possible by the tailored shapes of the optimal laser pulses. It is expected that our theory will be general enough to be applied to a variety of dissipative quantum dynamics systems because the decoherence is one of the quantum phenomena sensitive to the temporal duration of the quantum dynamics.

  14. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohl, A.; Hübers, H.-W.; Institute of Optical Sensor Systems, German Aerospace Center

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the durationmore » of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.« less

  15. Cluster formation in laser-induced ablation and evaporation of solids observed by laser ionization time-of-flight mass spectrometry and scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tench, R. J.; Balooch, M.; Bernardez, L.; Allen, Mike J.; Siekhaus, W. J.; Olander, D. R.; Wang, W.

    1990-04-01

    Laser ionization time-of-flight mass analysis (LIMA) used pulses (5ns) of a frequency-quadrupled Nd-YAG laser (266 nm) focused onto spots of 4 to 100 microns diameter to ablate material, and a reflectron time of flight tube to mass-analyze the plume. The observed mass spectra for Si, Pt, SiC, and UO 2 varied in the distribution of ablation products among atoms, molecules and clusters, depending on laser power density and target material. Cleaved surfaces of highly oriented pyrolytic graphite (HOPG) positioned at room temperature either 10 cm away from materials ablated at 10(exp -5) Torr by 1 to 3 excimer laser (308 nm) pulses of 20 ns duration or 1 m away from materials vaporized at 10(exp -8) Torr by 10 Nd-Glass laser pulses of 1 ms duration were analyzed by Scanning Tunneling Microscopy (STM) in air with angstrom resolution. Clusters up to 30 A in diameter were observed.

  16. Kilohertz Cr:forsterite regenerative amplifier.

    PubMed

    Evans, J M; Petri Evi, V; Alfano, R R; Fu, Q

    1998-11-01

    We report on a tunable regenerative amplifier that is operational in the near-infrared spectral region from 1230 to 1280 nm based on the vibronic laser material Cr:forsterite. Utilizing the technique of chirped-pulse amplification, we generated pulses as short as 150 fs at 1255 nm at a repetition rate of 1 kHz. Pulse amplification of more than 5 x 10(5) times was observed, with recorded output pulse energies of 34 muJ . Implementation of a second-harmonic generator yielded 110-fs-duration pulses of 7-muJ energy at 625 nm.

  17. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trull, J.; Wang, B.; Parra, A.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  18. Time-diagnostics for improved dynamics experiments at XUV FELs

    NASA Astrophysics Data System (ADS)

    Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek

    2010-10-01

    Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.

  19. Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.

    PubMed

    Takahashi, Eri; Hyomoto, Kiri; Riquimaroux, Hiroshi; Watanabe, Yoshiaki; Ohta, Tetsuo; Hiryu, Shizuko

    2014-08-15

    The echolocation behavior of Pipistrellus abramus during exposure to artificial jamming sounds during flight was investigated. Echolocation pulses emitted by the bats were recorded using a telemetry microphone mounted on the bats' backs, and their adaptation based on acoustic characteristics of emitted pulses was assessed in terms of jamming-avoidance responses (JARs). In experiment 1, frequency-modulated jamming sounds (3 ms duration) mimicking echolocation pulses of P. abramus were prepared. All bats showed significant increases in the terminal frequency of the frequency-modulated pulse by an average of 2.1-4.5 kHz when the terminal frequency of the jamming sounds was lower than the bats' own pulses. This frequency shift was not observed using jamming frequencies that overlapped with or were higher than the bats' own pulses. These findings suggest that JARs in P. abramus are sensitive to the terminal frequency of jamming pulses and that the bats' response pattern was dependent on the slight difference in stimulus frequency. In experiment 2, when bats were repeatedly exposed to a band-limited noise of 70 ms duration, the bats in flight more frequently emitted pulses during silent periods between jamming sounds, suggesting that the bats could actively change the timing of pulse emissions, even during flight, to avoid temporal overlap with jamming sounds. Our findings demonstrate that bats could adjust their vocalized frequency and emission timing during flight in response to acoustic jamming stimuli. © 2014. Published by The Company of Biologists Ltd.

  20. Pulse Detecting Genetic Circuit - A New Design Approach.

    PubMed

    Noman, Nasimul; Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C

    2016-01-01

    A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse-analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event.

  1. Patterned retinal coagulation with a scanning laser

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Jain, ATul; Paulus, Yannis; Andersen, Dan; Blumenkranz, Mark S.

    2007-02-01

    Pan-retinal photocoagulation in patients with diabetic retinopathy typically involves application of more than 1000 laser spots; often resulting in physician fatigue and patient discomfort. We present a semi-automated patterned scanning laser photocoagulator that rapidly applies predetermined patterns of lesions; thus, greatly improving the comfort, efficiency and precision of the treatment. Patterns selected from a graphical user interface are displayed on the retina with an aiming beam, and treatment can be initiated and interrupted by depressing a foot pedal. To deliver a significant number of burns during the eye's fixation time, each pulse should be considerably shorter than conventional 100ms pulse duration. We measured coagulation thresholds and studied clinical and histological outcomes of the application of laser pulses in the range of 1-200ms in pigmented rabbits. Laser power required for producing ophthalmoscopically visible lesions with a laser spot of 132μm decreased from 360 to 37mW with pulse durations increasing from 1 to 100ms. In the range of 10-100ms clinically and histologically equivalent light burns could be produced. The safe therapeutic range of coagulation (ratio of the laser power required to produce a rupture to that for a light burn) decreased with decreasing pulse duration: from 3.8 at 100ms, to 3.0 at 20ms, to 2.5 at 10ms, and to 1.1 at 1ms. Histology demonstrated increased confinement of the thermal damage with shorter pulses, with coagulation zone limited to the photoreceptor layer at pulses shorter than 10ms. Durations of 10-20ms appear to be a good compromise between the speed and safety of retinal coagulation. Rapid application of multiple lesions greatly improves the speed, precision, and reduces pain in retinal photocoagulation.

  2. SHORT PULSE STRETCHER

    DOEpatents

    Branum, D.R.; Cummins, W.F.

    1962-12-01

    >A short pulse stretching circuit capable of stretching a short puise to enable it to be displayed on a relatively slow sweeping oscilloscope is described. Moreover, the duration of the pulse is increased by charging a capacitor through a diode and thereafter discharging the capacitor at such time as is desired. In the circuit the trigger pulse alone passes through a delay line, whereas the main signal passes through the diode only, and results in over-all circuit losses which are proportional to the low losses of the diode only. (AEC)

  3. ONE SHAKE GATE FORMER

    DOEpatents

    Kalibjian, R.; Perez-Mendez, V.

    1957-08-20

    An improved circuit for forming square pulses having substantially short and precise durations is described. The gate forming circuit incorporates a secondary emission R. F. pentode adapted to receive input trigger pulses amd having a positive feedback loop comnected from the dynode to the control grid to maintain conduction in response to trigger pulses. A short circuited pulse delay line is employed to precisely control the conducting time of the tube and a circuit for squelching spurious oscillations is provided in the feedback loop.

  4. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers.

    PubMed

    Blackmon, Richard L; Case, Jason R; Trammell, Susan R; Irby, Pierce B; Fried, Nathaniel M

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ~2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  5. Effect of pulse duration on photomechanical response of soft tissue during Ho:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Motamedi, Massoud; Pfefer, T. Joshua; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Abela, George S.; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed holmium laser ablation of tissue is caused by rapid bubble expansion and collapse or by laser-induced pressure waves. In this study the effect of pulse duration on the photomechanical response of soft tissue during holmium:YAG laser ablation has been investigated. The dynamics of laser-induced bubble formation was documented in water and in transparent polyacrylamide tissue phantoms with a water concentration of 84%. Holmium:YAG laser radiation ((lambda) equals 2.12 micrometers ) was delivered in water or tissue phantoms via an optical fiber (200 or 400 micrometers ). The laser was operated in either the Q- switched mode ((tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 - 1100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation was documented using a fast flash photography setup while simultaneously a PVDP needle hydrophone (40 ns risetime), recorded pressures. The effect of the pulse duration on the photomechanical response of soft biological tissue was evaluated by delivering 5 pulses of 800 mJ to the intimal side of porcine aorta in vitro, followed by histologic evaluation. It was observed that, as the pulse duration was increased the bubble shape changed from almost spherical for Q-switched pulses to a more elongated, cylindrical shape for the longer pulse durations. The bubble expansion velocity was larger for shorter pulse durations. A thermo- elastic expansion wave was measured only during Q-switched pulse delivery. All pulses that induced bubble formation generated pressure waves upon collapse of the bubble in water as well as in the gel. The amplitude of the pressure wave depended strongly on the size and geometry of the laser-induced bubble. The important findings of this study were (1) the magnitude of collapse pressure wave decreased as laser pulse duration increased, and (2) mechanical tissue damage is reduced significantly by using longer pulse durations (> 460 microsecond(s) , for the pulse energy used).

  6. Comparison of two new generation pulse oximeters during emergency ambulance transportation.

    PubMed

    Weber, Ulrike; Tomschik, Elvira; Resch, Irene; Adelmann, Krista; Hasun, Matthias; Mora, Bruno; Malzer, Reinhard; Kober, Alexander

    2011-02-01

    We wanted to test whether there is a difference between the total number and duration of malfunctions and a correlation between the oxygen saturation and pulse rate values of two new generation pulse oximeters (Masimo 'Radical 7' and Nellcor 'N 600') during emergency ambulance transportation. Patients were monitored with two pulse oximeters ('Radical 7' and 'N 600') on different randomly selected fingers of the same hand during transportation. Data of both devices were recorded continuously by a laptop computer. Fifty-two patients with signs of peripheral vasoconstriction (including 22 patients with a blood pressure ≤100/60) were included. There were 0.21 ± 0.72 (0-4) malfunctions per patient lasting for a mean 113.55 ± 272.55 s in the 'Radical 7' and 0.13 ± 0.49 (0-3) malfunctions per patient with a mean duration of 301.0 ± 426.58 s in the 'N 600'. Oxygen saturation and pulse rate values correlated significantly [r² = 0.9608 (SpO₂), r² = 0.9608 (pulse rate)] between the devices and showed a bias of -0.177770 (SpO₂) and 0.310883 (pulse rate) with a standard deviation of 1.68367 (SpO₂) and 4.46532 (pulse rate) in a Bland-Altman test. Although number and duration of malfunctions did not differ significantly between the devices, they showed a very low number of malfunctions even in hypotensive patients with peripheral vasoconstriction. Oxygen saturation correlated significantly in the two devices investigated at 49.409 time points. In addition, pulse rate also correlated significantly.

  7. The all-fiber cladding-pumped Yb-doped gain-switched laser.

    PubMed

    Larsen, C; Hansen, K P; Mattsson, K E; Bang, O

    2014-01-27

    Gain-switching is an alternative pulsing technique of fiber lasers, which is power scalable and has a low complexity. From a linear stability analysis of rate equations the relaxation oscillation period is derived and from it, the pulse duration is defined. Good agreement between the measured pulse duration and the theoretical prediction is found over a wide range of parameters. In particular we investigate the influence of an often present length of passive fiber in the cavity and show that it introduces a finite minimum in the achievable pulse duration. This minimum pulse duration is shown to occur at longer active fibers length with increased passive length of fiber in the cavity. The peak power is observed to depend linearly on the absorbed pump power and be independent of the passive fiber length. Given these conclusions, the pulse energy, duration, and peak power can be estimated with good precision.

  8. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.

    PubMed

    Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan

    2004-10-01

    In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse size and soil water response. Building on this conceptual framework and developing a greater understanding of the complexities of these eco-hydrologic systems may enhance our ability to describe the ecology of desert ecosystems and their sensitivity to global change.

  9. Correlated states of a quantum oscillator acted by short pulses

    NASA Technical Reports Server (NTRS)

    Manko, O. V.

    1993-01-01

    Correlated squeezed states for a quantum oscillator are constructed based on the method of quantum integrals of motion. The quantum oscillator is acted upon by short duration pulses. Three delta-kickings of frequency are used to model the pulses' dependence upon the time aspects of the frequency of the oscillator. Additionally, the correlation coefficient and quantum variances of operations of coordinates and momenta are written in explicit form.

  10. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    PubMed

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  11. Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs-200-ps laser pulses

    NASA Astrophysics Data System (ADS)

    Csontos, J.; Toth, Z.; Pápa, Z.; Budai, J.; Kiss, B.; Börzsönyi, A.; Füle, M.

    2016-06-01

    In this work laser-induced periodic structures with lateral dimensions smaller than the central wavelength of the laser were studied on glassy carbon as a function of laser pulse duration. To generate diverse pulse durations titanium-sapphire (Ti:S) laser (center wavelength 800 nm, pulse durations: 35 fs-200 ps) and a dye-KrF excimer laser system (248 nm, pulse durations: 280 fs, 2.1 ps) were used. In the case of Ti:S laser treatment comparing the central part of the laser-treated areas a striking difference is observed between the femtoseconds and picoseconds treatments. Ripple structure generated with short pulse durations can be characterized with periodic length significantly smaller than the laser wavelength (between 120 and 165 nm). At higher pulse durations the structure has a higher periodic length (between 780 and 800 nm), which is comparable to the wavelength. In case of the excimer laser treatment the different pulse durations produced similar surface structures with different periodic length and different orientation. One of the structures was parallel with the polarization of the laser light and has a higher periodic length (~335 nm), and the other was perpendicular with smaller periodic length (~78-80 nm). The possible mechanisms of structure formation will be outlined and discussed in the frame of our experimental results.

  12. Thermal latency adds to lesion depth after application of high-power short-duration radiofrequency energy: Results of a computer-modeling study.

    PubMed

    Irastorza, Ramiro M; d'Avila, Andre; Berjano, Enrique

    2018-02-01

    The use of ultra-short RF pulses could achieve greater lesion depth immediately after the application of the pulse due to thermal latency. A computer model of irrigated-catheter RF ablation was built to study the impact of thermal latency on the lesion depth. The results showed that the shorter the RF pulse duration (keeping energy constant), the greater the lesion depth during the cooling phase. For instance, after a 10-second pulse, lesion depth grew from 2.05 mm at the end of the pulse to 2.39 mm (17%), while after an ultra-short RF pulse of only 1 second the extra growth was 37% (from 2.22 to 3.05 mm). Importantly, short applications resulted in deeper lesions than long applications (3.05 mm vs. 2.39 mm, for 1- and 10-second pulse, respectively). While shortening the pulse duration produced deeper lesions, the associated increase in applied voltage caused overheating in the tissue: temperatures around 100 °C were reached at a depth of 1 mm in the case of 1- and 5-second pulses. However, since the lesion depth increased during the cooling period, lower values of applied voltage could be applied in short durations in order to obtain lesion depths similar to those in longer durations while avoiding overheating. The thermal latency phenomenon seems to be the cause of significantly greater lesion depth after short-duration high-power RF pulses. Balancing the applied total energy when the voltage and duration are changed is not the optimal strategy since short pulses can also cause overheating. © 2017 Wiley Periodicals, Inc.

  13. Synthesis of Nanosecond Ultrawideband Radiation Pulses

    NASA Astrophysics Data System (ADS)

    Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-12-01

    The synthesis of electromagnetic pulses with an extended spectrum by summing pulses of different duration in free space has been studied. The radiation spectrum has been estimated analytically for a 4-element array of combined antennas excited by bipolar voltage pulses of duration 0.5, 1, 2, and 3 ns. It has been shown experimentally that radiation with a spectral width of more than three octaves can be produced using a 2×2 array of combined antennas excited by bipolar pulses of duration 2 and 3 ns.

  14. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2014-12-15

    In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less

  15. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers.

    PubMed

    Shane, Janelle C; Mazilu, Michael; Lee, Woei Ming; Dholakia, Kishan

    2010-03-29

    We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope's temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.

  16. Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens

    NASA Astrophysics Data System (ADS)

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.

    2018-04-01

    Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.

  17. Pulse Detecting Genetic Circuit – A New Design Approach

    PubMed Central

    Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C.

    2016-01-01

    A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse–analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event. PMID:27907045

  18. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smetanin, S N

    2014-11-30

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourthmore » Stokes Raman components. For the KGd(WO{sub 4}){sub 2} (high dispersion) and Ba(NO{sub 3}){sub 2} (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes – anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes – anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium. (nonlinear optical phenomena)« less

  19. THREE-DIMENSIONAL SIMULATIONS OF LONG DURATION GAMMA-RAY BURST JETS: TIMESCALES FROM VARIABLE ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Cámara, D.; Lazzati, Davide; Morsony, Brian J., E-mail: diego@astro.unam.mx

    2016-08-01

    Gamma-ray burst (GRB) light curves are characterized by marked variability, each showing unique properties. The origin of this variability, at least for a fraction of long GRBs, may be the result of an unsteady central engine. It is thus important to study the effects that an episodic central engine has on the jet propagation and, eventually, on the prompt emission within the collapsar scenario. Thus, in this study we follow the interaction of pulsed outflows with their progenitor stars with hydrodynamic numerical simulations in both two and three dimensions. We show that the propagation of unsteady jets is affected bymore » the interaction with the progenitor material well after the break-out time, especially for jets with long quiescent times comparable to or larger than a second. We also show that this interaction can lead to an asymmetric behavior in which pulse durations and quiescent periods are systematically different. After the pulsed jets drill through the progenitor and the interstellar medium, we find that, on average, the quiescent epochs last longer than the pulses (even in simulations with symmetrical active and quiescent engine times). This could explain the asymmetry detected in the light curves of long quiescent time GRBs.« less

  20. Copper bromide vapour laser with an output pulse duration of up to 320 ns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubarev, F A; Fedorov, K V; Evtushenko, G S

    We report the development of a copper bromide vapour laser with an output pulse duration of up to 320 ns. To lengthen the pulse, the discharge current was limited using a compound switch comprising a pulsed hydrogen thyratron and a tacitron. This technique permits limiting the excitation of the working levels at the initial stage of the discharge development to lengthen the inversion lifetime. The longest duration of a laser pulse was reached in tubes 25 and 50 mm in diameter for a pulse repetition rate of 2 – 4 kHz. (lasers and laser beams)

  1. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    PubMed

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1 Hz. Altogether, bubble cavitation and thermal field vary with the progress of HIFU treatment with different sonication parameters, which provide insights into the interaction of ultrasound burst with the induced bubbles for both soft tissue fractionation and enhancement in thermal accumulation. Appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety.

  2. Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes

    NASA Astrophysics Data System (ADS)

    Mangang, M.; Seifert, H. J.; Pfleging, W.

    2016-02-01

    Lithium iron phosphate is a promising cathode material for lithium-ion batteries, despite its low electrical conductivity and lithium-ion diffusion kinetic. To overcome the reduced rate performance, three dimensional (3D) architectures were generated in composite cathode layers. By using ultrashort laser radiation with pulse durations in the femtosecond regime the ablation depth per pulse is three times higher compared to nanosecond laser pulses. Due to the 3D structuring, the surface area of the active material which is in direct contact with liquid electrolyte, i.e. the active surface, is increased. As a result the capacity retention and the cycle stability were significantly improved, especially for high charging/discharging currents. Furthermore, a 3D structure leads to higher currents during cyclic voltammetry. Thus, the lithium-ion diffusion kinetic in the cell was improved. In addition, using ultrashort laser pulses results in a high aspect ratio and further improvement of the cell kinetic was achieved.

  3. Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate.

    PubMed

    Franco Navarro, Pedro; Benson, David J; Nesterenko, Vitali F

    2015-12-01

    We study the evolution of high-amplitude stress pulses in periodic dissipative laminates taking into account the nonlinear constitutive equations of the components and their dissipative behavior. Aluminum-tungsten laminate was selected due to the large difference in acoustic impedances of components, the significant nonlinearity of the aluminum constitutive equation at the investigated range of stresses, and its possible practical applications. Laminates with different cell size, which controls the internal time scale, impacted by plates with different thicknesses that determine the incoming pulse duration, were investigated. It has been observed that the ratio of the duration of the incoming pulse to the internal characteristic time determines the nature of the high-amplitude dissipative propagating waves-a triangular oscillatory shock-like profile, a train of localized pulses, or a single localized pulse. These localized quasistationary waves resemble solitary waves even in the presence of dissipation: The similar pulses emerged from different initial conditions, indicating that they are inherent properties of the corresponding laminates; their characteristic length scale is determined by the scale of mesostructure, nonlinear properties of materials, and the stress amplitude; and a linear relationship exists between their speed and amplitude. They mostly recover their shapes after collision with phase shift. A theoretical description approximating the shape, length scale, and speed of these high-amplitude dissipative pulses was proposed based on the Korteweg-de Vries equation with a dispersive term determined by the mesostructure and a nonlinear term derived using Hugoniot curves of components.

  4. Electron acceleration by laser produced wake field: Pulse shape effect

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  6. Optical Attenuation Coefficient Meter

    DTIC Science & Technology

    2016-06-22

    detector 43 is measured and recorded at the Pico Scope 80 to validate the laser pulse strength (which is proportional to the output and time wave shape ...unusable. [0004] As such, there is a need for a meter, recognizing back scattering by a pulsed laser source, that would allow a propagation path which...an attenuation meter with a transmitter and receiver is provided in which the transmitter produces a laser pulse of a duration and water

  7. Implementation of STUD Pulses at the Trident Laser and Initial Results

    NASA Astrophysics Data System (ADS)

    Johnson, R. P.; Shimada, T.; Montgomery, D. S.; Afeyan, B.; Hüller, S.

    2012-10-01

    Controlling and mitigating laser-plasma instabilities such as stimulated Brillouin scattering, stimulated Raman scattering, and crossed-beam energy transfer is important to achieve high-gain inertial fusion using laser drivers. Recent theory and simulations show that these instabilities can be largely controlled using laser pulses consisting of spike trains of uneven duration and delay (STUD) by modulating the laser on a picosecond time scale [1,2]. We have designed and implemented a STUD pulse generator at the LANL Trident Laser Facility using Fourier synthesis to produce a 0.5-ns envelope of psec-duration STUD pulses using a spatial light modulator. Initial results from laser propagation tests and measurements as well as initial laser-plasma characterization experiments will be presented.[4pt] [1] B. Afeyan and S. H"uller, ``Optimal Control of Laser Plasma Instabilities using STUD pulses,'' IFSA 2011, P.Mo.1, to appear in Euro. Phys. J. Web of Conf. (2012).[2] S. H"uller and B. Afeyan, ``Simulations of drastically reduced SBS with STUD pulses,'' IFSA 2011, O.Tu8-1, to appear in Euro. Phys. J. Web of Conf. (2012).

  8. Parallel transmission RF pulse design for eddy current correction at ultra high field.

    PubMed

    Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando

    2012-08-01

    Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.

  9. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    PubMed

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  10. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOEpatents

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  11. Dynamic characteristics of 4H-SiC drift step recovery diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Kon’kov, O. I.; Samsonova, T. P.

    The dynamic characteristics of 4H-SiC p{sup +}–p–n{sub 0}–n{sup +} diodes are experimentally studied in the pulsed modes characteristic of the operation of drift step recovery diodes (DSRD-mode). The effect of the subnanosecond termination of the reverse current maintained by electron-hole plasma preliminarily pumped by a forward current pulse is analyzed in detail. The influence exerted on the DSRD effect by the amplitude of reverse-voltage pulses, the amplitude and duration of forward-current pulses, and the time delay between the forward and reverse pulses is demonstrated and accounted for.

  12. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  13. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, Roger B.; Tyree, William H.

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  14. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration

    PubMed Central

    2013-01-01

    Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions. PMID:23374142

  15. Investigations of high-speed digital imaging of low-light-level events using pulsed near-infrared laser light sources

    NASA Astrophysics Data System (ADS)

    Jantzen, Connie; Slagle, Rick

    1997-05-01

    The distinction between exposure time and sample rate is often the first point raised in any discussion of high speed imaging. Many high speed events require exposure times considerably shorter than those that can be achieved solely by the sample rate of the camera, where exposure time equals 1/sample rate. Gating, a method of achieving short exposure times in digital cameras, is often difficult to achieve for exposure time requirements shorter than 100 microseconds. This paper discusses the advantages and limitations of using the short duration light pulse of a near infrared laser with high speed digital imaging systems. By closely matching the output wavelength of the pulsed laser to the peak near infrared response of current sensors, high speed image capture can be accomplished at very low (visible) light levels of illumination. By virtue of the short duration light pulse, adjustable to as short as two microseconds, image capture of very high speed events can be achieved at relatively low sample rates of less than 100 pictures per second, without image blur. For our initial investigations, we chose a ballistic subject. The results of early experimentation revealed the limitations of applying traditional ballistic imaging methods when using a pulsed infrared lightsource with a digital imaging system. These early disappointing results clarified the need to further identify the unique system characteristics of the digital imager and pulsed infrared combination. It was also necessary to investigate how the infrared reflectance and transmittance of common materials affects the imaging process. This experimental work yielded a surprising, successful methodology which will prove useful in imaging ballistic and weapons tests, as well as forensics, flow visualizations, spray pattern analyses, and nocturnal animal behavioral studies.

  16. Formation of 1.4 MeV runaway electron flows in air using a solid-state generator with 10 MV/ns voltage rise rate

    NASA Astrophysics Data System (ADS)

    Mesyats, G. A.; Pedos, M. S.; Rukin, S. N.; Rostov, V. V.; Romanchenko, I. V.; Sadykova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2018-04-01

    Fulfillment of the condition that the voltage rise time across an air gap is comparable with the time of electron acceleration from a cathode to an anode allows a flow of runaway electrons (REs) to be formed with relativistic energies approaching that determined by the amplitude of the voltage pulse. In the experiment described here, an RE energy of 1.4 MeV was observed by applying a negative travelling voltage pulse of 860-kV with a maximum rise rate of 10 MV/ns and a rise time of 100-ps. The voltage pulse amplitude was doubled at the cathode of the 2-cm-long air gap due to the delay of conventional pulsed breakdown. The above-mentioned record-breaking voltage pulse of ˜120 ps duration with a peak power of 15 GW was produced by an all-solid-state pulsed power source utilising pulse compression/sharpening in a multistage gyromagnetic nonlinear transmission line.

  17. Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner

    NASA Astrophysics Data System (ADS)

    Hnilicová, P.; Bittšanský, M.; Dobrota, D.

    2014-04-01

    In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.

  18. Acute effects of ultrafiltration on aortic mechanical properties determined by measurement of pulse wave velocity and pulse propagation time in hemodialysis patients

    PubMed Central

    Yıldız, Banu Şahin; Şahin, Alparslan; Aladağ, Nazire Başkurt; Arslan, Gülgün; Kaptanoğulları, Hakan; Akın, İbrahim; Yıldız, Mustafa

    2015-01-01

    Objective: The effects of acute hemodialysis session on pulse wave velocity are conflicting. The aim of the current study was to assess the acute effects of ultrafiltration on the aortic mechanical properties using carotid-femoral (aortic) pulse wave velocity and pulse propagation time. Methods: A total of 26 (12 women, 14 men) consecutive patients on maintenance hemodialysis (mean dialysis duration: 40.7±25.6 (4-70) months) and 29 healthy subjects (13 women, 16 men) were included in this study. Baseline blood pressure, carotid-femoral (aortic) pulse wave velocity, and pulse propagation time were measured using a Complior Colson device (Createch Industrie, France) before and immediately after the end of the dialysis session. Results: While systolic blood pressure, diastolic blood pressure, mean blood pressure, pulse pressure, and pulse wave velocity were significantly higher in patients on hemodialysis than in healthy subjects, pulse propagation time was significantly higher in healthy subjects. Although body weight, systolic blood pressure, diastolic blood pressure, mean blood pressure, pulse pressure, and pulse wave velocity were significantly decreased, heart rate and pulse propagation time were significantly increased after ultrafiltration. There was a significant positive correlation between pulse wave velocity and age, body height, waist circumference, systolic blood pressure, diastolic blood pressure, mean blood pressure, pulse pressure, and heart rate. Conclusion: Although hemodialysis treatment may chronically worsen aortic mechanical properties, ultrafiltration during hemodialysis may significantly improve aortic pulse wave velocity, which is inversely related to aortic distensibility and pulse propagation time. PMID:25413228

  19. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  20. Temperature dependence of the pulse-duration memory effect in NbSe3

    NASA Astrophysics Data System (ADS)

    Jones, T. C.; Simpson, C. R., Jr.; Clayhold, J. A.; McCarten, J. P.

    2000-04-01

    The temperature dependence of the oscillatory response of the 59 K charge-density wave in NbSe3 to a sequence of repetitive current pulses was investigated. For 52 K>T>45 K the learned behavior commonly referred to as the pulse-duration memory effect (PDME) is very evident; after training the voltage oscillation always finishes the pulse at a minimum. At lower temperatures the PDME changes qualitatively. In nonswitching samples the voltage oscillation always finishes the pulse increasing. In switching samples there is a conduction delay which becomes fixed after training, but no learning of the duration of the pulse.

  1. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    PubMed

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  2. Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions

    DOE PAGES

    Yarrington, C. D.; Abere, M. J.; Adams, D. P.; ...

    2017-04-03

    We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm 2 and 1189 W/cm 2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model themore » progress from reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.« less

  3. Pulsed and cw laser oscillations in LiF:F-2 color center crystal under laser diode pumping.

    PubMed

    Basiev, Tasoltan T; Vassiliev, Sergey V; Konjushkin, Vasily A; Gapontsev, Valentin P

    2006-07-15

    Continuous-wave laser oscillations in LiF:F-2 crystal optically pumped by a laser diode at 970 nm were demonstrated for what is believed to be the first time. The slope efficiency of 14% and conversion efficiency of 5.5% were achieved for 80 micros pump pulse duration and 5 Hz pulse repetition rate. An efficiency twice as low was measured at a 6.25 kHz pulse repetition rate (50% off-duty factor) and in cw mode of laser operation.

  4. FIBER OPTICS. ACOUSTOOPTICS: Compression of random pulses in fiber waveguides

    NASA Astrophysics Data System (ADS)

    Aleshkevich, Viktor A.; Kozhoridze, G. D.

    1990-07-01

    An investigation is made of the compression of randomly modulated signal + noise pulses during their propagation in a fiber waveguide. An allowance is made for a cubic nonlinearity and quadratic dispersion. The relationships governing the kinetics of transformation of the time envelope, and those which determine the duration and intensity of a random pulse are derived. The expressions for the optimal length of a fiber waveguide and for the maximum degree of compression are compared with the available data for regular pulses and the recommendations on selection of the optimal parameters are given.

  5. Performance tests of the 5 TW, 1 kHz, passively CEP-stabilized ELI-ALPS SYLOS few-cycle laser system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stanislauskas, Tomas; Budriūnas, Rimantas; Veitas, Gediminas; Gadonas, Darius; Adamonis, Jonas; Aleknavičius, Aidas; Masian, Gžegož; Kuprionis, Zenonas; Hoff, Dominik; Paulus, Gerhard G.; Börzsönyi, Ádám.; Toth, Szabolcs; Kovacs, Mate; Csontos, János; López-Martens, Rodrigo; Osvay, Károly

    2017-05-01

    ELI-ALPS in Hungary, one of the three pillars of the Extreme Light Infrastructure, aims at providing diverse light sources, including energetic attosecond pulses at the highest possible repetition rates. One of the main laser systems for driving plasma and gas-based HHG stages, is a state-of-the-art 1 kHz few-cycle laser called SYLOS. Targeted pulse parameters are an energy of 100 mJ and a duration shorter than two optical cycles (<6 fs), with outstanding energy, phase and pointing stability as well as high spatiotemporal quality. The first phase of the laser system has already set a new standard in kHz laser system engineering and technology. The performance and reliability of the SYLOS laser have been consistently tested over the course of a six-month trial period. During this time the system was running at least 8 hours a day at full power for more than 5 months. The current output parameters are 5 TW peak power, 45 mJ pulse energy with 9 fs duration and 300 mrad CEP stability, while the spectrum spans over 300 nm around 840 nm central wavelength. The layout follows the general scheme NOPCPA architecture with a passively CEP-stabilized front-end. The pulses are negatively chirped for the amplification process and compressed by a combination of large aperture bulk glass blocks and positively chirped mirrors under vacuum conditions at the output. During the trial period, the laser system demonstrated outstanding reliability. Daily startup and shutdown procedures take only a few minutes, and the command-control system enables pulse parameters to be modified instantly. Controlling the delays of individual NOPCPA stages makes it possible to tailor the output spectrum of the pulses and tune the central wavelength between 770 nm and 940 nm. We performed several experimental tests to find out the pulse characteristics. Pulse duration was verified with Wizzler, chirp-scan, autocorrelation methods and a stereo-ATI independently. All of them confirmed the sub-9 fs pulse duration. We recorded the long-term waveform and pointing stabilities of the beam in order to find out the effect of the temperature load on optical elements. Excluding a short initial warm up time, stable signals were observed in general. The in-loop and out-of-loop CEP stability was cross-checked between f-to-2f and stereo-ATI devices. Moreover, the inherent CEP stability of the system without feedback loop was also found to be surprisingly robust thanks to the passive CEP stabilization of the front-end. The polarization contrast was better than 1000:1. The temporal contrast was also measured independently with Sequoia and Tundra cross-correlators, and on the ns scale with a fast photodiode and GHz oscilloscope as well. Results showed that the pulse pedestal generally consists of parametric superfluorescence below the 1E-7 level and about 100 ps long, well in accordance with the pump duration. Delaying the pump pulse allows us to shift the seed pulse to the front and reach a pre-pulse pedestal below 1E-11 at 30 ps before the pulse peak. Detailed findings on all the examined pulse characteristics of the SYLOS laser will be reported in this presentation.

  6. Electronic control of different generation regimes in mode-locked all-fibre F8 laser

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Ivanenko, Aleksey; Kokhanovskiy, Alexey; Smirnov, Sergey

    2018-04-01

    We demonstrate for the first time an electronically controlled realisation of markedly different generation regimes in a mode-locked all-fibre figure-eight (F8) Yb-doped laser. Electronic adjustment of the ratio of pumping powers of two amplification stages in a nonlinear amplifying loop mirror enables the establishment of stable pulse generation regimes with different degrees of coherence and control over their parameters within relatively broad limits, with the pulse duration range exceeding a factor of two in the picosecond domain for coherent and incoherent pulses, the energy range exceeding an order of magnitude for incoherent pulses (2.2-24.8 nJ) and over a factor of 8 for coherent pulses (1.9-16.2 nJ). Adjustment of the pumping powers allows one to maintain the duration of the coherent pulses and to set their peak power in the range of 32.5-292.5 W. The proposed configuration of electronic control over the radiation parameters of a mode-locked all-fibre F8 laser enables reproducible generation of pulses of different types with specified parameters within a broad range of values.

  7. Ultrashort-Pulse Child-Langmuir Law in the Quantum and Relativistic Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, L. K.; Zhang, P.

    This Letter presents a consistent quantum and relativistic model of short-pulse Child-Langmuir (CL) law, of which the pulse length {tau} is less than the electron transit time in a gap of spacing D and voltage V. The classical value of the short-pulse CL law is enhanced by a large factor due to quantum effects when the pulse length and the size of the beam are, respectively, in femtosecond duration and nanometer scale. At high voltage larger than the electron rest mass, relativistic effects will suppress the enhancement of short-pulse CL law, which is confirmed by particle-in-cell simulation. When the pulsemore » length is much shorter than the gap transit time, the current density is proportional to V, and to the inverse power of D and {tau}.« less

  8. Laser detection of material thickness

    DOEpatents

    Early, James W.

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  9. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkarev, A. I., E-mail: aipush@mail.ru; Isakova, Y. I.; Khaylov, I. P.

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1–1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250–300 kV) and bipolar-pulse mode with the first negative (300–600 ns, 100–150 kV) followed by a second positive (120 ns, 250–300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode themore » shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3–4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9–0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.« less

  10. Laser-induced periodic surface structures on 6H-SiC single crystals using temporally delayed femtosecond laser double-pulse trains

    NASA Astrophysics Data System (ADS)

    Song, Juan; Tao, Wenjun; Song, Hui; Gong, Min; Ma, Guohong; Dai, Ye; Zhao, Quanzhong; Qiu, Jianrong

    2016-04-01

    In this paper, a time-delay-adjustable double-pulse train with 800-nm wavelength, 200-fs pulse duration and a repetition rate of 1 kHz, produced by a collinear two-beam optical system like a Mach-Zehnder interferometer, was employed for irradiation of 6H-SiC crystal. The dependence of the induced structures on time delay of double-pulse train for parallel-polarization configuration was studied. The results show that as the time delay of collinear parallel-polarization dual-pulse train increased, the induced near-subwavelength ripples (NSWRs) turn from irregular rippled pattern to regularly periodic pattern and have their grooves much deepened. The characteristics timescale for this transition is about 6.24 ps. Besides, the areas of NSWR were found to decay exponentially for time delay from 0 to 1.24 ps and then slowly increase for time delay from 1.24 to 14.24 ps. Analysis shows that multiphoton ionization effect, grating-assisted surface plasmon coupling effect, and timely intervene of second pulse in a certain physical stage experienced by 6H-SiC excited upon first pulse irradiation may contribute to the transition of morphology details.

  11. Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori

    2015-09-01

    Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.

  12. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    PubMed

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  13. Time transfer between the Goddard Optical Research Facility and the U.S. Naval Observatory using 100 picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Alley, C. O.; Rayner, J. D.; Steggerda, C. A.; Mullendore, J. V.; Small, L.; Wagner, S.

    1983-01-01

    A horizontal two-way time comparison link in air between the University of Maryland laser ranging and time transfer equipment at the Goddard Optical Research Facility (GORF) 1.2 m telescope and the Time Services Division of the U.S. Naval Observatory (USNO) was established. Flat mirrors of 25 cm and 30 cm diameter respectively were placed on top of the Washington Cathedral and on a water tower at the Beltsville Agricultural Research Center. Two optical corner reflectors at the USNO reflect the laser pulses back to the GORF. Light pulses of 100 ps duration and an energy of several hundred microjoules are sent at the rate of 10 pulses per second. The detection at the USNO is by means of an RCA C30902E avalanche photodiode and the timing is accomplished by an HP 5370A computing counter and an HP 1000 computer with respect to a 10 pps pulse train from the Master Clock.

  14. Fiber optic suctioning of urinary stone phantoms during laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-03-01

    Fiber optic attraction of urinary stones during laser lithotripsy has been previously observed, and this phenomenon may potentially be exploited to pull stones inside the urinary tract without mechanical grasping tools, thus saving the urologist valuable time and space in the ureteroscope's single working channel. In this study, Thulium fiber laser (TFL) high-pulse-rate/low-pulse-energy operation and Holmium:YAG low-pulse-rate/high-pulse-energy operation are compared for fiber optic "suctioning" of Plaster-of-Paris stone phantoms. A TFL with wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10-350 Hz, and Holmium laser with wavelength of 2120 nm, pulse energy of 35-360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz were tested using 270-μm-core fibers. A peak "pull" speed of 2.5 mm/s was measured for both TFL (35 mJ and 150-250 Hz) and Holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber optic suctioning of urinary stone phantoms is feasible for both lasers. However, TFL operation at high-pulse-rates/low-pulse-energies provides faster, smoother stone pulling than Holmium operation at low-pulserates/ high-pulse-energies. After further study, this method may be used to manipulate urinary stones in the clinic.

  15. Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

    NASA Astrophysics Data System (ADS)

    Eisfeld, Eugen; Roth, Johannes

    2018-05-01

    Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  16. Observed stratospheric downward reflection, and its relation to upward pulses of wave activity

    NASA Astrophysics Data System (ADS)

    Harnik, N.

    2009-04-01

    We examine the differences between observed stratospheric vertical wave reflection and wave absorption events, which differ in that the wave induced deceleration remains confined to upper levels in the former. The two types of events signify two types of stratospheric winter dynamics, associated with different downward coupling to the troposphere (Perlwitz and Harnik, 2004). Using time lag composites, we find that the main factor influencing which event will occur is the duration, in time, of the upward pulse of wave activity entering the stratosphere from the troposphere. Short pulses accelerate the flow at their trailing edge in the lower stratosphere while they decelerate it at upper levels, resulting in a vertical shear reversal, and corresponding downward reflection, while long pulses continue decelerating the vortex at progressively lower levels. The confinement of deceleration to upper levels for short wave forcing pulses is also found in an idealized model of an interaction between a planetary wave and the stratospheric vortex, though some aspects of the wave geometry evolution, and thus vertical reflection, are not captured realistically in the model. The results suggest the stratospheric influence on the type of wave interaction, in reality, is indirect - through a possible effect on the duration of upward wave fluxes through the tropopause.

  17. Target representation of naturalistic echolocation sequences in single unit responses from the inferior colliculus of big brown bats

    NASA Astrophysics Data System (ADS)

    Sanderson, Mark I.; Simmons, James A.

    2005-11-01

    Echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals whose duration, repetition rate, and sweep structure change systematically during interception of prey. When stimulated with a 2.5-s sequence of 54 FM pulse-echo pairs that mimic sounds received during search, approach, and terminal stages of pursuit, single neurons (N=116) in the bat's inferior colliculus (IC) register the occurrence of a pulse or echo with an average of <1 spike/sound. Individual IC neurons typically respond to only a segment of the search or approach stage of pursuit, with fewer neurons persisting to respond in the terminal stage. Composite peristimulus-time-histogram plots of responses assembled across the whole recorded population of IC neurons depict the delay of echoes and, hence, the existence and distance of the simulated biosonar target, entirely as on-response latencies distributed across time. Correlated changes in pulse duration, repetition rate, and pulse or echo amplitude do modulate the strength of responses (probability of the single spike actually occurring for each sound), but registration of the target itself remains confined exclusively to the latencies of single spikes across cells. Modeling of echo processing in FM biosonar should emphasize spike-time algorithms to explain the content of biosonar images.

  18. Distance Estimation for Eclipsing X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Paul, B.; Raichur, H.

    2006-06-01

    Recent interest in eclipsing binaries as distance indicators leads naturally into direct distance estimation for X-ray pulsars by combination of pulse arrival times, radial velocities, X-ray eclipse duration, and spectra. Optical light curves may help in some cases by measuring tides and irradiation, although dynamical tides in eccentric systems limit light curve usefulness. Pulse arrivals give an absolute scale and also orbit shape and orientation, which may be poorly known from radial velocities. For example, orbital eccentricity of 0.09 is known from Vela X1 pulse arrivals, although optical velocities are too noisy to measure eccentricity accurately. Combined pulse and optical velocity data give mass information. A lower limit to sin i from eclipse duration sets a lower limit to R2, and for the general eccentric case. A mass ratio sets lobe size and thus an upper limit to R2, so boxing R2 within a narrow range may be possible. T2 can be assessed from spectra so EB distance estimation can work if magnitude is known in one or more standard bands such as B or V. Realistic distance uncertainties are explored. In regard to new observations, Vela X-1 was observed by RXTE over about nine days in January 2005, including an eclipse of about 3.5 days. We extracted the light curves with time resolution 0.125 s. Spin period measurements by the Chi square criterion show Doppler variation with orbital phase and mean spin period 283.5 s. Pulse profiles of that period were averaged in sets of 10 at 138 phases. Cross correlation for the first 40 pulses show the expected Doppler arrival time variation. As the Vela X-1 pulse period is large compared to light travel time across the orbit, the pulses are already phase connected. Support is by U.S. National Science Foundation grant 0307561.

  19. A single-frequency Ho:YLF pulsed laser with frequency stability better than 500 kHz

    NASA Astrophysics Data System (ADS)

    Kucirek, P.; Meissner, A.; Nyga, S.; Mertin, J.; Höfer, M.; Hoffmann, H.-D.

    2017-03-01

    The spectral stability of a previously reported Ho:YLF single frequency pulsed laser oscillator emitting at 2051 nm is drastically improved by utilizing a narrow linewidth Optically Pumped Semiconductor Laser (OPSL) as a seed for the oscillator. The oscillator is pumped by a dedicated gain-switched Tm:YLF laser at 1890 nm. The ramp-and-fire method is employed for generating single frequency emission. The heterodyne technique is used to analyze the spectral properties. The laser is designed to meet a part of the specifications for future airborne or space borne LIDAR detection of CO2. Seeding with a DFB diode and with an OPSL are compared. With OPSL seeding an Allan deviation of the centroid of the spectral distribution of 38 kHz and 517 kHz over 10 seconds and 60 milliseconds of sampling time for single pulses is achieved. The spectral width is approximately 30 MHz. The oscillator emits 2 mJ pulse energy with 50 Hz pulse repetition frequency (PRF) and 20 ns pulse duration. The optical to optical efficiency of the Ho:YLF oscillator is 10 % and the beam quality is diffraction limited. To our knowledge this is the best spectral stability demonstrated to date for a Ho:YLF laser with millijoule pulse energy and nanosecond pulse duration.

  20. Peak holding circuit for extremely narrow pulses

    NASA Technical Reports Server (NTRS)

    Oneill, R. W. (Inventor)

    1975-01-01

    An improved pulse stretching circuit comprising: a high speed wide-band amplifier connected in a fast charge integrator configuration; a holding circuit including a capacitor connected in parallel with a discharging network which employs a resistor and an FET; and an output buffer amplifier. Input pulses of very short duration are applied to the integrator charging the capacitor to a value proportional to the input pulse amplitude. After a predetermined period of time, conventional circuitry generates a dump pulse which is applied to the gate of the FET making a low resistance path to ground which discharges the capacitor. When the dump pulse terminates, the circuit is ready to accept another pulse to be stretched. The very short input pulses are thus stretched in width so that they may be analyzed by conventional pulse height analyzers.

  1. Heterodimer Autorepression Loop: A Robust and Flexible Pulse-Generating Genetic Module

    NASA Astrophysics Data System (ADS)

    Lannoo, B.; Carlon, E.; Lefranc, M.

    2016-07-01

    We investigate the dynamics of the heterodimer autorepression loop (HAL), a small genetic module in which a protein A acts as an autorepressor and binds to a second protein B to form an A B dimer. For suitable values of the rate constants, the HAL produces pulses of A alternating with pulses of B . By means of analytical and numerical calculations, we show that the duration of A pulses is extremely robust against variation of the rate constants while the duration of the B pulses can be flexibly adjusted. The HAL is thus a minimal genetic module generating robust pulses with a tunable duration, an interesting property for cellular signaling.

  2. Silver-halide sensitized gelatin (SHSG) processing method for pulse holograms recorded on VRP plates

    NASA Astrophysics Data System (ADS)

    Evstigneeva, Maria K.; Drozdova, Olga V.; Mikhailov, Viktor N.

    2002-06-01

    One of the most important area of holograph applications is display holography. In case of pulse recording the requirement for vibration stability is easier than compared to CW exposure. At the same time it is widely known that the behavior of sliver-halide holographic materials strongly depends on the exposure duration. In particular the exposure sensitivity drastically decreases under nanosecond pulse duration. One of the effective ways of the diffraction efficiency improvement is SHSG processing method. This processing scheme is based on high modulation of refractive index due to microvoids appearance inside emulsion layer. It should be mentioned that the SHSG method was used earlier only in the cases when the holograms were recorded by use of CW lasers. This work is devoted to the investigation of SHSG method for pulse hologram recording on VRP plates. We used a pulsed YLF:Nd laser with pulse duration of 25 nanoseconds and wavelength of 527 nm. Both transmission and reflection holograms were recorded. The different kinds of bleaching as well as developing solutions were investigated. Our final processing scheme includes the following stages: 1) development in non-tanning solution, 2) rehalogenating bleach, 3) intermediate alcohol drying, 4) uniform second exposure, 5) second development in diluted developer, 6) reverse bleaching, 7) fixing and 8) gradient drying in isopropyl alcohol. Diffraction efficiency of transmission holograms was of about 60 percent and reflection mirror holograms was of about 45 percent. Thus we have demonstrated the SHSG processing scheme for producing effective holograms on VRP plates under pulse exposure.

  3. Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction.

    PubMed

    López Molina, Juan A; Rivera, María J; Trujillo, Macarena; Berjano, Enrique J

    2009-04-01

    The objectives of this study were to model the temperature progress of a pulsed radiofrequency (RF) power during RF heating of biological tissue, and to employ the hyperbolic heat transfer equation (HHTE), which takes the thermal wave behavior into account, and compare the results to those obtained using the heat transfer equation based on Fourier theory (FHTE). A theoretical model was built based on an active spherical electrode completely embedded in the biological tissue, after which HHTE and FHTE were analytically solved. We found three typical waveforms for the temperature progress depending on the relations between the dimensionless duration of the RF pulse delta(a) and the expression square root of lambda(rho-1), with lambda as the dimensionless thermal relaxation time of the tissue and rho as the dimensionless position. In the case of a unique RF pulse, the temperature at any location was the result of the overlapping of two different heat sources delayed for a duration delta(a) (each heat source being produced by a RF pulse of limitless duration). The most remarkable feature in the HHTE analytical solution was the presence of temperature peaks traveling through the medium at a finite speed. These peaks not only occurred during the RF power switch-on period but also during switch off. Finally, a physical explanation for these temperature peaks is proposed based on the interaction of forward and reverse thermal waves. All-purpose analytical solutions for FHTE and HHTE were obtained during pulsed RF heating of biological tissues, which could be used for any value of pulsing frequency and duty cycle.

  4. The Importance of Time and Frequency Reference in Quantum Astronomy and Quantum Communications

    DTIC Science & Technology

    2007-11-01

    simulator, but the same general results are valid for optical fiber and also different quantum state transmission technologies (i.e. Entangled Photons ...protocols [6]). The Matlab simulation starts from a sequence of pulses of duration Ton; the number of photons per pulse has been implemented like a...astrophysical emission mechanisms or scattering processes by measuring the statistics of the arrival time of each incoming photon . This line of research will be

  5. How can attosecond pulse train interferometry interrogate electron dynamics?

    NASA Astrophysics Data System (ADS)

    Arnold, C. L.; Isinger, M.; Busto, D.; Guénot, D.; Nandi, S.; Zhong, S.; Dahlström, J. M.; Gisselbrecht, M.; l'Huillier, A.

    2018-04-01

    Light pulses of sub-100 as (1 as=10-18 s) duration, with photon energies in the extreme-ultraviolet (XUV) spectral domain, represent the shortest event in time ever made and controlled by human beings. Their first experimental observation in 2001 has opened the door to investigating the fundamental dynamics of the quantum world on the natural time scale for electrons in atoms, molecules and solids and marks the beginning of the scientific field now called attosecond science.

  6. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre

    PubMed Central

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-01-01

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy. PMID:28009011

  7. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre.

    PubMed

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-12-23

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C 2 H 2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C 2 H 2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C 2 H 2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy.

  8. Parasitic lasing suppression in large-aperture Ti:sapphire amplifiers by optimizing the seed-pump time delay

    NASA Astrophysics Data System (ADS)

    Chu, Y. X.; Liang, X. Y.; Yu, L. H.; Xu, L.; Lu, X. M.; Liu, Y. Q.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2013-05-01

    Theoretical and experimental investigations are carried out to determine the influence of the time delay between the input seed pulse and pump pulses on transverse parasitic lasing in a Ti:sapphire amplifier with a diameter of 80 mm, which is clad by a refractive index-matched liquid doped with an absorber. When the time delay is optimized, a maximum output energy of 50.8 J is achieved at a pump energy of 105 J, which corresponds to a conversion efficiency of 47.5%. Based on the existing compressor, the laser system achieves a peak power of 1.26 PW with a 29.0 fs pulse duration.

  9. Ion density evolution in a high-power sputtering discharge with bipolar pulsing

    NASA Astrophysics Data System (ADS)

    Britun, N.; Michiels, M.; Godfroid, T.; Snyders, R.

    2018-06-01

    Time evolution of sputtered metal ions in high power impulse magnetron sputtering (HiPIMS) discharge with a positive voltage pulse applied after a negative one (regime called "bipolar pulse HiPIMS"—BPH) is studied using 2-D density mapping. It is demonstrated that the ion propagation dynamics is mainly affected by the amplitude and duration of the positive pulse. Such effects as ion repulsion from the cathode and the ionization zone shrinkage due to electron drift towards the cathode are clearly observed during the positive pulse. The BPH mode also alters the film crystallographic structure, as observed from X-ray diffraction analysis.

  10. Surface nanotexturing of tantalum by laser ablation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmina, E V; Simakin, Aleksandr V; Shafeev, Georgii A

    2009-01-31

    Surface nanotexturing of tantalum by ablation with short laser pulses in water has been studied experimentally using three ablation sources: a neodymium laser with a pulse duration of 350 ps, an excimer laser (248 nm) with a pulse duration of 5 ps and a Ti:sapphire laser with a pulse duration of 180 fs. The morphology of the nanotextured surfaces has been examined using a nanoprofilometer and field emission scanning electron microscope. The results demonstrate that the average size of the hillocks produced on the target surface depends on the laser energy density and is {approx}200 nm at an energy densitymore » approaching the laser-melting threshold of tantalum and a pulse duration of 350 ps. Their surface density reaches 10{sup 6} cm{sup -2}. At a pulse duration of 5 ps, the average hillock size is 60-70 nm. Nanotexturing is accompanied by changes in the absorption spectrum of the tantalum surface in the UV and visible spectral regions. The possible mechanisms of surface nanotexturing and potential applications of this effect are discussed. (nanostructures)« less

  11. ECCM Waveform Investigation

    DTIC Science & Technology

    1977-08-01

    period, duration/ peak power, and side lobe levels. A recommended waveform library is presented. One of the program results is that an optimum waveform...Areas a. Coding b. Pulse Repetition Period c. Peak Power/Pulse Duration d. Sidelobes 3. Performance Dependence Upon Bandwidth/Bandspan a... peak power and pulse duration, and range and Doppler sldelobe levels. The constraints upon waveforms due to the In- ability of the radar components

  12. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    PubMed

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  13. Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser.

    PubMed

    Steinmetz, A; Jansen, F; Stutzki, F; Lehneis, R; Limpert, J; Tünnermann, A

    2012-07-01

    We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.

  14. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  15. R&D100: LED Pulser

    ScienceCinema

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    2018-06-12

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  16. The study of low temperature plasma of pulse discharge in relation to air cleaning units.

    NASA Astrophysics Data System (ADS)

    Ponizovskiy, A.; Gosteev, S.; Kuzhel, O.

    2017-11-01

    In paper it studied parameters of low-temperature plasma (LTP) used in systems for cleaning waste gas. LTP created by positive nanosecond corona discharges, generated by high voltage pulses with a rise time of 50 ns, duration up to 400 ns, an amplitude up to 90 kV and pulses repetition 50-1000 Hz. in coaxial electrode system with gap space 3-10 cm through which moving air with linear velocity v = 0.01 to 10 m/s.

  17. Infrared x-ray pump-probe spectroscopy of the NO molecule

    NASA Astrophysics Data System (ADS)

    Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.

    2005-07-01

    Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.

  18. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOEpatents

    MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.

    1988-01-01

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  19. Optimisation of thulium fibre laser parameters with generation of pulses by pump modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obronov, I V; Larin, S V; Sypin, V E

    2015-07-31

    The formation of relaxation pulses of a thulium fibre laser (λ = 1.9 μm) by modulating the power of a pump erbium fibre laser (λ = 1.55 μm) is studied. A theoretical model is developed to find the dependences of pulse duration and peak power on different cavity parameters. The optimal cavity parameters for achieving the minimal pulse duration are determined. The results are confirmed by experimental development of a laser emitting pulses with a duration shorter than 10 ns, a peak power of 1.8 kW and a repetition rate of 50 kHz. (control of radiation parameters)

  20. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    NASA Astrophysics Data System (ADS)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  1. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  2. Formation of short high-power laser radiation pulses in excimer mediums

    NASA Astrophysics Data System (ADS)

    Losev, V. F., Sr.; Ivanov, N. G.; Panchenko, Yu. N.

    2007-06-01

    Presently an excimer mediums continue are examined as one of variants for formation of powerful and over powerful pulses of laser radiation with duration from units of nanosecond up to tens femtosecond. The researches on such powerful installations as "NIKE" (USA) and << SUPER ASHURA >>, Japan) proceed in this direction. The main advantage of excimer mediums is the opportunity to work in a frequency mode, absence of restriction on the size of active area, high uniformity of a gas working medium, high efficiency (up to 10 %) and wide spectral range of laser radiation (KrF, XeCl ~ 2nm, XeF (C-A), Xe IICl ~ 50-100 nanometers). Research in area of high quality laser beams formation in excimer mediums and its amplification in high power amplifiers are carried out the long time in Institute of High Current Electronics SB RAS, Tomsk, Russia. The wide aperture XeCl laser system of MELS-4k is used for these investigations. Last time we take part in program on development of high power excimer laser system with a petawatt level of power. This system supposes the formation and amplification high quality laser beams with different pulse duration from units of nanosecond up to tens femtosecond. We research the possibility of laser beams formation in excimer mediums with ps-ns pulse duration having the low noise and divergence near to diffraction limit. In other hand, we are developing the wide aperture XeF(C-A) amplifier with optical pump on base electron accelerator. According to our estimations of the XeF(C-A) amplifier based on the converter of e-beam energy to the Xe II* fluorescence at 172 nm will allow to obtain up to 100 TW peak power in a 30 fs pulse.

  3. Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Tzenov, P.; Babushkin, I.; Arkhipov, R.; Arkhipov, M.; Rosanov, N.; Morgner, U.; Jirauschek, C.

    2018-05-01

    It is believed that passive mode locking is virtually impossible in quantum cascade lasers (QCLs) because of too fast carrier relaxation time. Here, we revisit this possibility and theoretically show that stable mode locking and pulse durations in the few cycle regime at terahertz (THz) frequencies are possible in suitably engineered bound-to-continuum QCLs. We achieve this by utilizing a multi-section cavity geometry with alternating gain and absorber sections. The critical ingredients are the very strong coupling of the absorber to both field and environment as well as a fast absorber carrier recovery dynamics. Under these conditions, even if the gain relaxation time is several times faster than the cavity round trip time, generation of few-cycle pulses is feasible. We investigate three different approaches for ultrashort pulse generation via THz quantum cascade lasers, namely passive, hybrid and colliding pulse mode locking.

  4. Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15-70 ps

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Vyhlídal, David; Kubeček, Václav

    2016-12-01

    In this paper the optimization of a continuously diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively mode-locked using semiconductor saturable absorber mirror is presented. In the previous results the Nd:GdVO4 laser system generating 30 ps pulses with the average output power of 6.9 W at the repetition rate of 200 MHz at the wavelength of 1063 nm was reported. Now we are demonstrating up to three times increase of peak power due to the optimization of mode-matching in the laser resonator. Depending on the oscillator configuration we obtained the stable continuously mode-locked operation with pulses having selectable duration from 15 ps to 70 ps with the average output power of 7 W and the repetition rate of 150 MHz.

  5. Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration.

    PubMed

    Comas, M; Beersma, D G M; Spoelstra, K; Daan, S

    2006-10-01

    To understand entrainment of circadian systems to different photoperiods in nature, it is important to know the effects of single light pulses of different durations on the free-running system. The authors studied the phase and period responses of laboratory mice (C57BL6J//OlaHsd) to single light pulses of 7 different durations (1, 3, 4, 6, 9, 12, and 18 h) given once per 11 days in otherwise constant darkness. Light-pulse duration affected both amplitude and shape of the phase response curve. Nine-hour light pulses yielded the maximal amplitude PRC. As in other systems, the circadian period slightly lengthened following delays and shortened following advances. The authors aimed to understand how different parts of the light signal contribute to the eventual phase shift. When PRCs were plotted using the onset, midpoint, and end of the pulse as a phase reference, they corresponded best with each other when using the mid-pulse. Using a simple phase-only model, the authors explored the possibility that light affects oscillator velocity strongly in the 1st hour and at reduced strength in later hours of the pulse due to photoreceptor adaptation. They fitted models based on the 1-h PRC to the data for all light pulses. The best overall correspondence between PRCs was obtained when the effect of light during all hours after the first was reduced by a factor of 0.22 relative to the 1st hour. For the predicted PRCs, the light action centered on average at 38% of the light pulse. This is close to the reference phase yielding best correspondence at 36% of the pulses. The result is thus compatible with an initial major contribution of the onset of the light pulse followed by a reduced effect of light responsible for the differences between PRCs for different duration pulses. The authors suggest that the mid-pulse is a better phase reference than lights-on to plot and compare PRCs of different light-pulse durations.

  6. [Precipitation pulses and ecosystem responses in arid and semiarid regions: a review].

    PubMed

    Zhao, Wen-Zhi; Liu, Hu

    2011-01-01

    Precipitation events in arid/semi-arid environment are usually occurred in "pulses", with highly variable arrival time, duration, and intensity. These discrete and largely unpredictable features may lead to the pulsed availability of soil water and nutrients in space and time. Resources pulses can affect the life history traits and behaviors at individual level, numerous responses at population level, and indirect effects at community level. This paper reviewed the most recent research advances in the related fields from the aspects of the effects of resources pulses and the responses of ecosystems. It was emphasized that the following issues are still open, e.g., the effects of the pulsed features of resources availability on ecosystems, the discrepancy among the effects of resources pulses in different ecosystems, the eco-hydrological mechanisms that determine the persistence of pulsed resources effects, and the effects of the pulsed resources availability on ecosystem processes. Given the potential global climate and precipitation pattern change, an important research direction in the future is to determine how the resources pulses affect the ecosystem responses at different scales under different climate scenarios.

  7. METHOD AND APPARATUS FOR PULSING A CHARGED PARTICLE BEAM

    DOEpatents

    Aaland, K.; Kuenning, R.W.; Harmon, R.K.

    1961-05-01

    A system is offered for pulsing a continuous beam of charged particles to form beam pulses that are consistently rectangular and of precise time durations which may be varied over an extremely wide range at a widely variable range of repetition rates. The system generally comprises spaced deflection plates on opposite sides of a beam axis in between which a unidirectional bias field is established to deflect the beam for impingement on an off-axis collector. The bias field is periodically neutralized by the application of fast rise time substantially rectangular pulses to one of the deflection plates in opposition to the bias field and then after a time delay to the other deflection plate in aiding relation to the bias field and during the flat crest portion of the bias opposing pulses. The voltage distribution of the resulting deflection field then includes neutral or zero portions which are of symmetrical substantially rectangular configuration relative to time and during which the beam axially passes the collector in the form of a substantially rectangular beam pulse.

  8. Mode-locking of a terahertz laser by direct phase synchronization.

    PubMed

    Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J

    2012-09-10

    A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

  9. Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm.

    PubMed

    Lagatsky, A A; Han, X; Serrano, M D; Cascales, C; Zaldo, C; Calvez, S; Dawson, M D; Gupta, J A; Brown, C T A; Sibbett, W

    2010-09-15

    We report, for the first time to our knowledge, femtosecond-pulse operation of a Tm,Ho:NaY(WO(4))(2) laser at around 2060 nm. Transform-limited 191 fs pulses are produced with an average output power of 82 mW at a 144 MHz pulse repetition frequency. Maximum output power of up to 155 mW is generated with a corresponding pulse duration of 258 fs. An ion-implanted InGaAsSb quantum-well-based semiconductor saturable absorber mirror is used for passive mode-locking maintenance.

  10. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism

    PubMed Central

    Sarmiento-Ponce, Edith Julieta

    2017-01-01

    Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets (Gryllus bimaculatus), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. PMID:28539524

  11. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.

    PubMed

    Hedwig, Berthold; Sarmiento-Ponce, Edith Julieta

    2017-05-31

    Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets ( Gryllus bimaculatus ), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. © 2017 The Authors.

  12. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers

    DOE PAGES

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...

    2015-07-28

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less

  13. Nano- and picosecond 3 μm Er: YSGG lasers using InAs as passive Q-switchers and mode-lockers

    NASA Astrophysics Data System (ADS)

    Vodopyanov, K. L.; Lukashev, A. V.; Phillips, C. C.

    1993-01-01

    Recent results are reported using ultra-thin molecular beam epitaxy (MBE)-grown InAs epilayers on GaAs substrates as passive shutters for 3 μm Er: YSGG lasers ( λ = 2.8 μm). The laser photon energy is 27% higher than the InAs bandgap at 300 K and bleaching occurs due to a band filling effect with a fast recovery time of < 100 ps. Depending on the resonator geometry two modes of operation can be achieved: Q-switched with pulse duration of 35 ns and 5-6 mJ energy (TEM 00 mode) and a Q-switched/mode-locked regime with an output in the form of a train of 30 pulses separated by a 4.3 ns interval, 0.25 mJ energy per spike and 30-50 ps pulse duration in a TEM 00-mode. The latter are the shortest pulses obtained with this lasing medium to date.

  14. The influence of episodic shallow magma degassing on heat and chemical transport in volcanic hydrothermal systems

    USGS Publications Warehouse

    Chen, Kewei; Zhan, Hongbin; Burns, Erick; Ingebritsen, Steven E.; Agrinier, Pierre

    2018-01-01

    Springs at La Soufrière of Guadeloupe have been monitored for nearly four decades since the phreatic eruption and associated seismic activity in 1976. We conceptualize degassing vapor/gas mixtures as square‐wave sources of chloride and heat and apply a new semianalytic solution to demonstrate that chloride and heat pulses with the same timing and duration result in good matches between measured and simulated spring temperatures and concentrations. While the concentration of chloride pulses is variable, the local boiling temperature of 96°C was assigned to all thermal pulses. Because chloride is a conservative tracer, chloride breakthrough is only affected by one‐dimensional advection and dispersion. The thermal tracer is damped and lagged relative to chloride due to conductive heat exchange with the overlying and underlying strata. Joint analysis of temperature and chloride allows estimation of the onset and duration of degassing pulses, refining the chronology of recent magmatic intrusion.

  15. The Influence of Episodic Shallow Magma Degassing on Heat and Chemical Transport in Volcanic Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Zhan, Hongbin; Burns, Erick R.; Ingebritsen, Steven E.; Agrinier, Pierre

    2018-04-01

    Springs at La Soufrière of Guadeloupe have been monitored for nearly four decades since the phreatic eruption and associated seismic activity in 1976. We conceptualize degassing vapor/gas mixtures as square-wave sources of chloride and heat and apply a new semianalytic solution to demonstrate that chloride and heat pulses with the same timing and duration result in good matches between measured and simulated spring temperatures and concentrations. While the concentration of chloride pulses is variable, the local boiling temperature of 96°C was assigned to all thermal pulses. Because chloride is a conservative tracer, chloride breakthrough is only affected by one-dimensional advection and dispersion. The thermal tracer is damped and lagged relative to chloride due to conductive heat exchange with the overlying and underlying strata. Joint analysis of temperature and chloride allows estimation of the onset and duration of degassing pulses, refining the chronology of recent magmatic intrusion.

  16. Laser Induced Breakdown Spectroscopy of Metals

    NASA Astrophysics Data System (ADS)

    Palmer, Andria; Lawhead, Carlos; Ujj, Laszlo

    2015-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a very practical spectroscopy to determine the chemical composition of materials. Recent technical developments resulted in equipment used on the MARS Rover by NASA. It is capable of measuring the emission spectra of laser induced plasma created by energetic laser pulses focused on the sample (rocks, metals, etc.). We have develop a Laser Induced Breakdown Spectroscopy setup and investigated the necessary experimental and methodological challenges needed to make such material identification measurements. 355 and 532 nm laser pulses with 5 ns temporal duration was used to generate micro-plasma from which compositions can be determined based on known elemental and molecular emission intensities and wavelengths. The performance of LIBS depends on several parameters including laser wavelength, pulse energy, pulse duration, time interval of observation, geometrical configuration of collecting optics, and the properties of ambient medium. Spectra recorded from alloys (e.g. US penny coin) and pure metals will be presented. Special thanks for the financial support of the Office of Undergraduate Research of UWF.

  17. One-dimensional "atom" with zero-range potential perturbed by finite sequence of zero-duration laser pulses

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Chuluunbaatar, O.; Popov, Yu. V.; Vinitsky, S. I.; Derbov, V. L.; Lovetskiy, K. P.

    2018-04-01

    The exactly soluble model of a train of zero-duration electromagnetic pulses interacting with a 1D atom with short-range interaction potential modelled by a δ-function is considered. The model is related to the up-to-date laser techniques providing the duration of pulses as short as a few attoseconds and the intensities higher than 1014 W/cm2.

  18. Extremely High Peak Power Obtained at 29 GHZ Microwave Pulse Generation

    NASA Astrophysics Data System (ADS)

    Rostov, V. V.; Gunin, A. V.; Romanchenko, I. V.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shunailov, S. A.; Ul'maskulov, M. R.; Yalandin, M. I.

    2017-12-01

    The paper presents research results on enhancing the peak power of microwave pulses with sub- and nanosecond length using a backward-wave oscillator (BWO) operating at 29 GHz frequency and possessing a reproducible phase structure. Experiments are conducted in two modes on a high-current electron accelerator with the required electron beam power. In the first (superradiation) mode, which utilizes the elongated slow-wave structure, the BWO peak power is 3 GW at 180 ns pulse duration (full width at halfmaximum, FWHM). In the second (quasi-stationary) mode, the BWO peak power reaches 600 MW at 2 ns pulse duration (FWHM). The phase spread from pulse to pulse can vary from units to several tens of percent in a nanosecond pulse mode. The experiments do not show any influence of microwave breakdown on the BWO power generation and radiation pulse duration.

  19. Time-resolved photoelectron spectroscopy of polyatomic molecules using 42-nm vacuum ultraviolet laser based on high harmonics generation

    NASA Astrophysics Data System (ADS)

    Nishitani, Junichi; West, Christopher W.; Higashimura, Chika; Suzuki, Toshinori

    2017-09-01

    Time-resolved photoelectron spectroscopy (TRPES) of gaseous polyatomic molecules using 266-nm (4.7 eV) pump and 42-nm (29.5 eV) probe pulses is presented. A 1-kHz Ti:sapphire laser with a 35 fs pulse duration is employed to generate high harmonics in Kr gas, and the 19th harmonic (42-nm) was selected using two SiC/Mg mirrors. Clear observation of the ultrafast electronic dephasing in pyrazine and photoisomerization of 1,3-cyclohexadiene demonstrates the feasibility of TRPES with the UV pump and VUV probe pulses under weak excitation conditions in the perturbation regime.

  20. Long pacing pulses reduce phrenic nerve stimulation in left ventricular pacing.

    PubMed

    Hjortshøj, Søren; Heath, Finn; Haugland, Morten; Eschen, Ole; Thøgersen, Anna Margrethe; Riahi, Sam; Toft, Egon; Struijk, Johannes Jan

    2014-05-01

    Phrenic nerve stimulation is a major obstacle in cardiac resynchronization therapy (CRT). Activation characteristics of the heart and phrenic nerve are different with higher chronaxie for the heart. Therefore, longer pulse durations could be beneficial in preventing phrenic nerve stimulation during CRT due to a decreased threshold for the heart compared with the phrenic nerve. We investigated if long pulse durations decreased left ventricular (LV) thresholds relatively to phrenic nerve thresholds in humans. Eleven patients, with indication for CRT and phrenic nerve stimulation at the intended pacing site, underwent determination of thresholds for the heart and phrenic nerve at different pulse durations (0.3-2.9 milliseconds). The resulting strength duration curves were analyzed by determining chronaxie and rheobase. Comparisons for those parameters were made between the heart and phrenic nerve, and between the models of Weiss and Lapicque as well. In 9 of 11 cases, the thresholds decreased faster for the LV than for the phrenic nerve with increasing pulse duration. In 3 cases, the thresholds changed from unfavorable for LV stimulation to more than a factor 2 in favor of the LV. The greatest change occurred for pulse durations up to 1.5 milliseconds. The chronaxie of the heart was significantly higher than the chronaxie of the phrenic nerve (0.47 milliseconds vs. 0.22 milliseconds [P = 0.029, Lapicque] and 0.79 milliseconds vs. 0.27 milliseconds [P = 0.033, Weiss]). Long pulse durations lead to a decreased threshold of the heart relatively to the phrenic nerve and may prevent stimulation of the phrenic nerve in a clinical setting. © 2013 Wiley Periodicals, Inc.

  1. Single-shot pulse duration and intensity diagnostic for 10-ps MeV gamma pulses based on interferometry

    NASA Astrophysics Data System (ADS)

    Peng, Bo-dong; Hei, Dong-wei; Song, Yan; Liu, Jun; Zhao, Jun

    2018-04-01

    To measure the temporal width and the intensity evolution versus time of a MeV gamma pulse generated by a Compton Scatter Source, a time-space conversion method is proposed. This design is based on the consideration that the temporal length of the MeV pulse is proportional to the spatial length of the pulse in a certain semiconductor. The spatial length and the intensity evolution versus time of the MeV pulse can be obtained by recording the region of the refractive index change that is induced by the MeV pulse. The simulation suggests that the equivalent temporal spread of a mono-energy MeV δ pulse in a bulk semiconductor is on the order of picoseconds and does not vary significantly with photon energy and material type. According to our analysis, the excess carrier generation time, excess carrier diffusion and recombination do not significantly influence the temporal resolution of this method. The temporal response of the refractive index change to a MeV pulse is also fast enough to meet the measurement requirements. The signal generation process for measuring a 10-ps MeV pulse with a 200-fs probe beam is analyzed, revealing that the transverse size of the MeV pulse does not influence the temporal resolution of this method.

  2. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  3. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.

    2010-03-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  4. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  5. Pulse duration dependent nonlinear optical response in black phosphorus dispersions

    NASA Astrophysics Data System (ADS)

    Tang, Shana; He, Zhiliang; Liang, Guowen; Chen, Si; Ge, Yanqi; Sang, David K.; Lu, Jianxin; Lu, Shunbin; Wen, Qiao; Zhang, Han

    2018-01-01

    Black phosphorus (BP), is the most thermodynamically stable allotrope of phosphorus, the narrow direct band gap and the strong light-matter interaction make BP a promising nonlinear optical (NLO) nano-material. In this paper, we use the open aperture Z- scan method to measure the NLO property of BP dispersion. Saturable absorption was observed in the BP material through the excitation of Ti: sapphire laser at 800 nm. Three different excitation pulse duration (100 fs, 1 ps and 10 ps) were used in the experiments, and BP exhibited different NLO performance. The results show that nonlinear absorption coefficient and figure of merit of BP nanosheets are proportional to the pulse duration while saturable intensity is opposite to pulse duration.

  6. Dependence the Integrated Energy of the Electromagnetic Response from Excitation Pulse Duration for Epoxy Samples With Sand Filler

    NASA Astrophysics Data System (ADS)

    Surzhikov, V. P.; Demikhova, A. A.

    2017-01-01

    Results of research of influence of the excitation pulse duration on the parameters of the electromagnetic response of epoxy samples with filler the quartz sand presented in the paper. The electric component of a response was registered by the capacitive sensors using a differential amplifier. Measurements were carried out at two frequencies of the master generator of 65 kHz and 74 kHz. The pulse duration was changing from 10 to 100 microseconds. The stepped sort of dependence of the integrated oscillations energy in the response from duration of the excitation pulse was discovered. The conclusion was made about the determining role of the normal oscillations in formation of such dependence.

  7. THE TEMPORAL AND SPECTRAL CHARACTERISTICS OF 'FAST RISE AND EXPONENTIAL DECAY' GAMMA-RAY BURST PULSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Z. Y.; Ma, L.; Yin, Y.

    2010-08-01

    In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior.more » In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (E{sub p}) in the {nu}f{sub {nu}} spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.« less

  8. Effects of temporal laser profile on the emission spectra for underwater laser-induced breakdown spectroscopy: Study by short-interval double pulses with different pulse durations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Ayaka, E-mail: tamura.ayaka.88m@st.kyoto-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya

    We investigate the effects of temporal laser profile on the emission spectra of laser ablation plasma in water. We use short-interval (76 ns) double pulses with different pulse durations of the composing two pulses for the irradiation of underwater target. Narrow atomic spectral lines in emission spectra are obtained by the irradiation, where the two pulses are wide enough to be merged into a single-pulse-like temporal profile, while deformed spectra are obtained when the two pulses are fully separated. The behavior of the atomic spectral lines for the different pulse durations is consistent with that of the temporal profiles of themore » optical emission intensities of the plasma. All these results suggest that continuous excitation of the plasma during the laser irradiation for ∼100 ns is a key to obtain narrow emission spectral lines.« less

  9. Micro-gun based on laser pulse propulsion.

    PubMed

    Yu, Haichao; Li, Hanyang; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2017-11-24

    This paper proposes a novel "micro-gun" structure for laser pulse propulsion. The "micro-bullets" (glass microspheres) are irradiated by a laser pulse with a 10 ns duration in a dynamic process. Experimental parameters such as the microsphere diameter and the laser pulse energy are varied to investigate their influence on laser pulse propulsion. The energy field and spatial intensity distribution in the capillary tube were simulated using a three-dimensional finite-difference time-domain method. The experimental results demonstrate that the propulsion efficiency is dependent on the laser pulse energy and the microsphere size. The propulsion modes and sources of the propelling force were confirmed through direct observation and theoretical calculation. Waves also generated by light-pressure and thermal expansions assisted the propulsion.

  10. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.

    PubMed

    Schwinning, Susanne; Sala, Osvaldo E

    2004-10-01

    In arid/semi-arid ecosystems, biological resources, such as water, soil nutrients, and plant biomass, typically go through periods of high and low abundance. Short periods of high resource abundance are usually triggered by rainfall events, which, despite of the overall scarcity of rain, can saturate the resource demand of some biological processes for a time. This review develops the idea that there exists a hierarchy of soil moisture pulse events with a corresponding hierarchy of ecological responses, such that small pulses only trigger a small number of relatively minor ecological events, and larger pulses trigger a more inclusive set and some larger ecological events. This framework hinges on the observation that many biological state changes, where organisms transition from a state of lower to higher physiological activity, require a minimal triggering event size. Response thresholds are often determined by the ability of organisms to utilize soil moisture pulses of different infiltration depth or duration. For example, brief, shallow pulses can only affect surface dwelling organisms with fast response times and high tolerance for low resource levels, such as some species of the soil micro-fauna and -flora, while it takes more water and deeper infiltration to affect the physiology, growth or reproduction of higher plants. This review first discusses how precipitation, climate and site factors translate into soil moisture pulses of varying magnitude and duration. Next, the idea of the response hierarchy for ecosystem processes is developed, followed by an exploration of the possible evolutionary background for the existence of response thresholds to resource pulses. The review concludes with an outlook on global change: does the hierarchical view of precipitation effects in ecosystems provide new perspectives on the future of arid/semiarid lands?

  11. A near-infrared SETI experiment: A multi-time resolution data analysis

    NASA Astrophysics Data System (ADS)

    Tallis, Melisa; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Duenas, Andres; Marcy, Geoffrey W.; Stone, Remington P. S.; Treffers, Richard R.; Werthimer, Dan; NIROSETI

    2016-06-01

    We present new post-processing routines which are used to detect very fast optical and near-infrared pulsed signals using the latest NIROSETI (Near-Infrared Optical Search for Extraterrestrial Intelligence) instrument. NIROSETI was commissioned in 2015 at Lick Observatory and searches for near-infrared (0.95 to 1.65μ) nanosecond pulsed laser signals transmitted by distant civilizations. Traditional optical SETI searches rely on analysis of coincidences that occur between multiple detectors at a fixed time resolution. We present a multi-time resolution data analysis that extends our search from the 1ns to 1ms range. This new feature greatly improves the versatility of the instrument and its search parameters for near-infrared SETI. We aim to use these algorithms to assist us in our search for signals that have varying duty cycles and pulse widths. We tested the fidelity and robustness of our algorithms using both synthetic embedded pulsed signals, as well as data from a near-infrared pulsed laser installed on the instrument. Applications of NIROSETI are widespread in time domain astrophysics, especially for high time resolution transients, and astronomical objects that emit short-duration high-energy pulses such as pulsars.

  12. Delayed photo-emission model for beam optics codes

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...

    2016-11-22

    Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less

  13. Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber.

    PubMed

    Želudevičius, J; Danilevičius, R; Viskontas, K; Rusteika, N; Regelskis, K

    2013-03-11

    Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.

  14. Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köcher, S. S.; Institute of Energy and Climate Research; Heydenreich, T.

    Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoreticallymore » predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.« less

  15. The detailed characteristics of positive corona current pulses in the line-to-plane electrodes

    NASA Astrophysics Data System (ADS)

    Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU

    2018-05-01

    The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.

  16. Validation of new and existing decision rules for the estimation of beat-to-beat pulse transit time.

    PubMed

    Zhou, Xiaolin; Peng, Rongchao; Ding, Hongxia; Zhang, Ningling; Li, Pan

    2015-01-01

    Pulse transit time (PTT) is a pivotal marker of vascular stiffness. Because the actual PTT duration in vivo is unknown and the complicated variation in waveform may occur, the robust determination of characteristic point is still a very difficult task in the PTT estimation. Our objective is to devise a method for real-time estimation of PTT duration in pulse wave. It has an ability to reduce the interference caused by both high- and low-frequency noise. The reproducibility and performance of these methods are assessed on both artificial and clinical pulse data. Artificial data are generated to investigate the reproducibility with various signal-to-noise ratios. For all artificial data, the mean biases obtained from all methods are less than 1 ms; collectively, this newly proposed method has minimum standard deviation (SD, <1 ms). A set of data from 33 participants together with the synchronously recorded continuous blood pressure data are used to investigate the correlation coefficient (CC). The statistical analysis shows that our method has maximum values of mean CC (0.5231), sum of CCs (17.26), and median CC (0.5695) and has the minimum SD of CCs (0.1943). Overall, the test results in this study indicate that the newly developed method has advantages over traditional decision rules for the PTT measurement.

  17. Dependence of optimal initial density on laser parameters for multi-keV x-ray radiators generated by nanosecond laser-produced underdense plasma

    NASA Astrophysics Data System (ADS)

    Tu, Shao-yong; Yuan, Yong-teng; Hu, Guang-yue; Miao, Wen-yong; Zhao, Bin; Zheng, Jian; Jiang, Shao-en; Ding, Yong-kun

    2016-01-01

    Efficient multi-keV x-ray sources can be produced using nanosecond laser pulse-heated middle-Z underdense plasmas generated using gas or foam. Previous experimental results show that an optimal initial target density exists for efficient multi-keV x-ray emission at which the laser ionization wave is supersonic. Here we explore the influence of the laser intensity and the pulse duration on this optimal initial target density via a one-dimensional radiation hydrodynamic simulation. The simulation shows that the optimal initial density is sensitive to both the laser intensity and the pulse duration. However, the speed of the supersonic ionization wave at the end of the laser irradiation is always maintained at 1.5 to 1.7 times that of the ion acoustic wave under the optimal initial density conditions.

  18. Transmission loss measurement of acoustic material using time-domain pulse-separation method (L).

    PubMed

    Sun, Liang; Hou, Hong

    2011-04-01

    An alternative method for measuring the normal incidence sound transmission loss (nSTL) is presented in this paper based on the time-domain separation of so-called Butterworth pulse with a short-duration time about 1 ms in a standing wave tube. During the generation process of the pulse, inverse filter principle was adopted to compensate the loudspeaker response, besides this, the effect of the characteristics of tube termination can be eliminated through the generation process of the pulse so as to obtain a single plane pulse wave in the standing wave tube which makes the nSTL measurement very simple. A polyurethane foam material with low transmission loss and a kind of rubber material with relatively high transmission loss are used to verify the proposed method. When compared with the traditional two-load method, a relatively good agreement between these two methods can be observed. The main error of this method results from the measuring accuracy of the amplitude of transmission coefficient.

  19. Raman spectrum of bacteriochlorophyll a in the S1 state

    NASA Astrophysics Data System (ADS)

    Nishizawa, Ei-ichi; Hashimoto, Hideki; Koyama, Yasushi

    1991-07-01

    The S 1 Raman spectrum of bacteriochlorophyll a is reported for the first time. A one-color experiment using the 351 nm picosecond pulses (duration 50 ps and repetition 1 kHz) for tetrahydrofuran solution detected a transient species, which showed distinct Raman lines at 1567, 1409 and 1320 cm -1 and weak profiles around 1169, 1092, 1051 and 794 cm -1. The other one-color experiment using the 355 nm nanosecond pulses (duration 12 ns and repetition 10 Hz) detected the T 1 species reported previously showing Raman lines at 1578 and 1330 cm -1. Thus, the newly identified transient species, which was pumped and probed within 50 ps, is assigned to S 1.

  20. Finite element model of thermal processes in retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    Short duration (< 20 ms) pulses are desirable in patterned scanning laser photocoagulation to confine thermal damage to the photoreceptor layer, decrease overall treatment time and reduce pain. However, short exposures have a smaller therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation). We have constructed a finite-element computational model of retinal photocoagulation to predict spatial damage and improve the therapeutic window. Model parameters were inferred from experimentally measured absorption characteristics of ocular tissues, as well as the thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Calculated lesion diameters showed good agreement with histological measurements over a wide range of pulse durations and powers.

  1. Solid-density plasma expansion in intense ultra-short laser irradiation measured on nanometer scale and in real time

    NASA Astrophysics Data System (ADS)

    Kluge, T.; Metzkes, J.; Pelka, A.; Laso Garcia, A.; Prencipe, I.; Bussmann, M.; Zeil, K.; Schoenherr, T.; Hartley, N.; Gutt, C.; Galtier, E.; Nam, I.; Lee, Hj; McBride, Ee; Glenzer, S.; Huebner, U.; Roedel, C.; Nakatsutsumi, M.; Roedel, M.; Rehwald, M.; Garten, M.; Zacharias, M.; Schramm, U.; Cowan, T. E.

    2017-10-01

    Small Angle X-ray Scattering (SAXS) is discussed to allow unprecedented direct measurements limited only by the probe X-ray wavelength and duration. Here we present the first direct in-situ measurement of intense short-pulse laser - solid interaction that allows nanometer and high temporal resolution at the same time. A 120 fs laser pulse with energy 1 J was focused on a silicon membrane. The density was probed with an X-ray beam of 49 fs duration by SAXS. Despite prepulses, we can exclude premature bulk expansion. The plasma expansion is triggered only shortly before the main pulse, when an expansion of 10 nm within less than 200 fs was measured. Analysis of scattering patterns allows the first direct verification of numerical simulations. Supported by DOE FWP 100182, SF00515; EC FP7 LASERLAB-EUROPE/CHARPAC (contract 284464); German Federal Ministry of Education and Research (BMBF) under Contract Number 03Z1O511; MG and MZ supported by the European Union's Horizon 2020 No 654220.

  2. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Guangjin, E-mail: guangjin.ma@mpq.mpg.de; Max-Planck-Institut für Quantenoptik, D-85748 Garching; Dallari, William

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  3. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    PubMed

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  4. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W.; Jamison, S. P.

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immunemore » to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.« less

  5. Self-seeding ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM

    2005-12-27

    An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.

  6. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source.

    PubMed

    Moon, Sucbei; Kim, Dug Young

    2006-11-27

    We introduce a new high-speed Fourier-domain optical coherence tomography (FD-OCT) scheme based on a stretched pulse supercontinuum source. A wide-band short pulse of a supercontinuum source of which output spectrum spanned a wavelength range from 1,200 nm to 1,550 nm was stretched to a long pulse of 70-ns duration by using a dispersive fiber due to the group-velocity dispersion, and it was used directly as frequency-swept light for FD-OCT. The OCT spectral interferogram was acquired in the time domain and converted into the spectral domain by the pre-calibrated time-to-wavelength relation. Using this stretched-pulse OCT (SP-OCT) scheme, we have demonstrated an ultrahigh-speed axial-line scanning rate of 5 MHz. The axial resolution of 8 microm was achieved without re-calibration of the sweep characteristic owing to the passive nature of the frequency-sweeping mechanism.

  7. Frequency-domain coherent multidimensional spectroscopy when dephasing rivals pulsewidth: Disentangling material and instrument response

    DOE PAGES

    Kohler, Daniel D.; Thompson, Blaise J.; Wright, John C.

    2017-08-31

    Ultrafast spectroscopy is often collected in the mixed frequency/time domain, where pulse durations are similar to system dephasing times. In these experiments, expectations derived from the familiar driven and impulsive limits are not valid. This work simulates the mixed-domain four-wave mixing response of a model system to develop expectations for this more complex field-matter interaction. We also explore frequency and delay axes. We show that these line shapes are exquisitely sensitive to excitation pulse widths and delays. Near pulse overlap, the excitation pulses induce correlations that resemble signatures of dynamic inhomogeneity. We describe these line shapes using an intuitive picturemore » that connects to familiar field-matter expressions. We develop strategies for distinguishing pulse-induced correlations from true system inhomogeneity. Our simulations provide a foundation for interpretation of ultrafast experiments in the mixed domain.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, M.; Kasai, Y.; Oishi, K.

    An (e,2e) apparatus for electron momentum spectroscopy (EMS) has been developed, which employs an ultrashort-pulsed incident electron beam with a repetition rate of 5 kHz and a pulse duration in the order of a picosecond. Its instrumental design and technical details are reported, involving demonstration of a new method for finding time-zero. Furthermore, EMS data for the neutral Ne atom in the ground state measured by using the pulsed electron beam are presented to illustrate the potential abilities of the apparatus for ultrafast molecular dynamics, such as by combining EMS with the pump-and-probe technique.

  9. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  10. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  11. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  12. ON THE LACK OF TIME DILATION SIGNATURES IN GAMMA-RAY BURST LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocevski, Daniel; Petrosian, Vahe

    2013-03-10

    We examine the effects of time dilation on the temporal profiles of gamma-ray burst (GRB) pulses. By using prescriptions for the shape and evolution of prompt gamma-ray spectra, we can generate a simulated population of single-pulsed GRBs at a variety of redshifts and observe how their light curves would appear to a gamma-ray detector here on Earth. We find that the observer frame duration of individual pulses does not increase with redshift as 1 + z, which one would expect from cosmological expansion. This time dilation is masked by an opposite and often stronger effect: with increasing redshift and decreasingmore » signal-to-noise ratio only the brightest portion of the light curve can be detected. The results of our simulation are consistent with the fact that the simple time dilation of GRB light curves has not materialized in either the Swift or Fermi detected GRBs with known redshift. We show that the measured durations and associated E{sub iso} estimates for GRBs detected near the instrument's detection threshold should be considered lower limits to the true values. Furthermore, we conclude that attempts at distinguishing between long and short GRBs, at even moderate redshifts, cannot be done based on a burst's temporal properties alone.« less

  13. Effect of gradient pulse duration on MRI estimation of the diffusional kurtosis for a two-compartment exchange model

    NASA Astrophysics Data System (ADS)

    Jensen, Jens H.; Helpern, Joseph A.

    2011-06-01

    Hardware constraints typically require the use of extended gradient pulse durations for clinical applications of diffusion-weighted magnetic resonance imaging (DW-MRI), which can potentially influence the estimation of diffusion metrics. Prior studies have examined this effect for the apparent diffusion coefficient. This study employs a two-compartment exchange model in order to assess the gradient pulse duration sensitivity of the apparent diffusional kurtosis (ADK), a quantitative index of diffusional non-Gaussianity. An analytic expression is derived and numerically evaluated for parameter ranges relevant to DW-MRI of brain. It is found that the ADK differs from the true diffusional kurtosis by at most a few percent. This suggests that ADK estimates for brain may be robust with respect to changes in pulse gradient duration.

  14. Single-electron pulses for ultrafast diffraction

    PubMed Central

    Aidelsburger, M.; Kirchner, F. O.; Krausz, F.; Baum, P.

    2010-01-01

    Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode’s work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics. PMID:21041681

  15. Dispersive distortions of a radio-wave pulse in a double-resonance gaseous medium

    NASA Astrophysics Data System (ADS)

    Strelkov, G. M.

    2017-03-01

    The problem on dispersive distortions of an electromagnetic pulse in a gaseous medium with two isolated resonant frequencies is solved analytically. The solution is obtained directly in the time region and, thus, is not the result of calculations of the Fourier integral. Without introducing additional assumptions, it is possible to study the regularities and the features of the process of propagation of pulses caused by variations of both their initial characteristics and the parameters of the propagation medium. As an example, the solution is applied to describe the distortions of the two-frequency pulse of subnanosecond duration in the terrestrial atmosphere.

  16. FIBER AND INTEGRATED OPTICS: Compact fiber-optic compressor of ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Nikitin, S. P.; Onishchukov, G. I.; Fomichev, A. A.

    1992-02-01

    A theoretical design of a universal compact fiber-optic compressor based on a monochromator with a spherical mirror in the plane of its exit slit was considered. Ultrashort pulses emitted by an actively mode-locked YAG:Nd3+ laser, whose spectrum was broadened in a fiber-optic waveguide, were compressed experimentally to 2.7 ns. A universal compact compressor was developed: it produced 4-ns pulses with an average radiation power of about 1 W. The dimensions of this compressor were several times smaller than those of a traditional scheme using a diffraction grating to compress pulses having an initial duration of about 100 ns.

  17. Spinal manipulation force and duration affect vertebral movement and neuromuscular responses.

    PubMed

    Colloca, Christopher J; Keller, Tony S; Harrison, Deed E; Moore, Robert J; Gunzburg, Robert; Harrison, Donald D

    2006-03-01

    Previous study in human subjects has documented biomechanical and neurophysiological responses to impulsive spinal manipulative thrusts, but very little is known about the neuromechanical effects of varying thrust force-time profiles. Ten adolescent Merino sheep were anesthetized and posteroanterior mechanical thrusts were applied to the L3 spinous process using a computer-controlled, mechanical testing apparatus. Three variable pulse durations (10, 100, 200 ms, force = 80 N) and three variable force amplitudes (20, 40, 60 N, pulse duration = 100 ms) were examined for their effect on lumbar motion response (L3 displacement, L1, L2 acceleration) and normalized multifidus electromyographic response (L3, L4) using a repeated measures analysis of variance. Increasing L3 posteroanterior force amplitude resulted in a fourfold linear increase in L3 posteroanterior vertebral displacement (p < 0.001) and adjacent segment (L1, L2) posteroanterior acceleration response (p < 0.001). L3 displacement was linearly correlated (p < 0.001) to the acceleration response over the 20-80 N force range (100 ms). At constant force, 10 ms thrusts resulted in nearly fivefold lower L3 displacements and significantly increased segmental (L2) acceleration responses compared to the 100 ms (19%, p = 0.005) and 200 ms (16%, p = 0.023) thrusts. Normalized electromyographic responses increased linearly with increasing force amplitude at higher amplitudes and were appreciably affected by mechanical excitation pulse duration. Changes in the biomechanical and neuromuscular response of the ovine lumbar spine were observed in response to changes in the force-time characteristics of the spinal manipulative thrusts and may be an underlying mechanism in related clinical outcomes.

  18. On the physics of laser-induced selective photothermolysis of hair follicles: Influence of wavelength, pulse duration, and epidermal cooling.

    PubMed

    Svaasand, Lars O; Nelson, J Stuart

    2004-01-01

    The physical basis for optimization of wavelength, pulse duration, and cooling for laser-induced selective photothermolysis of hair follicles in human skin is discussed. The results indicate that the most important optimization parameter is the cooling efficiency of the technique utilized for epidermal protection. The optical penetration is approximately the same for lasers at 694, 755, and 800 nm. The penetration of radiation from Nd:yttrium-aluminum-garnet lasers at 1064 nm is, however, somewhat larger. Photothermal damage to the follicle is shown to be almost independent of laser pulse duration up to 100 ms. The results reveal that epidermal cooling by a 30-80-ms-long cryogen spurt immediately before laser exposure is the only efficient technique for laser pulse durations less than 10 ms. For longer pulse durations in the 30-100 ms range, protection can be done efficiently by skin cooling during laser exposure. For laser pulses of 100 ms, an extended precooling period, e.g., by bringing a cold object into good thermal contact with the skin for about 1 s, can be of value. Thermal quenching of laser induced epidermal temperature rise after pulsed exposure can most efficiently be done with a 20 ms cryogen spurt applied immediately after irradiation. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  19. Loaded delay lines for future RF pulse compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.M.; Wilson, P.B.; Kroll, N.M.

    1995-05-01

    The peak power delivered by the klystrons in the NLCRA (Next Linear Collider Test Accelerator) now under construction at SLAC is enhanced by a factor of four in a SLED-II type of R.F. pulse compression system (pulse width compression ratio of six). To achieve the desired output pulse duration of 250 ns, a delay line constructed from a 36 m length of circular waveguide is used. Future colliders, however, will require even higher peak power and larger compression factors, which favors a more efficient binary pulse compression approach. Binary pulse compression, however, requires a line whose delay time is approximatelymore » proportional to the compression factor. To reduce the length of these lines to manageable proportions, periodically loaded delay lines are being analyzed using a generalized scattering matrix approach. One issue under study is the possibility of propagating two TE{sub o} modes, one with a high group velocity and one with a group velocity of the order 0.05c, for use in a single-line binary pulse compression system. Particular attention is paid to time domain pulse degradation and to Ohmic losses.« less

  20. Linear build-up of Fano resonance spectral profiles

    NASA Astrophysics Data System (ADS)

    Golovinski, P. A.; Yakovets, A. V.; Astapenko, V. A.

    2018-06-01

    The build-up dynamics of a continuous spectrum under the action of a weak laser field on a Fano resonance with the use of the pulses with the Lorentz spectrum and ultrashort pulses in the wavelet form is investigated. A dispersion-time excitation dependence of the Fano resonances in a He atom, in an InP impurity semiconductor, in longitudinal optical LO-phonons of a shallow donor exciton in pure ZnO crystals, and in metamaterials are calculated. The numerical simulation of the dynamics has shown time-dependent formation of a Fano spectral profile in the systems of different physical natures under the action of ultrashort pulses with attosecond and femtosecond durations.

  1. Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchins.

    PubMed Central

    Falugi, C; Grattarola, M; Prestipino, G

    1987-01-01

    The effects of weak electromagnetic signals on the early development of the sea urchin Paracentrotus lividus have been studied. The duration and repetition of the pulses were similar to those used for bone healing in clinical practice. A sequence of pulses, applied for a time ranging from 2 to 4 h, accelerates the cleavages of sea urchin embryo cells. This effect can be quantitatively assessed by determining the time shifts induced by the applied electromagnetic field on the completion of the first and second cleavages in a population of fertilized eggs. The exposed embryos were allowed to develop up to the pluteus stage, showing no abnormalities. Images FIGURE 3 FIGURE 4 PMID:3607217

  2. A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.

    PubMed

    Luís, Ana Rita; Couchinho, Miguel N; Dos Santos, Manuel E

    2016-01-01

    Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts of emission, geographic variation and the functional significance of pulsed signals.

  3. Intracellular cavitation as a mechanism of short-pulse laser injury to the retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Kelly, Michael William

    This research was primarily motivated to determine the retinal injury mechanism from ultra-short pulse (<1ns) lasers. The American National Standards Institute, ANSI, standards for safe retinal exposures, and mechanisms for injury, are established for pulse durations longer than 1 ns. Little data exists for shorter pulse durations. High temperatures and pressures, generated within pigmented melanosomes, leads to mechanically mediated injury for such exposures. We used nanosecond time resolved imaging to evaluate transient photo-mechanical effects on isolated melanosomes, pigmented cell cultures, and the retinal pigment epithelium, RPE, ex-vivo. Exposures between 20 ns and 100 fs were performed. We developed a unique ex-vivo model to examine transient events directly on the RPE. Evaluation of cell viability was accomplished in real time, minutes after the exposure. The threshold for cavitation (bubble formation) around single melanosomes corresponded with the threshold for intracellular cavitation and cell killing, in the nanosecond and picosecond domain. Shock waves, formed around melanosomes following sub-nanosecond exposures, did not affect the mechanism for cell killing at threshold. Although the wavelength was increased for shorter exposures (3 ps, 300 fs, and 100 fs) the threshold for intracellular cavitation decreased. All results were compared with data collected by others, using live animal models.

  4. Low-threshold ablation of enamel and dentin using Nd:YAG laser assisted with chromophore with different pulse shapes

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Benazzato, Paolo; Stefani, Alessandro; Villoresi, Paolo

    2004-05-01

    Neodimium laser treatment has several drawbacks when used in the hard tissue cutting, because of the low absorption of the dental tissues at its wavelength. This investigation proved that the Nd:YAG radiation is a powerful ablation tool if it is used with the dye assisted method. Several in vitro tests on enamel and dentin were accomplished changing some laser parameters to have different pulse shapes and durations from 125μs up to 1.4ms. The importance of short time high power peaks, typical of crystal lasers, in the ablation process was investigated. The pulse shapes were analyzed by their intensity in space and time profiles. A first set of results found the optimum dye concentration be used in all the following tests. Furthermore the ablation threshold for this technique was found for each different pulse shapes and durations. A low energy ablation method was found to avoid temperature increase and surface cracks formation. In vitro temperature analysis was reported comparing the differences between no dye application laser treatment and with a dye spray applied. A strong reduction of the temperature increase was found in the dye assisted method. A discussion on the general findings and their possible clinical applications is presented.

  5. Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile.

    PubMed

    Bartulevicius, Tadas; Frankinas, Saulius; Michailovas, Andrejus; Vasilyeu, Ruslan; Smirnov, Vadim; Trepanier, Francois; Rusteika, Nerijus

    2017-08-21

    In this work, a compact fiber chirped pulse amplification system exploiting a tandem of a chirped fiber Bragg grating stretcher and a chirped volume Bragg grating compressor with matched chromatic dispersion is presented. Chirped pulses of 230 ps duration were amplified in a Yb-doped fiber amplifier and re-compressed to 208 fs duration with good fidelity. The compressed pulse duration was fine-tuned by temperature gradient along the fiber Bragg grating stretcher.

  6. Simultaneous generation of sub-5-femtosecond 400  nm and 800  nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy.

    PubMed

    Chang, Hung-Tzu; Zürch, Michael; Kraus, Peter M; Borja, Lauren J; Neumark, Daniel M; Leone, Stephen R

    2016-11-15

    Few-cycle laser pulses with wavelengths centered at 400 nm and 800 nm are simultaneously obtained through wavelength separation of ultrashort, spectrally broadened Vis-NIR laser pulses spanning 350-1100 nm wavelengths. The 400 nm and 800 nm pulses are separately compressed, yielding pulses with 4.4 fs and 3.8 fs duration, respectively. The pulse energy exceeds 5 μJ for the 400 nm pulses and 750 μJ for the 800 nm pulses. Intense 400 nm few-cycle pulses have a broad range of applications in nonlinear optical spectroscopy, which include the study of photochemical dynamics, semiconductors, and photovoltaic materials on few-femtosecond to attosecond time scales. The ultrashort 400 nm few-cycle pulses generated here not only extend the spectral range of the optical pulse for NIR-XUV attosecond pump-probe spectroscopy but also pave the way for two-color, three-pulse, multidimensional optical-XUV spectroscopy experiments.

  7. Rate equations for nitrogen molecules in ultrashort and intense x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ji -Cai; Berrah, Nora; Cederbaum, Lorenz S.

    Here, we study theoretically the quantum dynamics of nitrogen molecules (N2) exposed to intense and ultrafast x-rays at a wavelength ofmore » $$1.1\\;{\\rm{nm}}$$ ($$1100\\;{\\rm{eV}}$$ photon energy) from the Linac Coherent Light Source (LCLS) free electron laser. Molecular rate equations are derived to describe the intertwined photoionization, decay, and dissociation processes occurring for N2. This model complements our earlier phenomenological approaches, the single-atom, symmetric-sharing, and fragmentation-matrix models of 2012 (J. Chem. Phys. 136 214310). Our rate-equations are used to obtain the effective pulse energy at the sample and the time scale for the dissociation of the metastable dication $${{\\rm{N}}}_{2}^{2+}$$. This leads to a very good agreement between the theoretically and experimentally determined ion yields and, consequently, the average charge states. The effective pulse energy is found to decrease with shortening pulse duration. This variation together with a change in the molecular fragmentation pattern and frustrated absorption—an effect that reduces absorption of x-rays due to (double) core hole formation—are the causes for the drop of the average charge state with shortening LCLS pulse duration discovered previously.« less

  8. Rate equations for nitrogen molecules in ultrashort and intense x-ray pulses

    DOE PAGES

    Liu, Ji -Cai; Berrah, Nora; Cederbaum, Lorenz S.; ...

    2016-03-16

    Here, we study theoretically the quantum dynamics of nitrogen molecules (N2) exposed to intense and ultrafast x-rays at a wavelength ofmore » $$1.1\\;{\\rm{nm}}$$ ($$1100\\;{\\rm{eV}}$$ photon energy) from the Linac Coherent Light Source (LCLS) free electron laser. Molecular rate equations are derived to describe the intertwined photoionization, decay, and dissociation processes occurring for N2. This model complements our earlier phenomenological approaches, the single-atom, symmetric-sharing, and fragmentation-matrix models of 2012 (J. Chem. Phys. 136 214310). Our rate-equations are used to obtain the effective pulse energy at the sample and the time scale for the dissociation of the metastable dication $${{\\rm{N}}}_{2}^{2+}$$. This leads to a very good agreement between the theoretically and experimentally determined ion yields and, consequently, the average charge states. The effective pulse energy is found to decrease with shortening pulse duration. This variation together with a change in the molecular fragmentation pattern and frustrated absorption—an effect that reduces absorption of x-rays due to (double) core hole formation—are the causes for the drop of the average charge state with shortening LCLS pulse duration discovered previously.« less

  9. Delivery of high intensity beams with large clad step-index fibers for engine ignition

    NASA Astrophysics Data System (ADS)

    Joshi, Sachin; Wilvert, Nick; Yalin, Azer P.

    2012-09-01

    We show, for the first time, that step-index silica fibers with a large clad (400 μm core and 720 μm clad) can be used to transmit nanosecond duration pulses in a way that allows reliable (consistent) spark formation in atmospheric pressure air by the focused output light from the fiber. The high intensity (>100 GW/cm2) of the focused output light is due to the combination of high output power (typical of fibers of this core size) with high output beam quality (better than that typical of fibers of this core size). The high output beam quality, which enables tight focusing, is due to the large clad which suppresses microbending-induced diffusion of modal power to higher order modes owing to the increased rigidity of the core-clad interface. We also show that extending the pulse duration provides a means to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without causing fiber damage. Based on this ability to deliver high energy sparks, we report the first reliable laser ignition of a natural gas engine including startup under typical procedures using silica fiber optics for pulse delivery.

  10. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  11. Development of experimental techniques for the characterization of ultrashort photon pulses of extreme ultraviolet free-electron lasers

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Rehders, M.; Al-Shemmary, A.; Behrens, C.; Brenner, G.; Brovko, O.; DellAngela, M.; Drescher, M.; Faatz, B.; Feldhaus, J.; Frühling, U.; Gerasimova, N.; Gerken, N.; Gerth, C.; Golz, T.; Grebentsov, A.; Hass, E.; Honkavaara, K.; Kocharian, V.; Kurka, M.; Limberg, Th.; Mitzner, R.; Moshammer, R.; Plönjes, E.; Richter, M.; Rönsch-Schulenburg, J.; Rudenko, A.; Schlarb, H.; Schmidt, B.; Senftleben, A.; Schneidmiller, E. A.; Siemer, B.; Sorgenfrei, F.; Sorokin, A. A.; Stojanovic, N.; Tiedtke, K.; Treusch, R.; Vogt, M.; Wieland, M.; Wurth, W.; Wesch, S.; Yan, M.; Yurkov, M. V.; Zacharias, H.; Schreiber, S.

    2014-12-01

    One of the most challenging tasks for extreme ultraviolet, soft and hard x-ray free-electron laser photon diagnostics is the precise determination of the photon pulse duration, which is typically in the sub 100 fs range. Nine different methods, able to determine such ultrashort photon pulse durations, were compared experimentally at FLASH, the self-amplified spontaneous emission free-electron laser at DESY in Hamburg, in order to identify advantages and disadvantages of different methods. Radiation pulses at a wavelength of 13.5 and 24.0 nm together with the corresponding electron bunch duration were measured by indirect methods like analyzing spectral correlations, statistical fluctuations, and energy modulations of the electron bunch and also by direct methods like autocorrelation techniques, terahertz streaking, or reflectivity changes of solid state samples. In this paper, we present a comprehensive overview of the various techniques and a comparison of the individual experimental results. The information gained is of utmost importance for the future development of reliable pulse duration monitors indispensable for successful experiments with ultrashort extreme ultraviolet pulses.

  12. Stochastic modeling of the hypothalamic pulse generator activity.

    PubMed

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  13. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  14. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  15. A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia

    NASA Astrophysics Data System (ADS)

    Schmidt, D. A.; Houston, H.

    2016-12-01

    We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed to better refine the pattern of slip across the fault.

  16. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography.

    PubMed

    Villemain, Olivier; Kwiecinski, Wojciech; Bel, Alain; Robin, Justine; Bruneval, Patrick; Arnal, Bastien; Tanter, Mickael; Pernot, Mathieu; Messas, Emmanuel

    2016-10-01

    Basal chordae surgical section has been shown to be effective in reducing ischaemic mitral regurgitation (IMR). Achieving this section by non-invasive mean can considerably decrease the morbidity of this intervention on already infarcted myocardium. We investigated in vitro and in vivo the feasibility and safety of pulsed cavitational focused ultrasound (histotripsy) for non-invasive chordal cutting guided by real-time 3D echocardiography. Experiments were performed on 12 sheep hearts, 5 in vitro on explanted sheep hearts and 7 in vivo on beating sheep hearts. In vitro, the mitral valve (MV) apparatus including basal and marginal chordae was removed and fixed on a holder in a water tank. High-intensity ultrasound pulses were emitted from the therapeutic device (1-MHz focused transducer, pulses of 8 µs duration, peak negative pressure of 17 MPa, repetition frequency of 100 Hz), placed at a distance of 64 mm under 3D echocardiography guidance. In vivo, after sternotomy, the same therapeutic device was applied on the beating heart. We analysed MV coaptation and chordae by real-time 3D echocardiography before and after basal chordal cutting. After sacrifice, the MV apparatus were harvested for anatomical and histological post-mortem explorations to confirm the section of the chordae. In vitro, all chordae were completely cut after a mean procedure duration of 5.5 ± 2.5 min. The procedure duration was found to increase linearly with the chordae diameter. In vivo, the central basal chordae of the anterior leaflet were completely cut. The mean procedure duration was 20 ± 9 min (min = 14, max = 26). The sectioned chordae was visible on echocardiography, and MV coaptation remained normal with no significant mitral regurgitation. Anatomical and histological post-mortem explorations of the hearts confirmed the section of the chordae. Histotripsy guided by 3D echo achieved successfully to cut MV chordae in vitro and in vivo in beating heart. We hope that this technique will open the door in the near future to the non-invasive treatment of functional IMR. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  17. Nanosecond bipolar pulse generators for bioelectrics.

    PubMed

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Pair Production Induced by Ultrashort and Ultraintense Laser Pulses in Plasmas

    NASA Astrophysics Data System (ADS)

    Luo, Yue-E.; Wang, Xue-Wen; Wang, Yuan-Sheng; Ji, Shen-Tong; Yu, Hong

    2018-06-01

    The probability of Schwinger pair production is calculated, which is induced by an ultraintense and ultrashort laser pulse propagating in a plasma. The dependence of the probability on the amplitude of the laser pulse and the frequency of plasmas is analyzed. Particularly, the effect of the pulse duration on the probability is discussed, by introducing a pulse-shape function to describe the temporal shape of the laser pulse. The results show that a laser with shorter pulse is more efficient in pair production. The probability of pair production increases when the order of the duration is comparable to the period of a laser.

  19. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A

    2004-06-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.

  20. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less

  1. Divided-pulse nonlinear amplification and simultaneous compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Qiang; Zhang, Qingshan; Sun, Tingting

    2015-03-09

    We report on a fiber laser system delivering 122 fs pulse duration and 600 mW average power at 1560 nm by the interplay between divided pulse amplification and nonlinear pulse compression. A small-core double-clad erbium-doped fiber with anomalous dispersion carries out the pulse amplification and simultaneously compresses the laser pulses such that a separate compressor is no longer necessary. A numeric simulation reveals the existence of an optimum fiber length for producing transform-limited pulses. Furthermore, frequency doubling to 780 nm with 240 mW average power and 98 fs pulse duration is achieved by using a periodically poled lithium niobate crystal at roommore » temperature.« less

  2. Cavitation enhances coagulated size during pulsed high-intensity focussed ultrasound ablation in an isolated liver perfusion system.

    PubMed

    Zhao, Lu-Yan; Liu, Shan; Chen, Zong-Gui; Zou, Jian-Zhong; Wu, Feng

    2016-11-24

    To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P < .01) but were smaller at a DC of 5%. The necrosis volume was negatively related to the perfusion rate in the pulsed HIFU at a DC of 50% for exposure durations of 4 and 6 s, while the perfusion flow rate did not affect the necrosis volume for exposure durations of 1, 2 and 3 s. For increased perfusion flow rates, there was no significant decrease in the cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

  3. Sensitivity to binaural timing in bilateral cochlear implant users.

    PubMed

    van Hoesel, Richard J M

    2007-04-01

    Various measures of binaural timing sensitivity were made in three bilateral cochlear implant users, who had demonstrated moderate-to-good interaural time delay (ITD) sensitivity at 100 pulses-per-second (pps). Overall, ITD thresholds increased at higher pulse rates, lower levels, and shorter durations, although intersubject differences were evident. Monaural rate-discrimination thresholds, using the same stimulation parameters, showed more substantial elevation than ITDs with increased rate. ITD sensitivity with 6000 pps stimuli, amplitude-modulated at 100 Hz, was similar to that with unmodulated pulse trains at 100 pps, but at 200 and 300 Hz performance was poorer than with unmodulated signals. Measures of sensitivity to binaural beats with unmodulated pulse-trains showed that all three subjects could use time-varying ITD cues at 100 pps, but not 300 pps, even though static ITD sensitivity was relatively unaffected over that range. The difference between static and dynamic ITD thresholds is discussed in terms of relative contributions from initial and later arriving cues, which was further examined in an experiment using two-pulse stimuli as a function of interpulse separation. In agreement with the binaural-beat data, findings from that experiment showed poor discrimination of ITDs on the second pulse when the interval between pulses was reduced to a few milliseconds.

  4. Peculiarities of the Short-Pulse Dielectric Strength of Vacuum Insulation

    NASA Astrophysics Data System (ADS)

    Nefedtsev, E. V.; Onischenko, S. A.; Batrakov, A. V.

    2017-12-01

    Results of a study of the short-pulse dielectric strength of millimeter plane vacuum gaps with electrodes that have been treated with an electron beam are presented. It is shown that the electric field strength of the first breakdown of vacuum gaps with pure metal electrodes is determined to a significant extent by the crystal structure of the metal. The development of the first short-pulse breakdown is accompanied by a very abrupt growth of the electric current. The short duration of the test pulses rules out the influence of all well-known inertial mechanisms of breakdown with characteristic action times greater than 20 ns. Some general assumptions regarding the nature of the factors stimulating the short-pulse breakdown of vacuum gaps are considered.

  5. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, L.-Y.; Starace, Anthony F.

    2007-10-15

    We analyze carrier-envelope phase (CEP) effects on electron wave-packet momentum and energy spectra produced by one or two few-cycle attosecond xuv pulses. The few-cycle attosecond pulses are assumed to have arbitrary phases. We predict CEP effects on ionized electron wave-packet momentum distributions produced by attosecond pulses having durations comparable to those obtained by Sansone et al. [Science 314, 443 (2006)]. The onset of significant CEP effects is predicted to occur for attosecond pulse field strengths close to those possible with current experimental capabilities. Our results are based on single-active-electron solutions of the three-dimensional, time-dependent Schroedinger equation including atomic potentials appropriatemore » for the H and He atoms.« less

  6. An Algorithm for Real-Time Pulse Waveform Segmentation and Artifact Detection in Photoplethysmograms.

    PubMed

    Fischer, Christoph; Domer, Benno; Wibmer, Thomas; Penzel, Thomas

    2017-03-01

    Photoplethysmography has been used in a wide range of medical devices for measuring oxygen saturation, cardiac output, assessing autonomic function, and detecting peripheral vascular disease. Artifacts can render the photoplethysmogram (PPG) useless. Thus, algorithms capable of identifying artifacts are critically important. However, the published PPG algorithms are limited in algorithm and study design. Therefore, the authors developed a novel embedded algorithm for real-time pulse waveform (PWF) segmentation and artifact detection based on a contour analysis in the time domain. This paper provides an overview about PWF and artifact classifications, presents the developed PWF analysis, and demonstrates the implementation on a 32-bit ARM core microcontroller. The PWF analysis was validated with data records from 63 subjects acquired in a sleep laboratory, ergometry laboratory, and intensive care unit in equal parts. The output of the algorithm was compared with harmonized experts' annotations of the PPG with a total duration of 31.5 h. The algorithm achieved a beat-to-beat comparison sensitivity of 99.6%, specificity of 90.5%, precision of 98.5%, and accuracy of 98.3%. The interrater agreement expressed as Cohen's kappa coefficient was 0.927 and as F-measure was 0.990. In conclusion, the PWF analysis seems to be a suitable method for PPG signal quality determination, real-time annotation, data compression, and calculation of additional pulse wave metrics such as amplitude, duration, and rise time.

  7. Femtosecond optical injection of intact plant cells using a reconfigurable platform

    NASA Astrophysics Data System (ADS)

    Mitchell, Claire A.; Kalies, Stefan; Cizmar, Tomas; Bellini, Nicola; Kubasik-Thayil, Anisha; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G.; Gunn-Moore, Frank J.; Dholakia, Kishan

    2014-03-01

    The use of ultrashort-pulsed lasers for molecule delivery and transfection has proved to be a non-invasive and highly efficient technique for a wide range of mammalian cells. This present study investigates the effectiveness of femtosecond photoporation in plant cells, a hard-to-manipulate yet agriculturally relevant cell type, specifically suspension tobacco BY-2 cells. Both spatial and temporal shaping of the light field is employed to optimise the delivery of membrane impermeable molecules into plant cells using a reconfigurable optical system designed to be able to switch easily between different spatial modes and pulse durations. The use of a propagation invariant Bessel beam was found to increase the number of cells that could be viably optoinjected, when compared to the use of a Gaussian beam. Photoporation with a laser producing sub-12 fs pulses, coupled with a dispersion compensation system to retain the pulse duration at focus, reduced the power required for efficient optical injection by 1.5-1.8 times when compared to a photoporation with a 140 fs laser output.

  8. In-situ Testing of the EHT High Gain and Frequency Ultra-Stable Integrators

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Lotz, Dan

    2014-10-01

    Eagle Harbor Technologies (EHT) has developed a long-pulse integrator that exceeds the ITER specification for integration error and pulse duration. During the Phase I program, EHT improved the RPPL short-pulse integrators, added a fast digital reset, and demonstrated that the new integrators exceed the ITER integration error and pulse duration requirements. In Phase II, EHT developed Field Programmable Gate Array (FPGA) software that allows for integrator control and real-time signal digitization and processing. In the second year of Phase II, the EHT integrator will be tested at a validation platform experiment (HIT-SI) and tokamak (DIII-D). In the Phase IIB program, EHT will continue development of the EHT integrator to reduce overall cost per channel. EHT will test lower cost components, move to surface mount components, and add an onboard Field Programmable Gate Array and data acquisition to produce a stand-alone system with lower cost per channel and increased the channel density. EHT will test the Phase IIB integrator at a validation platform experiment (HIT-SI) and tokamak (DIII-D). Work supported by the DOE under Contract Number (DE-SC0006281).

  9. Local anaesthetics transiently block currents through single acetylcholine-receptor channels.

    PubMed Central

    Neher, E; Steinbach, J H

    1978-01-01

    1. Single channel currents through acetylcholine receptor channels (ACh channels) were recorded at chronically denervated frog muscle extrajunctional membranes in the absence and presence of the lidocaine derivatives QX-222 and QX-314. 2. The current wave forms due to the opening and closing of single ACh channels (activated by suberyldicholine) normally are square pulses. These single pulses appear to be chopped into bursts of much shorter pulses, when the drug QX-222 is present in addition to the agonist. 3. The mean duration of the bursts is comparable to or longer than the normal channel open time, and increases with increasing drug concentration. 4. The duration of the short pulses within a burst decreases with increasing drug concentration. 5. It is concluded that drug molecules reversibly block open end-plate channels and that the flickering within a burst represents this fast, repeatedly occurring reaction. 6. The voltage dependence of the reaction rates involved, suggested that the site of the blocking reaction is in the centre of the membrane, probably inside the ionic channel. PMID:306437

  10. Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems.

    PubMed

    Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G

    2013-08-12

    We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.

  11. Practical witness for electronic coherences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Allan S.; Department of Physics, Imperial College London, London; Yuen-Zhou, Joel

    2014-12-28

    The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse centralmore » frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.« less

  12. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  13. Practical witness for electronic coherences.

    PubMed

    Johnson, Allan S; Yuen-Zhou, Joel; Aspuru-Guzik, Alán; Krich, Jacob J

    2014-12-28

    The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse central frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.

  14. Laser damage resistant nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.

    2013-08-01

    There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.

  15. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    PubMed

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  16. Generation of programmable temporal pulse shape and applications in micromachining

    NASA Astrophysics Data System (ADS)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  17. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a practical impact on lidar design parameters. In high SNR operation, for example, a lidar's efficiency in obtaining mean wind measurements is determined by its repetition rate and not pulse energy or average power. In addition, this variance puts a practical limit on the shot-to-shot hard target performance required of a lidar.

  18. Laser-induced microjet: wavelength and pulse duration effects on bubble and jet generation for drug injection

    NASA Astrophysics Data System (ADS)

    Jang, Hun-jae; Park, Mi-ae; Sirotkin, Fedir V.; Yoh, Jack J.

    2013-12-01

    The expansion of the laser-induced bubble is the main mechanism in the developed microjet injector. In this study, Nd:YAG and Er:YAG lasers are used as triggers of the bubble formation. The impact of the laser parameters on the bubble dynamics is studied and the performance of the injector is evaluated. We found that the main cause of the differences in the bubble behavior comes from the pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the behavior of the bubble close to that of the cavitation bubble, while in Er:YAG case, the high absorption in the water and long pulse duration change the initial behavior of the bubble making it close to a vapor bubble. The contraction and subsequent rebound are typical for cavitation bubbles in both cases. The results show that the laser-induced microjet injector generates velocity which is sufficient for the drug delivery for both laser beams of different pulse duration. We estimate the typical velocity within 30-80 m/s range and the breakup length to be larger than 1 mm suitable for trans-dermal drug injection.

  19. Interference of Overlapping Insect Vibratory Communication Signals: An Eushistus heros Model

    PubMed Central

    Čokl, Andrej; Laumann, Raul Alberto; Žunič Kosi, Alenka; Blassioli-Moraes, Maria Carolina; Virant-Doberlet, Meta; Borges, Miguel

    2015-01-01

    Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros, produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros communicate with species and gender specific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency difference between signals by changing the frequency level and frequency modulation pattern of their calls. PMID:26098637

  20. Temporal evolution of liquid-assisted hard bio-tissue ablation with infrared pulsed lasers under a liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Faner; Li, Qiang; Hua, Mingxin; Zhan, Zhenlin; Xie, Shusen; Zhang, Xianzeng

    2016-10-01

    Liquid-assisted hard biotissue ablation with the pulsed lasers takes advantages in precision and compatibility than mechanical tools in traditional surgery. The objective of this study was to monitor the dynamic process of the cavitation bubble evolution induced by Ho:YAG laser under water and identify the opening time of channel formation between the fiber tip to the target tissue surface. A free-running Ho:YAG laser was used in the experiment. The wavelength was 2.1 μm with a pulse duration of 350 us and pulse energy varied from 500 mJ to 2000 mJ. The high-speed camera (PCO. dimax, Germany, PCO) applied to monitor the whole ablation process was setting at a frame rate of 52000 frames/s. The results showed that the cavitation bubble induced by laser energy experienced an oscillation process including occurrence, expansion, contraction and subsequent collapse. A channel connected the fiber tip and target tissue surface was formed during the dynamic process which allowed the following pulse energy transmitted through the channel with a relative low absorption and directly interacted with the target tissue. The beginning time of channel formation, as well as the duration of channel opening, as functions of incident laser energy were also presented. A micro-explosion was observed near the tissue surface during the bubble collapse, which may contribute to produce a clean cut, reduce the thermal injury and improve the morphology of ablation crater.

  1. Numerical Modeling of Ultra Wideband Combined Antennas

    NASA Astrophysics Data System (ADS)

    Zorkal'tseva, M. Yu.; Koshelev, V. I.; Petkun, A. A.

    2017-12-01

    With the help of a program we developed, based on the finite difference method in the time domain, we have investigated the characteristics of ultra wideband combined antennas in detail. The antennas were developed to radiate bipolar pulses with durations in the range 0.5-3 ns. Data obtained by numerical modeling are compared with the data of experimental studies on antennas and have been used in the synthesis of electromagnetic pulses with maximum field strength.

  2. Optical pulse compression in dispersion decreasing photonic crystal fiber.

    PubMed

    Travers, J C; Stone, J M; Rulkov, A B; Cumberland, B A; George, A K; Popov, S V; Knight, J C; Taylor, J R

    2007-10-01

    Improvements to tapered photonic crystal fiber (PCF) fabrication have allowed us to make up to 50 m long PCF tapers with loss as low as 30 dB/km. We discuss the design constraints for tapered PCFs used for adiabatic soliton compression and demonstrate over 15 times compression of pulses from over 830 fs to 55 fs duration at a wavelength of 1.06 lm, an order of magnitude improvement over previous results.

  3. Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture

    NASA Astrophysics Data System (ADS)

    Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2015-07-01

    We have experimentally studied the heat transfer under conditions of pulsed multinozzle jet spray impact onto a vertical surface. The working coolant fluid was aqueous ethanol solution in a range of concentrations K 1 = 0-96%. The duration of spray pulses was τ = 2, 4, and 10 ms at a repetition frequency of 10 Hz. The maximum heat transfer coefficient was achieved at an ethanol solution concentration within 50-60%. The thermal efficiency of pulsed spray cooling grows with increasing ethanol concentration and decreasing jet spray pulse duration.

  4. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  5. Computational model of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    In patterned scanning laser photocoagulation, shorter duration (< 20 ms) pulses help reduce thermal damage beyond the photoreceptor layer, decrease treatment time and minimize pain. However, safe therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation) decreases for shorter exposures. To quantify the extent of thermal damage in the retina, and maximize the therapeutic window, we developed a computational model of retinal photocoagulation and rupture. Model parameters were adjusted to match measured thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Computed lesion width agreed with histological measurements in a wide range of pulse durations and power. Application of ring-shaped beam profile was predicted to double the therapeutic window width for exposures in the range of 1 - 10 ms.

  6. Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.

  7. Water impact shock test system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The basic objective was to design, manufacture, and install a shock test system which, in part, would have the ability to subject test articles weighing up to 1,000 pounds to both half sine and/or full sine pulses having peak levels of up to 50 G's with half sine pulse durations of 100 milliseconds or full sine period duration of 200 milliseconds. The tolerances associated with the aforementioned pulses were +20% and -10% for the peak levels and plus or minus 10% for the pulse durations. The subject shock test system was to be capable of accepting test article sizes of up to 4 feet by 4 feet mounting surface by 4 feet in length.

  8. Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation.

    PubMed

    Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W

    2010-01-20

    We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.

  9. Ultrashort electromagnetic pulse control of intersubband quantum well transitions

    PubMed Central

    2012-01-01

    We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π. PMID:22916956

  10. Ultrashort electromagnetic pulse control of intersubband quantum well transitions.

    PubMed

    Paspalakis, Emmanuel; Boviatsis, John

    2012-08-23

    : We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π.

  11. Transient release kinetics of rod bipolar cells revealed by capacitance measurement of exocytosis from axon terminals in rat retinal slices.

    PubMed

    Oltedal, Leif; Hartveit, Espen

    2010-05-01

    Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels.

  12. Restoring ecological integrity of great rivers: Historical hydrographs aid in defining reference conditions for the Missouri River

    USGS Publications Warehouse

    Galat, D.L.; Lipkin, R.

    2000-01-01

    Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust reservoir operations.

  13. 40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction

    NASA Astrophysics Data System (ADS)

    Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.

    2018-05-01

    We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.

  14. Cargo and Container X-Ray Inspection with Intra-Pulse Multi-Energy Method for Material Discrimination

    NASA Astrophysics Data System (ADS)

    Saverskiy, Aleksandr Y.; Dinca, Dan-Cristian; Rommel, J. Martin

    The Intra-Pulse Multi-Energy (IPME) method of material discrimination mitigates main disadvantages of the traditional "interlaced" approach: ambiguity caused by sampling different regions of cargo and reduction of effective scanning speed. A novel concept of creating multi-energy probing pulses using a standing-wave structure allows maintaining a constant energy spectrum while changing the time duration of each sub-pulse and thus enables adaptive cargo inspection. Depending on the cargo density, the dose delivered to the inspected object is optimized for best material discrimination, maximum material penetration, or lowest dose to cargo. A model based on Monte-Carlo simulation and experimental reference points were developed for the optimization of inspection conditions.

  15. Small-Size High-Current Generators for X-Ray Backlighting

    NASA Astrophysics Data System (ADS)

    Chaikovsky, S. A.; Artyomov, A. P.; Zharova, N. V.; Zhigalin, A. S.; Lavrinovich, I. V.; Oreshkin, V. I.; Ratakhin, N. A.; Rousskikh, A. G.; Fedunin, A. V.; Fedushchak, V. F.; Erfort, A. A.

    2017-12-01

    The paper deals with the soft X-ray backlighting based on the X-pinch as a powerful tool for physical studies of fast processes. Proposed are the unique small-size pulsed power generators operating as a low-inductance capacitor bank. These pulse generators provide the X-pinch-based soft X-ray source (hν = 1-10 keV) of micron size at 2-3 ns pulse duration. The small size and weight of pulse generators allow them to be transported to any laboratory for conducting X-ray backlighting of test objects with micron space resolution and nanosecond exposure time. These generators also allow creating synchronized multi-frame radiographic complexes with frame delay variation in a broad range.

  16. Coaxial-type water load for measuring high voltage, high current and short pulse of a compact Marx system for a high power microwave source

    NASA Astrophysics Data System (ADS)

    Han, Jaeeun; Kim, Jung-ho; Park, Sang-duck; Yoon, Moohyun; Park, Soo Yong; Choi, Do Won; Shin, Jin Woo; So, Joon Ho

    2009-11-01

    A coaxial-type water load was used to measure the voltage output from a Marx generator for a high power microwave source. This output had a rise time of 20 ns, a pulse duration of a few hundred ns, and an amplitude up to 500 kV. The design of the coaxial water load showed that it is an ideal resistive divider and can also accurately measure a short pulse. Experiments were performed to test the performance of the Marx generator with the calibrated coaxial water load.

  17. Plasma x-ray radiation source.

    PubMed

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  18. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yi; Wang, Wei; Liu, Yi

    2015-05-15

    Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.

  19. Control of reversible magnetization switching by pulsed circular magnetic field in glass-coated amorphous microwires

    NASA Astrophysics Data System (ADS)

    Chizhik, Alexander; Zhukov, Arkady; Gonzalez, Julian; Stupakiewicz, Andrzej

    2018-02-01

    Magnetization reversal in magnetic microwires was studied in the presence of external mechanical stress and helical magnetic fields using the magneto-optical Kerr effect. It was found that a combination of tuned magnetic anisotropy and a direct current or pulsed circular magnetic field activated different types of magnetization reversal scenarios. The application of the pulsed magnetic field of 10 ns time duration induced a transient controlling action to switch the magnetic states without activating a domain wall motion. This created a promising method for tuning the giant magneto-impedance effect.

  20. Solid-state repetitive generator with a gyromagnetic nonlinear transmission line operating as a peak power amplifier

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Pedos, M. S.; Rukin, S. N.; Timoshenkov, S. P.

    2017-07-01

    In this work, experiments were made in which gyromagnetic nonlinear transmission line (NLTL) operates as a peak power amplifier of the input pulse. At such an operating regime, the duration of the input pulse is close to the period of generated oscillations, and the main part of the input pulse energy is transmitted only to the first peak of the oscillations. Power amplification is achieved due to the voltage amplitude of the first peak across the NLTL output exceeding the voltage amplitude of the input pulse. In the experiments, the input pulse with an amplitude of 500 kV and a half-height pulse duration of 7 ns is applied to the NLTL with a natural oscillation frequency of ˜300 MHz. At the output of the NLTL in 40 Ω coaxial transmission line, the pulse amplitude is increased to 740 kV and the pulse duration is reduced to ˜2 ns, which correspond to power amplification of the input pulse from ˜6 to ˜13 GW. As a source of input pulses, a solid-state semiconductor opening switch generator was used, which allowed carrying out experiments at pulse repetition frequency up to 1 kHz in the burst mode of operation.

  1. Double optical gating

    NASA Astrophysics Data System (ADS)

    Gilbertson, Steve

    The observation and control of dynamics in atomic and molecular targets requires the use of laser pulses with duration less than the characteristic timescale of the process which is to be manipulated. For electron dynamics, this time scale is on the order of attoseconds where 1 attosecond = 10 -18 seconds. In order to generate pulses on this time scale, different gating methods have been proposed. The idea is to extract or "gate" a single pulse from an attosecond pulse train and switch off all the other pulses. While previous methods have had some success, they are very difficult to implement and so far very few labs have access to these unique light sources. The purpose of this work is to introduce a new method, called double optical gating (DOG), and to demonstrate its effectiveness at generating high contrast single isolated attosecond pulses from multi-cycle lasers. First, the method is described in detail and is investigated in the spectral domain. The resulting attosecond pulses produced are then temporally characterized through attosecond streaking. A second method of gating, called generalized double optical gating (GDOG), is also introduced. This method allows attosecond pulse generation directly from a carrier-envelope phase un-stabilized laser system for the first time. Next the methods of DOG and GDOG are implemented in attosecond applications like high flux pulses and extreme broadband spectrum generation. Finally, the attosecond pulses themselves are used in experiments. First, an attosecond/femtosecond cross correlation is used for characterization of spatial and temporal properties of femtosecond pulses. Then, an attosecond pump, femtosecond probe experiment is conducted to observe and control electron dynamics in helium for the first time.

  2. Progress of long pulse operation with high performance plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young; Kstar Team

    2015-11-01

    Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.

  3. [An integral chip for the multiphase pulse-duration modulation used for voltage changer in biomedical microprocessor systems].

    PubMed

    Balashov, A M; Selishchev, S V

    2004-01-01

    An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.

  4. Low sidelobe level and high time resolution for metallic ultrasonic testing with linear-chirp-Golay coded excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaying; Gang, Tie; Ye, Chaofeng; Cong, Sen

    2018-04-01

    Linear-chirp-Golay (LCG)-coded excitation combined with pulse compression is proposed in this paper to improve the time resolution and suppress sidelobe in ultrasonic testing. The LCG-coded excitation is binary complementary pair Golay signal with linear-chirp signal applied on every sub pulse. Compared with conventional excitation which is a common ultrasonic testing method using a brief narrow pulse as exciting signal, the performances of LCG-coded excitation, in terms of time resolution improvement and sidelobe suppression, are studied via numerical and experimental investigations. The numerical simulations are implemented using Matlab K-wave toolbox. It is seen from the simulation results that time resolution of LCG excitation is 35.5% higher and peak sidelobe level (PSL) is 57.6 dB lower than linear-chirp excitation with 2.4 MHz chirp bandwidth and 3 μs time duration. In the B-scan experiment, time resolution of LCG excitation is higher and PSL is lower than conventional brief pulse excitation and chirp excitation. In terms of time resolution, LCG-coded signal has better performance than chirp signal. Moreover, the impact of chirp bandwidth on LCG-coded signal is less than that on chirp signal. In addition, the sidelobe of LCG-coded signal is lower than that of chirp signal with pulse compression.

  5. Mode locking of a ring cavity semiconductor diode laser

    NASA Astrophysics Data System (ADS)

    Desbiens, Louis; Yesayan, Ararat; Piche, Michel

    2000-12-01

    We report new results on the generation and characterization of picosecond pulses from a self-mode-locked semiconductor diode laser. The active medium (InGaAs, 830-870 nm) is a semiconductor optical amplifier whose facets are cut at angle and AR coated. The amplifier is inserted in a three-minor ring cavity. Mode locking is purely passive; it takes place for specific alignment conditions. Trains of counterpropagating pulses are produced, with pulse duration varying from 1 .2 to 2 ps. The spectra of the counterpropagatmg pulses do not fully overlap; their central wavelengths differ by a few nm. The pulse repetition rate has been varied from 0.3 to 3 GHz. The pulses have been compressed to less than 500-fs duration with a grating pair. We discuss some of the potential physical mechanisms that could be involved in the dynamics of the mode-locked regime. Hysteresis in the LI curve has been observed. To characterize the pulses, we introduce the idea of a Pulse Quality Factor, where the pulse duration and spectral width are calculated from the second-order moments of the measured intensity autocorrelation and power spectral density.

  6. Pure-phase selective excitation in fast-relaxing systems.

    PubMed

    Zangger, K; Oberer, M; Sterk, H

    2001-09-01

    Selective pulses have been used frequently for small molecules. However, their application to proteins and other macromolecules has been limited. The long duration of shaped-selective pulses and the short T(2) relaxation times in proteins often prohibited the use of highly selective pulses especially on larger biomolecules. A very selective excitation can be obtained within a short time by using the selective excitation sequence presented in this paper. Instead of using a shaped low-intensity radiofrequency pulse, a cluster of hard 90 degrees pulses, delays of free precession, and pulsed field gradients can be used to selectively excite a narrow chemical shift range within a relatively short time. Thereby, off-resonance magnetization, which is allowed to evolve freely during the free precession intervals, is destroyed by the gradient pulses. Off-resonance excitation artifacts can be removed by random variation of the interpulse delays. This leads to an excitation profile with selectivity as well as phase and relaxation behavior superior to that of commonly used shaped-selective pulses. Since the evolution of scalar coupling is inherently suppressed during the double-selective excitation of two different scalar-coupled nuclei, the presented pulse cluster is especially suited for simultaneous highly selective excitation of N-H and C-H fragments. Experimental examples are demonstrated on hen egg white lysozyme (14 kD) and the bacterial antidote ParD (19 kD). Copyright 2001 Academic Press.

  7. Octave-spanning carrier-envelope phase stabilized visible pulse with sub-3-fs pulse duration.

    PubMed

    Okamura, Kotaro; Kobayashi, Takayoshi

    2011-01-15

    The visible second harmonic of the idler output from a noncollinear optical parametric amplifier was compressed using adaptive dispersion control with a deformable mirror. The amplifier was pumped by and seeded in the signal path by a common 400 nm second-harmonic pulse from a Ti:sapphire regenerative amplifier. Thus, both the idler output and the second harmonic of the idler were passively carrier-envelope phase stabilized. The shortest pulse duration achieved was below 3 fs.

  8. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  9. Reversible, high-voltage square-wave pulse generator for triggering spark gaps.

    PubMed

    Robledo-Martinez, A; Vega, R; Cuellar, L E; Ruiz-Meza, A; Guzmán, E

    2007-05-01

    A design is presented for a reversible, square-pulse generator that employs coaxial cables for charge storage and pulse formation and a thyratron as the switch. The generator has a nominal output voltage of 5-30 kV and a pulse duration determined by the cable's physical length. Two variations are presented: (1) a single-stage one consisting of cable that is charged via its shield on one end and discharged with a thyratron on the opposite end and (2) a two-stage one having an inverting circuit that uses a coaxial cable to reverse the polarity of the pulse. The generator operates with "flying shields," i.e., high-voltage pulses also propagate on the outside of the cables; this calls for a dedicated insulation that avoids breakdown between sections of the cable's shield. The rise time obtained is mostly dictated by the switching time of the thyratron; with the one we used in the tests, rise times in the range of 30-40 ns were obtained. We present the results obtained in the implementation of the generators as well as its application to fire a large Marx generator.

  10. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse

    NASA Astrophysics Data System (ADS)

    Gotz, M.; Karsch, L.; Pawelke, J.

    2017-11-01

    In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 μs at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.

  11. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2017-11-01

    In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.

  12. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.

    PubMed

    Jun, James J; Longtin, André; Maler, Leonard

    2012-04-01

    Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).

  13. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme.

    PubMed

    Mero, M; Sipos, A; Kurdi, G; Osvay, K

    2011-05-09

    Femtosecond green pulses were generated from broadband pulses centered at 800 nm and quasi-monochromatic pulses centered at 532 nm using noncollinear optical parametric chirped pulse amplification (NOPCPA) followed by sum frequency mixing. In addition to amplifying the 800-nm pulses, the NOPCPA stage pumped by a Q-switched, injection seeded Nd:YAG laser also provided broadband idler pulses at 1590 nm. The signal and idler pulses were sum frequency mixed using achromatic and chirp assisted phase matching yielding pulses near 530 nm with a bandwidth of 12 nm and an energy in excess of 200 μJ. The generated pulses were recompressed with a grating compressor to a duration of 150 fs. The technique is scalable to high energies, broader bandwidths, and shorter pulse durations with compensation for higher order chirps and dedicated engineering of the interacting beams. © 2011 Optical Society of America

  14. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  15. Time delay and distance measurement

    NASA Technical Reports Server (NTRS)

    Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)

    2011-01-01

    A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.

  16. Analytical description of generation of the residual current density in the plasma produced by a few-cycle laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru; University of Nizhny Novgorod, Nizhny Novgorod 603950

    2015-05-15

    When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCDmore » corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.« less

  17. Acoustic transient generation in pulsed holmium laser ablation under water

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Salathe, Rene-Paul; Gerber, Bruno E.; Frenz, Martin; Pratisto, Hans; Ith, Michael; Romano, Valerio; Weber, Heinz P.

    1994-08-01

    In this study the role of acoustical transients during pulsed holmium laser ablation is addressed. For this the collapse of cavitation bubbles generated by 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered via a fiber in water is investigated. Multiple consecutive collapses of a single bubble generating acoustic transients are documented. Pulse durations are varied from 130 - 230 microsecond(s) and pulse energies from 20 - 800 mJ. Fiber diameters of 400 and 600 micrometers are used. The bubble collapse behavior is observed by time resolved fast flash photography with 1 microsecond(s) strobe lamp or 5 ns 1064 nm Nd:YAG laser illumination. A PVDF needle probe transducer is used to observe acoustic transients and measure their pressure amplitudes. Under certain conditions, at the end of the collapse phase the bubbles emit spherical acoustic transients of up to several hundred bars amplitude. After the first collapse up to two rebounds leading to further acoustic transient emissions are observed. Bubbles generated near a solid surface under water are attracted towards the surface during their development. The final phase of the collapse generating the acoustic transients takes place directly on the surface, exposing it to maximum pressure amplitudes. Our results indicate a possible mechanism of unwanted tissue damage during holmium laser application in a liquid environment as in arthroscopy or angioplasty that may set limits to the choice of laser pulse duration and energies.

  18. THE CRAB PULSAR AT CENTIMETER WAVELENGTHS. II. SINGLE PULSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, T. H.; Eilek, J. A.; Jones, G., E-mail: thankins@aoc.nrao.edu

    2016-12-10

    We have carried out new, high-frequency, high-time-resolution observations of the Crab pulsar. Combining these with our previous data, we characterize bright single pulses associated with the Main Pulse, both the Low-Frequency and High-Frequency Interpulses, and the two  High-Frequency Components. Our data include observations at frequencies ranging from 1 to 43 GHz with time resolutions down to a fraction of a nanosecond. We find that at least two types of emission physics are operating in this pulsar. Both Main Pulses and Low-Frequency Interpulses, up to ∼10 GHz, are characterized by nanoshot emission—overlapping clumps of narrowband nanoshots, each with its own polarization signature.more » High-Frequency Interpulses, between 5 and 30 GHz, are characterized by spectral band emission—linearly polarized emission containing ∼30 proportionately spaced spectral bands. We cannot say whether the longer-duration High-Frequency Components pulses are due to a scattering process, or if they come from yet another type of emission physics.« less

  19. 100J Pulsed Laser Shock Driver for Dynamic Compression Research

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sethian, J.; Bromage, J.; Fochs, S.; Broege, D.; Zuegel, J.; Roides, R.; Cuffney, R.; Brent, G.; Zweiback, J.; Currier, Z.; D'Amico, K.; Hawreliak, J.; Zhang, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Logos Technologies and the Laboratory for Laser Energetics (LLE, University of Rochester) - in partnership with Washington State University - have designed, built and deployed a one of a kind 100J pulsed UV (351 nm) laser system to perform real-time, x-ray diffraction and imaging experiments in laser-driven compression experiments at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory. The laser complements the other dynamic compression drivers at DCS. The laser system features beam smoothing for 2-d spatially uniform loading of samples and four, highly reproducible, temporal profiles (total pulse duration: 5-15 ns) to accommodate a wide variety of scientific needs. Other pulse shapes can be achieved as the experimental needs evolve. Timing of the laser pulse is highly precise (<200 ps) to allow accurate synchronization of the x-rays with the dynamic compression event. Details of the laser system, its operating parameters, and representative results will be presented. Work supported by DOE/NNSA.

  20. The electric field changes and UHF radiations caused by the triggered lightning in Japan

    NASA Technical Reports Server (NTRS)

    Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi

    1991-01-01

    In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.

  1. Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet

    DOE PAGES

    Higginson, D. P.; Khiar, B.; Revet, G.; ...

    2017-12-22

    Here, we investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (10 12 W/cm 2) and, then, a main pulse (10 13 W/cm 2) arriving 9–19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that ismore » responsible for jet collimation. These results show that plasma collimation due to shocks against a strong magnetic field can lead to stable, astrophysically relevant jets that are sustained over time scales 100 times the laser pulse duration (i.e., >70 ns), even in the case of strong variability at the source.« less

  2. The influence of laser pulse waveform on laser-TIG hybrid welding of AZ31B magnesium alloy

    NASA Astrophysics Data System (ADS)

    Song, Gang; Luo, Zhimin

    2011-01-01

    By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.

  3. Effects of duration of electric pulse on in vitro development of cloned cat embryos with human artificial chromosome vector.

    PubMed

    Do, Ltk; Wittayarat, M; Terazono, T; Sato, Y; Taniguchi, M; Tanihara, F; Takemoto, T; Kazuki, Y; Kazuki, K; Oshimura, M; Otoi, T

    2016-12-01

    The current applications for cat cloning include production of models for the study of human and animal diseases. This study was conducted to investigate the optimal fusion protocol on in vitro development of transgenic cloned cat embryos by comparing duration of electric pulse. Cat fibroblast cells containing a human artificial chromosome (HAC) vector were used as genetically modified nuclear donor cells. Couplets were fused and activated simultaneously with a single DC pulse of 3.0 kV/cm for either 30 or 60 μs. Low rates of fusion and embryo development to the blastocyst stage were observed in the reconstructed HAC-transchromosomic embryos, when the duration of fusion was prolonged to 60 μs. In contrast, the prolongation of electric pulse duration improved the embryo development and quality in the reconstructed control embryos without HAC vector. Our results suggested that the optimal parameters of electric pulses for fusion in cat somatic cell nuclear transfer vary among the types used for donor cells. © 2016 Blackwell Verlag GmbH.

  4. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br2 down to 13 μs.

    PubMed

    Lam, Jessica; Rennick, Christopher J; Softley, Timothy P

    2015-05-01

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80,000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  5. Design, characterization and experimental validation of a compact, flexible pulsed power architecture for ex vivo platelet activation

    PubMed Central

    Caiafa, Antonio; Jiang, Yan; Klopman, Steve; Morton, Christine; Torres, Andrew S.; Loveless, Amanda M.; Neculaes, V. Bogdan

    2017-01-01

    Electric pulses can induce various changes in cell dynamics and properties depending upon pulse parameters; however, pulsed power generators for in vitro and ex vivo applications may have little to no flexibility in changing the pulse duration, rise- and fall-times, or pulse shape. We outline a compact pulsed power architecture that operates from hundreds of nanoseconds (with the potential for modification to tens of nanoseconds) to tens of microseconds by modifying a Marx topology via controlling switch sequences and voltages into each capacitor stage. We demonstrate that this device can deliver pulses to both low conductivity buffers, like standard pulsed power supplies used for electroporation, and higher conductivity solutions, such as blood and platelet rich plasma. We further test the effectiveness of this pulse generator for biomedical applications by successfully activating platelets ex vivo with 400 ns and 600 ns electric pulses. This novel bioelectrics platform may provide researchers with unprecedented flexibility to explore a wide range of pulse parameters that may induce phenomena ranging from intracellular to plasma membrane manipulation. PMID:28746392

  6. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Letzring, Samuel A.

    1993-01-01

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse.

  7. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Letzring, S.A.

    1993-11-16

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.

  8. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{supmore » 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.« less

  9. Generation of vector dissipative and conventional solitons in large normal dispersion regime.

    PubMed

    Yun, Ling

    2017-08-07

    We report the generation of both polarization-locked vector dissipative soliton and group velocity-locked vector conventional soliton in a nanotube-mode-locked fiber ring laser with large normal dispersion, for the first time to our best knowledge. Depending on the polarization-depended extinction ratio of the fiber-based Lyot filter, the two types of vector solitons can be switched by simply tuning the polarization controller. In the case of low filter extinction ratio, the output vector dissipative soliton exhibits steep spectral edges and strong frequency chirp, which presents a typical pulse duration of ~23.4 ps, and can be further compressed to ~0.9 ps. In the contrastive case of high filter extinction ratio, the vector conventional soliton has clear Kelly sidebands with transform-limited pulse duration of ~1.8 ps. Our study provides a new and simple method to achieve two different vector soliton sources, which is attractive for potential applications requiring different pulse profiles.

  10. Development of the Fast Scintillation Detector with Programmable High Voltage Adjustment Suitable for Moessbauer Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochazka, R.; Frydrych, J.; Pechousek, J.

    2010-07-13

    This work is focused on a development of a compact fast scintillation detector suitable for Moessbauer spectroscopy (low energy X-ray/{gamma}-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000more » ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.« less

  11. Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser

    DOE PAGES

    Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.; ...

    2018-02-02

    X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less

  12. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS

    DOE PAGES

    Lee, Sooheyong; Roseker, W.; Gutt, C.; ...

    2013-10-08

    The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse modemore » $$\\langle$$M s$$\\rangle$$ = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Lastly the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.« less

  13. Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.

    X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less

  14. Novel aspects of direct laser acceleration of relativistic electrons

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexey

    2015-11-01

    Production of energetic electrons is a keystone aspect of ultraintense laser-plasma interactions that underpins a variety of topics and applications, including fast ignition inertial confinement fusion and compact particle and radiation sources. There is a wide range of electron acceleration regimes that depend on the duration of the laser pulse and the plasma density. This talk focuses on the regime in which the plasma is significantly underdense and the laser pulse duration is longer than the electron response time, so that, in contrast to the wakefield acceleration regime, the pulse creates a quasi-static channel in the electron density. Such a regime is of particular interest, since it can naturally arise in experiments with solid density targets where the pre-pulse of an ultraintense laser produces an extended sub-critical pre-plasma. This talk examines the impact of several key factors on electron acceleration by the laser pulse and the resulting electron energy gain. A detailed consideration is given to the role played by: (1) the static longitudinal electric field, (2) the static transverse electric field, (3) the electron injection into the laser pulse, (4) the electromagnetic dispersion, and (5) the static longitudinal magnetic field. It is shown that all of these factors lead, under conditions outlined in the talk, to a considerable electron energy gain that greatly exceeds the ponderomotive limit. The static fields do not directly transfer substantial energy to electrons. Instead, they alter the longitudinal dephasing between the electrons and the laser pulse, which then allows the electrons to gain extra energy from the pulse. The talk will also outline a time-resolution criterion that must be satisfied in order to correctly reproduce these effects in particle-in-cell simulations. Supported by AFOSR Contract No. FA9550-14-1-0045, National Nuclear Security Administration Contract No. DE-FC52-08NA28512, and US Department of Energy Contract No. DE-FG02-04ER54742.

  15. The Thrombolytic Effect of Diagnostic Ultrasound-Induced Microbubble Cavitation in Acute Carotid Thromboembolism.

    PubMed

    Porter, Thomas R; Xie, Feng; Lof, John; Powers, Jeffry; Vignon, Francois; Shi, William; White, Matthew

    2017-08-01

    Acute ischemic stroke is often due to thromboembolism forming over ruptured atherosclerotic plaque in the carotid artery (CA). The presence of intraluminal CA thrombus is associated with a high risk of thromboembolic cerebral ischemic events. The cavitation induced by diagnostic ultrasound high mechanical index (MI) impulses applied locally during a commercially available intravenous microbubble infusion has dissolved intravascular thrombi, especially when using longer pulse durations. The beneficial effects of this in acute carotid thromboembolism is not known. An oversized balloon injury was created in the distal extracranial common CA of 38 porcine carotid arteries. After this, a 70% to 80% stenosis was created in the mid common CA proximal to the injury site using partial balloon inflation. Acute thrombotic CA occlusions were created just distal to the balloon catheter by injecting fresh autologous arterial thrombi. After angiographic documentation of occlusion, the common carotid thrombosis was treated with either diagnostic low MI imaging alone (0.2 MI; Philips S5-1) applied through a tissue mimicking phantom (TMP) or intermittent diagnostic high MI stable cavitation (SC)-inducing impulses with a longer pulse duration (0.8 MI; 20 microseconds' pulse duration) or inertial cavitation (IC) impulses (1.2 MI; 20 microseconds' pulse duration). All treatment times were for 30 minutes. Intravenous ultrasound contrast (2% Definity; Lantheus Medical) was infused during the treatment period. Angiographic recanalization in 4 intracranial and extracranial vessels downstream from the CA occlusion (auricular, ascending pharyngeal, buccinator, and maxillary) was assessed with both magnetic resonance 3-dimensional time-of-flight and phase contrast angiography. All magnetic resonance images were interpreted by an independent neuroradiologist using the thrombolysis in cerebral infarction (TICI) scoring system. By phase contrast angiography, at least mild recanalization (TICI 2a or higher) was seen in 64% of downstream vessels treated with SC impulses compared with 33% of IC treated and 29% of low MI alone treated downstream vessels (P = 0.001), whereas moderate or complete recanalization (TICI 2b or higher) was seen in 39% of SC treated vessels compared with 10% IC treated and 21% of low MI alone treated vessels (P = 0.001). High MI 20-microsecond pulse duration impulses during a commercial microbubble infusion can be used to recanalize acutely thrombosed carotid arteries and restore downstream flow without anticoagulants. However, this effect is only seen with SC-inducing impulses and not at higher mechanical indices, when a paradoxical reversal of the thrombolytic effect is observed. Diagnostic ultrasound-induced SC can be a nonsurgical method of dissolving CA thrombi and preventing thromboembolization.

  16. Pulsed electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L. (Inventor); Goldstein, Yeshayahu S. A. (Inventor); Tidman, Derek A. (Inventor); Winsor, Niels K. (Inventor)

    1989-01-01

    A plasma electrothermal thruster includes a capillary passage in which a plasma discharge is formed and directed out of an open end of the passage into a supersonic nozzle. Liquid supplied to the capillary passage becomes partially atomized to cool a confining surface of the passage. The plasma discharge is formed as the atomized liquid flows out of the open end into a supersonic equilibrium nozzle. The discharge can have a duration greater than the two way travel time of acoustic energy in the capillary to cause the plasma to flow continuously through the nozzle during the time of the discharge pulse.

  17. High performance thyratron driver with low jitter.

    PubMed

    Verma, Rishi; Lee, P; Springham, S V; Tan, T L; Rawat, R S

    2007-08-01

    We report the design and development of insulated gate bipolar junction transistor based high performance driver for operating thyratrons in grounded grid mode. With careful design, the driver meets the specification of trigger output pulse rise time less than 30 ns, jitter less than +/-1 ns, and time delay less than 160 ns. It produces a -600 V pulse of 500 ns duration (full width at half maximum) at repetition rate ranging from 1 Hz to 1.14 kHz. The developed module also facilitates heating and biasing units along with protection circuitry in one complete package.

  18. Time-domain measurement of terahertz frequency magnetoplasmon resonances in a two-dimensional electron system by the direct injection of picosecond pulsed currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.

    2016-02-29

    We have investigated terahertz (THz) frequency magnetoplasmon resonances in a two-dimensional electron system through the direct injection of picosecond duration current pulses. The evolution of the time-domain signals was measured as a function of magnetic field, and the results were found to be in agreement with calculations using a mode-matching approach for four modes observed in the frequency range above 0.1 THz. This introduces a generic technique suitable for sampling ultrafast carrier dynamics in low-dimensional semiconductor nanostructures at THz frequencies.

  19. Thermal imaging diagnostics of high-current electron beams.

    PubMed

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  20. Coding for Communication Channels with Dead-Time Constraints

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon

    2004-01-01

    Coding schemes have been designed and investigated specifically for optical and electronic data-communication channels in which information is conveyed via pulse-position modulation (PPM) subject to dead-time constraints. These schemes involve the use of error-correcting codes concatenated with codes denoted constrained codes. These codes are decoded using an interactive method. In pulse-position modulation, time is partitioned into frames of Mslots of equal duration. Each frame contains one pulsed slot (all others are non-pulsed). For a given channel, the dead-time constraints are defined as a maximum and a minimum on the allowable time between pulses. For example, if a Q-switched laser is used to transmit the pulses, then the minimum allowable dead time is the time needed to recharge the laser for the next pulse. In the case of bits recorded on a magnetic medium, the minimum allowable time between pulses depends on the recording/playback speed and the minimum distance between pulses needed to prevent interference between adjacent bits during readout. The maximum allowable dead time for a given channel is the maximum time for which it is possible to satisfy the requirement to synchronize slots. In mathematical shorthand, the dead-time constraints for a given channel are represented by the pair of integers (d,k), where d is the minimum allowable number of zeroes between ones and k is the maximum allowable number of zeroes between ones. A system of the type to which the present schemes apply is represented by a binary- input, real-valued-output channel model illustrated in the figure. At the transmitting end, information bits are first encoded by use of an error-correcting code, then further encoded by use of a constrained code. Several constrained codes for channels subject to constraints of (d,infinity) have been investigated theoretically and computationally. The baseline codes chosen for purposes of comparison were simple PPM codes characterized by M-slot PPM frames separated by d-slot dead times.

  1. In vitro investigations of propulsion during laser lithotripsy using video tracking.

    PubMed

    Eisel, Maximilian; Ströbl, Stephan; Pongratz, Thomas; Strittmatter, Frank; Sroka, Ronald

    2018-04-01

    Ureteroscopic laser lithotripsy is an important and widely used method for destroying ureter stones. It represents an alternative to ultrasonic and pneumatic lithotripsy techniques. Although these techniques have been thoroughly investigated, the influence of some physical parameters that may be relevant to further improve the treatment results is not fully understood. One crucial topic is the propulsive stone movement induced by the applied laser pulses. To simplify and speed up the optimization of laser parameters in this regard, a video tracking method was developed in connection with a vertical column setup that allows recording and subsequently analyzing the propulsive stone movement in dependence of different laser parameters in a particularly convenient and fast manner. Pulsed laser light was applied from below to a cubic BegoStone phantom loosely guided within a vertical column setup. The video tracking method uses an algorithm to determine the vertical stone position in each frame of the recorded scene. The time-dependence of the vertical stone position is characterized by an irregular series of peaks. By analyzing the slopes of the peaks in this signal it was possible to determine the mean upward stone velocity for a whole pulse train and to compare it for different laser settings. For a proof of principle of the video tracking method, a specific pulse energy setting (1 J/pulse) was used in combination with three different pulse durations: short pulse (0.3 ms), medium pulse (0.6 ms), and long pulse (1.0 ms). The three pulse durations were compared in terms of their influence on the propulsive stone movement in terms of upward velocity. Furthermore, the propulsions induced by two different pulse energy settings (0.8 J/pulse and 1.2 J/pulse) for a fixed pulse duration (0.3 ms) were compared. A pulse repetition rate of 10 Hz was chosen for all experiments, and for each laser setting, the experiment was repeated on 15 different freshly prepared stones. The latter set of experiments was compared with the results of previous propulsion measurements performed with a pendulum setup. For a fixed pulse energy (1 J/pulse), the mean upward propulsion velocity increased (from 120.0 to 154.9 mm · s -1 ) with decreasing pulse duration. For fixed pulse duration (0.3 ms), the mean upward propulsion velocity increased (from 91.9 to 123.3 mm · s -1 ) with increasing pulse energy (0.8 J/pulse and 1.2 J/pulse). The latter result corresponds roughly to the one obtained with the pendulum setup (increase from 61 to 105 mm · s -1 ). While the mean propulsion velocities for the two different pulse energies were found to differ significantly (P < 0.001) for the two experimental and analysis methods, the standard deviations of the measured mean propulsion velocities were considerably smaller in case of the vertical column method with video tracking (12% and 15% for n = 15 freshly prepared stones) than in case of the pendulum method (26% and 41% for n = 50 freshly prepared stones), in spite of the considerably smaller number of experiment repetitions ("sample size") in the first case. The proposed vertical column method with video tracking appears advantageous compared to the pendulum method in terms of the statistical significance of the obtained results. This may partly be understood by the fact that the entire motion of the stones contributes to the data analysis, rather than just their maximum distance from the initial position. The key difference is, however, that the pendulum method involves only one single laser pulse in each experiment run, which renders this method rather tedious to perform. Furthermore, the video tracking method appears much better suited to model a clinical lithotripsy intervention that utilizes longer series of laser pulses at higher repetition rates. The proposed video tracking method can conveniently and quickly deliver results for a large number of laser pulses that can easily be averaged. An optimization of laser settings to achieve minimal propulsive stone movement should thus be more easily feasible with the video tracking method in connection with the vertical column setup. Lasers Surg. Med. 50:333-339, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    PubMed Central

    Yang, X.; Vieux, G.; Brunetti, E.; Ersfeld, B.; Farmer, J. P.; Hur, M. S.; Issac, R. C.; Raj, G.; Wiggins, S. M.; Welsh, G. H.; Yoffe, S. R.; Jaroszynski, D. A.

    2015-01-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10’s – 100’s fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153

  3. An Event Observed as a Terrestrial Gamma-ray Flash (TGF) and a Terrestrial Electron Beam (TEB) by Fermi GBM

    NASA Astrophysics Data System (ADS)

    Stanbro, M.; Briggs, M. S.; Cramer, E.; Dwyer, J. R.; Roberts, O.

    2017-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are sub-ms, intense flashes of gamma-rays. They are due to the acceleration of electrons with relativistic energies in thunderstorms that emit gamma-rays via bremsstrahlung. When these photons reach the upper atmosphere, they can produce secondary electrons and positrons that escape the atmosphere and propagate along the Earth's magnetic field line. Space instruments can detect these charged particles, known as Terrestrial Electron Beams (TEBs), after traveling thousands of kilometers from the thunderstorm. We present an event that was observed by the Fermi Gamma-ray Burst Monitor (GBM) as both a TGF and a TEB. To our knowledge this is the first such event that has ever been observed. We interpret the first pulse as a TGF with a duration of 0.2 ms. After 0.5 ms a second pulse is seen with a duration of 2 ms that we interpret as a TEB. Confirming this interpretation, a third pulse is seen 90 ms later, which is understood as a TEB magnetic mirror pulse. The World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN) detected a sferic, under the spacecraft footprint and within the southern magnetic footprint that is simultaneous with the first pulse. Along with the sferic, this unique observation allows us for the first time to test TGF and TEB models for the same event. We present Monte Carlo simulations of the first two pulses, including pitch angles for electrons and positrons, to see if the models can consistently describe the TGF/TEB spectra and time profiles originating from the same source.

  4. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    DOEpatents

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  5. Fabrication of one-dimensional alumina photonic crystals by anodization using a modified pulse-voltage method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shou-Yi; Wang, Jian, E-mail: wangjian@nwnu.edu.cn; Wang, Gang

    2015-08-15

    Highlights: • The alumina multilayer structure with alternating high and low refractive index is fabricated. • This multilayer shows a strong photonic band gap (PBG) and vivid film colors. • The first PBG could be modulated easily by varying the duration time of constant high or low voltages. • Fabrication of the photonic crystal is obtained by directly electrochemical anodization. • The formation mechanism of multilayer is also discussed. - Abstract: The alumina nanolayer structure with alternating high and low porosities is conveniently fabricated by applying a modified pulse voltage waveform with constant high and low voltage. This structure showsmore » the well-defined layer in a long-range structural periodicity leads to a strong photonic band gap (PBG) from visible to near infrared and brilliant film colors. Compared with the previous reported tuning method, this method is more simple and flexible in tuning the PBG of photonic crystals (PCs). The effect of duration time of high, low and 0 V voltages on PBG is discussed. The first PBG could be modulated easily from the visible to near infrared region by varying the duration time of constant high or low voltages. It is also found that the 0 V lasting for appropriate time is helpful to improve the quality of the PCs. The formation mechanism of multilayer is also discussed.« less

  6. Pulse pressure and diabetes treatments: Blood pressure and pulse pressure difference among glucose lowering modality groups in type 2 diabetes.

    PubMed

    Alemi, Hamid; Khaloo, Pegah; Mansournia, Mohammad Ali; Rabizadeh, Soghra; Salehi, Salome Sadat; Mirmiranpour, Hossein; Meftah, Neda; Esteghamati, Alireza; Nakhjavani, Manouchehr

    2018-02-01

    Type 2 diabetes is associated with higher pulse pressure. In this study, we assessed and compared effects of classic diabetes treatments on pulse pressure (PP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) in patients with type 2 diabetes.In a retrospective cohort study, 718 non-hypertensive patients with type 2 diabetes were selected and divided into 4 groups including metformin, insulin, glibenclamide+metformin, and metformin+insulin. They were followed for 4 consecutive visits lasting about 45.5 months. Effects of drug regimens on pulse and blood pressure over time were assessed separately and compared in regression models with generalized estimating equation method and were adjusted for age, duration of diabetes, sex, smoking, and body mass index (BMI).Studied groups had no significant change in PP, SBP, and DBP over time. No significant difference in PP and DBP among studied groups was observed (PP:P = 0.090; DBP:P = 0.063). Pairwise comparisons of PP, SBP, and DBP showed no statistically significant contrast between any 2 studied groups. Interactions of time and treatment were not different among groups.Our results demonstrate patients using metformin got higher PP and SBP over time. Averagely, pulse and blood pressure among groups were not different. Trends of variation in pulse and blood pressure were not different among studied diabetes treatments.

  7. Picosecond transient backward stimulated Raman scattering and pumping of femtosecond dye lasers

    NASA Astrophysics Data System (ADS)

    Arrivo, Steven M.; Spears, Kenneth G.; Sipior, Jeffrey

    1995-02-01

    We report studies of transient, backward stimulated, Raman scattering (TBSRS) in solvents with a 10 Hz, 27 ps, 532 nm pump laser. The TBSRS effect was used to create pulses at 545 nm and 630 nm with durations of 2-3 ps and 5-10 μJ of energy. The duration, energy and fluctuations of the Raman pulse were studied as a function of pump energy and focal parameters. A 5 μJ Raman pulse was amplified in either a Raman amplifier or two stage dye amplifier to 1 mJ levels. A 545 nm pulse of 3 ps duration was generated in CCl 4 and was then used to pump a short cavity dye laser (SCDL). The SCDL oscillator and a 5 stage dye amplifier provided a pulse of 700 fs and 400 μJ that was tunable near 590 nm.

  8. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle thermal fatigue behavior has been investigated on a flat Haynes 188 alloy specimen, under the test condition of 30-Hz cycle frequency (33-msec pulse period and 10-msec pulse width including a 0.2-msec pulse spike; ref. 4). Temperature distributions were calculated with one-dimensional finite difference models. The calculations show that that the 0.2-msec pulse spike can cause an additional 40 C temperature fluctuation with an interaction depth of 0.08 mm near the specimen surface region. This temperature swing will be superimposed onto the temperature swing of 80 C that is induced by the 10-msec laser pulse near the 0.53-mm-deep surface interaction region.

  9. Q-switched all-fiber laser with short pulse duration based on tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun

    2018-05-01

    Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.

  10. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    PubMed

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.

  11. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.

    2017-12-01

    Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.

  12. Characterization of Pilot Technique

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Aponso, Bimal; Godfroy, Martine

    2017-01-01

    Skilled pilots often use pulse control when controlling higher order (i.e. acceleration-command) vehicle dynamics. Pulsing does not produce a stick response that resembles what the human Crossover Model predicts. The Crossover Model (CM) assumes the pilot provides compensation necessary (lead or lag) such that the suite of display-human-vehicle approximates an integrator in the region of crossover frequency. However, it is shown that the CM does appear to drive the pilots pulsing behavior in a very predictable manner. Roughly speaking, the pilot generates pulses such that the area under the pulse (pulse amplitude multiplied by pulse width) is approximately equal to area under the hypothetical CM output. This can allow a pilot to employ constant amplitude pulsing so that only the pulse duration (width) is modulated a drastic simplification over the demands of continuous tracking. A pilot pulse model is developed, with which the parameters of the pilots internally-generated CM can be computed in real time for pilot monitoring and display compensation. It is also demonstrated that pursuit tracking may be activated when pulse control is employed.

  13. Dependence of Nd:YAG laser derusting and passivation of iron artifacts on pulse duration

    NASA Astrophysics Data System (ADS)

    Osticioli, Iacopo; Siano, Salvatore

    2013-11-01

    In this work laser derusting and passivation process of iron objects of conservation interest were investigated. In particular, the effects induced by laser irradiation of three lasers with different temporal emission regimes were studied, exhibiting very different behavior. Nd:YAG(1064 nm) laser systems were employed in the experiments: a Q-Switching laser with pulse duration of 8 ns, a Long Q-Switching laser with pulse duration of 120 ns and a Short Free Running pulse duration in a range of 40-120 μs. These lasers are commonly used in conservation. Lasers treatments were applied on iron samples subjected to natural weathering in outdoor conditions for about five years. Moreover some experiments were also performed on metallic parts of an original chandelier from the seventies as well as on a deeply corroded Roman sword. Results obtained reveals that longer pulse duration leads to phase changes on the rust layer and a homogeneous black-grayish coating is formed on the surface (identified as magnetite) after treatment. Whereas, QS laser pulses are capable to induce ablation of the corrosion layer exposing the pure metal underneath. Finally, LQS interaction includes deep ablation with localized micro-melting of the metal surface and partial transformation of the residual mineral areas was observed. The irradiation results were characterized through optical and BS- ESEM along with Raman spectroscopy, which allowed a clear phenomenological differentiation among the three operating regimes and provided information on their optimal exploitation in restoration of iron artifacts.

  14. Xenon plasma sustained by pulse-periodic laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse,more » plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.« less

  15. Polarization Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21 at a Frequency of 600 MHz

    NASA Astrophysics Data System (ADS)

    Popov, M. V.; Soglasnov, V. A.; Kondrat'ev, V. I.; Kostyuk, S. V.

    2004-02-01

    We performed polarization observations of giant radio pulses from the millisecond pulsar B1937+21. The observations were carried out in July 2002 with the 64-m Kalyazin radio telescope at a frequency of 600 MHz in two polarization channels with left- and right-hand circular polarizations (RCP and LCP). We used the S2 data acquisition system with a time resolution of 125 ns. The duration of an observing session was 20 min. We detected twelve giant radio pulses with peak flux densities higher than 1000 Jy; five and seven of these pulses appeared in the RCP and LCP channels, respectively. We found no event that exceeded the established detection threshold simultaneously in the two polarization channels. Thus, we may conclude that the detected giant pulses have a high degree of circular polarization, with the frequency of occurrence of RCP and LCP pulses being the same.

  16. Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA

    NASA Astrophysics Data System (ADS)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Cheriaux, G.; Le, T. T. T.; Li, L.; Pitman, M.; Ros, D.; Sebban, S.; Velarde, P.

    2012-07-01

    By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of μJ. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings for maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.

  17. New and Advanced Picosecond Lasers for Tattoo Removal.

    PubMed

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting. © 2017 S. Karger AG, Basel.

  18. Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.

    2012-07-09

    By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of {mu}J. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings formore » maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.« less

  19. Process Performances of 2 ns Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  20. Chirp of the single attosecond pulse generated by a polarization gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Zenghu

    2005-02-01

    The chirp of the xuv supercontinuum generated by a polarization gating is investigated by comparing three-dimensional nonadiabatic numerical simulations with classical calculations. The origin of the chirp is the dependence of the energy gain by an electron on the return time. The chirp is positive and its value is almost the same as that when a linearly polarized laser is used. Although the 250-eV-wide supercontinuum corresponds to a single attosecond pulse, the shortest duration of the pulse is limited by the chirp. By compensating the positive chirp with the negative group velocity dispersion of a Sn filter, it is predictedmore » that a single 58-as pulse can be generated.« less

  1. Broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 laser.

    PubMed

    Feng, T; Yang, K; Zhao, S; Zhao, J; Qiao, W; Li, T; Zheng, L; Xu, J

    2014-09-20

    A broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 (Tm:LSO) laser is presented for the first time, to our best knowledge. The emission wavelength was tuned in a broad spectral region over 111 nm ranging from 1959 to 2070 nm. A shortest pulse duration of 345 ns with beam quality of M(2)≤1.65 was obtained at pulse repetition frequency (PRF) of 1 kHz, corresponding to a maximum single pulse energy of 0.26 mJ and peak power of 0.75 kW. The experimental results indicated that Tm:LSO crystal has outstanding potential for obtaining broadly wavelength tunable and low-PRF laser pulses at 2 μm.

  2. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration.

    PubMed

    Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2004-11-01

    The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.

  3. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    PubMed Central

    Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.

    2015-01-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005

  4. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo

    2004-12-01

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  5. Radially polarized and passively Q-switched fiber laser

    PubMed Central

    Lin, Di; Xia, Kegui; Li, Ruxin; Li, Xiaojun; Li, Guoqiang; Ueda, Ken-ichi; Li, Jianlang

    2017-01-01

    We report, for the first time to our knowledge, a radially polarized and passively Q-switched Yb-doped fiber laser. By using a Cr4+:YAG crystal as a saturable absorber and a photonic crystal grating as a polarization mirror, a radially polarized pulse is produced, which has 202 W of peak power, 75 ns duration, and ~92% polarization purity at a 56.6 kHz repetition rate. The Q-switched pulse with radial polarization from the fiber laser would facilitate numerous applications. PMID:21042354

  6. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    NASA Astrophysics Data System (ADS)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  7. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas

    NASA Astrophysics Data System (ADS)

    Tishchenko, V. N.; Grachev, G. N.; Pavlov, A. A.; Smirnov, A. L.; Pavlov, A. A.; Golubev, M. P.

    2008-01-01

    The effect of energy removal from the combustion zone of a motionless optical pulsating discharge in the horizontal direction along the axis of a repetitively pulsed laser beam producing the discharge is discovered. The directivity diagram of a hot gas flow is formed during the action of hundreds of pulses. The effect is observed for short pulse durations, when the discharge efficiently generates shock waves. For long pulse durations, the heated gas propagates upward, as in a thermal source.

  8. Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range

    NASA Astrophysics Data System (ADS)

    Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.

    2017-06-01

    Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.

  9. Pulse shape discrimination based on fast signals from silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Yu, Junhao; Wei, Zhiyong; Fang, Meihua; Zhang, Zixia; Cheng, Can; Wang, Yi; Su, Huiwen; Ran, Youquan; Zhu, Qingwei; Zhang, He; Duan, Kai; Chen, Ming; Liu, Meng

    2018-06-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) enable a breakthrough in discrimination between neutrons and gammas. Plastic scintillator detectors coupled with silicon photomultipliers (SiPMs) offer many advantages, such as lower power consumption, smaller volume, and especially insensitivity to magnetic fields, compared with conventional photomultiplier tubes (PMTs). A SensL SiPM has two outputs: a standard output and a fast output. It is known that the charge injected into the fast output electrode is typically approximately 2% of the total charge generated during the avalanche, whereas the charge injected into the standard output electrode is nearly 98% of the total. Fast signals from SiPMs exhibit better performance in terms of timing and time-correlated measurements compared with standard signals. The pulse duration of a standard signal is on the order of hundreds of nanoseconds, whereas the pulse duration of the main monopole waveform of a fast signal is a few tens of nanoseconds. Fast signals are traditionally thought to be suitable for photon counting at very high speeds but unsuitable for PSD due to the partial charge collection. Meanwhile, the standard outputs of SiPMs coupled with discriminating scintillators have yielded nice PSD performances, but there have been no reports on PSD using fast signals. Our analysis shows that fast signals can also provide discrimination if the rate of charge injection into the fast output electrode is fixed for each event, even though only a portion of the charge is collected. In this work, we achieved successful PSD using fast signals; meanwhile, using a coincidence timing window of less 3 nanoseconds between the readouts from both ends of the detector reduced the influence of the high SiPM dark current. We experimentally achieved good timing performance and PSD capability simultaneously.

  10. Pile-up corrections in laser-driven pulsed X-ray sources

    NASA Astrophysics Data System (ADS)

    Hernández, G.; Fernández, F.

    2018-06-01

    A formalism for treating the pile-up produced in solid-state detectors by laser-driven pulsed X-ray sources has been developed. It allows the direct use of X-ray spectroscopy without artificially decreasing the number of counts in the detector, assuming the duration of a pulse is much shorter than the detector response time and the loss of counts from the energy window of the detector can be modeled or neglected. Experimental application shows that having a small amount of pile-up subsequently corrected improves the signal-to-noise ratio, which would be more beneficial than the strict single-hit condition usually imposed on this detectors.

  11. Self-induced transparency and electromagnetic pulse compression in a plasma or an electron beam under cyclotron resonance conditions.

    PubMed

    Ginzburg, N S; Zotova, I V; Sergeev, A S

    2010-12-31

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  12. Femtosecond versus picosecond laser pulses for film-free laser bioprinting.

    PubMed

    Petit, Stephane; Kérourédan, Olivia; Devillard, Raphael; Cormier, Eric

    2017-11-01

    We investigate the properties of microjets in the context of film-free laser induced forward transfer in the femtosecond and picosecond regimes. The influence of the pulse duration (ranging from 0.4 to 12 ps) and the energy (ranging from 6 to 12 μJ) is systematically studied on the height, diameter, speed, volume, and shape of the jets. The 400 fs pulses generate thin and stable jets compatible with bioprinting, while 14 ps pulses generate more unstable jets. A pulse duration around 8 ps seems, therefore, to be an interesting trade-off to cover many bio-applications of microjets generated by lasers.

  13. Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution.

    PubMed

    Chong, A; Liu, H; Nie, B; Bale, B G; Wabnitz, S; Renninger, W H; Dantus, M; Wise, F W

    2012-06-18

    With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration.

  14. Directly driven source of multi-gigahertz, sub-picosecond optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messerly, Michael J.; Dawson, Jay W.; Barty, Christopher P.J.

    2015-10-20

    A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulsesmore » or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.« less

  15. Plasma Membrane Permeabilization by 60- and 600-ns Electric Pulses Is Determined by the Absorbed Dose

    PubMed Central

    Ibey, Bennett L.; Xiao, Shu; Schoenbach, Karl H.; Murphy, Michael R.; Pakhomov, Andrei G.

    2008-01-01

    We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (Rm) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting Rm decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 °C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, lowaverage power EMF emissions. PMID:18839412

  16. Direct coupling of pulsed radio frequency and pulsed high power in novel pulsed power system for plasma immersion ion implantation.

    PubMed

    Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K

    2008-04-01

    A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.

  17. Design and Analysis of Nano-Pulse Generator for Industrial Wastewater Application

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Duck; Son, Yoon-Kyoo; Cho, Moo-Hyun; Norov, Enkhbat

    2018-05-01

    Recently, the application of a pulsed power system is being extended to environmental and industrial fields. The non-dissolution wastewater pollutants from industrial plants can be processed by applying high-voltage pulses with a fast rising time (a few nanoseconds) and short duration (nano to microseconds) in a pulsed corona discharge reactor. The high-voltage nano-pulse generator with a magnetic switch has been developed. It can be used for a spray type water treatment facility. Its corona current in load can be adjusted by pulse width and repetition rate. We investigated the performance of the nano-pulse generator by using the dummy load that is composed of resistor and capacitor equivalent to the actual reactor. In this paper, the results of design, construction and characterization of a high-voltage nano-pulse generator for an industrial wastewater treatment are reported. Consequently, a pulse width of 1.1 μs at the repetition rate of 200 pps, a peak voltage of 41 kV for the nano-pulse generator were achieved across a 640 Ω load. The simulation results on magnetic switch show reasonable agreement with experimental ones.

  18. Electro-optic sampling of near-infrared waveforms

    NASA Astrophysics Data System (ADS)

    Keiber, Sabine; Sederberg, Shawn; Schwarz, Alexander; Trubetskov, Michael; Pervak, Volodymyr; Krausz, Ferenc; Karpowicz, Nicholas

    2016-03-01

    Access to the complete electric field evolution of a laser pulse is essential for attosecond science in general, and for the scrutiny and control of electron phenomena in solid-state physics specifically. Time-resolved field measurements are routine in the terahertz spectral range, using electro-optic sampling (EOS), photoconductive switches and field-induced second harmonic generation. EOS in particular features outstanding sensitivity and ease of use, making it the basis of time-resolved spectroscopic measurements for studying charge carrier dynamics and active optical devices. In this Letter, we show that careful optical filtering allows the bandwidth of this technique to be extended to wavelengths as short as 1.2 μm (230 THz) with half-cycle durations 2.3 times shorter than the sampling pulse. In a proof-of-principle application, we measure the influence of optical parametric amplification (OPA) on the electric field dynamics of a few-cycle near-infrared (NIR) pulse.

  19. Clock synchronization experiments performed via the ATS-1 and ATS-3 satellites.

    NASA Technical Reports Server (NTRS)

    Ramasastry, J.; Rosenbaum, B.; Michelini, R. D.; Kuegler, G. K.

    1973-01-01

    Clock synchronization experiments were carried out May 10 to June 10, 1971, via the ATS-1 and ATS-3 geostationary satellites between the NASA tracking stations at Rosman, N.C., and Mojave, Calif., in order to determine the offset and the relative drift rate between the two station clocks. Pulses at C band with very sharp risetime and of 10 microsec duration were exchanged by the two stations through the dual transponders of the satellites. At each station, a time-interval counter was started by the transmitted pulse and stopped by the pulse received via satellite from the other station. The probable error of the clock offset as measured by the counter is 10 msec. A very long baseline interferometer experiment was also performed between the two stations at the same time and provided independent clock-offset data to check the accuracy of the time-synchronization experiment.

  20. Using homogenization, sonication and thermo-sonication to inactivate fungi

    PubMed Central

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2016-01-01

    Ultrasound (US), Thermo-sonication (TS) and High Pressure Homogenization (HPH) were studied as tools to inactivate the spores of Penicillium spp. and Mucor spp. inoculated in distilled water. For US, the power ranged from 40% to 100%, pulse from 2 to 10 s, and duration of the treatment from 2 to 10 min. TS was performed combining US (40–80% of power, for 8 min and pulse of 2 s) with a thermal treatment (50, 55 and 60°C at 4, 8 and 12 min). Homogenization was done at 30–150 MPa for 1, 2 and 3 times. Power was the most important factors to determine the antifungal effect of US and TS towards the conidia of Penicillium spp.; on the other hand, in US treatments Mucor spp. was also affected by pulse and time. HPH exerted a significant antifungal effect only if the highest pressures were applied for 2–3 times. PMID:27375964

  1. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less

  2. Double-pulse THz radiation bursts from laser-plasma acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, R. A.

    2006-11-15

    A model is presented for coherent THz radiation produced when an electron bunch undergoes laser-plasma acceleration and then exits axially from a plasma column. Radiation produced when the bunch is accelerated is superimposed with transition radiation from the bunch exiting the plasma. Computations give a double-pulse burst of radiation comparable to recent observations. The duration of each pulse very nearly equals the electron bunch length, while the time separation between pulses is proportional to the distance between the points where the bunch is accelerated and where it exits the plasma. The relative magnitude of the two pulses depends upon bymore » the radius of the plasma column. Thus, the radiation bursts may be useful in diagnosing the electron bunch length, the location of the bunch's acceleration, and the plasma radius.« less

  3. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.

    PubMed

    Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang

    2015-09-07

    A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

  4. Solids Erosion Patterns Developed by Pulse Jet Mixers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Pease, Leonard F.; Minette, Michael J.

    Millions of gallons of radioactive waste are stored in underground storage tanks at the Hanford Site in Washington State. This waste will be vitrified at the Waste Treatment and Immobilization Plant that is under construction. Vessels in the pretreatment portion of the plant are being configured for processing waste slurries with challenging physical and rheological properties that range from Newtonian slurries to non-Newtonian sludge. Pulse jet mixing technology has been selected for mobilizing and mixing this waste. In the pulse jet mixing process, slurry is expelled from pulse tube nozzles directed towards the vessel floor. The expelled fluid forms amore » radial jet that erodes the settled layer of solids. The pulse tubes are configured in a ring or multiple rings and operate concurrently. The expelled fluid and mobilized solids traverse toward the center of the tank. At the tank center the jets from pulse tubes in the ring collide and lift solids upward in a central plume. At the end of the pulse, when the desired fluid volume is expelled from the pulse tube, the applied pressure switches to suction and the pulse tube is refilled. This cycle is used to mobilize and mix the tank contents. An initial step of the process is the erosion of solids from the vessel floor by the radial jets that form on the vessel flow beneath each pulse tube. Experiments have been conducted using simulants to evaluate the ability of the pulse jet mixing system radial jets to combine to develop the central upwell and lift solids into the vessel. These experiments have been conducted at three scales using a range of granular simulants over a range of concentrations. The vessels have elliptical, spherical, or flanged and dished bottoms. Process parameters evaluated include the velocity of fluid expelled from the pulse tube, the duration of the pulse and the duty cycle, the ratio of pulse duration to cycle time. Videos taken from beneath the vessel show the growth of the cleared area from each pulse tube as a function of time. All solids are lifted from the vessel bottom when the system is operating at the critical suspension velocity. The focus of this paper is to compare and contrast erosion patterns developed from different simulants and pulse tube configurations. The cases are evaluated to determine how changes in process parameters affects the PJM ability to mobilize solids from the vessel floor.« less

  5. [A new method to extract time-frequency characteristics of hypertension pathological signal based on pseudo Wigner-Ville distribution].

    PubMed

    Zhang, Xun; Zhang, Miaomiao; Du, Panpan

    2012-02-01

    Hypertension, as one of diseases with the highest incidence in the world at present, is an important cause of stroke, coronary heart disease, renal insufficiency and other serious diseases. Based on pseudo Wigner-Ville distribution, this paper makes an analysis on the relevant pulse characteristics by measuring time range of the energy concentration circle. In view of the present situation, that is, about half of the high-normal blood pressure persons are likely to develop hypertension, we explored the pulse characteristics to find the pathological changes in subjects with prehypertension, in order to solve the problems that there are no obvious clinical significant features in prehypertension. The results showed that the duration of high energy circle in signal with hypertension pathological changes was shorter than the duration of healthy signal. Hence, healthy signal and hypertension pathological signal can be effectively distinguished by this method, and this provides a new basis to identify the lesion signal when blood pressure is in critical period.

  6. Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel Christopher

    The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic techniques are used to characterize structure-function relationships of two-photon absorbing GFP-type probes and optical limiting materials. Fluorescence lifetimes of GFP-type probes are shown to depend on functional group substitution position, therefore, enabling the synthesis of designer probes for the possible study of conformation changes and aggregation in biological systems. Similarly, it is determined that small differences in the structure and dimensionality of organometallic macrocycles result in a diverse set of optical properties, which serves as a basis for the molecular level design of nonlinear optical materials.

  7. Towards sub-100 fs multi-GW pulses directly emitted from a Thulium-doped fiber CPA system

    NASA Astrophysics Data System (ADS)

    Gaida, C.; Gebhardt, M.; Stutzki, F.; Jauregui, C.; Limpert, J.; Tünnermann, A.

    2017-02-01

    Experimental demonstrations of Tm-doped fiber amplifiers (typically in CW- or narrow-band pulsed operation) span a wavelength range going from about 1700 nm to well beyond 2000 nm. Thus, it should be possible to obtain a bandwidth of more than 100 nm, which would enable sub-100 fs pulse duration in an efficient, linear amplification scheme. In fact, this would allow the emission of pulses with less than 20 optical cycles directly from a Tm-doped fiber system, something that seems to be extremely challenging for other dopants in a fused silica fiber. In this contribution, we summarize the current development of our Thulium-doped fiber CPA system, demonstrate preliminary experiments for further scaling and discuss important design factors for the next steps. The current single-channel laser system presented herein delivers a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. Special care has been taken to reduce the detrimental impact of water vapor absorption by placing the whole system in a dry atmosphere housing (<0.1% rel. humidity) and by using a sufficiently long wavelength (1920-1980 nm). The utilization of a low-pressure chamber in the future will allow for the extension of the amplification bandwidth. Preliminary experiments demonstrating a broader amplification bandwidth that supports almost 100 fs pulse duration and average power scaling to < 100W have already been performed. Based on these results, a Tm-doped fiber CPA with sub-100 fs pulse duration, multi-GW pulse peak power and >100 W average power can be expected in the near future.

  8. Electric fence standards comport with human data and AC limits.

    PubMed

    Kroll, Mark W; Perkins, Peter E; Panescu, Dorin

    2015-08-01

    The ubiquitous electric fence is essential to modern agriculture and has saved lives by reducing the number of livestock automobile collisions. Modern safety standards such as IEC 60335-2-76 and UL 69 have played a role in this positive result. However, these standards are essentially based on energy and power (RMS current), which have limited direct relationship to cardiac effects. We compared these standards to bioelectrically more relevant units of charge and average current in view of recent work on VF (ventricular fibrillation) induction and to existing IEC AC current limits. There are 3 limits for normal (low) pulsing rate: IEC energy limit, IEC current limit, and UL current limit. We then calculated the delivered charge allowed for each pulse duration for these limits and then compared them to a charge-based safety model derived from published human ventricular-fibrillation induction data. Both the IEC and UL also allow for rapid pulsing for up to 3 minutes. We calculated maximum outputs for various pulse durations assuming pulsing at 10, 20, and 30 pulses per second. These were then compared to standard utility power safety (AC) limits via the conversion factor of 7.4 to convert average current to RMS current for VF risk. The outputs of TASER electrical weapons (typically < 100 μC and ~100 μs duration) were also compared. The IEC and UL electric fence energizer normal rate standards are conservative in comparison with actual human laboratory experiments. The IEC and UL electric fence energizer rapid-pulsing standards are consistent with accepted IEC AC current limits for commercially used pulse durations.

  9. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for amore » variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of biological tissue) and laser-induced pressure waves. Simulations on the basis of the nonlinear ionization equation were used to examine effects of the laser created surface plasma on light absorption, reflection and transmission. Laser pulse energy conversion efficiency into pressure waves was studied experimentally and theoretically.« less

  10. Numerical Response Surfaces of Volume of Ablation and Retropulsion Amplitude by Settings of Ho:YAG Laser Lithotripter

    PubMed Central

    Rutherford, Jonathan; Solomon, Metasebya; Cheng, Brian; Xuan, Jason R.; Gong, Jason; Yu, Honggang; Xia, Michael L. D.; Yang, Xirong; Hasenberg, Thomas; Curran, Sean

    2018-01-01

    Objectives Although laser lithotripsy is now the preferred treatment option for urolithiasis due to shorter operation time and a better stone-free rate, the optimal laser settings for URS (ureteroscopic lithotripsy) for less operation time remain unclear. The aim of this study was to look for quantitative responses of calculus ablation and retropulsion by performing operator-independent experiments to determine the best fit versus the pulse energy, pulse width, and the number of pulses. Methods A lab-built Ho:YAG laser was used as the laser pulse source, with a pulse energy from 0.2 J up to 3.0 J and a pulse width of 150 μs up to 1000 μs. The retropulsion was monitored using a high-speed camera, and the laser-induced craters were evaluated with a 3-D digital microscope. The best fit to the experimental data is done by a design of experiment software. Results The numerical formulas for the response surfaces of ablation speed and retropulsion amplitude are generated. Conclusions The longer the pulse, the less the ablation or retropulsion, while the longer pulse makes the ablation decrease faster than the retropulsion. The best quadratic fit of the response surface for the volume of ablation varied nonlinearly with pulse duration and pulse number. PMID:29707187

  11. Evaluation of non-selective refocusing pulses for 7 T MRI

    PubMed Central

    Moore, Jay; Jankiewicz, Marcin; Anderson, Adam W.; Gore, John C.

    2011-01-01

    There is a continuing need for improved RF pulses that achieve proper refocusing in the context of ultra-high field (≥ 7 T) human MRI. Simple block or sinc pulses are highly susceptible to RF field inhomogeneities, and adiabatic pulses are generally considered too SAR intensive for practical use at 7 T. The performance of the array of pulses falling between these extremes, however, has not been systematically evaluated. The aim of this work was to compare the performances of 21 non-selective refocusing pulses spanning a range of durations and SAR levels. The evaluation was based upon simulations and both phantom and in vivo human brain experiments conducted at 7 T. Tested refocusing designs included block, composite block, BIR-4, hyperbolic secant, and numerically optimized composite waveforms. These pulses were divided into three SAR classes and two duration categories, and, based on signal gain in a 3-D spin echo sequence, practical recommendations on usage are made within each category. All evaluated pulses were found to produce greater volume-averaged signals relative to a 180° block pulse. Although signal gains often come with the price of increased SAR or duration, some pulses were found to result in significant signal enhancement while also adhering to practical constraints. This work demonstrates the signal gains and losses realizable with single-channel refocusing pulse designs and should assist in the selection of suitable refocusing pulses for practical 3-D spin-echo imaging at 7 T. It further establishes a reference against which future pulses and multi-channel designs can be compared. PMID:22177384

  12. Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf Fathy

    The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum is presented. Appropriate design precautions have been undertaken to ensure that prelasing does not occur. In this system, the main Q-switched pulse may be followed by one pulse of lower amplitude "postlasing" when an optimised quarter wave voltage of 750 V is applied. It was found that the laser produced 320 ns pulses with 2.5 mJ pulse energy and 3.3 kW peak power at low repetition rates of 50-70 Hz. This is the first time that such studies of electro-optic modulator (EOM) Q-switched Tm3+ fibre lasers have been reported. The maximum peak power was obtained for an optimum cavity length of 2.15 meters, made up of fibre length, broadband beamsplitter polarizer, Q-switch crystal and passive space. Computer simulation of Tm3+doped silica and Er2-doped fluorozirconate fibre lasers using general laser analysis and design (GLAD) software has been successfully investigated for the first time. Input files, which are very similar to language are created to model three designs of fibre lasers, two for Tm3+-doped silica fibre lasers, core pumped at 1.57 mum and cladding pumped at 790 nm, and one for a 2.7 mum Er3+-doped fluorozirconate fibre laser cladding pumped at 975 nm. Results are presented from a relatively comprehensive computer model, which simulates CW operation of the fibre lasers. The simulation suggests that to enhance the conversion energy we have to optimise between the absorption coefficient of the fibre and the diffraction algorithms. Comparison of soft and hard tissue ablation with high peak power Q-switched and CW Tm3+-silica fibre lasers are presented. The ablation of chicken breast and lamb liver tissues as a soft tissue and cartilage as a hard tissue have been investigated using a free running CW-Tm3+-doped fibre laser (wavelength 1.99 mum, with self-pulsation duration ranging over 1 to few tens of microseconds) and for Q-switched operation of the same laser (pulse duration ranging from 150 ns to 900 ns and pulse repetition rates from 100 Hz to 17 kHz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.

  13. A model and simulation of fast space charge pulses in polymers

    NASA Astrophysics Data System (ADS)

    Lv, Zepeng; Rowland, Simon M.; Wu, Kai

    2017-11-01

    The transport of space charge packets across polyethylene and epoxy resin in high electric fields has been characterized as fast or slow depending on packet mobility. Several explanations for the formation and transport of slow space charge packets have been proposed, but the origins of fast space charge pulses, with mobilities above 10-11 m2 V-1 s-1, are unclear. In one suggested model, it is assumed that the formation of fast charge pulses is due to discontinuous electromechanical compression and charge injection at the electrode-insulation interface, and their transport is related to corresponding relaxation processes. In that model, charges travel as a pulse because of group polarization. This paper provides an alternative model based on the reduction of charge carrier activation energy due to charge density triggered polymer chain movement and subsequent chain relaxation times. The generation and transport of fast charge pulses are readily simulated by a bipolar charge transport model with three additional parameters: reduced activation energy, charge density threshold, and chain relaxation time. Such a model is shown to reproduce key features of fast space charge pulses including speed, duration, repetition rate and pulse size. This model provides the basis for a deep understanding of the physical origins of fast space charge pulses in polymers.

  14. CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazioli, C.; Gauthier, D.; Ivanov, R.

    2014-02-15

    We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse thatmore » generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.« less

  15. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements.

    PubMed

    Lou, Janet W; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with <500 fs pulse durations. The pulses are time-stretched with high-dispersion fiber, amplified by a high-power, large-mode-area fiber amplifier, and recompressed using a chirped volume holographic Bragg grating. The resulting high-peak-power pulses allow for highly efficient harmonic generation. We also demonstrate for the first time to our knowledge, the use of a mode-locked ultraviolet source to excite individual biological particles and other calibration particles in an inlet air flow as they pass through an optical chamber. The repetition rate is ideal for biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  16. [Dependence of anti-inflammatory effects of high peak-power pulsed electromagnetic radiation of extremely high frequency on exposure parameters].

    PubMed

    Gapeev, A B; Mikhaĭlik, E N; Rubanik, A V; Cheremis, N K

    2007-01-01

    A pronounced anti-inflammatory effect of high peak-power pulsed electromagnetic radiation of extremely high frequency was shown for the first time in a model of zymosan-induced footpad edema in mice. Exposure to radiation of specific parameters (35, 27 GHz, peak power 20 kW, pulse widths 400-600 ns, pulse repetition frequency 5-500 Hz) decreased the exudative edema and local hyperthermia by 20% compared to the control. The kinetics and the magnitude of the anti-inflammatory effect were comparable with those induced by sodium diclofenac at a dose of 3 mg/kg. It was found that the anti-inflammatory effect linearly increased with increasing pulse width at a fixed pulse repetition frequency and had threshold dependence on the average incident power density of the radiation at a fixed pulse width. When animals were whole-body exposed in the far-field zone of radiator, the optimal exposure duration was 20 min. Increasing the average incident power density upon local exposure of the inflamed paw accelerated both the development of the anti-inflammatory effect and the reactivation time. The results obtained will undoubtedly be of great importance in the hygienic standardization of pulsed electromagnetic radiation and in further studies of the mechanisms of its biological action.

  17. Synthesis of oxide and nitride ceramics in high-power gyrotron discharge

    NASA Astrophysics Data System (ADS)

    Akhmadullina, N. S.; Skvortsova, N. N.; Obraztsova, E. A.; Stepakhin, V. D.; Konchekov, E. M.; Kargin, Yu F.; Shishilov, O. N.

    2017-12-01

    Synthesis of oxides, nitrides, and oxynitrides of silicon and aluminium by a pulsed microwave discharge in the mixtures of metal and dielectric powders is described. The microwave pulses were generated by high-power gyrotron (frequency 75 GHz, power up to 550 kW, pulse duration from 0.1 to 15ms). SiO2 + β-Si3N4 (1:1 by molar) and α-Al2O3 + AlN (2:1 by molar) mixtures with Mg (1 and 5wt%) were treated in air with microwave pulses with power of 250÷400 kW and duration of 2÷8 ms. It was found that the discharge cannot be initiated for both mixtures in absence of Mg at any pulse power and duration. When 1% of Mg was added, the discharge was observed for both mixtures under 8 ms pulses of 400 kW; however, the amounts of materials produced were not enough for analysis. With 5% of Mg the discharge was observed for both mixtures under 8 ms pulses of 350 kW, and products of the plasma-chemical processes in the Al2O3 + AlN mixture were analyzed.

  18. Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes.

    PubMed Central

    Teissié, J; Ramos, C

    1998-01-01

    Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion. PMID:9545050

  19. Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes.

    PubMed

    Teissié, J; Ramos, C

    1998-04-01

    Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion.

  20. Towards pump-probe experiments of defect dynamics with short ion beam pulses

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.

    2013-11-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  1. Breaking resolution limits in ultrafast electron diffraction and microscopy.

    PubMed

    Baum, Peter; Zewail, Ahmed H

    2006-10-31

    Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100-200 keV for microscopy, corresponding to speeds of 33-70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions.

  2. Determination of differential arrival times by cross-correlating worldwide seismological data

    NASA Astrophysics Data System (ADS)

    Godano, M.; Nolet, G.; Zaroli, C.

    2012-12-01

    Cross-correlation delays are the preferred body wave observables in global tomography. Heterogeneity is the main factor influencing delay times found by cross-correlation. Not only the waveform, but also the arrival time itself is affected by differences in seismic velocity encountered along the way. An accurate method for estimating differential times of seismic arrivals across a regional array by cross-correlation was developed by VanDecar and Crosson [1990]. For the estimation of global travel time delays in different frequency bands, Sigloch and Nolet [2006] developed a method for the estimation of body wave delays using a matched filter, which requires the separate estimation of the source time function. Sigloch et al. [2008] found that waveforms often cluster in and opposite the direction of rupture propagation on the fault, confirming that the directivity effect is a major factor in shaping the waveform of large events. We propose a generalization of the VanDecar-Crosson method to which we add a correction for the directivity effect in the seismological data. The new method allows large events to be treated without the need to estimate the source time function for the computation of a matched synthetic waveform. The procedure consists in (1) the detection of the directivity effect in the data and the determination of a rupture model (unilateral or bilateral) explaining the differences in pulse duration among the stations, (2) the determination of an apparent fault rupture length explaining the pulse durations, (3) the removal of the delay due to the directivity effect in the pulse duration , by stretching or contracting the seismograms for directive and anti-directive stations respectively and (4) the application of a generalized VanDecar and Crosson method using only delays between pairs of stations that have an acceptable correlation coefficient. We validate our method by performing tests on synthetic data. Results show that the error between theoretical and measured differential arrival time are significantly reduced for the corrected data. We illustrate our method on data from several real earthquakes.

  3. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging

    NASA Astrophysics Data System (ADS)

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode.

  4. Binary power multiplier for electromagnetic energy

    DOEpatents

    Farkas, Zoltan D.

    1988-01-01

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  5. Measurement of positron annihilation lifetimes for positron burst by multi-detector array

    NASA Astrophysics Data System (ADS)

    Wang, B. Y.; Kuang, P.; Liu, F. Y.; Han, Z. J.; Cao, X. Z.; Zhang, P.

    2018-03-01

    It is currently impossible to exploit the timing information in a gamma-ray pulse generated within nanoseconds when a high-intensity positron burst annihilation event occurs in a target using conventional single-detector methods. A state-of-the-art solution to the problem is proposed in this paper. In this approach, a multi-detector array composed of many independent detection cells mounted spherically around the target is designed to detect the time distribution of the annihilated gamma rays generated following, in particular, a positron burst emitting huge amounts of positrons in a short pulse duration, even less than a few nano- or picoseconds.

  6. Effect of Missing Inter-Beat Interval Data on Heart Rate Variability Analysis Using Wrist-Worn Wearables.

    PubMed

    Baek, Hyun Jae; Shin, JaeWook

    2017-08-15

    Most of the wrist-worn devices on the market provide a continuous heart rate measurement function using photoplethysmography, but have not yet provided a function to measure the continuous heart rate variability (HRV) using beat-to-beat pulse interval. The reason for such is the difficulty of measuring a continuous pulse interval during movement using a wearable device because of the nature of photoplethysmography, which is susceptible to motion noise. This study investigated the effect of missing heart beat interval data on the HRV analysis in cases where pulse interval cannot be measured because of movement noise. First, we performed simulations by randomly removing data from the RR interval of the electrocardiogram measured from 39 subjects and observed the changes of the relative and normalized errors for the HRV parameters according to the total length of the missing heart beat interval data. Second, we measured the pulse interval from 20 subjects using a wrist-worn device for 24 h and observed the error value for the missing pulse interval data caused by the movement during actual daily life. The experimental results showed that mean NN and RMSSD were the most robust for the missing heart beat interval data among all the parameters in the time and frequency domains. Most of the pulse interval data could not be obtained during daily life. In other words, the sample number was too small for spectral analysis because of the long missing duration. Therefore, the frequency domain parameters often could not be calculated, except for the sleep state with little motion. The errors of the HRV parameters were proportional to the missing data duration in the presence of missing heart beat interval data. Based on the results of this study, the maximum missing duration for acceptable errors for each parameter is recommended for use when the HRV analysis is performed on a wrist-worn device.

  7. Pacing-induced chronic atrial fibrillation impairs sinus node function in dogs. Electrophysiological remodeling.

    PubMed

    Elvan, A; Wylie, K; Zipes, D P

    1996-12-01

    We assessed the effects of pacing-induced chronic atrial fibrillation (AF) on sinus node function, intra-atrial conduction, and atrial refractoriness. In 15 mongrel dogs (20 to 30 kg), AV nodal block was produced by radiofrequency catheter ablation, and a ventricular-inhibited (VVI) pacemaker (Minix 8330, Medtronic) was implanted and programmed to pace at 80 pulses per minute. In 11 of these dogs, right atrial endocardial pacing leads were connected to a pulse generator (Itrel 7432, Medtronic) and set at a rate of 20 Hz to induce AF. Corrected sinus node recovery time, P-wave duration, 24-hour Holter ECG to assess AF duration, maximal heart rate in response to isoproterenol (10 micrograms/min), intrinsic heart rate after administration of atropine (0.04 mg/kg) and propranolol (0.1 mg/kg), and atrial effective refractory periods (ERPs) were obtained at baseline (EPS-1) and after 2 to 6 weeks (EPS-2) of VVI pacing alone (n = 4) or VVI pacing and rapid atrial pacing (n = 11). At EPS-2, corrected sinus node recovery time and P-wave duration were prolonged, maximal heart rate and intrinsic heart rate were decreased, atrial ERPs were shortened, and the duration of AF was increased significantly compared with EPS-1. These changes partially reversed toward baseline 1 week after conversion to sinus rhythm. Sinus node function and AF inducibility observed in the control dogs that underwent ventricular pacing alone (n = 4) did not change. Pacing-induced chronic AF induces sinus node dysfunction, prolongs intra-atrial conduction time, shortens atrial refractoriness, and perpetuates AF, changes that reverse gradually after termination of AF.

  8. Numerical modeling of optical levitation and trapping of the "stuck" particles with a pulsed optical tweezers.

    PubMed

    Deng, Jian-Liao; Wei, Qing; Wang, Yu-Zhu; Li, Yong-Qing

    2005-05-16

    We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous-wave(cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result.

  9. Nanoparticle formation after nanosecond-laser irradiation of thin gold films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratautas, Karolis; Gedvilas, Mindaugas; Raciukaitis, Gediminas

    2012-07-01

    Evolution in nanoparticle formation was observed after nanosecond-laser irradiation of thin gold films on a silicon substrate and physical phenomena leading to the formation of nanoparticles were studied. Gold films of different thickness (3, 5, 10, 15, 20, and 25 nm) were evaporated on the silicon (110) substrate and irradiated with the pulsed nanosecond laser using different pulse energies and the number of pulses in a burst. Experimentally morphological changes appeared in the films only when the pulse energy was high enough to initiate the phase transition. The threshold energy density for phase transitions in the films was estimated frommore » the thermal model of the laser beam and sample interaction. With the pulse energy just above the threshold, it was possible to observe evolution of nanoparticle formation from a plane metal film by changing the number of pulses applied, as duration of the pulse burst represented the time how long the liquid phase existed. The final size of nanoparticles was a function of the film thickness and was found to be independent of the pulse energy and the number of pulses.« less

  10. Standardization of Rocket Engine Pulse Time Parameters

    NASA Technical Reports Server (NTRS)

    Larin, Max E.; Lumpkin, Forrest E.; Rauer, Scott J.

    2001-01-01

    Plumes of bipropellant thrusters are a source of contamination. Small bipropellant thrusters are often used for spacecraft attitude control and orbit correction. Such thrusters typically operate in a pulse mode, at various pulse lengths. Quantifying their contamination effects onto spacecraft external surfaces is especially important for long-term complex-geometry vehicles, e.g. International Space Station. Plume contamination tests indicated the presence of liquid phase contaminant in the form of droplets. Their origin is attributed to incomplete combustion. Most of liquid-phase contaminant is generated during the startup and shutdown (unsteady) periods of thruster pulse. These periods are relatively short (typically 10-50 ms), and the amount of contaminant is determined by the thruster design (propellant valve response, combustion chamber size, thruster mass flow rate, film cooling percentage, dribble volume, etc.) and combustion process organization. Steady-state period of pulse is characterized by much lower contamination rates, but may be lengthy enough to significantly conh'ibute to the overall contamination effect. Because there was no standard methodology for thruster pulse time division, plume contamination tests were conducted at various pulse durations, and their results do not allow quantifying contaminant amounts from each portion of the pulse. At present, the ISS plume contamination model uses an assumption that all thrusters operate in a pulse mode with the pulse length being 100 ms. This assumption may lead to a large difference between the actual amounts of contaminant produced by the thruster and the model predictions. This paper suggests a way to standardize thruster startup and shutdown period definitions, and shows the usefulness of this approach to better quantify thruster plume contamination. Use of the suggested thruster pulse time-division technique will ensure methodological consistency of future thruster plume contamination test programs, and allow accounting for thruster pulse length when modeling plume contamination and erosion effects.

  11. Hydra viridissima (green Hydra) rapidly recovers from multiple magnesium pulse exposures.

    PubMed

    Prouse, Andrea E; Hogan, Alicia C; Harford, Andrew J; van Dam, Rick A; Nugegoda, Dayanthi

    2015-08-01

    The time taken for organisms to recover from a pulsed toxicant exposure is an important consideration when water quality guidelines are applied to intermittent events in the environment. Organisms may appear to have recovered by standard toxicity testing methods but could carry residual toxicant or damage that may make them more sensitive to subsequent pulses. Such cumulative effects may render guidelines underprotective. The present study evaluated recovery of the freshwater cnidarian Hydra viridissima following multiple pulse exposure to magnesium (Mg). The H. viridissima were exposed to 4-h pulses of 790 mg/L and 1100 mg/L separated by 2-h, 10-h, 18-h, 24-h, 48-h, and 72-h recovery periods. Twenty-four-hour pulses of 570 mg/L, 910 mg/L, and 940 mg/L were separated by 24-h, 96-h, and 168-h recovery periods. All treatments showed similar or reduced sensitivity to the second pulse when compared with the single pulse, indicating that full recovery occurred prior to a second pulse-exposure. Five variations of equivalent time-weighted average concentrations were used to compare sensitivity of Hydra with various pulse scenarios. The sensitivity of the organisms to the multiple pulses was significantly lower than the time-weighted average continuous exposure response in 3 of the 4 scenarios tested, indicating that the Hydra benefited from interpulse recovery periods. The findings will be utilized alongside those from other species to inform the use of a site-specific, duration-based water quality guideline for Mg, and they provide an example of the use of empirical data in the regulation of toxicant pulses in the environment. © 2015 Commonwealth of Australia.

  12. Formation of an optical pulsed discharge in a supersonic air flow by radiation of a repetitively pulsed CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malov, Aleksei N; Orishich, Anatolii M

    Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less

  13. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yunteng; Zhang, Jie; Li, Yang

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Usingmore » both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.« less

  14. Temporal measurement on and using pulses from laser-like emission obtained from styrylpyridinium cyanine dye

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya; Bhowmik, Achintya; Ahyi, Ayayi; Thakur, Mrinal

    2000-03-01

    We have recently reported observation of spectral narrowing and high-conversion laser-like emission in a solution of styrylpyridinium cynanine dye (SPCD) at a low threshold energy, pumped with the second-harmonic of a picosecond Nd:YAG laser. Fundamental and second-harmonic pulses from a Nd:YAG laser of 80 ps duration at 10 Hz repetition rate were used to pump 0.1 mol/l concentration of SPCD in methanol in two separate pumping arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of spectrally narrowed emission in both cases was measured by background-free SHG intensity autocorrelation technique. A BBO crystal was used for the autocorrelation measurement. The measured duration of the pulses was 40 ps. These pulses having a spectral linewidth of 10 nm (FWHM) were used as a probe to measure the gain in SPCD solution in a pump-probe set up. The results will be discussed.

  15. Holmium:YAG (lambda = 2,120 nm) versus thulium fiber (lambda = 1,908 nm) laser lithotripsy.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2010-03-01

    The holmium:YAG laser is currently the most common laser lithotripter. However, recent experimental studies have demonstrated that the thulium fiber laser is also capable of vaporizing urinary stones. The high-temperature water absorption coefficient for the thulium wavelength (mu(a) = 160 cm(-1) at lambda = 1,908 nm) is significantly higher than for the holmium wavelength (mu(a) = 28 cm(-1) at lambda = 2,120 nm). We hypothesize that this should translate into more efficient laser lithotripsy using the thulium fiber laser. This study directly compares stone vaporization rates for holmium and thulium fiber lasers. Holmium laser radiation pulsed at 3 Hz with 70 mJ pulse energy and 220 microseconds pulse duration was delivered through a 100-microm-core silica fiber to human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Thulium fiber laser radiation pulsed at 10 Hz with 70 mJ pulse energy and 1-millisecond pulse duration was also delivered through a 100-microm fiber for the same sets of 10 stones each. For the same number of pulses and total energy (126 J) delivered to each stone, the mass loss averaged 2.4+/-0.6 mg (UA) and 0.7+/-0.2 mg (COM) for the holmium laser and 12.6+/-2.5 mg (UA) and 6.8+/-1.7 (COM) for the thulium fiber laser. UA and COM stone vaporization rates for the thulium fiber laser averaged 5-10 times higher than for the holmium laser at 70 mJ pulse energies. With further development, the thulium fiber laser may represent an alternative to the conventional holmium laser for more efficient laser lithotripsy.

  16. New laser glass for short pulsed laser applications: the BLG80 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    George, Simi A.

    2017-03-01

    For achieving highest peak powers in a solid state laser (SSL) system, significant energy output and short pulses are necessary. For mode-locked lasers, it is well-known from the Fourier theorem that the largest gain bandwidths produce the narrowest pulse-widths; thus are transform limited. For an inhomogeneously broadened line width of a laser medium, if the intensity of pulses follow a Gaussian function, then the resulting mode-locked pulse will have a Gaussian shape with the emission bandwidth/pulse duration relationship of pulse ≥ 0.44?02/c. Thus, for high peak power SSL systems, laser designers incorporate gain materials capable of broad emission bandwidths. Available energy outputs from a phosphate glass host doped with rare-earth ions are unparalleled. Unfortunately, the emission bandwidths achievable from glass based gain materials are typically many factors smaller when compared to the Ti:Sapphire crystal. In order to overcome this limitation, a hybrid "mixed" laser glass amplifier - OPCPA approach was developed. The Texas petawatt laser that is currently in operation at the University of Texas-Austin and producing high peak powers uses this hybrid architecture. In this mixed-glass laser design, a phosphate and a silicate glass is used in series to achieve a broader bandwidth required before compression. Though proven, this technology is still insufficient for the future compact petawatt and exawatt systems capable of producing high energies and shorter pulse durations. New glasses with bandwidths that are two and three times larger than what is now available from glass hosts is needed if there is to be an alternative to Ti:Sapphire for laser designers. In this paper, we present new materials that may meet the necessary characteristics and demonstrate the laser and emission characteristics these through the internal and external studies.

  17. Generation of nanosecond neutron pulses in vacuum accelerating tubes

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.

    2014-06-01

    The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.

  18. Engineering model for ultrafast laser microprocessing

    NASA Astrophysics Data System (ADS)

    Audouard, E.; Mottay, E.

    2016-03-01

    Ultrafast laser micro-machining relies on complex laser-matter interaction processes, leading to a virtually athermal laser ablation. The development of industrial ultrafast laser applications benefits from a better understanding of these processes. To this end, a number of sophisticated scientific models have been developed, providing valuable insights in the physics of the interaction. Yet, from an engineering point of view, they are often difficult to use, and require a number of adjustable parameters. We present a simple engineering model for ultrafast laser processing, applied in various real life applications: percussion drilling, line engraving, and non normal incidence trepanning. The model requires only two global parameters. Analytical results are derived for single pulse percussion drilling or simple pass engraving. Simple assumptions allow to predict the effect of non normal incident beams to obtain key parameters for trepanning drilling. The model is compared to experimental data on stainless steel with a wide range of laser characteristics (time duration, repetition rate, pulse energy) and machining conditions (sample or beam speed). Ablation depth and volume ablation rate are modeled for pulse durations from 100 fs to 1 ps. Trepanning time of 5.4 s with a conicity of 0.15° is obtained for a hole of 900 μm depth and 100 μm diameter.

  19. Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes

    PubMed Central

    Jizan, Iman; Helt, L. G.; Xiong, Chunle; Collins, Matthew J.; Choi, Duk-Yong; Joon Chae, Chang; Liscidini, Marco; Steel, M. J.; Eggleton, Benjamin J.; Clark, Alex S.

    2015-01-01

    The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterisation. A promising tool for such characterisation uses classical stimulated processes, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a χ(2) integrated source in A. Eckstein et al. Laser Photon. Rev. 8, L76 (2014). In this work we extend these results to χ(3) integrated sources, directly measuring for the first time the relation between spectral correlation measurements via stimulated and spontaneous four wave mixing in an integrated optical waveguide, a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that this allows additional resolution to be gained when compared to traditional coincidence measurements without any increase in measurement time. As the pump pulse duration can influence the degree of spectral correlation, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral correlation regardless of pump pulse duration, and cements its place as an essential characterisation method for the development of future quantum integrated devices. PMID:26218609

  20. Radio afterglow rebrightening: evidence for multiple active phases in gamma-ray burst central engines

    NASA Astrophysics Data System (ADS)

    Li, Long-Biao; Zhang, Zhi-Bin; Rice, Jared

    2015-09-01

    The rebrightening phenomenon is an interesting feature in some X-ray, optical, and radio afterglows of gamma-ray bursts (GRBs). Here, we propose a possible energy-supply assumption to explain the rebrightenings of radio afterglows, in which the central engine with multiple active phases can supply at least two GRB pulses in a typical GRB duration time. Considering the case of double pulses supplied by the central engine, the double pulses have separate physical parameters, except for the number density of the surrounding interstellar medium (ISM). Their independent radio afterglows are integrated by the ground detectors to form the rebrightening phenomenon. In this Letter, we firstly simulate diverse rebrightening light curves under consideration of different and independent physical parameters. Using this assumption, we also give our best fit to the radio afterglow of GRB 970508 at three frequencies of 1.43, 4.86, and 8.46 GHz. We suggest that the central engine may be active continuously at a timescale longer than that of a typical GRB duration time as many authors have suggested (e.g., Zhang et al., Astrophys. J. 787:66, 2014; Gao and Mészáros, Astrophys. J. 802:90, 2015), and that it may supply enough energy to cause the long-lasting rebrightenings observed in some GRB afterglows.

  1. Wavelength-dependence of double optical gating for attosecond pulse generation

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Li, Min; Yu, Ji-Zhou; Deng, Yong-Kai; Liu, Yun-Quan

    2014-10-01

    Both polarization gating (PG) and double optical gating (DOG) are productive methods to generate single attosecond (as) pulses. In this paper, considering the ground-state depletion effect, we investigate the wavelength-dependence of the DOG method in order to optimize the generation of single attosecond pulses for the future application. By calculating the ionization probabilities of the leading edge of the pulse at different driving laser wavelengths, we obtain the upper limit of duration for the driving laser pulse for the DOG setup. We find that the upper limit duration increases with the increase of laser wavelength. We further describe the technical method of choosing and calculating the thickness values of optical components for the DOG setup.

  2. Picosecond pulse generation in a hybrid Q-switched laser source by using a microelectromechanical mirror.

    PubMed

    Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain

    2012-02-27

    We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.

  3. Determination of pulse energy dependence for skin denaturation from 585nm fibre laser

    NASA Astrophysics Data System (ADS)

    Mujica-Ascencio, S.; Velazquez-Gonzalez, J. S.; Mujica-Ascencio, C.; Alvarez-Chavez, J. A.

    2014-05-01

    In this paper, simulation and mathematical analysis for the determination of pulse energy from a Q-switched Yb3+-doped fibre laser is required in Port Wine Stain (PWS) treatment. The pulse energy depends on average power, gain, volume, repetition rate and pulse duration. In some treatments such as Selective Photothermolysis (SP), the peak power at the end of the optical fibre and pulse duration can be obtained and modified via a cavity design. For that purpose, a 585nm optical fibre laser full design which considers all of the above besides the average losses through the optical devices proposed for the design and the Ytterbium optical fibre overall gain will be presented.

  4. Impact of pumping configuration on all-fibered femtosecond chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Lecourt, Jean-Bernard; Duterte, Charles; Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2008-04-01

    We experimentally compared the co- and counter-propagative pumping scheme for the amplification of ultra-short optical pulses. According to pumping direction we show that optical pulses with a duration of 75 fs and 100mW of average output power can be obtained for co-propagative pumping, while pulse duration is never shorter than 400 fs for the counter-propagative case. We show that the impact of non-linear effects on pulse propagation is different for the two pumping configurations. We assume that Self Phase Modulation (SPM) is the main effect in the copropagative case, whereas the impact of Stimulated Raman Scattering is bigger for the counter-propagative case.

  5. USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 34

    DTIC Science & Technology

    1977-04-27

    Russian abstract provided by the source] [Text] The relationship of duration and intensity of ultrashort pulses in a mode-locked ruby laser with Q...Excess charge carriers have been found to appear in pure Ge and Si crystals irradiated with short pulses from a C02 laser . The high purity and perfection...Illustrations 2; References 15: 8 Russian, 7 Western. USSR UDC 621.378.325 CONTROL OF DURATION OF ULTRASHORT PULSES IN MODE-LOCKED LASERS ZHURNAL

  6. Femtosecond Photolysis of CO-Ligated Protoheme and Hemoproteins: Appearance of Deoxy Species with a 350-Fsec Time Constant

    NASA Astrophysics Data System (ADS)

    Martin, J. L.; Migus, A.; Poyart, C.; Lecarpentier, Y.; Astier, R.; Antonetti, A.

    1983-01-01

    Photolysis of HbCO, MbCO, and CO-protoheme has been investigated by measuring transient differential spectra and kinetics of induced absorption after excitation with a 250-fsec laser pulse at 307 nm. Probing was performed by a part of a continuum pulse between 395 and 445 nm. Photodissociation of the three liganded species occurred within the pulse duration. By contrast, the formation of deoxy species appeared with a mean (± SD) response time of 350± 50 fsec. This time constant was identical for the three species and independent of the presence or absence of the protein structure. Our results suggest the formation of a transient high-spin in plane iron (II) species which relaxes in 350 fsec to a high-spin stable state with concerted kinetics of CO departure and iron displacement. The spin transition is suspected to occur via liganded excited states which relax in part to nonreactive states with a 3,2-psec time constant.

  7. Computation and Validation of the Dynamic Response Index (DRI)

    DTIC Science & Technology

    2013-08-06

    matplotlib plotting library. • Executed from command line. • Allows several optional arguments. • Runs on Windows, Linux, UNIX, and Mac OS X. 10... vs . Time: Triangular pulse input data with given time duration and peak acceleration: Time (s) EARTH Code: Motivation • Error Assessment of...public release • ARC provided electrothermal battery model example: • Test vs . simulation data for terminal voltage. • EARTH input parameters

  8. Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, D C; Throop, A; Brown, Jr., C G

    2009-03-06

    Our research focused on obtaining a fundamental understanding of the source and properties of EMP at the Titan PW(petawatt)-class laser facility. The project was motivated by data loss and damage to components due to EMP, which can limit diagnostic techniques that can be used reliably at short-pulse PW-class laser facilities. Our measurements of the electromagnetic fields, using a variety of probes, provide information on the strength, time duration, and frequency dependence of the EMP. We measure electric field strengths in the 100's of kV/m range, durations up to 100 ns, and very broad frequency response extending out to 5 GHzmore » and possibly beyond. This information is being used to design shielding to mitigate the effects of EMP on components at various laser facilities. We showed the need for well-shielded cables and oscilloscopes to obtain high quality data. Significant work was invested in data analysis techniques to process this data. This work is now being transferred to data analysis procedures for the EMP diagnostics being fielded on the National Ignition Facility (NIF). In addition to electromagnetic field measurements, we measured the spatial and energy distribution of electrons escaping from targets. This information is used as input into the 3D electromagnetic code, EMSolve, which calculates time dependent electromagnetic fields. The simulation results compare reasonably well with data for both the strength and broad frequency bandwidth of the EMP. This modeling work required significant improvements in EMSolve to model the fields in the Titan chamber generated by electrons escaping the target. During dedicated Titan shots, we studied the effects of varying laser energy, target size, and pulse duration on EMP properties. We also studied the effect of surrounding the target with a thick conducting sphere and cube as a potential mitigation approach. System generated EMP (SGEMP) in coaxial cables does not appear to be a significant at Titan. Our results are directly relevant to planned short-pulse ARC (advanced radiographic capability) operation on NIF.« less

  9. Basic spin physics.

    PubMed

    Pipe, J G

    1999-11-01

    Magnetic resonance imaging is fundamentally a measurement of the magnetism inherent in some nuclear isotopes; of these the proton, or hydrogen atom, is of particular interest for clinical applications. The magnetism in each nucleus is often referred to as spin. A strong, static magnetic field B0 is used to align spins, forming a magnetic density within the patient. A second, rotating magnetic field B1 (RF pulse) is applied for a short duration, which rotates the spins away from B0 in a process called excitation. After the spins are rotated away from B0, the RF pulse is turned off, and the spins precess about B0. As long as the spins are all pointing in the same direction at any one time (have phase coherence), they act in concert to create rapidly oscillating magnetic fields. These fields in turn create a current in an appropriately placed receiver coil, in a manner similar to that of an electrical generator. The precessing magnetization decays rapidly in a duration roughly given by the T2 time constant. At the same time, but at a slower rate, magnetization forms again along the direction of B0; the duration of this process is roughly expressed by the T1 time constant. The precessional frequency of each spin is proportional to the magnetic field experienced at the nucleus. Small variations in this magnetic field can have dramatic effects on the MR image, caused in part by loss of phase coherence. These magnetic field variations can arise because of magnet design, the magnetic properties (susceptibility) of tissues and other materials, and the nuclear environment unique to various sites within any given molecule. The loss of phase coherence can be effectively eliminated by the use of RF refocusing pulses. Conventional MR imaging experiments can be characterized as either gradient echo or spin echo, the latter indicating the use of a RF refocusing pulse, and by the parameters TR, TE, and flip angle alpha. Tissues, in turn, are characterized by their individual spin density, M0, and by the T1, T2, and T2* time constants. Knowledge of these parameters allows one to calculate the resulting signal from a given tissue for a given MR imaging experiment.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misochko, O. V., E-mail: misochko@issp.ac.ru

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separationmore » between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.« less

  11. Parametric second Stokes Raman laser output pulse shortening to 300 ps due to depletion of pumping of intracavity Raman conversion

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.

    2016-10-01

    A new effect of the pulse shortening of the parametrically generated radiation down to hundreds of picosecond via depletion of pumping of intracavity Raman conversion in the miniature passively Q-switched Nd: SrMoO4 parametric self-Raman laser with the increasing energy of the shortened pulse under pulsed pumping by a high-power laser diode bar is demonstrated. The theoretical estimation of the depletion stage duration of the convertible fundamental laser radiation via intracavity Raman conversion is in agreement with the experimentally demonstrated duration of the parametrically generated pulse. Using the mathematical modeling of the pulse shortening quality and quantity deterioration is disclosed, and the solution ways are found by the optimization of the laser parameters.

  12. Method and apparatus for electrical cable testing by pulse-arrested spark discharge

    DOEpatents

    Barnum, John R.; Warne, Larry K.; Jorgenson, Roy E.; Schneider, Larry X.

    2005-02-08

    A method for electrical cable testing by Pulse-Arrested Spark Discharge (PASD) uses the cable response to a short-duration high-voltage incident pulse to determine the location of an electrical breakdown that occurs at a defect site in the cable. The apparatus for cable testing by PASD includes a pulser for generating the short-duration high-voltage incident pulse, at least one diagnostic sensor to detect the incident pulse and the breakdown-induced reflected and/or transmitted pulses propagating from the electrical breakdown at the defect site, and a transient recorder to record the cable response. The method and apparatus are particularly useful to determine the location of defect sites in critical but inaccessible electrical cabling systems in aging aircraft, ships, nuclear power plants, and industrial complexes.

  13. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  14. Community temporal variability increases with fluctuating resource availability

    PubMed Central

    Li, Wei; Stevens, M. Henry H.

    2017-01-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs. PMID:28345592

  15. Community temporal variability increases with fluctuating resource availability

    NASA Astrophysics Data System (ADS)

    Li, Wei; Stevens, M. Henry H.

    2017-03-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs.

  16. Kicking atoms with finite duration pulses

    NASA Astrophysics Data System (ADS)

    Fekete, Julia; Chai, Shijie; Daszuta, Boris; Andersen, Mikkel F.

    2016-05-01

    The atom optics delta-kicked particle is a paradigmatic system for experimental studies of quantum chaos and classical-quantum correspondence. It consists of a cloud of laser cooled atoms exposed to a periodically pulsed standing wave of far off-resonant laser light. A purely quantum phenomena in such systems are quantum resonances which transfers the atoms into a coherent superposition of largely separated momentum states. Using such large momentum transfer ``beamsplitters'' in atom interferometers may have applications in high precision metrology. The growth in momentum separation cannot be maintained indefinitely due to finite laser power. The largest momentum transfer is achieved by violating the usual delta-kick assumption. Therefore we explore the behavior of the atom optics kicked particle with finite pulse duration. We have developed a semi-classical model which shows good agreement with the full quantum description as well as our experiments. Furthermore we have found a simple scaling law that helps to identify optimal parameters for an atom interferometer. We verify this by measurements of the ``Talbot time'' (a measurement of h/m) which together with other well-known constants constitute a measurement of the fine structure constant.

  17. Intracavity KTP optical parametric oscillator driven by a KLM Nd:GGG laser with a single AO modulator

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Tao; Li, Guiqiu; Li, Dechun; Qiao, Wenchao

    2015-05-01

    An intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a Kerr lens mode-locking (KLM) Nd:GGG laser near 1062 nm with a single AO modulator was realized for the first time. The mode-locking pulses of the signal wave were obtained with a short duration of subnanosecond and a repetition rate of several kilohertz (kHz). Under a diode pump power of 8.25 W, a maximum output power of 104 mW at signal wavelength near 1569 nm was obtained at a repetition rate of 2 kHz. The highest pulse energy and peak power were estimated to be 80 μJ and 102 kW at a repetition rate of 1 kHz, respectively. The shortest pulse duration was measured to be 749 ps. By considering the Gaussian spatial distribution of the photon density and the Kerr-lens effect in the gain medium, a set of the coupled rate equations for QML intracavity optical parametric oscillator are given and the numerical simulations are basically fitted with the experimental results.

  18. Dynamics of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis; Nomoto, Hiroyuki; Huie, Phil; Brown, Jefferson; Palanker, Daniel

    2009-05-01

    In laser retinal photocoagulation, short (<20 ms) pulses have been found to reduce thermal damage to the inner retina, decrease treatment time, and minimize pain. However, the safe therapeutic window (defined as the ratio of power for producing a rupture to that of mild coagulation) decreases with shorter exposures. To quantify the extent of retinal heating and maximize the therapeutic window, a computational model of millisecond retinal photocoagulation and rupture was developed. Optical attenuation of 532-nm laser light in ocular tissues was measured, including retinal pigment epithelial (RPE) pigmentation and cell-size variability. Threshold powers for vaporization and RPE damage were measured with pulse durations ranging from 1 to 200 ms. A finite element model of retinal heating inferred that vaporization (rupture) takes place at 180-190°C. RPE damage was accurately described by the Arrhenius model with activation energy of 340 kJ/mol. Computed photocoagulation lesion width increased logarithmically with pulse duration, in agreement with histological findings. The model will allow for the optimization of beam parameters to increase the width of the therapeutic window for short exposures.

  19. Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering.

    PubMed

    Rebollar, Esther; Sanz, Mikel; Pérez, Susana; Hernández, Margarita; Martín-Fabiani, Ignacio; Rueda, Daniel R; Ezquerra, Tiberio A; Domingo, Concepción; Castillejo, Marta

    2012-12-05

    We report on the fabrication of gold coated nanostructured polymer thin films and on their characterization as substrates for surface enhanced Raman spectroscopy (SERS). Laser induced periodic surface structures (LIPSS) were obtained on thin polymer films of poly(trimethylene terephthalate) (PTT) upon laser irradiation with the fourth harmonic of a Nd:YAG laser (266 nm, pulse duration 6 ns) resulting in a period close to the incident wavelength. The nanostructured polymer substrates were coated with a nanoparticle assembled gold layer by pulsed laser deposition using the fifth harmonic of a Nd:YAG laser (213 nm, pulse duration 15 ns). Different deposition times resulted in thicknesses from a few nanometres up to several tens of nanometres. Analysis by atomic force microscopy and grazing incident small angle X-ray scattering showed that gold coating preserved the LIPSS relief. The capabilities of the produced nanostructures as substrates for SERS have been investigated using benzenethiol as a test molecule. The SERS signal is substantially larger than that observed for a gold-coated flat substrate. Advantages of this new type of SERS substrates are discussed.

  20. [Arterial sequelae of pregnancy hypertension. Detection by carotid piezogram].

    PubMed

    Meyer-Heine, A; Asquer, J C; Lagrue, G

    1989-01-01

    High blood pressure (HTA) is characterized by elevation of pression, but also by modifications of arterial pulse wave. Carotid piezograms were used to evaluate arterial pulse wave. Diastolic blood pressure is significantly correlated with dicrotic notch pressure. The duration of dicrotic notch is negatively correlated with arterial wall elasticity. Thus by carotid piezogram analysis one can determine the respective participation of arterial wall elasticity, peripheral resistance and cardiac factors in blood pressure elevation. Carotid piezograms were measured in 97 women (mean age 27, 8 y), with previous hypertensive pregnancy and apparently cured (mean blood pressure 122-74 mmHg at time of examination). 25 women only had normal piezogram drawing. Abnormalities similar to that of permanent hypertensive disease were observed in most cases. Dicrotic notch duration was significantly reduced and dicrotic notch pressure enhanced; in 34 women both of these abnormalities were present. In conclusion, among women previously hypertensive during pregnancy, even when blood pressure is returned to normal, abnormalities of arterial pulse wave may be present, suggesting that these women are prone to subsequent permanent hypertension.

Top