Sample records for pulse equation modelling

  1. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  2. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  3. Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.

    PubMed

    Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A

    2016-08-01

    Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

  4. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    PubMed Central

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-01-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496

  5. Modeling of ultrashort pulse generation in mode-locked VECSELs

    NASA Astrophysics Data System (ADS)

    Kilen, I.; Koch, S. W.; Hader, J.; Moloney, J. V.

    2016-03-01

    We present a study of various models for the mode-locked pulse dynamics in a vertical external-cavity surface emitting laser with a saturable absorber. The semiconductor Bloch equations are used to model microscopically the light-matter interaction and the carrier dynamics. Maxwell's equations describe the pulse propagation. Scattering contributions due to higher order correlation effects are approximated using effective rates that are found from a comparison to solving the microscopic scattering equations on the second Born-Markov level. It is shown that the simulations result in the same mode-locked final state whether the system is initialized with a test pulse close to the final mode-locked pulse or the full field build-up from statistical noise is considered. The influence of the cavity design is studied. The longest pulses are found for a standard V-cavity while a linear cavity and a V-cavity with an high reflectivity mirror in the middle are shown to produce similar, much shorter pulses.

  6. Analysis of deformation of aluminum plates under the influence of nano- and microsecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jach, K.; Świerczyński, R.; Ostrowski, R.; Rycyk, A.; CzyŻ, K.; Strzelec, M.; Sarzyński, A.

    2017-10-01

    The paper presents numerical modeling of interaction of strong laser radiation with conventional aluminum sheets, similar to those used in military technology. The theoretical model uses equations of continuum mechanics (equations of hydrodynamics and the equations of mechanics of solid bodies in a cylindrical coordinates r, z), enriched with equations describing the typical effects of high temperature, such as absorption of laser radiation within the Al shield, electronic and radiative thermal conductivity, and energy loss on phase transitions (melting, evaporation, ionization). Semiempirical equations of state were used to describe the properties of material in the conditions of large deformation and the Johnson-Cook's model. The equations were solved using the method of free points developed by one of the authors. Two kinds od laser pulses were considered: microsecond pulse with duration of 200 μs and a low peak power of 10 kW/cm2 (CW laser), and nanosecond pulse with duration of 10 ns and high peak power of 5 GW/cm2 (pulsed laser). The aim of this study was to determine the shapes and temperatures of Al plates under the influence of these pulses for the comparison of the numerical results with future experiments and to verify the possibility to determine the distribution of the energy density of the laser beam on the basis of the plate deformation.

  7. Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens

    NASA Astrophysics Data System (ADS)

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.

    2018-04-01

    Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.

  8. Incorporation of an Energy Equation into a Pulsed Inductive Thruster Performance Model

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Reneau, Jarred P.; Sankaran, Kameshwaran

    2011-01-01

    A model for pulsed inductive plasma acceleration containing an energy equation to account for the various sources and sinks in such devices is presented. The model consists of a set of circuit equations coupled to an equation of motion and energy equation for the plasma. The latter two equations are obtained for the plasma current sheet by treating it as a one-element finite volume, integrating the equations over that volume, and then matching known terms or quantities already calculated in the model to the resulting current sheet-averaged terms in the equations. Calculations showing the time-evolution of the various sources and sinks in the system are presented to demonstrate the efficacy of the model, with two separate resistivity models employed to show an example of how the plasma transport properties can affect the calculation. While neither resistivity model is fully accurate, the demonstration shows that it is possible within this modeling framework to time-accurately update various plasma parameters.

  9. Slow light in saturable absorbers: Progress in the resolution of a controversy

    NASA Astrophysics Data System (ADS)

    Macke, Bruno; Razdobreev, Igor; Ségard, Bernard

    2017-06-01

    There are two opposing models in the analysis of the slow transmission of light pulses through saturable absorbers. The canonical incoherent bleaching model simply explains the slow transmission by combined effects of saturation and of noninstantaneous response of the medium resulting in absorption of the front part of the incident pulse larger than that of its rear. The second model, referred to as the coherent-population-oscillations (CPO) model, considers light beams whose intensity is slightly pulse modulated and attributes the time delay of the transmitted pulse to a reduction of the group velocity. We point out some inconsistencies in the CPO model and show that the two models lie in reality on the same hypotheses, the equations derived in the duly rectified CPO model being local expressions of the integral equations obtained in the incoherent bleaching model. When intense pulses without background are used, the CPO model, based on linearized equations, breaks down. The incoherent bleaching model then predicts that the transmitted light should vanish when the intensity of the incident light is strictly zero. This point is confirmed by the experiments that we have performed on ruby with square-wave incident pulses and we show that the whole shape of the observed pulses agrees with that derived analytically by means of the incoherent bleaching model. We also determine in this model the corresponding evolution of the fluorescence light, which seems to have been evidenced in other experiments.

  10. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  11. FracFit: A Robust Parameter Estimation Tool for Anomalous Transport Problems

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Bolster, D.; Meerschaert, M. M.; Drummond, J. D.; Packman, A. I.

    2016-12-01

    Anomalous transport cannot be adequately described with classical Fickian advection-dispersion equations (ADE). Rather, fractional calculus models may be used, which capture non-Fickian behavior (e.g. skewness and power-law tails). FracFit is a robust parameter estimation tool based on space- and time-fractional models used to model anomalous transport. Currently, four fractional models are supported: 1) space fractional advection-dispersion equation (sFADE), 2) time-fractional dispersion equation with drift (TFDE), 3) fractional mobile-immobile equation (FMIE), and 4) tempered fractional mobile-immobile equation (TFMIE); additional models may be added in the future. Model solutions using pulse initial conditions and continuous injections are evaluated using stable distribution PDFs and CDFs or subordination integrals. Parameter estimates are extracted from measured breakthrough curves (BTCs) using a weighted nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for pulse initial conditions and continuous injections are presented, facilitating the estimation of power-law tails. Two sample applications are analyzed: 1) continuous injection laboratory experiments using natural organic matter and 2) pulse injection BTCs in the Selke river. Model parameters are compared across models and goodness-of-fit metrics are presented, assisting model evaluation. The sFADE and time-fractional models are compared using space-time duality (Baeumer et. al., 2009), which links the two paradigms.

  12. Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation

    NASA Astrophysics Data System (ADS)

    Soto-Crespo, J. M.; Akhmediev, Nail

    2002-12-01

    The complex quintic Swift-Hohenberg equation (CSHE) is a model for describing pulse generation in mode-locked lasers with fast saturable absorbers and a complicated spectral response. Using numerical simulations, we study the single- and two-soliton solutions of the (1+1)-dimensional complex quintic Swift-Hohenberg equations. We have found that several types of stationary and moving composite solitons of this equation are generally stable and have a wider range of existence than for those of the complex quintic Ginzburg-Landau equation. We have also found that the CSHE has a wider variety of localized solutions. In particular, there are three types of stable soliton pairs with π and π/2 phase difference and three different fixed separations between the pulses. Different types of soliton pairs can be generated by changing the parameter corresponding to the nonlinear gain (ɛ).

  13. Simulation of the pulse propagation by the interacting mode parabolic equation method

    NASA Astrophysics Data System (ADS)

    Trofimov, M. Yu.; Kozitskiy, S. B.; Zakharenko, A. D.

    2018-07-01

    A broadband modeling of pulses has been performed by using the previously derived interacting mode parabolic equation through the Fourier synthesis. Test examples on the wedge with the angle 2.86∘ (known as the ASA benchmark) show excellent agreement with the source images method.

  14. Reply to "Comment on 'Defocusing complex short-pulse equation and its multi-dark-soliton solution' ".

    PubMed

    Feng, Bao-Feng; Ling, Liming; Zhu, Zuonong

    2017-08-01

    Our paper [Phys. Rev. E 93, 052227 (2016)PREHBM2470-004510.1103/PhysRevE.93.052227], proposing an integrable model for the propagation of ultrashort pulses, has recently received a Comment by Youssoufa et al. [Phys. Rev. E 96, 026201 (2017)10.1103/PhysRevE.96.026201] about a possible flaw in its derivation. We point out that their claim is incorrect since we have stated explicitly that a term is neglected to derive our model equation in our paper. Furthermore, the integrable model is validated by comparing with the normalized Maxwell equation and other known integrable models. Moreover, we show that a similar approximation has to be performed in deriving the same integrable equation as explained in the Comment.

  15. Comparison of Computed and Measured Performance of a Pulsed Inductive Thruster Operating on Argon Propellant

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sankaran, Kameshwaran; Ritchie, Andrew G.; Peneau, Jarred P.

    2012-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. A recent review of the developmental history of planar-geometry pulsed inductive thrusters, where the coil take the shape of a flat spiral, can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT)[2, 3] and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)[4]. There exists a 1-D pulsed inductive acceleration model that employs a set of circuit equations coupled to a one-dimensional momentum equation. The model was originally developed and used by Lovberg and Dailey[2, 3] and has since been nondimensionalized and used by Polzin et al.[5, 6] to define a set of scaling parameters and gain general insight into their effect on thruster performance. The circuit presented in Fig. 1 provides a description of the electrical coupling between the current flowing in the thruster I1 and the plasma current I2. Recently, the model was upgraded to include an equation governing the deposition of energy into various modes present in a pulsed inductive thruster system (acceleration, magnetic flux generation, resistive heating, etc.)[7]. An MHD description of the plasma energy density evolution was tailored to the thruster geometry by assuming only one-dimensional motion and averaging the plasma properties over the spatial dimensions of the current sheet to obtain an equation for the time-evolution of the total energy. The equation set governing the dynamics of the coupled electrodynamic-current sheet system is composed of first-order, coupled ordinary differential equations that can be easily solved numerically without having to resort to much more complex 2-D finite element plasma simulations.

  16. Multi-Chromatic Ultrashort Pulse Filamentation and Bulk Modification in Dielectrics

    DTIC Science & Technology

    2016-05-05

    multi -pulse fields 7 6 Filamentation and bulk modification by spatio-temporally chirped pulses 8 7 Quantum modeling of photoionization and nonlinear...pulses. (b) two co-propagating pulses of di↵erent frequencies. 4) Develop non-time-averaged multi -chromatic quantum -mechanical models of photoion- ization...very well with those of the extended multi -rate equation using the relaxation approximation, which is much faster. A continued collaboration to also

  17. Numerical study of He/CF{sub 3}I pulsed discharge used to produce iodine atom in chemical oxygen-iodine laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jiao; Wang Yanhui; Wang Dezhen

    2013-04-15

    The pulsed discharge for producing iodine atoms from the alkyl and perfluoroalky iodides (CH{sub 3}I, CF{sub 3}I, etc.) is the most efficient method for achieving the pulse operating mode of a chemical oxygen-iodine laser. In this paper, a one-dimensional fluid model is developed to study the characteristics of pulsed discharge in CF{sub 3}I-He mixture. By solving continuity equation, momentum equation, Poisson equation, Boltzmann equation, and an electric circuit equation, the temporal evolution of discharge current density and various discharge products, especially the atomic iodine, are investigated. The dependence of iodine atom density on discharge parameters is also studied. The resultsmore » show that iodine atom density increases with the pulsed width and pulsed voltage amplitude. The mixture ratio of CF{sub 3}I and helium plays a more significant role in iodine atom production. For a constant voltage amplitude, there exists an optimal mixture ratio under which the maximum iodine atom concentration is achieved. The bigger the applied voltage amplitude is, the higher partial pressure of CF{sub 3}I is needed to obtain the maximum iodine atom concentration.« less

  18. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter.

    PubMed

    Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei

    2013-08-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.

  19. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter

    PubMed Central

    Fovargue, Daniel E.; Mitran, Sorin; Smith, Nathan B.; Sankin, Georgy N.; Simmons, Walter N.; Zhong, Pei

    2013-01-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model. PMID:23927200

  20. New integrable model of propagation of the few-cycle pulses in an anisotropic microdispersed medium

    NASA Astrophysics Data System (ADS)

    Sazonov, S. V.; Ustinov, N. V.

    2018-03-01

    We investigate the propagation of the few-cycle electromagnetic pulses in the anisotropic microdispersed medium. The effects of the anisotropy and spatial dispersion of the medium are created by the two sorts of the two-level atoms. The system of the material equations describing an evolution of the states of the atoms and the wave equations for the ordinary and extraordinary components of the pulses is derived. By applying the approximation of the sudden excitation to exclude the material variables, we reduce this system to the single nonlinear wave equation that generalizes the modified sine-Gordon equation and the Rabelo-Fokas equation. It is shown that this equation is integrable by means of the inverse scattering transformation method if an additional restriction on the parameters is imposed. The multisoliton solutions of this integrable generalization are constructed and investigated.

  1. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    NASA Astrophysics Data System (ADS)

    Su, J.; Liu, L.; Luo, B.; Wang, W.; Jing, F.; Wei, X.; Zhang, X.

    2008-05-01

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  2. Numerical calculation of nonlinear ultrashort laser pulse propagation in transparent Kerr media

    NASA Astrophysics Data System (ADS)

    Arnold, Cord L.; Heisterkamp, Alexander; Ertmer, Wolfgang; Lubatschowski, Holger

    2005-03-01

    In the focal region of tightly focused ultrashort laser pulses, sufficient high intensities to initialize nonlinear ionization processes are easily achieved. Due to these nonlinear ionization processes, mainly multiphoton ionization and cascade ionization, free electrons are generated in the focus resulting in optical breakdown. A model including both nonlinear pulse propagation and plasma generation is used to calculate numerically the interaction of ultrashort pulses with their self-induced plasma in the vicinity of the focus. The model is based on a (3+1)-dimensional nonlinear Schroedinger equation describing the pulse propagation coupled to a system of rate equations covering the generation of free electrons. It is applicable to any transparent Kerr medium, whose linear and nonlinear optical parameters are known. Numerical calculations based on this model are used to understand nonlinear side effects, such as streak formation, occurring in addition to optical breakdown during short pulse refractive eye surgeries like fs-LASIK. Since the optical parameters of water are a good first-order approximation to those of corneal tissue, water is used as model substance. The free electron density distribution induced by focused ultrashort pulses as well as the pulses spatio-temporal behavior are studied in the low-power regime around the critical power for self-focusing.

  3. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  4. Rate equations for nitrogen molecules in ultrashort and intense x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ji -Cai; Berrah, Nora; Cederbaum, Lorenz S.

    Here, we study theoretically the quantum dynamics of nitrogen molecules (N2) exposed to intense and ultrafast x-rays at a wavelength ofmore » $$1.1\\;{\\rm{nm}}$$ ($$1100\\;{\\rm{eV}}$$ photon energy) from the Linac Coherent Light Source (LCLS) free electron laser. Molecular rate equations are derived to describe the intertwined photoionization, decay, and dissociation processes occurring for N2. This model complements our earlier phenomenological approaches, the single-atom, symmetric-sharing, and fragmentation-matrix models of 2012 (J. Chem. Phys. 136 214310). Our rate-equations are used to obtain the effective pulse energy at the sample and the time scale for the dissociation of the metastable dication $${{\\rm{N}}}_{2}^{2+}$$. This leads to a very good agreement between the theoretically and experimentally determined ion yields and, consequently, the average charge states. The effective pulse energy is found to decrease with shortening pulse duration. This variation together with a change in the molecular fragmentation pattern and frustrated absorption—an effect that reduces absorption of x-rays due to (double) core hole formation—are the causes for the drop of the average charge state with shortening LCLS pulse duration discovered previously.« less

  5. Rate equations for nitrogen molecules in ultrashort and intense x-ray pulses

    DOE PAGES

    Liu, Ji -Cai; Berrah, Nora; Cederbaum, Lorenz S.; ...

    2016-03-16

    Here, we study theoretically the quantum dynamics of nitrogen molecules (N2) exposed to intense and ultrafast x-rays at a wavelength ofmore » $$1.1\\;{\\rm{nm}}$$ ($$1100\\;{\\rm{eV}}$$ photon energy) from the Linac Coherent Light Source (LCLS) free electron laser. Molecular rate equations are derived to describe the intertwined photoionization, decay, and dissociation processes occurring for N2. This model complements our earlier phenomenological approaches, the single-atom, symmetric-sharing, and fragmentation-matrix models of 2012 (J. Chem. Phys. 136 214310). Our rate-equations are used to obtain the effective pulse energy at the sample and the time scale for the dissociation of the metastable dication $${{\\rm{N}}}_{2}^{2+}$$. This leads to a very good agreement between the theoretically and experimentally determined ion yields and, consequently, the average charge states. The effective pulse energy is found to decrease with shortening pulse duration. This variation together with a change in the molecular fragmentation pattern and frustrated absorption—an effect that reduces absorption of x-rays due to (double) core hole formation—are the causes for the drop of the average charge state with shortening LCLS pulse duration discovered previously.« less

  6. Modeling and optimization of actively Q-switched Nd-doped quasi-three-level laser

    NASA Astrophysics Data System (ADS)

    Yan, Renpeng; Yu, Xin; Li, Xudong; Chen, Deying; Gao, Jing

    2013-09-01

    The energy transfer upconversion and the ground state absorption are considered in solving the rate equations for an active Q-switched quasi-three-level laser. The dependence of output pulse characters on the laser parameters is investigated by solving the rate equations. The influence of the energy transfer upconversion on the pulsed laser performance is illustrated and discussed. By this model, the optimal parameters could be achieved for arbitrary quasi-three-level Q-switched lasers. An acousto-optical Q-switched Nd:YAG 946 nm laser is constructed and the reliability of the theoretical model is demonstrated.

  7. Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.

    PubMed

    Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre

    2017-10-01

    We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.

  8. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  9. Breathing pulses in the damped-soliton model for nerves

    NASA Astrophysics Data System (ADS)

    Fongang Achu, G.; Moukam Kakmeni, F. M.; Dikande, A. M.

    2018-01-01

    Unlike the Hodgkin-Huxley picture in which the nerve impulse results from ion exchanges across the cell membrane through ion-gate channels, in the so-called soliton model the impulse is seen as an electromechanical process related to thermodynamical phenomena accompanying the generation of the action potential. In this work, account is taken of the effects of damping on the nerve impulse propagation, within the framework of the soliton model. Applying the reductive perturbation expansion on the resulting KdV-Burgers equation, a damped nonlinear Schrödinger equation is derived and shown to admit breathing-type solitary wave solutions. Under specific constraints, these breathing pulse solitons become self-trapped structures in which the damping is balanced by nonlinearity such that the pulse amplitude remains unchanged even in the presence of damping.

  10. Limits of applicability of a two-temperature model under nonuniform heating of metal by an ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, D S; Yakovlev, E B

    The heating of metals (silver and aluminium) by ultrashort laser pulses is analysed proceeding from a spatially nonuniform kinetic equation for the electron distribution function. The electron subsystem thermalisation is estimated in a wide range of absorbed pulse energy density. The limits of applicability are determined for the two-temperature model. (interaction of laser radiation with matter)

  11. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    NASA Astrophysics Data System (ADS)

    Bin Mansoor, Saad; Sami Yilbas, Bekir

    2015-08-01

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron-phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system.

  12. Problems in Nonlinear Acoustics: Pulsed Finite Amplitude Sound Beams, Nonlinear Propagation of Sound in Layered Media, Time Domain Solutions for Focused Sound Beams, Focusing of Sound with an Ellipsoidal Mirror, and Modeling Finite Amplitude Propagation in Waveguides.

    DTIC Science & Technology

    1991-08-01

    performed entirely in the time domain, solves the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wdve equation for pulsed, axisymmetric...finite amplitude sound beams. The KZK equation accounts for the combined effects of nonlinearity, diffraction and thermoviscous absorption on the...those used by Naze Tjotta, Tjotta, and Vefring to produce Fig. 7 of Ref. 4 with a frequency domain numerical solution of the KZK equation. However

  13. Properties of bright solitons in averaged and unaveraged models for SDG fibres

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Kumar, Atul

    1996-04-01

    Using the slowly varying envelope approximation and averaging over the fibre cross-section the evolution equation for optical pulses in semiconductor-doped glass (SDG) fibres is derived from the nonlinear wave equation. Bright soliton solutions of this equation are obtained numerically and their properties are studied and compared with those of the bright solitons in the unaveraged model.

  14. Simulations of terahertz pulse emission from thin-film semiconductor structures

    NASA Astrophysics Data System (ADS)

    Semichaevsky, Andrey

    The photo-Dember effect is the formation of transient electric dipoles due to the interaction of semiconductors with ultrashort optical pulses. Typically the optically-induced dipole moments vary on the ns- or ps- scales, leading to the emission of electromagnetic pulses with terahertz (THz) bandwidths. One of the applications of the photo-Dember effect is a photoconductive dipole antenna (PDA). This work presents a computational model of a PDA based on Maxwell's equations coupled to the Boltzmann transport equation. The latter is solved semiclassically for the doped GaAs using a continuum approach. The emphasis is on the accurate prediction of the emitted THz pulse shape and bandwidth, particularly when materials are doped with a rare-earth metal such as erbium or terbium that serve as carrier recombination centers. Field-dependent carrier mobility is determined from particle-based simulations. Some of the previous experimental results are used as a basis for comparison with our model.

  15. Pulse-wave propagation in straight-geometry vessels for stiffness estimation: theory, simulations, phantoms and in vitro findings.

    PubMed

    Shahmirzadi, Danial; Li, Ronny X; Konofagou, Elisa E

    2012-11-01

    Pulse wave imaging (PWI) is an ultrasound-based method for noninvasive characterization of arterial stiffness based on pulse wave propagation. Reliable numerical models of pulse wave propagation in normal and pathological aortas could serve as powerful tools for local pulse wave analysis and a guideline for PWI measurements in vivo. The objectives of this paper are to (1) apply a fluid-structure interaction (FSI) simulation of a straight-geometry aorta to confirm the Moens-Korteweg relationship between the pulse wave velocity (PWV) and the wall modulus, and (2) validate the simulation findings against phantom and in vitro results. PWI depicted and tracked the pulse wave propagation along the abdominal wall of canine aorta in vitro in sequential Radio-Frequency (RF) ultrasound frames and estimates the PWV in the imaged wall. The same system was also used to image multiple polyacrylamide phantoms, mimicking the canine measurements as well as modeling softer and stiffer walls. Finally, the model parameters from the canine and phantom studies were used to perform 3D two-way coupled FSI simulations of pulse wave propagation and estimate the PWV. The simulation results were found to correlate well with the corresponding Moens-Korteweg equation. A high linear correlation was also established between PWV² and E measurements using the combined simulation and experimental findings (R² =  0.98) confirming the relationship established by the aforementioned equation.

  16. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry andmore » humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.« less

  17. Modeling Sodium Iodide Detector Response Using Parametric Equations

    DTIC Science & Technology

    2013-03-22

    MCNP particle current and pulse height tally functions, backscattering photons are quantified as a function of material thickness and energy...source – detector – scattering medium arrangements were modeled in MCNP using the pulse height tally functions, integrated over a 70 keV – 360 keV energy...15  4.1  MCNP

  18. Non-Linear Acoustic Concealed Weapons Detector

    DTIC Science & Technology

    2006-05-01

    signature analysis 8 the interactions of the beams with concealed objects. The Khokhlov- Zabolotskaya-Kuznetsov ( KZK ) equation is the most widely used...Hamilton developed a finite difference method based on the KZK equation to model pulsed acoustic emissions from axial symmetric sources. Using a...College of William & Mary, we have developed a simulation code using the KZK equation to model non-linear acoustic beams and visualize beam patterns

  19. First principles pulse pile-up balance equation and fast deterministic solution

    NASA Astrophysics Data System (ADS)

    Sabbatucci, Lorenzo; Fernández, Jorge E.

    2017-08-01

    Pulse pile-up (PPU) is an always present effect which introduces a distortion into the spectrum measured with radiation detectors and that worsen with the increasing emission rate of the radiation source. It is fully ascribable to the pulse handling circuitry of the detector and it is not comprised in the detector response function which is well explained by a physical model. The PPU changes both the number and the height of the recorded pulses, which are related, respectively, with the number of detected particles and their energy. In the present work, it is derived a first principles balance equation for second order PPU to obtain a post-processing correction to apply to X-ray measurements. The balance equation is solved for the particular case of rectangular pulse shape using a deterministic iterative procedure for which it will be shown the convergence. The proposed method, deterministic rectangular PPU (DRPPU), requires minimum amount of information and, as example, it is applied to a solid state Si detector with active or off-line PPU suppression circuitry. A comparison shows that the results obtained with this fast and simple approach are comparable to those from the more sophisticated procedure using precise detector pulse shapes.

  20. Porcine skin visible lesion thresholds for near-infrared lasers including modeling at two pulse durations and spot sizes.

    PubMed

    Cain, C P; Polhamus, G D; Roach, W P; Stolarski, D J; Schuster, K J; Stockton, K L; Rockwell, B A; Chen, Bo; Welch, A J

    2006-01-01

    With the advent of such systems as the airborne laser and advanced tactical laser, high-energy lasers that use 1315-nm wavelengths in the near-infrared band will soon present a new laser safety challenge to armed forces and civilian populations. Experiments in nonhuman primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular, and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser safety standards have traditionally been based on experimental data, and there is scant data for this wavelength. We are reporting minimum visible lesion (MVL) threshold measurements using a porcine skin model for two different pulse durations and spot sizes for this wavelength. We also compare our measurements to results from our model based on the heat transfer equation and rate process equation, together with actual temperature measurements on the skin surface using a high-speed infrared camera. Our MVL-ED50 thresholds for long pulses (350 micros) at 24-h postexposure are measured to be 99 and 83 J cm(-2) for spot sizes of 0.7 and 1.3 mm diam, respectively. Q-switched laser pulses of 50 ns have a lower threshold of 11 J cm(-2) for a 5-mm-diam top-hat laser pulse.

  1. Proceedings of the International Cryocooler Conference (7th) Held in Santa Fe, New Mexico on 17-19 November 1992. Part 2,

    DTIC Science & Technology

    1993-04-01

    presentations. The topics included Cryoccoler Testing and Modeling , Space and Long Life Applications, Stirling Cryocoolers , Pulse Tube Refrigerators, Novel...Equation (12), derived in the present study can also be used to develop a linear network model of Stirling 1" or pulse - tube cryocoolers by...Applications, Stirling Cryocoolers , Pulse Tube Refrigerators, Novel Concepts and Component Development, Low Temperature Regenerator Development, and J-T and

  2. Visible lesion thresholds with pulse duration, spot size dependency, and model predictions for 1.54-microm, near-infrared laser pulses penetrating porcine skin.

    PubMed

    Cain, Clarence P; Schuster, Kurt J; Zohner, Justin J; Stockton, Kevin L; Stolarski, David J; Thomas, Robert J; Rockwell, Benjamin A; Roach, William P

    2006-01-01

    Er:glass lasers have been in operation with both long pulses (hundreds of microseconds) and Q-switched pulses (50 to 100 ns) for more than 35 yr. The ocular hazards of this laser were reported early, and it was determined that damage to the eye from the 1.54-microm wavelength occurred mainly in the cornea where light from this wavelength is highly absorbed. Research on skin hazards has been reported only in the past few years because of limited pulse energies from these lasers. Currently, however, with pulse energies in the hundreds of joules, these lasers may be hazardous to the skin in addition to being eye hazards. We report our minimum visible lesion (MVL) threshold measurements for two different pulse durations and three different spot sizes for the 1.54-microm wavelength using porcine skin as an in vivo model. We also compare our measurements to results from our model, based on the heat transfer equation and the rate process equation. Our MVL-ED50 thresholds for the long pulse (600 micros) at 24 h postexposure were measured to be 20, 8.1, and 7.4 J cm(-2) for spot diameters of 0.7, 1.0, and 5 mm, respectively. Q-switched laser pulses of 31 ns had lower ED50 (estimated dose for a 50% probability of laser-induced damage) thresholds of 6.1 J cm(-2) for a 5-mm-diam, top-hat spatial profile laser pulse.

  3. Simulation study on nitrogen vibrational and translational temperature in air breakdown plasma generated by 110 GHz focused microwave pulse

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2017-01-01

    We report a simulation study on nitrogen vibrational and translational temperature in 3 μs pulse 110 GHz microwave air breakdown at pressure from 1 Torr to 100 Torr. The one-dimensional model is based on a self-consistent solution to Helmholtz equation for microwave field, electron density equation, and the average energy equation for electrons, nitrogen vibrational, and translational degrees. The breakdown threshold is calculated from the transmitted microwave profile, and it agrees well with that from experiment. The spatio-temporal characteristics of vibrational and translational temperature are shown, and the peak values at the end of pulse are compared to the results fitted from optical emission spectroscopy. The dependences of vibrational and translational temperature on normalized microwave fields and gas pressure are investigated, and the underlying mechanisms are unveiled.

  4. The cubic-quintic-septic complex Ginzburg-Landau equation formulation of optical pulse propagation in 3D doped Kerr media with higher-order dispersions

    NASA Astrophysics Data System (ADS)

    Djoko, Martin; Kofane, T. C.

    2018-06-01

    We investigate the propagation characteristics and stabilization of generalized-Gaussian pulse in highly nonlinear homogeneous media with higher-order dispersion terms. The optical pulse propagation has been modeled by the higher-order (3+1)-dimensional cubic-quintic-septic complex Ginzburg-Landau [(3+1)D CQS-CGL] equation. We have used the variational method to find a set of differential equations characterizing the variation of the pulse parameters in fiber optic-links. The variational equations we obtained have been integrated numerically by the means of the fourth-order Runge-Kutta (RK4) method, which also allows us to investigate the evolution of the generalized-Gaussian beam and the pulse evolution along an optical doped fiber. Then, we have solved the original nonlinear (3+1)D CQS-CGL equation with the split-step Fourier method (SSFM), and compare the results with those obtained, using the variational approach. A good agreement between analytical and numerical methods is observed. The evolution of the generalized-Gaussian beam has shown oscillatory propagation, and bell-shaped dissipative optical bullets have been obtained under certain parameter values in both anomalous and normal chromatic dispersion regimes. Using the natural control parameter of the solution as it evolves, named the total energy Q, our numerical simulations reveal the existence of 3D stable vortex dissipative light bullets, 3D stable spatiotemporal optical soliton, stationary and pulsating optical bullets, depending on the used initial input condition (symmetric or elliptic).

  5. The Role of Additional Pulses in Electropermeabilization Protocols

    PubMed Central

    Suárez, Cecilia; Soba, Alejandro; Maglietti, Felipe; Olaiz, Nahuel; Marshall, Guillermo

    2014-01-01

    Electropermeabilization (EP) based protocols such as those applied in medicine, food processing or environmental management, are well established and widely used. The applied voltage, as well as tissue electric conductivity, are of utmost importance for assessing final electropermeabilized area and thus EP effectiveness. Experimental results from literature report that, under certain EP protocols, consecutive pulses increase tissue electric conductivity and even the permeabilization amount. Here we introduce a theoretical model that takes into account this effect in the application of an EP-based protocol, and its validation with experimental measurements. The theoretical model describes the electric field distribution by a nonlinear Laplace equation with a variable conductivity coefficient depending on the electric field, the temperature and the quantity of pulses, and the Penne's Bioheat equation for temperature variations. In the experiments, a vegetable tissue model (potato slice) is used for measuring electric currents and tissue electropermeabilized area in different EP protocols. Experimental measurements show that, during sequential pulses and keeping constant the applied voltage, the electric current density and the blackened (electropermeabilized) area increase. This behavior can only be attributed to a rise in the electric conductivity due to a higher number of pulses. Accordingly, we present a theoretical modeling of an EP protocol that predicts correctly the increment in the electric current density observed experimentally during the addition of pulses. The model also demonstrates that the electric current increase is due to a rise in the electric conductivity, in turn induced by temperature and pulse number, with no significant changes in the electric field distribution. The EP model introduced, based on a novel formulation of the electric conductivity, leads to a more realistic description of the EP phenomenon, hopefully providing more accurate predictions of treatment outcomes. PMID:25437512

  6. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  7. Defocusing complex short-pulse equation and its multi-dark-soliton solution.

    PubMed

    Feng, Bao-Feng; Ling, Liming; Zhu, Zuonong

    2016-05-01

    In this paper, we propose a complex short-pulse equation of both focusing and defocusing types, which governs the propagation of ultrashort pulses in nonlinear optical fibers. It can be viewed as an analog of the nonlinear Schrödinger (NLS) equation in the ultrashort-pulse regime. Furthermore, we construct the multi-dark-soliton solution for the defocusing complex short-pulse equation through the Darboux transformation and reciprocal (hodograph) transformation. One- and two-dark-soliton solutions are given explicitly, whose properties and dynamics are analyzed and illustrated.

  8. Numerical developments for short-pulsed Near Infra-Red laser spectroscopy. Part I: direct treatment

    NASA Astrophysics Data System (ADS)

    Boulanger, Joan; Charette, André

    2005-03-01

    This two part study is devoted to the numerical treatment of short-pulsed laser near infra-red spectroscopy. The overall goal is to address the possibility of numerical inverse treatment based on a recently developed direct model to solve the transient radiative transfer equation. This model has been constructed in order to incorporate the last improvements in short-pulsed laser interaction with semi-transparent media and combine a discrete ordinates computing of the implicit source term appearing in the radiative transfer equation with an explicit treatment of the transport of the light intensity using advection schemes, a method encountered in reactive flow dynamics. The incident collimated beam is analytically solved through Bouger Beer Lambert extinction law. In this first part, the direct model is extended to fully non-homogeneous materials and tested with two different spatial schemes in order to be adapted to the inversion methods presented in the following second part. As a first point, fundamental methods and schemes used in the direct model are presented. Then, tests are conducted by comparison with numerical simulations given as references. In a third and last part, multi-dimensional extensions of the code are provided. This allows presentation of numerical results of short pulses propagation in 1, 2 and 3D homogeneous and non-homogeneous materials given some parametrical studies on medium properties and pulse shape. For comparison, an integral method adapted to non-homogeneous media irradiated by a pulsed laser beam is also developed for the 3D case.

  9. Uni-directional optical pulses, temporal propagation, and spatial and temporal dispersion

    NASA Astrophysics Data System (ADS)

    Kinsler, P.

    2018-02-01

    I derive a temporally propagated uni-directional optical pulse equation valid in the few cycle limit. Temporal propagation is advantageous because it naturally preserves causality, unlike the competing spatially propagated models. The exact coupled bi-directional equations that this approach generates can be efficiently approximated down to a uni-directional form in cases where an optical pulse changes little over one optical cycle. They also permit a direct term-to-term comparison of the exact bi-directional theory with its corresponding approximate uni-directional theory. Notably, temporal propagation handles dispersion in a different way, and this difference serves to highlight existing approximations inherent in spatially propagated treatments of dispersion. Accordingly, I emphasise the need for future work in clarifying the limitations of the dispersion conversion required by these types of approaches; since the only alternative in the few cycle limit may be to resort to the much more computationally intensive full Maxwell equation solvers.

  10. Development and Exploration of the Core-Corona Model of Imploding Plasma Loads.

    DTIC Science & Technology

    1980-07-01

    cal relaxation processes can maintain an isothermal system . The final constraint in the original core-corona model equations was that of quasi-static...on the energy balance. The detailed physics of these upgrades and their improvement of the quantitative modeling of the system are discussed in the...participate in lengthening the radiaton pulse. 18 If such motion is favored in these systems , the impact on the radiation pulse length could be

  11. Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Biswas, Anjan; Milović, Daniela; Belić, Milivoj

    2016-05-01

    We consider a high-order nonlinear Schrödinger equation with competing cubic-quintic-septic nonlinearities, non-Kerr quintic nonlinearity, self-steepening, and self-frequency shift. The model describes the propagation of ultrashort (femtosecond) optical pulses in highly nonlinear optical fibers. A new ansatz is adopted to obtain nonlinear chirp associated with the propagating femtosecond soliton pulses. It is shown that the resultant elliptic equation of the problem is of high order, contains several new terms and is more general than the earlier reported results, thus providing a systematic way to find exact chirped soliton solutions of the septic model. Novel soliton solutions, including chirped bright, dark, kink and fractional-transform soliton solutions are obtained for special choices of parameters. Furthermore, we present the parameter domains in which these optical solitons exist. The nonlinear chirp associated with each of the solitonic solutions is also determined. It is shown that the chirping is proportional to the intensity of the wave and depends on higher-order nonlinearities. Of special interest is the soliton solution of the bright and dark type, determined for the general case when all coefficients in the equation have nonzero values. These results can be useful for possible chirped-soliton-based applications of highly nonlinear optical fiber systems.

  12. Analysis of fatigue characteristic of sm-substituted DyFeCo magneto-optical films

    NASA Astrophysics Data System (ADS)

    Li, Zuoyi; Wang, Ke; Yang, Xiaofei; Li, Zhen; Lin, Gengqi

    2003-04-01

    The fatigue characteristic of the amorphous Sm-substituted DyFeCo magneto-optical alloy films fabricated by R.F. magnetron sputtering method were investigated by accelerated pulse training method under the condition of magnetic field modulation plus laser pulse irradiation. The evaluation of fatigue characteristic is determined from the static magneto-optical signal readout level after several writing/erasing repetitions compared with initial level. The experimental dependence of fatigue characteristics is in good agreement with the model based on the JMA equation. Furthermore, the Avrami factor can be derived from the model. Experimental results show that it is very effective in studying the writing/erasing ability of magneto-optical films employed the method of combined the accelerated pulse training with the JMA equation and Sm-substituted HRE-TM alloys can act as a practical medium for MO storage at short wavelength.

  13. Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave.

    PubMed

    Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling

    2017-07-01

    This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  14. Breather management in the derivative nonlinear Schrödinger equation with variable coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com; Texas A&M University at Qatar, P.O. Box 23874 Doha; Belić, Milivoj

    2015-04-15

    We investigate breather solutions of the generalized derivative nonlinear Schrödinger (DNLS) equation with variable coefficients, which is used in the description of femtosecond optical pulses in inhomogeneous media. The solutions are constructed by means of the similarity transformation, which reduces a particular form of the generalized DNLS equation into the standard one, with constant coefficients. Examples of bright and dark breathers of different orders, that ride on finite backgrounds and may be related to rogue waves, are presented. - Highlights: • Exact solutions of a generalized derivative NLS equation are obtained. • The solutions are produced by means of amore » transformation to the usual integrable equation. • The validity of the solutions is verified by comparing them to numerical counterparts. • Stability of the solutions is checked by means of direct simulations. • The model applies to the propagation of ultrashort pulses in optical media.« less

  15. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.

    PubMed

    Feng, Bao-Feng; Malomed, Boris A; Kawahara, Takuji

    2002-11-01

    We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms. The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two steady-state solitons from their continuous family existing in the absence of the dissipative terms (the latter family is found in an exact analytical form, and is numerically demonstrated to be stable). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions, for both the physical and phenomenological models.

  16. Pulsed plane wave analytic solutions for generic shapes and the validation of Maxwell's equations solvers

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Vastano, John A.; Lomax, Harvard

    1992-01-01

    Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.

  17. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: Comparison of atomistic and continual approaches

    NASA Astrophysics Data System (ADS)

    Fokin, Vladimir B.; Povarnitsyn, Mikhail E.; Levashov, Pavel R.

    2017-02-01

    We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.

  18. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  19. Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction.

    PubMed

    López Molina, Juan A; Rivera, María J; Trujillo, Macarena; Berjano, Enrique J

    2009-04-01

    The objectives of this study were to model the temperature progress of a pulsed radiofrequency (RF) power during RF heating of biological tissue, and to employ the hyperbolic heat transfer equation (HHTE), which takes the thermal wave behavior into account, and compare the results to those obtained using the heat transfer equation based on Fourier theory (FHTE). A theoretical model was built based on an active spherical electrode completely embedded in the biological tissue, after which HHTE and FHTE were analytically solved. We found three typical waveforms for the temperature progress depending on the relations between the dimensionless duration of the RF pulse delta(a) and the expression square root of lambda(rho-1), with lambda as the dimensionless thermal relaxation time of the tissue and rho as the dimensionless position. In the case of a unique RF pulse, the temperature at any location was the result of the overlapping of two different heat sources delayed for a duration delta(a) (each heat source being produced by a RF pulse of limitless duration). The most remarkable feature in the HHTE analytical solution was the presence of temperature peaks traveling through the medium at a finite speed. These peaks not only occurred during the RF power switch-on period but also during switch off. Finally, a physical explanation for these temperature peaks is proposed based on the interaction of forward and reverse thermal waves. All-purpose analytical solutions for FHTE and HHTE were obtained during pulsed RF heating of biological tissues, which could be used for any value of pulsing frequency and duty cycle.

  20. Astigmatism transfer phenomena in the optical parametric amplification process

    NASA Astrophysics Data System (ADS)

    Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin

    2017-01-01

    We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.

  1. Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

    NASA Astrophysics Data System (ADS)

    Eisfeld, Eugen; Roth, Johannes

    2018-05-01

    Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  2. Chirped or time modulated excitation compared to short pulses for photoacoustic imaging in acoustic attenuating media

    NASA Astrophysics Data System (ADS)

    Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.

    2018-02-01

    In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.

  3. Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2015-10-01

    Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.

  4. Electromagnetic pulses, localized and causal

    NASA Astrophysics Data System (ADS)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  5. Model of THz Magnetization Dynamics.

    PubMed

    Bocklage, Lars

    2016-03-09

    Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated.

  6. A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse

    DOE PAGES

    Shi, E. L.; Hakim, A. H.; Hammett, G. W.

    2015-02-03

    An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cellequations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheathboundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. Finally, this test problem also helps illustratemore » some of the physics contained in the Hamiltonian form of the gyrokineticequations and some of the numerical challenges in developing an edge gyrokinetic code.« less

  7. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    NASA Astrophysics Data System (ADS)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  8. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity

    NASA Astrophysics Data System (ADS)

    Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann

    2018-04-01

    Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.

  9. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1993-01-01

    The object of this effort is to develop code to enable the accurate prediction of the performance of pulsed transversely excited (TE) CO2 lasers prior to their construction. This is of particular benefit to the NASA Laser Atmospheric Wind Sounder (LAWS) project. A benefit of the completed code is that although developed specifically for the pulsed CO2 laser much of the code can be modified to model other laser systems of interest to the lidar community. A Boltzmann equation solver has been developed which enables the electron excitation rates for the vibrational levels of CO2 and N2, together with the electron ionization and attachment coefficients to be determined for any CO2 laser gas mixture consisting of a combination of CO2, N2, CO, He and CO. The validity of the model has been verified by comparison with published material. The results from the Boltzmann equation solver have been used as input to the laser kinetics code which is currently under development. A numerical code to model the laser induced medium perturbation (LIMP) arising from the relaxation of the lower laser level has been developed and used to determine the effect of LIMP on the frequency spectrum of the LAWS laser output pulse. The enclosed figures show representative results for a laser operating at 0.5 atm. with a discharge cross-section of 4.5 cm to produce a 20 J pulse with aFWHM of 3.1 microns. The first four plots show the temporal evolution of the laser pulse power, energy evolution, LIMP frequency chirp and electric field magnitude. The electric field magnitude is taken by beating the calculated complex electric field and beating it with a local oscillator signal. The remaining two figures show the power spectrum and energy distribution in the pulse as a function of the varying pulse frequency. The LIMP theory has been compared with experimental data from the NOAA Windvan Lidar and has been found to be in good agreement.

  10. Shock-wave generation and bubble formation in the retina by lasers

    NASA Astrophysics Data System (ADS)

    Sun, Jinming; Gerstman, Bernard S.; Li, Bin

    2000-06-01

    The generation of shock waves and bubbles has been experimentally observed due to absorption of sub-nanosecond laser pulses by melanosomes, which are found in retinal pigment epithelium cells. Both the shock waves and bubbles may be the cause of retinal damage at threshold fluence levels. The theoretical modeling of shock wave parameters such as amplitude, and bubble size, is a complicated problem due to the non-linearity of the phenomena. We have used two different approaches for treating pressure variations in water: the Tait Equation and a full Equation Of State (EOS). The Tait Equation has the advantage of being developed specifically to model pressure variations in water and is therefore simpler, quicker computationally, and allows the liquid to sustain negative pressures. Its disadvantage is that it does not allow for a change of phase, which prevents modeling of bubbles and leads to non-physical behavior such as the sustaining of ridiculously large negative pressures. The full EOS treatment includes more of the true thermodynamic behavior, such as phase changes that produce bubbles and avoids the generation of large negative pressures. Its disadvantage is that the usual stable equilibrium EOS allows for no negative pressures at all, since tensile stress is unstable with respect to a transition to the vapor phase. In addition, the EOS treatment requires longer computational times. In this paper, we compare shock wave generation for various laser pulses using the two different mathematical approaches and determine the laser pulse regime for which the simpler Tait Equation can be used with confidence. We also present results of our full EOS treatment in which both shock waves and bubbles are simultaneously modeled.

  11. Theoretical and experimental investigations on the dynamic and thermodynamic characteristics of the linear compressor for the pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Dang, H. Z.; Tan, J.; Bao, D.; Zhao, Y. B.; Qian, G. Z.

    2015-12-01

    Theoretical and experimental investigations on the dynamic and thermodynamic characteristics of a linear compressor incorporating the thermodynamic characteristics of the inertance tube pulse tube cold finger have been made. Both the compressor and cold finger are assumed as a one-dimensional thermodynamic model. The governing equations of the thermodynamic characteristics of the working gas are summarized, and the effects of the cooling performance on the working gas in the compression space are discussed. Based on the analysis of the working gas, the governing equations of the dynamic and thermodynamic characteristics of the compressor are deduced, and then the principles of achieving the optimal performance of the compressor are discussed in detail. Systematic experimental investigations are conducted on a developed moving-coil linear compressor which drives a pulse tube cold finger, which indicate the general agreement with the simulated results, and thus verify the rationality of the theoretical model and analyses.

  12. Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Peng, Bangfa; Li, Ming; Zhang, Yafang; Hu, Zhaoji

    2016-02-01

    A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge (DBD) using parallel-plate reactor in air. The electron energy conservation equation is coupled to the electron continuity equation, the heavy species continuity equation, and Poisson's equation for a better description. The reliability of the model is experimentally confirmed. The model can be used to predict the temporal and spatial evolution of species, as well as streamer propagation. The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche. Streamer propagation velocity is about 5.26 × 104 m/s from anode to cathode in the simulated condition. The primary positive ion, negative ion, and excited species are O2+, O3- and O2(1Δg) in pulsed DBD in air, respectively. N2O has the largest density among nitrogen oxides. e and N2+ densities in the streamer head increase gradually to maximum values with the development of the streamer. Meanwhile, the O2+, O, O3, N2(A3Σ) and N2O densities reach maximum values in the vicinity of the anode. supported by National Natural Science Foundation of China (Nos. 51366012 and 11105067), Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan of China (No. 20133BCB23008), Natural Science Foundation of Jiangxi, China (No. 20151BAB206047) and Jiangxi Province Higher School Science and Technology Landing Plan of China (No. KJLD-14015)

  13. Scale model experimentation: using terahertz pulses to study light scattering.

    PubMed

    Pearce, Jeremy; Mittleman, Daniel M

    2002-11-07

    We describe a new class of experiments involving applications of terahertz radiation to problems in biomedical imaging and diagnosis. These involve scale model measurements, in which information can be gained about pulse propagation in scattering media. Because of the scale invariance of Maxwell's equations, these experiments can provide insight for researchers working on similar problems at shorter wavelengths. As a first demonstration, we measure the propagation constants for pulses in a dense collection of spherical scatterers, and compare with the predictions of the quasi-crystalline approximation. Even though the fractional volume in our measurements exceeds the limit of validity of this model, we find that it still predicts certain features of the propagation with reasonable accuracy.

  14. Modified Johnson-Cook model incorporated with electroplasticity for uniaxial tension under a pulsed electric current

    NASA Astrophysics Data System (ADS)

    Kim, Moon-Jo; Jeong, Hye-Jin; Park, Ju-Won; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    An empirical expression describing the electroplastic deformation behavior is suggested based on the Johnson-Cook (JC) model by adding several functions to consider both thermal and athermal electric current effects. Tensile deformation behaviors are carried out for an AZ31 magnesium alloy and an Al-Mg-Si alloy under pulsed electric current at various current densities with a fixed duration of electric current. To describe the flow curves under electric current, a modified JC model is proposed to take the electric current effect into account. Phenomenological descriptions of the adopted parameters in the equation are made. The modified JC model suggested in the present study is capable of describing the tensile deformation behaviors under pulsed electric current reasonably well.

  15. Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations

    NASA Astrophysics Data System (ADS)

    Zhang, Linghai

    2017-10-01

    The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.

  16. Numerical modeling of Harmonic Imaging and Pulse Inversion fields

    NASA Astrophysics Data System (ADS)

    Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis

    2003-10-01

    Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.

  17. Prototyping method for Bragg-type atom interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, Brandon; Krygier, Michael; Heward, Jeffrey

    2011-10-15

    We present a method for rapid modeling of new Bragg ultracold atom-interferometer (AI) designs useful for assessing the performance of such interferometers. The method simulates the overall effect on the condensate wave function in a given AI design using two separate elements. These are (1) modeling the effect of a Bragg pulse on the wave function and (2) approximating the evolution of the wave function during the intervals between the pulses. The actual sequence of these pulses and intervals is then followed to determine the approximate final wave function from which the interference pattern can be calculated. The exact evolutionmore » between pulses is assumed to be governed by the Gross-Pitaevskii (GP) equation whose solution is approximated using a Lagrangian variational method to facilitate rapid estimation of performance. The method presented here is an extension of an earlier one that was used to analyze the results of an experiment [J. E. Simsarian et al., Phys. Rev. Lett. 85, 2040 (2000)], where the phase of a Bose-Einstein condensate was measured using a Mach-Zehnder-type Bragg AI. We have developed both 1D and 3D versions of this method and we have determined their validity by comparing their predicted interference patterns with those obtained by numerical integration of the 1D GP equation and with the results of the above experiment. We find excellent agreement between the 1D interference patterns predicted by this method and those found by the GP equation. We show that we can reproduce all of the results of that experiment without recourse to an ad hoc velocity-kick correction needed by the earlier method, including some experimental results that the earlier model did not predict. We also found that this method provides estimates of 1D interference patterns at least four orders-of-magnitude faster than direct numerical solution of the 1D GP equation.« less

  18. Collapse of ultrashort spatiotemporal pulses described by the cubic generalized Kadomtsev-Petviashvili equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leblond, Herve; Kremer, David; Mihalache, Dumitru

    2010-03-15

    By using a reductive perturbation method, we derive from Maxwell-Bloch equations a cubic generalized Kadomtsev-Petviashvili equation for ultrashort spatiotemporal optical pulse propagation in cubic (Kerr-like) media without the use of the slowly varying envelope approximation. We calculate the collapse threshold for the propagation of few-cycle spatiotemporal pulses described by the generic cubic generalized Kadomtsev-Petviashvili equation by a direct numerical method and compare it to analytic results based on a rigorous virial theorem. Besides, typical evolution of the spectrum (integrated over the transverse spatial coordinate) is given and a strongly asymmetric spectral broadening of ultrashort spatiotemporal pulses during collapse is evidenced.

  19. Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.

    NASA Astrophysics Data System (ADS)

    Averkiou, Michalakis Andrea

    Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.

  20. Modeling of the multilevel conduction characteristics and fatigue profile of Ag/La1/3Ca2/3MnO3/Pt structures using a compact memristive approach

    NASA Astrophysics Data System (ADS)

    Miranda, E.; Román Acevedo, W.; Rubi, D.; Lüders, U.; Granell, P.; Suñé, J.; Levy, P.

    2017-05-01

    The hysteretic conduction characteristics and fatigue profile of La1/3Ca2/3MnO3 (LCMO)-based memristive devices were investigated. The oxide films were grown by pulsed laser deposition (PLD) and sandwiched between Ag and Pt electrodes. The devices exhibit bipolar resistive switching (RS) effect with well-defined intermediate conduction states that arise from partial SET and RESET events. The current-voltage curves are modeled and simulated using a compact memristive approach. Two equations are considered: one for the electron transport based on the double-diode equation and the other for the memory state of the device driven by the play operator with logistic ridge functions. An expression that accounts for the remnant resistance of the device is obtained after simplifying the model equations in the low-voltage limit. The role played by the power dissipation in the LCMO reset dynamics as well as the asymmetrical reduction of the resistance window caused by long trains of switching pulses are discussed.

  1. Modeling Pulse Transmission in the Monterey Bay Using Parabolic Equation Methods

    DTIC Science & Technology

    1991-12-01

    Collins 9-13 was chosen for this purpose due its energy conservation scheme , and its ability to efficiently incorporate higher order terms in its...pressure field generated by the PE model into normal modes. Additionally, this process provides increased physical understanding of mode coupling and...separation of variables (i.e. normal modes or fast field), as well as pure numerical schemes such as the parabolic equation methods, can be used. However, as

  2. Soliton evolution and radiation loss for the sine-Gordon equation.

    PubMed

    Smyth, N F; Worthy, A L

    1999-08-01

    An approximate method for describing the evolution of solitonlike initial conditions to solitons for the sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine ordinary differential equations governing the evolution of the pulse parameters. The pulse evolves to a steady soliton by shedding dispersive radiation. The effect of this radiation is determined by examining the linearized sine-Gordon equation and loss terms are added to the variational equations derived from the averaged Lagrangian by using the momentum and energy conservation equations for the sine-Gordon equation. Solutions of the resulting approximate equations, which include loss, are found to be in good agreement with full numerical solutions of the sine-Gordon equation.

  3. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  4. Dynamics of short-pulse generation via spectral filtering from intensely excited gain-switched 1.55-μm distributed-feedback laser diodes.

    PubMed

    Chen, Shaoqiang; Yoshita, Masahiro; Sato, Aya; Ito, Takashi; Akiyama, Hidefumi; Yokoyama, Hiroyuki

    2013-05-06

    Picosecond-pulse-generation dynamics and pulse-width limiting factors via spectral filtering from intensely pulse-excited gain-switched 1.55-μm distributed-feedback laser diodes were studied. The spectral and temporal characteristics of the spectrally filtered pulses indicated that the short-wavelength component stems from the initial part of the gain-switched main pulse and has a nearly linear down-chirp of 5.2 ps/nm, whereas long-wavelength components include chirped pulse-lasing components and steady-state-lasing components. Rate-equation calculations with a model of linear change in refractive index with carrier density explained the major features of the experimental results. The analysis of the expected pulse widths with optimum spectral widths was also consistent with the experimental data.

  5. A Heuristic Fast Method to Solve the Nonlinear Schroedinger Equation in Fiber Bragg Gratings with Arbitrary Shape Input Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emami, F.; Hatami, M.; Keshavarz, A. R.

    2009-08-13

    Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.

  6. Relativistic laser-plasma interactions in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-04-01

    We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.

  7. Effect of a Second, Parallel Capacitor on the Performance of a Pulse Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Balla, Joseph V.

    2010-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and is then discharged through an inductive coil that couples energy into the propellant, ionizing and accelerating it to produce thrust. A model that employs a set of circuit equations (as illustrated in Fig. 1a) coupled to a one-dimensional momentum equation has been previously used by Lovberg and Dailey [1] and Polzin et al. [2-4] to model the plasma acceleration process in pulsed inductive thrusters. In this paper an extra capacitor, inductor, and resistor are added to the system in the manner illustrated in the schematic shown in Fig. 1b. If the second capacitor has a smaller value than the initially charged capacitor, it can serve to increase the current rise rate through the inductive coil. Increasing the current rise rate should serve to better ionize the propellant. The equation of motion is solved to find the effect of an increased current rise rate on the acceleration process. We examine the tradeoffs between enhancing the breakdown process (increasing current rise rate) and altering the plasma acceleration process. These results provide insight into the performance of modified circuits in an inductive thruster, revealing how this design permutation can affect an inductive thruster's performance.

  8. Simulation of the Transverse Injection of a Pulsed Jet from the Surface of a Flat Plate into a Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emelyanov, V. N.; Yakovchuk, M. S.

    2017-11-01

    The transverse injection of a pulsed jet into a supersonic flow for thrust vectoring in solid rocket motors is investigated. The gas flow through the injection nozzle is controlled by a piston which performs reciprocating motion. Reynolds-averaged Navier-Stokes equations and the ( k- ɛ) turbulence model equations are discretized using the finite volume method and moving grids. The pressure distributions on the plate surface obtained using various approaches to the description of the flow field and difference schemes are compared. The solution obtained for the case of injection of a pulsed jet is compared with the solution for the case where a valve prevents gas flow through the injection nozzle. The dependence of the control force produced by gas injection on time is investigated.

  9. Pulsed Inductive Plasma Acceleration: Performance Optimization Criteria

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2014-01-01

    Optimization criteria for pulsed inductive plasma acceleration are developed using an acceleration model consisting of a set of coupled circuit equations describing the time-varying current in the thruster and a one-dimensional momentum equation. The model is nondimensionalized, resulting in the identification of several scaling parameters that are varied to optimize the performance of the thruster. The analysis reveals the benefits of underdamped current waveforms and leads to a performance optimization criterion that requires the matching of the natural period of the discharge and the acceleration timescale imposed by the inertia of the working gas. In addition, the performance increases when a greater fraction of the propellant is initially located nearer to the inductive acceleration coil. While the dimensionless model uses a constant temperature formulation in calculating performance, the scaling parameters that yield the optimum performance are shown to be relatively invariant if a self-consistent description of energy in the plasma is instead used.

  10. Modeling particle injections during magnetospheric substorm by a propagating earthward electromagnetic pulse.

    NASA Astrophysics Data System (ADS)

    Kalugin, G. A.; Kabin, K.; Donovan, E.; Spanswick, E.

    2016-12-01

    During substorm expansion phase the electrons and ions with energies of up to 100 keV appear in the near-Earth magnetotail. Often, this increase occurs simultaneously for a broad range of particle energies; such events are called dispersionless injections (DIs). Explanations of DIs usually relay on some form of an earthward propagating electromagnetic pulse, which is capable of effectively energizing an initial distribution of electrons and ions. Most of the previous models of such pulses were developed for the equatorial plane only. We propose a new model of an electromagnetic pulse which is two-dimensional in the meridional plane. Electric and magnetic fields in the pulse are calculated self-consistently and satisfy Maxwell's equations. We use realistic time-independent stretched magnetic field as the background. Our model has several adjustable parameters, such as the speed of the pulse propagation, its amplitude and spatial extent, which makes it versatile enough to investigate effects of the pulse characteristics on the particle energization. We present and discuss several examples of particle energization in our model and find that in some cases the energies of the seed electrons can increase by a factor of 10 or more. Two-dimensional nature of our model allows us to visualize the motion of the field lines in the meridional plane associated with the travelling electromagnetic pulse and to calculate the ionospheric footprints of the particle dynamics in the equatorial plane.

  11. Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 2. High-frequency effects and optical coupling.

    PubMed

    Romariz, Alexandre R S; Wagner, Kelvin H

    2007-07-20

    The operation of an optoelectronic dynamic neural model implementation is extended to higher frequencies. A simplified model of thermal effects in vertical-cavity surface-emitting lasers correctly predicts the qualitative changes in the nonlinear mapping implementation with frequency. Experiments and simulations show the expected resonance properties of this model neuron, along with the possibility of other dynamic effects in addition to the ones observed in the original FitzHugh-Nagumo equations. Results of optical coupling between two similar pulsing artificial neurons are also presented.

  12. Cellular Automata for Spatiotemporal Pattern Formation from Reaction-Diffusion Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Ohmori, Shousuke; Yamazaki, Yoshihiro

    2016-01-01

    Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.

  13. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber.

    PubMed

    Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude

    2017-03-01

    The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2  ≤ mean dose rate ≤ 10 3 Gy/s, 10 2  ≤ mean dose rate within pulse ≤ 10 7  Gy/s, 10 -4  ≤ dose-per-pulse ≤ 10 1  Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1  Gy, respectively). An empirical model of the ion recombination in the chamber was found by fitting a logistic function to the data. The ion collection efficiency of the Advanced Markus ionization chamber decreases for measurements in electron beams with increasingly higher dose-per-pulse. However, this chamber is still functional for dose measurements in beams with dose-per-pulse values up toward and above 10 Gy, if the ion recombination is taken into account. Our results show that existing models give a less-than-accurate description of the observed ion recombination. This motivates the use of the presented empirical model for measurements with the Advanced Markus chamber in high dose-per-pulse electron beams, as it enables accurate absorbed dose measurements (uncertainty estimation: 2.8-4.0%, k = 1). The model depends on the dose-per-pulse in the beam, and it is also influenced by the polarizing chamber voltage, with increasing ion recombination with a lowering of the voltage. © 2017 American Association of Physicists in Medicine.

  14. Hydrodynamic model for expansion and collisional relaxation of x-ray laser-excited multi-component nanoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Vikrant, E-mail: vikrant.saxena@desy.de; Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg; Ziaja, Beata, E-mail: ziaja@mail.desy.de

    The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundred femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons, and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasmas. The model equations are derived by taking the moments ofmore » the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case, expanding spherical Ar nanoplasma, are obtained. With this model, we complete the two-step approach to simulate x-ray created nanoplasmas, enabling computationally efficient simulations of their picosecond dynamics. Moreover, the hydrodynamic framework including collisional processes can be easily extended for other source terms and then applied to follow relaxation of any finite non-isothermal multi-component nanoplasma with its components relaxed into local thermodynamic equilibrium.« less

  15. Electromagnetic or other directed energy pulse launcher

    DOEpatents

    Ziolkowski, Richard W.

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  16. Dynamics of a prey-predator system under Poisson white noise excitation

    NASA Astrophysics Data System (ADS)

    Pan, Shan-Shan; Zhu, Wei-Qiu

    2014-10-01

    The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is investigated by using the stochastic averaging method. The averaged generalized Itô stochastic differential equation and Fokker-Planck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter ɛ2 s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.

  17. Model dynamics for quantum computing

    NASA Astrophysics Data System (ADS)

    Tabakin, Frank

    2017-08-01

    A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.

  18. Stability of the mode-locking regime in tapered quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Bardella, P.; Drzewietzki, L.; Rossetti, M.; Weber, C.; Breuer, S.

    2018-02-01

    We study numerically and experimentally the role of the injection current and reverse bias voltage on the pulse stability of tapered, passively mode-locked, Quantum Dot (QD) lasers. By using a multi-section delayed differential equation and introducing in the model the QD inhomogenous broadening, we are able to predict the onset of leading and trailing edge instabilities in the emitted pulse trains and to identify specific trends of stability in dependence on the laser biasing conditions. The numerical results are confirmed experimentally trough amplitude and timing stability analysis of the pulses.

  19. On beam models and their paraxial approximation

    NASA Astrophysics Data System (ADS)

    Waters, W. J.; King, B.

    2018-01-01

    We derive focused laser pulse solutions to the electromagnetic wave equation in vacuum. After reproducing beam and pulse expressions for the well-known paraxial Gaussian and axicon cases, we apply the method to analyse a laser beam with Lorentzian transverse momentum distribution. Whilst a paraxial approach has some success close to the focal axis and within a Rayleigh range of the focal spot, we find that it incorrectly predicts the transverse fall-off typical of a Lorentzian. Our vector-potential approach is particularly relevant to calculation of quantum electrodynamical processes in weak laser pulse backgrounds.

  20. Wave propagation in pulsar magnetospheres - Refraction of rays in the open flux zone

    NASA Technical Reports Server (NTRS)

    Barnard, J. J.; Arons, J.

    1986-01-01

    The propagation of waves through a relativistically outflowing electron-positron plasma in a very strong dipolar magnetic field, conditions expected in pulsar magnetospheres, is investigated. Halmilton's equations is derived for the propagation of rays through a plasma which is inhomogeneous in density, magnetic field directions, and Lorentz factor. These equations are solved for rays propagating through the plasmas outflowing along the 'open' dipolar field lines in which the density decreases inversely as the radius cubed and in the case where gradients transverse to the radial direction exist. In the radial case, the effects of refraction on pulse profiles, spectrum, and polarization are examined, and the effects of a transverse gradient are indicated. Attention is given to models in which the observed broad bandwidth in the radio emission has its origin in a radius to frequency map. Models with broad-band emission at a single radius are also studied. These are compared to observations of pulse width and pulse component separation as a function of frequency. The origin of 'orthogonal modes' is discussed.

  1. Perturbation theory of dispersion-managed fiber solitons

    NASA Astrophysics Data System (ADS)

    Ferreira, Mário F. S.; Sousa, Mayra H.

    2007-05-01

    A variational approach with an arbitrary ansatz is used to derive the governing equations for the characteristic parameters of dispersion-managed solitons. The Gaussian pulses are considered as a particular case. Moreover, the adiabatic evolution equations of the dispersion-managed pulse parameters under perturbations are derived, considering an arbitrary pulse profile. The theory is applied to the case of Gaussian pulses under different types of perturbations, such as the amplifier noise, nonlinear interaction between pulses, and polarization-mode dispersion.

  2. Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma

    NASA Astrophysics Data System (ADS)

    Tolba, R. E.; El-Bedwehy, N. A.; Moslem, W. M.; El-Labany, S. K.; Yahia, M. E.

    2016-01-01

    Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.

  3. Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com; Moslem, W. M., E-mail: wmmoslem@hotmail.com

    2016-01-15

    Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.

  4. Pre-earthquake Magnetic Pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Heraud, J. A.; Freund, F. T.

    2015-12-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earth quakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  5. Pre-earthquake magnetic pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Heraud, J.; Freund, F.

    2015-08-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earthquakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  6. Sound Beams with Shockwave Pulses

    NASA Astrophysics Data System (ADS)

    Enflo, B. O.

    2000-11-01

    The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.

  7. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo-Negrete, Diego del; Blazevski, Daniel

    2016-04-15

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands andmore » remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.« less

  8. Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.

    PubMed

    Tian, Huiping; Li, Zhonghao; Tian, Jinping; Zhou, Guosheng

    2002-12-01

    We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability analysis for the original partial differential equation, we derive its necessary stability condition for amplitude perturbations. This condition together with the exact front solution determine the region of parameter space where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenuation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the optical transmission system numerically we find that the stable transmission of optical pulses can be achieved if the parameters are appropriately chosen.

  9. Two-dimensional time-dependent modelling of fume formation in a pulsed gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Boselli, M.; Colombo, V.; Ghedini, E.; Gherardi, M.; Sanibondi, P.

    2013-06-01

    Fume formation in a pulsed gas metal arc welding (GMAW) process is investigated by coupling a time-dependent axi-symmetric two-dimensional model, which takes into account both droplet detachment and production of metal vapour, with a model for fume formation and transport based on the method of moments for the solution of the aerosol general dynamic equation. We report simulative results of a pulsed process (peak current = 350 A, background current 30 A, period = 9 ms) for a 1 mm diameter iron wire, with Ar shielding gas. Results showed that metal vapour production occurs mainly at the wire tip, whereas fume formation is concentrated in the fringes of the arc in the spatial region close to the workpiece, where metal vapours are transported by convection. The proposed modelling approach allows time-dependent tracking of fumes also in plasma processes where temperature-time variations occur faster than nanoparticle transport from the nucleation region to the surrounding atmosphere, as is the case for most pulsed GMAW processes.

  10. Relativistic longitudinal self-compression of ultrashort time-domain hollow Gaussian pulses in plasma

    NASA Astrophysics Data System (ADS)

    Cao, Xiaochao; Fang, Feiyun; Wang, Zhaoying; Lin, Qiang

    2017-10-01

    We report a study on dynamical evolution of the ultrashort time-domain dark hollow Gaussian (TDHG) pulses beyond the slowly varying envelope approximation in homogenous plasma. Using the complex-source-point model, an analytical formula is proposed for describing TDHG pulses based on the oscillating electric dipoles, which is the exact solution of the Maxwell's equations. The numerical simulations show the relativistic longitudinal self-compression (RSC) due to the relativistic mass variation of moving electrons. The influences of plasma oscillation frequency and collision effect on dynamics of the TDHG pulses in plasma have been considered. Furthermore, we analyze the evolution of instantaneous energy density of the TDHG pulses on axis as well as the off axis condition.

  11. Laser-absorption effect on pulse-compression under Ohmic and weak-relativistic ponderomotive nonlinearity in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Mamta; Gupta, D. N.

    2018-01-01

    The inclusion of laser absorption in plasmas plays an important role in laser-plasma interactions. In this work, the laser pulse compression in weakly relativistic plasmas has been revisited by incorporating the collision-based laser absorption effects. By considering the role of laser absorption in plasmas, a set of coupled nonlinear equations is derived to describe the evolution of pulse compression. The laser pulse compression is reduced due to the collisional absorption in the plasmas. Fast dispersion is also observed with increasing the absorption coefficient, which is obviously due to the strong energy attenuation in plasmas. Using our theoretical model, the involvement and importance of a particular absorption mechanism for pulse compression in plasmas is analyzed.

  12. Theory of repetitively pulsed operation of diode lasers subject to delayed feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napartovich, A P; Sukharev, A G

    2015-03-31

    Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)

  13. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).

  14. Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model

    NASA Astrophysics Data System (ADS)

    Rogov, P. U.; Smirnov, S. V.; Semenova, V. A.; Melnik, M. V.; Bespalov, V. G.

    2016-08-01

    We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems.

  15. Transient self-amplified Cerenkov radiation with a short pulse electron beam

    NASA Astrophysics Data System (ADS)

    Poole, B. R.; Blackfield, D. T.; Camacho, J. F.

    2009-08-01

    An analytic and numerical examination of the slow wave Cerenkov free electron maser is presented. We consider the steady-state amplifier configuration as well as operation in the self-amplified spontaneous emission (SASE) regime. The linear theory is extended to include electron beams that have a parabolic radial density inhomogeneity. Closed form solutions for the dispersion relation and modal structure of the electromagnetic field are determined in this inhomogeneous case. To determine the steady-state response, a macroparticle approach is used to develop a set of coupled nonlinear ordinary differential equations for the amplitude and phase of the electromagnetic wave, which are solved in conjunction with the particle dynamical equations to determine the response when the system is driven as an amplifier with a time harmonic source. We then consider the case in which a fast rise time electron beam is injected into a dielectric loaded waveguide. In this case, radiation is generated by SASE, with the instability seeded by the leading edge of the electron beam. A pulse of radiation is produced, slipping behind the leading edge of the beam due to the disparity between the group velocity of the radiation and the beam velocity. Short pulses of microwave radiation are generated in the SASE regime and are investigated using particle-in-cell (PIC) simulations. The nonlinear dynamics are significantly more complicated in the transient SASE regime when compared with the steady-state amplifier model due to the slippage of the radiation with respect to the beam. As strong self-bunching of the electron beam develops due to SASE, short pulses of superradiant emission develop with peak powers significantly larger than the predicted saturated power based on the steady-state amplifier model. As these superradiant pulses grow, their pulse length decreases and forms a series of solitonlike pulses. Comparisons between the linear theory, macroparticle model, and PIC simulations are made in the appropriate regimes.

  16. Conservative, unconditionally stable discretization methods for Hamiltonian equations, applied to wave motion in lattice equations modeling protein molecules

    NASA Astrophysics Data System (ADS)

    LeMesurier, Brenton

    2012-01-01

    A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.

  17. Energy, momentum, and angular momentum of sound pulses.

    PubMed

    Lekner, John

    2017-12-01

    Pulse solutions of the wave equation can be expressed as superpositions of scalar monochromatic beam wavefunctions (solutions of the Helmholtz equation). This formulation leads to causal (unidirectional) propagation, in contrast to all currently known closed-form solutions of the wave equation. Application is made to the evaluation of the energy, momentum, and angular momentum of acoustic pulses, as integrals over the beam and pulse weight functions. Equivalence is established between integration over space of the energy, momentum, and angular momentum densities, and integration over the wavevector weight function. The inequality linking the total energy and the total momentum is made explicit in terms of the weight function formulation. It is shown that a general pulse can be viewed as a superposition of phonons, each with energy ℏck, z component of momentum ℏq, and z component of angular momentum ℏm. A closed-form solution of the wave equation is found, which is localized and causal, and its energy and momentum are evaluated explicitly.

  18. Three dimensional cylindrical Kadomtsev-Petviashvili equation in a very dense electron-positron-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moslem, W. M.; Sabry, R.; Shukla, P. K.

    2010-03-15

    By using the hydrodynamic equations of ions, Thomas-Fermi electron/positron density distribution, and Poisson equation, a three-dimensional cylindrical Kadomtsev-Petviashvili (CKP) equation is derived for small but finite amplitude ion-acoustic waves. The generalized expansion method is used to analytically solve the CKP equation. New class of solutions admits a train of well-separated bell-shaped periodic pulses is obtained. At certain condition, the latter degenerates to solitary wave solution. The effects of physical parameters on the solitary pulse structures are examined. Furthermore, the energy integral equation is used to study the existence regions of the localized pulses. The present study might be helpful tomore » understand the excitation of nonlinear ion-acoustic waves in a very dense astrophysical objects such as white dwarfs.« less

  19. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.

    PubMed

    He, Jingsong; Wang, Lihong; Li, Linjing; Porsezian, K; Erdélyi, R

    2014-06-01

    In this paper, we consider the complex modified Korteweg-de Vries (mKdV) equation as a model of few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern, triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations. In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.

  20. Thermal Stress Analysis of a Continuous and Pulsed End-Pumped Nd:YAG Rod Crystal Using Non-Classic Conduction Heat Transfer Theory

    NASA Astrophysics Data System (ADS)

    Mojahedi, Mahdi; Shekoohinejad, Hamidreza

    2018-02-01

    In this paper, temperature distribution in the continuous and pulsed end-pumped Nd:YAG rod crystal is determined using nonclassical and classical heat conduction theories. In order to find the temperature distribution in crystal, heat transfer differential equations of crystal with consideration of boundary conditions are derived based on non-Fourier's model and temperature distribution of the crystal is achieved by an analytical method. Then, by transferring non-Fourier differential equations to matrix equations, using finite element method, temperature and stress of every point of crystal are calculated in the time domain. According to the results, a comparison between classical and nonclassical theories is represented to investigate rupture power values. In continuous end pumping with equal input powers, non-Fourier theory predicts greater temperature and stress compared to Fourier theory. It also shows that with an increase in relaxation time, crystal rupture power decreases. Despite of these results, in single rectangular pulsed end-pumping condition, with an equal input power, Fourier theory indicates higher temperature and stress rather than non-Fourier theory. It is also observed that, when the relaxation time increases, maximum amounts of temperature and stress decrease.

  1. Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity

    NASA Astrophysics Data System (ADS)

    Bache, Morten; Lavrinenko, Andrei V.

    2017-09-01

    Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.

  2. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    NASA Technical Reports Server (NTRS)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  3. Construction of a pulse-coupled dipole network capable of fear-like and relief-like responses

    NASA Astrophysics Data System (ADS)

    Lungsi Sharma, B.

    2016-07-01

    The challenge for neuroscience as an interdisciplinary programme is the integration of ideas among the disciplines to achieve a common goal. This paper deals with the problem of deriving a pulse-coupled neural network that is capable of demonstrating behavioural responses (fear-like and relief-like). Current pulse-coupled neural networks are designed mostly for engineering applications, particularly image processing. The discovered neural network was constructed using the method of minimal anatomies approach. The behavioural response of a level-coded activity-based model was used as a reference. Although the spiking-based model and the activity-based model are of different scales, the use of model-reference principle means that the characteristics that is referenced is its functional properties. It is demonstrated that this strategy of dissection and systematic construction is effective in the functional design of pulse-coupled neural network system with nonlinear signalling. The differential equations for the elastic weights in the reference model are replicated in the pulse-coupled network geometrically. The network reflects a possible solution to the problem of punishment and avoidance. The network developed in this work is a new network topology for pulse-coupled neural networks. Therefore, the model-reference principle is a powerful tool in connecting neuroscience disciplines. The continuity of concepts and phenomena is further maintained by systematic construction using methods like the method of minimal anatomies.

  4. Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses

    NASA Technical Reports Server (NTRS)

    Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen

    1991-01-01

    The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.

  5. On the Origin of Pulsations of Sub-THz Emission from Solar Flares

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.; Kaufmann, P.

    2014-08-01

    We propose a model to explain fast pulsations in sub-THz emission from solar flares. The model is based on the approach of a flaring loop as an equivalent electric circuit and explains the pulse-repetition rate, the high-quality factor, Q≥103, low modulation depth, pulse synchronism at different frequencies, and the dependence of the pulse-repetition rate on the emission flux, observed by Kaufmann et al. ( Astrophys. J. 697, 420, 2009). We solved the nonlinear equation for electric current oscillations using a Van der Pol method and found the steady-state value for the amplitude of the current oscillations. Using the pulse rate variation during the flare on 4 November 2003, we found a decrease of the electric current from 1.7×1012 A in the flare maximum to 4×1010 A just after the burst. Our model is consistent with the plasma mechanism of sub-THz emission suggested recently by Zaitsev, Stepanov, and Melnikov ( Astron. Lett. 39, 650, 2013).

  6. Optimal control of a rabies epidemic model with a birth pulse.

    PubMed

    Clayton, Tim; Duke-Sylvester, Scott; Gross, Louis J; Lenhart, Suzanne; Real, Leslie A

    2010-01-01

    A system of ordinary differential equations describes the population dynamics of a rabies epidemic in raccoons. The model accounts for the dynamics of a vaccine, including loss of vaccine due to animal consumption and loss from factors other than racoon uptake. A control method to reduce the spread of disease is introduced through temporal distribution of vaccine packets. This work incorporates the effect of the seasonal birth pulse in the racoon population and the attendant increase in new-borns which are susceptible to the diseases, analysing the impact of the timing and length of this pulse on the optimal distribution of vaccine packets. The optimization criterion is to minimize the number of infected raccoons while minimizing the cost of distributing the vaccine. Using an optimal control setting, numerical results illustrate strategies for distributing the vaccine depending on the timing of the infection outbreak with respect to the birth pulse.

  7. Optimal Control of a Rabies Epidemic Model with a Birth Pulse

    PubMed Central

    Clayton, Tim; Duke-Sylvester, Scott; Gross, Louis J.; Lenhart, Suzanne; Real, Leslie A.

    2011-01-01

    A system of ordinary differential equations describes the populuation dynamics of a rabies epidemic in raccoons. The model accounts for the dynamics of vaccine, including loss of vaccine due to animal consumption and loss from factors other than racoon uptake. A control method to reduce the spread of disease is introduced through temporal distribution of vaccine packets. This work incorporates the effect of the seasonal birth pulse in the racoon population and the attendant increase in new-borns which are susceptible to the diseases, analysing the impact of the timing and length of this pulse on the optimal distribution of vaccine packets. The optimization criterion is to minimize the number of infected raccoons while minimizing the cost of distributing the vaccine. Using an optimal control setting, numerical results illustrate strategies for distributing vaccine depending on the timing of the infection outbreak with respect to the birth pulse. PMID:21423822

  8. Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons.

    PubMed

    Ratas, Irmantas; Pyragas, Kestutis

    2016-09-01

    We analyze the dynamics of a large network of coupled quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The network is heterogeneous in that it includes both inherently spiking and excitable neurons. The coupling is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rate and the mean membrane potential, which are exact in the infinite-size limit. The bifurcation analysis of the reduced equations reveals a rich scenario of asymptotic behavior, the most interesting of which is the macroscopic limit-cycle oscillations. It is shown that the finite width of synaptic pulses is a necessary condition for the existence of such oscillations. The robustness of the oscillations against aging damage, which transforms spiking neurons into nonspiking neurons, is analyzed. The validity of the reduced equations is confirmed by comparing their solutions with the solutions of microscopic equations for the finite-size networks.

  9. Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation

    PubMed Central

    Wong, Pring; Pang, Lihui; Wu, Ye; Lei, Ming; Liu, Wenjun

    2016-01-01

    In ultrafast optics, optical pulses are generated to be of shorter pulse duration, which has enormous significance to industrial applications and scientific research. The ultrashort pulse evolution in fiber lasers can be described by the higher-order Ginzburg-Landau (GL) equation. However, analytic soliton solutions for this equation have not been obtained by use of existing methods. In this paper, a novel method is proposed to deal with this equation. The analytic soliton solution is obtained for the first time, and is proved to be stable against amplitude perturbations. Through the split-step Fourier method, the bright soliton solution is studied numerically. The analytic results here may extend the integrable methods, and could be used to study soliton dynamics for some equations in other disciplines. It may also provide the other way to obtain two-soliton solutions for higher-order GL equations. PMID:27086841

  10. Numerical Solution of the Kzk Equation for Pulsed Finite Amplitude Sound Beams in Thermoviscous Fluids

    NASA Astrophysics Data System (ADS)

    Lee, Yang-Sub

    A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.

  11. Dark solitons in mode-locked lasers.

    PubMed

    Ablowitz, Mark J; Horikis, Theodoros P; Nixon, Sean D; Frantzeskakis, Dimitri J

    2011-03-15

    Dark soliton formation in mode-locked lasers is investigated by means of a power-energy saturation model that incorporates gain and filtering saturated with energy, and loss saturated with power. It is found that general initial conditions evolve (mode-lock) into dark solitons under appropriate requirements also met in experimental observations. The resulting pulses are essentially dark solitons of the unperturbed nonlinear Schrödinger equation. Notably, the same framework also describes bright pulses in anomalous and normally dispersive lasers.

  12. Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Harrison, James; Welford, David; Moulton, Peter F.

    1989-01-01

    Rate-equation calculations are used to model accurately the near-threshold behavior of a Co:MgF2 laser operating at room temperature. The results demonstrate the limitations of the conventional threshold analysis in cases of practical interest. This conclusion is applicable to pulsed solid-state lasers in general. The calculations, together with experimental data, are used to determine emission cross sections for the Co:MgF2 laser.

  13. Analytical study of fractional equations describing anomalous diffusion of energetic particles

    NASA Astrophysics Data System (ADS)

    Tawfik, A. M.; Fichtner, H.; Schlickeiser, R.; Elhanbaly, A.

    2017-06-01

    To present the main influence of anomalous diffusion on the energetic particle propagation, the fractional derivative model of transport is developed by deriving the fractional modified Telegraph and Rayleigh equations. Analytical solutions of the fractional modified Telegraph and the fractional Rayleigh equations, which are defined in terms of Caputo fractional derivatives, are obtained by using the Laplace transform and the Mittag-Leffler function method. The solutions of these fractional equations are given in terms of special functions like Fox’s H, Mittag-Leffler, Hermite and Hyper-geometric functions. The predicted travelling pulse solutions are discussed in each case for different values of fractional order.

  14. Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.

    Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensivemore » theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.« less

  15. Numerical simulation of solitary waves on deep water with constant vorticity

    NASA Astrophysics Data System (ADS)

    Dosaev, A. S.; Shishina, M. I.; Troitskaya, Yu I.

    2018-01-01

    Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.

  16. Numerical modeling of thermal refraction inliquids in the transient regime.

    PubMed

    Kovsh, D; Hagan, D; Van Stryland, E

    1999-04-12

    We present the results of modeling of nanosecond pulse propagation in optically absorbing liquid media. Acoustic and electromagnetic wave equations must be solved simultaneously to model refractive index changes due to thermal expansion and/or electrostriction, which are highly transient phenomena on a nanosecond time scale. Although we consider situations with cylindrical symmetry and where the paraxial approximation is valid, this is still a computation-intensive problem, as beam propagation through optically thick media must be modeled. We compare the full solution of the acoustic wave equation with the approximation of instantaneous expansion (steady-state solution) and hence determine the regimes of validity of this approximation. We also find that the refractive index change obtained from the photo-acoustic equation overshoots its steady-state value once the ratio between the pulsewidth and the acoustic transit time exceeds a factor of unity.

  17. Kinetics of transmembrane transport of small molecules into electropermeabilized cells.

    PubMed

    Pucihar, Gorazd; Kotnik, Tadej; Miklavcic, Damijan; Teissié, Justin

    2008-09-15

    The transport of propidium iodide into electropermeabilized Chinese hamster ovary cells was monitored with a photomultiplier tube during and after the electric pulse. The influence of pulse amplitude and duration on the transport kinetics was investigated with time resolutions from 200 ns to 4 ms in intervals from 400 micros to 8 s. The transport became detectable as early as 60 micros after the start of the pulse, continued for tens of seconds after the pulse, and was faster and larger for higher pulse amplitudes and/or longer pulse durations. With fixed pulse parameters, transport into confluent monolayers of cells was slower than transport into suspended cells. Different time courses of fluorescence increase were observed during and at various times after the pulse, reflecting different transport mechanisms and ongoing membrane resealing. The data were compared to theoretical predictions of the Nernst-Planck equation. After a delay of 60 micros, the time course of fluorescence during the pulse was approximately linear, supporting a mainly electrophoretic solution of the Nernst-Planck equation. The time course after the pulse agreed with diffusional solution of the Nernst-Planck equation if the membrane resealing was assumed to consist of three distinct components, with time constants in the range of tens of microseconds, hundreds of microseconds, and tens of seconds, respectively.

  18. Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1992-01-01

    An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.

  19. Matrix-algebra-based calculations of the time evolution of the binary spin-bath model for magnetization transfer.

    PubMed

    Müller, Dirk K; Pampel, André; Möller, Harald E

    2013-05-01

    Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Gain-phase modulation in chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Gao, Gan; Meng, Yuan; Fu, Xing; Gong, Mali

    2017-10-01

    The cross-modulation between the gain and chirped phase in chirped-pulse amplification (CPA) is theoretically and experimentally demonstrated. We propose a gain-phase coupled nonlinear Schrödinger equation (GPC-NLSE) for solving chirped-pulse propagation in a nonlinear gain medium involved in the gain-phase modulation (GPM) process. With the GPC-NLSE, the space-time-frequency-dependent gain, chirped phase, pulse, and spectrum evolutions can be precisely calculated. Moreover, a short-length high-gain Yb-doped fiber CPA experiment is presented in which a self-steepening distortion of the seed pulse is automatically compensated after amplification. This phenomenon can be explained by the GPM theory whereas conventional models cannot. The experimental results for the temporal and spectral intensities show excellent agreement with our theory. Our GPM theory paves the way for further investigations of the finer structures of the pulse and spectrum in CPA systems.

  1. Spectra for the reemission of attosecond and shorter electromagnetic pulses by multielectron atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2017-08-01

    Based on the analytical solution of the Schrödinger equation, we have considered the reemission of attosecond and shorter electromagnetic pulses by multielectron atoms in the sudden perturbation approximation. We have developed a technique of calculating the spectra for the reemission of attosecond and shorter electromagnetic pulses by neutral multielectron atoms with nuclear charges from 1 to 92. The results are presented in the form of analytical formulas dependent on several coefficients and screening parameters tabulated for all of the atoms whose electron densities are described by the well-known Dirac-Hartree-Fock-Slater model. As examples we have calculated the spectra for the reemission by lithium, carbon, calcium, and iron atoms for two types of incident pulse: Gaussian and "sombrero."

  2. Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theory

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, J.

    2018-02-01

    In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.

  3. Numerical solution of Boltzmann tranport equation for TEA CO 2 laser having nitrogen-lean gas mixtures to predict laser characteristics and gas lifetime

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Khare, Jai; Nath, A. K.

    2007-02-01

    Selective laser isotope separation by TEA CO 2 laser often needs short tail-free pulses. Using laser mixtures having very little nitrogen almost tail free laser pulses can be generated. The laser pulse characteristics and its gas lifetime is an important issue for long-term laser operation. Boltzmann transport equation is therefore solved numerically for TEA CO 2 laser gas mixtures having very little nitrogen to predict electron energy distribution function (EEDF). The distribution function is used to calculate various excitation and dissociation rate of CO 2 to predict laser pulse characteristics and laser gas lifetime, respectively. Laser rate equations have been solved with the calculated excitation rates for numerically evaluated discharge current and voltage profiles to calculate laser pulse shape. The calculated laser pulse shape and duration are in good agreement with the measured laser characteristics. The gas lifetime is estimated by integrating the equation governing the dissociation of CO 2. An experimental study of gas lifetime was carried out using quadrapole mass analyzer for such mixtures to estimate the O 2 being produced due to dissociation of CO 2 in the pulse discharge. The theoretically calculated O 2 concentration in the laser gas mixture matches with experimentally observed value. In the present TEA CO 2 laser system, for stable discharge the O 2 concentration should be below 0.2%.

  4. Theoretical models for electron conduction in polymer systems—I. Macroscopic calculations of d.c. transient conductivity after pulse irradiation

    NASA Astrophysics Data System (ADS)

    Bartczak, Witold M.; Kroh, Jerzy

    The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.

  5. Numerical simulation of the interaction between a flowfield and chemical reaction on premixed pulsed jet combustion

    NASA Astrophysics Data System (ADS)

    Hishida, Manabu; Hayashi, A. Koichi

    1992-12-01

    Pulsed Jet Combustion (PJC) is numerically simulated using time-dependent, axisymmetric, full Navier-Stokes equations with the mass, momentum, energy, and species conservation equations for a hydrogen-air mixture. A hydrogen-air reaction mechanism is modeled by nine species and nineteen elementary forward and backward reactions to evaluate the effect of the chemical reactions accurately. A point implicit method with the Harten and Yee's non-MUSCL (Monotone Upstream-centerd Schemes for Conservation Laws) modified-flux type TVD (Total Variation Diminishing) scheme is applied to deal with the stiff partial differential equations. Furthermore, a zonal method making use of the Fortified Solution Algorithm (FSA) is applied to simulate the phenomena in the complicated shape of the sub-chamber. The numerical result shows that flames propagating in the sub-chamber interact with pressure waves and are deformed to be wrinkled like a 'tulip' flame and a jet passed through the orifice changes its mass flux quasi-periodically.

  6. Formation of plasmon pulses in the cooperative decay of excitons of quantum dots near a metal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shesterikov, A. B.; Gubin, M. Yu.; Gladush, M. G.

    The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.

  7. A simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound

    NASA Astrophysics Data System (ADS)

    Hadjisavvas, V.; Damianou, C.

    2011-09-01

    In this paper a simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound is presented. A single element spherically focused transducer of 5 cm diameter, focusing at 10 cm and operating at either 0.5 MHz or 1 MHz was considered. The power field was estimated using the KZK model. The temperature was estimated using the bioheat equation. The goal was to extract the acoustic parameters (power, pulse duration, duty factor and pulse repetition frequency) that maintain a temperature increase of less than 1 °C during the application of a pulse ultrasound protocol. It was found that the temperature change increases linearly with duty factor. The higher the power, the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. The higher the frequency the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. Finally, the deeper the target, the higher the duty factor needed to keep the temperature change to the safe limit of 1 °C. The simulation model was tested in brain tissue during the application of pulse ultrasound and the measured temperature was in close agreement with the simulated temperature. This simulation model is considered to be very useful tool for providing acoustic parameters (frequency, power, duty factor, pulse repetition frequency) during the application of pulsed ultrasound at various depths in tissue so that a safe temperature is maintained during the treatment. This model could be tested soon during stroke clinical trials.

  8. Mode selection and frequency tuning by injection in pulsed TEA-CO2 lasers

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.

    1983-01-01

    An analytical model characterizing pulsed-TEA-CO2-laser injection locking by tunable CW-laser radiation is presented and used to explore the requirements for SLM pulse generation. Photon-density-rate equations describing the laser mechanism are analyzed in terms of the mode competition between photon densities emitted at two frequencies. The expression derived for pulsed dye lasers is extended to homogeneously broadened CO2 lasers, and locking time is defined as a function of laser parameters. The extent to which injected radiation can be detuned from the CO2 line center and continue to produce SLM pulses is investigated experimentally in terms of the analytical framework. The dependence of locking time on the detuning/pressure-broadened-halfwidth ratio is seen as important for spectroscopic applications requiring tuning within the TEA-laser line-gain bandwidth.

  9. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  10. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  11. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. Here, the authors present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  12. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R. F.; Moore, C. I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approx}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported.« less

  13. Simple Model of Macroscopic Instability in XeCl Discharge Pumped Lasers

    NASA Astrophysics Data System (ADS)

    Ahmed, Belasri; Zoheir, Harrache

    2003-10-01

    The aim of this work is to study the development of the macroscopic non uniformity of the electron density of high pressure discharge for excimer lasers and eventually its propagation because of the medium kinetics phenomena. This study is executed using a transverse mono-dimensional model, in which the plasma is represented by a set of resistance's in parallel. This model was employed using a numerical code including three strongly coupled parts: electric circuit equations, electron Boltzmann equation, and kinetics equations (chemical kinetics model). The time variations of the electron density in each plasma element are obtained by solving a set of ordinary differential equations describing the plasma kinetics and external circuit. The use of the present model allows a good comprehension of the halogen depletion phenomena, which is the principal cause of laser ending and allows a simple study of a large-scale non uniformity in preionization density and its effects on electrical and chemical plasma properties. The obtained results indicate clearly that about 50consumed at the end of the pulse. KEY WORDS Excimer laser, XeCl, Modeling, Cold plasma, Kinetic, Halogen depletion, Macroscopic instability.

  14. The stability issues in problems of mathematical modeling

    NASA Astrophysics Data System (ADS)

    Mokin, A. Yu.; Savenkova, N. P.; Udovichenko, N. S.

    2018-03-01

    In the paper it is briefly considered various aspects of stability concepts, which are used in physics, mathematics and numerical methods of solution. The interrelation between these concepts is described, the questions of preliminary stability research before the numerical solution of the problem and the correctness of the mathematical statement of the physical problem are discussed. Examples of concrete mathematical statements of individual physical problems are given: a nonlocal problem for the heat equation, the Korteweg-de Fries equation with boundary conditions at infinity, the sine-Gordon equation, the problem of propagation of femtosecond light pulses in an area with a cubic nonlinearity.

  15. Propagation characteristics of two-color laser pulses in homogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemlata,; Saroch, Akanksha; Jha, Pallavi

    2015-11-15

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared withmore » those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.« less

  16. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps

    NASA Astrophysics Data System (ADS)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  17. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.

    PubMed

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  18. Analytical Characterization on Pulse Propagation in a Semiconductor Optical Amplifier Based on Homotopy Analysis Method

    NASA Astrophysics Data System (ADS)

    Jia, Xiaofei

    2018-06-01

    Starting from the basic equations describing the evolution of the carriers and photons inside a semiconductor optical amplifier (SOA), the equation governing pulse propagation in the SOA is derived. By employing homotopy analysis method (HAM), a series solution for the output pulse by the SOA is obtained, which can effectively characterize the temporal features of the nonlinear process during the pulse propagation inside the SOA. Moreover, the analytical solution is compared with numerical simulations with a good agreement. The theoretical results will benefit the future analysis of other problems related to the pulse propagation in the SOA.

  19. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.

    PubMed

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A low-order model for wave propagation in random waveguides

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Bertin, Michael; Bouche, Daniel

    2014-11-01

    In numerical modeling of infrasound propagation in the atmosphere, the wind and temperature profiles are usually obtained as a result of matching atmospheric models to empirical data and thus inevitably involve some random errors. In the present approach, the sound speed profiles are considered as random functions and the wave equation is solved using a reduced-order model, starting from the classical normal mode technique. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime (the coupling between the wave and the medium is weak), with a fixed number of propagating modes that can be obtained by rearranging the eigenvalues by decreasing Sobol indices. The most important feature of the stochastic approach lies in the fact that the model order can be computed to satisfy a given statistical accuracy whatever the frequency. The statistics of a transmitted broadband pulse are computed by decomposing the original pulse into a sum of modal pulses that can be described by a front pulse stabilization theory. The method is illustrated on two large-scale infrasound calibration experiments, that were conducted at the Sayarim Military Range, Israel, in 2009 and 2011.

  1. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    NASA Astrophysics Data System (ADS)

    Sazonov, S. V.; Ustinov, N. V.

    2017-02-01

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky-Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.

  2. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  3. Unified model of plasma formation, bubble generation and shock wave emission in water for fs to ns laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred

    2017-03-01

    We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.

  4. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    NASA Astrophysics Data System (ADS)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  5. Model of photoinduced structural change induced by THz pulse irradiation

    NASA Astrophysics Data System (ADS)

    Ishida, Kunio; Nasu, Keiichiro

    Recently intense optical pulses with THz frequency have been obtained, and it is of interest to study the effect of irradiated THz pulses on electronic systems. We theoretically study the photoinduced cooperative dynamics triggered by irradiation of THz pulses. We employed a model of two-level localized electrons coupled with an optical phonon mode taking into account the nonadiabaticity of the electron dynamics, and solved the time-dependent Schrödinger equation numerically. We consider the cases in which the THz pulses create phonons near the surface of the system, and pursue the electronic transitions induced by the propagation of the phonons. We found that they are able to induce excited-state domain growth, and that the interference between them plays an important role in the growth dynamics. Hence, the domain growth is affected by the geometry of the surface of the system, which is different from the photoinduced structural change by visible/UV pulses. We also show that the nonadiabatic/adiabatic electronic transitions should be taken into account though the domain growth mainly proceeds on the ground-state potential energy surfaces(PESs). In other words, the energy level/structure of excited-state PESs are relevant to the domain-growth dynamics.

  6. Nonclassical Properties of Pulsed Second-Subharmonic Generation in Photonic-Band-Gap Structures

    DTIC Science & Technology

    2007-04-01

    organized as follows. In Sec. II, a quan- tum model of the nonlinear interaction including both Heisenberg equations for operator electric-field ampli...can then be derived from the Heisenberg equations (for details, see [45, 46]; dX̂ dz = − i h̄ [ Ĝ, X̂ ] ; (13) considering the following momentum...disper- sion, we decompose the electric-field operator amplitudes Êa (a = p, s) using mode operator amplitudes âa in the Heisenberg picture [5, 8

  7. Theoretical study on some plasma parameters and thermophysical properties of various gas mixtures in gas-discharge lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Slaveeva, S. I.; Fedchenko, Yu I.; Chernogorova, T. P.

    2018-03-01

    Using the well-known Wassiljewa equation and a new simple method, the thermal conductivities of various 2- and 3-component gas mixtures were calculated and compared under gas-discharge conditions optimal for two prospective lasers excited in a nanosecond pulsed longitudinal discharge. By solving the non-stationary heat-conduction equation for electrons, a 2D numerical model was also developed for determination of the radial and temporal dependences of the electron temperature Te (r, t).

  8. Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of block-pulse functions and Bernoulli polynomials.

    PubMed

    Mashayekhi, S; Razzaghi, M; Tripak, O

    2014-01-01

    A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.

  9. Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse Functions and Bernoulli Polynomials

    PubMed Central

    Mashayekhi, S.; Razzaghi, M.; Tripak, O.

    2014-01-01

    A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. PMID:24523638

  10. Energy and technology review: Engineering modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.

    1986-10-01

    This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.

  11. Equivalent circuit-level model of quantum cascade lasers with integrated hot-electron and hot-phonon effects

    NASA Astrophysics Data System (ADS)

    Yousefvand, H. R.

    2017-12-01

    We report a study of the effects of hot-electron and hot-phonon dynamics on the output characteristics of quantum cascade lasers (QCLs) using an equivalent circuit-level model. The model is developed from the energy balance equation to adopt the electron temperature in the active region levels, the heat transfer equation to include the lattice temperature, the nonequilibrium phonon rate to account for the hot phonon dynamics and simplified two-level rate equations to incorporate the carrier and photon dynamics in the active region. This technique simplifies the description of the electron-phonon interaction in QCLs far from the equilibrium condition. Using the presented model, the steady and transient responses of the QCLs for a wide range of sink temperatures (80 to 320 K) are investigated and analysed. The model enables us to explain the operating characteristics found in QCLs. This predictive model is expected to be applicable to all QCL material systems operating in pulsed and cw regimes.

  12. Modeling of ultrashort pulsed laser irradiation in the cornea based on parabolic and hyperbolic heat equations using electrical analogy

    NASA Astrophysics Data System (ADS)

    Gheitaghy, A. M.; Takabi, B.; Alizadeh, M.

    2014-03-01

    Hyperbolic and parabolic heat equations are formulated to study a nonperfused homogeneous transparent cornea irradiated by high power and ultrashort pulsed laser in the Laser Thermo Keratoplasty (LTK) surgery. Energy absorption inside the cornea is modeled using the Beer-Lambert law that is incorporated as an exponentially decaying heat source. The hyperbolic and parabolic bioheat models of the tissue were solved by exploiting the mathematical analogy between thermal and electrical systems, by using robust circuit simulation program called Hspice to get the solutions of simultaneous RLC and RC transmission line networks. This method can be used to rapidly calculate the temperature in laser-irradiated tissue at time and space domain. It is found that internal energy gained from the irradiated field results in a rapid rise of temperature in the cornea surface during the early heating period, while the hyperbolic wave model predicts a higher temperature rise than the classical heat diffusion model. In addition, this paper investigates and examines the effect of some critical parameters such as relaxation time, convection coefficient, radiation, tear evaporation and variable thermal conductivity of cornea. Accordingly, it is found that a better accordance between hyperbolic and parabolic models will be achieved by time.

  13. On Dipole Moment of Impurity Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Konobeeva, N. N.; Ten, A. V.; Belonenko, M. B.

    2017-04-01

    Propagation of a two-dimensional electromagnetic pulse in an array of semiconductor carbon nanotubes with impurities is investigated. The parameters of dipole moments of impurities are determined. The Maxwell equation and the equation of motion for dipole polarization are jointly solved. The dynamics of the electromagnetic pulse is examined as a function of the dipole moment. It is shown that taking polarization into account does not have a substantial effect on the propagation process, but alters the optical pulse shape.

  14. Prompt increase of ultrashort laser pulse transmission through thin silver films

    NASA Astrophysics Data System (ADS)

    Bezhanov, S. G.; Danilov, P. A.; Klekovkin, A. V.; Kudryashov, S. I.; Rudenko, A. A.; Uryupin, S. A.

    2018-03-01

    We study experimentally and numerically the increase in ultrashort laser pulse transmissivity through thin silver films caused by the heating of electrons. Low to moderate energy femtosecond laser pulse transmission measurements through 40-125 nm thickness silver films were carried out. We compare the experimental data with the values of transmitted fraction of energy obtained by solving the equations for the field together with the two-temperature model. The measured values were fitted with sufficient accuracy by varying the electron-electron collision frequency whose exact values are usually poorly known. Since transmissivity experiences more pronounced changes with the increase in temperature compared to reflectivity, we suggest this technique for studying the properties of nonequilibrium metals.

  15. Lax representations for matrix short pulse equations

    NASA Astrophysics Data System (ADS)

    Popowicz, Z.

    2017-10-01

    The Lax representation for different matrix generalizations of Short Pulse Equations (SPEs) is considered. The four-dimensional Lax representations of four-component Matsuno, Feng, and Dimakis-Müller-Hoissen-Matsuno equations are obtained. The four-component Feng system is defined by generalization of the two-dimensional Lax representation to the four-component case. This system reduces to the original Feng equation, to the two-component Matsuno equation, or to the Yao-Zang equation. The three-component version of the Feng equation is presented. The four-component version of the Matsuno equation with its Lax representation is given. This equation reduces the new two-component Feng system. The two-component Dimakis-Müller-Hoissen-Matsuno equations are generalized to the four-parameter family of the four-component SPE. The bi-Hamiltonian structure of this generalization, for special values of parameters, is defined. This four-component SPE in special cases reduces to the new two-component SPE.

  16. Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order

    DOE PAGES

    Favalli, Andrea; Croft, Stephen; Santi, Peter

    2015-06-15

    Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less

  17. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sazonov, S. V., E-mail: sazonov.sergey@gmail.com; Ustinov, N. V., E-mail: n-ustinov@mail.ru

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky–Vakhnenko equation. Different types of solutionsmore » of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.« less

  18. A self-consistent model of ionic wind generation by negative corona discharges in air with experimental validation

    NASA Astrophysics Data System (ADS)

    Chen, She; Nobelen, J. C. P. Y.; Nijdam, S.

    2017-09-01

    Ionic wind is produced by a corona discharge when gaseous ions are accelerated in the electric field and transfer their momentum to neutral molecules by collisions. This technique is promising because a gas flow can be generated without the need for moving parts and can be easily miniaturized. The basic theory of ionic wind sounds simple but the details are far from clear. In our experiment, a negative DC voltage is applied to a needle-cylinder electrode geometry. Hot wire anemometry is used to measure the flow velocity at the downstream exit of the cylinder. The flow velocity fluctuates but the average velocity increases with the voltage. The current consists of a regular train of pulses with short rise time, the well-known Trichel pulses. To reveal the ionic wind mechanism in the Trichel pulse stage, a three-species corona model coupled with gas dynamics is built. The drift-diffusion equations of the plasma together with the Navier-Stokes equations of the flow are solved in COMSOL Multiphysics. The electric field, net number density of charged species, electrohydrodynamic (EHD) body force and flow velocity are calculated in detail by a self-consistent model. Multiple time scales are employed: hundreds of microseconds for the plasma characteristics and longer time scales (˜1 s) for the flow behavior. We found that the flow velocity as well as the EHD body force have opposite directions in the ionization region close to the tip and the ion drift region further away from the tip. The calculated mean current, Trichel pulse frequency and flow velocity are very close to our experimental results. Furthermore, in our simulations we were able to reproduce the mushroom-like minijets observed in experiments.

  19. Generation of switchable domain wall and Cubic-Quintic nonlinear Schrödinger equation dark pulse

    NASA Astrophysics Data System (ADS)

    Tiu, Z. C.; Suthaskumar, M.; Zarei, A.; Tan, S. J.; Ahmad, H.; Harun, S. W.

    2015-10-01

    A switchable domain-wall (DW) and Cubic-Quintic nonlinear Schrödinger equation (CQNLSE) dark soliton pulse generation are demonstrated in Erbium-doped fiber laser (EDFL) for the first time. The DW pulse train operates at 1575 nm with a fundamental repetition rate of 1.52 MHz and pulse width of 203 ns as the pump power is increased above the threshold pump power of 80 mW. The highest pulse energy of 2.24 nJ is obtained at the maximum pump power of 140 mW. CQNLSE pulse can also be realized from the same cavity by adjusting the polarization state but at a higher threshold pump power of 104 mW. The repetition rate and pulse width of the CQNLSE dark pulses are obtained at 1.52 MHz and 219 ns, respectively. The highest energy of 0.58 nJ is obtained for the CQNLSE pulse at pump power of 140 mW.

  20. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R.F.; Moore, C.I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approximately}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported. {copyright} {ital 1999 American Institute of Physics.}« less

  1. Comment on "Defocusing complex short-pulse equation and its multi-dark-soliton solution"

    NASA Astrophysics Data System (ADS)

    Youssoufa, Saliou; Kuetche, Victor K.; Kofane, Timoleon C.

    2017-08-01

    In their recent paper, Feng et al. [Phys. Rev. E 93, 052227 (2016), 10.1103/PhysRevE.93.052227] proposed a complex short-pulse equation of both focusing and defocusing types. They studied in detail the defocusing case and derived its multi-dark-soliton solutions. Nonetheless, from a physical viewpoint in order to better and deeply understand their genuine implications, we find it useful to provide a real and proper background for the derivation of the previous evolution system while showing that the expression of the nonlinear electric polarization the above authors used in their scheme is not suitable for getting the defocusing complex short-pulse equation.

  2. Comment on "Defocusing complex short-pulse equation and its multi-dark-soliton solution".

    PubMed

    Youssoufa, Saliou; Kuetche, Victor K; Kofane, Timoleon C

    2017-08-01

    In their recent paper, Feng et al. [Phys. Rev. E 93, 052227 (2016)PREHBM2470-004510.1103/PhysRevE.93.052227] proposed a complex short-pulse equation of both focusing and defocusing types. They studied in detail the defocusing case and derived its multi-dark-soliton solutions. Nonetheless, from a physical viewpoint in order to better and deeply understand their genuine implications, we find it useful to provide a real and proper background for the derivation of the previous evolution system while showing that the expression of the nonlinear electric polarization the above authors used in their scheme is not suitable for getting the defocusing complex short-pulse equation.

  3. Response of an oscillatory differential delay equation to a single stimulus.

    PubMed

    Mackey, Michael C; Tyran-Kamińska, Marta; Walther, Hans-Otto

    2017-04-01

    Here we analytically examine the response of a limit cycle solution to a simple differential delay equation to a single pulse perturbation of the piecewise linear nonlinearity. We construct the unperturbed limit cycle analytically, and are able to completely characterize the perturbed response to a pulse of positive amplitude and duration with onset at different points in the limit cycle. We determine the perturbed minima and maxima and period of the limit cycle and show how the pulse modifies these from the unperturbed case.

  4. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    NASA Astrophysics Data System (ADS)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  5. Pulse bifurcations and instabilities in an excitable medium: Computations in finite ring domains

    NASA Astrophysics Data System (ADS)

    Or-Guil, M.; Krishnan, J.; Kevrekidis, I. G.; Bär, M.

    2001-10-01

    We investigate the instabilities and bifurcations of traveling pulses in a model excitable medium; in particular, we discuss three different scenarios involving either the loss of stability or disappearance of stable pulses. In numerical simulations beyond the instabilities we observe replication of pulses (``backfiring'') resulting in complex periodic or spatiotemporally chaotic dynamics as well as modulated traveling pulses. We approximate the linear stability of traveling pulses through computations in a finite albeit large domain with periodic boundary conditions. The critical eigenmodes at the onset of the instabilities are related to the resulting spatiotemporal dynamics and ``act'' upon the back of the pulses. The first scenario has been analyzed earlier [M. G. Zimmermann et al., Physica D 110, 92 (1997)] for high excitability (low excitation threshold): it involves the collision of a stable pulse branch with an unstable pulse branch in a so-called T point. In the framework of traveling wave ordinary differential equations, pulses correspond to homoclinic orbits and the T point to a double heteroclinic loop. We investigate this transition for a pulse in a domain with finite length and periodic boundary conditions. Numerical evidence of the proximity of the infinite-domain T point in this setup appears in the form of two saddle node bifurcations. Alternatively, for intermediate excitation threshold, an entire cascade of saddle nodes causing a ``spiraling'' of the pulse branch appears near the parameter values corresponding to the infinite-domain T point. Backfiring appears at the first saddle-node bifurcation, which limits the existence region of stable pulses. The third case found in the model for large excitation threshold is an oscillatory instability giving rise to ``breathing,'' traveling pulses that periodically vary in width and speed.

  6. Integrating Partial Polarization into a Metal-Ferroelectric-Semiconductor Field Effect Transistor Model

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen

    1999-01-01

    The ferroelectric channel in a Metal-Ferroelectric-Semiconductor Field Effect Transistor (MFSFET) can partially change its polarization when the gate voltage near the polarization threshold voltage. This causes the MFSFET Drain current to change with repeated pulses of the same gate voltage near the polarization threshold voltage. A previously developed model [11, based on the Fermi-Dirac function, assumed that for a given gate voltage and channel polarization, a sin-le Drain current value would be generated. A study has been done to characterize the effects of partial polarization on the Drain current of a MFSFET. These effects have been described mathematically and these equations have been incorporated into a more comprehensive mathematical model of the MFSFET. The model takes into account the hysteresis nature of the MFSFET and the time dependent decay as well as the effects of partial polarization. This model defines the Drain current based on calculating the degree of polarization from previous gate pulses, the present Gate voltage, and the amount of time since the last Gate volta-e pulse.

  7. Self similar solution of superradiant amplification of ultrashort laser pulses in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghadasin, H.; Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Shokri, B.

    2015-05-15

    Based on the self-similar method, superradiant amplification of ultrashort laser pulses by the counterpropagating pump in a plasma is investigated. Here, we present a governing system of partial differential equations for the signal pulse and the motion of the electrons. These equations are transformed to ordinary differential equations by the self-similar method and numerically solved. It is found that the increase of the signal intensity is proportional to the square of the propagation distance and the signal frequency has a red shift. Also, depending on the pulse width, the signal breaks up into a train of short pulses or itsmore » duration decreases with the inverse square root of the distance. Moreover, we identified two distinct categories of the electrons by the phase space analysis. In the beginning, one of them is trapped in the ponderomotive potential well and oscillates while the other is untrapped. Over time, electrons of the second kind also join to the trapped electrons. In the potential well, the electrons are bunched to form an electron density grating which reflects the pump pulse into the signal pulse. It is shown that the backscattered intensity is enhanced with the increase of the electron bunching parameter which leads to the enhanced efficiency of superradiant amplification.« less

  8. Propagation of intense short laser pulses in the atmosphere.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B

    2002-10-01

    The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.

  9. Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S.

    2013-01-15

    Obliquely propagating ion-acoustic soliatry waves are examined in a magnetized plasma composed of kappa distributed electrons and fluid ions with finite temperature. The Sagdeev potential approach is used to study the properties of finite amplitude solitary waves. Using a quasi-neutrality condition, it is possible to reduce the set of equations to a single equation (energy integral equation), which describes the evolution of ion-acoustic solitary waves in magnetized plasmas. The temperature of warm ions affects the speed, amplitude, width, and pulse duration of solitons. Both the critical and the upper Mach numbers are increased by an increase in the ion temperature.more » The ion-acoustic soliton amplitude increases with the increase in superthermality of electrons. For auroral plasma parameters, the model predicts the soliton speed, amplitude, width, and pulse duration, respectively, to be in the range of (28.7-31.8) km/s, (0.18-20.1) mV/m; (590-167) m, and (20.5-5.25) ms, which are in good agreement with Viking observations.« less

  10. Simulation of the radiation from the hot spot of an X-pinch

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Artyomov, A. P.; Chaikovsky, S. A.; Oreshkin, E. V.; Rousskikh, A. G.

    2017-01-01

    The results of X-pinch experiments performed using a small-sized pulse generator are analyzed. The generator, capable of producing a 200-kA, 180-ns current, was loaded with an X-pinch made of four 35-μm-diameter aluminum wires. The analysis consists of a one-dimensional radiation magnetohydrodynamic simulation of the formation of a hot spot in an X-pinch, taking into account the outflow of material from the neck region. The radiation loss and the ion species composition of the pinch plasma are calculated based on a stationary collisional-radiative model, including balance equations for the populations of individual levels. With this model, good agreement between simulation predictions and experimental data has been achieved: the experimental and the calculated radiation power and pulse duration differ by no more than twofold. It has been shown that the x-ray pulse is formed in the radiative collapse region, near its boundary.

  11. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  12. Dispersive optical soliton solutions for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In this research, we apply new technique for higher order nonlinear Schrödinger equation which is representing the propagation of short light pulses in the monomode optical fibers and the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Nonlinear Schrödinger equation is one of the basic model in fiber optics. We apply new auxiliary equation method for nonlinear Sasa-Satsuma equation to obtain a new optical forms of solitary traveling wave solutions. Exact and solitary traveling wave solutions are obtained in different kinds like trigonometric, hyperbolic, exponential, rational functions, …, etc. These forms of solutions that we represent in this research prove the superiority of our new technique on almost thirteen powerful methods. The main merits of this method over the other methods are that it gives more general solutions with some free parameters.

  13. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  14. Designing optimal universal pulses using second-order, large-scale, non-linear optimization

    NASA Astrophysics Data System (ADS)

    Anand, Christopher Kumar; Bain, Alex D.; Curtis, Andrew Thomas; Nie, Zhenghua

    2012-06-01

    Recently, RF pulse design using first-order and quasi-second-order pulses has been actively investigated. We present a full second-order design method capable of incorporating relaxation, inhomogeneity in B0 and B1. Our model is formulated as a generic optimization problem making it easy to incorporate diverse pulse sequence features. To tame the computational cost, we present a method of calculating second derivatives in at most a constant multiple of the first derivative calculation time, this is further accelerated by using symbolic solutions of the Bloch equations. We illustrate the relative merits and performance of quasi-Newton and full second-order optimization with a series of examples, showing that even a pulse already optimized using other methods can be visibly improved. To be useful in CPMG experiments, a universal refocusing pulse should be independent of the delay time and insensitive of the relaxation time and RF inhomogeneity. We design such a pulse and show that, using it, we can obtain reliable R2 measurements for offsets within ±γB1. Finally, we compare our optimal refocusing pulse with other published refocusing pulses by doing CPMG experiments.

  15. An epidemiological model with vaccination strategies

    NASA Astrophysics Data System (ADS)

    Prates, Dérek B.; Silva, Jaqueline M.; Gomes, Jessica L.; Kritz, Maurício V.

    2016-06-01

    Mathematical models can be widely found in the literature describing epidemics. The epidemical models that use differential equations to represent mathematically such description are especially sensible to parameters. This work analyze a variation of the SIR model when applied to a epidemic scenario including several aspects, as constant vaccination, pulse vaccination, seasonality, cross-immunity factor, birth and dead rate. The analysis and results are performed through numerical solutions of the model and a special attention is given to the discussion generated by the paramenters variation.

  16. Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse

    NASA Astrophysics Data System (ADS)

    Nie, Jianye; Liu, Guodong; Zhang, Rongzhu

    2018-05-01

    Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.

  17. Influence of stem temperature changes on heat pulse sap flux density measurements.

    PubMed

    Vandegehuchte, Maurits W; Burgess, Stephen S O; Downey, Alec; Steppe, Kathy

    2015-04-01

    While natural spatial temperature gradients between measurement needles have been thoroughly investigated for continuous heat-based sap flow methods, little attention has been given to how natural changes in stem temperature impact heat pulse-based methods through temporal rather than spatial effects. By modelling the theoretical equation for both an ideal instantaneous pulse and a step pulse and applying a finite element model which included actual needle dimensions and wound effects, the influence of a varying stem temperature on heat pulse-based methods was investigated. It was shown that the heat ratio (HR) method was influenced, while for the compensation heat pulse and Tmax methods changes in stem temperatures of up to 0.002 °C s(-1) did not lead to significantly different results. For the HR method, rising stem temperatures during measurements led to lower heat pulse velocity values, while decreasing stem temperatures led to both higher and lower heat pulse velocities, and to imaginary results for high flows. These errors of up to 40% can easily be prevented by including a temperature correction in the data analysis procedure, calculating the slope of the natural temperature change based on the measured temperatures before application of the heat pulse. Results of a greenhouse and outdoor experiment on Pinus pinea L. show the influence of this correction on low and average sap flux densities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The Rocket Equation Improvement under ICF Implosion Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin; Zheng, Zhijian

    2013-10-01

    The ICF explosion process has been studied in details. The rocket equation has been improved in explosive process by introducing the pressure parameter of fuel. Some methods could be drawn by the improved rocket equation. And the methods could be used to improve ICF target design, driving pulse design and experimental design. The First is to increase ablation pressure. The second is to decrease pressure of fuel. The third is to use larger diameter of target sphere. And the forth is to a shorten driving pulse.

  19. Stochastic Liouville equations for femtosecond stimulated Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwalla, Bijay Kumar; Ando, Hideo; Dorfman, Konstantin E.

    2015-01-14

    Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period T, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique, known as femtosecond stimulated Raman spectroscopy (FSRS), can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE), originally developed for NMR lineshapes. The SLE provide a convenient simulation protocol that can describe complex dynamicsmore » caused by coupling to collective bath coordinates at much lower cost than a full dynamical simulation. The origin of the dispersive features that appear when there is no separation of timescales between vibrational variations and the dephasing time is clarified.« less

  20. GPU simulation of nonlinear propagation of dual band ultrasound pulse complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvam, Johannes, E-mail: johannes.kvam@ntnu.no; Angelsen, Bjørn A. J., E-mail: bjorn.angelsen@ntnu.no; Elster, Anne C., E-mail: elster@ntnu.no

    In a new method of ultrasound imaging, called SURF imaging, dual band pulse complexes composed of overlapping low frequency (LF) and high frequency (HF) pulses are transmitted, where the frequency ratio LF:HF ∼ 1 : 20, and the relative bandwidth of both pulses are ∼ 50 − 70%. The LF pulse length is hence ∼ 20 times the HF pulse length. The LF pulse is used to nonlinearly manipulate the material elasticity observed by the co-propagating HF pulse. This produces nonlinear interaction effects that give more information on the propagation of the pulse complex. Due to the large difference inmore » frequency and pulse length between the LF and the HF pulses, we have developed a dual level simulation where the LF pulse propagation is first simulated independent of the HF pulse, using a temporal sampling frequency matched to the LF pulse. A separate equation for the HF pulse is developed, where the the presimulated LF pulse modifies the propagation velocity. The equations are adapted to parallel processing in a GPU, where nonlinear simulations of a typical HF beam of 10 MHz down to 40 mm is done in ∼ 2 secs in a standard GPU. This simulation is hence very useful for studying the manipulation effect of the LF pulse on the HF pulse.« less

  1. Non-equilibrium many-body influence on mode-locked Vertical External-cavity Surface-emitting Lasers

    NASA Astrophysics Data System (ADS)

    Kilen, Isak Ragnvald

    Vertical external-cavity surface-emitting lasers are ideal testbeds for studying the influence of the non-equilibrium many-body dynamics on mode locking. As we will show in this thesis, ultra short pulse generation involves a marked departure from Fermi carrier distributions assumed in prior theoretical studies. A quantitative model of the mode locking dynamics is presented, where the semiconductor Bloch equations with Maxwell's equation are coupled, in order to study the influences of quantum well carrier scattering on mode locking dynamics. This is the first work where the full model is solved without adiabatically eliminating the microscopic polarizations. In many instances we find that higher order correlation contributions (e.g. polarization dephasing, carrier scattering, and screening) can be represented by rate models, with the effective rates extracted at the level of second Born-Markov approximations. In other circumstances, such as continuous wave multi-wavelength lasing, we are forced to fully include these higher correlation terms. In this thesis we identify the key contributors that control mode locking dynamics, the stability of single pulse mode-locking, and the influence of higher order correlation in sustaining multi-wavelength continuous wave operation.

  2. Mid-infrared rogue wave generation in chalcogenide fibers

    NASA Astrophysics Data System (ADS)

    Liu, Lai; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2017-02-01

    The supercontinuum generation and rogue wave generation in a step-index chalcogenide fiber are numerically investigated by solving the generalized nonlinear Schrödinger equation. Two noise models have been used to model the noise of the pump laser pulses to investigate the consistency of the noise modeling in rogue wave generation. First noise model is 0.1% amplitude noise which has been used in the report of rogue wave generation. Second noise model is the widely used one-photon-per-mode-noise and phase diffusion-noise. The results show that these two commonly used noise models have a good consistency in the simulations of rogue wave generation. The results also show that if the pump laser pulses carry more noise, the chance of a rogue wave with a high peak power becomes higher. This is harmful to the SC generation by using picosecond lasers in the chalcogenide fibers.

  3. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  4. Multi-fluid modelling of pulsed discharges for flow control applications

    NASA Astrophysics Data System (ADS)

    Poggie, J.

    2015-02-01

    Experimental evidence suggests that short-pulse dielectric barrier discharge actuators are effective for speeds corresponding to take-off and approach of large aircraft, and thus are a fruitful direction for flow control technology development. Large-eddy simulations have reproduced some of the main fluid dynamic effects. The plasma models used in such simulations are semi-empirical, however, and need to be tuned for each flowfield under consideration. In this paper, the discharge physics is examined in more detail with multi-fluid modelling, comparing a five-moment model (continuity, momentum, and energy equations) to a two-moment model (continuity and energy equations). A steady-state, one-dimensional discharge was considered first, and the five-moment model was found to predict significantly lower ionisation rates and number densities than the two-moment model. A two-dimensional, transient discharge problem with an elliptical cathode was studied next. Relative to the two-moment model, the five-moment model predicted a slower response to the activation of the cathode, and lower electron velocities and temperatures as the simulation approached steady-state. The primary reason for the differences in the predictions of the two models can be attributed to the effects of particle inertia, particularly electron inertia in the cathode layer. The computational cost of the five-moment model is only about twice that of the simpler variant, suggesting that it may be feasible to use the more sophisticated model in practical calculations for flow control actuator design.

  5. Recombination in liquid-filled ionization chambers beyond the Boag limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brualla-González, L.; Roselló, J.

    Purpose: The high mass density and low mobilities of charge carriers can cause important recombination in liquid-filled ionization chambers (LICs). Saturation correction methods have been proposed for LICs. Correction methods for pulsed irradiation are based on Boag equation. However, Boag equation assumes that the charge ionized by one pulse is fully collected before the arrival of the next pulse. This condition does not hold in many clinical beams where the pulse repetition period may be shorter than the charge collection time, causing overlapping between charge carriers ionized by different pulses, and Boag equation is not applicable there. In this work,more » the authors present an experimental and numerical characterization of collection efficiencies in LICs beyond the Boag limit, with overlapping between charge carriers ionized by different pulses. Methods: The authors have studied recombination in a LIC array for different dose-per-pulse, pulse repetition frequency, and polarization voltage values. Measurements were performed in a Truebeam Linac using FF and FFF modalities. Dose-per-pulse and pulse repetition frequency have been obtained by monitoring the target current with an oscilloscope. Experimental collection efficiencies have been obtained by using a combination of the two-dose-rate method and ratios to the readout of a reference chamber (CC13, IBA). The authors have also used numerical simulation to complement the experimental data. Results: The authors have found that overlap significantly increases recombination in LICs, as expected. However, the functional dependence of collection efficiencies on the dose-per-pulse does not change (a linear dependence has been observed in the near-saturation region for different degrees of overlapping, the same dependence observed in the nonoverlapping scenario). On the other hand, the dependence of collection efficiencies on the polarization voltage changes in the overlapping scenario and does not follow that of Boag equation, the reason being that changing the polarization voltage also affects the charge collection time, thus changing the amount of overlapping. Conclusions: These results have important consequences for saturation correction methods for LICs. On one hand, the two-dose-rate method, which relies on the functional dependence of the collection efficiencies on dose-per-pulse, can also be used in the overlapping situation, provided that the two measurements needed to feed the method are performed at the same pulse repetition frequency (monitor unit rate). This result opens the door to computing collection efficiencies in LICs in many clinical setups where charge overlap in the LIC exists. On the other hand, correction methods based on the voltage-dependence of Boag equation like the three-voltage method or the modified two-voltage method will not work in the overlapping scenario due to the different functional dependence of collection efficiencies on the polarization voltage.« less

  6. Accessible solitons of fractional dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com; Texas A&M University at Qatar, P.O. Box 23874, Doha; Belić, Milivoj

    We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential.more » •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.« less

  7. Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications

    NASA Astrophysics Data System (ADS)

    Arakcheev, A. S.; Skovorodin, D. I.; Burdakov, A. V.; Shoshin, A. A.; Polosatkin, S. V.; Vasilyev, A. A.; Postupaev, V. V.; Vyacheslavov, L. N.; Kasatov, A. A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya

    2015-12-01

    A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle-ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating-cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.

  8. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  9. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has beenmore » obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.« less

  10. Electrolytic hydrogen production: An analysis and review

    NASA Technical Reports Server (NTRS)

    Evangelista, J.; Phillips, B.; Gordon, L.

    1975-01-01

    The thermodynamics of water electrolysis cells is presented, followed by a review of current and future technology of commercial cells. The irreversibilities involved are analyzed and the resulting equations assembled into a computer simulation model of electrolysis cell efficiency. The model is tested by comparing predictions based on the model to actual commercial cell performance, and a parametric investigation of operating conditions is performed. Finally, the simulation model is applied to a study of electrolysis cell dynamics through consideration of an ideal pulsed electrolyzer.

  11. A Gaussian Model-Based Probabilistic Approach for Pulse Transit Time Estimation.

    PubMed

    Jang, Dae-Geun; Park, Seung-Hun; Hahn, Minsoo

    2016-01-01

    In this paper, we propose a new probabilistic approach to pulse transit time (PTT) estimation using a Gaussian distribution model. It is motivated basically by the hypothesis that PTTs normalized by RR intervals follow the Gaussian distribution. To verify the hypothesis, we demonstrate the effects of arterial compliance on the normalized PTTs using the Moens-Korteweg equation. Furthermore, we observe a Gaussian distribution of the normalized PTTs on real data. In order to estimate the PTT using the hypothesis, we first assumed that R-waves in the electrocardiogram (ECG) can be correctly identified. The R-waves limit searching ranges to detect pulse peaks in the photoplethysmogram (PPG) and to synchronize the results with cardiac beats--i.e., the peaks of the PPG are extracted within the corresponding RR interval of the ECG as pulse peak candidates. Their probabilities of being the actual pulse peak are then calculated using a Gaussian probability function. The parameters of the Gaussian function are automatically updated when a new pulse peak is identified. This update makes the probability function adaptive to variations of cardiac cycles. Finally, the pulse peak is identified as the candidate with the highest probability. The proposed approach is tested on a database where ECG and PPG waveforms are collected simultaneously during the submaximal bicycle ergometer exercise test. The results are promising, suggesting that the method provides a simple but more accurate PTT estimation in real applications.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogatskaya, A. V., E-mail: annabogatskaya@gmail.com; Volkova, E. A.; Popov, A. M.

    The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.

  13. Dipolar effects on propagation of ultrashort laser pulse in one-dimensional para-nitroaniline (pNA) molecules

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Li, Hong-Yu; Liu, Ji-Cai; Wang, Chuan-Kui; Luo, Yi

    2005-12-01

    The dynamic behaviour of ultrashort (femtosecond) laser pulses in a molecular medium is studied by solving the full Maxwell-Bloch equations beyond the limits of the slowly varying envelope approximation and the rotating-wave approximation under the resonant and the non-resonant conditions. A one-dimensional asymmetric charge-transfer molecule, para-nitroaniline, is used as a model molecule whose electronic properties are calculated with the time-dependent hybrid density functional theory. Under the one-photon resonant condition, 4π pulse is separated into two sub-pulses. The weight of the second-harmonic component mainly contributed by the two-photon excitation becomes stronger with longer propagation time. Under the two-photon resonant condition, the separation of 4π pulse is not induced and many higher-order spectral components beyond the second-harmonic generation occur. Interestingly, when the pulse propagates for long enough, the carrier modification becomes so significant that a continuous spectrum is generated. The Fourier transform of the high-harmonic spectrum demonstrates that an even shorter laser pulse can be produced in both resonant and non-resonant propagations. The effects of permanent dipole moments on the pulse evolution are discussed.

  14. Evolución de estrellas de varias masas: Cálculo de los pulsos térmicos

    NASA Astrophysics Data System (ADS)

    Panei, J. A.; Althaus, L. G.; Benvenuto, O. G.; Serenelli, A. M.

    We present stellar evolutionary calculations for models with stellar masses ranging from 1.2 to 20 Msolar. We follow the calculations from the Main Sequence up to the phase of thermal pulses. The emphasis is placed mainly on the analysis of the behaviour of a 5 Msolar model. The evolutionary code is based on the Kippenhahn, Weigert, & Hofmeister (1967) method to compute stellar evolution. The structure and stellar evolution equations for the stellar interior are integrated using the standard Henyey method. The degree of superadiabaticity is computed from the mixing length theory of convection (Böhm - Vitense 1958). The equation of state we employed takes into account partial ionization, radiation pressure and relativistic degeneracy for electrons at finite temperature. Radiative opacities with metallicity Z=0.02 are taken from Rogers & Iglesias (1996). Conductive opacities for the low - density regime are from the fits of Iben (1975) to the calculations of Hubbard & Lampe (1969). For higher densities we use the results of Itoh et. al (1983). The molecular opacities are those of Alexander & Ferguson (1994). The different mechanisms of neutrino emission are also taken account. In particular, photo and pair neutrinos are from Itoh et al. (1989); plasma neutrinos from Itoh et al. (1989) and Bremsstrahlung from Itoh et al. (1992). Because the aim in this work has been to calculate the stages corresponding to the thermal pulses, particular attention has been devoted to the treatment of the numerical difficulties appearing in this kind of calculation. To this end, we solve the equations describing the structure and evolution of a star in terms of differences with respect to time, instead of iterating the value of the physical variables directly. This change has allowed us to calculate advanced evolutionary stages such as the thermal pulses. In this regard, we find that our models experiencies up to 10 thermal flashes.

  15. Analytical description of generation of the residual current density in the plasma produced by a few-cycle laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru; University of Nizhny Novgorod, Nizhny Novgorod 603950

    2015-05-15

    When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCDmore » corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.« less

  16. Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate.

    PubMed

    Franco Navarro, Pedro; Benson, David J; Nesterenko, Vitali F

    2015-12-01

    We study the evolution of high-amplitude stress pulses in periodic dissipative laminates taking into account the nonlinear constitutive equations of the components and their dissipative behavior. Aluminum-tungsten laminate was selected due to the large difference in acoustic impedances of components, the significant nonlinearity of the aluminum constitutive equation at the investigated range of stresses, and its possible practical applications. Laminates with different cell size, which controls the internal time scale, impacted by plates with different thicknesses that determine the incoming pulse duration, were investigated. It has been observed that the ratio of the duration of the incoming pulse to the internal characteristic time determines the nature of the high-amplitude dissipative propagating waves-a triangular oscillatory shock-like profile, a train of localized pulses, or a single localized pulse. These localized quasistationary waves resemble solitary waves even in the presence of dissipation: The similar pulses emerged from different initial conditions, indicating that they are inherent properties of the corresponding laminates; their characteristic length scale is determined by the scale of mesostructure, nonlinear properties of materials, and the stress amplitude; and a linear relationship exists between their speed and amplitude. They mostly recover their shapes after collision with phase shift. A theoretical description approximating the shape, length scale, and speed of these high-amplitude dissipative pulses was proposed based on the Korteweg-de Vries equation with a dispersive term determined by the mesostructure and a nonlinear term derived using Hugoniot curves of components.

  17. Synchronization scenarios in the Winfree model of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Gallego, Rafael; Montbrió, Ernest; Pazó, Diego

    2017-10-01

    Fifty years ago Arthur Winfree proposed a deeply influential mean-field model for the collective synchronization of large populations of phase oscillators. Here we provide a detailed analysis of the model for some special, analytically tractable cases. Adopting the thermodynamic limit, we derive an ordinary differential equation that exactly describes the temporal evolution of the macroscopic variables in the Ott-Antonsen invariant manifold. The low-dimensional model is then thoroughly investigated for a variety of pulse types and sinusoidal phase response curves (PRCs). Two structurally different synchronization scenarios are found, which are linked via the mutation of a Bogdanov-Takens point. From our results, we infer a general rule of thumb relating pulse shape and PRC offset with each scenario. Finally, we compare the exact synchronization threshold with the prediction of the averaging approximation given by the Kuramoto-Sakaguchi model. At the leading order, the discrepancy appears to behave as an odd function of the PRC offset.

  18. Pulse-amplitude modulation of optical injection-locked quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Yue-Guang; Wang, Cheng

    2018-02-01

    This work theoretically investigates the four-level pulse-amplitude modulation characteristics of quantum dot lasers subject to optical injection. The rate equation model takes into account carrier dynamics in the carrier reservoir, in the excited state, and in the ground state, as well as photon dynamics and phase dynamics of the electric field. It is found that the optical injection significantly improves the eye diagram quality through suppressing the relaxation oscillation, while the extinction ratio is reduced as well. In addition, both the adiabatic chirp and the transient chirp of the signal are substantially suppressed.

  19. Propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an inhomogeneous array of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fedorov, Eduard G.; Zhukov, Alexander V.; Bouffanais, Roland; Timashkov, Alexander P.; Malomed, Boris A.; Leblond, Hervé; Mihalache, Dumitru; Rosanov, Nikolay N.; Belonenko, Mikhail B.

    2018-04-01

    We study the propagation of three-dimensional (3D) bipolar ultrashort electromagnetic pulses in an inhomogeneous array of semiconductor carbon nanotubes. The heterogeneity is represented by a planar region with an increased concentration of conduction electrons. The evolution of the electromagnetic field and electron concentration in the sample are governed by the Maxwell's equations and continuity equation. In particular, nonuniformity of the electromagnetic field along the axis of the nanotubes is taken into account. We demonstrate that depending on values of the parameters of the electromagnetic pulse approaching the region with the higher electron concentration, the pulse is either reflected from the region or passes it. Specifically, our simulations demonstrate that after interacting with the higher-concentration area, the pulse can propagate steadily, without significant spreading. The possibility of such ultrashort electromagnetic pulses propagating in arrays of carbon nanotubes over distances significantly exceeding characteristic dimensions of the pulses makes it possible to consider them as 3D solitons.

  20. Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik

    2017-01-01

    Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics. PMID:28580373

  1. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su

    2013-07-15

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equationsmore » is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.« less

  2. Dynamical modeling and experiment for an intra-cavity optical parametric oscillator pumped by a Q-switched self-mode-locking laser

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun

    2016-11-01

    The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.

  3. Study of unsteady performance of a twin-entry mixed flow turbine

    NASA Astrophysics Data System (ADS)

    Bencherif, M. M.; Hamidou, M. K.; Hamel, M.; Abidat, M.

    2016-03-01

    The aim of this investigation is to study the performance of a twin-entry turbine under pulsed flow conditions. The ANSYS-CFX code is used to solve three-dimensional compressible turbulent flow equations. The computational results are compared with those of a one-dimensional model and experimental data, and good agreement is found.

  4. Time-domain comparisons of power law attenuation in causal and noncausal time-fractional wave equations

    PubMed Central

    Zhao, Xiaofeng; McGough, Robert J.

    2016-01-01

    The attenuation of ultrasound propagating in human tissue follows a power law with respect to frequency that is modeled by several different causal and noncausal fractional partial differential equations. To demonstrate some of the similarities and differences that are observed in three related time-fractional partial differential equations, time-domain Green's functions are calculated numerically for the power law wave equation, the Szabo wave equation, and for the Caputo wave equation. These Green's functions are evaluated for water with a power law exponent of y = 2, breast with a power law exponent of y = 1.5, and liver with a power law exponent of y = 1.139. Simulation results show that the noncausal features of the numerically calculated time-domain response are only evident very close to the source and that these causal and noncausal time-domain Green's functions converge to the same result away from the source. When noncausal time-domain Green's functions are convolved with a short pulse, no evidence of noncausal behavior remains in the time-domain, which suggests that these causal and noncausal time-fractional models are equally effective for these numerical calculations. PMID:27250193

  5. Pre-Earthquake Unipolar Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Freund, F.

    2013-12-01

    Transient ultralow frequency (ULF) electromagnetic (EM) emissions have been reported to occur before earthquakes [1,2]. They suggest powerful transient electric currents flowing deep in the crust [3,4]. Prior to the M=5.4 Alum Rock earthquake of Oct. 21, 2007 in California a QuakeFinder triaxial search-coil magnetometer located about 2 km from the epicenter recorded unusual unipolar pulses with the approximate shape of a half-cycle of a sine wave, reaching amplitudes up to 30 nT. The number of these unipolar pulses increased as the day of the earthquake approached. These pulses clearly originated around the hypocenter. The same pulses have since been recorded prior to several medium to moderate earthquakes in Peru, where they have been used to triangulate the location of the impending earthquakes [5]. To understand the mechanism of the unipolar pulses, we first have to address the question how single current pulses can be generated deep in the Earth's crust. Key to this question appears to be the break-up of peroxy defects in the rocks in the hypocenter as a result of the increase in tectonic stresses prior to an earthquake. We investigate the mechanism of the unipolar pulses by coupling the drift-diffusion model of semiconductor theory to Maxwell's equations, thereby producing a model describing the rock volume that generates the pulses in terms of electromagnetism and semiconductor physics. The system of equations is then solved numerically to explore the electromagnetic radiation associated with drift-diffusion currents of electron-hole pairs. [1] Sharma, A. K., P. A. V., and R. N. Haridas (2011), Investigation of ULF magnetic anomaly before moderate earthquakes, Exploration Geophysics 43, 36-46. [2] Hayakawa, M., Y. Hobara, K. Ohta, and K. Hattori (2011), The ultra-low-frequency magnetic disturbances associated with earthquakes, Earthquake Science, 24, 523-534. [3] Bortnik, J., T. E. Bleier, C. Dunson, and F. Freund (2010), Estimating the seismotelluric current required for observable electromagnetic ground signals, Ann. Geophys., 28, 1615-1624. [4] Bleier, T., C. Dunson, M. Maniscalco, N. Bryant, R. Bambery, and F. Freund (2009), Investigation of ULF magnetic pulsations, air conductivity changes, infrared signatures associated with the 30 October 2007 Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst. Sci., 9, 585-603. [5] Heraud, J. A., V, A. Centa, T. Bleier, and C. Dunson (2013), Determining future epicenters by triangulation of magnetometer pulses in Peru, AGU Fall Meeting, Session NH014

  6. Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.

    PubMed

    Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham

    2016-11-01

    Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.

  7. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-02-01

    A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm2, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  8. Behavioral modeling of VCSELs for high-speed optical interconnects

    NASA Astrophysics Data System (ADS)

    Szczerba, Krzysztof; Kocot, Chris

    2018-02-01

    Transition from on-off keying to 4-level pulse amplitude modulation (PAM) in VCSEL based optical interconnects allows for an increase of data rates, at the cost of 4.8 dB sensitivity penalty. The resulting strained link budget creates a need for accurate VCSEL models for driver integrated circuit (IC) design and system level simulations. Rate equation based equivalent circuit models are convenient for the IC design, but system level analysis requires computationally efficient closed form behavioral models based Volterra series and neural networks. In this paper we present and compare these models.

  9. Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model

    NASA Astrophysics Data System (ADS)

    Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha

    2017-06-01

    Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  10. Complete spatial and temporal locking in phase-mismatched second-harmonic generation.

    PubMed

    Fazio, Eugenio; Pettazzi, Federico; Centini, Marco; Chauvet, Mathieu; Belardini, Alessandro; Alonzo, Massimo; Sibilia, Concita; Bertolotti, Mario; Scalora, Micheal

    2009-03-02

    We experimentally demonstrate simultaneous phase and group velocity locking of fundamental and generated second harmonic pulses in Lithium Niobate, under conditions of material phase mismatch. In phase-mismatched, pulsed second harmonic generation in addition to a reflected signal two forward-propagating pulses are also generated at the interface between a linear and a second order nonlinear material: the first pulse results from the solution of the homogeneous wave equation, and propagates at the group velocity expected from material dispersion; the second pulse is the solution of the inhomogeneous wave equation, is phase-locked and trapped by the pump pulse, and follows the pump trajectory. At normal incidence, the normal and phase locked pulses simply trail each other. At oblique incidence, the consequences can be quite dramatic. The homogeneous pulse refracts as predicted by material dispersion and Snell's law, yielding at least two spatially separate second harmonic spots at the medium's exit. We thus report the first experimental results showing that, at oblique incidence, fundamental and phase-locked second harmonic pulses travel with the same group velocity and follow the same trajectory. This is direct evidence that, at least up to first order, the effective dispersion of the phase-locked pulse is similar to the dispersion of the pump pulse.

  11. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties

    NASA Astrophysics Data System (ADS)

    Kargovsky, A. V.; Chichigina, O. A.; Anashkina, E. I.; Valenti, D.; Spagnolo, B.

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  12. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties.

    PubMed

    Kargovsky, A V; Chichigina, O A; Anashkina, E I; Valenti, D; Spagnolo, B

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  13. NEUTRON STAR MASS–RADIUS CONSTRAINTS USING EVOLUTIONARY OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A. L.; Morsink, S. M.; Fiege, J. D.

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT , NICER , or a mission similar to LOFT . In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determinemore » the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ∼1% achievable in mass and radius if both the inclination and colatitude are ≳60°.« less

  14. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    PubMed

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that predictions of stronger effects in linear membrane models with a fixed activation threshold are inaccurate. Thus, the conventional cable equation works well for most neuroengineering applications, and the presented modeling approach is well suited to address the exceptions.

  15. Effect of an Additional, Parallel Capacitor on Pulsed Inductive Plasma Accelerator Performance

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one-dimensional momentum equation has been used to study the effects of adding a second, parallel capacitor into the system. The equations were nondimensionalized, permitting the recovery of several already-known scaling parameters and leading to the identification of a parameter that is unique to the particular topology studied. The current rise rate through the inductive acceleration coil was used as a proxy measurement of the effectiveness of inductive propellant ionization since higher rise rates produce stronger, potentially better ionizing electric fields at the coil face. Contour plots representing thruster performance (exhaust velocity and efficiency) and current rise rate in the coil were generated numerically as a function of the scaling parameters. The analysis reveals that when the value of the second capacitor is much less than the first capacitor, the performance of the two-capacitor system approaches that of the single-capacitor system. In addition, as the second capacitor is decreased in value the current rise rate can grow to be twice as great as the rise rate attained in the single capacitor case.

  16. Computational Modeling of Semiconductor Dynamics at Femtosecond Time Scales

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind P.; Goorjian, Peter M.

    1998-01-01

    The main objective of the Joint-Research Interchange NCC2-5149 was to develop computer codes for accurate simulation of femtosecond pulse propagation in semiconductor lasers and semiconductor amplifiers [I]. The code should take into account all relevant processes such as the interband and intraband carrier relaxation mechanisms and the many-body effects arising from the Coulomb interaction among charge carriers [2]. This objective was fully accomplished. We made use of a previously developed algorithm developed at NASA Ames [3]-[5]. The new algorithm was tested on several problems of practical importance. One such problem was related to the amplification of femtosecond optical pulses in semiconductors. These results were presented in several international conferences over a period of three years. With the help of a postdoctoral fellow, we also investigated the origin of instabilities that can lead to the formation of femtosecond pulses in different kinds of lasers. We analyzed the occurrence of absolute instabilities in lasers that contain a dispersive host material with third-order nonlinearities. Starting from the Maxwell-Bloch equations, we derived general multimode equations to distinguish between convective and absolute instabilities. We find that both self-phase modulation and intensity-dependent absorption can dramatically affect the absolute stability of such lasers. In particular, the self-pulsing threshold (the so-called second laser threshold) can occur at few times the first laser threshold even in good-cavity lasers for which no self-pulsing occurs in the absence of intensity-dependent absorption. These results were presented in an international conference and published in the form of two papers.

  17. A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model

    NASA Astrophysics Data System (ADS)

    Jiang, Yongyue; Li, Li; Zhao, Zhijiang

    2017-11-01

    Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.

  18. Full analytical solution of the bloch equation when using a hyperbolic-secant driving function.

    PubMed

    Zhang, Jinjin; Garwood, Michael; Park, Jang-Yeon

    2017-04-01

    The frequency-swept pulse known as the hyperbolic-secant (HS) pulse is popular in NMR for achieving adiabatic spin inversion. The HS pulse has also shown utility for achieving excitation and refocusing in gradient-echo and spin-echo sequences, including new ultrashort echo-time imaging (e.g., Sweep Imaging with Fourier Transform, SWIFT) and B 1 mapping techniques. To facilitate the analysis of these techniques, the complete theoretical solution of the Bloch equation, as driven by the HS pulse, was derived for an arbitrary state of initial magnetization. The solution of the Bloch-Riccati equation for transverse and longitudinal magnetization for an arbitrary initial state was derived analytically in terms of HS pulse parameters. The analytical solution was compared with the solutions using both the Runge-Kutta method and the small-tip approximation. The analytical solution was demonstrated on different initial states at different frequency offsets with/without a combination of HS pulses. Evolution of the transverse magnetization was influenced significantly by the choice of HS pulse parameters. The deviation of the magnitude of the transverse magnetization, as obtained by comparing the small-tip approximation to the analytical solution, was < 5% for flip angles < 30 °, but > 10% for the flip angles > 40 °. The derived analytical solution provides insights into the influence of HS pulse parameters on the magnetization evolution. Magn Reson Med 77:1630-1638, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Simulating The Prompt Electromagnetic Pulse In 3D Using Vector Spherical Harmonics

    NASA Astrophysics Data System (ADS)

    Friedman, Alex; Cohen, Bruce I.; Eng, Chester D.; Farmer, William A.; Grote, David P.; Kruger, Hans W.; Larson, David J.

    2017-10-01

    We describe a new, efficient code for simulating the prompt electromagnetic pulse. In SHEMP (``Spherical Harmonic EMP''), we extend to 3-D the methods pioneered in C. Longmire's CHAP code. The geomagnetic field and air density are consistent with CHAP's assumed spherical symmetry only for narrow domains of influence about the line of sight, limiting validity to very early times. Also, we seek to model inherently 3-D situations. In CHAP and our own CHAP-lite, the independent coordinates are r (the distance from the source) and τ = t-r/c; the pulse varies slowly with r at fixed τ, so a coarse radial grid suffices. We add non-spherically-symmetric physics via a vector spherical harmonic decomposition. For each (l,m) harmonic, the radial equation is similar to that in CHAP and CHAP-lite. We present our methodology and results on model problems. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Multiple re-encounter approach to radical pair reactions and the role of nonlinear master equations.

    PubMed

    Clausen, Jens; Guerreschi, Gian Giacomo; Tiersch, Markus; Briegel, Hans J

    2014-08-07

    We formulate a multiple-encounter model of the radical pair mechanism that is based on a random coupling of the radical pair to a minimal model environment. These occasional pulse-like couplings correspond to the radical encounters and give rise to both dephasing and recombination. While this is in agreement with the original model of Haberkorn and its extensions that assume additional dephasing, we show how a nonlinear master equation may be constructed to describe the conditional evolution of the radical pairs prior to the detection of their recombination. We propose a nonlinear master equation for the evolution of an ensemble of independently evolving radical pairs whose nonlinearity depends on the record of the fluorescence signal. We also reformulate Haberkorn's original argument on the physicality of reaction operators using the terminology of quantum optics/open quantum systems. Our model allows one to describe multiple encounters within the exponential model and connects this with the master equation approach. We include hitherto neglected effects of the encounters, such as a separate dephasing in the triplet subspace, and predict potential new effects, such as Grover reflections of radical spins, that may be observed if the strength and time of the encounters can be experimentally controlled.

  1. Dynamics of temporally localized states in passively mode-locked semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Schelte, C.; Javaloyes, J.; Gurevich, S. V.

    2018-05-01

    We study the emergence and the stability of temporally localized structures in the output of a semiconductor laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate, partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of group velocity dispersion, which is only possible in the framework of the partial differential equation model, and we show that it may have a profound impact on the dynamics of the localized states.

  2. Resonant optical pulses on a continuous-wave background in two-level active media

    NASA Astrophysics Data System (ADS)

    Li, Sitai; Biondini, Gino; Kovačič, Gregor; Gabitov, Ildar

    2018-01-01

    We present exact N-soliton optical pulses riding on a continuous-wave (c.w.) beam that propagate through and interact with a two-level active optical medium. Their representation is derived via an appropriate generalization of the inverse scattering transform for the corresponding Maxwell-Bloch equations. We describe the single-soliton solutions in detail and classify them into several distinct families. In addition to the analogues of traveling-wave soliton pulses that arise in the absence of a c.w. beam, we obtain breather-like structures, periodic pulse-trains and rogue-wave-type (i.e., rational) pulses, whose existence is directly due to the presence of the c.w. beam. These soliton solutions are the analogues for Maxwell-Bloch systems of the four classical solution types of the focusing nonlinear Schrödinger equation with non-zero background, although the physical behavior of the corresponding solutions is quite different.

  3. Traveling waves in a spatially-distributed Wilson-Cowan model of cortex: From fronts to pulses

    NASA Astrophysics Data System (ADS)

    Harris, Jeremy D.; Ermentrout, Bard

    2018-04-01

    Wave propagation in excitable media has been studied in various biological, chemical, and physical systems. Waves are among the most common evoked and spontaneous organized activity seen in cortical networks. In this paper, we study traveling fronts and pulses in a spatially-extended version of the Wilson-Cowan equations, a neural firing rate model of sensory cortex having two population types: Excitatory and inhibitory. We are primarily interested in the case when the local or space-clamped dynamics has three fixed points: (1) a stable down state; (2) a saddle point with stable manifold that acts as a threshold for firing; (3) an up state having stability that depends on the time scale of the inhibition. In the case when the up state is stable, we look for wave fronts, which transition the media from a down to up state, and when the up state is unstable, we are interested in pulses, a transient increase in firing that returns to the down state. We explore the behavior of these waves as the time and space scales of the inhibitory population vary. Some interesting findings include bistability between a traveling front and pulse, fronts that join the down state to an oscillation or spatiotemporal pattern, and pulses which go through an oscillatory instability.

  4. Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo

    2016-06-01

    A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.

  5. Photoacoustic design parameter optimization for deep tissue imaging by numerical simulation

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Ha, Seunghan; Kim, Kang

    2012-02-01

    A new design of light illumination scheme for deep tissue photoacoustic (PA) imaging, a light catcher, is proposed and evaluated by in silico simulation. Finite element (FE)-based numerical simulation model was developed for photoacoustic (PA) imaging in soft tissues. In this in silico simulation using a commercially available FE simulation package (COMSOL MultiphysicsTM, COMSOL Inc., USA), a short-pulsed laser point source (pulse length of 5 ns) was placed in water on the tissue surface. Overall, four sets of simulation models were integrated together to describe the physical principles of PA imaging. Light energy transmission through background tissues from the laser source to the target tissue or contrast agent was described by diffusion equation. The absorption of light energy and its conversion to heat by target tissue or contrast agent was modeled using bio-heat equation. The heat then causes the stress and strain change, and the resulting displacement of the target surface produces acoustic pressure. The created wide-band acoustic pressure will propagate through background tissues to the ultrasound detector, which is governed by acoustic wave equation. Both optical and acoustical parameters in soft tissues such as scattering, absorption, and attenuation are incorporated in tissue models. PA imaging performance with different design parameters of the laser source and energy delivery scheme was investigated. The laser light illumination into the deep tissues can be significantly improved by up to 134.8% increase of fluence rate by introducing a designed compact light catcher with highly reflecting inner surface surrounding the light source. The optimized parameters through this simulation will guide the design of PA system for deep tissue imaging, and help to form the base protocols of experimental evaluations in vitro and in vivo.

  6. Cluster dynamics of pulse coupled oscillators

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Kevin; Strogatz, Steven; Krapivsky, Paul

    2015-03-01

    We study the dynamics of networks of pulse coupled oscillators. Much attention has been devoted to the ultimate fate of the system: which conditions lead to a steady state in which all the oscillators are firing synchronously. But little is known about how synchrony builds up from an initially incoherent state. The current work addresses this question. Oscillators start to synchronize by forming clusters of different sizes that fire in unison. First pairs of oscillators, then triplets and so on. These clusters progressively grow by coalescing with others, eventually resulting in the fully synchronized state. We study the mean field model in which the coupling between oscillators is all to all. We use probabilistic arguments to derive a recursive set of evolution equations for these clusters. Using a generating function formalism, we derive simple equations for the moments of these clusters. Our results are in good agreement simulation. We then numerically explore the effects of non-trivial connectivity. Our results have potential application to ultra-low power ``impulse radio'' & sensor networks.

  7. Maxwell+TDDFT multiscale method for light propagation in thin-film semiconductor

    NASA Astrophysics Data System (ADS)

    Uemoto, Mitsuharu; Yabana, Kazuhiro

    First-principles time-dependent density functional theory (TDDFT) has been a powerful tool to describe light-matter interactions and widely used to describe electronic excitations and linear and nonlinear optical properties of molecules and solids. We have been developing a novel multiscale modeling to describe a propagation of light pulse in a macroscopic medium combining TDDFT and Maxwell equations. In the method, the finite-difference time-domain (FDTD)-like electromagnetism (EM) calculation is carried out in a macroscopic grid. At each grid point, the time-dependent Kohn-Sham equation is solved in real time. In the presentation, we show applications of this method to the 1D/2D propagations of femtosecond laser pulses through a thin-film semiconductor. This work was supported in part by MEXT as a social and scientific priority issue (Creation of new functional devices and high-performance materials to support next-generation industries; CDMSI) to be tackled by using post-K computer.

  8. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    NASA Astrophysics Data System (ADS)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  9. Muonic molecular ions p p μ and p d μ driven by superintense VUV laser pulses: Postexcitation muonic and nuclear oscillations and high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Paramonov, Guennaddi K.; Saalfrank, Peter

    2018-05-01

    The non-Born-Oppenheimer quantum dynamics of p p μ and p d μ molecular ions excited by ultrashort, superintense VUV laser pulses polarized along the molecular axis (z ) is studied by the numerical solution of the time-dependent Schrödinger equation within a three-dimensional (3D) model, including the internuclear distance R and muon coordinates z and ρ , a transversal degree of freedom. It is shown that in both p p μ and p d μ , muons approximately follow the applied laser field out of phase. After the end of the laser pulse, expectation values , <ρ > , and demonstrate "post-laser-pulse" oscillations in both p p μ and p d μ . In the case of p d μ , the post-laser-pulse oscillations of and appear as shaped "echo pulses." Power spectra, which are related to high-order harmonic generation (HHG), generated due to muonic and nuclear motion are calculated in the acceleration form. For p d μ it is found that there exists a unique characteristic frequency ωoscp d μ representing both frequencies of post-laser-pulse muonic oscillations and the frequency of nuclear vibrations, which manifest themselves by very sharp maxima in the corresponding power spectra of p d μ . The homonuclear p p μ ion does not possess such a unique characteristic frequency. The "exact" dynamics and power, and HHG spectra of the 3D model are compared with a Born-Oppenheimer, fixed-nuclei model featuring interesting differences: postpulse oscillations are absent and HHG spectra are affected indirectly or directly by nuclear motion.

  10. Space-Time Adaptive Processing for Airborne Radar

    DTIC Science & Technology

    1994-12-13

    horizontal plane Uniform linear antenna array (possibly columns of a planar array) Identical element patterns 13 14 15 9 7 7,33 7 7 Target Model ...Parameters for Example Scenario 31 3 Assumptions Made for Radar System and Signal Model 52 4 Platform and Interference Scenario for Baseline Scenario. 61 5...pulses, is addressed first. Fully adaptive STAP requires the solution to a system of linear equations of size MN, where N is the number of array

  11. Pulsatile spiral blood flow through arterial stenosis.

    PubMed

    Linge, Fabian; Hye, Md Abdul; Paul, Manosh C

    2014-11-01

    Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.

  12. Numerical modeling of materials processing applications of a pulsed cold cathode electron gun

    NASA Astrophysics Data System (ADS)

    Etcheverry, J. I.; Martínez, O. E.; Mingolo, N.

    1998-04-01

    A numerical study of the application of a pulsed cold cathode electron gun to materials processing is performed. A simple semiempirical model of the discharge is used, together with backscattering and energy deposition profiles obtained by a Monte Carlo technique, in order to evaluate the energy source term inside the material. The numerical computation of the heat equation with the calculated source term is performed in order to obtain useful information on melting and vaporization thresholds, melted radius and depth, and on the dependence of these variables on processing parameters such as operating pressure, initial voltage of the discharge and cathode-sample distance. Numerical results for stainless steel are presented, which demonstrate the need for several modifications of the experimental design in order to achieve a better efficiency.

  13. Pulse propagation, dispersion, and energy in magnetic materials.

    PubMed

    Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Bloemer, Mark J; Centini, Marco; Sibilia, Concita; Bertolotti, Mario

    2005-12-01

    We discuss pulse propagation effects in generic, electrically and magnetically dispersive media that may display large material discontinuities, such as a surface boundary. Using the known basic constitutive relations between the fields, and an explicit Taylor expansion to describe the dielectric susceptibility and magnetic permeability, we derive expressions for energy density and energy dissipation rates, and equations of motion for the coupled electric and magnetic fields. We then solve the equations of motion in the presence of a single interface, and find that in addition to the now-established negative refraction process an energy exchange occurs between the electric and magnetic fields as the pulse traverses the boundary.

  14. Multiple soliton production and the Korteweg-de Vries equation.

    NASA Technical Reports Server (NTRS)

    Hershkowitz, N.; Romesser, T.; Montgomery, D.

    1972-01-01

    Compressive square-wave pulses are launched in a double-plasma device. Their evolution is interpreted according to the Korteweg-de Vries description of Washimi and Taniuti. Square-wave pulses are an excitation for which an explicit solution of the Schrodinger equation permits an analytical prediction of the number and amplitude of emergent solitons. Bursts of energetic particles (pseudowaves) appear above excitation voltages greater than an electron thermal energy, and may be mistaken for solitons.

  15. Application of Quasi-Heat-Pulse Solutions for Luikov’s Equations of Heat and Moisture Transfer for Calibrating and Utilizing Thermal Properties Apparatus

    Treesearch

    Mark A. Dietenberger; Charles R. Boardman

    2014-01-01

    Several years ago the Laplace transform solutions of Luikov’s differential equations were presented for one-dimensional heat and moisture transfer in porous hydroscopic orthotropic materials for the boundary condition of a gradual heat pulse applied to both surfaces of a flat slab. This paper presents calibration methods and data for the K-tester 637 (Lasercomp),...

  16. Transverse Mode Dynamics of VCSELs Undergoing Current Modulation

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind

    2000-01-01

    Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling

  17. Temporal analysis of nonresonant two-photon coherent control involving bound and dissociative molecular states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Jing; Chen Shaohao; Jaron-Becker, Agnieszka

    We theoretically study the control of two-photon excitation to bound and dissociative states in a molecule induced by trains of laser pulses, which are equivalent to certain sets of spectral phase modulated pulses. To this end, we solve the time-dependent Schroedinger equation for the interaction of molecular model systems with an external intense laser field. Our numerical results for the temporal evolution of the population in the excited states show that, in the case of an excited dissociative state, control schemes, previously validated for the atomic case, fail due to the coupling of electronic and nuclear motion. In contrast, formore » excitation to bound states the two-photon excitation probability is controlled via the time delay and the carrier-envelope phase difference between two consecutive pulses in the train.« less

  18. Theoretical and experimental investigations on high peak power Q-switched Nd:YAG laser at 1112 nm

    NASA Astrophysics Data System (ADS)

    He, Miao; Yang, Feng; Wang, Zhi-Chao; Gao, Hong-Wei; Yuan, Lei; Li, Chen-Long; Zong, Nan; Shen, Yu; Bo, Yong; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2018-07-01

    We report on the experimental measurement and theoretical analysis on a Q-switched high peak power laser diode (LD) side-pumped 1112 nm Nd:YAG laser by means of special mirrors coating design in cavity. In theory, a numerical model, based on four-wavelength rate equations, is performed to analyze the competition process of different gain lines and the output characteristics of the Q-switched Nd:YAG laser. In the experiment, a maximum output power of 25.2 W with beam quality factor M2 of 1.46 is obtained at the pulse repetition rate of 2 kHz and 210 ns of pulse width, corresponding to a pulse energy and peak power of 12.6 mJ and 60 kW, respectively. The experimental data agree well with the theoretical simulation results.

  19. Effect of pulsed electric fields on the activity of neutral trehalase from beer yeast and RSM analysis.

    PubMed

    Ye, Haiqing; Jin, Yan; Lin, Songyi; Liu, Mingyuan; Yang, Yi; Zhang, Meishuo; Zhao, Ping; Jones, Gregory

    2012-06-01

    The trehalase activity plays an important role in extraction of trehalose from beer yeast. In this study, the effect of pulsed electric field processing on neutral trehalase activity in beer yeast was investigated. In order to develop and optimize a pulsed electric field (PEF) mathematical model for activating the neutral trehalase, we have investigated three variables, including electric field intensity (10-50 kV/cm), pulse duration (2-10 μs) and liquid-solid ratio (20-50 ml/g) and subsequently optimized them by response surface methodology (RSM). The experimental data were fitted to a second-order polynomial equation and profiled into the corresponding contour plots. Optimal condition obtained by RSM is as follows: electric field intensity 42.13 kV/cm, liquid-solid ratio 30.12 ml/g and pulse duration 5.46 μs. Under these conditions, with the trehalose decreased 8.879 mg/L, the PEF treatment had great effect on activating neutral trehalase in beer yeast cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Modeling of a UV laser beam—silicon nitride interaction

    NASA Astrophysics Data System (ADS)

    Dgheim, J. A.

    2016-11-01

    A numerical model is developed to study heat and radiation transfers during the interaction between a UV laser beam and silicon nitride. The laser beam has temporal Gaussian or Gate shapes of a wavelength of 247 nm, with pulse duration of 27 ns. The mathematical model is based on the heat equation coupled to Lambert-Beer relationship by taking into account the conduction, convection and radiation phenomena. The resulting equations are schemed by the finite element method. Comparison with the literature shows qualitative and quantitative agreements. The investigated parameters are the temperature, the timing of the melting process and the melting phase thickness. The effects of the laser fluences, ranging from 500 to 16 000 J.m-2, the Gaussian and Gate shapes on the heat transfer, and the melting phenomenon are studied.

  1. Computational model for operation of 2 mum co-doped Tm,Ho solid state lasers.

    PubMed

    Louchev, Oleg A; Urata, Yoshiharu; Saito, Norihito; Wada, Satoshi

    2007-09-17

    A computational model for operation of co-doped Tm,Ho solid-state lasers is developed coupling (i) 8-level rate equations with (ii) TEM00 laser beam distribution, and (iii) complex heat dissipation model. Simulations done for Q-switched approximately 0.1 J giant pulse generation by Tm,Ho:YLF laser show that approximately 43% of the 785 nm light diode side-pumped energy is directly transformed into the heat inside the crystal, whereas approximately 45% is the spontaneously emitted radiation from (3)F(4), (5)I(7) , (3)H(4) and (3)H(5) levels. In water-cooled operation this radiation is absorbed inside the thermal boundary layer where the heat transfer is dominated by heat conduction. In high-power operation the resulting temperature increase is shown to lead to (i) significant decrease in giant pulse energy and (ii) thermal lensing.

  2. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    PubMed

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  3. Flux frequency analysis of seasonally dry ecosystem fluxes in two unique biomes of Sonora Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, V. S.; Yepez, E. A.; Robles-Morua, A.; Garatuza, J.; Rodriguez, J. C.; Watts, C.

    2013-05-01

    Complex dynamics from the interactions of ecosystems processes makes difficult to model the behavior of ecosystems fluxes of carbon and water in response to the variation of environmental and biological drivers. Although process oriented ecosystem models are critical tools for studying land-atmosphere fluxes, its validity depends on the appropriate parameterization of equations describing temporal and spatial changes of model state variables and their interactions. This constraint often leads to discrepancies between model simulations and observed data that reduce models reliability especially in arid and semiarid ecosystems. In the semiarid north western Mexico, ecosystem processes are fundamentally controlled by the seasonality of water and the intermittence of rain pulses which are conditions that require calibration of specific fitting functions to describe the response of ecosystem variables (i.e. NEE, GPP, ET, respiration) to these wetting and drying periods. The goal is to find functions that describe the magnitude of ecosystem fluxes during individual rain pulses and the seasonality of the ecosystem. Relaying on five years of eddy covariance flux data of a tropical dry forest and a subtropical shrubland we present a flux frequency analysis that describe the variation of net ecosystem exchange (NEE) of CO2 to highlight the relevance of pulse driven dynamics controlling this flux. Preliminary results of flux frequency analysis of NEE indicate that these ecosystems are strongly controlled by the frequency distribution of rain. Also, the output of fitting functions for NEE, GPP, ET and respiration using semi-empirical functions applied at specific rain pulses compared with season-long statistically generated simulations do not agree. Seasonality and the intrinsic nature of individual pulses have different effects on ecosystem flux responses. This suggests that relationships between the nature of seasonality and individual pulses can help improve the parameterization of process oriented ecosystem models.

  4. Time-resolved GRB spectra in the complex radiation of synchrotron and Compton processes

    NASA Astrophysics Data System (ADS)

    Jiang, Y. G.; Hu, S. M.; Chen, X.; Li, K.; Guo, D. F.; Li, Y. T.; Li, H. Z.; Zhao, Y. Y.; Lin, H. N.; Chang, Z.

    2016-03-01

    Under the steady-state condition, the spectrum of electrons is investigated by solving the continuity equation under the complex radiation of both the synchrotron and Compton processes. The resulted gamma-ray burst (GRB) spectrum is a broken power law in both the fast and slow cooling phases. On the basis of this electron spectrum, the spectral indices of the Band function in four different phases are presented. In the complex radiation frame, the detail investigation on physical parameters reveals that three models can answer the α ˜ -1 problem, which are the synchrotron plus synchrotron self-Compton in the internal and the external shock models, and the synchrotron plus the external Compton processes in the external shock model. A possible marginal to fast cooling phase transition in GRB 080916C is discussed. The time-resolved spectra in different main pulses of GRB 100724B, GRB 100826A and GRB 130606B are investigated. We found that the flux is proportional to the peak energy in almost all main pulses. A significant (5σ) correlation for Fp ˜ Ep is evident the first main pulse of GRB 100826A, and three marginally significant (3σ) correlations Fp ˜ Ep are found in main pulses of GRB 100826A and GRB 130606B. The correlation between spectral index and Ep at 3 ˜ 4σ level are observed in the first main pulse of GRB 100826A. Such correlations are possible explained in the complex radiation scenario.

  5. Pulsing Inertial Oscillation, Supercell Storms, and Surface Mesonetwork Data

    NASA Technical Reports Server (NTRS)

    Costen, R. C.; Miller, L. J.

    1998-01-01

    The pulsing inertial oscillation (PIO) model is a nonlinear, time-dependent, translating vortex solution of the inviscid, compressible fluid dynamic equations in the middle troposphere. The translation of this vortex during a pulse is strikingly similar to that of a supercell storm -- a rotating thunderstorm that can generate tornadoes and hail. Two studies were performed to test the hypothesis that some supercell storms are manifestations of a PIO pulse. The first study applied the model to an intense interior draft whose buoyancy was bounded by a temperature excess of +/- 12 K. The peak updraft speed achieved was 41.5 m/ s and the peak Rossby number was 92.9. The study also pointed to an advanced concept for attaining higher values. The second study applied the PIO model to a supercell storm as a whole and succeeded in replicating its bulk properties, such as mesocyclonic circulation, net mass and moisture influxes, and time track. This study also identified a critical feature of the PIO model that could be tested against storm data: The average vertical draft is downward before the turn in the storm track and upward afterwards. In the conventional theory, the average vertical draft is upward from storm inception until dissipation. These differing draft predictions were compared with the best available data, which are surface mesonetwork data. These data were found to support the PIO model. However, surface data alone are not conclusive, and further measurements are warranted.

  6. Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons.

    PubMed

    Ratas, Irmantas; Pyragas, Kestutis

    2017-10-01

    We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous; they include both inherently spiking and excitable neurons. The coupling within and between the populations is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rates and the mean membrane potentials in both populations. The reduced equations are exact in the infinite-size limit. The bifurcation analysis of the equations reveals a rich variety of nonsymmetric patterns, including a splay state, antiphase periodic oscillations, chimera-like states, and chaotic oscillations as well as bistabilities between various states. The validity of the reduced equations is confirmed by direct numerical simulations of the finite-size networks.

  7. Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons

    NASA Astrophysics Data System (ADS)

    Ratas, Irmantas; Pyragas, Kestutis

    2017-10-01

    We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous; they include both inherently spiking and excitable neurons. The coupling within and between the populations is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rates and the mean membrane potentials in both populations. The reduced equations are exact in the infinite-size limit. The bifurcation analysis of the equations reveals a rich variety of nonsymmetric patterns, including a splay state, antiphase periodic oscillations, chimera-like states, and chaotic oscillations as well as bistabilities between various states. The validity of the reduced equations is confirmed by direct numerical simulations of the finite-size networks.

  8. Transient finite element modeling of functional electrical stimulation.

    PubMed

    Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J

    2011-03-01

    Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.

  9. Estimation of reliability and dynamic property for polymeric material at high strain rate using SHPB technique and probability theory

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hyeok; Lee, Ouk Sub; Kim, Hong Min; Choi, Hye Bin

    2008-11-01

    A modified Split Hopkinson Pressure Bar technique with aluminum pressure bars and a pulse shaper technique to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene). The more distinguishable experimental signals were obtained to evaluate the more accurate dynamic deformation behavior of materials under a high strain rate loading condition. A pulse shaping technique is introduced to reduce the non-equilibrium on the dynamic material response by modulation of the incident wave during a short period of test. This increases the rise time of the incident pulse in the SHPB experiment. For the dynamic stress strain curve obtained from SHPB experiment, the Johnson-Cook model is applied as a constitutive equation. The applicability of this constitutive equation is verified by using the probabilistic reliability estimation method. Two reliability methodologies such as the FORM and the SORM have been proposed. The limit state function(LSF) includes the Johnson-Cook model and applied stresses. The LSF in this study allows more statistical flexibility on the yield stress than a paper published before. It is found that the failure probability estimated by using the SORM is more reliable than those of the FORM/ It is also noted that the failure probability increases with increase of the applied stress. Moreover, it is also found that the parameters of Johnson-Cook model such as A and n, and the applied stress are found to affect the failure probability more severely than the other random variables according to the sensitivity analysis.

  10. Confined Detonations and Pulse Detonation Engines

    DTIC Science & Technology

    2003-01-01

    chemically reacting flow was described by the 2D Euler equations &q OF(q) +G(q) W (1) 75 CONFINED DETONATIONS AND PULSE DETONATION ENGINES where q = (p...DETONATIONS AND PULSE DETONATION ENGINES 5 CONCLUDING REMARKS Numerical investigations of RR and MR in a supersonic chemically reacting flows have...formalism of hetero- geneous medium mechanics supplemented with an overall chemical reaction was 141 CONFINED DETONATIONS AND PULSE DETONATION ENGINES

  11. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method.

    PubMed

    de Vries, Martinus P; Hamburg, Marc C; Schutte, Harm K; Verkerke, Gijsbertus J; Veldman, Arthur E P

    2003-04-01

    Surgical removal of the larynx results in radically reduced production of voice and speech. To improve voice quality a voice-producing element (VPE) is developed, based on the lip principle, called after the lips of a musician while playing a brass instrument. To optimize the VPE, a numerical model is developed. In this model, the finite element method is used to describe the mechanical behavior of the VPE. The flow is described by two-dimensional incompressible Navier-Stokes equations. The interaction between VPE and airflow is modeled by placing the grid of the VPE model in the grid of the aerodynamical model, and requiring continuity of forces and velocities. By applying and increasing pressure to the numerical model, pulses comparable to glottal volume velocity waveforms are obtained. By variation of geometric parameters their influence can be determined. To validate this numerical model, an in vitro test with a prototype of the VPE is performed. Experimental and numerical results show an acceptable agreement.

  12. The short pulse equation by a Riemann-Hilbert approach

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech

    2017-07-01

    We develop a Riemann-Hilbert approach to the inverse scattering transform method for the short pulse (SP) equation u_{xt}=u+{1/6}(u^3)_{xx} with zero boundary conditions (as |x|→ ∞). This approach is directly applied to a Lax pair for the SP equation. It allows us to give a parametric representation of the solution to the Cauchy problem. This representation is then used for studying the longtime behavior of the solution as well as for retrieving the soliton solutions. Finally, the analysis of the longtime behavior allows us to formulate, in spectral terms, a sufficient condition for the wave breaking.

  13. Electron acceleration by a focused laser pulse in a static magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shihua; Wu Fengmin; Zhao Xianghao

    2007-12-15

    The model given by K. P. Singh [Phys. Rev. E 69, 056410 (2004)] for vacuum laser acceleration in a static magnetic field is revisited by including the effects of diffraction and the longitudinal electric field of a focused laser beam. Compared with a similar model without a static magnetic field, a simulation shows that electrons can gain much more net energy in this model even using the fifth-order corrected equations for the field of a focused laser beam. The acceleration mechanism and the acceleration efficiency are also investigated.

  14. Mathematical Simulation of the Cardiopulmonary System

    DTIC Science & Technology

    1979-12-01

    assumption affected only the dicrotic notch and had negligible effects (R5 mm Hg) on the rest of the arterial pulse in modeling a passive, supine position...resistance factors , R and R’, are dependent on the vessel radius, r. In the chambers including the non-linear term in q, however, the cross sectional area of...model the resistance factor , R, is a nonlinear function of the vessel volume (Equation 10). This is in turn a function of the elastic properties of

  15. Integrable multi-component generalization of a modified short pulse equation

    NASA Astrophysics Data System (ADS)

    Matsuno, Yoshimasa

    2016-11-01

    We propose a multi-component generalization of the modified short pulse (SP) equation which was derived recently as a reduction of Feng's two-component SP equation. Above all, we address the two-component system in depth. We obtain the Lax pair, an infinite number of conservation laws and multisoliton solutions for the system, demonstrating its integrability. Subsequently, we show that the two-component system exhibits cusp solitons and breathers for which the detailed analysis is performed. Specifically, we explore the interaction process of two cusp solitons and derive the formula for the phase shift. While cusp solitons are singular solutions, smooth breather solutions are shown to exist, provided that the parameters characterizing the solutions satisfy certain conditions. Last, we discuss the relation between the proposed system and existing two-component SP equations.

  16. Electrical passivation of nonselective bio molecules in carbon nanotubes: Effect of pulse train in serum

    NASA Astrophysics Data System (ADS)

    Kim, Seok Hyang; Woo, Jun-Myung; Choi, Seongwook; Park, Young June

    2015-06-01

    We present an experimental and simulation study about a desorption of albumin, a representative nonselective molecules in serum, on carbon nanotube (CNT) surface as an electrical bio sensing channel under the pulse train condition. The motivation of the study on binding kinetics between CNT surface and albumin is to suppress the adsorption of nonselective proteins in blood such as albumin, thereby enhancing the selectivity of the electrical biosensor. To theoretically model the behavior of molecules and ions under the step pulse bias, the physics on the reaction rate, mass transport, and the resulting surface pH-value are considered using the Poisson and drift-diffusion equations. For the simulation model, the phosphate buffered saline is considered as the electrolyte solution and albumin is considered as a representative charged molecule for nonspecific binding in serum. Both the transient simulation and experimental result indicate that the suppression of the nonspecific binding under the pulse train is due to the unsymmetrical field force experienced by the protein during the pulse transitions (high to low and low to high) and the non-symmetry is caused by the different transient times between the electric field and the charge/discharge of the protein according to the surface pH modulation in serum. The experimental and simulation results clearly indicate that the pulse bias suppresses the nonselective bio molecules adsorption at the CNT surface so that the selectivity of the electrical biosensor for detecting the target molecules can be enhanced.

  17. Numerical analysis of breakdown dynamics dependence on pulse width in laser-induced damage in fused silica: Role of optical system

    NASA Astrophysics Data System (ADS)

    Hamam, Kholoud A.; Gamal, Yosr E. E.-D.

    2018-06-01

    We report a numerical investigation of the breakdown and damage in fused silica caused by ultra-short laser pulses. The study based on a modified model (Gaabour et al., 2012) that solves the rate equation numerically for the electron density evolution during the laser pulse, under the combined effect of both multiphoton and electron impact ionization processes. Besides, electron loss processes due to diffusion out of the focal volume and recombination are also considered in this analysis. The model is applied to investigate the threshold intensity dependence on laser pulse width in the experimental measurements that are given by Liu et al. (2005). In this experiment, a Ti-sapphire laser source operating at 800 nm with pulse duration varies between 240 fs and 2.5 ps is used to irradiate a bulk of fused silica with dimensions 10 × 5 × 3 mm. The laser beam was focused into the bulk using two optical systems with effective numerical apertures (NA) 0.126 and 0.255 to give beam spot radius at the focus of the order 2.0 μm and 0.95 μm respectively. Reasonable agreement between the calculated thresholds and the measured ones is attained. Moreover, a study is performed to examine the respective role of the physical processes of the breakdown of fused silica in relation to the pulse width and focusing optical system. The analysis revealed a real picture of the location and size of the generated plasma.

  18. Laser pulse self-compression in an active fibre with a finite gain bandwidth under conditions of a nonstationary nonlinear response

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    We study the influence of a nonstationary nonlinear response of a medium on self-compression of soliton-like laser pulses in active fibres with a finite gain bandwidth. Based on the variational approach, we qualitatively analyse the self-action of the wave packet in the system under consideration in order to classify the main evolution regimes and to determine the minimum achievable laser pulse duration during self-compression. The existence of stable soliton-type structures is shown in the framework of the parabolic approximation of the gain profile (in the approximation of the Gnizburg – Landau equation). An analysis of the self-action of laser pulses in the framework of the nonlinear Schrödinger equation with a sign-constant gain profile demonstrate a qualitative change in the dynamics of the wave field in the case of a nonsta­tionary nonlinear response that shifts the laser pulse spectrum from the amplification region and stops the pulse compression. Expressions for a minimum duration of a soliton-like laser pulse are obtained as a function of the problem parameters, which are in good agreement with the results of numerical simulation.

  19. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  20. Phonon transport in a curved aluminum thin film due to laser short pulse irradiation

    NASA Astrophysics Data System (ADS)

    Mansoor, Saad Bin; Yilbas, Bekir Sami

    2018-05-01

    Laser short-pulse heating of a curved aluminum thin film is investigated. The Boltzmann transport equation is incorporated to formulate the heating situation. A Gaussian laser intensity distribution is considered along the film arc and time exponentially decaying of pulse intensity is incorporated in the analysis. The governing equations of energy transport in the electron and lattice sub-systems are coupled through the electron-phonon coupling parameter. To quantify the phonon intensity distribution in the thin film, equivalent equilibrium temperature is introduced, which is associated with the average energy of all phonons around a local point when the phonon energies are redistributed adiabatically to an equilibrium state. It is found the numerical simulations that electron temperature follows similar trend to the spatial distribution of the laser pulse intensity at the film edge. Temporal variation of electron temperature does not follow the laser pulse intensity distribution. The rise of temperature in the electron sub-system is fast while it remains slow in the lattice sub-system.

  1. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  2. Modelling multi-pulse population dynamics from ultrafast spectroscopy.

    PubMed

    van Wilderen, Luuk J G W; Lincoln, Craig N; van Thor, Jasper J

    2011-03-21

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is essential to model and resolve the details of physical behaviour of populations in ultrafast spectroscopy such as pump-probe, pump-dump-probe and pump-repump-probe experiments.

  3. Modelling Multi-Pulse Population Dynamics from Ultrafast Spectroscopy

    PubMed Central

    van Wilderen, Luuk J. G. W.; Lincoln, Craig N.; van Thor, Jasper J.

    2011-01-01

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is essential to model and resolve the details of physical behaviour of populations in ultrafast spectroscopy such as pump-probe, pump-dump-probe and pump-repump-probe experiments. PMID:21445294

  4. Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab.

    PubMed

    Chau, Kenneth J; Lezec, Henri J

    2012-04-23

    We propose a set of postulates to describe the mechanical interaction between a plane-wave electromagnetic pulse and a dispersive, dissipative slab having a refractive index of arbitrary sign. The postulates include the Abraham electromagnetic momentum density, a generalized Lorentz force law, and a model for absorption-driven mass transfer from the pulse to the medium. These opto-mechanical mechanisms are incorporated into a one-dimensional finite-difference time-domain algorithm that solves Maxwell's equations and calculates the instantaneous force densities exerted by the pulse onto the slab, the momentum-per-unit-area of the pulse and slab, and the trajectories of the slab and system center-of-mass. We show that the postulates are consistent with conservation of global energy, momentum, and center-of-mass velocity at all times, even for cases in which the refractive index of the slab is negative or zero. Consistency between the set of postulates and well-established conservation laws reinforces the Abraham momentum density as the one true electromagnetic momentum density and enables, for the first time, identification of the correct form of the electromagnetic mass density distribution and development of an explicit model for mass transfer due to absorption, for the most general case of a ponderable medium that is both dispersive and dissipative. © 2012 Optical Society of America

  5. Optimization of process parameters of pulsed TIG welded maraging steel C300

    NASA Astrophysics Data System (ADS)

    Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.

    2016-09-01

    Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.

  6. Thermal noise model of antiferromagnetic dynamics: A macroscopic approach

    NASA Astrophysics Data System (ADS)

    Li, Xilai; Semenov, Yuriy; Kim, Ki Wook

    In the search for post-silicon technologies, antiferromagnetic (AFM) spintronics is receiving widespread attention. Due to faster dynamics when compared with its ferromagnetic counterpart, AFM enables ultra-fast magnetization switching and THz oscillations. A crucial factor that affects the stability of antiferromagnetic dynamics is the thermal fluctuation, rarely considered in AFM research. Here, we derive from theory both stochastic dynamic equations for the macroscopic AFM Neel vector (L-vector) and the corresponding Fokker-Plank equation for the L-vector distribution function. For the dynamic equation approach, thermal noise is modeled by a stochastic fluctuating magnetic field that affects the AFM dynamics. The field is correlated within the correlation time and the amplitude is derived from the energy dissipation theory. For the distribution function approach, the inertial behavior of AFM dynamics forces consideration of the generalized space, including both coordinates and velocities. Finally, applying the proposed thermal noise model, we analyze a particular case of L-vector reversal of AFM nanoparticles by voltage controlled perpendicular magnetic anisotropy (PMA) with a tailored pulse width. This work was supported, in part, by SRC/NRI SWAN.

  7. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    NASA Astrophysics Data System (ADS)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  8. Investigation of the effect of the ejector on the performance of the pulse detonation engine nozzle extension

    NASA Astrophysics Data System (ADS)

    Korobov, A. E.; Golovastov, S. V.

    2015-11-01

    Influence of an ejector nozzle extension on gas flow at a pulse detonation engine was investigated numerically and experimentally. Detonation formation was organized in stoichiometric hydrogen-oxygen mixture in cylindrical detonation tube. Cylindrical ejector was constructed and mounted at the open end of the tube. Thrust, air consumption and parameters of the detonation were measured in single and multiple regimes of operation. Axisymmetric model was used in numerical investigation. Equations of Navies-Stokes were solved using a finite-difference scheme Roe of second order of accuracy. Initial conditions were estimated on a base of experimental data. Numerical results were validated with experiments data.

  9. The effect of dynamical Bloch oscillations on optical-field-induced current in a wide-gap dielectric

    NASA Astrophysics Data System (ADS)

    Földi, P.; Benedict, M. G.; Yakovlev, V. S.

    2013-06-01

    We consider the motion of charge carriers in a bulk wide-gap dielectric interacting with a few-cycle laser pulse. A semiclassical model based on Bloch equations is applied to describe the emerging time-dependent macroscopic currents for laser intensities close to the damage threshold. At such laser intensities, electrons can reach edges of the first Brillouin zone even for electron-phonon scattering rates as high as those known for SiO2. We find that, whenever this happens, Bragg-like reflections of electron waves, also known as Bloch oscillations, affect the dependence of the charge displaced by the laser pulse on its carrier-envelope phase.

  10. Nonlinear rovibrational polarization response of water vapor to ultrashort long-wave infrared pulses

    NASA Astrophysics Data System (ADS)

    Schuh, K.; Rosenow, P.; Kolesik, M.; Wright, E. M.; Koch, S. W.; Moloney, J. V.

    2017-10-01

    We study the rovibrational polarization response of water vapor using a fully correlated optical Bloch equation approach employing data from the HITRAN database. For a 10 -μ m long-wave infrared pulse the resulting linear response is negative, with a negative nonlinear response at intermediate intensities and a positive value at higher intensities. For a model atmosphere comprised of the electronic response of argon combined with the rovibrational response of water vapor this leads to a weakened positive nonlinear response at intermediate intensities. Propagation simulations using a simplified noncorrelated approach show the resultant reduction in the peak filament intensity sustained during filamentation due to the presence of the water vapor.

  11. Generation of localized patterns in anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion via a variational approach

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.

    2018-05-01

    We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.

  12. Rare events in finite and infinite dimensions

    NASA Astrophysics Data System (ADS)

    Reznikoff, Maria G.

    Thermal noise introduces stochasticity into deterministic equations and makes possible events which are never seen in the zero temperature setting. The driving force behind the thesis work is a desire to bring analysis and probability to bear on a class of relevant and intriguing physical problems, and in so doing, to allow applications to drive the development of new mathematical theory. The unifying theme is the study of rare events under the influence of small, random perturbations, and the manifold mathematical problems which ensue. In the first part, we apply large deviation theory and prefactor estimates to a coherent rotation micromagnetic model in order to analyze thermally activated magnetic switching. We consider recent physical experiments and the mathematical questions "asked" by them. A stochastic resonance type phenomenon is discovered, leading to the definition of finite temperature astroids. Non-Arrhenius behavior is discussed. The analysis is extended to ramped astroids. In addition, we discover that for low damping and ultrashort pulses, deterministic effects can override thermal effects, in accord with very recent ultrashort pulse experiments. Even more interesting, perhaps, is the study of large deviations in the infinite dimensional context, i.e. in spatially extended systems. Inspired by recent numerical investigations, we study the stochastically perturbed Allen Cahn and Cahn Hilliard equations. For the Allen Cahn equation, we study the action minimization problem (a deterministic variational problem) and prove the action scaling in four parameter regimes, via upper and lower bounds. The sharp interface limit is studied. We formally derive a reduced action functional which lends insight into the connection between action minimization and curvature flow. For the Cahn Hilliard equation, we prove upper and lower bounds for the scaling of the energy barrier in the nucleation and growth regime. Finally, we consider rare events in large or infinite domains, in one spatial dimension. We introduce a natural reference measure through which to analyze the invariant measure of stochastically perturbed, nonlinear partial differential equations. Also, for noisy reaction diffusion equations with an asymmetric potential, we discover how to rescale space and time in order to map the dynamics in the zero temperature limit to the Poisson Model, a simple version of the Johnson-Mehl-Avrami-Kolmogorov model for nucleation and growth.

  13. Preference pulses and the win-stay, fix-and-sample model of choice.

    PubMed

    Hachiga, Yosuke; Sakagami, Takayuki; Silberberg, Alan

    2015-11-01

    Two groups of six rats each were trained to respond to two levers for a food reinforcer. One group was trained on concurrent variable-ratio 20 extinction schedules of reinforcement. The second group was trained on a concurrent variable-interval 27-s extinction schedule. In both groups, lever-schedule assignments changed randomly following reinforcement; a light cued the lever providing the next reinforcer. In the next condition, the light cue was removed and reinforcer assignment strictly alternated between levers. The next two conditions redetermined, in order, the first two conditions. Preference pulses, defined as a tendency for relative response rate to decline to the just-reinforced alternative with time since reinforcement, only appeared during the extinction schedule. Although the pulse's functional form was well described by a reinforcer-induction equation, there was a large residual between actual data and a pulse-as-artifact simulation (McLean, Grace, Pitts, & Hughes, 2014) used to discern reinforcer-dependent contributions to pulsing. However, if that simulation was modified to include a win-stay tendency (a propensity to stay on the just-reinforced alternative), the residual was greatly reduced. Additional modifications of the parameter values of the pulse-as-artifact simulation enabled it to accommodate the present results as well as those it originally accommodated. In its revised form, this simulation was used to create a model that describes response runs to the preferred alternative as terminating probabilistically, and runs to the unpreferred alternative as punctate with occasional perseverative response runs. After reinforcement, choices are modeled as returning briefly to the lever location that had been just reinforced. This win-stay propensity is hypothesized as due to reinforcer induction. © Society for the Experimental Analysis of Behavior.

  14. Synaptic long-term potentiation realized in Pavlov's dog model based on a NiOx-based memristor

    NASA Astrophysics Data System (ADS)

    Hu, S. G.; Liu, Y.; Liu, Z.; Chen, T. P.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, Sumio

    2014-12-01

    Synaptic Long-Term Potentiation (LTP), which is a long-lasting enhancement in signal transmission between neurons, is widely considered as the major cellular mechanism during learning and memorization. In this work, a NiOx-based memristor is found to be able to emulate the synaptic LTP. Electrical conductance of the memristor is increased by electrical pulse stimulation and then spontaneously decays towards its initial state, which resembles the synaptic LTP. The lasting time of the LTP in the memristor can be estimated with the relaxation equation, which well describes the conductance decay behavior. The LTP effect of the memristor has a dependence on the stimulation parameters, including pulse height, width, interval, and number of pulses. An artificial network consisting of three neurons and two synapses is constructed to demonstrate the associative learning and LTP behavior in extinction of association in Pavlov's dog experiment.

  15. Triggering of longitudinal combustion instabilities in solid rocket motors: Nonlinear combustion response

    NASA Technical Reports Server (NTRS)

    Wicker, J. M.; Greene, W. D.; Kim, S. I.; Yang, V.

    1995-01-01

    Pulsed oscillations in solid rocket motors are investigated with emphasis on nonlinear combustion response. The study employs a wave equation governing the unsteady motions in a two-phase flow, and a solution technique based on spatial- and time-averaging. A wide class of combustion response functions is studied to second-order in fluctuation amplitude to determine if, when, and how triggered instabilities arise. Conditions for triggering are derived from analysis of limit cycles, and regions of triggering are found in parametric space. Based on the behavior of model dynamical systems, introduction of linear cross-coupling and quadratic self-coupling among the acoustic modes appears to be the manner in which the nonlinear combustion response produces triggering to a stable limit cycle. Regions of initial conditions corresponding to stable pulses were found, suggesting that stability depends on initial phase angle and harmonic content, as well as the composite amplitude, of the pulse.

  16. Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.

    2017-10-01

    Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.

  17. Compact self-Q-switched Tm:YLF laser at 1.91 μm

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Li, L.; He, C. J.; Tian, F. J.; Yang, X. T.; Cui, J. H.; Zhang, J. Z.; Sun, W. M.

    2018-03-01

    We report self-Q-switching operation in a diode-pumped Tm:YLF bulk laser by exploiting saturable re-absorption under the quasi-three-level regime. Robust self-Q-switched pulse output at 1.91 μm in fundamental mode is demonstrated experimentally with 1.5 at.% doped Tm:YLF crystal. At maximum absorbed pump power of 4.5 W, the average output power and pulse energy are obtained as high as 610 mW and 29 μJ, respectively, with the corresponding slope efficiency of 22%. Pulse repetition rate is tunable in the range of 3-21 kHz with changing the pump power. The dynamics of self-Q-switching of Tm:YLF laser are discussed with the help of a rate equation model showing good agreement with the experiment. The compact self-Q-switched laser near 2 μm has potential application in laser radar systems for accurate wind velocity measurements.

  18. HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain

    NASA Astrophysics Data System (ADS)

    Jones, R. M.; Riley, J. P.; Georges, T. M.

    1986-08-01

    The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.

  19. Weather radar equation and a receiver calibration based on a slice approach

    NASA Astrophysics Data System (ADS)

    Yurchak, B. S.

    2012-12-01

    Two circumstances are essential when exploiting radar measurement of precipitation. The first circumstance is a correct physical-mathematical model linking parameters of a rainfall microstructure with a magnitude of a return signal (the weather radar equation (WRE)). The second is a precise measurement of received power that is fitted by a calibration of radar receiver. WRE for the spatially extended geophysical target (SEGT), such as cloud or rain, has been derived based on "slice" approach [1]. In this approach, the particles located close to the wavefront of the radar illumination are assumed to produce backscatter that is mainly coherent. This approach allows the contribution of the microphysical parameters of the scattering media to the radar cross section to be more comprehensive than the model based on the incoherent approach (e.g., Probert-Jones equation (PJE)). In the particular case, when the particle number fluctuations within slices pertain the Poisson law, the WRE derived is transformed to PJE. When Poisson index (standard deviation / mean number of particles) of a slice deviates from 1, the deviation of return power estimated by PJE from the actual value varies from +8 dB to - 12 dB. In general, the backscatter depends on mean, variance and third moment of the particle size distribution function (PSDF). The incoherent approach assumes only dependence on the sixth moment of PSDF (radar reflectivity Z). Additional difference from the classical estimate can be caused by a correlation between slice field reflectivity [2]. Overall, the deviation in particle statistics of a slice from the Poisson law is one of main physical factors that contribute to errors in radar precipitation measurements based on Z-conception. One of the components of calibration error is caused by difference between processing by weather radar receiver of the calibration pulse, and actual return signal from SEGT. A receiver with non uniform amplitude-frequency response (AFR) processes these signals with the same input power but with different radio-frequency spectrums (RFS). This causes different output magnitude due to different distortion experienced while RFS passing through a receiver filter. To assess the calibration error, RFS of signals from SEGT has been studied including theoretical, experimental and simulation stages [3]. It is shown that the return signal carrier wave is phase modulated due to overlapping of replicas of RF-probing pulse reflected from SEGT's slices. The RFSs depends on the phase statistics of the carrier wave and on RFS of the probing pulse. The bandwidth of SEGT's RFS is not greater than that of the probing pulse. Typical phase correlation interval was found to be around the same as that of the probing pulse duration. Application of a long calibration signal (proportional to SEGT extension) causes the error up to -1 dB for conventional radar with matched filter. To eliminate the calibration error, a power estimate of individual return waveform should be corrected with the transformation loss coefficient calculated based on RFS and AFR parameters. To embrace with calibration the high and low frequency parts of a receiver, the calibration should be performed with a long pulse. That long pulse is composed from adjoining replicas of a probe pulse with random initial phases and having the same magnitude governed by the power of probe pulse.

  20. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.

    PubMed

    Hu, Q; Viswanadham, S; Joshi, R P; Schoenbach, K H; Beebe, S J; Blackmore, P F

    2005-03-01

    A molecular dynamics (MD) scheme is combined with a distributed circuit model for a self-consistent analysis of the transient membrane response for cells subjected to an ultrashort (nanosecond) high-intensity (approximately 0.01-V/nm spatially averaged field) voltage pulse. The dynamical, stochastic, many-body aspects are treated at the molecular level by resorting to a course-grained representation of the membrane lipid molecules. Coupling the Smoluchowski equation to the distributed electrical model for current flow provides the time-dependent transmembrane fields for the MD simulations. A good match between the simulation results and available experimental data is obtained. Predictions include pore formation times of about 5-6 ns. It is also shown that the pore formation process would tend to begin from the anodic side of an electrically stressed membrane. Furthermore, the present simulations demonstrate that ions could facilitate pore formation. This could be of practical importance and have direct relevance to the recent observations of calcium release from the endoplasmic reticulum in cells subjected to such ultrashort, high-intensity pulses.

  1. The method of pulsed x-ray detection with a diode laser.

    PubMed

    Liu, Jun; Ouyang, Xiaoping; Zhang, Zhongbing; Sheng, Liang; Chen, Liang; Tan, Xinjian; Weng, Xiufeng

    2016-12-01

    A new class of pulsed X-ray detection methods by sensing carrier changes in a diode laser cavity has been presented and demonstrated. The proof-of-principle experiments on detecting pulsed X-ray temporal profile have been done through the diode laser with a multiple quantum well active layer. The result shows that our method can achieve the aim of detecting the temporal profile of a pulsed X-ray source. We predict that there is a minimum value for the pre-bias current of the diode laser by analyzing the carrier rate equation, which exists near the threshold current of the diode laser chip in experiments. This behaviour generally agrees with the characterizations of theoretical analysis. The relative sensitivity is estimated at about 3.3 × 10 -17 C ⋅ cm 2 . We have analyzed the time scale of about 10 ps response with both rate equation and Monte Carlo methods.

  2. Variable slew-rate spiral design: theory and application to peak B(1) amplitude reduction in 2D RF pulse design.

    PubMed

    Xu, Dan; King, Kevin F; Liang, Zhi-Pei

    2007-10-01

    A new class of spiral trajectories called variable slew-rate spirals is proposed. The governing differential equations for a variable slew-rate spiral are derived, and both numeric and analytic solutions to the equations are given. The primary application of variable slew-rate spirals is peak B(1) amplitude reduction in 2D RF pulse design. The reduction of peak B(1) amplitude is achieved by changing the gradient slew-rate profile, and gradient amplitude and slew-rate constraints are inherently satisfied by the design of variable slew-rate spiral gradient waveforms. A design example of 2D RF pulses is given, which shows that under the same hardware constraints the RF pulse using a properly chosen variable slew-rate spiral trajectory can be much shorter than that using a conventional constant slew-rate spiral trajectory, thus having greater immunity to resonance frequency offsets.

  3. Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows

    NASA Astrophysics Data System (ADS)

    Staples, Anne

    2008-11-01

    Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.

  4. Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device.

    PubMed

    Perez, Camilo; Chen, Hong; Matula, Thomas J; Karzova, Maria; Khokhlova, Vera A

    2013-08-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from -2 to -11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled.

  5. Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device

    PubMed Central

    Perez, Camilo; Chen, Hong; Matula, Thomas J.; Karzova, Maria; Khokhlova, Vera A.

    2013-01-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207

  6. Simulation study of interaction of pulse laser with tumor-embedded gastric tissue using finite element analysis

    NASA Astrophysics Data System (ADS)

    Liu, Lantian; Li, Zhifang; Li, Hui

    2018-01-01

    The study of interaction of laser with tumor-embedded gastric tissue is of great theoretical and practical significance for the laser diagnosis and treatment of gastric cancer in medicine. A finite element (FE)-based simulation model has been developed incorporating light propagation and heat transfer in soft tissues using a commercial FE simulation package, COMSOL Multiphysics. In this study, FE model is composed of three parts of 1) homogeneous background soft tissues submerged in water, 2) tumor tissue inclusion, and 3) different wavelengths of short pulsed laser source (450nm, 550nm, 632nm and 800nm). The laser point source is placed right under the tissues submerged in water. This laser source light propagation through the multi-layer tissues using the diffusion equation and bioheat transfer in tissues is simulated using bioheat equation for temperature change. The simulation results show that the penetration depth and light energy distribution mainly depend on the optical parameters of the different wavelengths of the tissue. In the process of biological heat transfer, the temperature of the tissue decreases exponentially with the depth and the deep tissues are almost unaffected. The results are helpful to optimize the laser source in a photoacoustic imaging system and provide some significance for the further study of the early diagnosis of gastric cancer.

  7. Properties of two-fluid flowing equilibria observed in double-pulsing coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2013-10-01

    Multi-pulsing coaxial helicity injection (M-CHI) method which aims to achieve both quasi-steady sustainment and good confinement has been proposed as a refluxing scenario of the CHI. To explore the usefulness of the M-CHI for spherical torus (ST) configurations, the double-pulsing operations have been carried out in the HIST, verifying the flux amplification and the formation of the closed flux surfaces after the second CHI pulse. The purpose of this study is to investigate the properties of the magnetic field and plasma flow structures during the sustainment by comparing the results of plasma flow, density, and magnetic fields measurements with those of two-fluid equilibrium calculations. The two-fluid flowing equilibrium model which is described by a pair of generalized Grad-Shafranov equations for ion and electron surface variables and Bernoulli equations for density is applied to reconstruct the ST configuration with poloidal flow shear observed in the HIST. Due to the negative steep density gradient in high field side, the toroidal field has a diamagnetic profile (volume average beta, < β > = 68 %) in the central open flux column region. The ion flow velocity with strong flow shear from the separatrix in the inboard side to the core region is the opposite direction to the electron flow velocity due to the diamagentic drift through the density gradient. The electric field is relatively small in the whole region, and thus the Lorentz force nearly balances with the two-fluid effect which is particularly significant in a region with the steep density gradient due to the ion and electron diamagnetic drifts.

  8. Laser beam propagation through bulk nonlinear media: Numerical simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kovsh, Dmitriy I.

    This dissertation describes our efforts in modeling the propagation of high intensity laser pulses through optical systems consisting of one or multiple nonlinear elements. These nonlinear elements can be up to 103 times thicker than the depth of focus of the laser beam, so that the beam size changes drastically within the medium. The set of computer codes developed are organized in a software package (NLO_BPM). The ultrafast nonlinearities of the bound-electronic n2 and two-photon absorption as well as time dependent excited-state, free-carrier and thermal nonlinearities are included in the codes for modeling propagation of picosecond to nanosecond pulses and pulse trains. Various cylindrically symmetric spatial distributions of the input beam are modeled. We use the cylindrical symmetry typical of laser outputs to reduce the CPU and memory requirements making modeling a real- time task on PC's. The hydrodynamic equations describing the rarefaction of the medium due to heating and electrostriction are solved in the transient regime to determine refractive index changes on a nanosecond time scale. This effect can be simplified in some cases by an approximation that assumes an instantaneous expansion. We also find that the index change obtained from the photo-acoustic equation overshoots its steady-state value once the ratio between the pulse width and the acoustic transit time is greater than unity. We numerically study the sensitivity of the closed- aperture Z-scan experiment to nonlinear refraction for various input beam profiles. If the beam has a ring structure with a minimum (or zero) on axis in the far field, the sensitivity of Z-scan measurements can be increased by up to one order of magnitude. The linear propagation module integrated with the nonlinear beam propagation codes allows the simulation of typical experiments such as Z-scan and optical limiting experiments. We have used these codes to model the performance of optical limiters. We study two of the most promising limiter designs: the monolithic self-protective semiconductor limiter (MONOPOL) and a multi-cell tandem limiter based on a liquid solution of reverse saturable absorbing organic dye. The numerical outputs show good agreement with experimental results up to input energies where nonlinear scattering becomes significant.

  9. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for amore » variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of biological tissue) and laser-induced pressure waves. Simulations on the basis of the nonlinear ionization equation were used to examine effects of the laser created surface plasma on light absorption, reflection and transmission. Laser pulse energy conversion efficiency into pressure waves was studied experimentally and theoretically.« less

  10. Nonthermal model for ultrafast laser-induced plasma generation around a plasmonic nanorod

    NASA Astrophysics Data System (ADS)

    Labouret, Timothée; Palpant, Bruno

    2016-12-01

    The excitation of plasmonic gold nanoparticles by ultrashort laser pulses can trigger interesting electron-based effects in biological media such as production of reactive oxygen species or cell membrane optoporation. In order to better understand the optical and thermal processes at play, we modeled the interaction of a subpicosecond, near-infrared laser pulse with a gold nanorod in water. A nonthermal model is used and compared to a simple two-temperature thermal approach. For both models, the computation of the transient optical response reveals strong plasmon damping. Electron emission from the metal into the water is also calculated in a specific way for each model. The dynamics of the resulting local plasma in water is assessed by a rate equation model. While both approaches provide similar results for the transient optical properties, the simple thermal one is unable to properly describe electron emission and plasma generation. The latter is shown to mostly originate from electron-electron thermionic emission and photoemission from the metal. Taking into account the transient optical response is mandatory to properly calculate both electron emission and local plasma dynamics in water.

  11. Applying Boundary Conditions Using a Time-Dependent Lagrangian for Modeling Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Reyes, Jonathan; Shadwick, B. A.

    2016-10-01

    Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.

  12. An axisymmetric single-path model for gas transport in the conducting airways.

    PubMed

    Madasu, Srinath; Borhan, All; Ultman, James S

    2006-02-01

    In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.

  13. Modeling transient luminous events produced by cloud to ground lightning and narrow bipolar pulses: detailed spectra and chemical impact

    NASA Astrophysics Data System (ADS)

    Perez-Invernon, F. J.; Luque, A.; Gordillo-Vazquez, F. J.

    2017-12-01

    The electromagnetic field generated by lightning discharges can produce Transient Luminous Events (TLEs) in the lower ionosphere, as previously investigated by many authors. Some recent studies suggest that narrow bipolar pulses (NBP), an impulsive and not well-established type of atmospheric electrical discharge, could also produce TLEs. The characterization and observation of such TLEs could be a source of information about the physics underlying NBP. In this work, we develop two different electrodynamical models to study the impact of lightning-driven electromagnetic fields in the lower ionosphere. The first model calculates the quasi-electrostatic field produced by a single cloud to ground lightning in the terrestrial atmosphere and its influence in the electron transport. This scheme allows us to study halos, a relatively frequent type of TLE. The second model solves the Maxwell equations for the electromagnetic field produced by a lightning discharge coupled with the Langevin's equation for the induced currents in the ionosphere. This model is useful to investigate elves, a fast TLE produced by lightning or by NBP. In addition, both models are coupled with a detailed chemistry of the electronically and vibrationally excited states of molecular nitrogen, allowing us to calculate synthetic spectra of both halos and elves. The models also include a detailed set of kinetic reactions to calculate the temporal evolution of other species. Our results suggest an important enhancement of some molecular species produced by halos, as NOx , N2 O and other metastable species. The quantification of their production could be useful to understand the role of thunderstorms in the climate of our planet. In the case of TLEs produced by NBP, our model confirms the appearance of double elves and allows us to compute their spectral characteristics.

  14. Nonlinear reflection and refraction of ultrashort light pulses at the surfaces of resonant media and phase memory effects

    NASA Astrophysics Data System (ADS)

    Vlasov, R. A.; Gadomskii, O. H.; Gadomskaia, I. V.; Samartsev, V. V.

    1986-06-01

    The method of integrodifferential equations related to the optical Bloch equations is used to study the nonlinear reflection (or refraction) of a scanning laser beam at the surface of a resonant medium excited by traveling and standing surface electromagnetic waves at resonant frequency. The effect of the phase memory of surface atoms on the pulsed action of fields with space-time resolution is taken into account. The reversal of the scanning beam from the excited surface with phase conjugation of the wave front is considered. In addition, the spectrum of the nonlinear surface polaritons is analyzed as a function of the area of the exciting pulse and the penetration depth of polaritons in the resonant optical medium.

  15. Alternating steady state free precession for estimation of current-induced magnetic flux density: A feasibility study.

    PubMed

    Lee, Hyunyeol; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Park, Jaeseok

    2016-05-01

    To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz ) and conductivity distribution. In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz . A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging. © 2015 Wiley Periodicals, Inc.

  16. Stability of a modified Peaceman–Rachford method for the paraxial Helmholtz equation on adaptive grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Qin, E-mail: Qin_Sheng@baylor.edu; Sun, Hai-wei, E-mail: hsun@umac.mo

    This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptivemore » grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.« less

  17. Numerical Simulations of Free Surface Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema

    2003-11-01

    We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.

  18. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.

    PubMed

    Berkouk, K; Carpenter, P W; Lucey, A D

    2003-12-01

    Our work is motivated by ideas about the pathogenesis of syringomyelia. This is a serious disease characterized by the appearance of longitudinal cavities within the spinal cord. Its causes are unknown, but pressure propagation is probably implicated. We have developed an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. This is intended as a simple model of the intraspinal cerebrospinal-fluid system. Our approach is based on the classic theory for the propagation of longitudinal waves in single, fluid-filled, elastic tubes. We show that for small-amplitude waves the governing equations reduce to the classic wave equation. The wave speed is found to be a strong function of the ratio of the tubes' cross-sectional areas. It is found that the leading edge of a transmural pressure pulse tends to generate compressive waves with converging wave fronts. Consequently, the leading edge of the pressure pulse steepens to form a shock-like elastic jump. A weakly nonlinear theory is developed for such an elastic jump.

  19. The Effect of Ionospheric Models on Electromagnetic Pulse Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, Edward E.; Triplett, Laurie A.

    2014-07-01

    Locations of electromagnetic pulses (EMPs) determined by time-of-arrival (TOA) often have outliers with significantly larger errors than expected. In the past, these errors were thought to arise from high order terms in the Appleton-Hartree equation. We simulated 1000 events randomly spread around the Earth into a constellation of 22 GPS satellites. We used four different ionospheres: “simple” where the time delay goes as the inverse of the frequency-squared, “full Appleton-Hartree”, the “BobRD integrals” and a full raytracing code. The simple and full Appleton-Hartree ionospheres do not show outliers whereas the BobRD and raytracing do. This strongly suggests that the causemore » of the outliers is not additional terms in the Appleton-Hartree equation, but rather is due to the additional path length due to refraction. A method to fix the outliers is suggested based on fitting a time to the delays calculated at the 5 GPS frequencies with BobRD and simple ionospheres. The difference in time is used as a correction to the TOAs.« less

  20. TEA CO 2 Laser Simulator: A software tool to predict the output pulse characteristics of TEA CO 2 laser

    NASA Astrophysics Data System (ADS)

    Abdul Ghani, B.

    2005-09-01

    "TEA CO 2 Laser Simulator" has been designed to simulate the dynamic emission processes of the TEA CO 2 laser based on the six-temperature model. The program predicts the behavior of the laser output pulse (power, energy, pulse duration, delay time, FWHM, etc.) depending on the physical and geometrical input parameters (pressure ratio of gas mixture, reflecting area of the output mirror, media length, losses, filling and decay factors, etc.). Program summaryTitle of program: TEA_CO2 Catalogue identifier: ADVW Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVW Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: P.IV DELL PC Setup: Atomic Energy Commission of Syria, Scientific Services Department, Mathematics and Informatics Division Operating system: MS-Windows 9x, 2000, XP Programming language: Delphi 6.0 No. of lines in distributed program, including test data, etc.: 47 315 No. of bytes in distributed program, including test data, etc.:7 681 109 Distribution format:tar.gz Classification: 15 Laser Physics Nature of the physical problem: "TEA CO 2 Laser Simulator" is a program that predicts the behavior of the laser output pulse by studying the effect of the physical and geometrical input parameters on the characteristics of the output laser pulse. The laser active medium consists of a CO 2-N 2-He gas mixture. Method of solution: Six-temperature model, for the dynamics emission of TEA CO 2 laser, has been adapted in order to predict the parameters of laser output pulses. A simulation of the laser electrical pumping was carried out using two approaches; empirical function equation (8) and differential equation (9). Typical running time: The program's running time mainly depends on both integration interval and step; for a 4 μs period of time and 0.001 μs integration step (defaults values used in the program), the running time will be about 4 seconds. Restrictions on the complexity: Using a very small integration step might leads to stop the program run due to the huge number of calculating points and to a small paging file size of the MS-Windows virtual memory. In such case, it is recommended to enlarge the paging file size to the appropriate size, or to use a bigger value of integration step.

  1. Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infinite series and variational approaches

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Tanriver, U.; Guha, P.; Choudhury, A. Ghose; Choudhury, S. Roy

    2015-02-01

    In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddle equilibrium points of the corresponding traveling-wave equations, as well as ensure simultaneous convergence and continuity of the multi-infinite series solutions for the homoclinic/heteroclinic orbits anchored by these saddle points. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. And finally, variational methods are employed to generate families of both regular and embedded solitary wave solutions for the SPE PDE. The technique for obtaining the embedded solitons incorporates several recent generalizations of the usual variational technique and it is thus topical in itself. One unusual feature of the solitary waves derived here is that we are able to obtain them in analytical form (within the assumed ansatz for the trial functions). Thus, a direct error analysis is performed, showing the accuracy of the resulting solitary waves. Given the importance of solitary wave solutions in wave dynamics and information propagation in nonlinear PDEs, as well as the fact that not much is known about solutions of the family of generalized SPE equations considered here, the results obtained are both new and timely.

  2. Circularly polarized harmonic generation by intense bicircular laser pulses: electron recollision dynamics and frequency dependent helicity

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Mauger, François; Yuan, Kai-Jun

    2016-12-01

    Numerical solutions of time-dependent Schrödinger equations for one and two electron cyclic molecules {{{H}}}nq+ exposed to intense bichromatic circularly polarized laser pulses of frequencies {ω }1 and {ω }2, such that {ω }1/{ω }2={n}1/{n}2 (integer) produce circularly polarized high order harmonics with a cut-off recollision maximum energy at and greater than the linear polarization law (in atomic units) {N}m{ω }1={I}p+3.17{U}p, where I p is the ionization potential and {U}p={(2{E}0)}2/4{ω }2 is the ponderomotive energy defined by the field E 0 (intensity I={{cE}}02/8π ) from each pulse and mean frequency ω =({ω }1+{ω }2)/2 . An electron recollision model in a rotating frame at rotating frequency {{Δ }}ω =({ω }1-{ω }2)/2 predicts this simple result as a result of recollision dynamics in a combination of bichromatic circularly polarized pulses. The harmonic helicities and their intensities are shown to depend on compatible symmetries of the net pulse electric fields with that of the molecules.

  3. Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong

    2005-11-01

    A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.

  4. Pulse pressure and diabetes treatments: Blood pressure and pulse pressure difference among glucose lowering modality groups in type 2 diabetes.

    PubMed

    Alemi, Hamid; Khaloo, Pegah; Mansournia, Mohammad Ali; Rabizadeh, Soghra; Salehi, Salome Sadat; Mirmiranpour, Hossein; Meftah, Neda; Esteghamati, Alireza; Nakhjavani, Manouchehr

    2018-02-01

    Type 2 diabetes is associated with higher pulse pressure. In this study, we assessed and compared effects of classic diabetes treatments on pulse pressure (PP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) in patients with type 2 diabetes.In a retrospective cohort study, 718 non-hypertensive patients with type 2 diabetes were selected and divided into 4 groups including metformin, insulin, glibenclamide+metformin, and metformin+insulin. They were followed for 4 consecutive visits lasting about 45.5 months. Effects of drug regimens on pulse and blood pressure over time were assessed separately and compared in regression models with generalized estimating equation method and were adjusted for age, duration of diabetes, sex, smoking, and body mass index (BMI).Studied groups had no significant change in PP, SBP, and DBP over time. No significant difference in PP and DBP among studied groups was observed (PP:P = 0.090; DBP:P = 0.063). Pairwise comparisons of PP, SBP, and DBP showed no statistically significant contrast between any 2 studied groups. Interactions of time and treatment were not different among groups.Our results demonstrate patients using metformin got higher PP and SBP over time. Averagely, pulse and blood pressure among groups were not different. Trends of variation in pulse and blood pressure were not different among studied diabetes treatments.

  5. A split-step method to include electron–electron collisions via Monte Carlo in multiple rate equation simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel

    2016-10-01

    A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less

  6. Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa

    2005-12-15

    A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, bothmore » theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It is demonstrated that the carrier envelope phase (CEP) causes the difference on the temporal electric-field profile and the intensity spectrum for the initial peak power of the order of megawatts. At the propagation distance longer than the coherence length for third-order harmonics, the difference grows in the spectral components around the third-order and higher-order harmonics. The CEP can be a sensitive marker to monitor the evolution of nonlinear optical process by a few-optical-cycle electric-field wave-packet source.« less

  7. Numerical simulation of melt ejection during the laser drilling process on aluminum alloy by millisecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Jin, Guangyong; Wang, Yibin

    2016-01-01

    In this paper, established a physical model to simulate the melt ejection induced by millisecond pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. A semi-infinite axisymmetric model was established according to the experiment and the analytical solution of temperature in a solid phase was derived based on the thermal conduction equation. Mean while, by assuming that material was removed from the hole once it was melted, the function describing the hole's shape was obtained with the energy balance theory. This simulation is based on the interaction between single pulsed laser with different pulse-width and different peak energy and aluminum alloy material, the result of numerical simulation is that the hole's depth increases with the increase of laser energy and the hole's depth increases with the increase of laser pulse width, the keyhole depth is linearly increased with the increase of laser energy, respectively; the growth of the keyhole radius is in the trend to be gentle. By comparing the theoretical simulation data and the actual test data, we discover that: we discover that: the relative error between the theoretical values and the actual values is about 8.8%, the theoretical simulation curve is well consistent with the actual experimental curve. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  8. Modulated wave formation in myocardial cells under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.

    2018-06-01

    We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.

  9. Harmonic generation with a dual frequency pulse.

    PubMed

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  10. Localized wave pulses in the keyport experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, D.H.; Lewis, D.K.

    1998-02-17

    Localized wave (LW) pulses were produced using a standard Navy array in the anechoic tank at Navy Underwater Weapons Center (NUWC) Keyport. The LW pulses used were the MPS pulse first derived by Ziolkowski, and a new type of pulse based on a superposition of Gaussian beam modes. This new type is motivated by a desire to make a comparison of the MPS pulse with another broad band pulse built from solutions to the wave equation. The superposed Gaussian pulse can be described by parameters which are analogous to those describing the MPS pulse. We compare the directivity patternsand themore » axial energy decay between the pulses. We find the behavior of the pulses to be similar so that the superposed Gaussian could be another candidate in the class of low diffractive pulses known as localized waves.« less

  11. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    NASA Astrophysics Data System (ADS)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  12. Shock load analysis of rotor for rolling element bearings and gas foil bearings: A comparative study

    NASA Astrophysics Data System (ADS)

    Bhore, Skylab Paulas

    2018-04-01

    In this paper, a comparative study on the shock load analysis of rotor supported by rolling element bearings and gas foil journal bearings is presented. The rotor bearing system is modeled using finite element method. Timoshenko beam element with 4 degree of freedom at each node is used. The shock load is represented by half sine pulse and applied to the base of the rotor bearing system. The stiffness and damping coefficient of the bearings are incorporated in the model. The generalized equation of motion of rotor bearing system is solved by Newmark beta method and responses of rotor at bearing position are predicted. It is observed that the responses are sensitive to the direction of applied excitation and its magnitude and pulse duration. The amplitude of responses of rotor supported on gas foil bearings are significantly less than that of rolling element bearings.

  13. Phase- and intensity-resolved measurements of above threshold ionization by few-cycle pulses

    NASA Astrophysics Data System (ADS)

    Kübel, M.; Arbeiter, M.; Burger, C.; Kling, Nora G.; Pischke, T.; Moshammer, R.; Fennel, T.; Kling, M. F.; Bergues, B.

    2018-07-01

    We investigate the carrier-envelope phase (CEP) and intensity dependence of the longitudinal momentum distribution of photoelectrons resulting from above threshold ionization of argon by few-cycle laser pulses. The intensity of the pulses with a center wavelength of 750 nm is varied in a range between 0.7 × 1014 and 5.5× {10}14 {{W}} {cm}}-2. Our measurements reveal a prominent maximum in the CEP-dependent asymmetry at photoelectron energies of 2 U P (U P being the ponderomotive potential), that is persistent over the entire intensity range. Further local maxima are observed around 0.3 and 0.8 U P. The experimental results are in good agreement with theoretical results obtained by solving the three-dimensional time-dependent Schrödinger equation. We show that for few-cycle pulses, the amplitude of the CEP-dependent asymmetry provides a reliable measure for the peak intensity on target. Moreover, the measured asymmetry amplitude exhibits an intensity-dependent interference structure at low photoelectron energy, which could be used to benchmark model potentials for complex atoms.

  14. On the anisotropic advection-diffusion equation with time dependent coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.

    The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less

  15. On the anisotropic advection-diffusion equation with time dependent coefficients

    DOE PAGES

    Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.

    2017-02-01

    The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less

  16. Rapid convergence of optimal control in NMR using numerically-constructed toggling frames

    NASA Astrophysics Data System (ADS)

    Coote, Paul; Anklin, Clemens; Massefski, Walter; Wagner, Gerhard; Arthanari, Haribabu

    2017-08-01

    We present a numerical method for rapidly solving the Bloch equation for an arbitrary time-varying spin-1/2 Hamiltonian. The method relies on fast, vectorized computations such as summation and quaternion multiplication, rather than slow computations such as matrix exponentiation. A toggling frame is constructed in which the Hamiltonian is time-invariant, and therefore has a simple analytical solution. The key insight is that constructing this frame is faster than solving the system dynamics in the original frame. Rapidly solving the Bloch equations for an arbitrary Hamiltonian is particularly useful in the context of NMR optimal control. Optimal control theory can be used to design pulse shapes for a range of tasks in NMR spectroscopy. However, it requires multiple simulations of the Bloch equations at each stage of the algorithm, and for each relevant set of parameters (e.g. chemical shift frequencies). This is typically time consuming. We demonstrate that by working in an appropriate toggling frame, optimal control pulses can be generated much faster. We present a new alternative to the well-known GRAPE algorithm to continuously update the toggling-frame as the optimal pulse is generated, and demonstrate that this approach is extremely fast. The use and benefit of rapid optimal pulse generation is demonstrated for 19F fragment screening experiments.

  17. Semi-classical approach to compute RABBITT traces in multi-dimensional complex field distributions.

    PubMed

    Lucchini, M; Ludwig, A; Kasmi, L; Gallmann, L; Keller, U

    2015-04-06

    We present a semi-classical model to calculate RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) traces in the presence of a reference infrared field with a complex two-dimensional (2D) spatial distribution. The evolution of the electron spectra as a function of the pump-probe delay is evaluated starting from the solution of the classical equation of motion and incorporating the quantum phase acquired by the electron during the interaction with the infrared field. The total response to an attosecond pulse train is then evaluated by a coherent sum of the contributions generated by each individual attosecond pulse in the train. The flexibility of this model makes it possible to calculate spectrograms from non-trivial 2D field distributions. After confirming the validity of the model in a simple 1D case, we extend the discussion to describe the probe-induced phase in photo-emission experiments on an ideal metallic surface.

  18. Electron kinetic effects in atmosphere breakdown by an intense electromagnetic pulse.

    PubMed

    Solovyev, A A; Terekhin, V A; Tikhonchuk, V T; Altgilbers, L L

    1999-12-01

    A physical model is proposed for description of electron kinetics driven by a powerful electromagnetic pulse in the Earth's atmosphere. The model is based on a numerical solution to the Boltzmann kinetic equation for two groups of electrons. Slow electrons (with energies below a few keV) are described in a two-term approximation assuming a weak anisotropy of the electron distribution function. Fast electrons (with energies above a few keV) are described by a modified macroparticle method, taking into account the electron acceleration in the electric field, energy losses in the continuous deceleration approximation, and the multiple pitch angle scattering. The model is applied to a problem of the electric discharge in a nitrogen, which is preionized by an external gamma-ray source. It is shown that the runaway electrons have an important effect on the energy distribution of free electrons, and on the avalanche ionization rate. This mechanism might explain the observation of multiple lightning discharges observed in the Ivy-Mike thermonuclear test in the early 1950's.

  19. Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field

    DOE PAGES

    Ruiz, D. E.; Ellison, C. L.; Dodin, I. Y.

    2015-12-16

    Here, we report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the relativistic time-averaged dynamics of such a particle in a geometrical-optics laser pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided that radiation damping and pair production are negligible. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement with the BMT spin precession equation is shown numerically.more » The commonly known theory in which ponderomotive effects are incorporated in the particle effective mass is reproduced as a special case when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma interactions in relativistic spin-1/2 plasmas.« less

  20. Solitary pulse-on-demand production by optical injection locking of passively Q-switched InGaN diode laser near lasing threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, X., E-mail: xi.zeng@csem.ch, E-mail: dmitri.boiko@csem.ch; Stadelmann, T.; Grossmann, S.

    2015-02-16

    In this letter, we investigate the behavior of a Q-switched InGaN multi-section laser diode (MSLD) under optical injection from a continuous wave external cavity diode laser. We obtain solitary optical pulse generation when the slave MSLD is driven near free running threshold, and the peak output power is significantly enhanced with respect to free running configuration. When the slave laser is driven well above threshold, optical injection reduces the peak power. Using standard semiconductor laser rate equation model, we find that both power enhancement and suppression effects are the result of partial bleaching of the saturable absorber by externally injectedmore » photons.« less

  1. Simulating the room-temperature dynamic motion of a ferromagnetic vortex in a bistable potential

    NASA Astrophysics Data System (ADS)

    Haber, E.; Badea, R.; Berezovsky, J.

    2018-05-01

    The ability to precisely and reliably control the dynamics of ferromagnetic (FM) vortices could lead to novel nonvolatile memory devices and logic gates. Intrinsic and fabricated defects in the FM material can pin vortices and complicate the dynamics. Here, we simulated switching a vortex between bistable pinning sites using magnetic field pulses. The dynamic motion was modeled with the Thiele equation for a massless, rigid vortex subject to room-temperature thermal noise. The dynamics were explored both when the system was at zero temperature and at room-temperature. The probability of switching for different pulses was calculated, and the major features are explained using the basins of attraction map of the two pinning sites.

  2. Radiation effects studies for the high-resolution spectrograph

    NASA Technical Reports Server (NTRS)

    Smith, L. C.; Becher, J.

    1982-01-01

    The generation and collection of charge carriers created during the passage of energetic protons through a silicon photodiode array are modeled. Pulse height distributions of noise charge collected during exposure of a digicon type diode array to 21 and 75 MeV protons were obtained. The magnitude of charge collected by a diode from each proton event is determined not only by diffusion, but by statistical considerations involving the ionization process itself. Utilizing analytical solutions to the diffusion equation for transport of minority carriers, together with the Vavilov theory of energy loss fluctuations in thin absorbers, simulations of the pulse height spectra which follow the experimental distributions fairly well are presented and an estimate for the minority carrier diffusion length L sub d is provided.

  3. A High Order Element Based Method for the Simulation of Velocity Damping in the Hyporheic Zone of a High Mountain River

    NASA Astrophysics Data System (ADS)

    Preziosi-Ribero, Antonio; Peñaloza-Giraldo, Jorge; Escobar-Vargas, Jorge; Donado-Garzón, Leonardo

    2016-04-01

    Groundwater - Surface water interaction is a topic that has gained relevance among the scientific community over the past decades. However, several questions remain unsolved inside this topic, and almost all the research that has been done in the past regards the transport phenomena and has little to do with understanding the dynamics of the flow patterns of the above mentioned interactions. The aim of this research is to verify the attenuation of the water velocity that comes from the free surface and enters the porous media under the bed of a high mountain river. The understanding of this process is a key feature in order to characterize and quantify the interactions between groundwater and surface water. However, the lack of information and the difficulties that arise when measuring groundwater flows under streams make the physical quantification non reliable for scientific purposes. These issues suggest that numerical simulations and in-stream velocity measurements can be used in order to characterize these flows. Previous studies have simulated the attenuation of a sinusoidal pulse of vertical velocity that comes from a stream and goes into a porous medium. These studies used the Burgers equation and the 1-D Navier-Stokes equations as governing equations. However, the boundary conditions of the problem, and the results when varying the different parameters of the equations show that the understanding of the process is not complete yet. To begin with, a Spectral Multi Domain Penalty Method (SMPM) was proposed for quantifying the velocity damping solving the Navier - Stokes equations in 1D. The main assumptions are incompressibility and a hydrostatic approximation for the pressure distributions. This method was tested with theoretical signals that are mainly trigonometric pulses or functions. Afterwards, in order to test the results with real signals, velocity profiles were captured near the Gualí River bed (Honda, Colombia), with an Acoustic Doppler Velocimeter (ADV). These profiles were filtered, treated and set up to feed the SMPM that solves the Navier - Stokes equations for the theoretical case. Besides, the velocity fluctuations along the river bed were calculated according to the mesh that was proposed to solve the numerical problem. This mesh required more refinement near the boundary conditions in order to calculate all the turbulent flow scales near the boundary. As a result, the velocity damping inside the porous media with real velocity pulses behaves similarly to the damping of the theoretical signals. However, there is still doubt about the use of the Navier - Stokes equations with the assumptions of incompressibility and hydrostatic approximation for the pressure distributions. Furthermore, the boundary conditions of the model suggest a great theme of discussion because of their nature. To sum up, the quantification of the interactions of groundwater and surface water have to be studied using numerical models in order to observe the behavior of the flow. Our research suggests that the velocity damping of water when entering the porous media goes beyond the approximations used for the Navier-Stokes equations and that this is a pressure driven flow that does not hold the hydrostatic simplification.

  4. Magnetic Field Effect on Ultrashort Two-dimensional Optical Pulse Propagation in Silicon Nanotubes

    NASA Astrophysics Data System (ADS)

    Konobeeva, N. N.; Evdokimov, R. A.; Belonenko, M. B.

    2018-05-01

    The paper deals with the magnetic field effect which provides a stable propagation of ultrashort pulses in silicon nanotubes from the viewpoint of their waveform. The equation is derived for the electromagnetic field observed in silicon nanotubes with a glance to the magnetic field for two-dimensional optical pulses. The analysis is given to the dependence between the waveform of ultrashort optical pulses and the magnetic flux passing through the cross-sectional area of the nanotube.

  5. Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-level {lambda}-type systems studied with the finite-difference time-domain method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, Yurii; Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, Nezaleznasty Ave. 70, 220072 Minsk; Serrat, Carles

    2006-06-15

    Propagation of single- and two-color hyperbolic secant femtosecond laser pulses in a three-level {lambda}-type quantum system is investigated by solving the Maxwell and density matrix equations with the finite-difference time-domain and Runge-Kutta methods. As a first study of our modeling, we simulate pulse self-induced transparency (SIT) in two-level systems and see how this phenomenon can be controlled by manipulating the initial relative phase between the SIT pulse and a second control pulse, provided the ratio between both pulse frequencies obeys the relation {omega}{sub 1}/{omega}{sub 2}=3. We then examine frequency down-conversion processes that are observed with single- and two-color pulses themore » envelope area of which is equal to or a multiple of 2{pi}, for pulse frequencies close to resonance with the transitions of a three-level {lambda} medium. Also, phase-sensitive phenomena are discussed in the case of two-color {omega}-3{omega} pulses propagating resonantly in the three-level system. In particular, possibilities for such coherent control are found for frequency down-conversion processes when the ratio of the frequencies of optical transitions is {omega}{sub 13}/{omega}{sub 12}=3. The conditions for quantum control of four-wave mixing processes are also examined when the pulse frequencies of two-color {omega}-3{omega} pulses are far from any resonance of the three-level system. We demonstrate the possibility to cancel the phase sensitivity of the four-wave coupling in a {lambda}-type system by competition effects between optical transitions.« less

  6. Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation

    NASA Astrophysics Data System (ADS)

    Rustagi, Avinash; Stanton, C. J.

    2016-11-01

    We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.

  7. Periodical energy oscillation and pulse splitting in sinusoidal volume holographic grating.

    PubMed

    Yan, Xiaona; Gao, Lirun; Dai, Ye; Yang, Xihua; Chen, Yuanyuan; Ma, Guohong

    2014-07-28

    This paper presents dynamical diffraction properties of a femtosecond pulse in a sinusoidal volume holographic grating (VHG). By the modified coupled-wave equations of Kogelnik, we show that the diffraction of a femtosecond pulse on the VHG gives rise to periodical energy oscillation and pulse splitting. In the initial stage of diffraction, one diffracted pulse and one transmitted pulse emerge, and energy of the transmitted pulse periodically transfers to the diffracted pulse and vice versa. In the latter stage, both the diffracted and transmitted pulses split into two spatially separated pulses. One pair of transmitted and diffracted pulses propagates in the same direction and forms the output diffracted dual pulses of the VHG, and the other pair of pulses forms the output transmitted dual pulses. The pulse interval between each pair of dual pulses is in linearly proportional to the refractive index modulation and grating thickness. By the interference effect and group velocity difference we give explanations on the periodical energy oscillation and pulse splitting respectively.

  8. Population dynamics of live-attenuated virus vaccines.

    PubMed

    Wagner, Bradley G; Earn, David J D

    2010-03-01

    Viruses contained in live-attenuated virus vaccines (LAVV) can be transmitted between individuals, resulting in secondary or contact vaccinations. This fact has been exploited successfully in the use of the Oral Polio Vaccine (OPV) to better control wild-type polio viruses. In this work we analyze general LAVV vaccination models for infections that confer lifelong immunity. We consider both standard (continuous) vaccination strategies and pulse vaccination programs (where mass vaccination is carried out at regular intervals). For continuous vaccination, we provide a complete global analysis of a very general compartmental ordinary differential equation LAVV model. We find that the threshold vaccination level required for the eradication of wild-type virus depends on the basic reproduction numbers of both the wild-type and vaccine viruses, but is otherwise independent of the distributions of the durations in each of the sequence of stages of disease progression (e.g., latent, infectious, etc.). Furthermore, even for vaccine viruses with reproduction numbers below one, which would naturally fade from the population upon cessation of vaccination, there can be a significant reduction in the threshold vaccination level. The dependence of the threshold vaccination level on the virus reproduction numbers largely generalizes to the pulse vaccination model. For shorter pulsing periods there is negligible difference in threshold vaccination level as compared to continuous vaccination campaigns. Thus, we conclude that current policy in many countries to employ annual pulsed OPV vaccination does not significantly diminish the benefits of contact vaccination. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii.

    PubMed

    Heiland, Ines; Bodenstein, Christian; Hinze, Thomas; Weisheit, Olga; Ebenhoeh, Oliver; Mittag, Maria; Schuster, Stefan

    2012-06-01

    Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.

  10. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator.

    PubMed

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-07-04

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.

  11. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator

    PubMed Central

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-01-01

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing. PMID:24993440

  12. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  13. Prediction of pulmonary hypertension in idiopathic pulmonary fibrosis☆

    PubMed Central

    Zisman, David A.; Ross, David J.; Belperio, John A.; Saggar, Rajan; Lynch, Joseph P.; Ardehali, Abbas; Karlamangla, Arun S.

    2007-01-01

    Summary Background Reliable, noninvasive approaches to the diagnosis of pulmonary hypertension in idiopathic pulmonary fibrosis are needed. We tested the hypothesis that the forced vital capacity to diffusing capacity ratio and room air resting pulse oximetry may be combined to predict mean pulmonary artery pressure (MPAP) in idiopathic pulmonary fibrosis. Methods Sixty-one idiopathic pulmonary fibrosis patients with available right-heart catheterization were studied. We regressed measured MPAP as a continuous variable on pulse oximetry (SpO2) and percent predicted forced vital capacity (FVC) to percent-predicted diffusing capacity ratio (% FVC/% DLco) in a multivariable linear regression model. Results Linear regression generated the following equation: MPAP = −11.9+0.272 × SpO2+0.0659 × (100−SpO2)2+3.06 × (% FVC/% DLco); adjusted R2 = 0.55, p<0.0001. The sensitivity, specificity, positive predictive and negative predictive value of model-predicted pulmonary hypertension were 71% (95% confidence interval (CI): 50–89%), 81% (95% CI: 68–92%), 71% (95% CI: 51–87%) and 81% (95% CI: 68–94%). Conclusions A pulmonary hypertension predictor based on room air resting pulse oximetry and FVC to diffusing capacity ratio has a relatively high negative predictive value. However, this model will require external validation before it can be used in clinical practice. PMID:17604151

  14. Laser effects based optimal laser parameter identifications for paint removal from metal substrate at 1064 nm: a multi-pulse model

    NASA Astrophysics Data System (ADS)

    Han, Jinghua; Cui, Xudong; Wang, Sha; Feng, Guoying; Deng, Guoliang; Hu, Ruifeng

    2017-10-01

    Paint removal by laser ablation is favoured among cleaning techniques due to its high efficiency. How to predict the optimal laser parameters without producing damage to substrate still remains challenging for accurate paint stripping. On the basis of ablation morphologies and combining experiments with numerical modelling, the underlying mechanisms and the optimal conditions for paint removal by laser ablation are thoroughly investigated. Our studies suggest that laser paint removal is dominated by the laser vaporization effect, thermal stress effect and laser plasma effect, in which thermal stress effect is the most favoured while laser plasma effect should be avoided during removal operations. Based on the thermodynamic equations, we numerically evaluated the spatial distribution of the temperature as well as thermal stress in the paint and substrate under the irradiation of laser pulse at 1064 nm. The obtained curves of the paint thickness vs. threshold fluences can provide the reference standard of laser parameter selection in view of the paint layer with different thickness. A multi-pulse model is proposed and validated under a constant laser fluence to perfectly remove a thicker paint layer. The investigations and the methods proposed here might give hints to the efficient operations on the paint removal and lowering the risk of substrate damages.

  15. Chirped bright and dark solitons of (3 + 1)-dimensional coupled nonlinear Schrödinger equations in negative-index metamaterials with both electric and magnetic nonlinearity of Kerr type

    NASA Astrophysics Data System (ADS)

    Dai, Chao-Qing; Fan, Yan; Wang, Yue-Yue; Zheng, Jun

    2018-02-01

    The (3 + 1)-dimensional generalized coupled nonlinear Schrödinger equation with electric and magnetic nonlinearities of Kerr type and self-steepening effects is studied, and bright and dark soliton solutions are derived. Based on these analytical solutions, dynamical behaviors of bright and dark solitons are discussed. The amplitudes, widths and velocities of bright and dark solitons are all constants determined by the self-steepening effect parameters SE, SH. The phase chirp of a bright soliton diminishes in the pulse front of y-direction, however, it increases in the pulse back edge of y-direction. On the contrary, the phase chirp of a dark soliton increases in the pulse front of y-direction, however, it diminishes in the pulse back edge of y-direction. The phase chirps of a bright and dark soliton both shift along positive y -axis as time goes on. Moreover, the stability of the solutions is discussed.

  16. The role of the global phase in the spatio-temporal evolution of strong-coupling Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Amiranoff, F.; Riconda, C.; Chiaramello, M.; Lancia, L.; Marquès, J. R.; Weber, S.

    2018-01-01

    The role of the global phase in the spatio-temporal evolution of the 3-wave coupled equations for backscattering is analyzed in the strong-coupling regime of Brillouin scattering. This is of particular interest for controlled backscattering in the case of plasma-based amplification to produce short and intense laser pulses. It is shown that the analysis of the envelope equations of the three waves involved, pump, seed, and ion wave, in terms of phase and amplitude fully describes the coupling dynamics. In particular, it helps understanding the role of the chirp of the laser beams and of the plasma density profile. The results can be used to optimize or quench the coupling mechanism. It is found that the directionality of the energy transfer is imposed by the phase relation at the leading edge of the pulse. This actually ensures continued energy transfer even if the intensity of the seed pulse is already higher than the pump pulse intensity.

  17. Curvature aided long range propagation of short laser pulses in the atmosphere

    NASA Astrophysics Data System (ADS)

    Yedierler, Burak

    2013-03-01

    The pre-filamentation regime of propagation of a short and intense laser pulse in the atmosphere is considered. Spatiotemporal self-focusing dynamics of the laser beam are investigated by calculating the coupled differential equations for spot size, pulse length, phase, curvature, and chirp functions of a Gaussian laser pulse via a variational technique. The effect of initial curvature parameter on the propagation of the laser pulse is taken into consideration. A method relying on the adjustment of the initial curvature parameter can expand the filamentation distance of a laser beam of given power and chirp is proposed.

  18. Femtosecond laser pulse distortion in Ti:sapphire multipass amplifier by atomic phase shifts

    NASA Astrophysics Data System (ADS)

    Hwang, Seungjin; Jeong, Jihoon; Cho, Seryeyohan; Lee, Jongmin; Yu, Tae Jun

    2017-11-01

    We have derived modified Frantz-Nodvik equations that simultaneously account for atomic phase shift (APS) and gain depletion as the chirped laser pulse passes through a gain medium, and have analyzed the effect of temporal pulse distortion in a Ti:sapphire multipass amplifier chain. The combination of APS and gain depletion distorted a temporal pulse and decreased the peak power. The pulse width increased from 21.3 fs to 22.8 fs and the peak power reduced to 89% for the PW class Ti:sapphire CPA laser system in the particular conditions.

  19. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber.

    PubMed

    Guo, Huiyong; Liu, Fang; Yuan, Yinquan; Yu, Haihu; Yang, Minghong

    2015-02-23

    For the online writing of ultra-weak fiber Bragg gratings (FBGs) in the drawing optical fibers, the effects of the intensity profile, pulse fluctuation and pulse width of the excimer laser, as well as the transverse and longitudinal vibrations of the optical fiber have been investigated. Firstly, using Lorentz-Loren equation, Gladstone-Dale mixing rule and continuity equation, we have derived the refractive index (RI) fluctuation along the optical fiber and the RI distribution in the FBG, they are linear with the gradient of longitudinal vibration velocity. Then, we have prepared huge amounts of ultra-weak FBGs in the non-moving optical fiber and obtained their reflection spectra, the measured reflection spectra shows that the intensity profile and pulse fluctuation of the excimer laser, as well as the transverse vibration of the optical fiber are little responsible for the inconsistency of ultra-weak FBGs. Finally, the effect of the longitudinal vibration of the optical fiber on the inconsistency of ultra-weak FBGs has been discussed, and the vibration equations of the drawing optical fiber are given in the appendix.

  20. Development and validation of a microchip pulsed laser for ESA space altimeters

    NASA Astrophysics Data System (ADS)

    Couto, Bruno; Abreu, Hernâni; Gordo, Paulo; Amorim, António

    2016-10-01

    The development and validation of small size laser sources for space based range finding is of crucial importance to the development of miniature LIDAR devices for European space missions, particularly for planet lander probes. In this context, CENTRA-SIM is developing a passively q-switched microchip laser in the 1.5μm wavelength range. Pulses in the order of 2 ns and 100μJ were found to be suitable for range finding for small landing platforms. Both glass and crystalline Yb-Er doped active media are commonly available. Crystalline media present higher thermal conductivity and hardness, which allows for higher pumping intensities. However, glass laser media present longer laser upper-state lifetime and 99% Yb-Er transfer efficiency make phosphate glasses the typically preferred host for this type of application. In addition to this, passively q-switched microchip lasers with Yb-Er doped phosphate glass have been reported to output >100μJ pulses while their crystalline host counterparts achieve a few tens of μJ at best. Two different types of rate equation models have been found: microscopic quantities based models and macroscopic quantities based models. Based on the works of Zolotovskaya et al. and Spühler et al, we have developed a computer model that further exploits the equivalence between the two types of approaches. The simulation studies, using commercial available components allowed us to design a compact laser emitting 80μJ pulses with up to 30kW peak power and 1 to 2 ns pulse width. We considered EAT14 Yb-Er doped glass as active medium and Co2+:MgAl2O4 as saturable absorber. The active medium is pumped by a 975nm semiconductor laser focused into a 200μm spot. Measurements on an experimental test bench to validate the numerical model were carried out. Several different combinations of, saturable absorber length and output coupling were experimented.

  1. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.

    PubMed

    Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek

    2018-01-01

    The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.

  2. Cross-polarized wave generation (XPW) for ultrafast laser pulse characterization and intensity contrast enhancement

    NASA Astrophysics Data System (ADS)

    Iliev, Marin

    Good pulse quality, high peak power and tunable central wavelength are amongst the most desired qualities in modern lasers. The nonlinear effect cross-polarized wave generation (XPW), can be used in ultrafast laser systems to achieve various pulse quality enhancements. The XPW yield depends on the cube of the input intensity and acts as a spatio-temporal filter. It is orthogonally polarized to the input pulse and highly Gaussian. If the input pulse is well compressed, the output spectrum is smoother and broader. These features make XPW an ideal reference signal in pulse characterization techniques. This thesis presents a detailed analysis of the XPW conversion process, and describes novel applications to pulse characterization and high-quality pulse cleaning. An extensive computer model was developed to describe XPW generation via solution of the full coupled non-linear differential equations. The model accounts for dispersion inside the nonlinear crystal and uses split-step Fourier optics beam propagation to simulate the evolution of the electro-magnetic fields of the pump and XPW through free-space and imaging systems. A novel extension to the self-referenced spectral interferometry (SRSI) pulse characterization technique allows the retrieval of the energy and spectral content of the amplified spontaneous emission (ASE) present in ultrashort pulse amplifier systems. A novel double-pass XPW conversion scheme is presented. In it the beam passes through a single XPW crystal (BaF2) and is re-imaged with a curved mirror. The technique resulted in good (˜30%) efficiency without the spatial aberrations commonly seen in another arrangement that uses two crystals in succession. The modeling sheds light on the complicated nonlinear beam dynamics of the double-crystal conversion, including self- and cross-phase modulation, self-focusing, and the effects of, relative on-axis phase-difference, relative beam sizes, and wave-front curvature matching on seeded XPW conversion. Finally, a design is presented for exploiting the clean-up properties of XPW at the output of an optical parametric generation (OPA) setup in conjunction with an extremely compact prism compressor. The prisms material, separation and geometry are designed carefully to work at the correct wavelength of the OPA setup and are extrapolated to accommodate wavelengths, such as 2mum of parametric wave generation.

  3. Improving the time efficiency of the Fourier synthesis method for slice selection in magnetic resonance imaging.

    PubMed

    Tahayori, B; Khaneja, N; Johnston, L A; Farrell, P M; Mareels, I M Y

    2016-01-01

    The design of slice selective pulses for magnetic resonance imaging can be cast as an optimal control problem. The Fourier synthesis method is an existing approach to solve these optimal control problems. In this method the gradient field as well as the excitation field are switched rapidly and their amplitudes are calculated based on a Fourier series expansion. Here, we provide a novel insight into the Fourier synthesis method via representing the Bloch equation in spherical coordinates. Based on the spherical Bloch equation, we propose an alternative sequence of pulses that can be used for slice selection which is more time efficient compared to the original method. Simulation results demonstrate that while the performance of both methods is approximately the same, the required time for the proposed sequence of pulses is half of the original sequence of pulses. Furthermore, the slice selectivity of both sequences of pulses changes with radio frequency field inhomogeneities in a similar way. We also introduce a measure, referred to as gradient complexity, to compare the performance of both sequences of pulses. This measure indicates that for a desired level of uniformity in the excited slice, the gradient complexity for the proposed sequence of pulses is less than the original sequence. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Interaction with the lower ionosphere of electromagnetic pulses from lightning - Heating, attachment, and ionization

    NASA Technical Reports Server (NTRS)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A Boltzmann formulation of the electron distribution function and Maxwell's equations for the EM fields are used to simulate the interaction of lightning radiated EM pulses with the lower ionosphere. Ionization and dissociative attachment induced by the heated electrons cause significant changes in the local electron density, N(e). Due to 'slow' field changes of typical lightning EM pulses over time scales of tens of microsec, the distribution function follows the quasi-equilibrium solution of the Boltzmann equation in the altitude range of interest (70 to 100 km). The EM pulse is simulated as a planar 100 microsec long single period oscillation of a 10 kHz wave injected at 70 km. Under nighttime conditions, individual pulses of intensity 10-20 V/m (normalized to 100 km horizontal distance) produce changes in N(e) of 1-30 percent while a sequence of pulses leads to strong modification of N(e) at altitudes less than 95 km. The N(e) changes produce a 'sharpening' of the lower ionospheric boundary by causing a reduction in electron density at 75-85 km (due to attachment) and a substantial increase at 85-95 km (due to ionization) (e.g., the scale height decreases by a factor of about 2 at about 85 km for a single 20 V/m EM pulse). No substantial N(e) changes occur during daytime.

  5. Stability of post-fertilization traveling waves

    NASA Astrophysics Data System (ADS)

    Flores, Gilberto; Plaza, Ramón G.

    This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.

  6. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE PAGES

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay of modulated heat pulses.« less

  7. Experimental validation of a theoretical model of dual wavelength photoacoustic (PA) excitation in fluorophores

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Theiss, Christoph; Schmitt, Franz-Josef; Laufer, Jan

    2015-03-01

    Fluorophores, such as exogenous dyes and genetically expressed proteins, exhibit radiative relaxation with long excited state lifetimes. This can be exploited for PA detection based on dual wavelength excitation using pump and probe wavelengths that coincide with the absorption and emission spectra, respectively. While the pump pulse raises the fluorophore to a long-lived excited state, simultaneous illumination with the probe pulse reduces the excited state lifetime due to stimulated emission (SE).This leads to a change in thermalized energy, and hence PA signal amplitude, compared to single wavelength illumination. By introducing a time delay between pump and probe pulses, the change in PA amplitude can be modulated. Since the effect is not observed in endogenous chromophores, it provides a contrast mechanism for the detection of fluorophores via PA difference imaging. In this study, a theoretical model of the PA signal generation in fluorophores was developed and experimentally validated. The model is based on a system of coupled rate equations, which describe the spatial and temporal changes in the population of the molecular energy levels of a fluorophore as a function of pump-probe energy and concentration. This allows the prediction of the thermalized energy distribution, and hence the time-resolved PA signal amplitude. The model was validated by comparing its predictions to PA signals measured in solutions of rhodamine 6G, a well-known laser dye, and Atto680, a NIR fluorophore.

  8. Multi-dimensional simulation package for ultrashort pulse laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Suslova, Anastassiya; Hassanein, Ahmed

    2017-10-01

    Advanced simulation models recently became a popular tool of investigation of ultrashort pulse lasers (USPLs) to enhance understanding of the physics and allow minimizing the experimental costs for optimization of laser and target parameters for various applications. Our research interest is focused on developing multi-dimensional simulation package FEMTO-2D to investigate the USPL-matter interactions and laser induced effects. The package is based on solution of two heat conduction equations for electron and lattice sub-systems - enhanced two temperature model (TTM). We have implemented theoretical approach based on the collision theory to define the thermal dependence of target material optical properties and thermodynamic parameters. Our approach allowed elimination of fitted parameters commonly used in TTM based simulations. FEMTO-2D is used to simulated the light absorption and interactions for several metallic targets as a function of wavelength and pulse duration for wide range of laser intensity. The package has capability to consider different angles of incidence and polarization. It has also been used to investigate the damage threshold of the gold coated optical components with the focus on the role of the film thickness and substrate heat sink effect. This work was supported by the NSF, PIRE project.

  9. Pattern formation in diffusive excitable systems under magnetic flow effects

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  10. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Tikan, Alexey; Billet, Cyril; El, Gennady; Tovbis, Alexander; Bertola, Marco; Sylvestre, Thibaut; Gustave, Francois; Randoux, Stephane; Genty, Goëry; Suret, Pierre; Dudley, John M.

    2017-07-01

    We report experimental confirmation of the universal emergence of the Peregrine soliton predicted to occur during pulse propagation in the semiclassical limit of the focusing nonlinear Schrödinger equation. Using an optical fiber based system, measurements of temporal focusing of high power pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear evolution stage. Experimental and numerical results are in very good agreement, and show that the universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed over a broad range of parameters.

  11. Chirped self-similar optical pulses in tapered centrosymmetric nonlinear waveguides doped with resonant impurities

    NASA Astrophysics Data System (ADS)

    He, J. R.; Xu, S. L.; Xue, L.

    2017-11-01

    Exact chirped self-similar optical pulses propagating in tapered centrosymmetric nonlinear waveguides doped with resonant impurities are reported. The propagation behaviors of the pulses are studied by tailoring of the tapering function. Numerical simulations and stability analysis reveal that the tapering can be used to postpone the wave dispersion and the addition of a small cubic self-focusing term to the governing equation could stabilize the chirped bright pulses. An example of possible experimental protocol that may generate the pulses in realistic waveguides is given. The obtained chirped self-similar optical pulses are particularly useful in the design of amplifying or attenuating pulse compressors for chirped solitary waves in tapered centrosymmetric nonlinear waveguides doped with resonant impurities.

  12. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Mirus, Kevin Andrew

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Rossler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high- dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  13. Graphics-processing-unit-accelerated finite-difference time-domain simulation of the interaction between ultrashort laser pulses and metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Nikolskiy, V. P.; Stegailov, V. V.

    2018-01-01

    Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.

  14. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    PubMed Central

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  15. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    PubMed

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  16. Laser excitation of the n =3 level of positronium for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kellerbauer, A.; Kimura, M.; Koettig, T.; Krasnicky, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zmeskal, J.; Zurlo, N.; AEgIS Collaboration

    2016-07-01

    We demonstrate the laser excitation of the n =3 state of positronium (Ps) in vacuum. A combination of a specially designed pulsed slow positron beam and a high-efficiency converter target was used to produce Ps. Its annihilation was recorded by single-shot positronium annihilation lifetime spectroscopy. Pulsed laser excitation of the n =3 level at a wavelength λ ≈205 nm was monitored via Ps photoionization induced by a second intense laser pulse at λ =1064 nm. About 15% of the overall positronium emitted into vacuum was excited to n =3 and photoionized. Saturation of both the n =3 excitation and the following photoionization was observed and explained by a simple rate equation model. The positronium's transverse temperature was extracted by measuring the width of the Doppler-broadened absorption line. Moreover, excitation to Rydberg states n =15 and 16 using n =3 as the intermediate level was observed, giving an independent confirmation of excitation to the 3 3P state.

  17. Effect of pore water velocities and solute input methods on chloride transport in the undisturbed soil columns of Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, BeiBei; Wang, QuanJiu

    2017-09-01

    Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.

  18. Modeling of plasticity and fracture of metals at shock loading

    NASA Astrophysics Data System (ADS)

    Mayer, A. E.; Khishchenko, K. V.; Levashov, P. R.; Mayer, P. N.

    2013-05-01

    In this paper, we present a model of dislocation plasticity and fracture of metals, which in combination with the wide-range equation of state and the continuum mechanics equations is a necessary component for simulation of the shock-wave loading. We take into account immobilization of dislocations and nucleation of micro-voids in weakened zones of substance; this is distinguished feature of the present version of the model. Accounting of the dislocations immobilization provides a better description of the unloading wave structure, while the detailed consideration of processes in the weakened zones expands the domain of applicability of fracture model to higher strain rates. We compare our results with the experimental data for the shock loading of aluminum, copper, and nickel samples; the comparison indicates satisfactory description of the elastic precursor, unloading wave, and spall pulse. Using the model, we investigate intently the early stage of the shock formation in solids; it is found out that the elastic precursor is formed even for a strong shock wave, and initially the precursor has very large amplitude and propagation velocity.

  19. Rapid detonation initiation by sparks in a short duct: a numerical study

    NASA Astrophysics Data System (ADS)

    Hu, Z. M.; Dou, H. S.; Khoo, B. C.

    2010-06-01

    Rapid onset of detonation can efficiently increase the working frequency of a pulse detonation engine (PDE). In the present study, computations of detonation initiation in a duct are conducted to investigate the mechanisms of detonation initiation. The governing equations are the Euler equations and the chemical kinetic model consists of 19 elementary reactions and nine species. Different techniques of initiation have been studied for the purpose of accelerating detonation onset with a relatively weak ignition energy. It is found that detonation ignition induced by means of multiple sparks is applicable to auto-ignition for a PDE. The interaction among shock waves, flame fronts and the strip of pre-compressed fresh (unburned) mixture plays an important role in rapid onset of detonation.

  20. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  1. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.

  2. Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2017-12-01

    In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.

  3. RX J1856-3754: Evidence for a Stiff Equation of State

    NASA Astrophysics Data System (ADS)

    Braje, Timothy M.; Romani, Roger W.

    2002-12-01

    We have examined the soft X-ray plus optical/UV spectrum of the nearby isolated neutron star RX J1856-3754, comparing it with detailed models of a thermally emitting surface. Like previous investigators, we find that the spectrum is best fitted by a two-temperature blackbody model. In addition, our simulations constrain the allowed viewing geometry from the observed pulse fraction upper limits. These simulations show that RX J1856-3754 is very likely to be a normal young pulsar, with the nonthermal radio beam missing Earth's line of sight. The spectral energy distribution limits on the model parameter space put a strong constraint on the star's M/R. At the measured parallax distance, the allowed range for MNS=1.5Msolar is RNS=13.7+/-0.6km. Under this interpretation, the equation of state (EOS) is relatively stiff near nuclear density, and the quark star EOS posited in some previous studies is strongly excluded. The data also constrain the surface T distribution over the polar cap.

  4. Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1993-01-01

    The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.

  5. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    NASA Astrophysics Data System (ADS)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  6. Possible repetitive pulse operation of diode-pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori

    2017-01-01

    A theoretical study has been conducted for investigating the possibility of a diode-pumped alkali laser (DPAL) operating in repetitive pulsed mode. A one-dimensional, time-dependent rate-equation simulation of a Cs DPAL was developed to calculate the dynamic behavior of the active medium when Q-switching or cavity dumping was applied. The simulation modeled our small-scale experimental apparatus. In the continuous-wave (CW) mode, the calculated output power was in good agreement with the experimental value. Q-switching was shown to be ineffective because of the short spontaneous lifetime of the active medium, on the order of 10 ns. On the other hand, cavity dumping was proven to be effective. In typical operational conditions, a 54 times increase in peak power with respect to the CW power was predicted.

  7. A novel and practical approach for determination of the acoustic nonlinearity parameter using a pulse-echo method

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing

    2016-02-01

    Measurements of the acoustic nonlinearity parameter β are frequently made for early detection of damage in various materials. The practical implementation of the measurement technique has been limited to the through-transmission setup for determining the nonlinearity parameter of the second harmonic wave. In this work, a feasibility study is performed to assess the possibility of using pulse-echo methods in determining the nonlinearity parameter β of solids with a stress-free boundary. The multi-Gaussian beam model is developed based on the quasilinear theory of the KZK equation. Simulation results and discussion are presented for the reflected beam fields of the fundamental and second harmonic waves, the uncorrected β behavior and the properties of total correction that incorporate reflection, attenuation and diffraction effects.

  8. Influence of humidity on the characteristics of positive corona discharge in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Pengfei, E-mail: xpftsh@126.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; Chen, Shuiming, E-mail: chensm@tsinghua.edu.cn

    Detailed positive corona discharge characteristics, such as the corona onset voltage, pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under different air humidity with a single artificial defect electrode. The experimental results indicate that the pulse amplitude decreases with the increase of air humidity; meanwhile, the repetition frequency increases as the air humidity increases. This phenomenon is different from that of negative corona discharge. Therefore, to have an insight into the mechanism of humidity influence on positive corona discharge, a positive corona discharge model based on the continuity equations is utilized. The simulationsmore » present a dynamic development of positive corona discharge and, meanwhile, reveal the humidity influence on positive corona discharge.« less

  9. A comparison of lightning and nuclear electromagnetic pulse response of a helicopter

    NASA Technical Reports Server (NTRS)

    Easterbrook, C. C.; Perala, R. A.

    1984-01-01

    A numerical modeling technique is utilized to investigate the response of a UH-60A helicopter to both lightning and nuclear electromagnetic pulses (NEMP). The analytical approach involves the three-dimensional time domain finite-difference solutions of Maxwell's equations. Both the external currents and charges as well as the internal electromagnetic fields and cable responses are computed. Results of the analysis indicate that, in general, the short circuit current on internal cables is larger for lightning, whereas the open-circuit voltages are slightly higher for NEMP. The lightning response is highly dependent upon the rise time of the injected current as was expected. The analysis shows that a coupling levels to cables in a helicopter are 20 to 30 dB larger than those observed in fixed-wing aircraft.

  10. A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jeffrey

    2006-04-01

    Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less

  11. Vaccination Strategies: a comparative study in an epidemic scenario

    NASA Astrophysics Data System (ADS)

    Prates, D. B.; Jardim, C. L. T. F.; Ferreira, L. A. F.; da Silva, J. M.; Kritz, M. V.

    2016-08-01

    Epidemics are an extremely important matter of study within the Mathematical Modeling area and can be widely found in the literature. Some epidemiological models use differential equations, which are very sensible to parameters, to represent and describe the diseases mathematically. For this work, a variation of the SIR model is discussed and applied to a certain epidemic scenario, wherein vaccination is introduced through two different strategies: constant vaccination and vaccination in pulses. Other epidemiological and population aspects are also considered, such as mortality/natality and infection rates. The analysis and results are performed through numerical solutions of the model and a special attention is given to the discussion generated by the paramenters variation.

  12. Improved Pulse Transit Time Estimation by System Identification Analysis of Proximal and Distal Arterial Waveforms

    DTIC Science & Technology

    2011-10-01

    response; pulse wave velocity ACCORDING TO THE MOENS-KORTEWEG equation, pulse wave ve- locity ( PWV ) increases as the arteries stiffen. Indeed, PWV is the...and mortality in hypertensive patients (2, 4, 12, 14). In addition, because arterial stiffness increases with arterial blood pressure (ABP), PWV and...ABP often show positive correlation, suggesting that PWV could provide a means to achieve continuous, noninvasive, and cuffless ABP monitoring (18

  13. Anomalous Diffusion Measured by a Twice-Refocused Spin Echo Pulse Sequence: Analysis Using Fractional Order Calculus

    PubMed Central

    2011-01-01

    Purpose To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. Materials and Methods The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2,600 s/mm2. For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β and μ values and the goodness-of-fit in three specific regions of interest (ROI) in white matter, gray matter, and cerebrospinal fluid were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. Results The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. Conclusion The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. PMID:21509877

  14. Anomalous diffusion measured by a twice-refocused spin echo pulse sequence: analysis using fractional order calculus.

    PubMed

    Gao, Qing; Srinivasan, Girish; Magin, Richard L; Zhou, Xiaohong Joe

    2011-05-01

    To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2600 s/mm(2). For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β, and μ values and the goodness-of-fit in three specific regions of interest (ROIs) in white matter, gray matter, and cerebrospinal fluid, respectively, were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. Copyright © 2011 Wiley-Liss, Inc.

  15. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation diagrams and Poincaré maps. It is shown that traveling waves of pressure and velocity cause a delay in the radial displacement of the shell at different values of the axial coordinate. The effect of different pulse wave velocities is also studied. Comparisons with the corresponding ideal case without wave propagation (i.e. with the same pulsatile velocity and pressure at any point of the shell) are here discussed. Bifurcation diagrams of Poincaré maps obtained from direct time integration have been used to study the system in the spectral neighborhood of the fundamental natural frequency. By increasing the forcing frequency, the response undergoes very complex nonlinear dynamics (chaos, amplitude modulation and period-doubling bifurcation), here deeply investigated.

  16. Implicitly causality enforced solution of multidimensional transient photon transport equation.

    PubMed

    Handapangoda, Chintha C; Premaratne, Malin

    2009-12-21

    A novel method for solving the multidimensional transient photon transport equation for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used to represent the time dependency of the incident short pulse. Owing to the intrinsic causal nature of Laguerre functions, our technique automatically always preserve the causality constrains of the transient signal. This expansion of the radiance using a Laguerre basis transforms the transient photon transport equation to the steady state version. The resulting equations are solved using the discrete ordinates method, using a finite volume approach. Therefore, our method enables one to handle general anisotropic, inhomogeneous media using a single formulation but with an added degree of flexibility owing to the ability to invoke higher-order approximations of discrete ordinate quadrature sets. Therefore, compared with existing strategies, this method offers the advantage of representing the intensity with a high accuracy thus minimizing numerical dispersion and false propagation errors. The application of the method to one, two and three dimensional geometries is provided.

  17. Simulation study of the thermal and the thermoelastic effects induced by pulsed laser absorption in human skin

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Young; Jang, Kyungmin; Yang, Seung-Jin; Baek, Jun-Hyeok; Park, Jong-Rak; Yeom, Dong-Il; Kim, Ji-Sun; Kim, Hyung-Sik; Jun, Jae-Hoon; Chung, Soon-Cheol

    2016-04-01

    We studied the thermal and the mechanical effects induced by pulsed laser absorption in human skin by numerically solving the heat-transfer and the thermoelastic wave equations. The simulation of the heat-transfer equation yielded the spatiotemporal distribution of the temperature increase in the skin, which was then used in the driving term of the thermoelastic wave equation. We compared our simulation results for the temperature increase and the skin displacements with the measured and numerical results, respectively. For the comparison, we used a recent report by Jun et al. [Sci. Rep. 5, 11016 (2015)], who measured in vivo skin temperature and performed numerical simulation of the thermoelastic wave equation using a simple assumption about the temporal evolution of the temperature distribution, and found their results to be in good agreement with our results. In addition, we obtained solutions for the stresses in the human skin and analyzed their dynamic behaviors in detail.

  18. Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang

    2018-03-01

    This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.

  19. Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility

    NASA Astrophysics Data System (ADS)

    Petrova, Tz. B.; Petrov, G. M.; Wolford, M. F.; Giuliani, J. L.; Ladouceur, H. D.; Hegeler, F.; Myers, M. C.; Sethian, J. D.

    2017-02-01

    Nitric oxide (NOx) emission is under restrictive federal regulations because of its negative impact on atmosphere, biosphere, and human health. Therefore, its removal has been a subject of extensive research to develop new efficient and cost effective techniques that can be applied on an industrial scale. In this work, we study both experimentally and theoretically an effective removal of NOx pollutants from a surrogate flue gas (SFG) using high power electron beam (e-beam) pulses. SFG is a simulant for exhaust from coal combustion power plants (82% N2, 6% O2, 12% CO2, and ˜100 ppm of NOx). The pulsed electron beam is generated using the United States Naval Research Laboratory Electra facility, which delivers e-beams with energies of ˜500 keV and a power pulse duration of ˜140 ns. During the e-beam irradiation, the energetic electrons generate a non-equilibrium plasma containing chemically active species, which then react with NOx to form harmless substances. A non-equilibrium time-dependent model is developed to describe NOx remediation from SFG. The model combines e-beam deposition rates obtained by solving the electron Boltzmann equation and extensive plasma chemistry modeling, which follows the species on a time scale from sub-nanoseconds to a few seconds. NOx decomposition as a function of electron beam parameters is studied. It is demonstrated experimentally that short (ns) pulses are the most efficient for NOx removal. A sharp reduction of NOx was measured with e-beam power deposition increasing, following the trend predicted by the model, achieving a 20 fold reduction to ˜5 ppm at energy deposition ˜20 J/l.

  20. XTRAN2L - A PROGRAM FOR SOLVING THE GENERAL-FREQUENCY UNSTEADY TWO-DIMENSIONAL TRANSONIC SMALL-DISTURBANCE EQUATIONS

    NASA Technical Reports Server (NTRS)

    Seidel, D. A.

    1994-01-01

    The Program for Solving the General-Frequency Unsteady Two-Dimensional Transonic Small-Disturbance Equation, XTRAN2L, is used to calculate time-accurate, finite-difference solutions of the nonlinear, small-disturbance potential equation for two- dimensional transonic flow about airfoils. The code can treat forced harmonic, pulse, or aeroelastic transient type motions. XTRAN2L uses a transonic small-disturbance equation that incorporates a time accurate finite-difference scheme. Airfoil flow tangency boundary conditions are defined to include airfoil contour, chord deformation, nondimensional plunge displacement, pitch, and trailing edge control surface deflection. Forced harmonic motion can be based on: 1) coefficients of harmonics based on information from each quarter period of the last cycle of harmonic motion; or 2) Fourier analyses of the last cycle of motion. Pulse motion (an alternate to forced harmonic motion) in which the airfoil is given a small prescribed pulse in a given mode of motion, and the aerodynamic transients are calculated. An aeroelastic transient capability is available within XTRAN2L, wherein the structural equations of motion are coupled with the aerodynamic solution procedure for simultaneous time-integration. The wake is represented as a slit downstream of the airfoil trailing edge. XTRAN2L includes nonreflecting farfield boundary conditions. XTRAN2L was developed on a CDC CYBER mainframe running under NOS 2.4. It is written in FORTRAN 5 and uses overlays to minimize storage requirements. The program requires 120K of memory in overlayed form. XTRAN2L was developed in 1987.

  1. Investigation of the Acoustic Source Characteristics of High Energy Laser Pulses: Models and Experiment

    DTIC Science & Technology

    2008-06-01

    any mechanism which heats water. Sulak et al. [1979], for example, derive an expression for the acoustic wave resulting from the interaction of a... Sulak [1979] also provides an equation he attributes to Bowen for the pressure amplitude as a function of time. It is: ( ) ( ), /, 4 p w r t r cKp...pressure expected from heating water. His treatment is different from the one we see in Sulak , because he looks specifically at a situation where there

  2. Theoretical detection threshold of the proton-acoustic range verification technique.

    PubMed

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-10-01

    Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1-10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. The calculated noise in the transducer was 12-28 mPa, depending on the transducer central frequency (70-380 kHz). The minimum number of protons detectable by the technique was on the order of 3-30 × 10(6) per pulse, with 30-800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10(6) protons/pulse and beam current.

  3. Theoretical detection threshold of the proton-acoustic range verification technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method.more » Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10{sup 6} protons/pulse and beam current.« less

  4. Theoretical detection threshold of the proton-acoustic range verification technique

    PubMed Central

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-01-01

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 106 protons/pulse and beam current. PMID:26429247

  5. Studies of nonlinear femtosecond pulse propagation in bulk materials

    NASA Astrophysics Data System (ADS)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This thesis applies FROG as a powerful tool for science and not just a useful pulse diagnostic technique. Studies of three-dimensional propagation provide an in-depth understanding of the processes involved in femtosecond pulse splitting. In addition, the experimental investigations of continuum generation and pulse propagation in liquids provide new insights into the possible processes involved and should provide a useful comparison for developing theories.

  6. Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations.

    PubMed

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Wen-Jun; Liu, Ying

    2009-12-01

    Dynamic features describing the collisions of the bound vector solitons and soliton complexes are investigated for the coupled nonlinear Schrödinger (CNLS) equations, which model the propagation of the multimode soliton pulses under some physical situations in nonlinear fiber optics. Equations of such type have also been seen in water waves and plasmas. By the appropriate choices of the arbitrary parameters for the multisoliton solutions derived through the Hirota bilinear method, the periodic structures along the propagation are classified according to the relative relations of the real wave numbers. Furthermore, parameters are shown to control the intensity distributions and interaction patterns for the bound vector solitons and soliton complexes. Transformations of the soliton types (shape changing with intensity redistribution) during the collisions of those stationary structures with the regular one soliton are discussed, in which a class of inelastic properties is involved. Discussions could be expected to be helpful in interpreting such structures in the multimode nonlinear fiber optics and equally applied to other systems governed by the CNLS equations, e.g., the plasma physics and Bose-Einstein condensates.

  7. Shock implosion of a small homogeneous pellet

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasuichi; Mishkin, Eli A.; Alejaldre, Carlos

    1985-10-01

    A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front.

  8. Pulsed Thrust Method for Hover Formation Flying

    NASA Technical Reports Server (NTRS)

    Hope, Alan; Trask, Aaron

    2003-01-01

    A non-continuous thrust method for hover type formation flying has been developed. This method differs from a true hover which requires constant range and bearing from a reference vehicle. The new method uses a pulsed loop, or pogo, maneuver sequence that keeps the follower spacecraft within a defined box in a near hover situation. Equations are developed for the hover maintenance maneuvers. The constraints on the hover location, pulse interval, and maximum/minimum ranges are discussed.

  9. Analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syrchin, M.S.; Zheltikov, A.M.; International Laser Center, M.V. Lomonosov Moscow State University, 119899 Moscow

    Analytical treatment of the self-phase-modulation of an ultrashort light pulse is extended beyond the slowly varying envelope approximation. The resulting wave equation is modified to include corrections to self-phase-modulation due to higher-order spatial and temporal derivatives. Analytical solutions are found in the limiting regimes of high nonlinearities and very short pulses. Our results reveal features that can significantly impact both pulse shape and the evolution of the phase.

  10. Nonlinear self-reflection of intense ultra-wideband femtosecond pulses in optical fiber

    NASA Astrophysics Data System (ADS)

    Konev, Leonid S.; Shpolyanskiy, Yuri A.

    2013-05-01

    We simulated propagation of few-cycle femtosecond pulses in fused silica fiber based on the set of first-order equations for forward and backward waves that generalizes widely used equation of unidirectional approximation. Appearance of a weak reflected field in conditions default to the unidirectional approach is observed numerically. It arises from nonmatched initial field distribution with the nonlinear medium response. Besides additional field propagating forward along with the input pulse is revealed. The analytical solution of a simplified set of equations valid over distances of a few wavelengths confirms generation of reflected and forward-propagating parts of the backward wave. It allowed us to find matched conditions when the reflected field is eliminated and estimate the amplitude of backward wave via medium properties. The amplitude has the order of the nonlinear contribution to the refractive index divided by the linear refractive index. It is small for the fused silica so the conclusions obtained in the unidirectional approach are valid. The backward wave should be proportionally higher in media with stronger nonlinear response. We did not observe in simulations additional self-reflection not related to non-matched boundary conditions.

  11. Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems

    NASA Astrophysics Data System (ADS)

    Slotboom, J.

    1993-10-01

    This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.

  12. Controlling the temperature of bones using pulsed CO2 lasers: observations and mathematical modeling.

    PubMed

    Lévesque, Luc; Noël, Jean-Marc; Scott, Calum

    2015-12-01

    Temperature of porcine bone specimens are investigated by aiming a pulsed CO2 laser beam at the bone-air surface. This method of controlling temperature is believed to be flexible in medical applications as it avoids the uses of thermal devices, which are often cumbersome and generate rather larger temperature variations with time. The control of temperature using this method is modeled by the heat-conduction equation. In this investigation, it is assumed that the energy delivered by the CO2 laser is confined within a very thin surface layer of roughly 9 μm. It is shown that temperature can be maintained at a steady temperature using a CO2 laser and we demonstrate that the method can be adapted to be used in tandem with another laser beam. This method to control the temperature is believed to be useful in de-contamination of bone during the implantation treatment, in bone augmentation when using natural or synthetic materials and in low-level laser therapy.

  13. Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding

    NASA Astrophysics Data System (ADS)

    Shim, J. Y.; Kim, I. S.; Lee, K. J.; Kang, B. Y.

    2011-12-01

    Recently, there has been a trend in the automotive industry to focus on the improvement of lightweight materials, such as aluminum and magnesium because the welding of dissimilar metals causes many welding defects. Magnetic pulse welding (MPW), one of the solid state welding technologies, uses electromagnetic force from current discharged through a working coil which develops a repulsive force between the induced currents flowing parallel and in the opposite direction in the tube to be welded. The objective of this paper is to develop a numerical model for analysis of the interaction between the outer pipe and the working coil using a finite element method (FEM) in the MPW process. Four Maxwell equations are solved using a general electromagnetic mechanics computer program, ANSYS/EMAG code. Experiments were also carried out with a W-MPW60 machine manufactured by WELMATE CO., LTD. with the Al1070 and SM45C for Al pipe and steel bar respectively. The calculated and measured results were compared to verify the proposed model.

  14. The Influence of Soft Layer Electrokinetics on Electroporation of Gram-positive Bacteria

    NASA Astrophysics Data System (ADS)

    Dingari, Naga Neehar; Moran, Jeffrey L.; Garcia, Paulo A.; Buie, Cullen R.

    2016-11-01

    Bacterial electroporation involves subjecting cells to intense ( 10 kV/cm) electric pulses, to open pores on the cell membrane for intracellular delivery of exogenous molecules. Its high efficiency in genetic transformation makes it an attractive tool for synthetic biology. While mammalian cell electroporation has received extensive theoretical and experimental investigation, bacterial electroporation has received markedly less attention. In this work, we develop a theoretical model of electroporation for gram-positive bacteria, taking into account the effect of the bacterial cell envelope on the cell's response to an electroporation pulse. We model the influence of the cell wall charge on the electrokinetic transport (and hence the pore properties) around the bacterial cell envelope using the Poisson-Nernst-Planck equations. Further, we account for the influence of the cell wall's mechanical elasticity on the pore radius evolution during electroporation, which is typically neglected in mammalian cell electroporation. This yields valuable information about favorable conditions for pore formation and will enable designing optimal platforms for bacteria electroporation.

  15. Cascades on a stochastic pulse-coupled network

    NASA Astrophysics Data System (ADS)

    Wray, C. M.; Bishop, S. R.

    2014-09-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.

  16. Cascades on a stochastic pulse-coupled network

    PubMed Central

    Wray, C. M.; Bishop, S. R.

    2014-01-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided. PMID:25213626

  17. Modeling of two-phase porous flow with damage

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Bercovici, D.

    2009-12-01

    Two-phase dynamics has been broadly studied in Earth Science in a convective system. We investigate the basic physics of compaction with damage theory and present preliminary results of both steady state and time-dependent transport when melt migrates through porous medium. In our simple 1-D model, damage would play an important role when we consider the ascent of melt-rich mixture at constant velocity. Melt segregation becomes more difficult so that porosity is larger than that in simple compaction in the steady-state compaction profile. Scaling analysis for compaction equation is performed to predict the behavior of melt segregation with damage. The time-dependent of the compacting system is investigated by looking at solitary wave solutions to the two-phase model. We assume that the additional melt is injected to the fracture material through a single pulse with determined shape and velocity. The existence of damage allows the pulse to keep moving further than that in simple compaction. Therefore more melt could be injected to the two-phase mixture and future application such as carbon dioxide injection is proposed.

  18. Physical Kinetics of Electrons in a High-Voltage Pulsed High-Pressure Discharge with Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. Yu.; Kozyrev, A. V.; Semeniuk, N. S.

    2017-12-01

    Results of theoretical modeling of the phenomenon of a high-voltage discharge in nitrogen at atmospheric pressure are presented, based on a consistent kinetic theory of the electrons. A mathematical model of a nonstationary high-pressure discharge has been constructed for the first time, based on a description of the electron component from first principles. The physical kinetics of the electrons are described with the help of the Boltzmann kinematic equation for the electron distribution function over momenta with only ionization and elastic collisions taken into account. A detailed spatiotemporal picture of a nonstationary discharge with runaway electrons under conditions of coaxial geometry of the gas diode is presented. The model describes in a self-consistent way both the process of formation of the runaway electron flux in the discharge and the influence of this flux on the rate of ionization processes in the gas. Total energy spectra of the electron flux incident on the anode are calculated. The obtained parameters of the current pulse of the beam of fast electrons correlate well with the known experimental data.

  19. Reply to Comment: 'A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-square deconvolution with Laguerre expansion'.

    PubMed

    Ma, Dinglong; Liu, Jing; Qi, Jinyi; Marcu, Laura

    2017-02-21

    In this response we underscore that the instrumentation described in the original publication (Liu et al 2012 Phys. Med. Biol. 57 843-65) was based on pulse-sampling technique, while the comment by Zhang et al is based on the assumption that a time-correlated single photon counting (TCSPC) instrumentation was used. Therefore the arguments made in the comment are not applicable to the noise model reported by Liu et al. As reported in the literature (Lakowicz 2006 Principles of Fluorescence Spectroscopy (New York: Springer)), while in the TCSPC the experimental noise can be estimated from Poisson statistics, such an assumption is not valid for pulse-sampling (transient recording) techniques. To further clarify this aspect, we present here a comprehensive noise model describing the signal and noise propagation of the pulse sampling time-resolved fluorescence detection. Experimental data recorded in various conditions are analyzed as a case study to demonstrate the noise model of our instrumental system. In addition, regarding the statement of correcting equation (3) in Liu et al (2012 Phys. Med. Biol. 57 843-65), the notation of discrete time Laguerre function in the original publication was clear and consistent with literature conventions (Marmarelis 1993 Ann. Biomed. Eng. 21 573-89, Westwick and Kearney 2003 Identification of Nonlinear Physiological Systems (Hoboken, NJ: Wiley)). Thus, it does not require revision.

  20. Reply to Comment: ‘A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-square deconvolution with Laguerre expansion’

    NASA Astrophysics Data System (ADS)

    Ma, Dinglong; Liu, Jing; Qi, Jinyi; Marcu, Laura

    2017-02-01

    In this response we underscore that the instrumentation described in the original publication (Liu et al 2012 Phys. Med. Biol. 57 843-65) was based on pulse-sampling technique, while the comment by Zhang et al is based on the assumption that a time-correlated single photon counting (TCSPC) instrumentation was used. Therefore the arguments made in the comment are not applicable to the noise model reported by Liu et al. As reported in the literature (Lakowicz 2006 Principles of Fluorescence Spectroscopy (New York: Springer)), while in the TCSPC the experimental noise can be estimated from Poisson statistics, such an assumption is not valid for pulse-sampling (transient recording) techniques. To further clarify this aspect, we present here a comprehensive noise model describing the signal and noise propagation of the pulse sampling time-resolved fluorescence detection. Experimental data recorded in various conditions are analyzed as a case study to demonstrate the noise model of our instrumental system. In addition, regarding the statement of correcting equation (3) in Liu et al (2012 Phys. Med. Biol. 57 843-65), the notation of discrete time Laguerre function in the original publication was clear and consistent with literature conventions (Marmarelis 1993 Ann. Biomed. Eng. 21 573-89, Westwick and Kearney 2003 Identification of Nonlinear Physiological Systems (Hoboken, NJ: Wiley)). Thus, it does not require revision.

  1. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  2. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma.

    PubMed

    Sharma, A; Misra, S; Mishra, S K; Kourakis, I

    2013-06-01

    Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.

  3. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Misra, S.; Mishra, S. K.; Kourakis, I.

    2013-06-01

    Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.

  4. Nonphasematched broadband THz amplification and reshaping in a dispersive chi(3) medium.

    PubMed

    Koys, Martin; Noskovicova, Eva; Velic, Dusan; Lorenc, Dusan

    2017-06-12

    We theoretically investigate non-phasematched broadband THz amplification in dispersive chi(3) media. A short 100 fs pump pulse is interacting with a temporally matched second harmonic pulse and a weak THz signal through the four wave mixing process and a significant broadband THz amplification and reshaping is observed. The pulse evolution dynamics is explored by numerically solving a set of generalized Nonlinear Schroedinger equations. The influence of incident pulse chirp, pulse duration and the role of wavelength, THz seed frequency and losses are evaluated separately. It is found that a careful choice of incident parameters can provide a broadband THz output and/or a significant increase of THz peak power.

  5. Carrier-Envelope Phase Effect on Atomic Excitation by Few-Cycle rf Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hebin; Welch, George R.; Sautenkov, Vladimir A.

    2010-03-12

    We present an experimental and theoretical study of the carrier-envelope phase effects on population transfer between two bound atomic states interacting with intense ultrashort pulses. Radio frequency pulses are used to transfer population among the ground state hyperfine levels in rubidium atoms. These pulses are only a few cycles in duration and have Rabi frequencies of the order of the carrier frequency. The phase difference between the carrier and the envelope of the pulses has a significant effect on the excitation of atomic coherence and population transfer. We provide a theoretical description of this phenomenon using density matrix equations. Wemore » discuss the implications and possible applications of our results.« less

  6. On gravitational chirality as the genesis of astrophysical jets

    NASA Astrophysics Data System (ADS)

    Tucker, R. W.; Walton, T. J.

    2017-02-01

    It has been suggested that single and double jets observed emanating from certain astrophysical objects may have a purely gravitational origin. We discuss new classes of plane-fronted and pulsed gravitational wave solutions to the equation for perturbations of Ricci-flat spacetimes around Minkowski metrics, as models for the genesis of such phenomena. These solutions are classified in terms of their chirality and generate a family of non-stationary spacetime metrics. Particular members of these families are used as backgrounds in analysing time-like solutions to the geodesic equation for test particles. They are found numerically to exhibit both single and double jet-like features with dimensionless aspect ratios suggesting that it may be profitable to include such backgrounds in simulations of astrophysical jet dynamics from rotating accretion discs involving electromagnetic fields.

  7. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 < α , β ≤ 2 } based on the fractional derivative, has not been obtained, where α and β are time and space derivative orders. It is essential to derive a general PFG signal attenuation expression including the FGPW effect for PFG anisotropic anomalous diffusion research. In this paper, two recently developed modified-Bloch equations, the fractal differential modified-Bloch equation and the fractional integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  8. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    DOE PAGES

    Seyler, C. E.; Martin, M. R.

    2011-01-14

    In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less

  9. Energy relaxation of intense laser pulse-produced plasmas

    NASA Astrophysics Data System (ADS)

    Shihab, M.; Abou-Koura, G. H.; El-Siragy, N. M.

    2016-05-01

    We describe a collisional radiative model (CRE) of homogeneously expanded nickel plasmas in vacuum. The CRE model is coupled with two separate electron and ion temperature magneto-hydrodynamic equations. On the output, the model provides the temporal variation of the electron temperature, ion temperature, and average charge state. We demonstrate the effect of three-body recombination ({∝}N_e T^{-9/2}_e) on plasma parameters, as it changes the time dependence of electron temperature from t^{-2} to t^{-1} and exhibits a pronounced effect leading to a freezing feature in the average charge state. In addition, the effect of the three-body recombination on the warm up of ions and delaying the equilibration is addressed.

  10. Evolution of streamer groups in nonthermal plasma

    NASA Astrophysics Data System (ADS)

    Okubo, M.

    2015-12-01

    Nonthermal plasmas (NTPs) induced by atmospheric nanosecond pulsed corona discharge have been studied for controlling pollution from combustors, such as boilers, incinerators, and diesel engines. In high-speed short-width high-voltage pulsed corona discharge-induced plasmas, primary streamer evolution is followed by secondary streamer evolution. Though this phenomenon is known experimentally, the details of the structures of the streamers and their evolution mechanisms have not been fully clarified. In this letter, we perform quasi two-dimensional numerical analysis of nonequilibrium NTP induced by a nanosecond positive pulsed corona discharge. The continuum fluid equations for two-temperature nonequilibrium NTP are used as governing equations. In this study, 197 gas phase reactions for 25 chemical species and 21 surface reactions on the inner glass wall surface are considered in an air plasma under atmospheric pressure. The simulated behavior of the streamer groups agrees with experimental observations. Soon after the voltage increases on the reactor, primary streamers are formed, which may transit the complete gap, disappearing near the peak voltage. Next, second streamers appear, disappearing at the end of the applied voltage pulse. The streamer wavelength and the distance between the streamers in the axial direction are determined. Moreover, ozone generation is shown to be more significant in the secondary streamer. This simulation will allow better predictions for nanosecond positive pulsed plasma systems.

  11. A Persistent Feature of Multiple Scattering of Waves in the Time-Domain: A Tutorial

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Mishchenko, Michael I.

    2015-01-01

    The equations for frequency-domain multiple scattering are derived for a scalar or electromagnetic plane wave incident on a collection of particles at known positions, and in the time-domain for a plane wave pulse incident on the same collection of particles. The calculation is carried out for five different combinations of wave types and particle types of increasing geometrical complexity. The results are used to illustrate and discuss a number of physical and mathematical characteristics of multiple scattering in the frequency- and time-domains. We argue that frequency-domain multiple scattering is a purely mathematical construct since there is no temporal sequencing information in the frequency-domain equations and since the multi-particle path information can be dispelled by writing the equations in another mathematical form. However, multiple scattering becomes a definite physical phenomenon in the time-domain when the collection of particles is illuminated by an appropriately short localized pulse.

  12. I-V Characteristics of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen

    1999-01-01

    There are many possible uses for ferroelectric field effect transistors.To understand their application, a fundamental knowledge of their basic characteristics must first be found. In this research, the current and voltage characteristics of a field effect transistor are described. The effective gate capacitance and charge are derived from experimental data on an actual FFET. The general equation for a MOSFET is used to derive the internal characteristics of the transistor: This equation is modified slightly to describe the FFET characteristics. Experimental data derived from a Radiant Technologies FFET is used to calculate the internal transistor characteristics using fundamental MOSFET equations. The drain current was measured under several different gate and drain voltages and with different initial polarizations on the ferroelectric material in the transistor. Two different polarization conditions were used. One with the gate ferroelectric material polarized with a +9.0 volt write pulse and one with a -9.0 volt pulse.

  13. Soliton, rational, and periodic solutions for the infinite hierarchy of defocusing nonlinear Schrödinger equations.

    PubMed

    Ankiewicz, Adrian

    2016-07-01

    Analysis of short-pulse propagation in positive dispersion media, e.g., in optical fibers and in shallow water, requires assorted high-order derivative terms. We present an infinite-order "dark" hierarchy of equations, starting from the basic defocusing nonlinear Schrödinger equation. We present generalized soliton solutions, plane-wave solutions, and periodic solutions of all orders. We find that "even"-order equations in the set affect phase and "stretching factors" in the solutions, while "odd"-order equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are complex. There are various applications in optics and water waves.

  14. Quantum coherent control of the photoelectron angular distribution in bichromatic-field ionization of atomic neon

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Staroselskaya, E. I.; Douguet, N.; Bartschat, K.

    2018-01-01

    We investigate the coherent control of the photoelectron angular distribution in bichromatic atomic ionization. Neon is selected as target since it is one of the most popular systems in current gas-phase experiments with free-electron lasers (FELSs). In particular, we tackle practical questions, such as the role of the fine-structure splitting, the pulse length, and the intensity. Time-dependent and stationary perturbation theory are employed, and we also solve the time-dependent Schrödinger equation in a single-active electron model. We consider neon ionized by a FEL pulse whose fundamental frequency is in resonance with either 2 p -3 s or 2 p -4 s excitation. The contribution of the nonresonant two-photon process and its potential constructive or destructive role for quantum coherent control is investigated.

  15. Adsorbate hopping via vibrational-mode coupling induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ueba, H.; Hayashi, M.; Paulsson, M.; Persson, B. N. J.

    2008-09-01

    We study the heat transfer from femtosecond laser-heated hot electrons in a metal to adsorbates in the presence of vibrational-mode coupling. The theory is successfully applied to the experimental result of atomic oxygen hopping on a vicinal Pt(111) surface. The effective friction coupling between hot electrons and the vibrational mode relevant to the hopping motion depends on the transient temperature of the partner mode excited by hot electrons. The calculated two-pulse correlation and fluence dependence of the hopping probability reproduce the experimental results, which were previously analyzed using the hot-electron temperature (Te) -dependent friction ηa(Te) in a conventional heat transfer equation. A possible elementary process behind such a hypothetic modeling using ηa(Te) is discussed in terms of an indirect heating of the vibrational mode for hopping at the surface.

  16. Healing of damaged metal by a pulsed high-energy electromagnetic field

    NASA Astrophysics Data System (ADS)

    Kukudzhanov, K. V.; Levitin, A. L.

    2018-04-01

    The processes of defect (intergranular micro-cracks) transformation are investigated for metal samples in a high-energy short-pulsed electromagnetic field. This investigation is based on a numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elastic-plastic material with defects. The model takes into account the melting and evaporation of the metal and the dependence of its physical and mechanical properties on the temperature. The system of equations is solved numerically by finite element method with an adaptive mesh using the arbitrary Euler–Lagrange method. The calculations show that the welding of the crack and the healing of micro-defects under treatment by short pulses of the current takes place. For the macroscopic description of the healing process, the healing and damage parameters of the material are introduced. The healing of micro-cracks improves the material healing parameter and reduces its damage. The micro-crack shapes practically do not affect the time-dependence of the healing and damage under the treatment by the current pulses. These changes are affected only by the value of the initial damage of the material and the initial length of the micro-crack. The time-dependence of the healing and the damage is practically the same for all different shapes of micro-defects, provided that the initial lengths of micro-cracks and the initial damages are the same for these different shapes of defects.

  17. Energy deposition dynamics of femtosecond pulses in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minardi, Stefano, E-mail: stefano@stefanominardi.eu; Pertsch, Thomas; Milián, Carles

    2014-12-01

    We exploit inverse Raman scattering and solvated electron absorption to perform a quantitative characterization of the energy loss and ionization dynamics in water with tightly focused near-infrared femtosecond pulses. A comparison between experimental data and numerical simulations suggests that the ionization energy of water is 8 eV, rather than the commonly used value of 6.5 eV. We also introduce an equation for the Raman gain valid for ultra-short pulses that validates our experimental procedure.

  18. Research and application of surface heat treatment for multipulse laser ablation of materials

    NASA Astrophysics Data System (ADS)

    Cai, Song; Chen, Genyu; Zhou, Cong

    2015-11-01

    This study analysed a laser ablation platform and built heat transfer equations for multipulse laser ablation of materials. The equations include three parts: laser emission after the material melt and gasification; end of laser emission after the material melts and there is the presence of a super-hot layer and solid-phase heat transfer changes during material ablation. For each of the three parts, the effects of evaporation, plasma shielding and energy accumulation under the pulse interval were considered. The equations are reasonable, and all the required parameters are only related to the laser parameters and material properties, allowing the model to have a certain versatility and practicability. The model was applied for numerical simulation of the heat transfer characteristics in the multipulse laser ablation of bronze and diamond. Next, experiments were conducted to analyse the topography of a bronze-bonded diamond grinding wheel after multipulse laser ablation. The theoretical analysis and experimental results showed that multipulse laser can merge the truing and dressing on a bronze-bonded diamond grinding wheel. This study provides theoretical guidance for optimising the process parameters in the laser ablation of a bronze-bonded diamond grinding wheel. A comparative analysis showed that the numerical solution to the model is in good agreement with the experimental data, thus verifying the correctness and feasibility of the heat transfer model.

  19. Four possible types of pulses for self-induced transparency

    NASA Technical Reports Server (NTRS)

    Lee, C. T.

    1974-01-01

    Four types of steady-state solutions were derived for the coupled Maxwell-Bloch equations which describe highly intense pulse propagation in a resonant medium. Essential in the derivation procedures is the replacement of the usual slowly varying envelope approximation with an alternative procedure, the omission of possible nonresonant losses, and the assumption that the relaxation times are infinite.

  20. Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER

    PubMed Central

    Salvadori, Enrico; Breeze, Jonathan D.; Tan, Ke-Jie; Sathian, Juna; Richards, Benjamin; Fung, Mei Wai; Wolfowicz, Gary; Oxborrow, Mark; Alford, Neil McN.; Kay, Christopher W. M.

    2017-01-01

    The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule. PMID:28169331

  1. Effect of the target power density on high-power impulse magnetron sputtering of copper

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš

    2012-04-01

    We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.

  2. Weak-field multiphoton femtosecond coherent control in the single-cycle regime.

    PubMed

    Chuntonov, Lev; Fleischer, Avner; Amitay, Zohar

    2011-03-28

    Weak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons. The intra-group interference is controlled by the relative spectral phase of the different frequency components of the pulse, while the inter-group interference is controlled jointly by the CEP and the relative spectral phase. Specifically, non-resonant two- and three-photon excitation is studied in a simple model system within the perturbative frequency-domain framework. The developed intuition is then applied to weak-field multiphoton excitation of atomic cesium (Cs), where the simplified model is verified by non-perturbative numerical solution of the time-dependent Schrödinger equation. We expect this work to serve as a basis for a new line of femtosecond coherent control experiments.

  3. Simultaneous π / 2 rotation of two spin species of different gyromagnetic ratios

    DOE PAGES

    Chu, Ping -Han; Peng, Jen -Chieh

    2015-06-05

    Here, we examine the characteristics of the π/2 pulse for simultaneously rotating two spin species of different gyromagnetic ratios with the same sign. For a π/2 pulse using a rotating magnetic field, we derive an equation relating the frequency and strength of the pulse to the gyromagnetic ratios of the two particles and the strength of the constant holding field. For a π/2 pulse using a linear oscillatory magnetic field, we obtain the solutions numerically, and compare them with the solutions for the rotating π/2 pulse. Application of this analysis to the specific case of rotating neutrons and 3He atomsmore » simultaneously with a π/2 pulse, proposed for a neutron electric dipole moment experiment, is also presented.« less

  4. Stochastic stimulated electronic x-ray Raman spectroscopy

    PubMed Central

    Kimberg, Victor; Rohringer, Nina

    2016-01-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s→π* transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  5. Coexistence of a self-induced transparency soliton and a Bragg soliton.

    PubMed

    Tseng, Hong-Yih; Chi, Sien

    2002-11-01

    We theoretically show that a self-induced transparency (SIT) soliton and a Bragg soliton can coexist in a nonlinear photonic band gap (PBG) medium doped uniformly with inhomogeneous-broadening two-level atoms. The Maxwell-Bloch equations for the pulse propagating through such a uniformly doped PBG structure are derived first and further reduced to an effective nonlinear Schrödinger equation. This model describes an equivalent physical mechanism for a Bragg-soliton propagation resulting from the effective quadratic dispersion balancing with the effective third-order nonlinearity. Because the resonant atoms are taken into account, the original band gap can be shifted both by the dopants and the instantaneous nonlinearity response originating from an intense optical pulse. As a result, even if a SIT soliton with its central frequency deep inside the original forbidden band, it still can propagate through the resonant PBG medium as long as this SIT soliton satisfies the effective Bragg-soliton propagation. An approximate soliton solution describing such coexistence is found. We also show that the pulse width and group velocity of this soliton solution can be uniquely determined for given material parameters, atomic transition frequency, and input central frequency of the soliton. The numerical examples of the SIT soliton in a one-dimensional As2S3-based PBG structure doped uniformly with Lorentzian line-shape resonant atoms are shown. It is found that a SIT soliton with approximately 100-ps width in such a resonant PBG structure can travel with the velocity being two orders of magnitude slower than the light speed in an unprocessed host medium.

  6. Laser produced nanocavities in silica and sapphire: a parametric study

    NASA Astrophysics Data System (ADS)

    Hallo, L.; Bourgeade, A.; Travaillé, G.; Tikhonchuk, V. T.; Nkonga, B.; Breil, J.

    2008-05-01

    We present a model, that describes a sub-micron cavity formation in a transparent dielectric under a tight focusing of a ultra-short laser pulse. The model solves the full set of Maxwell's equations in the three-dimensional geometry along with non-linear propagation phenomenons. This allows us to initialize hydrodynamic simulations of the sub-micron cavity formation. Cavity characteristics, which depend on 3D energy release and non linear effects, have been investigated and compared with experimental results. For this work, we want to deeply acknowledge the numerical support provided by the CEA Centre de Calcul Recherche et Technologie, whose help guaranteed the achievement of this study.

  7. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    NASA Astrophysics Data System (ADS)

    Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina

    2016-01-01

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  8. Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform.

    PubMed

    Klaseboer, Evert; Sepehrirahnama, Shahrokh; Chan, Derek Y C

    2017-08-01

    The general space-time evolution of the scattering of an incident acoustic plane wave pulse by an arbitrary configuration of targets is treated by employing a recently developed non-singular boundary integral method to solve the Helmholtz equation in the frequency domain from which the space-time solution of the wave equation is obtained using the fast Fourier transform. The non-singular boundary integral solution can enforce the radiation boundary condition at infinity exactly and can account for multiple scattering effects at all spacings between scatterers without adverse effects on the numerical precision. More generally, the absence of singular kernels in the non-singular integral equation confers high numerical stability and precision for smaller numbers of degrees of freedom. The use of fast Fourier transform to obtain the time dependence is not constrained to discrete time steps and is particularly efficient for studying the response to different incident pulses by the same configuration of scatterers. The precision that can be attained using a smaller number of Fourier components is also quantified.

  9. Enhancing Understanding of Magnetized High Energy Density Plasmas from Solid Liner Implosions Using Fluid Modeling with Kinetic Closures

    NASA Astrophysics Data System (ADS)

    Masti, Robert; Srinivasan, Bhuvana; King, Jacob; Stoltz, Peter; Hansen, David; Held, Eric

    2017-10-01

    Recent results from experiments and simulations of magnetically driven pulsed power liners have explored the role of early-time electrothermal instability in the evolution of the MRT (magneto-Rayleigh-Taylor) instability. Understanding the development of these instabilities can lead to potential stabilization mechanisms; thereby providing a significant role in the success of fusion concepts such as MagLIF (Magnetized Liner Inertial Fusion). For MagLIF the MRT instability is the most detrimental instability toward achieving fusion energy production. Experiments of high-energy density plasmas from wire-array implosions have shown the requirement for more advanced physics modeling than that of ideal magnetohydrodynamics. The overall focus of this project is on using a multi-fluid extended-MHD model with kinetic closures for thermal conductivity, resistivity, and viscosity. The extended-MHD model has been updated to include the SESAME equation-of-state tables and numerical benchmarks with this implementation will be presented. Simulations of MRT growth and evolution for MagLIF-relevant parameters will be presented using this extended-MHD model with the SESAME equation-of-state tables. This work is supported by the Department of Energy Office of Science under Grant Number DE-SC0016515.

  10. Controlled exciton transfer between quantum dots with acoustic phonons taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovinski, P. A., E-mail: golovinski@bk.ru

    2015-09-15

    A system of excitons in two quantum dots coupled by the dipole–dipole interaction is investigated. The excitation transfer process controlled by the optical Stark effect at nonresonant frequencies is considered and the effect of the interaction between excitons and acoustic phonons in a medium on this process is taken into account. The system evolution is described using quantum Heisenberg equations. A truncated set of equations is obtained and the transfer dynamics is numerically simulated. High-efficiency picosecond switching of the excitation transfer by a laser pulse with a rectangular envelope is demonstrated. The dependence of picosecond switching on the quantum-dot parametersmore » and optical-pulse length is presented.« less

  11. Saturation current and collection efficiency for ionization chambers in pulsed beams.

    PubMed

    DeBlois, F; Zankowski, C; Podgorsak, E B

    2000-05-01

    Saturation currents and collection efficiencies in ionization chambers exposed to pulsed megavoltage photon and electron beams are determined assuming a linear relationship between 1/I and 1/V in the extreme near-saturation region, with I and V the chamber current and polarizing voltage, respectively. Careful measurements of chamber current against polarizing voltage in the extreme near-saturation region reveal a current rising faster than that predicted by the linear relationship. This excess current combined with conventional "two-voltage" technique for determination of collection efficiency may result in an up to 0.7% overestimate of the saturation current for standard radiation field sizes of 10X10 cm2. The measured excess current is attributed to charge multiplication in the chamber air volume and to radiation-induced conductivity in the stem of the chamber (stem effect). These effects may be accounted for by an exponential term used in conjunction with Boag's equation for collection efficiency in pulsed beams. The semiempirical model follows the experimental data well and accounts for both the charge recombination as well as for the charge multiplication effects and the chamber stem effect.

  12. Accumulation effects in modulation spectroscopy with high-repetition-rate pulses: Recursive solution of optical Bloch equations

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir Al.; Pullerits, Tõnu

    2017-10-01

    Application of the phase-modulated pulsed light for advance spectroscopic measurements is the area of growing interest. The phase modulation of the light causes modulation of the signal. Separation of the spectral components of the modulations allows to distinguish the contributions of various interaction pathways. The lasers with high repetition rate used in such experiments can lead to appearance of the accumulation effects, which become especially pronounced in systems with long-living excited states. Recently it was shown that such accumulation effects can be used to evaluate parameters of the dynamical processes in the material. In this work we demonstrate that the accumulation effects are also important in the quantum characteristics measurements provided by modulation spectroscopy. In particular, we consider a model of quantum two-level system driven by a train of phase-modulated light pulses, organized in analogy with the two-dimensional spectroscopy experiments. We evaluate the harmonics' amplitudes in the fluorescent signal and calculate corrections appearing from the accumulation effects. We show that the corrections can be significant and have to be taken into account at analysis of experimental data.

  13. Nonlinear scattering of ultrashort laser pulses on two-level system

    NASA Astrophysics Data System (ADS)

    Astapenko, Valery A.; Sakhno, Sergey V.

    2015-05-01

    The presentation is devoted to the theoretical investigation of nonlinear scattering of ultrashort electromagnetic pulses (USP) on two-level quantum system. We consider the scattering of several types of USP, namely, so called corrected Gaussian pulse (CGP) and cosine wavelet pulse. Such pulses have no constant component in their spectrum in contrast with traditional Gaussian pulse. It should be noted that the presence of constant component in the limit of ultrashort pulse durations leads to unphysical results. The main purpose of the present work is the investigation of the change of pulse temporal shape after scattering as a function of initial phase at different distances from the target. Numerical calculations are based on the solution of Bloch equations and expression for scattering field strength via dipole moment of two-level system exposed by the action of incident USP. In our calculation we also account for the influence of refracting index of the air on electric field strength in the pulse after scattering.

  14. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Xiong, Run

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs fluxmore » splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.« less

  15. Nonlinear and non-Hermitian optical systems applied to the development of filters and optical sensors

    NASA Astrophysics Data System (ADS)

    Amaro de Faria Júnior, A. C.

    2015-09-01

    In this work we present a method of investigation of nonlinear optical beams generated from non-Hermitian optical systems1 . This method can be applied in the development of optical filters and optical sensors to process, analyze and choose the passband of the propagation modes of an optical pulse from an non-Hermitian optical system. Non-Hermitian optical systems can be used to develop optical fiber sensors that suppress certain propagation modes of optical pulses that eventually behave as quantum noise. Such systems are described by the Nonlinear Schrödinger-like Equation with Parity-Time (PT) Symmetric Optical Potentials. There are optical fiber sensors that due to high laser intensity and frequency can produce quantum noise, such as Raman and Brillouin scattering. However, the optical fiber, for example, can be designed so that its geometry suppress certain propagation modes of the beam. We apply some results of non- Hermitian optical systems with PT symmetry to simulate optical lattice by a appropriate potential function, which among other applications, can naturally suppress certain propagation modes of an optical beam propagating through a waveguide. In other words, the optical system is modeled by a potential function in the Nonlinear Schrödinger-like Equation that one relates with the geometric aspects of the wave guides and with the optical beam interacting with the waveguide material. The paper is organized as follows: sections 1 and 2 present a brief description about nonlinear optical systems and non-Hermitian optical systems with PT symmetry. Section 3 presents a description of the dynamics of nonlinear optical pulses propagating through optical networks described by a optical potential non-Hermitian. Sections 4 and 5 present a general description of this non-Hermitian optical systems and how to get them from a more general model. Section 6 presents some conclusions and comment and the final section presents the references. Begin the abstract two lines below author names and addresses.

  16. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotz, M; Karsch, L; Pawelke, J

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fitmore » of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future investigations. This project was funded by the German ministry of research and education (BMBF) under grant number: 03Z1N511 and by the state of Saxony under grant number: B 209.« less

  17. Small signal analysis of four-wave mixing in InAs/GaAs quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Ma, Shaozhen; Chen, Zhe; Dutta, Niloy K.

    2009-02-01

    A model to study four-wave mixing (FWM) wavelength conversion in InAs-GaAs quantum-dot semiconductor optical amplifier is proposed. Rate equations involving two QD states are solved to simulate the carrier density modulation in the system, results show that the existence of QD excited state contributes to the ultra fast recover time for single pulse response by serving as a carrier reservoir for the QD ground state, its speed limitations are also studied. Nondegenerate four-wave mixing process with small intensity modulation probe signal injected is simulated using this model, a set of coupled wave equations describing the evolution of all frequency components in the active region of QD-SOA are derived and solved numerically. Results show that better FWM conversion efficiency can be obtained compared with the regular bulk SOA, and the four-wave mixing bandwidth can exceed 1.5 THz when the detuning between pump and probe lights is 0.5 nm.

  18. Underwater spark discharge with long transmission line for cleaning horizontal wells

    NASA Astrophysics Data System (ADS)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, C. Y.

    2017-06-01

    A transmission line is discussed for application in an underwater spark-discharge technique in the cleaning of a horizontal well by incorporating a power-transmission model into the simulation. The pulsed-spark-discharge technique has been proposed for clogged-well rehabilitation, because it removes incrustations that are attached to well screens by using strong pressure waves that are generated by the rapid expansion of a spark channel. To apply the pulsed-spark-discharge technique to the cleaning of horizontal wells, the coaxial cable between the pulsed power supply and the spark gap as a load needs to be extended to a few hundred meters. Prior to field application, pulsed-spark-discharge experiments were conducted and the role of the transmission line was examined using an improved simulation model. In the model, a non-linear interaction of the spark channel and the capacitor bank is described by the pulse-forming action of the coaxial cable. Based on the accurate physical properties of the water plasma, such as the equation of state and electrical conductivity within the region of interest, the amount of energy contributed to the development of a shock wave was evaluated. The simulation shows that if the initial conditions of the spark channel are the same, no further reduction in strength of the pressure wave occurs, even if the cable length is increased above 50 m. Hence, the degraded peak pressure that was observed in the experiments using the longer cable is attributed to a change in the initial condition of the spark channel. The parametric study suggests that the low initial charging voltage, the high ambient water pressure, and the long cable length yield the low initial spark-channel density, which results in a reduced peak pressure. The simulation of line charging is presented to discuss the principle of disturbing the pre-breakdown process by an extended cable.

  19. Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.

  20. Optimization of Pulse Sequences in MRI Scheme

    NASA Astrophysics Data System (ADS)

    Roy, Subhankar; Hu, Jianping; Ummal Momeen, M.

    2018-04-01

    Magnetic resonance imaging (MRI) has a wide range of applications towards imaging the human body. In this work we have solved the Bloch equations for different magnetic field gradients along the transverse direction. We have modified the magnetic field components based on the relaxation terms and solved the field gradient as well as the field components for both off –pulse and on -pulse configurations. In particular we focus on different pulse sequences and optimize them to realize the best possible output. We have analyzed the field components along transverse direction because the rotation of the object to form the image by emitting signal is along the xy plane.

  1. High-order harmonic generation by atoms in a few-cycle laser pulse: Carrier-envelope phase and many-electron effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, M. V.; Manakov, N. L.; Silaev, A. A.

    2011-02-15

    Analytic formulas describing high-order harmonic generation (HHG) by atoms in a short laser pulse are obtained quantum mechanically in the tunneling limit. These results provide analytic expressions of the three-step HHG scenario, as well as of the returning electron wave packet, in a few-cycle pulse. Our results agree well with those of numerical solutions of the time-dependent Schroedinger equation for the H atom, while for Xe they predict many-electron atomic dynamics features in few-cycle HHG spectra and significant dependence of these features on the carrier-envelope phase of a laser pulse.

  2. A low-order model for long-range infrasound propagation in random atmospheric waveguides

    NASA Astrophysics Data System (ADS)

    Millet, C.; Lott, F.

    2014-12-01

    In numerical modeling of long-range infrasound propagation in the atmosphere, the wind and temperature profiles are usually obtained as a result of matching atmospheric models to empirical data. The atmospheric models are classically obtained from operational numerical weather prediction centers (NOAA Global Forecast System or ECMWF Integrated Forecast system) as well as atmospheric climate reanalysis activities and thus, do not explicitly resolve atmospheric gravity waves (GWs). The GWs are generally too small to be represented in Global Circulation Models, and their effects on the resolved scales need to be parameterized in order to account for fine-scale atmospheric inhomogeneities (for length scales less than 100 km). In the present approach, the sound speed profiles are considered as random functions, obtained by superimposing a stochastic GW field on the ECMWF reanalysis ERA-Interim. The spectral domain is binned by a large number of monochromatic GWs, and the breaking of each GW is treated independently from the others. The wave equation is solved using a reduced-order model, starting from the classical normal mode technique. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime (for which the coupling between the wave and the medium is weak), with a fixed number of propagating modes that can be obtained by rearranging the eigenvalues by decreasing Sobol indices. The most important feature of the stochastic approach lies in the fact that the model order (i.e. the number of relevant eigenvalues) can be computed to satisfy a given statistical accuracy whatever the frequency. As the low-order model preserves the overall structure of waveforms under sufficiently small perturbations of the profile, it can be applied to sensitivity analysis and uncertainty quantification. The gain in CPU cost provided by the low-order model is essential for extracting statistical information from simulations. The statistics of a transmitted broadband pulse are computed by decomposing the original pulse into a sum of modal pulses that propagate with different phase speeds and can be described by a front pulse stabilization theory. The method is illustrated on two large-scale infrasound calibration experiments, that were conducted at the Sayarim Military Range, Israel, in 2009 and 2011.

  3. Computation of electron transport and relaxation properties in gases based on improved multi-term approximation of Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Cai, X. J.; Wang, X. X.; Zou, X. B.; Lu, Z. W.

    2018-01-01

    An understanding of electron kinetics is of importance in various applications of low temperature plasmas. We employ a series of model and real gases to investigate electron transport and relaxation properties based on improved multi-term approximation of the Boltzmann equation. First, a comparison of different methods to calculate the interaction integrals has been carried out; the effects of free parameters, such as vmax, lmax, and the arbitrary temperature Tb, on the convergence of electron transport coefficients are analyzed. Then, the modified attachment model of Ness et al. and SF6 are considered to investigate the effect of attachment on the electron transport properties. The deficiency of the pulsed Townsend technique to measure the electron transport and reaction coefficients in electronegative gases is highlighted when the reduced electric field is small. In order to investigate the effect of external magnetic field on the electron transport properties, Ar plasmas in high power impulse sputtering devices are considered. In the end, the electron relaxation properties of the Reid model under the influence of electric and magnetic fields are demonstrated.

  4. Analysis of laser energy characteristics of laser guided weapons based on the hardware-in-the-loop simulation system

    NASA Astrophysics Data System (ADS)

    Zhu, Yawen; Cui, Xiaohong; Wang, Qianqian; Tong, Qiujie; Cui, Xutai; Li, Chenyu; Zhang, Le; Peng, Zhong

    2016-11-01

    The hardware-in-the-loop simulation system, which provides a precise, controllable and repeatable test conditions, is an important part of the development of the semi-active laser (SAL) guided weapons. In this paper, laser energy chain characteristics were studied, which provides a theoretical foundation for the SAL guidance technology and the hardware-in-the-loop simulation system. Firstly, a simplified equation was proposed to adjust the radar equation according to the principles of the hardware-in-the-loop simulation system. Secondly, a theoretical model and calculation method were given about the energy chain characteristics based on the hardware-in-the-loop simulation system. We then studied the reflection characteristics of target and the distance between the missile and target with major factors such as the weather factors. Finally, the accuracy of modeling was verified by experiment as the values measured experimentally generally follow the theoretical results from the model. And experimental results revealed that ratio of attenuation of the laser energy exhibited a non-linear change vs. pulse number, which were in accord with the actual condition.

  5. Slow and fast light via SBS in optical fibers for short pulses and broadband pump

    NASA Astrophysics Data System (ADS)

    Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi

    2006-12-01

    Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.

  6. Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Liangyou; Tan Fang; Gong Qihuang

    2009-07-15

    The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger themore » number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.« less

  7. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, L.-Y.; Starace, Anthony F.

    2007-10-15

    We analyze carrier-envelope phase (CEP) effects on electron wave-packet momentum and energy spectra produced by one or two few-cycle attosecond xuv pulses. The few-cycle attosecond pulses are assumed to have arbitrary phases. We predict CEP effects on ionized electron wave-packet momentum distributions produced by attosecond pulses having durations comparable to those obtained by Sansone et al. [Science 314, 443 (2006)]. The onset of significant CEP effects is predicted to occur for attosecond pulse field strengths close to those possible with current experimental capabilities. Our results are based on single-active-electron solutions of the three-dimensional, time-dependent Schroedinger equation including atomic potentials appropriatemore » for the H and He atoms.« less

  8. Plasma-chemical simulation of negative corona near the inception voltage

    NASA Astrophysics Data System (ADS)

    Pontiga, Francisco; Duran-Olivencia, Francisco J.; Castellanos, Antonio

    2013-09-01

    The spatiotemporal development of Trichel pulses in oxygen between a spherical electrode and a grounded plane has been simulated using a fluid approximation that incorporates the plasma chemistry of the electrical discharge. Elementary plasma processes, such as ionization, electron attachment, electron detachment, recombination between ions and chemical reactions between neutral species, are all included in a chemical model consisting of 55 reactions between 8 different species (electrons, O2+,O2-,O3-,O-, O2, O, O3). Secondary emission at the cathode by the impact of positive ions and photons is also considered. The spatial distribution of species is computed in three dimensions (2D-axysimmetrical) by solving Poisson's equation for the electric field and the continuity equations for the species, with the inclusion of the chemical gain/loss rate due to the particle interaction. The results of the simulation reveal the interplay between the different negative ions during the development of every Trichel pulse, and the rate of production of atomic oxygen and ozone by the corona discharge. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.

  9. Photoinduced transition to charge-ordered phases from dynamical localization in the metallic phase of α -(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Oya, Koudai; Takahashi, Akira

    2018-03-01

    From theory, we investigate charge localization induced by higher-frequency off-resonance light-pulse excitation in the metallic phase of α -(BEDT-TTF) 2I3 by numerically solving the time-dependent Schrödinger equation in the quarter-filled extended Hubbard model for the material. Around e a A(max )=1 , where e a A(max ) is the maximum amplitude of the dimensionless vector potential of the pump pulse, the charge distribution is significantly changed by photoexcitation, and the light-pulse-induced collective charge oscillations continue after photoexcitation. Furthermore, the charge dynamics depend strongly on the polarization direction of the pump pulse. These results are consistent with experiment. The magnitudes of the effective transfer integrals are reduced by strong photoexcitation, and this precursory phenomenon for dynamical localization is mainly driven by a photoinduced change in the ratio of the effective transfer integrals between the two strongest bonds. For e a A(max )≳2 , the photoinduced transition to the charge-ordered state, which can be regarded as a light-dressed state, occurs because of dynamical localization. Furthermore, the type of photogenerated charge-ordered state can be controlled by choosing e a A(max ) and the polarization direction.

  10. Fast surface temperature measurement of Teflon propellant-in-pulsed ablative discharges using HgCdTe photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Antonsen, Erik L.; Burton, Rodney L.; Reed, Garrett A.; Spanjers, Gregory G.

    2006-10-01

    High-speed mercury cadmium telluride photovoltaic detectors, sensitive to infrared emission, are investigated as a means of measuring surface temperature on a microsecond time frame during pulsed ablative discharges with Teflon™ as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity. The detector output voltage is experimentally calibrated against thermocouples embedded in heated Teflon. Experimental calibration is performed with Teflon that has been exposed to ˜200 pulsed discharges and non-plasma-exposed Teflon and is compared to theoretical predictions to analyze emissivity differences. The diagnostic capability is evaluated with measurements of surface temperature from the Teflon propellant of electric micropulsed plasma thrusters. During the pulsed current discharge, there is insufficient information to claim that the surface temperature is accurately measured. However, immediately following the discharge, the postpulse cooling curve is measured. The statistical spread of postpulse surface temperature from shot to shot, most likely due to arc constriction and localization, is investigated to determine an operational envelope for postpulse temperature and mass ablation. This information is useful for determining postpulse ablation contributions to mass loss as well as evaluation of theoretical discharge models currently under development.

  11. Review of Railgun Modeling Techniques: The Computation of Railgun Force and Other Key Factors

    NASA Astrophysics Data System (ADS)

    Eckert, Nathan James

    Currently, railgun force modeling either uses the simple "railgun force equation" or finite element methods. It is proposed here that a middle ground exists that does not require the solution of partial differential equations, is more readily implemented than finite element methods, and is more accurate than the traditional force equation. To develop this method, it is necessary to examine the core railgun factors: power supply mechanisms, the distribution of current in the rails and in the projectile which slides between them (called the armature), the magnetic field created by the current flowing through these rails, the inductance gradient (a key factor in simplifying railgun analysis, referred to as L'), the resultant Lorentz force, and the heating which accompanies this action. Common power supply technologies are investigated, and the shape of their current pulses are modeled. The main causes of current concentration are described, and a rudimentary method for computing current distribution in solid rails and a rectangular armature is shown to have promising accuracy with respect to outside finite element results. The magnetic field is modeled with two methods using the Biot-Savart law, and generally good agreement is obtained with respect to finite element methods (5.8% error on average). To get this agreement, a factor of 2 is added to the original formulation after seeing a reliable offset with FEM results. Three inductance gradient calculations are assessed, and though all agree with FEM results, the Kerrisk method and a regression analysis method developed by Murugan et al. (referred to as the LRM here) perform the best. Six railgun force computation methods are investigated, including the traditional railgun force equation, an equation produced by Waindok and Piekielny, and four methods inspired by the work of Xu et al. Overall, good agreement between the models and outside data is found, but each model's accuracy varies significantly between comparisons. Lastly, an approximation of the temperature profile in railgun rails originally presented by McCorkle and Bahder is replicated. In total, this work describes railgun technology and moderately complex railgun modeling methods, but is inconclusive about the presence of a middle-ground modeling method.

  12. General pulsed-field gradient signal attenuation expression based on a fractional integral modified-Bloch equation

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2018-10-01

    Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).

  13. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity.

    PubMed

    Brette, Romain; Gerstner, Wulfram

    2005-11-01

    We introduce a two-dimensional integrate-and-fire model that combines an exponential spike mechanism with an adaptation equation, based on recent theoretical findings. We describe a systematic method to estimate its parameters with simple electrophysiological protocols (current-clamp injection of pulses and ramps) and apply it to a detailed conductance-based model of a regular spiking neuron. Our simple model predicts correctly the timing of 96% of the spikes (+/-2 ms) of the detailed model in response to injection of noisy synaptic conductances. The model is especially reliable in high-conductance states, typical of cortical activity in vivo, in which intrinsic conductances were found to have a reduced role in shaping spike trains. These results are promising because this simple model has enough expressive power to reproduce qualitatively several electrophysiological classes described in vitro.

  14. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2015-09-01

    The present paper1 analyzes the basic problems arising in the solution of problems of the optimum control of spacecraft (SC) trajectory motion (including the Lyapunov instability of solutions of conjugate equations) using the principle of the maximum. The use of quaternion models of astrodynamics is shown to allow: (1) the elimination of singular points in the differential phase and conjugate equations and in their partial analytical solutions; (2) construction of the first integrals of the new quaternion; (3) a considerable decrease of the dimensions of systems of differential equations of boundary value optimization problems with their simultaneous simplification by using the new quaternion variables related with quaternion constants of motion by rotation transformations; (4) construction of general solutions of differential equations for phase and conjugate variables on the sections of SC passive motion in the simplest and most convenient form, which is important for the solution of optimum pulse SC transfers; (5) the extension of the possibilities of the analytical investigation of differential equations of boundary value problems with the purpose of identifying the basic laws of optimum control and motion of SC; (6) improvement of the computational stability of the solution of boundary value problems; (7) a decrease in the required volume of computation.

  15. Cycles of self-pulsations in a photonic integrated circuit.

    PubMed

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  16. Waveguide coupling in the few-cycle regime

    NASA Astrophysics Data System (ADS)

    Leblond, Hervé; Terniche, Said

    2016-04-01

    We consider the coupling of two optical waveguides in the few-cycle regime. The analysis is performed in the frame of a generalized Kadomtsev-Petviashvili model. A set of two coupled modified Korteweg-de Vries equations is derived, and it is shown that three types of coupling can occur, involving the linear index, the dispersion, or the nonlinearity. The linear nondispersive coupling is investigated numerically, showing the formation of vector solitons. Separate pulses may be trapped together if they have not initially the same location, size, or phase, and even if their initial frequencies differ.

  17. Gasdynamic lasers and photon machines.

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Hertzberg, A.

    1973-01-01

    The basic operational highlights of CO2-N2 gasdynamic lasers (GDL's) are described. Features common to powerful gas lasers are indicated. A simplified model of the vibrational kinetics of the system is presented, and the importance of rapid expansion nozzles is shown from analytic solutions of the equations. A high-power pulsed GDL is described, along with estimations of power extraction. A closed-cycle laser is suggested, leading to a description of a photon generator/engine. Thermodynamic analysis of the closed-cycle laser illustrates in principle the possibility of direct conversion of laser energy to work.

  18. Biomathematical modeling of pulsatile hormone secretion: a historical perspective.

    PubMed

    Evans, William S; Farhy, Leon S; Johnson, Michael L

    2009-01-01

    Shortly after the recognition of the profound physiological significance of the pulsatile nature of hormone secretion, computer-based modeling techniques were introduced for the identification and characterization of such pulses. Whereas these earlier approaches defined perturbations in hormone concentration-time series, deconvolution procedures were subsequently employed to separate such pulses into their secretion event and clearance components. Stochastic differential equation modeling was also used to define basal and pulsatile hormone secretion. To assess the regulation of individual components within a hormone network, a method that quantitated approximate entropy within hormone concentration-times series was described. To define relationships within coupled hormone systems, methods including cross-correlation and cross-approximate entropy were utilized. To address some of the inherent limitations of these methods, modeling techniques with which to appraise the strength of feedback signaling between and among hormone-secreting components of a network have been developed. Techniques such as dynamic modeling have been utilized to reconstruct dose-response interactions between hormones within coupled systems. A logical extension of these advances will require the development of mathematical methods with which to approximate endocrine networks exhibiting multiple feedback interactions and subsequently reconstruct their parameters based on experimental data for the purpose of testing regulatory hypotheses and estimating alterations in hormone release control mechanisms.

  19. Integrated modeling/analyses of thermal-shock effects in SNS targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Haines, J.

    1996-06-01

    In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies,more » especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.« less

  20. Basic mechanisms in the laser control of non-Markovian dynamics

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, R.; Mangaud, E.; Chevet, V.; Desouter-Lecomte, M.; Sugny, D.; Atabek, O.

    2018-03-01

    Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response and fully implement it in a realistic control scheme, in strongly coupled open quantum systems. Converged hierarchical equations of motion are worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong terahertz laser pulses. Robust and efficient control is achieved increasing by a factor of 2 the non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non-Markovianity and the slowing down of decoherence processes.

  1. Focusing of Finite-Amplitude Cylindrical and Spherical Sound Waves in a Viscous and Heat-Conducting Medium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chu, T.

    1971-01-01

    The focusing of acoustic pulses is studied analytically by considering the region of study in three parts: the converging, interaction and diverging regions. First, the linear problem of a pulse of infinitesimal amplitude is studied. For the spherical case, the expected phase change as a result of focusing is verified. The nonlinear case of finite-amplitude pulses leads to the development of M-waves, as determined by applying the method of matched-asymptotic expansions to Burges equation.

  2. Wide Band Gap Semiconductors Symposium Held in Boston, Massachusetts on 2-6 December 1991. Materials Research Society Symposium Proceedings. Volume 242

    DTIC Science & Technology

    1992-01-01

    equation and taking into account the phase changes which occur at the surface of the irradiated solid. Intense pulsed laser irradiation induces rapid...resulted in the realization of pn junction light emitting devices operating in the blue and blue/green portion of the spectrum such as pulsed lasers (3M...such as pulse lasers [3-51 and multiple quantum well light emitting devices 16). It is expected that these recent developments will open a new stage of

  3. Evolution of streamer groups in nonthermal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okubo, M., E-mail: mokubo@me.osakafu-u.ac.jp

    2015-12-15

    Nonthermal plasmas (NTPs) induced by atmospheric nanosecond pulsed corona discharge have been studied for controlling pollution from combustors, such as boilers, incinerators, and diesel engines. In high-speed short-width high-voltage pulsed corona discharge-induced plasmas, primary streamer evolution is followed by secondary streamer evolution. Though this phenomenon is known experimentally, the details of the structures of the streamers and their evolution mechanisms have not been fully clarified. In this letter, we perform quasi two-dimensional numerical analysis of nonequilibrium NTP induced by a nanosecond positive pulsed corona discharge. The continuum fluid equations for two-temperature nonequilibrium NTP are used as governing equations. In thismore » study, 197 gas phase reactions for 25 chemical species and 21 surface reactions on the inner glass wall surface are considered in an air plasma under atmospheric pressure. The simulated behavior of the streamer groups agrees with experimental observations. Soon after the voltage increases on the reactor, primary streamers are formed, which may transit the complete gap, disappearing near the peak voltage. Next, second streamers appear, disappearing at the end of the applied voltage pulse. The streamer wavelength and the distance between the streamers in the axial direction are determined. Moreover, ozone generation is shown to be more significant in the secondary streamer. This simulation will allow better predictions for nanosecond positive pulsed plasma systems.« less

  4. Interaction of doughnut-shaped laser pulses with glasses

    DOE PAGES

    Zhukov, Vladimir P.; Rubenchik, Alexander M.; Fedoruk, Mikhail P.; ...

    2017-01-26

    Non-Gaussian laser beams can open new opportunities for microfabrication, including ultrashort laser direct writing. By using a model based on Maxwell’s equations, we investigate the dynamics of doughnut-shaped laser beams focused inside fused silica glass, in comparison with Gaussian pulses of the same energy. The laser propagation dynamics reveals intriguing features of beam splitting and sudden collapse toward the beam axis, overcoming the intensity clamping effect. The resulting structure of light absorption represents a very hot, hollow nanocylinder, which can lead to an implosion process that brings matter to extreme thermodynamic states. Furthermore, by monitoring the simulations of the lasermore » beam scattering we see a considerable difference in both the blueshift and the angular distribution of scattered light for different laser energies, suggesting that investigations of the spectra of scattered radiation can be used as a diagnostic of laser-produced electron plasmas in transparent materials.« less

  5. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.

    PubMed

    Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei

    2015-04-20

    We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

  6. Photon mirror acceleration in the quantum regime

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Fedele, R.

    2014-12-01

    Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.

  7. Analysis of a photon assisted field emission device

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Lau, Y. Y.; McGregor, D. S.

    2000-07-01

    A field emitter array held at the threshold of emission by a dc gate potential from which current pulses are triggered by the application of a laser pulse on the backside of the semiconductor may produce electron bunches ("density modulation") at gigahertz frequencies. We develop an analytical model of such optically controlled emission from a silicon tip using a modified Wentzel-Kramers-Brillouin and Airy function approach to solving Schrödinger's equation. Band bending and an approximation to the exchange-correlation effects on the image charge potential are included for an array of hyperbolic emitters with a distribution in tip radii and work function. For a simple relationship between the incident photon flux and the resultant electron density at the emission site, an estimation of the tunneling current is made. An example of the operation and design of such a photon-assisted field emission device is given.

  8. Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media.

    PubMed

    Radhakrishnan, R; Aravinthan, K

    2007-06-01

    A fairly general form of the two-component (dark-dark) vector one-soliton solution of the integrable coupled nonlinear Schrödinger equation (Manakov model) with self-defocusing nonlinearity is obtained by using the Hirota method. It couples two dark components with the same envelope width, envelope speed, and envelope trough location using two complex arbitrary parameters not only in the envelope amplitude but also in the complex modulation. Although it has the freedom to change its pulse width without affecting its speed, it can also tune its grayness (depth of the pulse relative to background) without disturbing the envelope width and speed. The variations in peak power against the depth of localization of two dark components are investigated with and without a parametric restriction. The collision between many dark-dark vector solitons has also been studied by constructing a multisoliton solution with more free parameters.

  9. Propagation of a radio-frequency pulsed signal over the Earth. The JOLLY programs

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Detch, J. L.; Malik, J.

    1983-07-01

    The interpretation of observed radioflash/electromagnetic pulse (emp) observed signals from nuclear detonations in terms of theoretical models or extrapolation to signals expected at military systems involves correction for ground-wave propagation effects. For most applications, previously developed programs have been adequate. There have been problems when these techniques have been tried for situations in the near tangent regime where a considerable concern exists. It has been found that the problem of predicting propagation response functions in the near tangent regime has been the inconsistent derivation of the equations. Resolution of this problem has evolved into a program to better predict ground-wave propagation. The description of the method and detailed description of the programs are described for both propagation over realistic earth and sea-water paths. Results can be given in terms of amplitude and phase as a function of the frequency or as amplitude versus time, the usual Green's or resolution function.

  10. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides

    NASA Astrophysics Data System (ADS)

    Kowligy, Abijith S.; Lind, Alex; Hickstein, Daniel D.; Carlson, David R.; Timmers, Henry; Nader, Nima; Cruz, Flavio C.; Ycas, Gabriel; Papp, Scott B.; Diddams, Scott A.

    2018-04-01

    We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-$\\chi^{(2)}$ nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive-wave generation in the 2.5--3 $\\text{\\mu}$m region and intra-pulse difference-frequency generation in the 4--5 $\\text{\\mu}$m region. By engineering the quasi-phase-matched grating profiles, tunable, narrow-band MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment---and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.

  11. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    NASA Astrophysics Data System (ADS)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  12. Neutron Star Spin Measurements and Dense Matter with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2011-01-01

    Observations over the last decade with RXTE have begun to reveal the X-ray binary progenitors of the fastest spinning neutron stars presently known. Detection and study of the spin rates of binary neutron stars has important implications for constraining the nature of dense matter present in neutron star interiors, as both the maximum spin rate and mass for neutron stars is set by the equation of state. Precision pulse timing of accreting neutron star binaries can enable mass constraints. Particularly promIsing is the combination of the pulse and eclipse timing, as for example, in systems like Swift 11749.4-2807. With its greater sensitivity, LOFT will enable deeper searches for the spin periods of the neutron stars, both during persistent outburst intervals and thermonuclear X-ray bursts, and enable more precise modeling of detected pulsations. I will explore the anticipated impact of LOFT on spin measurements and its potential for constraining dense matter in neutron stars

  13. Electromagnetic processes in the atmosphere of pulsars

    NASA Technical Reports Server (NTRS)

    Yukhimuk, A. K.

    1974-01-01

    The work consists of two parts. The first deals with the fine structure of radio pulses. Based on kinetic theory, processes occurring in the plasma shell of a pulsar when external electromagnetic radiation is present are investigated. It is shown that electromagnetic waves cause electrons to drift relative to ions, and initiate longitudinal oscillations. A dispersion equation describing the longitudinal oscillations in magnetized plasma is derived. Conditions for excitation of oscillations are found. Correlation functions of electron density are calculated, along with the coefficients of electromagnetic wave scattering. It is shown that variations in the amplitude of pulsar pulses are associated with scintillations caused by fluctuations in the plasma electron density. The second part of the study presents a mechanism for the radio emission of pulsars. The model of a rotating and a pulsating star, a neutron star with dipolar or more complex magnetic field, is examined.

  14. Generation of laser-induced periodic surface structures on transparent material-fused silica

    NASA Astrophysics Data System (ADS)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-01

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionization and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.

  15. Generation of laser-induced periodic surface structures on transparent material-fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-02

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionizationmore » and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.« less

  16. Kinetic Alfvén solitary and rogue waves in superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Bains, A. S.; Li, Bo; Xia, Li-Dong

    2014-03-01

    We investigate the small but finite amplitude solitary Kinetic Alfvén waves (KAWs) in low β plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter κ, plasma β, and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfvénic, compressive solitons are supported. We then extend the study to examine kinetic Alfvén rogue waves by deriving a nonlinear Schrödinger equation from the KdV equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermality whereas the opposite is true when the plasma β increases. The findings of this study may find applications to low β plasmas in astrophysical environments where particles are superthermally distributed.

  17. How the laser-induced ionization of transparent solids can be suppressed

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2013-12-01

    A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.

  18. A computational model for the dynamic stabilization of Rayleigh-Bénard convection in a cubic cavity.

    PubMed

    Carbo, Randy M; Smith, Robert W M; Poese, Matthew E

    2014-02-01

    The dynamic stability of Rayleigh-Bénard convection with vertical vibration in a cubic container is computationally modeled. Two parametric drives are considered (sinusoidal and rectangular), as well as two thermal boundary conditions on the sidewalls (insulating and conducting). The linearized equations are solved using a spectral Galerkin method and Floquet analysis. Both the synchronous and the subharmonic regions of instability are recovered. The conditions necessary for dynamic stability are reported for a range of Rayleigh numbers from critical to 10(7) and for Prandtl numbers in the range of 0.1-7. The linear model is compared to the data set available in the literature where the performance of an inverted pulse tube cryocooler is measured.

  19. Predicting the performance of linear optical detectors in free space laser communication links

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    While the fundamental performance limit for optical communications is set by the quantum nature of light, in practical systems background light, dark current, and thermal noise of the electronics also degrade performance. In this paper, we derive a set of equations predicting the performance of PIN diodes and linear mode avalanche photo diodes (APDs) in the presence of such noise sources. Electrons generated by signal, background, and dark current shot noise are well modeled in PIN diodes as Poissonian statistical processes. In APDs, on the other hand, the amplifying effects of the device result in statistics that are distinctly non-Poissonian. Thermal noise is well modeled as Gaussian. In this paper, we appeal to the central limit theorem and treat both the variability of the signal and the sum of noise sources as Gaussian. Comparison against Monte-Carlo simulation of PIN diode performance (where we do model shot noise with draws from a Poissonian distribution) validates the legitimacy of this approximation. On-off keying, M-ary pulse position, and binary differential phase shift keying modulation are modeled. We conclude with examples showing how the equations may be used in a link budget to estimate the performance of optical links using linear receivers.

  20. Modeling of Optoelectronic Devices

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Woo, Alex C. (Technical Monitor)

    2000-01-01

    Ultrafast modulation of semiconductor quantum well (QW) laser is of technological importance for information technology. Improvement by order(s) of magnitude in data transfer rate is possible as terahertz (THz) radiation is available for heating the laser at picosecond time scale. Optical gain modulation in the QW is achieved via temperature modulation of electron-hole plasma (EHP). Applications include free-space THz communication, optical switching, and pulse generation. The EHP in the semiconductor QW is described with a two-band model. Semiconductor Bloch equations with many-body effects are used to derive a hydrodynamical model for the active QW region. Because of ultrafast carrier-carrier scatterings in the order of 50 fs, EHP follows quasiequilibrium Fermi-Dirac distributions and THz field interacts incoherently with it. Carrier-longitudinal optical (LO) phonon scatterings and coherent laser-EHP interaction are treated microscopically in our physical model. A set of hydrodynamical equations for plasma density, temperature, and laser envelop amplitude are derived and Runge-Kutta method is adopted for numerical simulation. A typical 8 nm GaAs/Al(0.3)Ga(0.7) As single QW at 300 K is used. Additional information is contained in the original extended abstract.

Top