Sample records for pulse sequence considerations

  1. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    PubMed

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.

  2. Wideband Arrhythmia-Insensitive-Rapid (AIR) Pulse Sequence for Cardiac T1 mapping without Image Artifacts induced by ICD

    PubMed Central

    Hong, KyungPyo; Jeong, Eun-Kee; Wall, T. Scott; Drakos, Stavros G.; Kim, Daniel

    2015-01-01

    Purpose To develop and evaluate a wideband arrhythmia-insensitive-rapid (AIR) pulse sequence for cardiac T1 mapping without image artifacts induced by implantable-cardioverter-defibrillator (ICD). Methods We developed a wideband AIR pulse sequence by incorporating a saturation pulse with wide frequency bandwidth (8.9 kHz), in order to achieve uniform T1 weighting in the heart with ICD. We tested the performance of original and “wideband” AIR cardiac T1 mapping pulse sequences in phantom and human experiments at 1.5T. Results In 5 phantoms representing native myocardium and blood and post-contrast blood/tissue T1 values, compared with the control T1 values measured with an inversion-recovery pulse sequence without ICD, T1 values measured with original AIR with ICD were considerably lower (absolute percent error >29%), whereas T1 values measured with wideband AIR with ICD were similar (absolute percent error <5%). Similarly, in 11 human subjects, compared with the control T1 values measured with original AIR without ICD, T1 measured with original AIR with ICD was significantly lower (absolute percent error >10.1%), whereas T1 measured with wideband AIR with ICD was similar (absolute percent error <2.0%). Conclusion This study demonstrates the feasibility of a wideband pulse sequence for cardiac T1 mapping without significant image artifacts induced by ICD. PMID:25975192

  3. MRI image plane nonuniformity in evaluation of ferrous sulphate dosimeter gel (FeGel) by means of T1-relaxation time.

    PubMed

    Magnusson, P; Bäck, S A; Olsson, L E

    1999-11-01

    MR image nonuniformity can vary significantly with the spin-echo pulse sequence repetition time. When MR images with different nonuniformity shapes are used in a T1-calculation the resulting T1-image becomes nonuniform. As shown in this work the uniformity TR-dependence of the spin-echo pulse sequence is a critical property for T1 measurements in general and for ferrous sulfate dosimeter gel (FeGel) applications in particular. The purpose was to study the characteristics of the MR image plane nonuniformity in FeGel evaluation. This included studies of the possibility of decreasing nonuniformities by selecting uniformity optimized repetition times, studies of the transmitted and received RF-fields and studies of the effectiveness of the correction methods background subtraction and quotient correction. A pronounced MR image nonuniformity variation with repetition and T1 relaxation time was observed, and was found to originate from nonuniform RF-transmission in combination with the inherent differences in T1 relaxation for different repetition times. The T1 calculation itself, the uniformity optimized repetition times, nor none of the correction methods studied could sufficiently correct the nonuniformities observed in the T1 images. The nonuniformities were found to vary considerably less with inversion time for the inversion-recovery pulse sequence, than with repetition time for the spin-echo pulse sequence, resulting in considerably lower T1 image nonuniformity levels.

  4. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate.

    PubMed

    Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X

    2016-10-31

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.

  5. One- and two-dimensional pulse electron paramagnetic resonance spectroscopy: concepts and applications.

    PubMed

    Van Doorslaer, S; Schweiger, A

    2000-06-01

    During the last two decades, the possibilities of pulse electron paramagnetic resonance (EPR) and pulse electron nuclear double resonance (ENDOR) spectroscopy have increased tremendously. While at the beginning of the 1980s pulse-EPR and ENDOR applications were still a rarity, the techniques are now very frequently applied in chemistry, physics, materials science, biology and mineralogy. This is mainly due to the considerable efforts invested in the last few years on instrument development and pulse-sequence design. Pulse-EPR spectrometers are now commercially available, which enables many research groups to use these techniques. In this work, an overview of state-of-the-art pulse EPR and ENDOR spectroscopy is given. The rapid expansion of the field, however, does not allow us to give an exhaustive record of all the pulse methods introduced so far. After a brief and very qualitative description of the basic principles of pulse EPR, we discuss some of the experiments in more detail and illustrate the potential of the methods with a number of selected applications.

  6. Multiphoton correlations in parametric down-conversion and their measurement in the pulsed regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, O A; Iskhakov, T Sh; Penin, A N

    2006-10-31

    We consider normalised intensity correlation functions (CFs) of different orders for light emitted via parametric down-conversion (PDC) and their dependence on the number of photons per mode. The main problem in measuring such correlation functions is their extremely small width, which considerably reduces their contrast. It is shown that if the radiation under study is modulated by a periodic sequence of pulses that are short compared to the CF width, no decrease in the contrast occurs. A procedure is proposed for measuring normalised CFs of various orders in the pulsed regime. For nanosecond-pulsed PDC radiation, normalised second-order CF is measuredmore » experimentally as a function of the mean photon number. (nonlinear optical phenomena)« less

  7. Sodium inversion recovery MRI of the knee joint in vivo at 7T

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.

    2010-11-01

    The loss of proteoglycans (PG) in the articular cartilage is an early signature of osteoarthritis (OA). The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on five healthy volunteers, with a (Nyquist) resolution of ∼3.6 mm and a signal-to-noise ratio of ∼30 in cartilage without IR and ∼20 with IR. Due to specific absorption rate limitations, the total acquisition time was ∼17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence.

  8. Sodium inversion recovery MRI of the knee joint in vivo at 7T.

    PubMed

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R

    2010-11-01

    The loss of proteoglycans (PG) in the articular cartilage is an early signature of osteoarthritis (OA). The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na(+) ions have a restricted motion. The ions in these two compartments have therefore different T₁ and T₂ relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B₁ and B₀ inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on five healthy volunteers, with a (Nyquist) resolution of ∼3.6 mm and a signal-to-noise ratio of ∼30 in cartilage without IR and ∼20 with IR. Due to specific absorption rate limitations, the total acquisition time was ∼17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Theoretical and experimental investigations of coincidences in Poisson distributed pulse trains and spectral distortion caused by pulse pileup

    NASA Astrophysics Data System (ADS)

    Bristow, Quentin

    1990-03-01

    The occurrence rates of pulse strings, or sequences of pulses with interarrival times less than the resolving time of the pulse-height analysis system used to acquire spectra, are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern analog to digital converters, were used to generate pileup spectra due to coincidences between two pulses (first order pileup) and three pulses (second order pileup) for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum. The use of a flat spectrum showed the first order pileup distorted the spectrum to a linear ramp with a pileup tail. A correction algorithm was successfully applied to correct entire spectra (simulated and real) for first and second order pileups.

  10. Optimization of Spiral-Based Pulse Sequences for First Pass Myocardial Perfusion Imaging

    PubMed Central

    Salerno, Michael; Sica, Christopher T.; Kramer, Christopher M.; Meyer, Craig H.

    2010-01-01

    While spiral trajectories have multiple attractive features such as their isotropic resolution, acquisition efficiency, and robustness to motion, there has been limited application of these techniques to first pass perfusion imaging because of potential off-resonance and inconsistent data artifacts. Spiral trajectories may also be less sensitive to dark-rim artifacts (DRA) that are caused, at least in part, by cardiac motion. By careful consideration of the spiral trajectory readout duration, flip angle strategy, and image reconstruction strategy, spiral artifacts can be abated to create high quality first pass myocardial perfusion images with high SNR. The goal of this paper was to design interleaved spiral pulse sequences for first-pass myocardial perfusion imaging, and to evaluate them clinically for image quality and the presence of dark-rim, blurring, and dropout artifacts. PMID:21590802

  11. Increasing sensitivity of pulse EPR experiments using echo train detection schemes.

    PubMed

    Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. SNMR pulse sequence phase cycling

    DOEpatents

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  13. A New Strategy to Enhance Cavitational Tissue Erosion Using a High-Intensity, Initiating Sequence

    PubMed Central

    Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    Our previous studies have shown that pulsed ultrasound can physically remove soft tissue through cavitation. A new strategy to enhance the cavitation-induced erosion is proposed wherein tissue erosion is initiated by a short, high-intensity sequence of pulses and sustained by lower intensity pulses. We investigated effects of the initiating sequence on erosion and cavitation sustained by lower intensity pulses. Multiple three-cycle pulses at a pulse repetition frequency of 20 kHz delivered by a 788-kHz focused transducer were used for tissue erosion. Fixing the initiating sequence at ISPPA of 9000 W/cm2, 16 combinations of different numbers of pulses within the initiating sequence and different sustaining pulse intensities were tested. Results showed: the initiating sequence increases the probability of erosion occurrence and the erosion rate with only slight overall increases in propagated energy; the initiating sequence containing more pulses does not increase the sustained cavitation period; and if extinguished and reinitiated, the sustained cavitation period becomes shorter after each initiation, although the waiting time between adjacent cavitation periods is random. The high-intensity, initiating sequence enhances cavitational tissue erosion and enables erosion at intensities significantly lower than what is required to initiate erosion. PMID:16921893

  14. Characterizing the parameters of ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Mansurova, Svetlana; Il'in, Yurij V.; Tarasov, Il'ya S.

    2010-06-01

    We discuss specifically elaborated approach for characterizing the train-average parameters of low-power picosecond optical pulses with the frequency chirp, arranged in high-repetition-frequency trains, in both time and frequency domains. This approach had been previously applied to rather important case of pulse generation when a single-mode semiconductor heterolaser operates in a multi-pulse regime of the active mode-locking with an external single-mode fiber cavity. In fact, the trains of optical dissipative solitary pulses, which appear under a double balance between mutually compensating actions of dispersion and nonlinearity as well as gain and optical losses, are under characterization. However, in the contrast with the previous studies, now we touch an opportunity of describing two chirped optical pulses together. The main reason of involving just a pair of pulses is caused by the simplest opportunity for simulating the properties of just a sequence of pulses rather then an isolated pulse. However, this step leads to a set of specific difficulty inherent generally in applying joint time-frequency distributions to groups of signals and consisting in manifestation of various false signals or artefacts. This is why the joint Chio-Williams time-frequency distribution and the technique of smoothing are under preliminary consideration here.

  15. Arbitrarily accurate twin composite π -pulse sequences

    NASA Astrophysics Data System (ADS)

    Torosov, Boyan T.; Vitanov, Nikolay V.

    2018-04-01

    We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .

  16. Pulse sequence programming in a dynamic visual environment: SequenceTree.

    PubMed

    Magland, Jeremy F; Li, Cheng; Langham, Michael C; Wehrli, Felix W

    2016-01-01

    To describe SequenceTree, an open source, integrated software environment for implementing MRI pulse sequences and, ideally, exporting them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for programmers and nonprogrammers alike. The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically, allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally, other types of scanners will be supported in the future. SequenceTree has been used for 8 years in our laboratory and elsewhere and has contributed to more than 50 peer-reviewed publications in areas such as cardiovascular imaging, solid state and nonproton NMR, MR elastography, and high-resolution structural imaging. SequenceTree is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal both for advanced users and users with limited programming experience. © 2015 Wiley Periodicals, Inc.

  17. Optimizing symmetry-based recoupling sequences in solid-state NMR by pulse-transient compensation and asynchronous implementation

    NASA Astrophysics Data System (ADS)

    Hellwagner, Johannes; Sharma, Kshama; Tan, Kong Ooi; Wittmann, Johannes J.; Meier, Beat H.; Madhu, P. K.; Ernst, Matthias

    2017-06-01

    Pulse imperfections like pulse transients and radio-frequency field maladjustment or inhomogeneity are the main sources of performance degradation and limited reproducibility in solid-state nuclear magnetic resonance experiments. We quantitatively analyze the influence of such imperfections on the performance of symmetry-based pulse sequences and describe how they can be compensated. Based on a triple-mode Floquet analysis, we develop a theoretical description of symmetry-based dipolar recoupling sequences, in particular, R2 6411, calculating first- and second-order effective Hamiltonians using real pulse shapes. We discuss the various origins of effective fields, namely, pulse transients, deviation from the ideal flip angle, and fictitious fields, and develop strategies to counteract them for the restoration of full transfer efficiency. We compare experimental applications of transient-compensated pulses and an asynchronous implementation of the sequence to a supercycle, SR26, which is known to be efficient in compensating higher-order error terms. We are able to show the superiority of R26 compared to the supercycle, SR26, given the ability to reduce experimental error on the pulse sequence by pulse-transient compensation and a complete theoretical understanding of the sequence.

  18. Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schick, F.

    1996-01-01

    A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage andmore » muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.« less

  19. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Chen; Yung, Man-Hong; Wang, Xin

    2018-04-01

    Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation.

  20. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

    PubMed Central

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  1. Coherent control of acoustic vibrations in metal nanoparticles and thin films with sequences of femtosecond pulses: Harmonic-oscillator model

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2002-08-01

    A harmonic oscillator model is used to demonstrate the possibility of coherent control of acoustic vibrations of metal nanoparticles and thin films with sequences of femtosecond laser pulses. When the interval between the pulses in such a sequence is chosen equal to the oscillation period of the expansion mode of a nanoscale system, the relevant acoustic vibrations can be excited in a resonant and selective way. Sequences of femtosecond pulses with picosecond time intervals between the pulses are shown to be ideally suited for a resonant excitation and coherent control of acoustic modes of silver nanoparticles.

  2. Value of a single-shot turbo spin-echo pulse sequence for assessing the architecture of the subarachnoid space and the constitutive nature of cerebrospinal fluid.

    PubMed

    Pease, Anthony; Sullivan, Stacey; Olby, Natasha; Galano, Heather; Cerda-Gonzalez, Sophia; Robertson, Ian D; Gavin, Patrick; Thrall, Donald

    2006-01-01

    Three case history reports are presented to illustrate the value of the single-shot turbo spin-echo pulse sequence for assessment of the subarachnoid space. The use of the single-shot turbo spin-echo pulse sequence, which is a heavily T2-weighted sequence, allows for a rapid, noninvasive evaluation of the subarachnoid space by using the high signal from cerebrospinal fluid. This sequence can be completed in seconds rather than the several minutes required for a T2-fast spin-echo sequence. Unlike the standard T2-fast spin-echo sequence, a single-shot turbo spin-echo pulse sequence also provides qualitative information about the protein and the cellular content of the cerebrospinal fluid, such as in patients with inflammatory debris or hemorrhage in the cerebrospinal fluid. Although the resolution of the single-shot turbo spin-echo pulse sequence images is relatively poor compared with more conventional sequences, the qualitative information about the subarachnoid space and cerebrospinal fluid and the rapid acquisition time, make it a useful sequence to include in standard protocols of spinal magnetic resonance imaging.

  3. Pulse Sequence Programming in a Dynamic Visual Environment: SequenceTree

    PubMed Central

    Magland, Jeremy F.; Li, Cheng; Langham, Michael C.; Wehrli, Felix W.

    2015-01-01

    Purpose To describe SequenceTree (ST), an open source. integrated software environment for implementing MRI pulse sequences, and ideally exported them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for non-programmers and programmers alike. Methods The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally other types of scanners will be supported in the future. Results The software has been used for eight years in the authors’ laboratory and elsewhere and has been utilized in more than fifty peer-reviewed publications in areas such as cardiovascular imaging, solid state and non-proton NMR, MR elastography, and high resolution structural imaging. Conclusion ST is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal for both advanced users and those with limited programming experience. PMID:25754837

  4. Pulse-voltammetric glucose detection at gold junction electrodes.

    PubMed

    Rassaei, Liza; Marken, Frank

    2010-09-01

    A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.

  5. A powerful graphical pulse sequence programming tool for magnetic resonance imaging.

    PubMed

    Jie, Shen; Ying, Liu; Jianqi, Li; Gengying, Li

    2005-12-01

    A powerful graphical pulse sequence programming tool has been designed for creating magnetic resonance imaging (MRI) applications. It allows rapid development of pulse sequences in graphical mode (allowing for the visualization of sequences), and consists of three modules which include a graphical sequence editor, a parameter management module and a sequence compiler. Its key features are ease to use, flexibility and hardware independence. When graphic elements are combined with a certain text expressions, the graphical pulse sequence programming is as flexible as text-based programming tool. In addition, a hardware-independent design is implemented by using the strategy of two step compilations. To demonstrate the flexibility and the capability of this graphical sequence programming tool, a multi-slice fast spin echo experiment is performed on our home-made 0.3 T permanent magnet MRI system.

  6. Time-of-flight radio location system

    DOEpatents

    McEwan, T.E.

    1996-04-23

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. 7 figs.

  7. Time-of-flight radio location system

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence.

  8. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  9. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  10. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  11. Investigation of the effect of finite pulse errors on the BABA pulse sequence using the Floquet-Magnus expansion approach

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene S.; Reid, Alicia E.

    2013-01-01

    This paper presents a study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order ? is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the ? function not present in other schemes. This function provides an easy way for evaluating the spin evolution during the time in between' through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of ? is particularly useful for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provide a natural choice of ? , is ignored. This work uses the ? function to compare the efficiency of the BABA pulse sequence with ? and the BABA pulse sequence with finite pulses. Calculations of ? and ? are presented.

  12. A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Tarr, C. E.; Nickerson, M. A.

    1972-01-01

    A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.

  13. Optimization of parameter values for complex pulse sequences by simulated annealing: application to 3D MP-RAGE imaging of the brain.

    PubMed

    Epstein, F H; Mugler, J P; Brookeman, J R

    1994-02-01

    A number of pulse sequence techniques, including magnetization-prepared gradient echo (MP-GRE), segmented GRE, and hybrid RARE, employ a relatively large number of variable pulse sequence parameters and acquire the image data during a transient signal evolution. These sequences have recently been proposed and/or used for clinical applications in the brain, spine, liver, and coronary arteries. Thus, the need for a method of deriving optimal pulse sequence parameter values for this class of sequences now exists. Due to the complexity of these sequences, conventional optimization approaches, such as applying differential calculus to signal difference equations, are inadequate. We have developed a general framework for adapting the simulated annealing algorithm to pulse sequence parameter value optimization, and applied this framework to the specific case of optimizing the white matter-gray matter signal difference for a T1-weighted variable flip angle 3D MP-RAGE sequence. Using our algorithm, the values of 35 sequence parameters, including the magnetization-preparation RF pulse flip angle and delay time, 32 flip angles in the variable flip angle gradient-echo acquisition sequence, and the magnetization recovery time, were derived. Optimized 3D MP-RAGE achieved up to a 130% increase in white matter-gray matter signal difference compared with optimized 3D RF-spoiled FLASH with the same total acquisition time. The simulated annealing approach was effective at deriving optimal parameter values for a specific 3D MP-RAGE imaging objective, and may be useful for other imaging objectives and sequences in this general class.

  14. Improving the time efficiency of the Fourier synthesis method for slice selection in magnetic resonance imaging.

    PubMed

    Tahayori, B; Khaneja, N; Johnston, L A; Farrell, P M; Mareels, I M Y

    2016-01-01

    The design of slice selective pulses for magnetic resonance imaging can be cast as an optimal control problem. The Fourier synthesis method is an existing approach to solve these optimal control problems. In this method the gradient field as well as the excitation field are switched rapidly and their amplitudes are calculated based on a Fourier series expansion. Here, we provide a novel insight into the Fourier synthesis method via representing the Bloch equation in spherical coordinates. Based on the spherical Bloch equation, we propose an alternative sequence of pulses that can be used for slice selection which is more time efficient compared to the original method. Simulation results demonstrate that while the performance of both methods is approximately the same, the required time for the proposed sequence of pulses is half of the original sequence of pulses. Furthermore, the slice selectivity of both sequences of pulses changes with radio frequency field inhomogeneities in a similar way. We also introduce a measure, referred to as gradient complexity, to compare the performance of both sequences of pulses. This measure indicates that for a desired level of uniformity in the excited slice, the gradient complexity for the proposed sequence of pulses is less than the original sequence. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Properties of the unusually short pulse sequences occurring prior to the first strokes of negative cloud-to-ground lightning flashes

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Farges, Thomas; Rison, William; Lan, Radek; Uhlir, Ludek

    2014-05-01

    We analyze pulse sequences occurring prior to first return strokes of negative cloud-to-ground lightning flashes. The magnetic-field waveforms are measured close to the thunderstorm using a broad-band analyzer with a sampling interval of 12.5 ns. The electric-field waveforms are measured at the distance of ~ 400 km using an analyzer with a sampling interval of 80 ns. The sequence is usually composed of three parts. It begins with a larger pulse train which is believed to be connected with initial breakdown processes. The train of preliminary breakdown pulses ("B" part) is followed by a relatively low and irregular pulse activity ("I" part), which is sometimes missing. The sequence ends with a pulse train attributed to the stepped leader ("L" part). We recognize two different patterns ("B-I-L" and "B-L" types) in recorded waveforms. For the first time, we analyze the time evolution of the pulse amplitudes in the "B" part of "B-I-L" type sequences. The pulse amplitude is decreasing on average by 34% of the maximum value within a given train. We observe an unusually short duration of sequences. This is probably linked to a low height of the thundercloud. Another possible explanation may be based on an untypical precipitation mix resulting in faster steeped leaders.

  16. In vivo Proton Electron Double Resonance Imaging of Mice with Fast Spin Echo Pulse Sequence

    PubMed Central

    Sun, Ziqi; Li, Haihong; Petryakov, Sergey; Samouilov, Alex; Zweier, Jay L.

    2011-01-01

    Purpose To develop and evaluate a 2D fast spin echo (FSE) pulse sequence for enhancing temporal resolution and reducing tissue heating for in vivo proton electron double resonance imaging (PEDRI) of mice. Materials and Methods A four-compartment phantom containing 2 mM TEMPONE was imaged at 20.1 mT using 2D FSE-PEDRI and regular gradient echo (GRE)-PEDRI pulse sequences. Control mice were infused with TEMPONE over ∼1 min followed by time-course imaging using the 2D FSE-PEDRI sequence at intervals of 10 – 30 s between image acquisitions. The average signal intensity from the time-course images was analyzed using a first-order kinetics model. Results Phantom experiments demonstrated that EPR power deposition can be greatly reduced using the FSE-PEDRI pulse sequence compared to the conventional gradient echo pulse sequence. High temporal resolution was achieved at ∼4 s per image acquisition using the FSE-PEDRI sequence with a good image SNR in the range of 233-266 in the phantom study. The TEMPONE half-life measured in vivo was ∼72 s. Conclusion Thus, the FSE-PEDRI pulse sequence enables fast in vivo functional imaging of free radical probes in small animals greatly reducing EPR irradiation time with decreased power deposition and provides increased temporal resolution. PMID:22147559

  17. Investigation of the Effect of Finite Pulse Errors on BABA Pulse Sequence Using Floquet-Magnus Expansion Approach.

    PubMed

    Mananga, Eugene S; Reid, Alicia E

    This paper presents the study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order F 1 is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the Λ 1 ( t ) function not present in other schemes. This function provides an easy way for evaluating the spin evolution during "the time in between" through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of Λ 1 ( t ) is useful especially for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provides a natural choice of Λ 1 (0) is ignored. This work uses the Λ 1 ( t ) function to compare the efficiency of the BABA pulse sequence with δ - pulses and the BABA pulse sequence with finite pulses. Calculations of Λ 1 ( t ) and F 1 are presented.

  18. Investigation of the Effect of Finite Pulse Errors on BABA Pulse Sequence Using Floquet-Magnus Expansion Approach

    PubMed Central

    Mananga, Eugene S.; Reid, Alicia E.

    2013-01-01

    This paper presents the study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order F1 is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the Λ1 (t) function not present in other schemes. This function provides an easy way for evaluating the spin evolution during “the time in between” through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of Λ1 (t) is useful especially for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provides a natural choice of Λ1 (0) is ignored. This work uses the Λ1 (t) function to compare the efficiency of the BABA pulse sequence with δ – pulses and the BABA pulse sequence with finite pulses. Calculations of Λ1 (t) and F1 are presented. PMID:25792763

  19. Transient effects in π-pulse sequences in MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Hellwagner, Johannes; Wili, Nino; Ibáñez, Luis Fábregas; Wittmann, Johannes J.; Meier, Beat H.; Ernst, Matthias

    2018-02-01

    Dipolar recoupling techniques that use isolated rotor-synchronized π pulses are commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological molecules. These sequences excel through their simplicity, stability towards radio-frequency (rf) inhomogeneity, and low rf requirements. For a theoretical understanding of such sequences, we present a Floquet treatment based on an interaction-frame transformation including the chemical-shift offset dependence. This approach is applied to the homonuclear dipolar-recoupling sequence Radio-Frequency Driven Recoupling (RFDR) and the heteronuclear recoupling sequence Rotational Echo Double Resonance (REDOR). Based on the Floquet approach, we show the influence of effective fields caused by pulse transients and discuss the advantages of pulse-transient compensation. We demonstrate experimentally that the transfer efficiency for homonuclear recoupling can be doubled in some cases in model compounds as well as in simple peptides if pulse-transient compensation is applied to the π pulses. Additionally, we discuss the influence of various phase cycles on the recoupling efficiency in order to reduce the magnitude of effective fields. Based on the findings from RFDR, we are able to explain why the REDOR sequence does not suffer in the recoupling efficiency despite the presence of effective fields.

  20. Time-of-flight radio location system

    DOEpatents

    McEwan, T.E.

    1997-08-26

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation. 8 figs.

  1. Time-of-flight radio location system

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation.

  2. Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2016-08-01

    Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.

  3. PuLSE: Quality control and quantification of peptide sequences explored by phage display libraries.

    PubMed

    Shave, Steven; Mann, Stefan; Koszela, Joanna; Kerr, Alastair; Auer, Manfred

    2018-01-01

    The design of highly diverse phage display libraries is based on assumption that DNA bases are incorporated at similar rates within the randomized sequence. As library complexity increases and expected copy numbers of unique sequences decrease, the exploration of library space becomes sparser and the presence of truly random sequences becomes critical. We present the program PuLSE (Phage Library Sequence Evaluation) as a tool for assessing randomness and therefore diversity of phage display libraries. PuLSE runs on a collection of sequence reads in the fastq file format and generates tables profiling the library in terms of unique DNA sequence counts and positions, translated peptide sequences, and normalized 'expected' occurrences from base to residue codon frequencies. The output allows at-a-glance quantitative quality control of a phage library in terms of sequence coverage both at the DNA base and translated protein residue level, which has been missing from toolsets and literature. The open source program PuLSE is available in two formats, a C++ source code package for compilation and integration into existing bioinformatics pipelines and precompiled binaries for ease of use.

  4. Investigation of timing effects in modified composite quadrupolar echo pulse sequences by mean of average Hamiltonian theory

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane

    2018-01-01

    The utility of the average Hamiltonian theory and its antecedent the Magnus expansion is presented. We assessed the concept of convergence of the Magnus expansion in quadrupolar spectroscopy of spin-1 via the square of the magnitude of the average Hamiltonian. We investigated this approach for two specific modified composite pulse sequences: COM-Im and COM-IVm. It is demonstrated that the size of the square of the magnitude of zero order average Hamiltonian obtained on the appropriated basis is a viable approach to study the convergence of the Magnus expansion. The approach turns to be efficient in studying pulse sequences in general and can be very useful to investigate coherent averaging in the development of high resolution NMR technique in solids. This approach allows comparing theoretically the two modified composite pulse sequences COM-Im and COM-IVm. We also compare theoretically the current modified composite sequences (COM-Im and COM-IVm) to the recently published modified composite pulse sequences (MCOM-I, MCOM-IV, MCOM-I_d, MCOM-IV_d).

  5. Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köcher, S. S.; Institute of Energy and Climate Research; Heydenreich, T.

    Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoreticallymore » predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.« less

  6. Optimization of multiply acquired magnetic flux density B(z) using ICNE-Multiecho train in MREIT.

    PubMed

    Nam, Hyun Soo; Kwon, Oh In

    2010-05-07

    The aim of magnetic resonance electrical impedance tomography (MREIT) is to visualize the electrical properties, conductivity or current density of an object by injection of current. Recently, the prolonged data acquisition time when using the injected current nonlinear encoding (ICNE) method has been advantageous for measurement of magnetic flux density data, Bz, for MREIT in the signal-to-noise ratio (SNR). However, the ICNE method results in undesirable side artifacts, such as blurring, chemical shift and phase artifacts, due to the long data acquisition under an inhomogeneous static field. In this paper, we apply the ICNE method to a gradient and spin echo (GRASE) multi-echo train pulse sequence in order to provide the multiple k-space lines during a single RF pulse period. We analyze the SNR of the measured multiple B(z) data using the proposed ICNE-Multiecho MR pulse sequence. By determining a weighting factor for B(z) data in each of the echoes, an optimized inversion formula for the magnetic flux density data is proposed for the ICNE-Multiecho MR sequence. Using the ICNE-Multiecho method, the quality of the measured magnetic flux density is considerably increased by the injection of a long current through the echo train length and by optimization of the voxel-by-voxel noise level of the B(z) value. Agarose-gel phantom experiments have demonstrated fewer artifacts and a better SNR using the ICNE-Multiecho method. Experimenting with the brain of an anesthetized dog, we collected valuable echoes by taking into account the noise level of each of the echoes and determined B(z) data by determining optimized weighting factors for the multiply acquired magnetic flux density data.

  7. Three-dimensional T1rho-weighted MRI at 1.5 Tesla.

    PubMed

    Borthakur, Arijitt; Wheaton, Andrew; Charagundla, Sridhar R; Shapiro, Erik M; Regatte, Ravinder R; Akella, Sarma V S; Kneeland, J Bruce; Reddy, Ravinder

    2003-06-01

    To design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects. A three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual. Calculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues. We developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner. Copyright 2003 Wiley-Liss, Inc.

  8. Steer-PROP: a GRASE-PROPELLER sequence with interecho steering gradient pulses.

    PubMed

    Srinivasan, Girish; Rangwala, Novena; Zhou, Xiaohong Joe

    2018-05-01

    This study demonstrates a novel PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) pulse sequence, termed Steer-PROP, based on gradient and spin echo (GRASE), to reduce the imaging times and address phase errors inherent to GRASE. The study also illustrates the feasibility of using Steer-PROP as an alternative to single-shot echo planar imaging (SS-EPI) to produce distortion-free diffusion images in all imaging planes. Steer-PROP uses a series of blip gradient pulses to produce N (N = 3-5) adjacent k-space blades in each repetition time, where N is the number of gradient echoes in a GRASE sequence. This sampling strategy enables a phase correction algorithm to systematically address the GRASE phase errors as well as the motion-induced phase inconsistency. Steer-PROP was evaluated on phantoms and healthy human subjects at both 1.5T and 3.0T for T 2 - and diffusion-weighted imaging. Steer-PROP produced similar image quality as conventional PROPELLER based on fast spin echo (FSE), while taking only a fraction (e.g., 1/3) of the scan time. The robustness against motion in Steer-PROP was comparable to that of FSE-based PROPELLER. Using Steer-PROP, high quality and distortion-free diffusion images were obtained from human subjects in all imaging planes, demonstrating a considerable advantage over SS-EPI. The proposed Steer-PROP sequence can substantially reduce the scan times compared with FSE-based PROPELLER while achieving adequate image quality. The novel k-space sampling strategy in Steer-PROP not only enables an integrated phase correction method that addresses various sources of phase errors, but also minimizes the echo spacing compared with alternative sampling strategies. Steer-PROP can also be a viable alternative to SS-EPI to decrease image distortion in all imaging planes. Magn Reson Med 79:2533-2541, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Design considerations for optically pumped, UV and XUV lasers in the Be isoelectronic sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, M.; Trebes, J.

    1984-09-01

    Intense line radiation from plasmas of MnVI, PIX, AlV, AlVIII, AlIX, and AlXI may be used to selectively pump population inversions in plasmas of Be-like CIII, NIV, FVI, NeVII, NaVIII, and MgIX. Quasi-cw lasing is possible on 4p-3d and 4f-3d transitions at wavelengths from 2177 A to 230 A. At the XUV wavelengths, 1 J, 10 ns laser output pulses at 10/sup 8/ W power levels are shown possible with existing discharge technology. Since all six laser ions are in the Be isoelectronic sequence, detailed studies of the optical pumping process at UV wavelengths in CIII would provide scaling parametersmore » for the less accessible XUV wavelengths.« less

  10. Low-power adiabatic sequences for in-vivo localized two-dimensional chemical shift correlated MR spectroscopy

    PubMed Central

    Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory

    2011-01-01

    Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988

  11. Development of a diaphragmatic motion-based elastography framework for assessment of liver stiffness

    NASA Astrophysics Data System (ADS)

    Weis, Jared A.; Johnsen, Allison M.; Wile, Geoffrey E.; Yankeelov, Thomas E.; Abramson, Richard G.; Miga, Michael I.

    2015-03-01

    Evaluation of mechanical stiffness imaging biomarkers, through magnetic resonance elastography (MRE), has shown considerable promise for non-invasive assessment of liver stiffness to monitor hepatic fibrosis. MRE typically requires specialized externally-applied vibratory excitation and scanner-specific motion-sensitive pulse sequences. In this work, we have developed an elasticity imaging approach that utilizes natural diaphragmatic respiratory motion to induce deformation and eliminates the need for external deformation excitation hardware and specialized pulse sequences. Our approach uses clinically-available standard of care volumetric imaging acquisitions, combined with offline model-based post-processing to generate volumetric estimates of stiffness within the liver and surrounding tissue structures. We have previously developed a novel methodology for non-invasive elasticity imaging which utilizes a model-based elasticity reconstruction algorithm and MR image volumes acquired under different states of deformation. In prior work, deformation was external applied through inflation of an air bladder placed within the MR radiofrequency coil. In this work, we extend the methodology with the goal of determining the feasibility of assessing liver mechanical stiffness using diaphragmatic respiratory motion between end-inspiration and end-expiration breath-holds as a source of deformation. We present initial investigations towards applying this methodology to assess liver stiffness in healthy volunteers and cirrhotic patients. Our preliminary results suggest that this method is capable of non-invasive image-based assessment of liver stiffness using natural diaphragmatic respiratory motion and provides considerable enthusiasm for extension of our approach towards monitoring liver stiffness in cirrhotic patients with limited impact to standard-of-care clinical imaging acquisition workflow.

  12. Efficient and precise calculation of the b-matrix elements in diffusion-weighted imaging pulse sequences.

    PubMed

    Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S

    2014-06-01

    Precise NMR diffusion measurements require detailed knowledge of the cumulative dephasing effect caused by the numerous gradient pulses present in most NMR pulse sequences. This effect, which ultimately manifests itself as the diffusion-related NMR signal attenuation, is usually described by the b-value or the b-matrix in the case of multidirectional diffusion weighting, the latter being common in diffusion-weighted NMR imaging. Neglecting some of the gradient pulses introduces an error in the calculated diffusion coefficient reaching in some cases 100% of the expected value. Therefore, ensuring the b-matrix calculation includes all the known gradient pulses leads to significant error reduction. Calculation of the b-matrix for simple gradient waveforms is rather straightforward, yet it grows cumbersome when complexly shaped and/or numerous gradient pulses are introduced. Making three broad assumptions about the gradient pulse arrangement in a sequence results in an efficient framework for calculation of b-matrices as well providing some insight into optimal gradient pulse placement. The framework allows accounting for the diffusion-sensitising effect of complexly shaped gradient waveforms with modest computational time and power. This is achieved by using the b-matrix elements of the simple unmodified pulse sequence and minimising the integration of the complexly shaped gradient waveform in the modified sequence. Such re-evaluation of the b-matrix elements retains all the analytical relevance of the straightforward approach, yet at least halves the amount of symbolic integration required. The application of the framework is demonstrated with the evaluation of the expression describing the diffusion-sensitizing effect, caused by different bipolar gradient pulse modules. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  14. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas; Ramamoorthy, Ayyalusamy

    2015-01-01

    Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional 1H-13C dipolar coupling/chemical shift correlation experiment using 13C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H - w1C = ±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly 13C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of 1H-13C dipolar couplings are insensitive to 1H/13C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated 1H detected avenues for ultrafast MAS.

  15. PULSE SORTER

    DOEpatents

    Wade, E.J.

    1958-07-29

    An apparatus is described for counting and recording the number of electrical pulses occurring in each of a timed sequence of groups of pulses. The particular feature of the invention resides in a novel timing circuit of the univibrator type which provides very accurately timed pulses for opening each of a series of coincidence channels in sequence. The univibrator is shown incorporated in a pulse analyzing system wherein a series of pulse counting channels are periodically opened in order, one at a time, for a predetermtned open time interval, so that only one channel will be open at the time of occurrence of any of the electrical pulses to be sorted.

  16. Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2018-04-01

    Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.

  17. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms.

    PubMed

    Pruttivarasin, Thaned; Katori, Hidetoshi

    2015-11-01

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  18. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  19. Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance.

    PubMed

    Jenista, Elizabeth R; Stokes, Ashley M; Branca, Rosa Tamara; Warren, Warren S

    2009-11-28

    A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.

  20. MR Neurography: Advances

    PubMed Central

    Chhabra, Avneesh; Zhao, Lianxin; Carrino, John A.; Trueblood, Eo; Koceski, Saso; Shteriev, Filip; Lenkinski, Lionel; Sinclair, Christopher D. J.; Andreisek, Gustav

    2013-01-01

    High resolution and high field magnetic resonance neurography (MR neurography, MRN) is shown to have excellent anatomic capability. There have been considerable advances in the technology in the last few years leading to various feasibility studies using different structural and functional imaging approaches in both clinical and research settings. This paper is intended to be a useful seminar for readers who want to gain knowledge of the advancements in the MRN pulse sequences currently used in clinical practice as well as learn about the other techniques on the horizon aimed at better depiction of nerve anatomy, pathology, and potential noninvasive evaluation of nerve degeneration or regeneration. PMID:23589774

  1. Robustness of composite pulse sequences to time-dependent noise

    NASA Astrophysics Data System (ADS)

    Kabytayev, Chingiz; Green, Todd J.; Khodjasteh, Kaveh; Viola, Lorenza; Biercuk, Michael J.; Brown, Kenneth R.

    2014-03-01

    Quantum control protocols can minimize the effect of noise sources that reduce the quality of quantum operations. Originally developed for NMR, composite pulse sequences correct for unknown static control errors . We study these compensating pulses in the general case of time-varying Gaussian control noise using a filter-function approach and detailed numerics. Three different noise models were considered in this work: amplitude noise, detuning noise and simultaneous presence of both noises. Pulse sequences are shown to be robust to noise up to frequencies as high as ~10% of the Rabi frequency. Robustness of pulses designed for amplitude noise is explained using a geometric picture that naturally follows from filter function. We also discuss future directions including new pulses correcting for noise of certain frequency. True J. Merrill and Kenneth R. Brown. arXiv:1203.6392v1. In press Adv. Chem. Phys. (2013)

  2. A DS-UWB Cognitive Radio System Based on Bridge Function Smart Codes

    NASA Astrophysics Data System (ADS)

    Xu, Yafei; Hong, Sheng; Zhao, Guodong; Zhang, Fengyuan; di, Jinshan; Zhang, Qishan

    This paper proposes a direct-sequence UWB Gaussian pulse of cognitive radio systems based on bridge function smart sequence matrix and the Gaussian pulse. As the system uses the spreading sequence code, that is the bridge function smart code sequence, the zero correlation zones (ZCZs) which the bridge function sequences' auto-correlation functions had, could reduce multipath fading of the pulse interference. The Modulated channel signal was sent into the IEEE 802.15.3a UWB channel. We analysis the ZCZs's inhibition to the interference multipath interference (MPI), as one of the main system sources interferences. The simulation in SIMULINK/MATLAB is described in detail. The result shows the system has better performance by comparison with that employing Walsh sequence square matrix, and it was verified by the formula in principle.

  3. Theoretical and Experimental Investigations of Coincidences in Poisson Distributed Pulse Trains and Spectral Distortion Caused by Pulse Pileup.

    NASA Astrophysics Data System (ADS)

    Bristow, Quentin

    1990-01-01

    Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and 2nd order pileup; both those generated by Monte Carlo simulations and in addition some real spectra acquired with a laboratory multichannel analysis system.

  4. Acousto-optic replication of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  5. Principles of Quantitative MR Imaging with Illustrated Review of Applicable Modular Pulse Diagrams.

    PubMed

    Mills, Andrew F; Sakai, Osamu; Anderson, Stephan W; Jara, Hernan

    2017-01-01

    Continued improvements in diagnostic accuracy using magnetic resonance (MR) imaging will require development of methods for tissue analysis that complement traditional qualitative MR imaging studies. Quantitative MR imaging is based on measurement and interpretation of tissue-specific parameters independent of experimental design, compared with qualitative MR imaging, which relies on interpretation of tissue contrast that results from experimental pulse sequence parameters. Quantitative MR imaging represents a natural next step in the evolution of MR imaging practice, since quantitative MR imaging data can be acquired using currently available qualitative imaging pulse sequences without modifications to imaging equipment. The article presents a review of the basic physical concepts used in MR imaging and how quantitative MR imaging is distinct from qualitative MR imaging. Subsequently, the article reviews the hierarchical organization of major applicable pulse sequences used in this article, with the sequences organized into conventional, hybrid, and multispectral sequences capable of calculating the main tissue parameters of T1, T2, and proton density. While this new concept offers the potential for improved diagnostic accuracy and workflow, awareness of this extension to qualitative imaging is generally low. This article reviews the basic physical concepts in MR imaging, describes commonly measured tissue parameters in quantitative MR imaging, and presents the major available pulse sequences used for quantitative MR imaging, with a focus on the hierarchical organization of these sequences. © RSNA, 2017.

  6. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.

    PubMed

    Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A

    2014-09-01

    Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Development of high repetition rate nitric oxide planar laser induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Naibo

    This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.

  8. A spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media

    NASA Astrophysics Data System (ADS)

    Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.

    2012-08-01

    In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.

  9. On-Chip AC self-test controller

    DOEpatents

    Flanagan, John D [Rhinebeck, NY; Herring, Jay R [Poughkeepsie, NY; Lo, Tin-Chee [Fishkill, NY

    2009-09-29

    A system for performing AC self-test on an integrated circuit that includes a system clock for normal operation is provided. The system includes the system clock, self-test circuitry, a first and second test register to capture and launch test data in response to a sequence of data pulses, and a logic circuit to be tested. The self-test circuitry includes an AC self-test controller and a clock splitter. The clock splitter generates the sequence of data pulses including a long data capture pulse followed by an at speed data launch pulse and an at speed data capture pulse followed by a long data launch pulse. The at speed data launch pulse and the at speed data capture pulse are generated for a common cycle of the system clock.

  10. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.

    2013-12-16

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSSmore » frequencies.« less

  11. TOPPE: A framework for rapid prototyping of MR pulse sequences.

    PubMed

    Nielsen, Jon-Fredrik; Noll, Douglas C

    2018-06-01

    To introduce a framework for rapid prototyping of MR pulse sequences. We propose a simple file format, called "TOPPE", for specifying all details of an MR imaging experiment, such as gradient and radiofrequency waveforms and the complete scan loop. In addition, we provide a TOPPE file "interpreter" for GE scanners, which is a binary executable that loads TOPPE files and executes the sequence on the scanner. We also provide MATLAB scripts for reading and writing TOPPE files and previewing the sequence prior to hardware execution. With this setup, the task of the pulse sequence programmer is reduced to creating TOPPE files, eliminating the need for hardware-specific programming. No sequence-specific compilation is necessary; the interpreter only needs to be compiled once (for every scanner software upgrade). We demonstrate TOPPE in three different applications: k-space mapping, non-Cartesian PRESTO whole-brain dynamic imaging, and myelin mapping in the brain using inhomogeneous magnetization transfer. We successfully implemented and executed the three example sequences. By simply changing the various TOPPE sequence files, a single binary executable (interpreter) was used to execute several different sequences. The TOPPE file format is a complete specification of an MR imaging experiment, based on arbitrary sequences of a (typically small) number of unique modules. Along with the GE interpreter, TOPPE comprises a modular and flexible platform for rapid prototyping of new pulse sequences. Magn Reson Med 79:3128-3134, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Second-order shaped pulsed for solid-state quantum computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Pinaki

    2008-01-01

    We present the construction and detailed analysis of highly optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semianalytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analyzing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site andmore » nearest-neighbor couplings.« less

  13. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization.

    PubMed

    He, Yugui; Feng, Jiwen; Zhang, Zhi; Wang, Chao; Wang, Dong; Chen, Fang; Liu, Maili; Liu, Chaoyang

    2015-08-01

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for (1)H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo (1)H MRI at 0.35 T.

  14. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yugui; Liu, Chaoyang, E-mail: chyliu@wipm.ac.cn; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071

    2015-08-15

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with highmore » data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately −170 for {sup 1}H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo {sup 1}H MRI at 0.35 T.« less

  15. Light beam range finder

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  16. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  17. Phase incremented echo train acquisition applied to magnetic resonance pore imaging

    NASA Astrophysics Data System (ADS)

    Hertel, S. A.; Galvosas, P.

    2017-02-01

    Efficient phase cycling schemes remain a challenge for NMR techniques if the pulse sequences involve a large number of rf-pulses. Especially complex is the Carr Purcell Meiboom Gill (CPMG) pulse sequence where the number of rf-pulses can range from hundreds to several thousands. Our recent implementation of Magnetic Resonance Pore Imaging (MRPI) is based on a CPMG rf-pulse sequence in order to refocus the effect of internal gradients inherent in porous media. While the spin dynamics for spin- 1 / 2 systems in CPMG like experiments are well understood it is still not straight forward to separate the desired pathway from the spectrum of unwanted coherence pathways. In this contribution we apply Phase Incremented Echo Train Acquisition (PIETA) to MRPI. We show how PIETA offers a convenient way to implement a working phase cycling scheme and how it allows one to gain deeper insights into the amplitudes of undesired pathways.

  18. Composite pulses robust against charge noise and magnetic field noise for universal control of a singlet-triplet qubit

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Barnes, Edwin; Kestner, Jason P.; Bishop, Lev S.; Das Sarma, Sankar

    2013-03-01

    We generalize our SUPCODE pulse sequences for singlet-triplet qubits to correct errors from imperfect control. This yields gates that are simultaneously corrected for both charge noise and magnetic field gradient fluctuations, addressing the two dominant T2* processes. By using this more efficient version of SUPCODE, we are able to introduce this capability while also substantially reducing the overall pulse time compared to the previous sequence. We show that our sequence remains realistic under experimental constraints such as finite bandwidth. This work is supported by LPS-NSA-CMTC, IARPA-MQCO and CNAM.

  19. "FLIPSY"—A New Solvent-Suppression Sequence for Nonexchanging Solutes Offering Improved Integral Accuracy Relative to 1D NOESY

    NASA Astrophysics Data System (ADS)

    Neuhaus, David; Ismail, Ismail M.; Chung, Chun-Wa

    A new method of solvent suppression is described, based on presaturation in combination with volume selection; the name "FLIPSY" is proposed for this sequence. A low-flip-angle pulse is used for excitation, immediately followed by two 180° pulses, each of which is independently phase cycled through Exorcycle. The phase-cycled inversion pulses achieve volume selection in a way similar to the widely used 1D NOESY sequence, thereby largely eliminating any residual "hump" signal from the solvent. The two 180° pulses combine to produce a net 360° rotation for zmagnetization and either a 180° or a 360° rotation for transverse magnetization, depending on the step in the phase cycle. This allows the overall flip angle of the sequence to be controlled by adjusting the length of the initial excitation pulse. It is demonstrated that this property allows one to choose freely a suitable compromise between signal strength and integral accuracy when using FLIPSY, just as when using single-pulse excitation. Such a choice cannot be made when using 1D NOESY, since the effective flip angle in that experiment is always 90°. The application of FLIPSY to recording LC-NMR spectra is demonstrated.

  20. Optimization of identity operation in NMR spectroscopy via genetic algorithm: Application to the TEDOR experiment

    NASA Astrophysics Data System (ADS)

    Manu, V. S.; Veglia, Gianluigi

    2016-12-01

    Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.

  1. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, W. C., E-mail: wcyoung2@wisc.edu; Den Hartog, D. J.; Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality overmore » a pulsing sequence.« less

  2. Theoretical investigations of quantum correlations in NMR multiple-pulse spin-locking experiments

    NASA Astrophysics Data System (ADS)

    Gerasev, S. A.; Fedorova, A. V.; Fel'dman, E. B.; Kuznetsova, E. I.

    2018-04-01

    Quantum correlations are investigated theoretically in a two-spin system with the dipole-dipole interactions in the NMR multiple-pulse spin-locking experiments. We consider two schemes of the multiple-pulse spin-locking. The first scheme consists of π /2-pulses only and the delays between the pulses can differ. The second scheme contains φ-pulses (0<φ <π ) and has equal delays between them. We calculate entanglement for both schemes for an initial separable state. We show that entanglement is absent for the first scheme at equal delays between π /2-pulses at arbitrary temperatures. Entanglement emerges after several periods of the pulse sequence in the second scheme at φ =π /4 at milliKelvin temperatures. The necessary number of the periods increases with increasing temperature. We demonstrate the dependence of entanglement on the number of the periods of the multiple-pulse sequence. Quantum discord is obtained for the first scheme of the multiple-pulse spin-locking experiment at different temperatures.

  3. Multishot versus Single-Shot Pulse Sequences in Very High Field fMRI: A Comparison Using Retinotopic Mapping

    PubMed Central

    Gatenby, J. Christopher; Gore, John C.; Tong, Frank

    2012-01-01

    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI. PMID:22514646

  4. Multishot versus single-shot pulse sequences in very high field fMRI: a comparison using retinotopic mapping.

    PubMed

    Swisher, Jascha D; Sexton, John A; Gatenby, J Christopher; Gore, John C; Tong, Frank

    2012-01-01

    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.

  5. Methods for magnetic resonance analysis using magic angle technique

    DOEpatents

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  6. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  7. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.

    PubMed

    Serša, Igor; Kranjc, Matej; Miklavčič, Damijan

    2015-01-01

    Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.

  8. Simultaneous dynamic characterization of charge and structural motion during ferroelectric switching

    NASA Astrophysics Data System (ADS)

    Kwamen, C.; Rössle, M.; Reinhardt, M.; Leitenberger, W.; Zamponi, F.; Alexe, M.; Bargheer, M.

    2017-10-01

    Monitoring structural changes in ferroelectric thin films during electric field induced polarization switching is important for a full microscopic understanding of the coupled motion of charges, atoms, and domain walls in ferroelectric nanostructures. We combine standard ferroelectric test sequences of switching and nonswitching electrical pulses with time-resolved x-ray diffraction to investigate the structural response of a nanoscale Pb (Zr0.2Ti0.8) O3 ferroelectric oxide capacitor upon charging, discharging, and polarization reversal. We observe that a nonlinear piezoelectric response of the ferroelectric layer develops on a much longer time scale than the R C time constant of the device. The complex atomic motion during the ferroelectric polarization reversal starts with a contraction of the lattice, whereas the expansive piezoelectric response sets in after considerable charge flow due to the applied voltage pulses on the electrodes of the capacitor. Our simultaneous measurements on a working device elucidate and visualize the complex interplay of charge flow and structural motion and challenges theoretical modeling.

  9. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging.

    PubMed

    Epel, Boris; Halpern, Howard J

    2015-05-01

    Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. 20-Hz pulses and other vocalizations of fin whales, Balaenoptera physalus, in the Gulf of California, Mexico.

    PubMed

    Thompson, P O; Findley, L T; Vidal, O

    1992-12-01

    Low-frequency vocalizations were recorded from fin whales, Balaenoptera physalus, in the Gulf of California, Mexico, during three cruises. In March 1985, recorded 20-Hz pulses were in sequences of regular 9-s interpulse intervals. In August 1987, nearly all were in sequences of doublets with alternating 5- and 18-s interpulse intervals. No 20-Hz pulse sequences of any kind were detected in February 1987. The typical pulse modulated from 42 to 20 Hz and its median duration was 0.7 s (1985 data). Most other fin whale sounds were also short tonal pulses averaging 82, 56, and 68 Hz, respectively, for the three cruises; 89% were modulated in frequency, mostly downward. Compared to Atlantic and Pacific Ocean regions, Gulf of California 20-Hz pulses were unique in terms of frequency modulation, interpulse sound levels, and temporal patterns. Fin whales in the Gulf may represent a regional stock revealed by their sound characteristics, a phenomenon previously shown for humpback whales, birds, and fish. Regional differences in fin whale sounds were found in comparisons of Atlantic and Pacific locations.

  11. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    PubMed Central

    Li, Shihong; Chang, Eric Y.; Bae, Won C.; Chung, Christine B.; Hua, Yanqing; Zhou, Yi; Du, Jiang

    2014-01-01

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2*s and/or relative fractions of short and long T2*s. Results: For all bone samples UTE T2* signal decay showed bicomponent behavior. A higher short T2* fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2* fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2* fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2* components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2*s and relative fractions can be assessed using UTE bicomponent analysis. Long T2* components are affected more by long T2 saturation and IR pulses, and short T2* components are affected more by fat saturation pulses. PMID:24506644

  12. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shihong; Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040; Yancheng Medical College, Jiangsu

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal modelsmore » were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can be assessed using UTE bicomponent analysis. Long T2{sup *} components are affected more by long T2 saturation and IR pulses, and short T2{sup *} components are affected more by fat saturation pulses.« less

  13. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequencemore » is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using minimal external hardware and software modification through a single input channel, while still recording cardiac gating signals.« less

  14. Cardiovascular magnetic resonance physics for clinicians: part II

    PubMed Central

    2012-01-01

    This is the second of two reviews that is intended to cover the essential aspects of cardiovascular magnetic resonance (CMR) physics in a way that is understandable and relevant to clinicians using CMR in their daily practice. Starting with the basic pulse sequences and contrast mechanisms described in part I, it briefly discusses further approaches to accelerate image acquisition. It then continues by showing in detail how the contrast behaviour of black blood fast spin echo and bright blood cine gradient echo techniques can be modified by adding rf preparation pulses to derive a number of more specialised pulse sequences. The simplest examples described include T2-weighted oedema imaging, fat suppression and myocardial tagging cine pulse sequences. Two further important derivatives of the gradient echo pulse sequence, obtained by adding preparation pulses, are used in combination with the administration of a gadolinium-based contrast agent for myocardial perfusion imaging and the assessment of myocardial tissue viability using a late gadolinium enhancement (LGE) technique. These two imaging techniques are discussed in more detail, outlining the basic principles of each pulse sequence, the practical steps required to achieve the best results in a clinical setting and, in the case of perfusion, explaining some of the factors that influence current approaches to perfusion image analysis. The key principles of contrast-enhanced magnetic resonance angiography (CE-MRA) are also explained in detail, especially focusing on timing of the acquisition following contrast agent bolus administration, and current approaches to achieving time resolved MRA. Alternative MRA techniques that do not require the use of an endogenous contrast agent are summarised, and the specialised pulse sequence used to image the coronary arteries, using respiratory navigator gating, is described in detail. The article concludes by explaining the principle behind phase contrast imaging techniques which create images that represent the phase of the MR signal rather than the magnitude. It is shown how this principle can be used to generate velocity maps by designing gradient waveforms that give rise to a relative phase change that is proportional to velocity. Choice of velocity encoding range and key pitfalls in the use of this technique are discussed. PMID:22995744

  15. B1 gradient coherence selection using a tapered stripline.

    PubMed

    van Meerten, S G J; Tijssen, K C H; van Bentum, P J M; Kentgens, A P M

    2018-01-01

    Pulsed-field gradients are common in modern liquid state NMR pulse sequences. They are often used instead of phase cycles for the selection of coherence pathways, thereby decreasing the time required for the NMR experiment. Soft off-resonance pulses with a B 1 gradient result in a spatial encoding similar to that created by pulsed-field (B 0 ) gradients. In this manuscript we show that pulse sequences with pulsed-field gradients can easily be converted to one which uses off-resonance B 1 field gradient (OFFBEAT) pulses. The advantage of B 1 gradient pulses for coherence selection is that the chemical shift evolution during the pulses is (partially) suppressed. Therefore no refocusing echos are required to correct for evolution during the gradient pulses. A tapered stripline is shown to be a convenient tool for creating a well-defined gradient in the B 1 field strength. B 1 gradient coherence selection using a tapered stripline is a simple and cheap alternative to B 0 pulsed-field gradients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Method and apparatus for characterizing reflected ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1991-01-01

    The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.

  17. Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation.

    PubMed

    Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-01-12

    Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.

  18. Programmable Pulse Generator

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Dart, J. A.

    1982-01-01

    New pulse generator programmed to produce pulses from several ports at different pulse lengths and intervals and virtually any combination and sequence. Unit contains a 256-word-by-16-bit memory loaded with instructions either manually or by computer. Once loaded, unit operates independently of computer.

  19. Passive and active pulse stacking scheme for pulse shaping

    DOEpatents

    Harney, Robert C.; Schipper, John F.

    1977-01-01

    Apparatus and method for producing a sequence of radiation pulses with a pulse envelope of time variation which is controllable by an external electromagnetic signal applied to an active medium or by a sectored reflector, through which the radiation passes.

  20. The set of triple-resonance sequences with a multiple quantum coherence evolution period

    NASA Astrophysics Data System (ADS)

    Koźmiński, Wiktor; Zhukov, Igor

    2004-12-01

    The new pulse sequence building block that relies on evolution of heteronuclear multiple quantum coherences is proposed. The particular chemical shifts are obtained in multiple quadrature, using linear combinations of frequencies taken from spectra measured at different quantum levels. The pulse sequences designed in this way consist of small number of RF-pulses, are as short as possible, and could be applied for determination of coupling constants. The examples presented involve 2D correlations H NCO, H NCA, H N(CO) CA, and H(N) COCA via heteronuclear zero and double coherences, as well as 2D H NCOCA technique with simultaneous evolution of triple and three distinct single quantum coherences. Applications of the new sequences are presented for 13C, 15N-labeled ubiquitin.

  1. Whole genome sequence revealed the fine transmission map of carbapenem-resistant Klebsiella pneumonia isolates within a nosocomial outbreak.

    PubMed

    Sui, Wenjun; Zhou, Haijian; Du, Pengcheng; Wang, Lijun; Qin, Tian; Wang, Mei; Ren, Hongyu; Huang, Yanfei; Hou, Jing; Chen, Chen; Lu, Xinxin

    2018-01-01

    Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major cause of nosocomial infections worldwide. The transmission route of CRKP isolates within an outbreak is rarely described. This study aimed to reveal the molecular characteristics and transmission route of CRKP isolates within an outbreak of nosocomial infection. Collecting case information, active screening and targeted environmental monitoring were carried out. The antibiotic susceptibility, drug-resistant genes, molecular subtype and whole genome sequence of CRKP strains were analyzed. Between October and December 2011, 26 CRKP isolates were collected from eight patients in a surgical intensive care unit and subsequent transfer wards of Beijing Tongren hospital, China. All 26 isolates harbored bla KPC-2 , bla SHV-1 , and bla CTX-M-15 genes, had the same or similar pulsed-field gel electrophoresis patterns, and belonged to the sequence type 11 (ST11) clone. By comprehensive consideration of genomic and epidemiological information, a putative transmission map was constructed, including identifying one case as an independent event distinct from the other seven cases, and revealing two transmissions starting from the same case. This study provided the first report confirming an outbreak caused by K. pneumoniae ST11 clone co-harboring the bla KPC-2 , bla CTX-M-15 , and bla SHV-1 genes, and suggested that comprehensive consideration of genomic and epidemiological data can yield a fine transmission map of an outbreak and facilitate the control of nosocomial transmission.

  2. Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants.

    PubMed

    Fritz, Jan; Ahlawat, Shivani; Demehri, Shadpour; Thawait, Gaurav K; Raithel, Esther; Gilson, Wesley D; Nittka, Mathias

    2016-10-01

    The aim of this study was to prospectively test the hypothesis that a compressed sensing-based slice encoding for metal artifact correction (SEMAC) turbo spin echo (TSE) pulse sequence prototype facilitates high-resolution metal artifact reduction magnetic resonance imaging (MRI) of cobalt-chromium knee arthroplasty implants within acquisition times of less than 5 minutes, thereby yielding better image quality than high-bandwidth (BW) TSE of similar length and similar image quality than lengthier SEMAC standard of reference pulse sequences. This prospective study was approved by our institutional review board. Twenty asymptomatic subjects (12 men, 8 women; mean age, 56 years; age range, 44-82 years) with total knee arthroplasty implants underwent MRI of the knee using a commercially available, clinical 1.5 T MRI system. Two compressed sensing-accelerated SEMAC prototype pulse sequences with 8-fold undersampling and acquisition times of approximately 5 minutes each were compared with commercially available high-BW and SEMAC pulse sequences with acquisition times of approximately 5 minutes and 11 minutes, respectively. For each pulse sequence type, sagittal intermediate-weighted (TR, 3750-4120 milliseconds; TE, 26-28 milliseconds; voxel size, 0.5 × 0.5 × 3 mm) and short tau inversion recovery (TR, 4010 milliseconds; TE, 5.2-7.5 milliseconds; voxel size, 0.8 × 0.8 × 4 mm) were acquired. Outcome variables included image quality, display of the bone-implant interfaces and pertinent knee structures, artifact size, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Statistical analysis included Friedman, repeated measures analysis of variances, and Cohen weighted k tests. Bonferroni-corrected P values of 0.005 and less were considered statistically significant. Image quality, bone-implant interfaces, anatomic structures, artifact size, SNR, and CNR parameters were statistically similar between the compressed sensing-accelerated SEMAC prototype and SEMAC commercial pulse sequences. There was mild blur on images of both SEMAC sequences when compared with high-BW images (P < 0.001), which however did not impair the assessment of knee structures. Metal artifact reduction and visibility of central knee structures and bone-implant interfaces were good to very good and significantly better on both types of SEMAC than on high-BW images (P < 0.004). All 3 pulse sequences showed peripheral structures similarly well. The implant artifact size was 46% to 51% larger on high-BW images when compared with both types of SEMAC images (P < 0.0001). Signal-to-noise ratios and CNRs of fat tissue, tendon tissue, muscle tissue, and fluid were statistically similar on intermediate-weighted MR images of all 3 pulse sequence types. On short tau inversion recovery images, the SNRs of tendon tissue and the CNRs of fat and fluid, fluid and muscle, as well as fluid and tendon were significantly higher on SEMAC and compressed sensing SEMAC images (P < 0.005, respectively). We accept the hypothesis that prospective compressed sensing acceleration of SEMAC is feasible for high-quality metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants in less than 5 minutes and yields better quality than high-BW TSE and similarly high quality than lengthier SEMAC pulse sequences.

  3. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  4. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  5. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Manu, V. S.; Veglia, Gianluigi

    2015-11-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.

  6. Acoustics and hydrodynamics of a drop impact on a water surface

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2017-01-01

    Hydrodynamic and acoustic processes associated with a drop impact on a water surface were studied experimentally. Acoustic signals were detected underwater (with a hydrophone) and in air (with a microphone), the flow pattern was recorded with a high-speed camera, and the surface perturbation was monitored with a laser detector. The dimensionless parameters of flows (Reynolds, Froude, and Weber numbers) induced by the impact varied with fall height within the ranges of 5000 < Re < 20000, 20 < Fr < 350, and 70 < We < 1000. The sequence of acoustic signals incorporated an impact pulse at the moment of contact between a drop and the surface and a series of acoustic packets attributable to the resonance emission of gas cavities. The top of the impact pulse, which was detected clearly in the entire fall height range, had a complex structure with short high-frequency and longer low-frequency oscillations. The total number and the parameters of emitted acoustic packets depended to a considerable extent on the fall height. The cases of lacking, one-time, and repeated emission of packets were noted in a series of experiments performed at a constant fall height. The analysis of video data showed that the signal variability was induced by considerable differences in the scenarios of water entry of a drop, which assumed an ovoid shape at the end trajectory segment, in the mentioned experiments.

  7. Enhanced diffusion weighting generated by selective adiabatic pulse trains

    NASA Astrophysics Data System (ADS)

    Sun, Ziqi; Bartha, Robert

    2007-09-01

    A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1-Ph-6) were studied on a 4 T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3-0.8 mM) water solutions (Ph-2-Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H 2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2-Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant.

  8. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  9. Simulation of the excitation of quasi-plane wake waves in a plasma by a resonant sequence of laser pulses with a variable envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinnikova, E. I.; Levchenko, V. D.

    2008-04-15

    Results are presented from full-scale numerical simulations of the excitation of wake waves by a sequence of weakly relativistic laser pulses in a subcritical plasma. Computations were carried out with a 2D3V version of the SUR-CA code that is based on the local-recursive nonlocal-asynchronous algorithm of the particle-in-cell method. The parameters of a train of laser pulses were chosen to correspond to the resonant excitation of the wake field. The curvature of the envelope of the pulses was chosen to depend on the number of the pulse in the train. Numerical simulations showed that there are plane waves during themore » first period of the plasma wave behind the pulse train.« less

  10. A Selective-Echo Method for Chemical-Shift Imaging of Two-Component Systems

    NASA Astrophysics Data System (ADS)

    Gerald, Rex E., II; Krasavin, Anatoly O.; Botto, Robert E.

    A simple and effective method for selectively imaging either one of two chemical species in a two-component system is presented and demonstrated experimentally. The pulse sequence employed, selective- echo chemical- shift imaging (SECSI), is a hybrid (frequency-selective/ T1-contrast) technique that is executed in a short period of time, utilizes the full Boltzmann magnetization of each chemical species to form the corresponding image, and requires only hard pulses of quadrature phase. This approach provides a direct and unambiguous representation of the spatial distribution of the two chemical species. In addition, the performance characteristics and the advantages of the SECSI sequence are compared on a common basis to those of other pulse sequences.

  11. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence

    NASA Astrophysics Data System (ADS)

    Furrer, Julien; Kramer, Frank; Marino, John P.; Glaser, Steffen J.; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding ˜10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  12. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence.

    PubMed

    Furrer, Julien; Kramer, Frank; Marino, John P; Glaser, Steffen J; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding approximately 10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  13. Powerful timing generator using mono-chip timers: An application to pulsed nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Saint-Jalmes, Hervé; Barjhoux, Yves

    1982-01-01

    We present a 10 line-7 MHz timing generator built on a single board around two LSI timer chips interfaced to a 16-bit microcomputer. Once programmed from the host computer, this device is able to generate elaborate logic sequences on its 10 output lines without further interventions from the CPU. Powerful architecture introduces new possibilities over conventional memory-based timing simulators and word generators. Loop control on a given sequence of events, loop nesting, and various logic combinations can easily be implemented through a software interface, using a symbolic command language. Typical applications of such a device range from development, emulation, and test of integrated circuits, circuit boards, and communication systems to pulse-controlled instrumentation (radar, ultrasonic systems). A particular application to a pulsed Nuclear Magnetic Resonance (NMR) spectrometer is presented, along with customization of the device for generating four-channel radio-frequency pulses and the necessary sequence for subsequent data acquisition.

  14. Optimization of Pulse Sequences in MRI Scheme

    NASA Astrophysics Data System (ADS)

    Roy, Subhankar; Hu, Jianping; Ummal Momeen, M.

    2018-04-01

    Magnetic resonance imaging (MRI) has a wide range of applications towards imaging the human body. In this work we have solved the Bloch equations for different magnetic field gradients along the transverse direction. We have modified the magnetic field components based on the relaxation terms and solved the field gradient as well as the field components for both off –pulse and on -pulse configurations. In particular we focus on different pulse sequences and optimize them to realize the best possible output. We have analyzed the field components along transverse direction because the rotation of the object to form the image by emitting signal is along the xy plane.

  15. An improved pulse sequence and inversion algorithm of T2 spectrum

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Chen, Hua; Fan, Yiren; Liu, Juntao; Cai, Jianchao; Liu, Jianyu

    2017-03-01

    The nuclear magnetic resonance transversal relaxation time is widely applied in geological prospecting, both in laboratory and downhole environments. However, current methods used for data acquisition and inversion should be reformed to characterize geological samples with complicated relaxation components and pore size distributions, such as samples of tight oil, gas shale, and carbonate. We present an improved pulse sequence to collect transversal relaxation signals based on the CPMG (Carr, Purcell, Meiboom, and Gill) pulse sequence. The echo spacing is not constant but varies in different windows, depending on prior knowledge or customer requirements. We use the entropy based truncated singular value decomposition (TSVD) to compress the ill-posed matrix and discard small singular values which cause the inversion instability. A hybrid algorithm combining the iterative TSVD and a simultaneous iterative reconstruction technique is implemented to reach the global convergence and stability of the inversion. Numerical simulations indicate that the improved pulse sequence leads to the same result as CPMG, but with lower echo numbers and computational time. The proposed method is a promising technique for geophysical prospecting and other related fields in future.

  16. Adjustable shunt valve-induced magnetic resonance imaging artifact: a comparative study.

    PubMed

    Toma, Ahmed K; Tarnaris, Andrew; Grieve, Joan P; Watkins, Laurence D; Kitchen, Neil D

    2010-07-01

    In this paper, the authors' goal was to compare the artifact induced by implanted (in vivo) adjustable shunt valves in spin echo, diffusion weighted (DW), and gradient echo MR imaging pulse sequences. The MR images obtained in 8 patients with proGAV and 6 patients with Strata II adjustable shunt valves were assessed for artifact areas in different planes as well as the total volume for different pulse sequences. Artifacts induced by the Strata II valve were significantly larger than those induced by proGAV valve in spin echo MR imaging pulse sequence (29,761 vs 2450 mm(3) on T2-weighted fast spin echo, p = 0.003) and DW images (100,138 vs 38,955 mm(3), p = 0.025). Artifacts were more marked on DW MR images than on spin echo pulse sequence for both valve types. Adjustable valve-induced artifacts can conceal brain pathology on MR images. This should influence the choice of valve implantation site and the type of valve used. The effect of artifacts on DW images should be highlighted pending the development of less MR imaging artifact-inducing adjustable shunt valves.

  17. Method and apparatus for pulse stacking

    DOEpatents

    Harney, Robert C.

    1977-01-01

    An active pulse stacking system including an etalon and an electro-optical modulator apparatus combined with a pulse-forming network capable of forming and summing a sequence of time-delayed optical waveforms arising from, for example, a single laser pulse. The Pockels cell pulse stacker may attain an efficiency of about 2.6% while providing a controllable faster-than-exponential time rise in transmitted pulse intensity.

  18. SU-E-T-558: An Exploratory RF Pulse Sequence Technique Used to Induce Differential Heating in Tissues Containing Iron Oxide Nanoparticles for a Possible Hyperthermic Adjuvant Effect to Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, S; Ionascu, D; Wilson, G

    2014-06-01

    Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitationmore » RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.« less

  19. Magnetic flux density measurement with balanced steady state free precession pulse sequence for MREIT: a simulation study.

    PubMed

    Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol

    2009-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.

  20. A multislice gradient echo pulse sequence for CEST imaging.

    PubMed

    Dixon, W Thomas; Hancu, Ileana; Ratnakar, S James; Sherry, A Dean; Lenkinski, Robert E; Alsop, David C

    2010-01-01

    Chemical exchange-dependent saturation transfer and paramagnetic chemical exchange-dependent saturation transfer are agent-mediated contrast mechanisms that depend on saturating spins at the resonant frequency of the exchangeable protons on the agent, thereby indirectly saturating the bulk water. In general, longer saturating pulses produce stronger chemical and paramagnetic exchange-dependent saturation transfer effects, with returns diminishing for pulses longer than T1. This could make imaging slow, so one approach to chemical exchange-dependent saturation transfer imaging has been to follow a long, frequency-selective saturation period by a fast imaging method. A new approach is to insert a short frequency-selective saturation pulse before each spatially selective observation pulse in a standard, two-dimensional, gradient-echo pulse sequence. Being much less than T1 apart, the saturation pulses have a cumulative effect. Interleaved, multislice imaging is straightforward. Observation pulses directed at one slice did not produce observable, unintended chemical exchange-dependent saturation transfer effects in another slice. Pulse repetition time and signal-to noise ratio increase in the normal way as more slices are imaged simultaneously. Copyright (c) 2009 Wiley-Liss, Inc.

  1. SU-F-J-112: Clinical Feasibility Test of An RF Pulse-Based MRI Method for the Quantitative Fat-Water Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, S; Wloch, J; Pirkola, M

    Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations havemore » been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does not have to depend on predefined TE settings. Here, the clinical feasibility of this method is verified in brain tumor patients by combining the PROD pulse with several sequences. Methods: In a clinical 3T MRI, the PROD pulse was combined with turbo spin echo (e.g. TR=1500, TE=16 or 60, ETL=15) or turbo field echo (e.g. TR=5.6, TE=2.8, ETL=12) sequences without specifying TE values. Results: The fat-water segmentation was possible without having to set specific TE values. Conclusion: The PROD pulse method is clinically feasible. Although not yet combined with UTE sequences in our laboratory, the method is potentially compatible with UTE sequences, and thus, might be useful to directly segment fat, water, bone and air.« less

  2. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.

    PubMed

    Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey

    2015-11-01

    Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.

  3. Non-Cartesian Balanced SSFP Pulse Sequences for Real-Time Cardiac MRI

    PubMed Central

    Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.

    2015-01-01

    Purpose To develop a new spiral-in/out balanced steady-state free precession (bSSFP) pulse sequence for real-time cardiac MRI and compare it with radial and spiral-out techniques. Methods Non-Cartesian sampling strategies are efficient and robust to motion and thus have important advantages for real-time bSSFP cine imaging. This study describes a new symmetric spiral-in/out sequence with intrinsic gradient moment compensation and SSFP refocusing at TE=TR/2. In-vivo real-time cardiac imaging studies were performed to compare radial, spiral-out, and spiral-in/out bSSFP pulse sequences. Furthermore, phase-based fat-water separation taking advantage of the refocusing mechanism of the spiral-in/out bSSFP sequence was also studied. Results The image quality of the spiral-out and spiral-in/out bSSFP sequences was improved with off-resonance and k-space trajectory correction. The spiral-in/out bSSFP sequence had the highest SNR, CNR, and image quality ratings, with spiral-out bSSFP sequence second in each category and the radial bSSFP sequence third. The spiral-in/out bSSFP sequence provides separated fat and water images with no additional scan time. Conclusions In this work a new spiral-in/out bSSFP sequence was developed and tested. The superiority of spiral bSSFP sequences over the radial bSSFP sequence in terms of SNR and reduced artifacts was demonstrated in real-time MRI of cardiac function without image acceleration. PMID:25960254

  4. Further steps toward direct magnetic resonance (MR) imaging detection of neural action currents: optimization of MR sensitivity to transient and weak currents in a conductor.

    PubMed

    Pell, Gaby S; Abbott, David F; Fleming, Steven W; Prichard, James W; Jackson, Graeme D

    2006-05-01

    The characteristics of an MRI technique that could be used for direct detection of neuronal activity are investigated. It was shown that magnitude imaging using echo planar imaging can detect transient local currents. The sensitivity of this method was thoroughly investigated. A partial k-space EPI acquisition with homodyne reconstruction was found to increase the signal change. A unique sensitivity to the position of the current pulse within the imaging sequence was demonstrated with the greatest signal change occurring when the current pulse coincides with the acquisition of the center lines of k-space. The signal change was shown to be highly sensitive to the spatial position of the current conductor relative to the voxel. Furthermore, with the use of optimization of spatial and temporal placement of the current pulse, the level of signal change obtained at this lower limit of current detectability was considerably magnified. It was possible to detect a current of 1.7 microA applied for 20 ms with an imaging time of 1.8 min. The level of sensitivity observed in our study brings us closer to that theoretically required for the detection of action currents in nerves. Copyright (c) 2006 Wiley-Liss, Inc.

  5. Multi-mJ energy extraction using Yb-fiber based coherent pulse stacking amplification of fs pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruppe, John M.; Pei, Hanzhang; Chen, Siyun; Sheikhsofla, Morteza; Wilcox, Russell B.; Nees, John A.; Galvanauskas, Almantas

    2017-03-01

    We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10's of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited 300 fs duration using a standard diffraction-grating pulse compressor.

  6. Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: application on BABA and C7 radiofrequency pulse sequences.

    PubMed

    Mananga, Eugene S; Reid, Alicia E; Charpentier, Thibault

    2012-02-01

    This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λ(n)(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Efficient theory of dipolar recoupling in–solid state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: Application on BABA and C7 radiofrequency pulse sequences

    PubMed Central

    Reid, Alicia E.; Charpentier, Thibault

    2013-01-01

    This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λn(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. PMID:22197191

  8. Limiting vibration in systems with constant amplitude actuators through command preshaping. M.S Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Rogers, Keith Eric

    1994-01-01

    The basic concepts of command preshaping were taken and adapted to the framework of systems with constant amplitude (on-off) actuators. In this context, pulse sequences were developed which help to attenuate vibration in flexible systems with high robustness to errors in frequency identification. Sequences containing impulses of different magnitudes were approximated by sequences containing pulses of different durations. The effects of variation in pulse width on this approximation were examined. Sequences capable of minimizing loads induced in flexible systems during execution of commands were also investigated. The usefulness of these techniques in real-world situations was verified by application to a high fidelity simulation of the space shuttle. Results showed that constant amplitude preshaping techniques offer a substantial improvement in vibration reduction over both the standard and upgraded shuttle control methods and may be mission enabling for use of the shuttle with extremely massive payloads.

  9. Eye safety analysis for non-uniform retinal scanning laser trajectories

    NASA Astrophysics Data System (ADS)

    Schelinski, Uwe; Dallmann, Hans-Georg; Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Reinig, Peter; Woittennek, Franziska

    2016-03-01

    Scanning the retinae of the human eyes with a laser beam is an approved diagnosis method in ophthalmology; moreover the retinal blood vessels form a biometric modality for identifying persons. Medical applied Scanning Laser Ophthalmoscopes (SLOs) usually contain galvanometric mirror systems to move the laser spot with a defined speed across the retina. Hence, the load of laser radiation is uniformly distributed and eye safety requirements can be easily complied. Micro machined mirrors also known as Micro Electro Mechanical Systems (MEMS) are interesting alternatives for designing retina scanning systems. In particular double-resonant MEMS are well suited for mass fabrication at low cost. However, their Lissajous-shaped scanning figure requires a particular analysis and specific measures to meet the requirements for a Class 1 laser device, i.e. eye-safe operation. The scanning laser spot causes a non-uniform pulsing radiation load hitting the retinal elements within the field of view (FoV). The relevant laser safety standards define a smallest considerable element for eye-related impacts to be a point source that is visible with an angle of maximum 1.5 mrad. For non-uniform pulsing expositions onto retinal elements the standard requires to consider all particular impacts, i.e. single pulses, pulse sequences in certain time intervals and cumulated laser radiation loads. As it may be expected, a Lissajous scanning figure causes the most critical radiation loads at its edges and borders. Depending on the applied power the laser has to be switched off here to avoid any retinal injury.

  10. Jump-and-return sandwiches: A new family of binomial-like selective inversion sequences with improved performance

    NASA Astrophysics Data System (ADS)

    Brenner, Tom; Chen, Johnny; Stait-Gardner, Tim; Zheng, Gang; Matsukawa, Shingo; Price, William S.

    2018-03-01

    A new family of binomial-like inversion sequences, named jump-and-return sandwiches (JRS), has been developed by inserting a binomial-like sequence into a standard jump-and-return sequence, discovered through use of a stochastic Genetic Algorithm optimisation. Compared to currently used binomial-like inversion sequences (e.g., 3-9-19 and W5), the new sequences afford wider inversion bands and narrower non-inversion bands with an equal number of pulses. As an example, two jump-and-return sandwich 10-pulse sequences achieved 95% inversion at offsets corresponding to 9.4% and 10.3% of the non-inversion band spacing, compared to 14.7% for the binomial-like W5 inversion sequence, i.e., they afforded non-inversion bands about two thirds the width of the W5 non-inversion band.

  11. Broadband excitation in nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tycko, Robert

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along withmore » computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The second additional topic is the construction of iterative schemes for narrowband population inversion. The use of sequences that invert spin populations only over a narrow range of rf field amplitudes to spatially localize NMR signals in an rf field gradient is discussed.« less

  12. Anomalous Diffusion Measured by a Twice-Refocused Spin Echo Pulse Sequence: Analysis Using Fractional Order Calculus

    PubMed Central

    2011-01-01

    Purpose To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. Materials and Methods The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2,600 s/mm2. For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β and μ values and the goodness-of-fit in three specific regions of interest (ROI) in white matter, gray matter, and cerebrospinal fluid were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. Results The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. Conclusion The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. PMID:21509877

  13. Anomalous diffusion measured by a twice-refocused spin echo pulse sequence: analysis using fractional order calculus.

    PubMed

    Gao, Qing; Srinivasan, Girish; Magin, Richard L; Zhou, Xiaohong Joe

    2011-05-01

    To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2600 s/mm(2). For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β, and μ values and the goodness-of-fit in three specific regions of interest (ROIs) in white matter, gray matter, and cerebrospinal fluid, respectively, were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. Copyright © 2011 Wiley-Liss, Inc.

  14. Narrowband signal detection in the SETI field test

    NASA Technical Reports Server (NTRS)

    Cullers, D. Kent; Deans, Stanley R.

    1986-01-01

    Various methods for detecting narrow-band signals are evaluated. The characteristics of synchronized and unsynchronized pulses are examined. Synchronous, square law, regular pulse, and the general form detections are discussed. The CW, single pulse, synchronous, and four pulse detections are analyzed in terms of false alarm rate and threshold relative to average noise power. Techniques for saving memory and retaining sensitivity are described. Consideration is given to nondrifting CW detection, asynchronous pulse detection, interpolative and extrapolative pulse detectors, and finite and infinite pulses.

  15. Dynamical decoupling of local transverse random telegraph noise in a two-qubit gate

    NASA Astrophysics Data System (ADS)

    D'Arrigo, A.; Falci, G.; Paladino, E.

    2015-10-01

    Achieving high-fidelity universal two-qubit gates is a central requisite of any implementation of quantum information processing. The presence of spurious fluctuators of various physical origin represents a limiting factor for superconducting nanodevices. Operating qubits at optimal points, where the qubit-fluctuator interaction is transverse with respect to the single qubit Hamiltonian, considerably improved single qubit gates. Further enhancement has been achieved by dynamical decoupling (DD). In this article we investigate DD of transverse random telegraph noise acting locally on each of the qubits forming an entangling gate. Our analysis is based on the exact numerical solution of the stochastic Schrödinger equation. We evaluate the gate error under local periodic, Carr-Purcell and Uhrig DD sequences. We find that a threshold value of the number, n, of pulses exists above which the gate error decreases with a sequence-specific power-law dependence on n. Below threshold, DD may even increase the error with respect to the unconditioned evolution, a behaviour reminiscent of the anti-Zeno effect.

  16. Random noise effects in pulse-mode digital multilayer neural networks.

    PubMed

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.

  17. gr-MRI: A software package for magnetic resonance imaging using software defined radios

    NASA Astrophysics Data System (ADS)

    Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.

  18. Optical emission and nanoparticle generation in Al plasmas using ultrashort laser pulses temporally optimized by real-time spectroscopic feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillermin, M.; Colombier, J. P.; Audouard, E.

    2010-07-15

    With an interest in pulsed laser deposition and remote spectroscopy techniques, we explore here the potential of laser pulses temporally tailored on ultrafast time scales to control the expansion and the excitation degree of various ablation products including atomic species and nanoparticulates. Taking advantage of automated pulse-shaping techniques, an adaptive procedure based on spectroscopic feedback is applied to regulate the irradiance and enhance the optical emission of monocharged aluminum ions with respect to the neutral signal. This leads to optimized pulses usually consisting in a series of femtosecond peaks distributed on a longer picosecond sequence. The ablation features induced bymore » the optimized pulse are compared with those determined by picosecond pulses generated by imposed second-order dispersion or by double pulse sequences with adjustable picosecond separation. This allows to analyze the influence of fast- and slow-varying envelope features on the material heating and the resulting plasma excitation degree. Using various optimal pulse forms including designed asymmetric shapes, we analyze the establishment of surface pre-excitation that enables conditions of enhanced radiation coupling. Thin films elaborated by unshaped femtosecond laser pulses and by optimized, stretched, or double pulse sequences are compared, indicating that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. A thermodynamic scenario involving supercritical heating is proposed to explain enhanced ionization rates and lower particulates density for optimal pulses. Numerical one-dimensional hydrodynamic simulations for the excited matter support the interpretation of the experimental results in terms of relative efficiency of various relaxation paths for excited matter above or below the thermodynamic stability limits. The calculation results underline the role of the temperature and density gradients along the ablated plasma plume which lead to the spatial distinct locations of excited species. Moreover, the nanoparticles sizes are computed based on liquid layer ejection followed by a Rayleigh and Taylor instability decomposition, in good agreement with the experimental findings.« less

  19. Multiple-rotor-cycle 2D PASS experiments with applications to (207)Pb NMR spectroscopy.

    PubMed

    Vogt, F G; Gibson, J M; Aurentz, D J; Mueller, K T; Benesi, A J

    2000-03-01

    Thetwo-dimensional phase-adjusted spinning sidebands (2D PASS) experiment is a useful technique for simplifying magic-angle spinning (MAS) NMR spectra that contain overlapping or complicated spinning sideband manifolds. The pulse sequence separates spinning sidebands by their order in a two-dimensional experiment. The result is an isotropic/anisotropic correlation experiment, in which a sheared projection of the 2D spectrum effectively yields an isotropic spectrum with no sidebands. The original 2D PASS experiment works best at lower MAS speeds (1-5 kHz). At higher spinning speeds (8-12 kHz) the experiment requires higher RF power levels so that the pulses do not overlap. In the case of nuclei such as (207)Pb, a large chemical shift anisotropy often yields too many spinning sidebands to be handled by a reasonable 2D PASS experiment unless higher spinning speeds are used. Performing the experiment at these speeds requires fewer 2D rows and a correspondingly shorter experimental time. Therefore, we have implemented PASS pulse sequences that occupy multiple MAS rotor cycles, thereby avoiding pulse overlap. These multiple-rotor-cycle 2D PASS sequences are intended for use in high-speed MAS situations such as those required by (207)Pb. A version of the multiple-rotor-cycle 2D PASS sequence that uses composite pulses to suppress spectral artifacts is also presented. These sequences are demonstrated on (207)Pb test samples, including lead zirconate, a perovskite-phase compound that is representative of a large class of interesting materials. Copyright 2000 Academic Press.

  20. Direct generation of all-optical random numbers from optical pulse amplitude chaos.

    PubMed

    Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong

    2012-02-13

    We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.

  1. Collaborative development for setup, execution, sharing and analytics of complex NMR experiments.

    PubMed

    Irvine, Alistair G; Slynko, Vadim; Nikolaev, Yaroslav; Senthamarai, Russell R P; Pervushin, Konstantin

    2014-02-01

    Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimisation of NMR experiments has for many years been performed locally, with implementations often specific to an individual spectrometer. Furthermore, these optimised experiments are normally retained solely for the use of an individual laboratory, spectrometer or even single user. Here we introduce a web-based service that provides a database for the deposition, annotation and optimisation of NMR experiments. The application uses a Wiki environment to enable the collaborative development of pulse sequences. It also provides a flexible mechanism to automatically generate NMR experiments from deposited sequences. Multidimensional NMR experiments of proteins and other macromolecules consume significant resources, in terms of both spectrometer time and effort required to analyse the results. Systematic analysis of simulated experiments can enable optimal allocation of NMR resources for structural analysis of proteins. Our web-based application (http://nmrplus.org) provides all the necessary information, includes the auxiliaries (waveforms, decoupling sequences etc.), for analysis of experiments by accurate numerical simulation of multidimensional NMR experiments. The online database of the NMR experiments, together with a systematic evaluation of their sensitivity, provides a framework for selection of the most efficient pulse sequences. The development of such a framework provides a basis for the collaborative optimisation of pulse sequences by the NMR community, with the benefits of this collective effort being available to the whole community. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation.

    PubMed

    Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-10-05

    Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations - either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation.

  3. Planar MEMS bio-chip for recording ion-channel currents in biological cells

    NASA Astrophysics Data System (ADS)

    Pandey, Santosh; Ferdous, Zannatul; White, Marvin H.

    2003-10-01

    We describe a planar MEMS silicon structure to record ion-channel currents in biological cells. The conventional method of performing an electrophysiological experiment, 'patch-clamping,' employs a glass micropipette. Despite careful treatments of the micropipette tip, such as fire polishing and surface coating, the latter is a source of thermal noise because of its inherent, tapered, conical structure, which gives rise to a large pipette resistance. This pipette resistance, when coupled with the self-capacitance of the biological cell, limits the available bandwidth and processing of fast transient, ion channel current pulses. In this work, we reduce considerably the pipette resistance with a planar micropipette on a silicon chip to permit the resolution of sub-millisecond, ion-channel pulses. We discuss the design topology of the device, describe the fabrication sequence, and highlight important critical issues. The design of an integrated on-chip CMOS instrumentation amplifier is described, which has a low-noise front-end, input-offset cancellation, correlated double sampling (CDS), and an ultra-high gain in the order of 1012V/A.

  4. Enhanced photon indistinguishability in pulse-driven quantum emitters

    NASA Astrophysics Data System (ADS)

    Fotso, Herbert F.

    2017-04-01

    Photon indistinguishability is an essential ingredient for the realization of scalable quantum networks. For quantum bits in the solid state, this is hindered by spectral diffusion, the uncontrolled random drift of the emission/absorption spectrum as a result of fluctuations in the emitter's environment. We study optical properties of a quantum emitter in the solid state when it is driven by a periodic sequence of optical pulses with finite detuning with respect to the emitter. We find that a pulse sequence can effectively mitigate spectral diffusion and enhance photon indistinguishability. The bulk of the emission occurs at a set target frequency; Photon indistinguishability is enhanced and is restored to its optimal value after every even pulse. Also, for moderate values of the sequence period and of the detuning, both the emission spectrum and the absorption spectrum have lineshapes with little dependence on the detuning. We describe the solution and the evolution of the emission/absorption spectrum as a function time.

  5. Determination of dipole coupling constants using heteronuclear multiple quantum NMR

    NASA Astrophysics Data System (ADS)

    Weitekamp, D. P.; Garbow, J. R.; Pines, A.

    1982-09-01

    The problem of extracting dipole couplings from a system of N spins I = 1/2 and one spin S by NMR techniques is analyzed. The resolution attainable using a variety of single quantum methods is reviewed. The theory of heteronuclear multiple quantum (HMQ) NMR is developed, with particular emphasis being placed on the superior resolution available in HMQ spectra. Several novel pulse sequences are introduced, including a two-step method for the excitation of HMQ coherence. Experiments on partially oriented [1-13C] benzene demonstrate the excitation of the necessary HMQ coherence and illustrate the calculation of relative line intensities. Spectra of high order HMQ coherence under several different effective Hamiltonians achievable by multiple pulse sequences are discussed. A new effective Hamiltonian, scalar heteronuclear recoupled interactions by multiple pulse (SHRIMP), achieved by the simultaneous irradiation of both spin species with the same multiple pulse sequence, is introduced. Experiments are described which allow heteronuclear couplings to be correlated with an S-spin spreading parameter in spectra free of inhomogeneous broadening.

  6. Jump-and-return sandwiches: A new family of binomial-like selective inversion sequences with improved performance.

    PubMed

    Brenner, Tom; Chen, Johnny; Stait-Gardner, Tim; Zheng, Gang; Matsukawa, Shingo; Price, William S

    2018-03-01

    A new family of binomial-like inversion sequences, named jump-and-return sandwiches (JRS), has been developed by inserting a binomial-like sequence into a standard jump-and-return sequence, discovered through use of a stochastic Genetic Algorithm optimisation. Compared to currently used binomial-like inversion sequences (e.g., 3-9-19 and W5), the new sequences afford wider inversion bands and narrower non-inversion bands with an equal number of pulses. As an example, two jump-and-return sandwich 10-pulse sequences achieved 95% inversion at offsets corresponding to 9.4% and 10.3% of the non-inversion band spacing, compared to 14.7% for the binomial-like W5 inversion sequence, i.e., they afforded non-inversion bands about two thirds the width of the W5 non-inversion band. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Designing dipolar recoupling and decoupling experiments for biological solid-state NMR using interleaved continuous wave and RF pulse irradiation.

    PubMed

    Bjerring, Morten; Jain, Sheetal; Paaske, Berit; Vinther, Joachim M; Nielsen, Niels Chr

    2013-09-17

    Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how interleaved sampling of spectra exploiting polarization from (1)H and (2)H nuclei can substantially enhance the sensitivity of such experiments. Finally, we present systematic development of (1)H decoupling methods where CW irradiation of moderate amplitude is interleaved with strong rotor-synchronized refocusing pulses. We show that these sequences remove residual cross terms between dipolar coupling and chemical shielding anisotropy more effectively and improve the spectral resolution over that observed in current state-of-the-art methods.

  8. Propagation failures, breathing pulses, and backfiring in an excitable reaction-diffusion system.

    PubMed

    Manz, Niklas; Steinbock, Oliver

    2006-09-01

    We report results from experiments with a pseudo-one-dimensional Belousov-Zhabotinsky reaction that employs 1,4-cyclohexanedione as its organic substrate. This excitable system shows traveling oxidation pulses and pulse trains that can undergo complex sequences of propagation failures. Moreover, we present examples for (i) breathing pulses that undergo periodic changes in speed and size and (ii) backfiring pulses that near their back repeatedly generate new pulses propagating in opposite direction.

  9. Resolution enhancement using a new multiple-pulse decoupling sequence for quadrupolar nuclei.

    PubMed

    Delevoye, L; Trébosc, J; Gan, Z; Montagne, L; Amoureux, J-P

    2007-05-01

    A new decoupling composite pulse sequence is proposed to remove the broadening on spin S=1/2 magic-angle spinning (MAS) spectra arising from the scalar coupling with a quadrupolar nucleus I. It is illustrated on the (31)P spectrum of an aluminophosphate, AlPO(4)-14, which is broadened by the presence of (27)Al/(31)P scalar couplings. The multiple-pulse (MP) sequence has the advantage over the continuous wave (CW) irradiation to efficiently annul the scalar dephasing without reintroducing the dipolar interaction. The MP decoupling sequence is first described in a rotor-synchronised version (RS-MP) where one parameter only needs to be adjusted. It clearly avoids the dipolar recoupling in order to achieve a better resolution than using the CW sequence. In a second improved version, the MP sequence is experimentally studied in the vicinity of the perfect rotor-synchronised conditions. The linewidth at half maximum (FWHM) of 65 Hz using (27)Al CW decoupling decreases to 48 Hz with RS-MP decoupling and to 30 Hz with rotor-asynchronised MP (RA-MP) decoupling. The main phenomena are explained using both experimental results and numerical simulations.

  10. Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects.

    PubMed

    Bohra, Abhishek; Pandey, Manish K; Jha, Uday C; Singh, Balwant; Singh, Indra P; Datta, Dibendu; Chaturvedi, Sushil K; Nadarajan, N; Varshney, Rajeev K

    2014-06-01

    Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.

  11. Sensitivity enhancements in MQ-MAS NMR of spin-5/2 nuclei using modulated rf mixing pulses

    NASA Astrophysics Data System (ADS)

    Vosegaard, Thomas; Massiot, Dominique; Grandinetti, Philip J.

    2000-08-01

    An X- overlineX pulse train with stepped modulation frequency was employed to enhance the multiple-quantum to single-quantum coherence transfer in the mixing period of the multiple-quantum magic-angle spinning (MQ-MAS) experiment for spin I=5/2 nuclei. Two MQ-MAS pulse sequences employing this mixing scheme for the triple-to-single and quintuple-to-single quantum coherence transfers have been designed and their performance is demonstrated for 27Al on samples of NaSi 3AlO 8 and 9Al 2O 3·2B 2O 3 . Compared to the standard single-pulse mixing sequences, the sensitivity is approximately doubled in the present experiments.

  12. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  13. Pulseq-Graphical Programming Interface: Open source visual environment for prototyping pulse sequences and integrated magnetic resonance imaging algorithm development.

    PubMed

    Ravi, Keerthi Sravan; Potdar, Sneha; Poojar, Pavan; Reddy, Ashok Kumar; Kroboth, Stefan; Nielsen, Jon-Fredrik; Zaitsev, Maxim; Venkatesan, Ramesh; Geethanath, Sairam

    2018-03-11

    To provide a single open-source platform for comprehensive MR algorithm development inclusive of simulations, pulse sequence design and deployment, reconstruction, and image analysis. We integrated the "Pulseq" platform for vendor-independent pulse programming with Graphical Programming Interface (GPI), a scientific development environment based on Python. Our integrated platform, Pulseq-GPI, permits sequences to be defined visually and exported to the Pulseq file format for execution on an MR scanner. For comparison, Pulseq files using either MATLAB only ("MATLAB-Pulseq") or Python only ("Python-Pulseq") were generated. We demonstrated three fundamental sequences on a 1.5 T scanner. Execution times of the three variants of implementation were compared on two operating systems. In vitro phantom images indicate equivalence with the vendor supplied implementations and MATLAB-Pulseq. The examples demonstrated in this work illustrate the unifying capability of Pulseq-GPI. The execution times of all the three implementations were fast (a few seconds). The software is capable of user-interface based development and/or command line programming. The tool demonstrated here, Pulseq-GPI, integrates the open-source simulation, reconstruction and analysis capabilities of GPI Lab with the pulse sequence design and deployment features of Pulseq. Current and future work includes providing an ISMRMRD interface and incorporating Specific Absorption Ratio and Peripheral Nerve Stimulation computations. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Investigation of mixed ionospheric and fround scatter using high spectral content pulse sequences for SuperDARN radars

    NASA Astrophysics Data System (ADS)

    Spaleta, J.; Bristow, W. A.

    2013-12-01

    SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. These field-aligned density irregularities are embedded in the ionospheric plasma, and move at the same velocity as background plasma. As a result, the electromagnetic signals scattered from these irregularities are Doppler shifted. The SuperDARN radars routinely observe ionospheric scatter Doppler velocities ranging from zero to thousands of meters per second. The radars determine the Doppler shift of the ionospheric scatter by linear fitting the phase of an auto correlation function derived from the radar pulse sequence. The phase fitting technique employed assumes a single dominant velocity is present in the signal. In addition, the SuperDARN radars can also observe signals scattered from the ground. Once refracted by the ionospheric plasma and bent earthward, the radar pulses eventually reach the ground where they scatter, sending signal back to the radar. This ground-scatter signal is characterized as having a low Doppler shift and low spectral width. The SuperDARN radars are able to use these signal characteristics to discriminate the ground scatter signal from the ionospheric scatter, when regions of ground scatter are isolated from ionospheric scatter returns. The phase fitting assumption of a single dominate target can easily be violated at ranges where ground and ionospheric scatter mix together. Due to the wide elevation angle extent of the SuperDARN radar design, ground and ionospheric scatter from different propagation paths can mix together in the return signal. When this happens, the fitting algorithm attempts to fit to the dominant signal, and if ground scatter dominates, information about the ionospheric scatter at that range can be unresolved. One way to address the mix scatter situation is to use a high spectral content pulse sequence together with a spectral estimation technique. The high spectral content pulse sequence consists of twice as many pulses and five times as many distinct lags over which to calculate the auto correlation function. This additional spectral information makes it possible to use spectral estimator techniques, that are robust against aperiodic time series data, to calculate the existence of multiple scatter modes in the signal. A comparison of the operation of the traditional SuperDARN pulse sequence and high spectral content pulse sequence will be presented for both synthetic examples and real SuperDARN radar mixed scatter situation.

  15. Design of universal parallel-transmit refocusing kT -point pulses and application to 3D T2 -weighted imaging at 7T.

    PubMed

    Gras, Vincent; Mauconduit, Franck; Vignaud, Alexandre; Amadon, Alexis; Le Bihan, Denis; Stöcker, Tony; Boulant, Nicolas

    2018-07-01

    T 2 -weighted sequences are particularly sensitive to the radiofrequency (RF) field inhomogeneity problem at ultra-high-field because of the errors accumulated by the imperfections of the train of refocusing pulses. As parallel transmission (pTx) has proved particularly useful to counteract RF heterogeneities, universal pulses were recently demonstrated to save precious time and computational efforts by skipping B 1 calibration and online RF pulse tailoring. Here, we report a universal RF pulse design for non-selective refocusing pulses to mitigate the RF inhomogeneity problem at 7T in turbo spin-echo sequences with variable flip angles. Average Hamiltonian theory was used to synthetize a single non-selective refocusing pulse with pTx while optimizing its scaling properties in the presence of static field offsets. The design was performed under explicit power and specific absorption rate constraints on a database of 10 subjects using a 8Tx-32Rx commercial coil at 7T. To validate the proposed design, the RF pulses were tested in simulation and applied in vivo on 5 additional test subjects. The root-mean-square rotation angle error (RA-NRMSE) evaluation and experimental data demonstrated great improvement with the proposed universal pulses (RA-NRMSE ∼8%) compared to the standard circularly polarized mode of excitation (RA-NRMSE ∼26%). This work further completes the spectrum of 3D universal pulses to mitigate RF field inhomogeneity throughout all 3D MRI sequences without any pTx calibration. The approach returns a single pulse that can be scaled to match the desired flip angle train, thereby increasing the modularity of the proposed plug and play approach. Magn Reson Med 80:53-65, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  17. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  18. Optimal time-domain technique for pulse width modulation in power electronics

    NASA Astrophysics Data System (ADS)

    Mayergoyz, I.; Tyagi, S.

    2018-05-01

    Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.

  19. Prefire identification for pulse-power systems

    DOEpatents

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  20. Prefire identification for pulse power systems

    DOEpatents

    Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.

    1985-01-01

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  1. Adding a dimension to the infrared spectra of interfaces: 2D SFG spectroscopy via mid-IR pulse shaping

    NASA Astrophysics Data System (ADS)

    Zanni, Martin

    2012-02-01

    Sum-frequency generation spectroscopy provides an infrared spectrum of interfaces and thus has widespread use in the materials and chemical sciences. In this presentation, I will present our recent work in developing a 2D pulse sequence to generate 2D SFG spectra of interfaces, in analogy to 2D infrared spectra used to measure bulk species. To develop this spectroscopy, we have utilized many of the tricks-of-the-trade developed in the 2D IR and 2D Vis communities in the last decade, including mid-IR pulse shaping. With mid-IR pulse shaping, the 2D pulse sequence is manipulated by computer programming in the desired frequency resolution, rotating frame, and signal pathway. We believe that 2D SFG will become an important tool in the interfacial sciences in an analogous way that 2D IR is now being used in many disciplines.

  2. Laser pulses for coherent xuv Raman excitation

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  3. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  4. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  5. Industrial 2-kW TEA CO2 laser for paint stripping of aircraft

    NASA Astrophysics Data System (ADS)

    Schweizer, Gerhard; Werner, L.

    1995-03-01

    Paint stripping of aircraft with pulsed laser radiation has several advantages compared to traditional methods of depainting: selective removal of individual layers possible, suitable for sensitive surfaces, workpiece ready for immediate repainting, and considerable reduction of contaminated waste. For paint stripping of large aircraft pulsed lasers with average power of at least 2 kW are required. Amongst the various types of pulsed lasers technical and economical considerations clearly favor TEA CO2 lasers for this application. The first commercially available TEA CO2 laser with an average power in excess of 2 kW, especially designed for depainting, has been developed by Urenco. The key data of this laser are: pulse energy up to 9 J, repetition rate up to 330 Hz, and beam quality: `flat top'.

  6. 1D and 2D diffusion pore imaging on a preclinical MR system using adaptive rephasing: Feasibility and pulse sequence comparison

    NASA Astrophysics Data System (ADS)

    Bertleff, Marco; Domsch, Sebastian; Laun, Frederik B.; Kuder, Tristan A.; Schad, Lothar R.

    2017-05-01

    Diffusion pore imaging (DPI) has recently been proposed as a means to acquire images of the average pore shape in an image voxel or region of interest. The highly asymmetric gradient scheme of its sequence makes it substantially demanding in terms of the hardware of the NMR system. The aim of this work is to show the feasibility of DPI on a preclinical 9.4 T animal scanner. Using water-filled capillaries with an inner radius of 10 μm, four different variants of the DPI sequence were compared in 1D and 2D measurements. The pulse sequences applied cover the basic implementation using one long and one temporally narrow gradient pulse, a CPMG-like variant with multiple refocusing RF pulses as well as two variants splitting up the long gradient and distributing it on either side of the refocusing pulse. Substantial differences between the methods were found in terms of signal-to-noise ratio, contrast, blurring, deviations from the expected results and sensitivity to gradient imperfections. Each of the tested sequences was found to produce characteristic gradient mismatches dependent on the absolute value, direction and sign of the applied q-value. Read gradients were applied to compensate these mismatches translating them into time shifts, which enabled 1D DPI yielding capillary radius estimations within the tolerances specified by the manufacturer. For a successful DPI application in 2D, a novel gradient amplitude adaption scheme was implemented to correct for the occurring time shifts. Using this adaption, higher conformity to the expected pore shape, reduced blurring and enhanced contrast were achieved. Images of the phantom's pore shape could be acquired with a nominal resolution of 2.2 μm.

  7. Regional and temporal variability of melts during a Cordilleran magma pulse: Age and chemical evolution of the jurassic arc, eastern mojave desert, California

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.; Miller, David; Howard, Keith A.; Fox, Lydia; Schermer, Elizabeth R.; Jacobson, C.E.

    2017-01-01

    Intrusive rock sequences in the central and eastern Mojave Desert segment of the Jurassic Cordilleran arc of the western United States record regional and temporal variations in magmas generated during the second prominent pulse of Mesozoic continental arc magmatism. U/Pb zircon ages provide temporal control for describing variations in rock and zircon geochemistry that reflect differences in magma source components. These source signatures are discernible through mixing and fractionation processes associated with magma ascent and emplacement. The oldest well-dated Jurassic rocks defining initiation of the Jurassic pulse are a 183 Ma monzodiorite and a 181 Ma ignimbrite. Early to Middle Jurassic intrusive rocks comprising the main stage of magmatism include two high-K calc-alkalic groups: to the north, the deformed 183–172 Ma Fort Irwin sequence and contemporaneous rocks in the Granite and Clipper Mountains, and to the south, the 167–164 Ma Bullion sequence. A Late Jurassic suite of shoshonitic, alkali-calcic intrusive rocks, the Bristol Mountains sequence, ranges in age from 164 to 161 Ma and was emplaced as the pulse began to wane. Whole-rock and zircon trace-element geochemistry defines a compositionally coherent Jurassic arc with regional and secular variations in melt compositions. The arc evolved through the magma pulse by progressively greater input of old cratonic crust and lithospheric mantle into the arc magma system, synchronous with progressive regional crustal thickening.

  8. Extended phase graphs with anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.

    2010-08-01

    The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.

  9. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  10. Saturation pulse design for quantitative myocardial T1 mapping.

    PubMed

    Chow, Kelvin; Kellman, Peter; Spottiswoode, Bruce S; Nielles-Vallespin, Sonia; Arai, Andrew E; Salerno, Michael; Thompson, Richard B

    2015-10-01

    Quantitative saturation-recovery based T1 mapping sequences are less sensitive to systematic errors than the Modified Look-Locker Inversion recovery (MOLLI) technique but require high performance saturation pulses. We propose to optimize adiabatic and pulse train saturation pulses for quantitative T1 mapping to have <1 % absolute residual longitudinal magnetization (|MZ/M0|) over ranges of B0 and [Formula: see text] (B1 scale factor) inhomogeneity found at 1.5 T and 3 T. Design parameters for an adiabatic BIR4-90 pulse were optimized for improved performance within 1.5 T B0 (±120 Hz) and [Formula: see text] (0.7-1.0) ranges. Flip angles in hard pulse trains of 3-6 pulses were optimized for 1.5 T and 3 T, with consideration of T1 values, field inhomogeneities (B0 = ±240 Hz and [Formula: see text]=0.4-1.2 at 3 T), and maximum achievable B1 field strength. Residual MZ/M0 was simulated and measured experimentally for current standard and optimized saturation pulses in phantoms and in-vivo human studies. T1 maps were acquired at 3 T in human subjects and a swine using a SAturation recovery single-SHot Acquisition (SASHA) technique with a standard 90°-90°-90° and an optimized 6-pulse train. Measured residual MZ/M0 in phantoms had excellent agreement with simulations over a wide range of B0 and [Formula: see text]. The optimized BIR4-90 reduced the maximum residual |MZ/M0| to <1 %, a 5.8× reduction compared to a reference BIR4-90. An optimized 3-pulse train achieved a maximum residual |MZ/M0| <1 % for the 1.5 T optimization range compared to 11.3 % for a standard 90°-90°-90° pulse train, while a 6-pulse train met this target for the wider 3 T ranges of B0 and [Formula: see text]. The 6-pulse train demonstrated more uniform saturation across both the myocardium and entire field of view than other saturation pulses in human studies. T1 maps were more spatially homogeneous with 6-pulse train SASHA than the reference 90°-90°-90° SASHA in both human and animal studies. Adiabatic and pulse train saturation pulses optimized for different constraints found at 1.5 T and 3 T achieved <1 % residual |MZ/M0| in phantom experiments, enabling greater accuracy in quantitative saturation recovery T1 imaging.

  11. The influence of bat echolocation call duration and timing on auditory encoding of predator distance in noctuoid moths.

    PubMed

    Gordon, Shira D; Ter Hofstede, Hannah M

    2018-03-22

    Animals co-occur with multiple predators, making sensory systems that can encode information about diverse predators advantageous. Moths in the families Noctuidae and Erebidae have ears with two auditory receptor cells (A1 and A2) used to detect the echolocation calls of predatory bats. Bat communities contain species that vary in echolocation call duration, and the dynamic range of A1 is limited by the duration of sound, suggesting that A1 provides less information about bats with shorter echolocation calls. To test this hypothesis, we obtained intensity-response functions for both receptor cells across many moth species for sound pulse durations representing the range of echolocation call durations produced by bat species in northeastern North America. We found that the threshold and dynamic range of both cells varied with sound pulse duration. The number of A1 action potentials per sound pulse increases linearly with increasing amplitude for long-duration pulses, saturating near the A2 threshold. For short sound pulses, however, A1 saturates with only a few action potentials per pulse at amplitudes far lower than the A2 threshold for both single sound pulses and pulse sequences typical of searching or approaching bats. Neural adaptation was only evident in response to approaching bat sequences at high amplitudes, not search-phase sequences. These results show that, for short echolocation calls, a large range of sound levels cannot be coded by moth auditory receptor activity, resulting in no information about the distance of a bat, although differences in activity between ears might provide information about direction. © 2018. Published by The Company of Biologists Ltd.

  12. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences. Copyright 2000 Academic Press.

  13. Suppression of Protonated Organic Solvents in NMR Spectroscopy Using a Perfect Echo Low-Pass Filtration Pulse Sequence.

    PubMed

    Howe, Peter W A

    2018-04-03

    Proton NMR spectra are usually acquired using deuterated solvents, but in many cases it is necessary to obtain spectra on samples in protonated solvents. In these cases, the intense resonances of the protonated solvents need to be suppressed to maximize sensitivity and spectral quality. A wide range of highly effective solvent suppression methods have been developed, but additional measures are needed to suppress the 13 C satellites of the solvent. Because the satellites represent 1.1% of the original solvent signal, they remain problematic if unsuppressed. The recently proposed DISPEL pulse sequences suppress 13 C satellites extremely effectively, and this Technical Note demonstrates that combining DISPEL and presaturation results in exceptionally effective solvent suppression. An important element in the effectiveness is volume selection, which is inherent within the DISPEL sequence. Spectra acquired in protonated dimethlysulfoxide and tetrahydrofuran show that optimum results are obtained by modifying the phase cycle, cycling the pulse-field gradients, and using broadband 13 C inversion pulses to reduce the effects of radiofrequency offset and inhomogeneity.

  14. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng

    2010-11-15

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression canmore » be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.« less

  15. gr-MRI: A software package for magnetic resonance imaging using software defined radios.

    PubMed

    Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright © 2016. Published by Elsevier Inc.

  16. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  17. Efficient optical pulse stacker system

    DOEpatents

    Seppala, Lynn G.; Haas, Roger A.

    1982-01-01

    Method and apparatus for spreading and angle-encoding each pulse of a multiplicity of small area, short pulses into several temporally staggered pulses by use of appropriate beam splitters, with the optical elements being arranged so that each staggered pulse is contiguous with one or two other such pulses, and the entire sequence of stacked pulses comprising a single, continuous long pulse. The single long pulse is expanded in area, and then doubly passed through a nonstorage laser amplifier such as KrF. After amplification, the physically separated, angle-encoded and temporally staggered pulses are recombined into a single pulse of short duration. This high intensity output beam is well collimated and may be propagated over long distance, or used for irradiating inertial confinement fusion targets.

  18. CIDME: Short distances measured with long chirp pulses.

    PubMed

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar

    2016-12-01

    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10μs, however, CIDME appears rather susceptible to artifacts. For nitroxide-nitroxide experiments, these currently inhibit a faithful data analysis. To facilitate further developments, the artifacts are characterized experimentally. In addition, effects that are specific to the high spin of S=7/2 Gd-centers are examined. Herein, population transfer within the observer spin's multiplet due to the pump pulse as well as excitation of dipolar harmonics are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes

    PubMed Central

    Atalar, Ergin; McVeigh, Elliot R.

    2007-01-01

    With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900

  20. Extended phase graphs with anisotropic diffusion.

    PubMed

    Weigel, M; Schwenk, S; Kiselev, V G; Scheffler, K; Hennig, J

    2010-08-01

    The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotso, H. F.; Dobrovitski, V. V.

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  2. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE PAGES

    Fotso, H. F.; Dobrovitski, V. V.

    2017-06-01

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  3. Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2017-03-01

    In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach-Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation.

  4. Robustness of high-fidelity Rydberg gates with single-site addressability

    NASA Astrophysics Data System (ADS)

    Goerz, Michael H.; Halperin, Eli J.; Aytac, Jon M.; Koch, Christiane P.; Whaley, K. Birgitta

    2014-09-01

    Controlled-phase (cphase) gates can be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultrahigh fidelities required for quantum computation with such Rydberg gates, however, is compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg cphase gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and can be rationalized in terms of an interference between distinct two-photon Rydberg excitation pathways. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90-99.99% to be achievable under realistic experimental conditions.

  5. Radiofrequency pulse design in parallel transmission under strict temperature constraints.

    PubMed

    Boulant, Nicolas; Massire, Aurélien; Amadon, Alexis; Vignaud, Alexandre

    2014-09-01

    To gain radiofrequency (RF) pulse performance by directly addressing the temperature constraints, as opposed to the specific absorption rate (SAR) constraints, in parallel transmission at ultra-high field. The magnitude least-squares RF pulse design problem under hard SAR constraints was solved repeatedly by using the virtual observation points and an active-set algorithm. The SAR constraints were updated at each iteration based on the result of a thermal simulation. The numerical study was performed for an SAR-demanding and simplified time of flight sequence using B1 and ΔB0 maps obtained in vivo on a human brain at 7T. The proposed adjustment of the SAR constraints combined with an active-set algorithm provided higher flexibility in RF pulse design within a reasonable time. The modifications of those constraints acted directly upon the thermal response as desired. Although further confidence in the thermal models is needed, this study shows that RF pulse design under strict temperature constraints is within reach, allowing better RF pulse performance and faster acquisitions at ultra-high fields at the cost of higher sequence complexity. Copyright © 2013 Wiley Periodicals, Inc.

  6. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2016-06-01

    In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  7. Constant gradient PFG sequence and automated cumulant analysis for quantifying dispersion in flow through porous media.

    PubMed

    Scheven, U M

    2013-12-01

    This paper describes a new variant of established stimulated echo pulse sequences, and an analytical method for determining diffusion or dispersion coefficients for Gaussian or non-Gaussian displacement distributions. The unipolar displacement encoding PFGSTE sequence uses trapezoidal gradient pulses of equal amplitude g and equal ramp rates throughout while sampling positive and negative halves of q-space. Usefully, the equal gradient amplitudes and gradient ramp rates help to reduce the impact of experimental artefacts caused by residual amplifier transients, eddy currents, or ferromagnetic hysteresis in components of the NMR magnet. The pulse sequence was validated with measurements of diffusion in water and of dispersion in flow through a packing of spheres. The analytical method introduced here permits the robust determination of the variance of non-Gaussian, dispersive displacement distributions. The noise sensitivity of the analytical method is shown to be negligible, using a demonstration experiment with a non-Gaussian longitudinal displacement distribution, measured on flow through a packing of mono-sized spheres. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Kinetics of the formation of ozone and nitrogen oxides due to a pulsed microwave discharge in air

    NASA Astrophysics Data System (ADS)

    Larin, V. F.; Rumiantsev, S. A.

    1989-03-01

    The paper presents results of a numerical simulation of the kinetics of plasma-chemical processes induced by a single microwave pulse in the stratosphere. It is shown that the gas temperature is one of the main factors influencing the concentration ratio of ozone and nitrogen oxides formed under the effect of a microwave pulse. Long pulses, producing considerable gas heating, favor the formation of nitrogen oxides.

  9. Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcgrane, Shawn D; Moore, David S; Greenfield, Margo T

    2008-01-01

    We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.

  10. [WN] central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Miszalski, B.; Toalá, J. A.; Guerrero, M. A.

    2017-10-01

    While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of these H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.

  11. Robust fuel- and time-optimal control of uncertain flexible space structures

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Sinha, Ravi; Sunkel, John; Cox, Ken

    1993-01-01

    The problem of computing open-loop, fuel- and time-optimal control inputs for flexible space structures in the face of modeling uncertainty is investigated. Robustified, fuel- and time-optimal pulse sequences are obtained by solving a constrained optimization problem subject to robustness constraints. It is shown that 'bang-off-bang' pulse sequences with a finite number of switchings provide a practical tradeoff among the maneuvering time, fuel consumption, and performance robustness of uncertain flexible space structures.

  12. Criteria to average out the chemical shift anisotropy in solid-state NMR when irradiated with BABA I, BABA II, and C7 radiofrequency pulse sequences.

    PubMed

    Stephane Mananga, Eugene

    2013-01-01

    Floquet-Magnus expansion is used to study the effect of chemical shift anisotropy in solid-state NMR of rotating solids. The chemical shift interaction is irradiated with two types of radiofrequency pulse sequences: BABA and C7. The criteria for the chemical shift anisotropy to be averaged out in each rotor period are obtained. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Control of concerted two bond versus single bond dissociation in CH(3)Co(CO)(4) via an intermediate state using pump-dump laser pulses.

    PubMed

    Ambrosek, David; González, Leticia

    2007-10-07

    Wavepacket propagations on ab initio multiconfigurational two-dimensional potential energy surfaces for CH(3)Co(CO)(4) indicate that after irradiation to the lowest first and second electronic excited states, concerted dissociation of CH(3) and the axial CO ligand takes place. We employ a pump-dump sequence of pulses with appropriate frequencies and time delays to achieve the selective breakage of a single bond by controlling the dissociation angle. The pump and dump pulse sequence exploits the unbound surface where dissociation occurs in a counterintuitive fashion; stretching of one bond in an intermediate state enhances the single dissociation of the other bond.

  14. Dipolar recoupling in solid state NMR by phase alternating pulse sequences

    PubMed Central

    Lin, J.; Bayro, M.; Griffin, R. G.; Khaneja, N.

    2009-01-01

    We describe some new developments in the methodology of making heteronuclear and homonuclear recoupling experiments in solid state NMR insensitive to rf-inhomogeneity by phase alternating the irradiation on the spin system every rotor period. By incorporating delays of half rotor periods in the pulse sequences, these phase alternating experiments can be made γ encoded. The proposed methodology is conceptually different from the standard methods of making recoupling experiments robust by the use of ramps and adiabatic pulses in the recoupling periods. We show how the concept of phase alternation can be incorporated in the design of homonuclear recoupling experiments that are both insensitive to chemical-shift dispersion and rf-inhomogeneity. PMID:19157931

  15. Electronic circuit delivers pulse of high interval stability

    NASA Technical Reports Server (NTRS)

    Fisher, B.

    1966-01-01

    Circuit generates a pulse of high interval stability with a complexity level considerably below systems of comparable stability. This circuit is being used as a linear frequency discriminator in the signal conditioner of the Apollo command module.

  16. SU-C-17A-02: Sirius MRI Markers for Prostate Post-Implant Assessment: MR Protocol Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, T; Wang, J; Kudchadker, R

    Purpose: Currently, CT is used to visualize prostate brachytherapy sources, at the expense of accurate structure contouring. MRI is superior to CT for anatomical delineation, but the sources appear as voids on MRI images. Previously we have developed Sirius MRI markers (C4 Imaging) to replace spacers to assist source localization on MRI images. Here we develop an MRI pulse sequence protocol that enhances the signal of these markers to enable MRI-only post-implant prostate dosimetric analysis. Methods: To simulate a clinical scenario, a CIRS multi-modality prostate phantom was implanted with 66 markers and 86 sources. The implanted phantom was imaged onmore » both 1.5T and 3.0T GE scanners under various conditions, different pulse sequences (2D fast spin echo [FSE], 3D balanced steadystate free precession [bSSFP] and 3D fast spoiled gradient echo [FSPGR]), as well as varying amount of padding to simulate various patient sizes and associated signal fall-off from the surface coil elements. Standard FSE sequences from the current clinical protocols were also evaluated. Marker visibility, marker size, intra-marker distance, total scan time and artifacts were evaluated for various combinations of echo time, repetition time, flip angle, number of excitations, bandwidth, slice thickness and spacing, fieldof- view, frequency/phase encoding steps and frequency direction. Results: We have developed a 3D FSPGR pulse sequence that enhances marker signal and ensures the integrity of the marker shape while maintaining reasonable scan time. For patients contraindicated for 3.0T, we have also developed a similar sequence for 1.5T scanners. Signal fall-off with distance from prostate to coil can be compensated mainly by decreasing bandwidth. The markers are not visible using standard FSE sequences. FSPGR sequences are more robust for consistent marker visualization as compared to bSSFP sequences. Conclusion: The developed MRI pulse sequence protocol for Sirius MRI markers assists source localization to enable MRIonly post-implant prostate dosimetric analysis. S.J. Frank is a co-founder of C4 Imaging (manufactures the MRI markers)« less

  17. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software.

    PubMed

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-08-01

    Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.

  18. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  19. High performance MRI simulations of motion on multi-GPU systems.

    PubMed

    Xanthis, Christos G; Venetis, Ioannis E; Aletras, Anthony H

    2014-07-04

    MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications.

  20. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  1. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart.

    PubMed

    Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J

    2017-06-01

    Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 + ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  2. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse.

    PubMed

    Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R

    2016-01-01

    In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.

    PubMed

    Bohra, Abhishek; Jha, Uday Chand; Kishor, P B Kavi; Pandey, Shailesh; Singh, Narendra P

    2014-12-01

    Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Highly flexible pulse programmer for NMR applications

    NASA Technical Reports Server (NTRS)

    Dart, J.; Burum, D. P.; Rhim, W. K.

    1980-01-01

    A pulse generator for NMR application is described. Eighteen output channels are provided to allow use in single and double resonance experiments. Complex pulse sequences may be generated by loading instructions into a 256-word by 16-bit program memory. Features of the pulse generator include programmable time delays from 0.5 micros to 1000 s, branching and looping instructions, and the ability to be loaded and operated either manually or from a PDP-11/10 computer.

  5. Extreme events and single-pulse spatial patterns observed in a self-pulsing all-solid-state laser

    NASA Astrophysics Data System (ADS)

    Bonazzola, Carlos; Hnilo, Alejandro; Kovalsky, Marcelo; Tredicce, Jorge

    2018-03-01

    The passively Q -switched, self-pulsing all-solid-state laser is a device of widespread use in many applications. Depending on the condition of saturation of the absorber, which is easy to adjust, different dynamical regimes are observed: continuous-wave emission, stable oscillations, period doubling bifurcations, chaos, and, within some chaotic regimes, extreme events (EEs) in the form of pulses of extraordinary intensity. These pulses are sometimes called "dissipative optical rogue waves." The mechanism of their formation in this laser is unknown. Previous observations suggest they are caused by the interaction of a few transverse modes. Here we report a direct observation of the pulse-to-pulse evolution of the transverse pattern. In the periodical regimes, sequences of intensities are correlated with sequences of patterns. In the chaotic ones, a few different patterns alternate, and the EEs are related with even fewer ones. In addition, the series of patterns and the pulse intensities before and after an EE are markedly repetitive. These observations demonstrate that EEs follow a deterministic evolution, and that they can appear even in a system with few interacting modes. This information plays a crucial role for the development of a mathematical description of EEs in this laser. This would allow managing the formation of EE through control of chaos, which is of both academic and practical interest (laser rangefinder).

  6. Extreme events and single-pulse spatial patterns observed in a self-pulsing all-solid-state laser.

    PubMed

    Bonazzola, Carlos; Hnilo, Alejandro; Kovalsky, Marcelo; Tredicce, Jorge

    2018-03-01

    The passively Q-switched, self-pulsing all-solid-state laser is a device of widespread use in many applications. Depending on the condition of saturation of the absorber, which is easy to adjust, different dynamical regimes are observed: continuous-wave emission, stable oscillations, period doubling bifurcations, chaos, and, within some chaotic regimes, extreme events (EEs) in the form of pulses of extraordinary intensity. These pulses are sometimes called "dissipative optical rogue waves." The mechanism of their formation in this laser is unknown. Previous observations suggest they are caused by the interaction of a few transverse modes. Here we report a direct observation of the pulse-to-pulse evolution of the transverse pattern. In the periodical regimes, sequences of intensities are correlated with sequences of patterns. In the chaotic ones, a few different patterns alternate, and the EEs are related with even fewer ones. In addition, the series of patterns and the pulse intensities before and after an EE are markedly repetitive. These observations demonstrate that EEs follow a deterministic evolution, and that they can appear even in a system with few interacting modes. This information plays a crucial role for the development of a mathematical description of EEs in this laser. This would allow managing the formation of EE through control of chaos, which is of both academic and practical interest (laser rangefinder).

  7. Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

    PubMed

    Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S

    2016-12-21

    We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

  8. PET Imaging Stability Measurements During Simultaneous Pulsing of Aggressive MR Sequences on the SIGNA PET/MR System.

    PubMed

    Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H

    2018-01-01

    The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  9. New 40Ar/ 39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: Implications for duration of flood basalt eruption episodes

    NASA Astrophysics Data System (ADS)

    Barry, T. L.; Self, S.; Kelley, S. P.; Reidel, S.; Hooper, P.; Widdowson, M.

    2010-08-01

    Grande Ronde Basalt (GRB) lavas represent the most voluminous eruptive pulse of the Columbia River-Snake River-Yellowstone hotspot volcanism. With an estimated eruptive volume of 150,000 km 3, GRB lavas form at least 66% of the total volume of the Columbia River Basalt Group. New 40Ar/ 39Ar dates for GRB lavas reveal they were emplaced within a maximum period of 0.42 ± 0.18 My. A well-documented stratigraphy indicates at least 110 GRB flow fields (or individual eruptions), and on this basis suggests an average inter-eruption hiatus of less than 4000 years. Isotopic age-dating cannot resolve time gaps between GRB eruptions, and it is difficult to otherwise form a picture of the durations of eruptions because of non-uniform weathering in the top of flow fields and a general paucity of sediments between GR lavas. Where sediment has formed on top of GRB lavas, it varies in thickness from zero to 20-30 cm of silty to fine-sandy material, with occasional diatomaceous sediment. Individual GRB eruptions varied considerably in volume but many were greater than 1000 km 3 in size. Most probably eruptive events were not equally spaced in time; some eruptions may have followed short periods of volcanic repose (perhaps 10 2 to 10 3 of years), whilst others could have been considerably longer (many 1000 s to > 10 4 years). Recent improvements in age-dating for other continental flood basalt (CFB) lava sequences have yielded estimates of total eruptive durations of less than 1 My for high-volume pulses of lava production. The GRB appears to be a similar example, where the main pulse occupied a brief period. Even allowing for moderate to long-duration pahoehoe flow field production, the amount of time the system spends in active lava-producing mode is small — less than c. 2.6% (based on eruption durations of approximately 10,000 years, compared to the duration of the entire eruptive pulse of c. 420,000 years). A review of available 40Ar/ 39Ar data for the major voluminous phases of the Columbia River Basalt Group suggests that activity of the Steens Basalt-Imnaha Basalt-GRB may have, at times, been simultaneous, with obvious implications for climatic effects. Resolving intervals between successive eruptions during CFB province construction, and durations of main eruptive pulses, remains vital to determining the environmental impact of these huge eruptions.

  10. Development of Pulsed Processes for the Manufacture of Solar Cells

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development status of the process based upon ion implantation for the introduction of junctions and back surface fields is described. A process sequence is presented employing ion implantation and pulse processing. Efforts to improve throughout and descrease process element costs for furnace annealing are described. Design studies for a modular 3,000 wafer per hour pulse processor are discussed.

  11. Electro-optic Q-switch

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)

    2006-01-01

    An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.

  12. Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities.

    PubMed

    Rowland, Benjamin; Jones, Jonathan A

    2012-10-13

    We briefly describe the use of gradient ascent pulse engineering (GRAPE) pulses to implement quantum logic gates in nuclear magnetic resonance quantum computers, and discuss a range of simple extensions to the core technique. We then consider a range of difficulties that can arise in practical implementations of GRAPE sequences, reflecting non-idealities in the experimental systems used.

  13. An ultra-low cost NMR device with arbitrary pulse programming

    NASA Astrophysics Data System (ADS)

    Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian

    2015-06-01

    Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.

  14. Polyion selective polymeric membrane-based pulstrode as a detector in flow-injection analysis.

    PubMed

    Bell-Vlasov, Andrea K; Zajda, Joanna; Eldourghamy, Ayman; Malinowska, Elzbieta; Meyerhoff, Mark E

    2014-04-15

    A method for the detection of polyions using fully reversible polyion selective polymeric membrane type pulstrodes as detectors in a flow-injection analysis (FIA) system is examined. The detection electrode consists of a plasticized polymeric membrane doped with 10 wt % of tridodecylmethylammonium-dinonylnaphthalene sulfonate (TDMA/DNNS) ion-exchanger salt. The pulse sequence used involves a short (1 s) galvanostatic pulse, an open-circuit pulse (0.5 s) during which the EMF of the cell is measured, and a longer (15 s) potentiostatic pulse to return the membrane to its original chemical composition. It is shown that total pulse sequence times can be optimized to yield reproducible real-time detection of injected samples of protamine and heparin at up to 20 samples/h. Further, it is shown that the same membrane detector can be employed for FIA detection of both polycations at levels ≥10 μg/mL and polyanions at levels of ≥40 μg/mL by changing the direction of the galvanostatic pulse. The methodology described may also be applicable in the detection of polyionic species at low levels in other flowing configurations, such as in liquid chromatography and capillary electrophoresis.

  15. Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waxer, Leon; Dorrer, Christophe; Kalb, Adam

    To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.

  16. Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP

    DOE PAGES

    Waxer, Leon; Dorrer, Christophe; Kalb, Adam; ...

    2018-02-19

    To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.

  17. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences.

    PubMed

    Fink, Christian; Puderbach, Michael; Biederer, Juergen; Fabel, Michael; Dietrich, Olaf; Kauczor, Hans-Ulrich; Reiser, Maximilian F; Schönberg, Stefan O

    2007-06-01

    To compare the image quality and lesion contrast of lung MRI using 5 different pulse sequences at 1.5 T and 3 T. Lung MRI was performed at 1.5 T and 3 T using 5 pulse sequences which have been previously proposed for lung MRI: 3D volumetric interpolated breath-hold examination (VIBE), true fast imaging with steady-state precession (TrueFISP), half-Fourier single-shot turbo spin-echo (HASTE), short tau inversion recovery (STIR), T2-weighted turbo spin-echo (TSE). In addition to 4 healthy volunteers, 5 porcine lungs were examined in a dedicated chest phantom. Lung pathology (nodules and infiltrates) was simulated in the phantom by intrapulmonary and intrabronchial injections of agarose. CT was performed in the phantom for correlation. Image quality of the sequences was ranked in a side-by-side comparison by 3 blinded radiologists regarding the delineation of pulmonary and mediastinal anatomy, conspicuity of pulmonary nodules and infiltrates, and presence of artifacts. The contrast of nodules and infiltrates (CNODULES and CINFILTRATES) defined by the ratio of the signal intensities of the lesion and adjacent normal lung parenchyma was determined. There were no relevant differences regarding the preference for the individual sequences between both field strengths. TSE was the preferred sequence for the visualization of the mediastinum at both field strengths. For the visualization of lung parenchyma the observers preferred TrueFISP in volunteers and TSE in the phantom studies. At both field strengths VIBE achieved the best rating for the depiction of nodules, whereas HASTE was rated best for the delineation of infiltrates. TrueFISP had the fewest artifacts in volunteers, whereas STIR showed the fewest artifacts in the phantom. For all but the TrueFISP sequence the lesion contrast increased from 1.5 T to 3 T. At both field strengths VIBE showed the highest CNODULES (6.6 and 7.1) and HASTE the highest CINFILTRATES (6.1 and 6.3). The imaging characteristics of different pulse sequences used for lung MRI do not substantially differ between 1.5 T and 3 T. A higher lesion contrast can be expected at 3 T.

  18. Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner

    NASA Astrophysics Data System (ADS)

    Hnilicová, P.; Bittšanský, M.; Dobrota, D.

    2014-04-01

    In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.

  19. MR safety and compatibility of a noninvasively expandable total-joint endoprosthesis.

    PubMed

    Ogg, Robert J; McDaniel, C Brian; Wallace, Donald; Pitot, Pierre; Neel, Michael D; Kaste, Sue C

    2005-09-01

    A noninvasively expandable total-joint endoprosthesis is now available for pediatric patients; the prosthesis can be lengthened by external application of a magnetic field. We investigated the risks of unintentional heating or lengthening of the prosthesis during MR imaging and evaluated the effect of the device on the diagnostic efficacy of MR imaging of surrounding tissues. We performed MR imaging at 1.5 T by using standard pulse sequences and pulse sequences with high-gradient and high-radiofrequency duty cycle. MR imaging caused no measurable change in prosthesis length, and the temperature of the prosthesis increased by less than 1 degrees C during repeated 14-min exposures. Despite significant signal loss and image distortion around the prosthetic joint, clinically useful images were obtained as close as 12 cm from the ends of the prosthetic stems, measured toward the body of the device. Thus, the prosthesis can be safely exposed to MR imaging pulse sequences at 1.5 T, and the visualization of some tissue surrounding the device is clinically useful.

  20. Evolution of multiple quantum coherences with scaled dipolar Hamiltonian

    NASA Astrophysics Data System (ADS)

    Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.

    2017-08-01

    In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.

  1. ADRF experiments using near n.pi pulse strings. [Adiabatic Demagnetization due to Radio Frequency pulses

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Burum, D. P.; Elleman, D. D.

    1977-01-01

    Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.

  2. Design of micro-second pulsed laser mode for ophthalmological CW self-raman laser

    NASA Astrophysics Data System (ADS)

    Mota, Alessandro D.; Rossi, Giuliano; Ortega, Tiago A.; Costal, Glauco Z.; Fontes, Yuri C.; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.; Paiva, Maria S. V.

    2011-02-01

    This work presents the mechanisms adopted for the design of micro-second pulsed laser mode for a CW Self-Raman laser cavity in 586nm and 4W output power. The new technique for retina disease treatment discharges laser pulses on the retina tissue, in laser sequences of 200 μs pulse duration at each 2ms. This operation mode requires the laser to discharge fast electric pulses, making the system control velocity of the electronic system cavity vital. The control procedures to keep the laser output power stable and the laser head behavior in micro-second pulse mode are presented.

  3. Temperature dependence of the pulse-duration memory effect in NbSe3

    NASA Astrophysics Data System (ADS)

    Jones, T. C.; Simpson, C. R., Jr.; Clayhold, J. A.; McCarten, J. P.

    2000-04-01

    The temperature dependence of the oscillatory response of the 59 K charge-density wave in NbSe3 to a sequence of repetitive current pulses was investigated. For 52 K>T>45 K the learned behavior commonly referred to as the pulse-duration memory effect (PDME) is very evident; after training the voltage oscillation always finishes the pulse at a minimum. At lower temperatures the PDME changes qualitatively. In nonswitching samples the voltage oscillation always finishes the pulse increasing. In switching samples there is a conduction delay which becomes fixed after training, but no learning of the duration of the pulse.

  4. The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase.

    PubMed

    Tabor, C W; Tabor, H

    1987-11-25

    We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).

  5. MR arthrography in chondromalacia patellae diagnosis on a low-field open magnet system.

    PubMed

    Harman, Mustafa; Ipeksoy, Umit; Dogan, Ali; Arslan, Halil; Etlik, Omer

    2003-01-01

    The purpose of this study was to compare the diagnostic efficacy conventional MRI and MR arthrography (MRA) in the diagnosis of chondromalacia patella (CP) on a low-field open magnet system (LFOMS), correlated with arthroscopy. Forty-two patients (50 knees) with pain in the anterior part of the knee were prospectively examined with LFOMS, including T1-weighted, proton density-weighted and T2-weighted sequences. All were also examined T1-weighted MRI after intraarticular injection of dilue gadopentetate dimeglumine. Two observers, who reached a consensus interpretation, evaluated each imaging technique independently. Thirty-six of the 50 facets examined had chondromalacia shown by arthroscopy, which was used as the standard of reference. The sensitivity, specificity and accuracy of each imaging technique in the diagnosis of each stage of CP were determined and compared by using the McNemar two-tailed analysis. Arthroscopy showed that 16 facets were normal. Four (30%) of 13 grade 1 lesions were detected with T1. Four lesions (30%) with T2 and three lesions (23%) with proton-weighted images were detected. Seven (53%) of 13 grade 1 lesions were detected with MRA. Grade 2 abnormalities were diagnosed in two (33%) of six facets with proton density-weighted pulse sequences, two (33%) of six facets with T1-weighted pulse sequences, in three (50%) of six facets with T2-weighted pulse sequences, in five (83%) of six facets with MRA sequences. Grade 3 abnormalities were diagnosed in three (71%) of seven facets with proton density- and T1-weighted images, five (71%) of seven facets with T2-weighted pulse sequences, six (85%) of seven facets with MRA sequences. Grade 4 CP was detected with equal sensitivity with T1-, proton density- and T2-weighted pulse sequences, all showing seven (87%) of the eight lesions. MRA again showed these findings in all eight patients. All imaging techniques were insensitive to grade 1 lesions and highly sensitive to grade 4 lesion, so that no significant difference among the techniques could be shown. All imaging technique studied had high specificity and accuracy in the detection and grading of CP; however, MRA was more sensitive than T1-weighted and proton density-weighted MR imaging on a LFOMS. Although the arthrographic techniques were not significantly better than T2-weighted imaging, the number of false-positive diagnosis was greatest with T2-weighted MRI.

  6. Improved Spin-Echo-Edited NMR Diffusion Measurements

    NASA Astrophysics Data System (ADS)

    Otto, William H.; Larive, Cynthia K.

    2001-12-01

    The need for simple and robust schemes for the analysis of ligand-protein binding has resulted in the development of diffusion-based NMR techniques that can be used to assay binding in protein solutions containing a mixture of several ligands. As a means of gaining spectral selectivity in NMR diffusion measurements, a simple experiment, the gradient modified spin-echo (GOSE), has been developed to reject the resonances of coupled spins and detect only the singlets in the 1H NMR spectrum. This is accomplished by first using a spin echo to null the resonances of the coupled spins. Following the spin echo, the singlet magnetization is flipped out of the transverse plane and a dephasing gradient is applied to reduce the spectral artifacts resulting from incomplete cancellation of the J-coupled resonances. The resulting modular sequence is combined here with the BPPSTE pulse sequence; however, it could be easily incorporated into any pulse sequence where additional spectral selectivity is desired. Results obtained with the GOSE-BPPSTE pulse sequence are compared with those obtained with the BPPSTE and CPMG-BPPSTE experiments for a mixture containing the ligands resorcinol and tryptophan in a solution of human serum albumin.

  7. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    PubMed

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  8. Curvature aided long range propagation of short laser pulses in the atmosphere

    NASA Astrophysics Data System (ADS)

    Yedierler, Burak

    2013-03-01

    The pre-filamentation regime of propagation of a short and intense laser pulse in the atmosphere is considered. Spatiotemporal self-focusing dynamics of the laser beam are investigated by calculating the coupled differential equations for spot size, pulse length, phase, curvature, and chirp functions of a Gaussian laser pulse via a variational technique. The effect of initial curvature parameter on the propagation of the laser pulse is taken into consideration. A method relying on the adjustment of the initial curvature parameter can expand the filamentation distance of a laser beam of given power and chirp is proposed.

  9. Evolutionary sequences of very hot, low-mass, accreting white dwarfs with application to symbiotic variables and ultrasoft/supersoft low-luminosity x-ray sources

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Starrfield, Sumner G.

    1994-01-01

    We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.

  10. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

    PubMed

    Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2006-06-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.

  11. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    PubMed Central

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  12. Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan)

    PubMed Central

    Pazhamala, Lekha; Saxena, Rachit K.; Singh, Vikas K.; Sameerkumar, C. V.; Kumar, Vinay; Sinha, Pallavi; Patel, Kishan; Obala, Jimmy; Kaoneka, Seleman R.; Tongoona, P.; Shimelis, Hussein A.; Gangarao, N. V. P. R.; Odeny, Damaris; Rathore, Abhishek; Dharmaraj, P. S.; Yamini, K. N.; Varshney, Rajeev K.

    2015-01-01

    Pigeonpea is an important pulse crop grown predominantly in the tropical and sub-tropical regions of the world. Although pigeonpea growing area has considerably increased, yield has remained stagnant for the last six decades mainly due to the exposure of the crop to various biotic and abiotic constraints. In addition, low level of genetic variability and limited genomic resources have been serious impediments to pigeonpea crop improvement through modern breeding approaches. In recent years, however, due to the availability of next generation sequencing and high-throughput genotyping technologies, the scenario has changed tremendously. The reduced sequencing costs resulting in the decoding of the pigeonpea genome has led to the development of various genomic resources including molecular markers, transcript sequences and comprehensive genetic maps. Mapping of some important traits including resistance to Fusarium wilt and sterility mosaic disease, fertility restoration, determinacy with other agronomically important traits have paved the way for applying genomics-assisted breeding (GAB) through marker assisted selection as well as genomic selection (GS). This would accelerate the development and improvement of both varieties and hybrids in pigeonpea. Particularly for hybrid breeding programme, mitochondrial genomes of cytoplasmic male sterile (CMS) lines, maintainers and hybrids have been sequenced to identify genes responsible for cytoplasmic male sterility. Furthermore, several diagnostic molecular markers have been developed to assess the purity of commercial hybrids. In summary, pigeonpea has become a genomic resources-rich crop and efforts have already been initiated to integrate these resources in pigeonpea breeding. PMID:25741349

  13. Further exploration of MRI techniques for liver T1rho quantification.

    PubMed

    Zhao, Feng; Yuan, Jing; Deng, Min; Lu, Pu-Xuan; Ahuja, Anil T; Wang, Yi-Xiang J

    2013-12-01

    With biliary duct ligation and CCl4 induced rat liver fibrosis models, recent studies showed that MR T1rho imaging is able to detect liver fibrosis, and the degree of fibrosis is correlated with the degree of elevation of the T1rho measurements, suggesting liver T1rho quantification may play an important role for liver fibrosis early detection and grading. It has also been reported it is feasible to obtain consistent liver T1rho measurement for human subjects at 3 Tesla (3 T), and preliminary clinical data suggest liver T1rho is increased in patients with cirrhosis. In these previous studies, T1rho imaging was used with the rotary-echo spin-lock pulse for T1rho preparation, and number of signal averaging (NSA) was 2. Due to the presence of inhomogeneous B0 field, artifacts may occur in the acquired T1rho-weighted images. The method described by Dixon et al. (Magn Reson Med 1996;36:90-4), which is a hard RF pulse with 135° flip angle and same RF phase as the spin-locking RF pulse is inserted right before and after the spin-locking RF pulse, has been proposed to reduce sensitivity to B0 field inhomogeneity in T1rho imaging. In this study, we compared the images scanned by rotary-echo spin-lock pulse method (sequence 1) and the pulse modified according to Dixon method (sequence 2). When the artifacts occurred in T1rho images, we repeated the same scan until satisfactory. We accepted images if artifact in liver was less than 10% of liver area by visual estimation. When NSA =2, the breath-holding duration for data acquisition of one slice scanning was 8 sec due to a delay time of 6,000 ms for magnetization restoration. If NSA =1, the duration was shortened to be 2 sec. In previous studies, manual region of interest (ROI) analysis of T1rho map was used. In this current study, histogram analysis was also applied to evaluate liver T1rho value on T1rho maps. MRI data acquisition was performed on a 3 T clinical scanner. There were 29 subjects with 61 examinations obtained. Liver T1rho values obtained by sequence 1 (NSA =2) and sequence 2 (NSA =2) showed similar values, i.e., 43.1±2.1 ms (range: 38.6-48.0 ms, n=40 scans) vs. 43.5±2.5 ms (range: 39.0-47.7 ms, 
n=12 scans, P=0.74) respectively. For the six volunteers scanned with both sequences in one session, the intraclass correlation coefficient (ICC) was 0.939. Overall, the success rate of obtaining satisfactory images per acquisition was slightly over 50% for both sequence 1 and sequence 2. Satisfactory images can usually be obtained by asking the volunteer subjects to better hold their breath. However, sequence 2 did not increase the scan success rate. For the nine subjects scanned by sequence 2 with both NSA =2 and NSA =1 during one session, the ICC was 0.274, demonstrated poor agreement. T1rho measurement by ROI method and histogram had an ICC of 0.901 (P>0.05), demonstrated very good agreement. We conclude that by including 135° flip angle before and after the spin-locking RF pulse, the rate of artifacts occurring did not decrease. On the other hand, sequence 1 and sequence 2 measured similar T1rho value in healthy liver. While reducing the breath-holding duration significantly, NSA =1 did not offer satisfactory signal-to-noise ratio. Histogram measurement can be adopted for future studies.

  14. Pattern recognition of electronic bit-sequences using a semiconductor mode-locked laser and spatial light modulators

    NASA Astrophysics Data System (ADS)

    Bhooplapur, Sharad; Akbulut, Mehmetkan; Quinlan, Franklyn; Delfyett, Peter J.

    2010-04-01

    A novel scheme for recognition of electronic bit-sequences is demonstrated. Two electronic bit-sequences that are to be compared are each mapped to a unique code from a set of Walsh-Hadamard codes. The codes are then encoded in parallel on the spectral phase of the frequency comb lines from a frequency-stabilized mode-locked semiconductor laser. Phase encoding is achieved by using two independent spatial light modulators based on liquid crystal arrays. Encoded pulses are compared using interferometric pulse detection and differential balanced photodetection. Orthogonal codes eight bits long are compared, and matched codes are successfully distinguished from mismatched codes with very low error rates, of around 10-18. This technique has potential for high-speed, high accuracy recognition of bit-sequences, with applications in keyword searches and internet protocol packet routing.

  15. Analysis of multiple pulse NMR in solids. III

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Rhim, W. K.

    1979-01-01

    The paper introduces principles which greatly simplify the process of designing and analyzing compound pulse cycles. These principles are demonstrated by applying them to the design and analysis of several cycles, including a 52-pulse cycle; this pulse cycle combines six different REV-8 cycles and has substantially more resolving power than previously available techniques. Also, a new 24-pulse cycle is introduced which combines three different REV-8 cycles and has a resolving ability equivalent to that of the 52-pulse cycle. The principle of pulse-cycle decoupling provides a method for systematically combining pulse groups into compound cycles in order to achieve enhanced performance. This method is illustrated by a logical development from the two-pulse solid echo sequence to the WAHUHA (Waugh et al., 1968), the REV-8, and the new 24-pulse and 52-pulse cycles, along with the 14-pulse and 12-pulse cycles. Proton chemical shift tensor components for several organic solids, measured by using the 52-pulse cycle, are reported without detailed discussion.

  16. Poster — Thur Eve — 27: Flattening Filter Free VMAT Quality Assurance: Dose Rate Considerations for Detector Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viel, Francis; Duzenli, Cheryl; British Columbia Cancer Agency, Department of Medical Physics, Vancouver Centre

    2014-08-15

    Introduction: Radiation detector responses can be affected by dose rate. Due to higher dose per pulse and wider range of mu rates in FFF beams, detector responses should be characterized prior to implementation of QA protocols for FFF beams. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. This study looks at the dose per pulse variation throughout a 3D volume for typical VMAT plans and the response characteristics for a variety of detectors, and makes recommendations on the design of QA protocols for FFF VMAT QA. Materials and Methods: Linac log file data andmore » a simplified dose calculation algorithm are used to calculate dose per pulse for a variety of clinical VMAT plans, on a voxel by voxel basis, as a function of time in a cylindrical phantom. Diode and ion chamber array responses are characterized over the relevant range of dose per pulse and dose rate. Results: Dose per pulse ranges from <0.1 mGy/pulse to 1.5 mGy/pulse in a typical VMAT treatment delivery using the 10XFFF beam. Diode detector arrays demonstrate increased sensitivity to dose (+./− 3%) with increasing dose per pulse over this range. Ion chamber arrays demonstrate decreased sensitivity to dose (+/− 1%) with increasing dose rate over this range. Conclusions: QA protocols should be designed taking into consideration inherent changes in detector sensitivity with dose rate. Neglecting to account for changes in detector response with dose per pulse can lead to skewed QA results.« less

  17. High-rep-rate Thomson scattering for LHD

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Schmitz, O.; Yasuhara, R.; Yamada, I.; Funaba, H.; Osakabe, M.; Morisaki, T.

    2017-10-01

    A high-rep-rate pulse-burst laser system is being built for the LHD Thomson scattering (TS) diagnostic. This laser will have two operating scenarios, a fast-burst sequence of 15 kHz rep rate for at least 15 ms, and a slow-burst sequence of 1 kHz for at least 50 ms. There will be substantial flexibility in burst sequences for tailoring to experimental requirements. This new laser system will operate alongside the existing lasers in the LHD TS diagnostic, and will use the same beamline. This increase in temporal resolution capability complements the high spatial resolution (144 points) of the LHD TS diagnostic, providing unique measurement capability unmatched on any other fusion experiment. The new pulse-burst laser is a straightforward application of technology developed at UW-Madison, consisting of a Nd:YAG laser head with modular flashlamp drive units and a customized control system. Variable pulse-width drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, producing >1.5 J q-switched pulses with 20 ns FWHM. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, RMP perturbations, and various MHD modes. This work is supported by the U. S. Department of Energy and the National Institute for Fusion Science (Japan).

  18. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications

    NASA Astrophysics Data System (ADS)

    Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.

    2015-05-01

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular ‘omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual’s genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.

  19. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.

    PubMed

    Harrer, S; Kim, S C; Schieber, C; Kannam, S; Gunn, N; Moore, S; Scott, D; Bathgate, R; Skafidas, S; Wagner, J M

    2015-05-08

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular 'omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual's genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.

  20. Evaluation of Selected MR Pulse Sequences

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jin

    1990-01-01

    This research addressed four main areas of radiofrequency (rf) pulse programming: (1) correction of instrumentation errors in spin echo sequences by use of phase rolling of the rf pulses; (2) chemical shift imaging of water and lipid; (3) development of special pulse sequences for the measurement of phosphorus metabolites by ^ {31}P spectroscopy and lactate by ^1H spectroscopy; and (4) flow methods to measure and separate diffusion from perfusion. All experiments were performed on a horizontal 2.0T (superconducting magnet) 31-cm small-bore MR system. Computer programming and data analysis were performed on a PDP 11/84 computer system. 1. The effects of rf tips, dc and gain misadjustments in the rf spectrometer were evaluated for a series of MR images. Four different phase cycling schemes (FIXED, ALTERNATE, FORWARD, REVERSED) to suppress unwanted signal components such as mirror and ghost images were evaluated using two signal acquisitions. When the receiver phase factor is cycled counter-clockwise (REVERSED), these artifacts are completely removed. 2. A major problem common to all chemical shift imaging methods is static magnetic field non-uniformity. Four methods (Dixon's, CHESS, SECSI and modified CHESS-SECSI) were quantitatively evaluated for the measurement of water and fat content, which are separated by approximately 3.5 ppm, in in vivo biological tissues. It was demonstrated in phantoms that the modified CHESS+SECSI method gave superior results even without field shimming. 3. The development of new MR rf pulse sequences is essential in order to acquire specialized in vivo information concerning biologic metabolites. The time course of change in concentration of lactate and of phosphorus metabolites in human forearm muscle before and after exercise was determined. Lactate concentration returned to normal in 25 minutes after exercise. The Pi/PCr ratio was 0.25 before exercise, and increased to 0.5 at 4.5 minutes after exercise. 4. The fourth study involved the incorporation of a bipolar gradient pulse technique into a spin echo sequence; by varying the strength of the bipolar gradients, diffusion as well as perfusion can be quantitatively determined. The diffusion coefficient (D) for H_2O and acetone were 2.10 and 5.06 (times10 ^{-3} mm^2 /sec), respectively. The perfusion factor was linearly incremental for stepwise increases in flow velocities.

  1. PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance

    PubMed Central

    Nadon, Celine; Van Walle, Ivo; Gerner-Smidt, Peter; Campos, Josefina; Chinen, Isabel; Concepcion-Acevedo, Jeniffer; Gilpin, Brent; Smith, Anthony M.; Kam, Kai Man; Perez, Enrique; Trees, Eija; Kubota, Kristy; Takkinen, Johanna; Nielsen, Eva Møller; Carleton, Heather

    2017-01-01

    PulseNet International is a global network dedicated to laboratory-based surveillance for food-borne diseases. The network comprises the national and regional laboratory networks of Africa, Asia Pacific, Canada, Europe, Latin America and the Caribbean, the Middle East, and the United States. The PulseNet International vision is the standardised use of whole genome sequencing (WGS) to identify and subtype food-borne bacterial pathogens worldwide, replacing traditional methods to strengthen preparedness and response, reduce global social and economic disease burden, and save lives. To meet the needs of real-time surveillance, the PulseNet International network will standardise subtyping via WGS using whole genome multilocus sequence typing (wgMLST), which delivers sufficiently high resolution and epidemiological concordance, plus unambiguous nomenclature for the purposes of surveillance. Standardised protocols, validation studies, quality control programmes, database and nomenclature development, and training should support the implementation and decentralisation of WGS. Ideally, WGS data collected for surveillance purposes should be publicly available, in real time where possible, respecting data protection policies. WGS data are suitable for surveillance and outbreak purposes and for answering scientific questions pertaining to source attribution, antimicrobial resistance, transmission patterns, and virulence, which will further enable the protection and improvement of public health with respect to food-borne disease. PMID:28662764

  2. Acoustic Response of Underwater Munitions near a Sediment Interface: Measurement Model Comparisons and Classification Schemes

    DTIC Science & Technology

    2015-04-23

    12 Figure 4. Pulse- compressed baseband signals for sequence 40 from TREX13 …… 13 Figure 5. SAS image for sequence 40 from TREX13...12 meshes with data …………… 28 Figure 14. FE simulations for aluminum and steel replicas of an 100-mm UXO …… 28 Figure 15. FE meshes for two targets...PCB Pulse- compressed and baseband PC SWAT Personal Computer Shallow Water Acoustic Toolset PondEx09 Pond Experiment 2009 PondEx10 Pond Experiment

  3. Electric field-mediated transport of plasmid DNA in tumor interstitium in vivo.

    PubMed

    Henshaw, Joshua W; Zaharoff, David A; Mossop, Brian J; Yuan, Fan

    2007-11-01

    Local pulsed electric field application is a method for improving non-viral gene delivery. Mechanisms of the improvement include electroporation and electrophoresis. To understand how electrophoresis affects pDNA delivery in vivo, we quantified the magnitude of electric field-induced interstitial transport of pDNA in 4T1 and B16.F10 tumors implanted in mouse dorsal skin-fold chambers. Four different electric pulse sequences were used in this study, each consisted of 10 identical pulses that were 100 or 400 V/cm in strength and 20 or 50 ms in duration. The interval between consecutive pulses was 1 s. The largest distance of transport was obtained with the 400 V/cm and 50 ms pulse, and was 0.23 and 0.22 microm/pulse in 4T1 and B16.F10 tumors, respectively. There were no significant differences in transport distances between 4T1 and B16.F10 tumors. Results from in vivo mapping and numerical simulations revealed an approximately uniform intratumoral electric field that was predominantly in the direction of the applied field. The data in the study suggested that interstitial transport of pDNA induced by a sequence of ten electric pulses was ineffective for macroscopic delivery of genes in tumors. However, the induced transport was more efficient than passive diffusion.

  4. Effect of sequential isoproturon pulse exposure on Scenedesmus vacuolatus.

    PubMed

    Vallotton, Nathalie; Eggen, Rik Ilda Lambertus; Chèvre, Nathalie

    2009-04-01

    Aquatic organisms are typically exposed to fluctuating concentrations of herbicides in streams. To assess the effects on algae of repeated peak exposure to the herbicide isoproturon, we subjected the alga Scenedesmus vacuolatus to two sequential pulse exposure scenarios. Effects on growth and on the inhibition of the effective quantum yield of photosystem II (PSII) were measured. In the first scenario, algae were exposed to short, 5-h pulses at high isoproturon concentrations (400 and 1000 microg/l), each followed by a recovery period of 18 h, while the second scenario consisted of 22.5-h pulses at lower concentrations (60 and 120 microg/l), alternating with short recovery periods (1.5 h). In addition, any changes in the sensitivity of the algae to isoproturon following sequential pulses were examined by determining the growth rate-EC(50) prior to and following exposure. In both exposure scenarios, we found that algal growth and its effective quantum yield were systematically inhibited during the exposures and that these effects were reversible. Sequential pulses to isoproturon could be considered a sequence of independent events. Nevertheless, a consequence of inhibited growth during the repeated exposures is the cumulative decrease in biomass production. Furthermore, in the second scenario, when the sequence of long pulses began to approach a scenario of continuous exposure, a slight increase in the tolerance of the algae to isoproturon was observed. These findings indicated that sequential pulses do affect algae during each pulse exposure, even if algae recover between the exposures. These observations could support an improved risk assessment of fluctuating exposures to reversibly acting herbicides.

  5. Earth field NMR with chemical shift spectral resolution: theory and proof of concept.

    PubMed

    Katz, Itai; Shtirberg, Lazar; Shakour, Gubrail; Blank, Aharon

    2012-06-01

    A new method for obtaining an NMR signal in the Earth's magnetic field (EF) is presented. The method makes use of a simple pulse sequence with only DC fields which is much less demanding than previous approaches in terms of the pulses' rise and fall times. Furthermore, it offers the possibility of obtaining NMR data with enough spectral resolution to allow retrieving high resolution molecular chemical shift (CS) information - a capability that was not considered possible in EF NMR until now. Details of the pulse sequence, the experimental system, and our specially tailored EF NMR probe are provided. The experimental results demonstrate the capability to differentiate between three types of samples made of common fluorine compounds, based on their CS data. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Molecular spinning by a chiral train of short laser pulses

    NASA Astrophysics Data System (ADS)

    Floß, Johannes; Averbukh, Ilya Sh.

    2012-12-01

    We provide a detailed theoretical analysis of molecular rotational excitation by a chiral pulse train, a sequence of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. Molecular rotation with a preferential rotational sense (clockwise or counterclockwise) can be excited by this scheme. We show that the directionality of the rotation is caused by quantum interference of different excitation pathways. The chiral pulse train is capable of selective excitation of molecular isotopologs and nuclear spin isomers in a mixture. We demonstrate this using 14N2 and 15N2 as examples for isotopologs and para- and ortho-nitrogen as examples for nuclear-spin isomers.

  7. ELECTRIC PULSE GENERATOR

    DOEpatents

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  8. Detecting fiducials affected by trombone delay in ARC and the main laser alignment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Bliss, Erlan S.; Miller Kamm, Victoria; Leach, Richard R.; Roberts, Randy; Rushford, Michael C.; Lowe-Webb, Roger; Wilhelmsen, Karl

    2015-09-01

    Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.

  9. One-dimensional "atom" with zero-range potential perturbed by finite sequence of zero-duration laser pulses

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Chuluunbaatar, O.; Popov, Yu. V.; Vinitsky, S. I.; Derbov, V. L.; Lovetskiy, K. P.

    2018-04-01

    The exactly soluble model of a train of zero-duration electromagnetic pulses interacting with a 1D atom with short-range interaction potential modelled by a δ-function is considered. The model is related to the up-to-date laser techniques providing the duration of pulses as short as a few attoseconds and the intensities higher than 1014 W/cm2.

  10. High performance MRI simulations of motion on multi-GPU systems

    PubMed Central

    2014-01-01

    Background MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Methods Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Results Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. Conclusions MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications. PMID:24996972

  11. A pulsed magnetic stress applied to Drosophila melanogaster flies

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  12. Improved heteronuclear dipolar decoupling sequences for liquid-crystal NMR

    NASA Astrophysics Data System (ADS)

    Thakur, Rajendra Singh; Kurur, Narayanan D.; Madhu, P. K.

    2007-04-01

    Recently we introduced a radiofrequency pulse scheme for heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance under magic-angle spinning [R.S. Thakur, N.D. Kurur, P.K. Madhu, Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett. 426 (2006) 459-463]. Variants of this sequence, swept-frequency TPPM, employing frequency modulation of different types have been further tested to improve the efficiency of heteronuclear dipolar decoupling. Among these, certain sequences that were found to perform well at lower spinning speeds are demonstrated here on a liquid-crystal sample of MBBA for application in static samples. The new sequences are compared with the standard TPPM and SPINAL schemes and are shown to perform better than them. These modulated schemes perform well at low decoupler radiofrequency power levels and are easy to implement on standard spectrometers.

  13. Novel reference radiation fields for pulsed photon radiation installed at PTB.

    PubMed

    Klammer, J; Roth, J; Hupe, O

    2012-09-01

    Currently, ∼70 % of the occupationally exposed persons in Germany are working in pulsed radiation fields, mainly in the medical sector. It has been known for a few years that active electronic dosemeters exhibit considerable deficits or can even fail completely in pulsed fields. Type test requirements for dosemeters exist only for continuous radiation. Owing to the need of a reference field for pulsed photon radiation and accordingly to the upcoming type test requirements for dosemeters in pulsed radiation, the Physikalisch-Technische Bundesanstalt has developed a novel X-ray reference field for pulsed photon radiation in cooperation with a manufacturer. This reference field, geared to the main applications in the field of medicine, has been well characterised and is now available for research and type testing of dosemeters in pulsed photon radiation.

  14. Dynamic pulse difference circuit

    DOEpatents

    Erickson, Gerald L.

    1978-01-01

    A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter.

  15. Optimum Filters and Pulsed Signal Storage Devices,

    DTIC Science & Technology

    1982-05-05

    condition is usually fulfilled in practice, with the exception of cases of very fast targets, superlong pulses and very short wavelengths. After passing...the repetition period of the system should be used to create slow scanning. The scope with fast scanning is used to measure speed and the one with slow...b. Consideration of these functions shows the intermit - tent amplitude variation of the pulse characteristic of a two-stage storage device. This is

  16. Test Bed Considerations for the Evaluation of EMP Protection Measures for Defense Electronics Installations.

    DTIC Science & Technology

    1981-05-31

    number) EMP Hardening EMP Testing Electromagnetic Pulse (EMP) EMP Test Bed Facility Electromagnetic Environment Electromagnetic Susceptibility 20 ABSTRACT...very high energy electromagnetic pulse (EMP). The EMP from an exo-atmospheric :3 burst can disrupt or damage unprotected electronics over an area as...3. A., and Parker, R. L., " Electromagnetic Pulse Handbook for Missiles and Aircraft in Flight EMP Interaction 1-1," Sandia Laboratories for Air Force

  17. MR imaging of iliofemoral peripheral vascular calcifications using proton density-weighted, in-phase three-dimensional stack-of-stars gradient echo.

    PubMed

    Ferreira Botelho, Marcos P; Koktzoglou, Ioannis; Collins, Jeremy D; Giri, Shivraman; Carr, James C; Gupta, NavYash; Edelman, Robert R

    2017-06-01

    The presence of vascular calcifications helps to determine percutaneous access for interventional vascular procedures and has prognostic value for future cardiovascular events. Unlike CT, standard MRI techniques are insensitive to vascular calcifications. In this prospective study, we tested a proton density-weighted, in-phase (PDIP) three-dimensional (3D) stack-of-stars gradient-echo pulse sequence with approximately 1 mm 3 isotropic spatial resolution at 1.5 Tesla (T) and 3T to detect iliofemoral peripheral vascular calcifications and correlated MR-determined lesion volumes with CT angiography (CTA). The study was approved by the Institutional Review Board. The prototype PDIP stack-of-stars pulse sequence was applied in 12 patients with iliofemoral peripheral vascular calcifications who had undergone CTA. Vascular calcifications were well visualized in all subjects, excluding segments near prostheses or stents. The location, size, and shape of the calcifications were similar to CTA. Quantitative analysis showed excellent correlation (r 2  = 0.84; P < 0.0001) between MR- and CT-based measures of calcification volume. In one subject in whom three pulse sequences were compared, PDIP stack-of-stars outperformed cartesian 3D gradient-echo and point-wise encoding time reduction with radial acquisition (PETRA). In this pilot study, a PDIP 3D stack-of-stars gradient-echo pulse sequence with high spatial resolution provided excellent image quality and accurately depicted the location and volume of iliofemoral vascular calcifications. Magn Reson Med 77:2146-2152, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model.

    PubMed

    Bennett, Kevin M; Schmainda, Kathleen M; Bennett, Raoqiong Tong; Rowe, Daniel B; Lu, Hanbing; Hyde, James S

    2003-10-01

    Experience with diffusion-weighted imaging (DWI) shows that signal attenuation is consistent with a multicompartmental theory of water diffusion in the brain. The source of this so-called nonexponential behavior is a topic of debate, because the cerebral cortex contains considerable microscopic heterogeneity and is therefore difficult to model. To account for this heterogeneity and understand its implications for current models of diffusion, a stretched-exponential function was developed to describe diffusion-related signal decay as a continuous distribution of sources decaying at different rates, with no assumptions made about the number of participating sources. DWI experiments were performed using a spin-echo diffusion-weighted pulse sequence with b-values of 500-6500 s/mm(2) in six rats. Signal attenuation curves were fit to a stretched-exponential function, and 20% of the voxels were better fit to the stretched-exponential model than to a biexponential model, even though the latter model had one more adjustable parameter. Based on the calculated intravoxel heterogeneity measure, the cerebral cortex contains considerable heterogeneity in diffusion. The use of a distributed diffusion coefficient (DDC) is suggested to measure mean intravoxel diffusion rates in the presence of such heterogeneity. Copyright 2003 Wiley-Liss, Inc.

  19. Pulseq: A rapid and hardware-independent pulse sequence prototyping framework.

    PubMed

    Layton, Kelvin J; Kroboth, Stefan; Jia, Feng; Littin, Sebastian; Yu, Huijun; Leupold, Jochen; Nielsen, Jon-Fredrik; Stöcker, Tony; Zaitsev, Maxim

    2017-04-01

    Implementing new magnetic resonance experiments, or sequences, often involves extensive programming on vendor-specific platforms, which can be time consuming and costly. This situation is exacerbated when research sequences need to be implemented on several platforms simultaneously, for example, at different field strengths. This work presents an alternative programming environment that is hardware-independent, open-source, and promotes rapid sequence prototyping. A novel file format is described to efficiently store the hardware events and timing information required for an MR pulse sequence. Platform-dependent interpreter modules convert the file to appropriate instructions to run the sequence on MR hardware. Sequences can be designed in high-level languages, such as MATLAB, or with a graphical interface. Spin physics simulation tools are incorporated into the framework, allowing for comparison between real and virtual experiments. Minimal effort is required to implement relatively advanced sequences using the tools provided. Sequences are executed on three different MR platforms, demonstrating the flexibility of the approach. A high-level, flexible and hardware-independent approach to sequence programming is ideal for the rapid development of new sequences. The framework is currently not suitable for large patient studies or routine scanning although this would be possible with deeper integration into existing workflows. Magn Reson Med 77:1544-1552, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Directly driven source of multi-gigahertz, sub-picosecond optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messerly, Michael J.; Dawson, Jay W.; Barty, Christopher P.J.

    2015-10-20

    A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulsesmore » or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.« less

  1. Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum).

    PubMed

    Kobayasi, Kohta I; Hiryu, Shizuko; Shimozawa, Ryota; Riquimaroux, Hiroshi

    2012-11-01

    Although much is known about the echolocation of horseshoe bats (Rhinolophus spp.), little is known about the characteristics and function of their communication calls. This study focused on a stereotyped behavior of a bat approaching a companion animal in the colony, and examined their interaction and vocalization during this behavior. The bats emit echolocation-like vocalizations when approaching each other and these vocalizations contain a "buildup" pulse sequence, in which the frequency of the pulse increases gradually to normal echolocation pulse frequencies. The results suggest that the echolocation-like pulses serve an important role in communication within the colony.

  2. Upgrading and performance of the SAO laser ranging system in Matera

    NASA Technical Reports Server (NTRS)

    Maddox, J.; Pearlman, M.; Throp, J.; Wohn, J.

    1983-01-01

    The performance of the SAO lasers was improved considerably in terms of accuracy, range noise, data yield, and reliability. With the narrower laser pulse (2.5-3.0 nsec) and a new analog pulse processing system, the systematic range errors were reduced to 3-5 cm and range noise has been reduced to 5-15 cm on low satellites and 10-18 cm on Lageos. Pulse repetition rate was increased to 30 ppm and considerable improvement has been made in signal-to-noise ratio by using a 3 Angstrom interference filter and by reducing the range gate window down to 200-400 nsec. The first upgraded system was installed in Arequipa, Peru in the spring of 1982. The second upgraded system is now in operation in Matera, Italy. The third system is expected to be installed in Israel during 1984.

  3. Antibiotic resistance and population structure of cystic fibrosis Pseudomonas aeruginosa isolates from a Spanish multi-centre study.

    PubMed

    López-Causapé, Carla; de Dios-Caballero, Juan; Cobo, Marta; Escribano, Amparo; Asensio, Óscar; Oliver, Antonio; Del Campo, Rosa; Cantón, Rafael; Solé, Amparó; Cortell, Isidoro; Asensio, Oscar; García, Gloria; Martínez, María Teresa; Cols, María; Salcedo, Antonio; Vázquez, Carlos; Baranda, Félix; Girón, Rosa; Quintana, Esther; Delgado, Isabel; de Miguel, María Ángeles; García, Marta; Oliva, Concepción; Prados, María Concepción; Barrio, María Isabel; Pastor, María Dolores; Olveira, Casilda; de Gracia, Javier; Álvarez, Antonio; Escribano, Amparo; Castillo, Silvia; Figuerola, Joan; Togores, Bernat; Oliver, Antonio; López, Carla; de Dios Caballero, Juan; Tato, Marta; Máiz, Luis; Suárez, Lucrecia; Cantón, Rafael

    2017-09-01

    The first Spanish multi-centre study on the microbiology of cystic fibrosis (CF) was conducted from 2013 to 2014. The study involved 24 CF units from 17 hospitals, and recruited 341 patients. The aim of this study was to characterise Pseudomonas aeruginosa isolates, 79 of which were recovered from 75 (22%) patients. The study determined the population structure, antibiotic susceptibility profile and genetic background of the strains. Fifty-five percent of the isolates were multi-drug-resistant, and 16% were extensively-drug-resistant. Defective mutS and mutL genes were observed in mutator isolates (15.2%). Considerable genetic diversity was observed by pulsed-field gel electrophoresis (70 patterns) and multi-locus sequence typing (72 sequence types). International epidemic clones were not detected. Fifty-one new and 14 previously described array tube (AT) genotypes were detected by AT technology. This study found a genetically unrelated and highly diverse CF P. aeruginosa population in Spain, not represented by the epidemic clones widely distributed across Europe, with multiple combinations of virulence factors and high antimicrobial resistance rates (except for colistin). Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. Measurement of spin-lattice relaxation times and concentrations in systems with chemical exchange using the one-pulse sequence: breakdown of the Ernst model for partial saturation in nuclear magnetic resonance spectroscopy.

    PubMed

    Spencer, R G; Fishbein, K W

    2000-01-01

    A fundamental problem in Fourier transform NMR spectroscopy is the calculation of observed resonance amplitudes for a repetitively pulsed sample, as first analyzed by Ernst and Anderson in 1966. Applications include determination of spin-lattice relaxation times (T(1)'s) by progressive saturation and correction for partial saturation in order to determine the concentrations of the chemical constituents of a spectrum. Accordingly, the Ernst and Anderson formalism has been used in innumerable studies of chemical and, more recently, physiological systems. However, that formalism implicitly assumes that no chemical exchange occurs. Here, we present an analysis of N sites in an arbitrary chemical exchange network, explicitly focusing on the intermediate exchange rate regime in which the spin-lattice relaxation rates and the chemical exchange rates are comparable in magnitude. As a special case of particular importance, detailed results are provided for a system with three sites undergoing mutual exchange. Specific properties of the N-site network are then detailed. We find that (i) the Ernst and Anderson analysis describing the response of a system to repetitive pulsing is inapplicable to systems with chemical exchange and can result in large errors in T(1) and concentration measurements; (ii) T(1)'s for systems with arbitrary exchange networks may still be correctly determined from a one-pulse experiment using the Ernst formula, provided that a short interpulse delay time and a large flip angle are used; (iii) chemical concentrations for exchanging systems may be correctly determined from a one-pulse experiment either by using a short interpulse delay time with a large flip angle, as for measuring T(1)'s, and correcting for partial saturation by use of the Ernst formula, or directly by using a long interpulse delay time to avoid saturation; (iv) there is a significant signal-to-noise penalty for performing one-pulse experiments under conditions which permit accurate measurements of T(1)'s and chemical concentrations. The present results are analogous to but are much more general than those that we have previously derived for systems with two exchanging sites. These considerations have implications for the design and interpretation of one-pulse experiments for all systems exhibiting chemical exchange in the intermediate exchange regime, including virtually all physiologic samples.

  5. Investigation of Temperature Change under Influence of Ultrashort Laser Pulses Taking into Account Relaxation Properties of Materials

    NASA Astrophysics Data System (ADS)

    Eremin, A. V.; Kudinov, V. A.; Stefanyuk, E. V.; Kudinov, I. V.

    2018-03-01

    By using the modified Fourier law’s formula considering the relaxation of heat flow and temperature gradient, a mathematical model of the local non-equilibrium process of plate heating with ultrashort laser pulses was developed. The research showed that consideration of non-locality results in the delayed plate heat up irrespective of the laser radiation flow intensity. It was also shown that in consideration of the relaxation phenomena, the boundary conditions may not be fulfilled immediately – they may be set only within a definite range of the initial time.

  6. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  7. BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences

    NASA Astrophysics Data System (ADS)

    Kose, Ryoichi; Kose, Katsumi

    2017-08-01

    A magnetic resonance imaging (MRI) simulator, which reproduces MRI experiments using computers, has been developed using two graphic-processor-unit (GPU) boards (GTX 1080). The MRI simulator was developed to run according to pulse sequences used in experiments. Experiments and simulations were performed to demonstrate the usefulness of the MRI simulator for three types of pulse sequences, namely, three-dimensional (3D) gradient-echo, 3D radio-frequency spoiled gradient-echo, and gradient-echo multislice with practical matrix sizes. The results demonstrated that the calculation speed using two GPU boards was typically about 7 TFLOPS and about 14 times faster than the calculation speed using CPUs (two 18-core Xeons). We also found that MR images acquired by experiment could be reproduced using an appropriate number of subvoxels, and that 3D isotropic and two-dimensional multislice imaging experiments for practical matrix sizes could be simulated using the MRI simulator. Therefore, we concluded that such powerful MRI simulators are expected to become an indispensable tool for MRI research and development.

  8. Simultaneous Myocardial Strain and Dark-Blood Perfusion Imaging Using a Displacement-Encoded MRI Pulse Sequence

    PubMed Central

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E.; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd’Hotel, Christophe; Lorenz, Christine H.; Croisille, Pierre; Wen, Han

    2010-01-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in 2–3 myocardial slices were repeatedly acquired using a single shot pulse sequence for 3 to 4 minutes, which covers a bolus infusion of Gd. The magnitudes of the images were T1 weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n=9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R2 = 0.765, Bland-Altman standard deviation = 0.15 ml/min/g). In a group of ST-elevation myocardial infarction(STEMI) patients (n=11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R2=0.72), and the pixel-wise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  9. WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooley, R.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  10. Analysis on the arcelin expression in bruchid pest resistant wild pulses using real time RT-qPCR.

    PubMed

    Sakthivelkumar, Shanmugavel; Veeramani, Velayutham; Hilda, Karuppiah; Arumugam, Munusamy; Janarthanan, Sundaram

    2014-12-01

    Arcelin, the antimetabolic protein from wild pulses is a known natural insecticidal molecule. Wild pulses with high arcelin content could serve as potential source to. increase the levels of insect resistance in cultivated pulse crops. In this study, arcelin (Arl) gene expression was screened in seven stored product insect pest resistant wild pulse varieties using real time RT-qPCR. Arcelin gene specific real time PCR primers were synthesized from arcelin mRNA sequence of the wild pulse variety, Lablab purpureus. The results revealed different levels of arcelin gene expression in the tested varieties. Canavalia virosa registered significantly high content indicating its suitability for utilization of arcelin gene in developing stored product insect pest resistance with other cultivated pulses.

  11. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method

    DOE PAGES

    Qiu, Jiaqi; Zhu, Yimei; Ha, Gwanghui; ...

    2015-11-10

    In this study, a device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1 GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incomingmore » dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges.« less

  12. Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems

    NASA Astrophysics Data System (ADS)

    Slotboom, J.

    1993-10-01

    This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.

  13. Efficient dispersion tailoring by designing alternately arranged dispersion compensating fibers and fiber amplifiers to create self-similar parabolic pulses

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipankar; Basu, Mousumi

    2010-11-01

    The parabolic similariton pulse formation by alternate arrangements of passive and active dispersion compensating fibers (DCFs) is presented here. These combinations of passive and active DCFs with constant core radii and constant nonlinearities are suggested as equivalent profiles of a dispersion tailored fiber amplifier in normal dispersion regime. The dispersion tailored fibers, usually known as dispersion decreasing fibers (DDFs) in normal dispersion regime, are capable of producing linearly chirped parabolic self-similar pulses. The DDF is designed and optimized with proper choice of fiber parameters so that considerable variation of nonlinearity can be achieved, which in turn enhances the effective gain coefficient of the fiber. Inclusion of this nonlinear variation along the DDF amplifier length leads to obtain the simulated output pulses with very small misfit parameters with respect to perfect parabolic pulse at sufficiently reduced optimum length. At the same time to avoid the fabrication difficulties of the DDF, the alternately arranged passive and active DCFs are suggested as suitable alternatives of the DDF. The performances of the cascaded systems for generation of self-similar parabolic pulses are compared with that of the DDF amplifier as well as combined systems consisting of DCFs with equal gain. The results show that the proposed alternately arranged cascaded system with less pumping requirements, are efficient enough to produce similar parabolic pulses as compared to the previously designed DDF, even when considerable amount of splice loss at each joint is included.

  14. Multipulsed dynamic moire interferometer

    DOEpatents

    Deason, Vance A.

    1991-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  15. Multiple acousto-optic q-switch

    DOEpatents

    Deason, Vance A.

    1993-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  16. Multiple acousto-optic q-switch

    DOEpatents

    Deason, Vance A.

    1993-12-07

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  17. FPGA-based Upgrade to RITS-6 Control System, Designed with EMP Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold D. Anderson, John T. Williams

    2009-07-01

    The existing control system for the RITS-6, a 20-MA 3-MV pulsed-power accelerator located at Sandia National Laboratories, was built as a system of analog switches because the operators needed to be close enough to the machine to hear pulsed-power breakdowns, yet the electromagnetic pulse (EMP) emitted would disable any processor-based solutions. The resulting system requires operators to activate and deactivate a series of 110-V relays manually in a complex order. The machine is sensitive to both the order of operation and the time taken between steps. A mistake in either case would cause a misfire and possible machine damage. Basedmore » on these constraints, a field-programmable gate array (FPGA) was chosen as the core of a proposed upgrade to the control system. An FPGA is a series of logic elements connected during programming. Based on their connections, the elements can mimic primitive logic elements, a process called synthesis. The circuit is static; all paths exist simultaneously and do not depend on a processor. This should make it less sensitive to EMP. By shielding it and using good electromagnetic interference-reduction practices, it should continue to operate well in the electrically noisy environment. The FPGA has two advantages over the existing system. In manual operation mode, the synthesized logic gates keep the operators in sequence. In addition, a clock signal and synthesized countdown circuit provides an automated sequence, with adjustable delays, for quickly executing the time-critical portions of charging and firing. The FPGA is modeled as a set of states, each state being a unique set of values for the output signals. The state is determined by the input signals, and in the automated segment by the value of the synthesized countdown timer, with the default mode placing the system in a safe configuration. Unlike a processor-based system, any system stimulus that results in an abort situation immediately executes a shutdown, with only a tens-of-nanoseconds delay to propagate across the FPGA. This paper discusses the design, installation, and testing of the proposed system upgrade, including failure statistics and modifications to the original design.« less

  18. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    PubMed

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  19. One-dimensional photonic crystals for code-division multiple access

    NASA Astrophysics Data System (ADS)

    Wang, Shamino Yuanliang

    One-dimensional photonic crystals exhibit reduced group velocity and huge dispersion at their rejection band edge frequencies. Therefore they are natural candidates as optical delay lines, dispersion compensators, and pulse reshapers. Using wavelength tunable pulses spectrally sliced from a mode-locked fiber laser, the transmission mode measurement was performed in the time domain with single picosecond resolution. Group delays and dispersion were measured with an autocorrelator as an ultrafast optical detector and cross-correlator. Our experimental results agree qualitatively with the theoretical and simulation predictions. A maximum group delay of 10 ps for a commercial 3 mm long uniform fiber Bragg grating and that of 22.6 ps for a research laboratory fabricated 1 cm grating were measured, corresponding to a group velocity 66% of the speed of light in bare fiber. We have also demonstrated in the overlap transmission region of a grating pair both gratings contribute to the group delay while the group velocity dispersion was canceled, resulting in additive delay in transmission with minimal pulse reshaping. This compound grating configuration was further expanded as specially designed grating sequence encoders and decoders in matched filter CDMA. The transmitter grating sequence temporally stretched the input pulse into a long time scale low peak intensity pseudorandom noise, while the conjugate grating sequence in the receiver performed pulse reconstruction and data recovery. A temporal FWHM contrast ratio of 2.5 and a peak intensity contrast ratio of 10 between the correctly and incorrectly decoded signals were achieved. Armed with more sophisticated grating designs we believe this would be a powerful solution to CDMA orthogonal code requirements.

  20. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J.; Polenova, Tatyana

    2014-09-01

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.

  1. 47 CFR 15.403 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or below its maximum level. (p) Pulse. A pulse is a continuous transmission of a sequence of... bridge in a peer-to-peer connection or as a connector between the wired and wireless segments of the... the presence of a radar. (c) Average Symbol Envelope Power. The average symbol envelope power is the...

  2. Single voxel localization for dynamic hyperpolarized 13C MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Albert P.; Cunningham, Charles H.

    2015-09-01

    The PRESS technique has been widely used to achieve voxel localization for in vivo1H MRS acquisitions. However, for dynamic hyperpolarized 13C MRS experiments, the transition bands of the refocusing pulses may saturate the pre-polarized substrate spins flowing into the voxel. This limitation may be overcome by designing refocusing pulses that do not perturb the resonance of the hyperpolarized substrate, but selectively refocuses the spins of the metabolic products. In this study, a PRESS pulse sequence incorporating spectral-spatial refocusing pulses that have a stop band ('notch') at the substrate resonance is tested in vivo using hyperpolarized [1-13C]pyruvate. Higher metabolite SNR was observed in experiments using the spectral-spatial refocusing pulses as compared to conventional refocusing pulses.

  3. Noseleaf dynamics during pulse emission in horseshoe bats.

    PubMed

    Feng, Lin; Gao, Li; Lu, Hongwang; Müller, Rolf

    2012-01-01

    Horseshoe bats emit their biosonar pulses nasally and diffract the outgoing ultrasonic waves by conspicuous structures that surrounded the nostrils. Here, we report quantitative experimental data on the motion of a prominent component of these structures, the anterior leaf, using synchronized laser Doppler vibrometry and acoustic recordings in the greater horseshoe bat (Rhinolophus ferrumequinum). The vibrometry data has demonstrated non-random motion patterns in the anterior leaf. In these patterns, the outer rim of the walls of the anterior leaf twitches forward and inwards to decrease the aperture of the noseleaf and increase the curvature of its surfaces. Noseleaf displacements were correlated with the emitted ultrasonic pulses. After their onset, the inward displacements increased monotonically towards their maximum value which was always reached within the duration of the biosonar pulse, typically towards its end. In other words, the anterior leaf's surfaces were moving inwards during most of the pulse. Non-random motions were not present in all recorded pulse trains, but could apparently be switched on or off. Such switches happened between sequences of consecutive pulses but were never observed between individual pulses within a sequence. The amplitudes of the emitted biosonar pulse and accompanying noseleaf movement were not correlated in the analyzed data set. The measured velocities of the noseleaf surface were too small to induce Doppler shifts of a magnitude with a likely significance. However, the displacement amplitudes were significant in comparison with the overall size of the anterior leaf and the sound wavelengths. These results indicate the possibility that horseshoe bats use dynamic sensing principles on the emission side of their biosonar system. Given the already available evidence that such mechanisms exist for biosonar reception, it may be hypothesized that time-variant mechanisms play a pervasive role in the biosonar sensing of horseshoe bats.

  4. Noseleaf Dynamics during Pulse Emission in Horseshoe Bats

    PubMed Central

    Feng, Lin; Gao, Li; Lu, Hongwang; Müller, Rolf

    2012-01-01

    Horseshoe bats emit their biosonar pulses nasally and diffract the outgoing ultrasonic waves by conspicuous structures that surrounded the nostrils. Here, we report quantitative experimental data on the motion of a prominent component of these structures, the anterior leaf, using synchronized laser Doppler vibrometry and acoustic recordings in the greater horseshoe bat (Rhinolophus ferrumequinum). The vibrometry data has demonstrated non-random motion patterns in the anterior leaf. In these patterns, the outer rim of the walls of the anterior leaf twitches forward and inwards to decrease the aperture of the noseleaf and increase the curvature of its surfaces. Noseleaf displacements were correlated with the emitted ultrasonic pulses. After their onset, the inward displacements increased monotonically towards their maximum value which was always reached within the duration of the biosonar pulse, typically towards its end. In other words, the anterior leaf’s surfaces were moving inwards during most of the pulse. Non-random motions were not present in all recorded pulse trains, but could apparently be switched on or off. Such switches happened between sequences of consecutive pulses but were never observed between individual pulses within a sequence. The amplitudes of the emitted biosonar pulse and accompanying noseleaf movement were not correlated in the analyzed data set. The measured velocities of the noseleaf surface were too small to induce Doppler shifts of a magnitude with a likely significance. However, the displacement amplitudes were significant in comparison with the overall size of the anterior leaf and the sound wavelengths. These results indicate the possibility that horseshoe bats use dynamic sensing principles on the emission side of their biosonar system. Given the already available evidence that such mechanisms exist for biosonar reception, it may be hypothesized that time-variant mechanisms play a pervasive role in the biosonar sensing of horseshoe bats. PMID:22574110

  5. Laser positioning of four-quadrant detector based on pseudo-random sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yanqin; Cao, Ercong; Hu, Xiaobo; Gu, Guohua; Qian, Weixian

    2016-10-01

    Nowadays the technology of laser positioning based on four-quadrant detector has the wide scope of the study and application areas. The main principle of laser positioning is that by capturing the projection of the laser spot on the photosensitive surface of the detector, and then calculating the output signal from the detector to obtain the coordinates of the spot on the photosensitive surface of the detector, the coordinate information of the laser spot in the space with respect to detector system which reflects the spatial position of the target object is calculated effectively. Given the extensive application of FPGA technology and the pseudo-random sequence has the similar correlation of white noise, the measurement process of the interference, noise has little effect on the correlation peak. In order to improve anti-jamming capability of the guided missile in tracking process, when the laser pulse emission, the laser pulse period is pseudo-random encoded which maintains in the range of 40ms-65ms so that people of interfering can't find the exact real laser pulse. Also, because the receiver knows the way to solve the pseudo-random code, when the receiver receives two consecutive laser pulses, the laser pulse period can be decoded successfully. In the FPGA hardware implementation process, around each laser pulse arrival time, the receiver can open a wave door to get location information contained the true signal. Taking into account the first two consecutive pulses received have been disturbed, so after receiving the first laser pulse, it receives all the laser pulse in the next 40ms-65ms to obtain the corresponding pseudo-random code.

  6. High-speed optical phase-shifting apparatus

    DOEpatents

    Zortman, William A.

    2016-11-08

    An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.

  7. Magnetic resonance force microscopy with a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  8. Magnetic resonance force microscopy with a paramagnetic probe

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  9. Magnetic resonance force microscopy with a paramagnetic probe

    DOE PAGES

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  10. Cardiovascular magnetic resonance physics for clinicians: part I.

    PubMed

    Ridgway, John P

    2010-11-30

    There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained.

  11. Cardiovascular magnetic resonance physics for clinicians: part I

    PubMed Central

    2010-01-01

    There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained. PMID:21118531

  12. Supercontinuum Emission from Water using 40 fs Pulses in the External Tight Focusing Limit

    NASA Astrophysics Data System (ADS)

    Sreeja, S.; Rao, S. Venugopal; Bagchi, Suman; Sreedhar, S.; Prashant, T. Shuvan; Radhakrishnan, P.; Tewari, Surya P.; Kiran, P. Prem

    2011-10-01

    We present our results from the measurements of Supereonlinuum emission (SCE) resulting from the propagation ol" tightly foe used 40 femtosecond laser pulses through distilled water. The e fleet of linearly polarized (LP) and circularly polarized (CP) light pulses on the SCE: in different external focal geometries (f/6 & f/12) is studied in detail. A considerable shift in the minimum wavelength of SCF under tighter focusing limit is observed.

  13. Effect of pulsed current charging on the performance of nickel-cadium cells

    NASA Technical Reports Server (NTRS)

    Bedrossian, A. A.; Cheh, H. Y.

    1977-01-01

    The effect of pulsed current charging on the charge acceptance of NiCd cells in terms of mass transfer, kinetic, and structural considerations was investigated. A systemic investigation on the performance of Ni-Cd cells by pulsed current charging was conducted under a variety of well-defined charge-discharge conditions. Experiments were carried out with half cells and film electrodes. The system behavior was studied by charge acceptance, mechanistic, and structural measurements.

  14. Multilocus Sequence Typing Has Better Discriminatory Ability for Typing Vibrio cholerae than Does Pulsed-Field Gel Electrophoresis and Provides a Measure of Phylogenetic Relatedness

    PubMed Central

    Kotetishvili, Mamuka; Stine, O. Colin; Chen, Yuansha; Kreger, Arnold; Sulakvelidze, Alexander; Sozhamannan, Shanmuga; Morris, Jr., J. Glenn

    2003-01-01

    Twenty-two Vibrio cholerae isolates, including some from “epidemic” (O1 and O139) and “nonepidemic” serogroups, were characterized by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) by using three housekeeping genes, gyrB, pgm, and recA; sequence data were also obtained for the virulence-associated genes tcpA, ctxA, and ctxB. Even with the small number of loci used, MLST had better discriminatory ability than did PFGE. On MLST analysis, there was clear clustering of epidemic serogroups; much greater diversity was seen among tcpA- and ctxAB-positive V. cholerae strains from other, nonepidemic serogroups, with a number of tcpA and ctxAB alleles identified. PMID:12734277

  15. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    NASA Astrophysics Data System (ADS)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  16. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    PubMed Central

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  17. Programmable Pulser

    NASA Technical Reports Server (NTRS)

    Baumann, Eric; Merolla, Anthony

    1988-01-01

    User controls number of clock pulses to prevent burnout. New digital programmable pulser circuit in three formats; freely running, counted, and single pulse. Operates at frequencies up to 5 MHz, with no special consideration given to layout of components or to terminations. Pulser based on sequential circuit with four states and binary counter with appropriate decoding logic. Number of programmable pulses increased beyond 127 by addition of another counter and decoding logic. For very large pulse counts and/or very high frequencies, use synchronous counters to avoid errors caused by propagation delays. Invaluable tool for initial verification or diagnosis of digital or digitally controlled circuity.

  18. Effects of pulse width and coding on radar returns from clear air

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    In atmospheric radar studies it is desired to obtain maximum information about the atmosphere and to use efficiently the radar transmitter and processing hardware. Large pulse widths are used to increase the signal to noise ratio since clear air returns are generally weak and maximum height coverage is desired. Yet since good height resolution is equally important, pulse compression techniques such as phase coding are employed to optimize the average power of the transmitter. Considerations in implementing a coding scheme and subsequent effects of an impinging pulse on the atmosphere are investigated.

  19. The doppler frequency shift caused by the inhomogeneities of a medium induced by pulses of intense laser radiation

    NASA Astrophysics Data System (ADS)

    Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.

    2008-08-01

    Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.

  20. Accurate Control of Josephson Phase Qubits

    DTIC Science & Technology

    2016-04-14

    1 We begin by noting that g50 is a valid choice for a pulse . This corresponds to applying no electromagnetic radiation for some time. Working with...population during the pulse sequence. The total operation time is equal to n(2p/dv)1t ~where t is the total duration of the electromagnetic radiation... pulse . In the next section we show how transient populations in the third energy level can be highly undesirable in the presence of high tunneling rates

  1. Pulsed Thrust Method for Hover Formation Flying

    NASA Technical Reports Server (NTRS)

    Hope, Alan; Trask, Aaron

    2003-01-01

    A non-continuous thrust method for hover type formation flying has been developed. This method differs from a true hover which requires constant range and bearing from a reference vehicle. The new method uses a pulsed loop, or pogo, maneuver sequence that keeps the follower spacecraft within a defined box in a near hover situation. Equations are developed for the hover maintenance maneuvers. The constraints on the hover location, pulse interval, and maximum/minimum ranges are discussed.

  2. X-rays only when you want them: optimized pump–probe experiments using pseudo-single-bunch operation

    PubMed Central

    Hertlein, M. P.; Scholl, A.; Cordones, A. A.; Lee, J. H.; Engelhorn, K.; Glover, T. E.; Barbrel, B.; Sun, C.; Steier, C.; Portmann, G.; Robin, D. S.

    2015-01-01

    Laser pump–X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shot X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated. PMID:25931090

  3. X-rays only when you want them: Optimized pump–probe experiments using pseudo-single-bunch operation

    DOE PAGES

    Hertlein, M. P.; Scholl, A.; Cordones, A. A.; ...

    2015-04-02

    Laser pump–X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shotmore » X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated.« less

  4. Design, characterization and experimental validation of a compact, flexible pulsed power architecture for ex vivo platelet activation

    PubMed Central

    Caiafa, Antonio; Jiang, Yan; Klopman, Steve; Morton, Christine; Torres, Andrew S.; Loveless, Amanda M.; Neculaes, V. Bogdan

    2017-01-01

    Electric pulses can induce various changes in cell dynamics and properties depending upon pulse parameters; however, pulsed power generators for in vitro and ex vivo applications may have little to no flexibility in changing the pulse duration, rise- and fall-times, or pulse shape. We outline a compact pulsed power architecture that operates from hundreds of nanoseconds (with the potential for modification to tens of nanoseconds) to tens of microseconds by modifying a Marx topology via controlling switch sequences and voltages into each capacitor stage. We demonstrate that this device can deliver pulses to both low conductivity buffers, like standard pulsed power supplies used for electroporation, and higher conductivity solutions, such as blood and platelet rich plasma. We further test the effectiveness of this pulse generator for biomedical applications by successfully activating platelets ex vivo with 400 ns and 600 ns electric pulses. This novel bioelectrics platform may provide researchers with unprecedented flexibility to explore a wide range of pulse parameters that may induce phenomena ranging from intracellular to plasma membrane manipulation. PMID:28746392

  5. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  6. Synchronization using pulsed edge tracking in optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Gagliardi, R.

    1972-01-01

    A pulse position modulated (PPM) optical communication system using narrow pulses of light for data transmission requires accurate time synchronization between transmitter and receiver. The presence of signal energy in the form of optical pulses suggests the use of a pulse edge tracking method of maintaining the necessary timing. The edge tracking operation in a binary PPM system is examined, taking into account the quantum nature of the optical transmissions. Consideration is given first to pure synchronization using a periodic pulsed intensity, then extended to the case where position modulation is present and auxiliary bit decisioning is needed to aid the tracking operation. Performance analysis is made in terms of timing error and its associated statistics. Timing error variances are shown as a function of system signal to noise ratio.

  7. Pulse and Entrainment to Non-Isochronous Auditory Stimuli: The Case of North Indian Alap

    PubMed Central

    Will, Udo; Clayton, Martin; Wertheim, Ira; Leante, Laura; Berg, Eric

    2015-01-01

    Pulse is often understood as a feature of a (quasi-) isochronous event sequence that is picked up by an entrained subject. However, entrainment does not only occur between quasi-periodic rhythms. This paper demonstrates the expression of pulse by subjects listening to non-periodic musical stimuli and investigates the processes behind this behaviour. The stimuli are extracts from the introductory sections of North Indian (Hindustani) classical music performances (alap, jor and jhala). The first of three experiments demonstrates regular motor responses to both irregular alap and more regular jor sections: responses to alap appear related to individual spontaneous tempi, while for jor they relate to the stimulus event rate. A second experiment investigated whether subjects respond to average periodicities of the alap section, and whether their responses show phase alignment to the musical events. In the third experiment we investigated responses to a broader sample of performances, testing their relationship to spontaneous tempo, and the effect of prior experience with this music. Our results suggest an entrainment model in which pulse is understood as the experience of one’s internal periodicity: it is not necessarily linked to temporally regular, structured sensory input streams; it can arise spontaneously through the performance of repetitive motor actions, or on exposure to event sequences with rather irregular temporal structures. Greater regularity in the external event sequence leads to entrainment between motor responses and stimulus sequence, modifying subjects’ internal periodicities in such a way that they are either identical or harmonically related to each other. This can be considered as the basis for shared (rhythmic) experience and may be an important process supporting ‘social’ effects of temporally regular music. PMID:25849357

  8. Pulse and entrainment to non-isochronous auditory stimuli: the case of north Indian alap.

    PubMed

    Will, Udo; Clayton, Martin; Wertheim, Ira; Leante, Laura; Berg, Eric

    2015-01-01

    Pulse is often understood as a feature of a (quasi-) isochronous event sequence that is picked up by an entrained subject. However, entrainment does not only occur between quasi-periodic rhythms. This paper demonstrates the expression of pulse by subjects listening to non-periodic musical stimuli and investigates the processes behind this behaviour. The stimuli are extracts from the introductory sections of North Indian (Hindustani) classical music performances (alap, jor and jhala). The first of three experiments demonstrates regular motor responses to both irregular alap and more regular jor sections: responses to alap appear related to individual spontaneous tempi, while for jor they relate to the stimulus event rate. A second experiment investigated whether subjects respond to average periodicities of the alap section, and whether their responses show phase alignment to the musical events. In the third experiment we investigated responses to a broader sample of performances, testing their relationship to spontaneous tempo, and the effect of prior experience with this music. Our results suggest an entrainment model in which pulse is understood as the experience of one's internal periodicity: it is not necessarily linked to temporally regular, structured sensory input streams; it can arise spontaneously through the performance of repetitive motor actions, or on exposure to event sequences with rather irregular temporal structures. Greater regularity in the external event sequence leads to entrainment between motor responses and stimulus sequence, modifying subjects' internal periodicities in such a way that they are either identical or harmonically related to each other. This can be considered as the basis for shared (rhythmic) experience and may be an important process supporting 'social' effects of temporally regular music.

  9. Ultrashort Echo Time and Zero Echo Time MRI at 7T

    PubMed Central

    Larson, Peder E. Z.; Han, Misung; Krug, Roland; Jakary, Angela; Nelson, Sarah J.; Vigneron, Daniel B.; Henry, Roland G.; McKinnon, Graeme; Kelley, Douglas A. C.

    2016-01-01

    Object Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences at 7T to assess differences between these methods. Materials and Methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the Water- and fat-suppressed solid-state proton projection imaging (WASPI) method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted as well as shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Several key differences are that ZTE is limited to volumetric imaging but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection. PMID:26702940

  10. Advanced cardiac chemical exchange saturation transfer (cardioCEST) MRI for in vivo cell tracking and metabolic imaging

    PubMed Central

    Pumphrey, Ashley; Yang, Zhengshi; Ye, Shaojing; Powell, David K.; Thalman, Scott; Watt, David S.; Abdel-Latif, Ahmed; Unrine, Jason; Thompson, Katherine; Fornwalt, Brandon; Ferrauto, Giuseppe; Vandsburger, Moriel

    2016-01-01

    An improved pre-clinical cardiac chemical exchange saturation transfer (CEST) pulse sequence (cardioCEST) was used to selectively visualize paramagnetic CEST (paraCEST)-labeled cells following intramyocardial implantation. In addition, cardioCEST was used to examine the effect of diet-induced obesity upon myocardial creatine CEST contrast. CEST pulse sequences were designed from standard turbo-spin-echo and gradient-echo sequences, and a cardiorespiratory-gated steady-state cine gradient-echo sequence. In vitro validation studies performed in phantoms composed of 20mM Eu-HPDO3A, 20mM Yb-HPDO3A, or saline demonstrated similar CEST contrast by spin-echo and gradient-echo pulse sequences. Skeletal myoblast cells (C2C12) were labeled with either Eu-HPDO3A or saline using a hypotonic swelling procedure and implanted into the myocardium of C57B6/J mice. Inductively coupled plasma mass spectrometry confirmed cellular levels of Eu of 2.1 × 10−3 ng/cell in Eu-HPDO3A-labeled cells and 2.3 × 10−5 ng/cell in saline-labeled cells. In vivo cardioCEST imaging of labeled cells at ±15ppm was performed 24 h after implantation and revealed significantly elevated asymmetric magnetization transfer ratio values in regions of Eu-HPDO3A-labeled cells when compared with surrounding myocardium or saline-labeled cells. We further utilized the cardioCEST pulse sequence to examine changes in myocardial creatine in response to diet-induced obesity by acquiring pairs of cardioCEST images at ±1.8 ppm. While ventricular geometry and function were unchanged between mice fed either a high-fat diet or a corresponding control low-fat diet for 14 weeks, myocardial creatine CEST contrast was significantly reduced in mice fed the high-fat diet. The selective visualization of paraCEST-labeled cells using cardioCEST imaging can enable investigation of cell fate processes in cardioregenerative medicine, or multiplex imaging of cell survival with imaging of cardiac structure and function and additional imaging of myocardial creatine. PMID:26684053

  11. Solid-state NMR imaging system

    DOEpatents

    Gopalsami, Nachappa; Dieckman, Stephen L.; Ellingson, William A.

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  12. Complex Instruction Set Quantum Computing

    NASA Astrophysics Data System (ADS)

    Sanders, G. D.; Kim, K. W.; Holton, W. C.

    1998-03-01

    In proposed quantum computers, electromagnetic pulses are used to implement logic gates on quantum bits (qubits). Gates are unitary transformations applied to coherent qubit wavefunctions and a universal computer can be created using a minimal set of gates. By applying many elementary gates in sequence, desired quantum computations can be performed. This reduced instruction set approach to quantum computing (RISC QC) is characterized by serial application of a few basic pulse shapes and a long coherence time. However, the unitary matrix of the overall computation is ultimately a unitary matrix of the same size as any of the elementary matrices. This suggests that we might replace a sequence of reduced instructions with a single complex instruction using an optimally taylored pulse. We refer to this approach as complex instruction set quantum computing (CISC QC). One trades the requirement for long coherence times for the ability to design and generate potentially more complex pulses. We consider a model system of coupled qubits interacting through nearest neighbor coupling and show that CISC QC can reduce the time required to perform quantum computations.

  13. ARPA Semiannual Technical Report, Materials Science

    DTIC Science & Technology

    1973-12-15

    determine the oscillator output properties. A newly designed cylindrical-ring-electrode Pockel’s cell is used for single picosecond pulse...satellite pulse trains and pulse noise. A contacted dye cell has been constructed and tested for this new system. Considerable experience in its ur-e...by the definition - - - -- ■’ -’ ’" - - ■ - - ■; - . v -• . . . -. 1.,-. •. • .’■-."■ ’,■■ . • ’*■ ," ’".** "."’" ", ■," ■T^r,T^" nT1

  14. Comparison of various NMR methods for the indirect detection of nitrogen-14 nuclei via protons in solids

    NASA Astrophysics Data System (ADS)

    Shen, Ming; Trébosc, Julien; O'Dell, Luke A.; Lafon, Olivier; Pourpoint, Frédérique; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul

    2015-09-01

    We present an experimental comparison of several through-space Hetero-nuclear Multiple-Quantum Correlation experiments, which allow the indirect observation of homo-nuclear single- (SQ) or double-quantum (DQ) 14N coherences via spy 1H nuclei. These 1H-{14N} D-HMQC sequences differ not only by the order of 14N coherences evolving during the indirect evolution, t1, but also by the radio-frequency (rf) scheme used to excite and reconvert these coherences under Magic-Angle Spinning (MAS). Here, the SQ coherences are created by the application of center-band frequency-selective pulses, i.e. long and low-power rectangular pulses at the 14N Larmor frequency, ν0(14N), whereas the DQ coherences are excited and reconverted using rf irradiation either at ν0(14N) or at the 14N overtone frequency, 2ν0(14N). The overtone excitation is achieved either by constant frequency rectangular pulses or by frequency-swept pulses, specifically Wide-band, Uniform-Rate, and Smooth-Truncation (WURST) pulse shapes. The present article compares the performances of four different 1H-{14N} D-HMQC sequences, including those with 14N rectangular pulses at ν0(14N) for the indirect detection of homo-nuclear (i) 14N SQ or (ii) DQ coherences, as well as their overtone variants using (iii) rectangular or (iv) WURST pulses. The compared properties include: (i) the sensitivity, (ii) the spectral resolution in the 14N dimension, (iii) the rf requirements (power and pulse length), as well as the robustness to (iv) rf offset and (v) MAS frequency instabilities. Such experimental comparisons are carried out for γ-glycine and L-histidine.HCl monohydrate, which contain 14N sites subject to moderate quadrupole interactions. We demonstrate that the optimum choice of the 1H-{14N} D-HMQC method depends on the experimental goal. When the sensitivity and/or the robustness to offset are the major concerns, the D-HMQC sequence allowing the indirect detection of 14N SQ coherences should be employed. Conversely, when the highest resolution and/or adjusted indirect spectral width are needed, overtone experiments are the method of choice. The overtone scheme using WURST pulses results in broader excitation bandwidths than that using rectangular pulses, at the expense of reduced sensitivity. Numerically exact simulations also show that the sensitivity of the overtone 1H-{14N} D-HMQC experiment increases for larger quadrupole interactions.

  15. Slice profile effects in 2D slice-selective MRI of hyperpolarized nuclei.

    PubMed

    Deppe, Martin H; Teh, Kevin; Parra-Robles, Juan; Lee, Kuan J; Wild, Jim M

    2010-02-01

    This work explores slice profile effects in 2D slice-selective gradient-echo MRI of hyperpolarized nuclei. Two different sequences were investigated: a Spoiled Gradient Echo sequence with variable flip angle (SPGR-VFA) and a balanced Steady-State Free Precession (SSFP) sequence. It is shown that in SPGR-VFA the distribution of flip angles across the slice present in any realistically shaped radiofrequency (RF) pulse leads to large excess signal from the slice edges in later RF views, which results in an undesired non-constant total transverse magnetization, potentially exceeding the initial value by almost 300% for the last RF pulse. A method to reduce this unwanted effect is demonstrated, based on dynamic scaling of the slice selection gradient. SSFP sequences with small to moderate flip angles (<40 degrees ) are also shown to preserve the slice profile better than the most commonly used SPGR sequence with constant flip angle (SPGR-CFA). For higher flip angles, the slice profile in SSFP evolves in a manner similar to SPGR-CFA, with depletion of polarization in the center of the slice. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    PubMed

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE

  17. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOEpatents

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-11-05

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.

  18. A low-cost spectrometer for NMR measurements in the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Michal, Carl A.

    2010-10-01

    We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US200. The spectrometer performance is demonstrated with spin-echo and Carr-Purcell-Meiboom-Gill pulse sequences on a water sample.

  19. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-10-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  20. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-05-20

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  1. Implementing conventional logic unconventionally: photochromic molecular populations as registers and logic gates.

    PubMed

    Chaplin, J C; Russell, N A; Krasnogor, N

    2012-07-01

    In this paper we detail experimental methods to implement registers, logic gates and logic circuits using populations of photochromic molecules exposed to sequences of light pulses. Photochromic molecules are molecules with two or more stable states that can be switched reversibly between states by illuminating with appropriate wavelengths of radiation. Registers are implemented by using the concentration of molecules in each state in a given sample to represent an integer value. The register's value can then be read using the intensity of a fluorescence signal from the sample. Logic gates have been implemented using a register with inputs in the form of light pulses to implement 1-input/1-output and 2-input/1-output logic gates. A proof of concept logic circuit is also demonstrated; coupled with the software workflow describe the transition from a circuit design to the corresponding sequence of light pulses. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Qualitative analysis by online nuclear magnetic resonance using Carr-Purcell-Meiboom-Gill sequence with low refocusing flip angles.

    PubMed

    de Andrade, Fabiana Diuk; Netto, Antonio Marchi; Colnago, Luiz Alberto

    2011-03-15

    The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been used in many applications of magnetic resonance imaging (MRI) and low-resolution NMR (LRNMR) spectroscopy. Recently, CPMG was used in online LRNMR measurements that use long RF pulse trains, causing an increase in probe temperature and, therefore, tuning and matching maladjustments. To minimize this problem, the use of a low-power CPMG sequence based on low refocusing pulse flip angles (LRFA) was studied experimentally and theoretically. This approach has been used in several MRI protocols to reduce incident RF power and meet the specific absorption rate. The results for CPMG with LRFA of 3π/4 (CPMG(135)), π/2 (CPMG(90)) and π/4 (CPMG(45)) were compared with conventional CPMG with refocusing π pulses. For a homogeneous field, with linewidth equal to Δυ=15 Hz, the refocusing flip angles can be as low as π/4 to obtain the transverse relaxation time (T(2)) value with errors below 5%. For a less homogeneous magnetic field, Δυ=100 Hz, the choice of the LRFA has to take into account the reduction in the intensity of the CPMG signal and the increase in the time constant of the CPMG decay that also becomes dependent on longitudinal relaxation time (T(1)). We have compared the T(2) values measured by conventional CPMG and CPMG(90) for 30 oilseed species, and a good correlation coefficient, r=0.98, was obtained. Therefore, for oilseeds, the T(2) measurements performed with π/2 refocusing pulses (CPMG(90)), with the same pulse width of conventional CPMG, use only 25% of the RF power. This reduces the heating problem in the probe and reduces the power deposition in the samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The role of plasma density scale length on the laser pulse propagation and scattering in relativistic regime

    NASA Astrophysics Data System (ADS)

    Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin

    2017-10-01

    The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.

  4. Random Sequence for Optimal Low-Power Laser Generated Ultrasound

    NASA Astrophysics Data System (ADS)

    Vangi, D.; Virga, A.; Gulino, M. S.

    2017-08-01

    Low-power laser generated ultrasounds are lately gaining importance in the research world, thanks to the possibility of investigating a mechanical component structural integrity through a non-contact and Non-Destructive Testing (NDT) procedure. The ultrasounds are, however, very low in amplitude, making it necessary to use pre-processing and post-processing operations on the signals to detect them. The cross-correlation technique is used in this work, meaning that a random signal must be used as laser input. For this purpose, a highly random and simple-to-create code called T sequence, capable of enhancing the ultrasound detectability, is introduced (not previously available at the state of the art). Several important parameters which characterize the T sequence can influence the process: the number of pulses Npulses , the pulse duration δ and the distance between pulses dpulses . A Finite Element FE model of a 3 mm steel disk has been initially developed to analytically study the longitudinal ultrasound generation mechanism and the obtainable outputs. Later, experimental tests have shown that the T sequence is highly flexible for ultrasound detection purposes, making it optimal to use high Npulses and δ but low dpulses . In the end, apart from describing all phenomena that arise in the low-power laser generation process, the results of this study are also important for setting up an effective NDT procedure using this technology.

  5. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    NASA Astrophysics Data System (ADS)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  6. Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Haodong; Song, Juan; Li, Qin; Zeng, Xianglong; Dai, Ye

    2018-04-01

    A 1 kHz femtosecond double-pulse sequence irradiation is used to study the temporal evolution of nanograting in fused silica by controlling the delay times and polarization combinations of two independent beams from a Mach–Zehnder interferometer. A lateral laser-scan experiment with speed at 5 µm s‑1 and each pulse energy of 1 µJ is firstly performed with the delay time from sub-picosecond to 10 ps, and then the written nanostructures are systematically studied under a cross-polarized microscope because the intensity of birefringence signal nearly corresponds to optical retardance and development level of the induced nanograting. The trend shows that the induced nanogratings can continue developing with a decrease of delay time in the case of the linear polarization pulse arriving before. In another vertical laser-scan experiment at the same speed and pulse energy, the morphologies of nanogratings embedded in the lines are characterized by scanning electron microscope after mechanical polishing and chemical etching. The self-organized patterns have a commonly spatial period of 200–300 nm and the orientation is always perpendicular to the polarization of the first laser pulse, and the second pulse in each sequence seems to promote the as-formed nanograting developing further even if the polarized direction is different from the previous pulse. These new findings verify again that a localized memory effect can make positive feedback to reinforce the patterned nanostripes. In that process, the impact ionization from the seed electrons left by the first pulse excitation and the photoionization of self-trapped excitons with lower ionization threshold results in an increase of the re-excited carriers during the second pulse irradiation and the subsequent development of the as-formed nanograting. Our result provides further proofs for understanding the physical mechanism of nanograting strongly connection with the interplay on multiple ionization channels.

  7. "Bird Song Metronomics": Isochronous Organization of Zebra Finch Song Rhythm.

    PubMed

    Norton, Philipp; Scharff, Constance

    2016-01-01

    The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a "signal-derived pulse," or pulse(S), of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulse(S) significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulse(P)), as yet untested. Strikingly, in our study, pulses(S) that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulse(S) periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music.

  8. “Bird Song Metronomics”: Isochronous Organization of Zebra Finch Song Rhythm

    PubMed Central

    Norton, Philipp; Scharff, Constance

    2016-01-01

    The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a “signal-derived pulse,” or pulseS, of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulseS significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulseP), as yet untested. Strikingly, in our study, pulsesS that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulseS periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music. PMID:27458334

  9. Powerplexer

    NASA Technical Reports Server (NTRS)

    Woods, J. M. (Inventor)

    1973-01-01

    An electrical power distribution system is described for use in providing different dc voltage levels. A circuit is supplied with DC voltage levels and commutates pulses for timed intervals onto a pair of distribution wires. The circuit is driven by a command generator which places pulses on the wires in a timed sequence. The pair of wires extend to voltage strippers connected to the various loads. The voltage strippers each respond to the pulse dc levels on the pair of wires and form different output voltages communicated to each load.

  10. Discriminatory usefulness of pulsed-field gel electrophoresis and sequence-based typing in Legionella outbreaks.

    PubMed

    Quero, Sara; García-Núñez, Marian; Párraga-Niño, Noemí; Barrabeig, Irene; Pedro-Botet, Maria L; de Simon, Mercè; Sopena, Nieves; Sabrià, Miquel

    2016-06-01

    To compare the discriminatory power of pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) in Legionella outbreaks for determining the infection source. Twenty-five investigations of Legionnaires' disease were analyzed by PFGE, SBT and Dresden monoclonal antibody. The results suggested that monoclonal antibody could reduce the number of Legionella isolates to be characterized by molecular methods. The epidemiological concordance PFGE-SBT was 100%, while the molecular concordance was 64%. Adjusted Wallace index (AW) showed that PFGE has better discriminatory power than SBT (AWSBT→PFGE = 0.767; AWPFGE→SBT = 1). The discrepancies appeared mostly in sequence type (ST) 1, a worldwide distributed ST for which PFGE discriminated different profiles. SBT discriminatory power was not sufficient verifying the infection source, especially in worldwide distributed STs, which were classified into different PFGE patterns.

  11. Genetic diversity of Clostridium perfringens type A isolates from animals, food poisoning outbreaks and sludge

    PubMed Central

    Johansson, Anders; Aspan, Anna; Bagge, Elisabeth; Båverud, Viveca; Engström, Björn E; Johansson, Karl-Erik

    2006-01-01

    Background Clostridium perfringens, a serious pathogen, causes enteric diseases in domestic animals and food poisoning in humans. The epidemiological relationship between C. perfringens isolates from the same source has previously been investigated chiefly by pulsed-field gel electrophoresis (PFGE). In this study the genetic diversity of C. perfringens isolated from various animals, from food poisoning outbreaks and from sludge was investigated. Results We used PFGE to examine the genetic diversity of 95 C. perfringens type A isolates from eight different sources. The isolates were also examined for the presence of the beta2 toxin gene (cpb2) and the enterotoxin gene (cpe). The cpb2 gene from the 28 cpb2-positive isolates was also partially sequenced (519 bp, corresponding to positions 188 to 706 in the consensus cpb2 sequence). The results of PFGE revealed a wide genetic diversity among the C. perfringens type A isolates. The genetic relatedness of the isolates ranged from 58 to 100% and 56 distinct PFGE types were identified. Almost all clusters with similar patterns comprised isolates with a known epidemiological correlation. Most of the isolates from pig, horse and sheep carried the cpb2 gene. All isolates originating from food poisoning outbreaks carried the cpe gene and three of these also carried cpb2. Two evolutionary different populations were identified by sequence analysis of the partially sequenced cpb2 genes from our study and cpb2 sequences previously deposited in GenBank. Conclusion As revealed by PFGE, there was a wide genetic diversity among C. perfringens isolates from different sources. Epidemiologically related isolates showed a high genetic similarity, as expected, while isolates with no obvious epidemiological relationship expressed a lesser degree of genetic similarity. The wide diversity revealed by PFGE was not reflected in the 16S rRNA sequences, which had a considerable degree of sequence similarity. Sequence comparison of the partially sequenced cpb2 gene revealed two genetically different populations. This is to our knowledge the first study in which the genetic diversity of C. perfringens isolates both from different animals species, from food poisoning outbreaks and from sludge has been investigated. PMID:16737528

  12. Fast scintillation counter system and performance

    NASA Technical Reports Server (NTRS)

    Sasaki, H.; Nishioka, A.; Ohmori, N.; Kusumose, M.; Nakatsuka, T.; Horiki, T.; Hatano, Y.

    1985-01-01

    An experimental study of the fast scintillation counter (FS) system to observe a shower disk structure at Mt. Norikura is described, especially the system performance and a pulse wave-form by a single charge particles. The photomultiplier tube (PT) pulse appears at the leading edge of the main pulse. To remove this PT-pulse from the main pulse, the frame of the scintillator vessel was changed. The fast triggering system was made to decrease the dead time which came from the use of the function of the self triggering of the storage oscilloscope (OSC). To provide a new field on the multi-parameter study of the cosmic ray showers, the system response of the FS system also improved as a result of many considerations.

  13. Pulse sequences for suppressing leakage in single-qubit gate operations

    NASA Astrophysics Data System (ADS)

    Ghosh, Joydip; Coppersmith, S. N.; Friesen, Mark

    2017-06-01

    Many realizations of solid-state qubits involve couplings to leakage states lying outside the computational subspace, posing a threat to high-fidelity quantum gate operations. Mitigating leakage errors is especially challenging when the coupling strength is unknown, e.g., when it is caused by noise. Here we show that simple pulse sequences can be used to strongly suppress leakage errors for a qubit embedded in a three-level system. As an example, we apply our scheme to the recently proposed charge quadrupole (CQ) qubit for quantum dots. These results provide a solution to a key challenge for fault-tolerant quantum computing with solid-state elements.

  14. Residue selective 15N CEST and CPMG experiments for studies of millisecond timescale protein dynamics.

    PubMed

    Niu, Xiaogang; Ding, Jienv; Zhang, Wenbo; Li, Qianwen; Hu, Yunfei; Jin, Changwen

    2018-06-01

    Proteins are intrinsically dynamic molecules and undergo exchanges among multiple conformations to perform biological functions. The CPMG relaxation dispersion and CEST experiments are two important solution NMR techniques for characterizing the conformational exchange processes on the millisecond timescale. Traditional pseudo 3D 15 N CEST and CPMG experiments have certain limitations in their applications. For example, both experiments have low sensitivity for broadened resonances, and the process of optimizing sample conditions and experimental parameters are often time consuming. To overcome these limitations, we herein present a new set of residue selective 15 N CEST and CPMG pulse sequences by employing the Hartmann-Hahn cross-polarization transfer of magnetization in both 1D and 2D schemes. Combined with frequency labeling in the indirect dimension using only a small number of increments, the pulse sequences in the 2D scheme can be applied on resonances in overlapped regions of the 1 H- 15 N HSQC spectrum. The pulse sequences were further applied on several proteins, demonstrating their advantages over the traditional CEST and CPMG experiments under specific circumstances. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Re-polarization of nuclear spins using selective SABRE-INEPT.

    PubMed

    Knecht, Stephan; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Ivanov, Konstantin L

    2018-02-01

    A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH 2 , the H 2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε. For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε≈260 for 15 N nuclei, whereas SABRE-INEPT with re-polarization yields ε>2000. We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Re-polarization of nuclear spins using selective SABRE-INEPT

    NASA Astrophysics Data System (ADS)

    Knecht, Stephan; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.

    2018-02-01

    A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH2, the H2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε . For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε ≈ 260 for 15N nuclei, whereas SABRE-INEPT with re-polarization yields ε > 2000 . We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques.

  17. Filling of a Salt-withdrawal Minibasin on the Continental Slope by Turbidity Currents: Experimental study

    NASA Astrophysics Data System (ADS)

    Violet, J.; Evans, C.; Sheets, B.; Paola, C.; Pratson, L.; Parker, G.

    2001-12-01

    We report on the transport and deposition of sediment by turbidity currents in an experimental basin designed to model salt-withdrawal minibasins found along the northern continental slope of the Gulf of Mexico. The experiment was performed in two stages in the subsiding EXperimental EarthScape facility (XES) at St. Anthony Falls Laboratory, University of Minnesota. Stage I consisted of 15 turbidity-current events in the following sequence: one 36-minute continuous event, six 1.85-minute small pulses, one 3.8-minute large pulse, six more small pulses, one more large pulse, and finally one more continuous event. The continuous events and the small pulses had a flow discharge of 1.5 liters/s and the large pulse had a flow discharge of 4.5 liters/s. The flows all had a volume concentration of sediment of 0.05. The sediment comprised three grades of silica with nominal diameters of 20 microns (45%), 45 microns (40%) and 110 microns (15%). The basin subsided continuously during Stage I. Stage II consisted of the same sequence of events as Stage I, but with no further subsidence. The sand content was eliminated during the latter part of Stage II. The deposit was imaged as it developed during the experiment using high-frequency sonar. The sonar records show indications of incipient self-channelization as well as clear erosion, bypass, and deposition. Erosion was promoted by large pulse events and the absence of sand. The deposit shows well developed lamination and normal grading.

  18. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  19. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  20. Implementation of 3 T Lactate-Edited 3D 1H MR Spectroscopic Imaging with Flyback Echo-Planar Readout for Gliomas Patients

    PubMed Central

    Chen, Albert P.; Zierhut, Matthew L.; Ozturk-Isik, Esin; Vigneron, Daniel B.; Nelson, Sarah J.

    2010-01-01

    The purpose of this study was to implement a new lactate-edited 3D 1H magnetic resonance spectroscopic imaging (MRSI) sequence at 3 T and demonstrate the feasibility of using this sequence for measuring lactate in patients with gliomas. A 3D PRESS MRSI sequence incorporating shortened, high bandwidth 180° pulses, new dual BASING lactate-editing pulses, high bandwidth very selective suppression (VSS) pulses and a flyback echo-planar readout was implemented at 3 T. Over-prescription factor of PRESS voxels was optimized using phantom to minimize chemical shift artifacts. The lactate-edited flyback sequence was compared with lactate-edited MRSI using conventional elliptical k-space sampling in a phantom and volunteers, and then applied to patients with gliomas. The results demonstrated the feasibility of detecting lactate within a short scan time of 9.5 min in both phantoms and patients. Over-prescription of voxels gave less chemical shift artifacts allowing detection of lactate on the majority of the selected volume. The normalized SNR of brain metabolites using the flyback encoding were comparable to the SNR of brain metabolites using conventional phase encoding MRSI. The specialized lactate-edited 3D MRSI sequence was able to detect lactate in brain tumor patients at 3 T. The implementation of this technique means that brain lactate can be evaluated in a routine clinical setting to study its potential as a marker for prognosis and response to therapy. PMID:20652745

  1. Tracing outbreaks of Streptococcus equi infection (strangles) in horses using sequence variation in the seM gene and pulsed-field gel electrophoresis.

    PubMed

    Lindahl, Susanne; Söderlund, Robert; Frosth, Sara; Pringle, John; Båverud, Viveca; Aspán, Anna

    2011-11-21

    Strangles is a serious respiratory disease in horses caused by Streptococcus equi subspecies equi (S. equi). Transmission of the disease occurs by direct contact with an infected horse or contaminated equipment. Genetically, S. equi strains are highly homogenous and differentiation of strains has proven difficult. However, the S. equi M-protein SeM contains a variable N-terminal region and has been proposed as a target gene to distinguish between different strains of S. equi and determine the source of an outbreak. In this study, strains of S. equi (n=60) from 32 strangles outbreaks in Sweden during 1998-2003 and 2008-2009 were genetically characterized by sequencing the SeM protein gene (seM), and by pulsed-field gel electrophoresis (PFGE). Swedish strains belonged to 10 different seM types, of which five have not previously been described. Most were identical or highly similar to allele types from strangles outbreaks in the UK. Outbreaks in 2008/2009 sharing the same seM type were associated by geographic location and/or type of usage of the horses (racing stables). Sequencing of the seM gene generally agreed with pulsed-field gel electrophoresis profiles. Our data suggest that seM sequencing as a epidemiological tool is supported by the agreement between seM and PFGE and that sequencing of the SeM protein gene is more sensitive than PFGE in discriminating strains of S. equi. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Effect of the combination of different welding parameters on melting characteristics of grade 1 titanium with a pulsed Nd-Yag laser.

    PubMed

    Bertrand, C; Laplanche, O; Rocca, J P; Le Petitcorps, Y; Nammour, S

    2007-11-01

    The laser is a very attractive tool for joining dental metallic alloys. However, the choice of the setting parameters can hardly influence the welding performances. The aim of this research was to evaluate the impact of several parameters (pulse shaping, pulse frequency, focal spot size...) on the quality of the microstructure. Grade 1 titanium plates have been welded with a pulsed Nd-Yag laser. Suitable power, pulse duration, focal spot size, and flow of argon gas were fixed by the operator. Five different pulse shapes and three pulse frequencies were investigated. Two pulse shapes available on this laser unit were eliminated because they considerably hardened the metal. As the pulse frequency rose, the metal was more and more ejected, and a plasma on the surface of the metal increased the oxygen contamination in the welded area. Frequencies of 1 or 2 Hz are optimum for a dental use. Three pulse shapes can be used for titanium but the rectangular shape gives better results.

  3. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sourcesmore » and detectors through an external clock with adjustable delay.« less

  4. A Three-Dimensional DOSY HMQC Experiment for the High-Resolution Analysis of Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Barjat, Hervé; Morris, Gareth A.; Swanson, Alistair G.

    1998-03-01

    A three-dimensional experiment is described in which NMR signals are separated according to their proton chemical shift,13C chemical shift, and diffusion coefficient. The sequence is built up from a stimulated echo sequence with bipolar field gradient pulses and a conventional decoupled HMQC sequence. Results are presented for a model mixture of quinine, camphene, and geraniol in deuteriomethanol.

  5. Robust efficient estimation of heart rate pulse from video.

    PubMed

    Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde

    2014-04-01

    We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity.

  6. Robust efficient estimation of heart rate pulse from video

    PubMed Central

    Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde

    2014-01-01

    We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity. PMID:24761294

  7. High angular resolution diffusion imaging with stimulated echoes: compensation and correction in experiment design and analysis.

    PubMed

    Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B

    2014-08-01

    Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared with T2 . It therefore has potential for biomedical diffusion imaging applications at 7T and above where T2 is short. However, gradient pulses other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM acquisition is found, due both to confounds in the analysis and the experiment design. Retrospectively correcting the analysis with a calculation of the full B matrix can partly correct for these confounds, but an acquisition that is compensated as proposed is needed to remove the effect entirely. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  8. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.; Meguid, S. A.

    2016-07-01

    This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.

  9. Mechanisms of relaxation and spin decoherence in nanomagnets

    NASA Astrophysics Data System (ADS)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  10. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {supmore » 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.« less

  11. MO-G-18C-07: Improving T2 Determination and Quantification of Lipid Methylene Protons in Proton Magnetic Resonance Spectroscopy at 3 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breitkreutz, D.; Fallone, B. G.; Yahya, A.

    2014-06-15

    Purpose: To improve proton magnetic resonance spectroscopy (MRS) transverse relaxation (T{sub 2}) determination and quantification of lipid methylene chain (1.3 ppm) protons by rewinding their J-coupling evolution. Methods: MRS experiments were performed on four lipid phantoms, namely, almond, corn, sunflower and oleic acid, using a 3 T Philips MRI scanner with a transmit/receive birdcage head coil. Two PRESS (Point RESolved Spectroscopy) pulse sequences were used. The first PRESS sequence employed standard bandwidth (BW) (∼550 Hz) RF (radiofrequency) refocussing pulses, while the second used refocussing pulses of narrow BW (∼50 Hz) designed to rewind J-coupling evolution of the methylene protons inmore » the voxel of interest. Signal was acquired with each sequence from a 5×5×5 mm{sup 3} voxel, with a repetition time (TR) of 3000 ms, and with echo times (TE) of 100 to 200 ms in steps of 20 ms. 2048 sample points were measured with a 2000 Hz sampling bandwidth. Additionally, 30 mm outer volume suppression slabs were used to suppress signal outside the voxel of interest. The frequency of the RF pulses was set to that of the methylene resonance. Methylene peak areas were calculated and fitted in MATLAB to a monexponentially decaying function of the form M{sub 0}exp(-TE/T{sub 2}), where M{sub 0} is the extrapolated area when TE = 0 ms and yields a measure of concentration. Results: The determined values of M{sub 0} and T{sub 2} increased for all fatty acids when using the PRESS sequence with narrow BW refocussing pulses. M{sub 0} and T{sub 2} values increased by an average amount (over all the phantoms) of 31% and 14%, respectively. Conclusion: This investigation has demonstrated that J-coupling interactions of lipid methylene protons causes non-negligible signal losses which, if not accounted for, Result in underestimations of their levels and T{sub 2} values when performing MRS measurements. Funded by the Natural Sciences and Engineering Research Council of Canada and the Canadian Breast Cancer Foundation - Prairies.NWT.« less

  12. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  13. co2amp: A software program for modeling the dynamics of ultrashort pulses in optical systems with CO 2 amplifiers

    DOE PAGES

    Polyanskiy, Mikhail N.

    2015-01-01

    We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.

  14. Study of radar pulse compression for high resolution satellite altimetry

    NASA Technical Reports Server (NTRS)

    Dooley, R. P.; Nathanson, F. E.; Brooks, L. W.

    1974-01-01

    Pulse compression techniques are studied which are applicable to a satellite altimeter having a topographic resolution of + 10 cm. A systematic design procedure is used to determine the system parameters. The performance of an optimum, maximum likelihood processor is analysed, which provides the basis for modifying the standard split-gate tracker to achieve improved performance. Bandwidth considerations lead to the recommendation of a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns. The implementation of the recommended technique is examined.

  15. IAR signatures in the ionosphere: Modeling and observations at the Chibis-M microsatellite

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Dudkin, D.; Fedorov, E.; Korepanov, V.; Klimov, S.

    2017-02-01

    A peculiar feature of geomagnetic variations at middle/low latitudes in the ULF band, just below the fundamental tone of the Schumann resonance, is the occurrence of a multi-band spectral resonant structure, observed by high-sensitivity induction magnetometers during nighttime. The occurrence of such spectral structure was commonly attributed to the Ionospheric Alfvén Resonator (IAR) in the upper ionosphere. Rather surprisingly, while ground observations of the IAR are ubiquitous, there are practically no reports on the IAR signatures from space missions. According to the new paradigm, the multi-band spectral structure excited by a lightning discharge is in fact produced by a regular sequence of an original pulse from a stroke and echo-pulses reflected from the IAR upper boundary. Upon the interaction of initial lightning-generated pulse with the anisotropic lower ionosphere, it partially penetrates into the ionosphere, travels up the ionosphere as an Alfvén pulse, and reflects back from the upper IAR boundary. The superposition of the initial pulse and echo-pulses produces spectra with multiple spectral peaks. Our modeling of Alfvénic pulse propagation in a system with the altitude profile of Alfven velocity modeling the realistic ionosphere has shown that IAR spectral signatures are to be evident only on the ground and above the IAR. Inside the IAR, the superposition of upward and downward propagating pulses produces a more complicated spectral pattern and the IAR spectral signatures deteriorate. We have used electric field data from the low-orbit Chibis-M microsatellite to search for IAR signatures in the ionosphere. We found evidence that the multi-band structure revealed by spectral analysis in the frequency range of interest is indeed the result of a sequence of lightning-produced pulses. According to the proposed conception it seems possible to comprehend why the IAR signatures are less evident in the ionosphere than on the ground.

  16. Prevention, Treatment and Tiagnosis of Pathogenic Infections by Using Pulsed Light Radiation Propagating Through Metamaterials

    NASA Astrophysics Data System (ADS)

    Enaki, N.; Paslari, T.; Turcan, M.; Bazgan, S.; Ristoscu, C.; Mihailescu, I. N.

    2018-06-01

    We propose novel optical methods for prevention, treatment and diagnosis of infections by pathogens using metamaterials with various geometries consisting of microspheres (i.e. photonic crystals, photonic molecules) and optical fibers structures. Around the adjacent elements of metamaterials appear the evanescent zones of propagated pulsed light radiation overlapping each other. This effect gives us the possibility to significantly increase the decontamination volume especially in non-transparent media. The parking geometries of microspheres and optical fibers ensure the efficient contact zone between the pulsed light radiation with contaminated materials (gases, liquids, tissues, implant surfaces). The penetration depth of evanescent field in contaminated materials can achieve values comparable with pathogens dimensions. We propose an attractive antimicrobial strategy using combined action of ultrashort pulses with different frequencies and pulse duration to achieve the selective decontamination of microorganisms with minimal effects on the components of human cells and tissues. We take into consideration the intrinsic symmetries of microorganisms protein structures (inclusive virus capsids) and their possible resonant excitation in double frequencies induced Raman scattering. The development of nonlinear models of the excitation of vibration modes of biomolecules of viruses and bacteria are revised taking into consideration the multi-mode aspects of interaction of pulsed light with excited biomolecules of pathogens. This method opens new possibilities in decontamination and diagnosis of the new collective processes, which can take place in viruses, bacteria, or other cellular structures under the action of external light pulses. Exponential distribution of radiation in evanescent zone gives us the possibility to capture and trap the viruses and bacteria along the optical fibers or/and microsphere surfaces.

  17. Multilocus sequence typing and pulsed-field gel electrophoresis analysis of Oenococcus oeni from different wine-producing regions of China.

    PubMed

    Wang, Tao; Li, Hua; Wang, Hua; Su, Jing

    2015-04-16

    The present study established a typing method with NotI-based pulsed-field gel electrophoresis (PFGE) and stress response gene schemed multilocus sequence typing (MLST) for 55 Oenococcus oeni strains isolated from six individual regions in China and two model strains PSU-1 (CP000411) and ATCC BAA-1163 (AAUV00000000). Seven stress response genes, cfa, clpL, clpP, ctsR, mleA, mleP and omrA, were selected for MLST testing, and positive selective pressure was detected for these genes. Furthermore, both methods separated the strains into two clusters. The PFGE clusters are correlated with the region, whereas the sequence types (STs) formed by the MLST confirm the two clusters identified by PFGE. In addition, the population structure was a mixture of evolutionary pathways, and the strains exhibited both clonal and panmictic characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Shiyang; Song, Peng; Pei, Wenbing

    2013-09-15

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux canmore » be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.« less

  19. Optical limiting of high-repetition-rate laser pulses by carbon nanofibers suspended in polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Videnichev, Dmitry A.; Belousova, Inna M.

    2014-06-01

    The optical limiting (OL) behavior of carbon nanofibers (CNFs) in polydimethylsiloxane (PDMS) was studied and compared with that of CNFs in water, and polyhedral multi-shell fullerene-like nanostructures (PMFNs) also in water. It was shown that when switching from single-shot to pulse-periodic regime of laser pulses (10 Hz), the CNF in PDMS suspension retains its OL characteristics, while in the aqueous suspensions, considerable degradation of OL characteristics is observed. It was also observed that a powerful laser pulse causes the CNF in PDMS suspension to become opaque for at least three seconds, while such a pulse brings out a bleaching effect in aqueous PMFN and CNF suspensions. The processes of OL degradation in aqueous suspensions, bleaching and darkening of the studied materials are discussed herein.

  20. Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments.

    PubMed

    Schuller, Dorit; Pereira, Leonor; Alves, Hugo; Cambon, Brigitte; Dequin, Sylvie; Casal, Margarida

    2007-08-01

    One hundred isolates of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 were recovered from spontaneous fermentations carried out with grapes collected from vineyards located close to wineries in the Vinho Verde wine region of Portugal. Isolates were differentiated based on their mitochondrial DNA restriction patterns and the evaluation of genetic polymorphisms was carried out by microsatellite analysis, interdelta sequence typing and pulsed-field gel electrophoresis (PFGE). Genetic patterns were compared to those obtained for 30 isolates of the original commercialized Zymaflore VL1 strain. Among the 100 recovered isolates we found a high percentage of chromosomal size variations, most evident for the smaller chromosomes III and VI. Complete loss of heterozygosity was observed for two isolates that had also lost chromosomal heteromorphism; their growth and fermentative capacity in a synthetic must medium was also affected. A considerably higher number of variant patterns for interdelta sequence amplifications was obtained for grape-derived strains compared to the original VL1 isolates. Our data show that the long-term presence of strain VL1 in natural grapevine environments induced genetic changes that can be detected using different fingerprinting methods. The observed genetic changes may reflect adaptive mechanisms to changed environmental conditions that yeast cells encounter during their existence in nature. (c) 2007 John Wiley & Sons, Ltd.

  1. New and Advanced Picosecond Lasers for Tattoo Removal.

    PubMed

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting. © 2017 S. Karger AG, Basel.

  2. Dynamic propagation of symmetric Airy pulses with initial chirps in an optical fiber

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Huang, Xianwei; Deng, Yangbao; Tan, Chao; Bai, Yanfeng; Fu, Xiquan

    2017-09-01

    We analytically and numerically investigate the propagation dynamics of initially chirped symmetric Airy pulses in an optical fiber. The results show that the positive chirps act to promote the interference in generating a focal point on the propagation axis, while the negative chirps tend to suppress the focusing effect, as compared to conventional unchirped symmetric Airy pulses. The numerical results demonstrate that the linear propagation of chirped symmetric Airy pulses depend considerably on the chirp parameter and the primary lobe position. In the anomalous dispersion region, positively chirped symmetric Airy pulses first undergo an initial compression, and reach a foci due to the opposite acceleration, and then experience a lossy inversion transformation, and come to the opposite facing focal position. The impact of truncation coefficient and Kerr nonlinearity on the chirped symmetric Airy pulses propagation is also disclosed separately.

  3. Eye-Safe KGd(WO4)2:Nd Laser: Nano- and Subnanosecond Pulse Generation in Self-Frequency Raman Conversion Mode with Active Q-Switching

    NASA Astrophysics Data System (ADS)

    Dashkevich, V. I.; Orlovich, V. A.

    2017-03-01

    The shape of the multimode Stokes pulse generated by an eye-safe KGd(WO4)2:Nd laser with self-frequency Raman conversion and active Q-switching was shown to depend on the inhomogeneity of the active-medium pump. The laser generated a short and undistorted Stokes pulse of length 2.5 ns that increased with increasing laser cavity length for a moderately inhomogeneous pump characterized by a higher population inversion in the center of the active element. The energy of the Stokes pulse ( 11.5 mJ) varied little as the output-mirror reflectivity varied in the range 5-45%. The Raman pulse became distorted if the inhomogeneity of the pump was increased considerably. The degree of pump inhomogeneity was negligible with fundamental TEM00 mode selection. The laser generated subnanosecond Stokes pulses with peak power in the MW range.

  4. Pulse compression using a tapered microstructure optical fiber.

    PubMed

    Hu, Jonathan; Marks, Brian S; Menyuk, Curtis R; Kim, Jinchae; Carruthers, Thomas F; Wright, Barbara M; Taunay, Thierry F; Friebele, E J

    2006-05-01

    We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber's diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.

  5. Rapid pulsed-field gel electrophoresis protocol for subtyping of Streptococcus suis serotype 2.

    PubMed

    Luey, Cindy K Y; Chu, Yiu Wai; Cheung, Terence K M; Law, Catherine C P; Chu, Man Yu; Cheung, Danny T L; Kam, Kai Man

    2007-03-01

    A rapid pulsed-field gel electrophoresis (PFGE) protocol for subtyping of Streptococcus suis serotype 2 was developed and evaluated using 27 clinical isolates from 22 epidemiologically unrelated patients. Results were matched against antibiogram, virulence genotyping and multi locus sequence typing (MLST). PFGE appeared to be the most discriminatory with numerical index of discrimination (D) equal to 0.87.

  6. Optimal initiation of electronic excited state mediated intramolecular H-transfer in malonaldehyde by UV-laser pulses

    NASA Astrophysics Data System (ADS)

    Nandipati, K. R.; Singh, H.; Nagaprasad Reddy, S.; Kumar, K. A.; Mahapatra, S.

    2014-12-01

    Optimally controlled initiation of intramolecular H-transfer in malonaldehyde is accomplished by designing a sequence of ultrashort (~80 fs) down-chirped pump-dump ultra violet (UV)-laser pulses through an optically bright electronic excited [ S 2 ( π π ∗)] state as a mediator. The sequence of such laser pulses is theoretically synthesized within the framework of optimal control theory (OCT) and employing the well-known pump-dump scheme of Tannor and Rice [D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)]. In the OCT, the control task is framed as the maximization of cost functional defined in terms of an objective function along with the constraints on the field intensity and system dynamics. The latter is monitored by solving the time-dependent Schrödinger equation. The initial guess, laser driven dynamics and the optimized pulse structure (i.e., the spectral content and temporal profile) followed by associated mechanism involved in fulfilling the control task are examined in detail and discussed. A comparative account of the dynamical outcomes within the Condon approximation for the transition dipole moment versus its more realistic value calculated ab initio is also presented.

  7. Pulsed arterial spin labeling using TurboFLASH with suppression of intravascular signal.

    PubMed

    Pell, Gaby S; Lewis, David P; Branch, Craig A

    2003-02-01

    Accurate quantification of perfusion with the ADC techniques requires the suppression of the majority of the intravascular signal. This is normally achieved with the use of diffusion gradients. The TurboFLASH sequence with its ultrashort repetition times is not readily amenable to this scheme. This report demonstrates the implementation of a modified TurboFLASH sequence for FAIR imaging. Intravascular suppression is achieved with a modified preparation period that includes a driven equilibrium Fourier transform (DEFT) combination of 90 degrees-180 degrees-90 degrees hard RF pulses subsequent to the inversion delay. These pulses rotate the perfusion-prepared magnetization into the transverse plane where it can experience the suitably placed diffusion gradients before being returned to the longitudinal direction by the second 90 degrees pulse. A value of b = 20-30 s/mm(2) was thereby found to suppress the majority of the intravascular signal. For single-slice perfusion imaging, quantification is only slightly modified. The technique can be readily extended to multislice acquisition if the evolving flow signal after the DEFT preparation is considered. An advantage of the modified preparation scheme is evident in the multislice FAIR images by the preservation of the sign of the magnetization difference. Copyright 2003 Wiley-Liss, Inc.

  8. Gapped pulses for frequency-swept MRI

    NASA Astrophysics Data System (ADS)

    Idiyatullin, Djaudat; Corum, Curt; Moeller, Steen; Garwood, Michael

    2008-08-01

    A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin-spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent on producing uniform and broadband spin excitation. These requirements are satisfied by using frequency-modulated pulses belonging to the hyperbolic secant family (HS n pulses). This article describes the experimental steps needed to properly implement HS n pulses in SWIFT. In addition, properties of HS n pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after inserting the "gaps" needed for time-shared excitation and acquisition. Finally, compact expressions are presented to estimate the amplitude and flip angle of the HS n pulses, as well as the relative energy deposited by the SWIFT sequence.

  9. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    PubMed

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  10. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap

    NASA Astrophysics Data System (ADS)

    Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.

    2013-10-01

    This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.

  11. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-01

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  12. Signal-domain optimization metrics for MPRAGE RF pulse design in parallel transmission at 7 tesla.

    PubMed

    Gras, V; Vignaud, A; Mauconduit, F; Luong, M; Amadon, A; Le Bihan, D; Boulant, N

    2016-11-01

    Standard radiofrequency pulse design strategies focus on minimizing the deviation of the flip angle from a target value, which is sufficient but not necessary for signal homogeneity. An alternative approach, based directly on the signal, here is proposed for the MPRAGE sequence, and is developed in the parallel transmission framework with the use of the k T -points parametrization. The flip angle-homogenizing and the proposed methods were investigated numerically under explicit power and specific absorption rate constraints and tested experimentally in vivo on a 7 T parallel transmission system enabling real time local specific absorption rate monitoring. Radiofrequency pulse performance was assessed by a careful analysis of the signal and contrast between white and gray matter. Despite a slight reduction of the flip angle uniformity, an improved signal and contrast homogeneity with a significant reduction of the specific absorption rate was achieved with the proposed metric in comparison with standard pulse designs. The proposed joint optimization of the inversion and excitation pulses enables significant reduction of the specific absorption rate in the MPRAGE sequence while preserving image quality. The work reported thus unveils a possible direction to increase the potential of ultra-high field MRI and parallel transmission. Magn Reson Med 76:1431-1442, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  13. Measurement of hyperpolarized gas diffusion at very short time scales

    PubMed Central

    Carl, Michael; Wilson Miller, G.; Mugler, John P.; Rohrbaugh, Scott; Tobias, William A.; Cates, Gordon D.

    2007-01-01

    We present a new pulse sequence for measuring very-short-time-scale restricted diffusion of hyperpolarized noble gases. The pulse sequence is based on concatenating a large number of bipolar diffusion-sensitizing gradients to increase the diffusion attenuation of the MR signal while maintaining a fundamentally short diffusion time. However, it differs in several respects from existing methods that use oscillating diffusion gradients for this purpose. First, a wait time is inserted between neighboring pairs of gradient pulses; second, consecutive pulse pairs may be applied along orthogonal axes; and finally, the diffusion-attenuated signal is not simply read out at the end of the gradient train but is periodically sampled during the wait times between neighboring pulse pairs. The first two features minimize systematic differences between the measured (apparent) diffusion coefficient and the actual time-dependent diffusivity, while the third feature optimizes the use of the available MR signal to improve the precision of the diffusivity measurement in the face of noise. The benefits of this technique are demonstrated using theoretical calculations, Monte-Carlo simulations of gas diffusion in simple geometries, and experimental phantom measurements in a glass sphere containing hyperpolarized 3He gas. The advantages over the conventional single-bipolar approach were found to increase with decreasing diffusion time, and thus represent a significant step toward making accurate surface-to-volume measurements in the lung airspaces. PMID:17936048

  14. Effect of low refocusing angle in T1-weighted spin echo and fast spin echo MRI on low-contrast detectability: a comparative phantom study at 1.5 and 3 Tesla.

    PubMed

    Sarkar, Subhendra N; Mangosing, Jason L; Sarkar, Pooja R

    2013-01-01

    MRI tissue contrast is not well preserved at high field. In this work, we used a phantom with known, intrinsic contrast (3.6%) for model tissue pairs to test the effects of low angle refocusing pulses and magnetization transfer from adjacent slices on intrinsic contrast at 1.5 and 3 Tesla. Only T1-weighted spin echo sequences were tested since for such sequences the contrast loss, tissue heating, and image quality degradation at high fields seem to present significant diagnostic and quality issues. We hypothesized that the sources of contrast loss could be attributed to low refocusing angles that do not fulfill the Hahn spin echo conditions or to magnetization transfer effects from adjacent slices in multislice imaging. At 1.5 T the measured contrast was 3.6% for 180° refocusing pulses and 2% for 120° pulses, while at 3 T, it was 4% for 180° and only 1% for 120° refocusing pulses. There was no significant difference between single slice and multislice imaging suggesting little or no role played by magnetization transfer in the phantom chosen. Hence, one may conclude that low angle refocusing pulses not fulfilling the Hahn spin echo conditions are primarily responsible for significant deterioration of T1-weighted spin echo image contrast in high-field MRI.

  15. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.

    PubMed

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  16. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller

    NASA Astrophysics Data System (ADS)

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADμC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62kbytes of flash memory, 8kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100ns and a minimum time delay between successive events of approximately 9μs. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  17. Photonic ultrawideband impulse radio generation and modulation over a fiber link using a phase modulator and a delay interferometer.

    PubMed

    Shao, Jing; Sun, Junqiang

    2012-08-15

    We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.

  18. Transient birefringence effects in electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Parshkov, O. M.

    2015-11-01

    We report the results of numerical modelling of transient birefringence that arises as a result of electromagnetically induced transparency on degenerate quantum transitions between the states with J = 0, 1 and 2 in the presence of the Doppler broadening of spectral lines. It is shown that in the case of a linearly polarised control field, the effect of transient birefringence leads to a decay of the input circularly polarised probe pulse into separate linearly polarised pulses inside a medium. In the case of a circularly polarised control field, the effect of transient birefringence manifests itself in a decay of the input linearly polarised probe pulse into separate circularly polarised pulses. It is shown that the distance that a probe pulse has to pass in a medium before decaying into subpulses is considerably greater in the first case than in the second. The influence of the input probe pulse power and duration on the process of spatial separation into individual pulses inside a medium is studied. A qualitative analysis of the obtained results is presented.

  19. Pulsed Submillimeter Laser Program.

    DTIC Science & Technology

    1979-05-15

    number of interrelated subsystems required for a heterodyning FIR radar were investigated. The work focused on optically pumped FIR lasers which... laser pressure. Figure 9 illustrates the effect on optical shape of raising laser pressure. It can be seen that considerable pulse shortening occurs as...range in which single transverse mode operation of a TE CO2 laser has been achieved. For the purposes of this program the optical cavity was

  20. An Exchange-Only Qubit in Isotopically Enriched 28Si

    NASA Astrophysics Data System (ADS)

    Gyure, Mark

    2015-03-01

    We demonstrate coherent manipulation and universal control of a qubit composed of a triple quantum dot implemented in an isotopically enhanced Si/SiGe heterostructure, which requires no local AC or DC magnetic fields for operation. Strong control over tunnel rates is enabled by a dopantless, accumulation-only device design, and an integrated measurement dot enables single-shot measurement. Reduction of magnetic noise is achieved via isotopic purification of the silicon quantum well. We demonstrate universal control using composite pulses and employ these pulses for spin-echo-type sequences to measure both magnetic noise and charge noise. The noise measured is sufficiently low to enable the long pulse sequences required for exchange-only quantum information processing. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the U.S. Government. Approved for public release, distribution unlimited.

  1. Application of Double Spin-Echo Spiral Chemical Shift Imaging to Rapid Metabolic Mapping of Hyperpolarized [1-13C]-Pyruvate

    PubMed Central

    Josan, Sonal; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2011-01-01

    Undersampled spiral CSI (spCSI) using a free induction decay (FID) acquisition allows sub-second metabolic imaging of hyperpolarized 13C. Phase correction of the FID acquisition can be difficult, especially with contributions from aliased out-of-phase peaks. This work extends the spCSI sequence by incorporating double spin-echo radiofrequency (RF) pulses to eliminate the need for phase correction and obtain high quality spectra in magnitude mode. The sequence also provides an added benefit of attenuating signal from flowing spins, which can otherwise contaminate signal in the organ of interest. The refocusing pulses can potentially lead to a loss of hyperpolarized magnetization in dynamic imaging due to flow of spins through the fringe field of the RF coil, where the refocusing pulses fail to provide complete refocusing. Care must be taken for dynamic imaging to ensure that the spins remain within the B1-homogeneous sensitive volume of the RF coil. PMID:21316280

  2. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2017-01-31

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  3. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.

    2016-06-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  4. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Kong Ooi; Meier, Beat H., E-mail: beme@ethz.ch, E-mail: maer@ethz.ch; Ernst, Matthias, E-mail: beme@ethz.ch, E-mail: maer@ethz.ch

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function ofmore » pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.« less

  5. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    PubMed

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  6. Extended RF shimming: Sequence‐level parallel transmission optimization applied to steady‐state free precession MRI of the heart

    PubMed Central

    Price, Anthony N.; Padormo, Francesco; Hajnal, Joseph V.; Malik, Shaihan J.

    2017-01-01

    Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 +) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a ‘sequence‐level’ optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady‐state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight‐channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single‐channel operation, a mean‐squared‐error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. PMID:28195684

  7. Quadriphase DS-CDMA wireless communication systems employing the generalized detector

    NASA Astrophysics Data System (ADS)

    Tuzlukov, Vyacheslav

    2012-05-01

    Probability of bit-error Per performance of asynchronous direct-sequence code-division multiple-access (DS-CDMA) wireless communication systems employing the generalized detector (GD) constructed based on the generalized approach to signal processing in noise is analyzed. The effects of pulse shaping, quadriphase or direct sequence quadriphase shift keying (DS-QPSK) spreading, aperiodic spreading sequences are considered in DS-CDMA based on GD and compared with the coherent Neyman-Pearson receiver. An exact Per expression and several approximations: one using the characterristic function method, a simplified expression for the improved Gaussian approximation (IGA) and the simplified improved Gaussian approximation are derived. Under conditions typically satisfied in practice and even with a small number of interferers, the standard Gaussian approximation (SGA) for the multiple-access interference component of the GD statistic and Per performance is shown to be accurate. Moreover, the IGA is shown to reduce to the SGA for pulses with zero excess bandwidth. Second, the GD Per performance of quadriphase DS-CDMA is shown to be superior to that of bi-phase DS-CDMA. Numerical examples by Monte Carlo simulation are presented to illustrate the GD Per performance for square-root raised-cosine pulses and spreading factors of moderate to large values. Also, a superiority of GD employment in CDMA systems over the Neyman-Pearson receiver is demonstrated

  8. POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): a general algorithm for reducing motion-related artifacts

    PubMed Central

    Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei

    2014-01-01

    Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325

  9. The Heteronuclear Single-Quantum Correlation (HSQC) Experiment: Vectors versus Product Operators

    ERIC Educational Resources Information Center

    de la Vega-Herna´ndez, Karen; Antuch, Manuel

    2015-01-01

    A vectorial representation of the full sequence of events occurring during the 2D-NMR heteronuclear single-quantum correlation (HSQC) experiment is presented. The proposed vectorial representation conveys an understanding of the magnetization evolution during the HSQC pulse sequence for those who have little or no quantum mechanical background.…

  10. Investigation of Readout RF Pulse Impact on the Chemical Exchange Saturation Transfer Spectrum

    PubMed Central

    Huang, Sheng-Min; Jan, Meei-Ling; Liang, Hsin-Chin; Chang, Chia-Hao; Wu, Yi-Chun; Tsai, Shang-Yueh; Wang, Fu-Nien

    2015-01-01

    Chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) is capable of both microenvironment and molecular imaging. The optimization of scanning parameters is important since the CEST effect is sensitive to factors such as saturation power and field homogeneity. The aim of this study was to determine if the CEST effect would be altered by changing the length of readout RF pulses. Both theoretical computer simulation and phantom experiments were performed to examine the influence of readout RF pulses. Our results showed that the length of readout RF pulses has unremarkable impact on the Z-spectrum and CEST effect in both computer simulation and phantom experiment. Moreover, we demonstrated that multiple refocusing RF pulses used in rapid acquisition with relaxation enhancement (RARE) sequence induced no obvious saturation transfer contrast. Therefore, readout RF pulse has negligible effect on CEST Z-spectrum and the optimization of readout RF pulse length can be disregarded in CEST imaging protocol. PMID:26455576

  11. Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses.

    PubMed

    Kim, Ji-Wan; Vomir, Mircea; Bigot, Jean-Yves

    2015-02-17

    Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses.

  12. Novel aspects of direct laser acceleration of relativistic electrons

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexey

    2015-11-01

    Production of energetic electrons is a keystone aspect of ultraintense laser-plasma interactions that underpins a variety of topics and applications, including fast ignition inertial confinement fusion and compact particle and radiation sources. There is a wide range of electron acceleration regimes that depend on the duration of the laser pulse and the plasma density. This talk focuses on the regime in which the plasma is significantly underdense and the laser pulse duration is longer than the electron response time, so that, in contrast to the wakefield acceleration regime, the pulse creates a quasi-static channel in the electron density. Such a regime is of particular interest, since it can naturally arise in experiments with solid density targets where the pre-pulse of an ultraintense laser produces an extended sub-critical pre-plasma. This talk examines the impact of several key factors on electron acceleration by the laser pulse and the resulting electron energy gain. A detailed consideration is given to the role played by: (1) the static longitudinal electric field, (2) the static transverse electric field, (3) the electron injection into the laser pulse, (4) the electromagnetic dispersion, and (5) the static longitudinal magnetic field. It is shown that all of these factors lead, under conditions outlined in the talk, to a considerable electron energy gain that greatly exceeds the ponderomotive limit. The static fields do not directly transfer substantial energy to electrons. Instead, they alter the longitudinal dephasing between the electrons and the laser pulse, which then allows the electrons to gain extra energy from the pulse. The talk will also outline a time-resolution criterion that must be satisfied in order to correctly reproduce these effects in particle-in-cell simulations. Supported by AFOSR Contract No. FA9550-14-1-0045, National Nuclear Security Administration Contract No. DE-FC52-08NA28512, and US Department of Energy Contract No. DE-FG02-04ER54742.

  13. Composite-pulse and partially dipolar dephased multiCP for improved quantitative solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Duan, Pu; Schmidt-Rohr, Klaus

    2017-12-01

    Improved multiple cross polarization (multiCP) pulse sequences for quickly acquiring quantitative 13C NMR spectra of organic solids are presented. Loss of 13C magnetization due to imperfect read-out and storage pulses in multiCP has been identified as a significant mechanism limiting polarization enhancement for 13C sites with weak couplings to 1H. This problem can be greatly reduced by composite 90° pulses with non-orthogonal phases that flip the magnetization onto the spin-lock field and back to the longitudinal direction for the 1H repolarization period; the observed loss is <3% for over ±10 kHz resonance offset and up to 20% flip-angle error. This composite-pulse multiCP (ComPmultiCP) sequence consistently provides performance superior to that of conventional multiCP, without any trade-off. The longer total CP time enabled by the composite pulses allows for a wider amplitude ramp during CP, which decreases the sensitivity to Hartmann-Hahn mismatch by a factor of two, with a <7% root-mean-square deviation within a 1-dB range for Boc-alanine. In samples with very short T1ρ, under-polarization of non-protonated carbons can be compensated by slight dipolar dephasing of CHn signals resulting from relatively weak decoupling during the Hahn spin echo period before detection. Quantitative spectra have been obtained by ComPmultiCP for low-crystallinity branched polyethylene at 4.5 kHz MAS, and in combination with partial dipolar dephasing for soil organic matter at 14 kHz MAS.

  14. Oscillating and pulsed gradient diffusion magnetic resonance microscopy over an extended b-value range: implications for the characterization of tissue microstructure.

    PubMed

    Portnoy, S; Flint, J J; Blackband, S J; Stanisz, G J

    2013-04-01

    Oscillating gradient spin-echo (OGSE) pulse sequences have been proposed for acquiring diffusion data with very short diffusion times, which probe tissue structure at the subcellular scale. OGSE sequences are an alternative to pulsed gradient spin echo measurements, which typically probe longer diffusion times due to gradient limitations. In this investigation, a high-strength (6600 G/cm) gradient designed for small-sample microscopy was used to acquire OGSE and pulsed gradient spin echo data in a rat hippocampal specimen at microscopic resolution. Measurements covered a broad range of diffusion times (TDeff = 1.2-15.0 ms), frequencies (ω = 67-1000 Hz), and b-values (b = 0-3.2 ms/μm2). Variations in apparent diffusion coefficient with frequency and diffusion time provided microstructural information at a scale much smaller than the imaging resolution. For a more direct comparison of the techniques, OGSE and pulsed gradient spin echo data were acquired with similar effective diffusion times. Measurements with similar TDeff were consistent at low b-value (b < 1 ms/μm(2) ), but diverged at higher b-values. Experimental observations suggest that the effective diffusion time can be helpful in the interpretation of low b-value OGSE data. However, caution is required at higher b, where enhanced sensitivity to restriction and exchange render the effective diffusion time an unsuitable representation. Oscillating and pulsed gradient diffusion techniques offer unique, complementary information. In combination, the two methods provide a powerful tool for characterizing complex diffusion within biological tissues. Copyright © 2012 Wiley Periodicals, Inc.

  15. Time-resolved speckle effects on the estimation of laser-pulse arrival times

    NASA Technical Reports Server (NTRS)

    Tsai, B.-M.; Gardner, C. S.

    1985-01-01

    A maximum-likelihood (ML) estimator of the pulse arrival in laser ranging and altimetry is derived for the case of a pulse distorted by shot noise and time-resolved speckle. The performance of the estimator is evaluated for pulse reflections from flat diffuse targets and compared with the performance of a suboptimal centroid estimator and a suboptimal Bar-David ML estimator derived under the assumption of no speckle. In the large-signal limit the accuracy of the estimator was found to improve as the width of the receiver observational interval increases. The timing performance of the estimator is expected to be highly sensitive to background noise when the received pulse energy is high and the receiver observational interval is large. Finally, in the speckle-limited regime the ML estimator performs considerably better than the suboptimal estimators.

  16. Initiation of air ionization by ultrashort laser pulses: evidence for a role of metastable-state air molecules

    NASA Astrophysics Data System (ADS)

    Bulgakov, A. V.; Mirza, I.; Bulgakova, N. M.; Zhukov, V. P.; Machulka, R.; Haderka, O.; Campbell, E. E. B.; Mocek, T.

    2018-06-01

    Transmission measurements for femtosecond laser pulses focused in air with spectral analysis of emission from the focal region have been carried out for various pulse energies and air pressures. The air breakdown threshold and pulse attenuation due to plasma absorption are evaluated and compared with calculations based on the multiphoton ionization model. The plasma absorption is found to depend on the pulse repetition rate and is considerably stronger at 1 kHz than at 1–10 Hz. This suggests that accumulation of metastable states of air molecules plays an important role in initiation of air breakdown, enhancing the ionization efficiency at high repetition rates. Possible channels of metastable-state-assisted air ionization and the role of the observed accumulation effect in laser material processing are discussed.

  17. Retinal Drug Delivery System, Phase I

    DTIC Science & Technology

    1997-06-01

    retinal lesions, need an antibiotic, an anti-inflammatory agent, and an analgesic, and, recent research suggests that it might be advantageous to treat...predetermined) manner, that is, control over time, amount and sequence, either continuously or pulsed. This system would have all of the advantages of...delivery would produce the same therapeutic benefits while reducing side effects and toxic exposure. Recent studies have shown the advantages of pulse

  18. Effect of continuous vs pulsed iontophoresis of treprostinil on skin blood flow.

    PubMed

    Kotzki, Sylvain; Roustit, Matthieu; Arnaud, Claire; Godin-Ribuot, Diane; Cracowski, Jean-Luc

    2015-05-25

    Systemic sclerosis (SSc) is a rare disease affecting digital microcirculation, leading to finger ulcers and in some cases to amputation. Prostacyclin analogues can be used intravenously but their therapeutic effect is counterbalanced by potentially serious vasodilatation-induced side effects. Iontophoresis of treprostinil could be a promising local therapeutic alternative for SSc-related digital ulcers. Iontophoretic drug delivery is complex, and whether continuous or periodic current should be used remains debated. The objective of the present work is to compare the effect of continuous vs pulsed iontophoresis of treprostinil in rats. Treprostinil (0.64 mM and 0.064 mM) and NaCl were delivered by cathodal iontophoresis onto the hindquarters of anaesthetized rats. Three protocols delivering the same quantity of current were compared: one was continuous (100 μA during 20 min) and two were periodic (B: twenty 1-min cycles with 200 μA during 30 s followed by 30 s Off; and C: twenty 1-min cycles with 600 μA during 10s followed by 50s Off) (n=8 for each protocol with each concentration). Skin blood flow was quantified using laser Doppler imaging and skin resistance was calculated with Ohm's law. All protocols induced a significant increase in skin blood flow. At the lower concentration (0.064 mM treprostinil) the pulsed 10/50 sequence significantly enhanced cutaneous blood flow (Table 1; Fig. 1B) compared to continuous iontophoresis or the 30/30 sequence. We noted that the pulsed iontophoresis of NaCl (10/50 sequence) induced a significant early increase in cutaneous blood flow in comparison with continuous iontophoresis. Skin resistance measures were negatively correlated with current intensity delivered. In conclusion, pulsed iontophoresis of treprostinil with a 10 s/50 s (On/Off) protocol at 600 μA increases the efficacy of iontophoresis at 0.064 mM but not at a tenfold higher concentration. Pulsed iontophoresis could be used to optimize treprostinil iontophoresis, to provide similar efficacy with decreased costs, and should now be tested on humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo.

    PubMed

    Langham, Michael C; Li, Cheng; Englund, Erin K; Chirico, Erica N; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W

    2013-10-30

    To introduce a new, efficient method for vessel-wall imaging of carotid and peripheral arteries by means of a flow-sensitive 3D water-selective SSFP-echo pulse sequence. Periodic applications of RF pulses will generate two transverse steady states, immediately after and before an RF pulse; the latter being referred to as the SSFP-echo. The SSFP-echo signal for water protons in blood is spoiled as a result of moving spins losing phase coherence in the presence of a gradient pulse along the flow direction. Bloch equation simulations were performed over a wide range of velocities to evaluate the flow sensitivity of the SSFP-echo signal. Vessel walls of carotid and femoral and popliteal arteries were imaged at 3 T. In two patients with peripheral artery disease the femoral arteries were imaged bilaterally to demonstrate method's potential to visualize atherosclerotic plaques. The method was also evaluated as a means to measure femoral artery flow-mediated dilation (FMD) in response to cuff-induced ischemia in four subjects. The SSFP-echo pulse sequence, which does not have a dedicated blood signal suppression preparation, achieved low blood signal permitting discrimination of the carotid and peripheral arterial walls with in-plane spatial resolution ranging from 0.5 to 0.69 mm and slice thickness of 2 to 3 mm, i.e. comparable to conventional 2D vessel-wall imaging techniques. The results of the simulations were in good agreement with analytical solution and observations for both vascular territories examined. Scan time ranged from 2.5 to 5 s per slice yielding a contrast-to-noise ratio between the vessel wall and lumen from 3.5 to 17. Mean femoral FMD in the four subjects was 9%, in good qualitative agreement with literature values. Water-selective 3D SSFP-echo pulse sequence is a potential alternative to 2D vessel-wall imaging. The proposed method is fast, robust, applicable to a wide range of flow velocities, and straightforward to implement.

  20. Computational investigation and experimental considerations for the classical implementation of a full adder on SO2 by optical pump-probe schemes.

    PubMed

    Bomble, L; Lavorel, B; Remacle, F; Desouter-Lecomte, M

    2008-05-21

    Following the scheme recently proposed by Remacle and Levine [Phys. Rev. A 73, 033820 (2006)], we investigate the concrete implementation of a classical full adder on two electronic states (X 1A1 and C 1B2) of the SO2 molecule by optical pump-probe laser pulses using intuitive and counterintuitive (stimulated Raman adiabatic passage) excitation schemes. The resources needed for providing the inputs and reading out are discussed, as well as the conditions for achieving robustness in both the intuitive and counterintuitive pump-dump sequences. The fidelity of the scheme is analyzed with respect to experimental noise and two kinds of perturbations: The coupling to the neighboring rovibrational states and a finite rotational temperature that leads to a mixture for the initial state. It is shown that the logic processing of a full addition cycle can be realistically experimentally implemented on a picosecond time scale while the readout takes a few nanoseconds.

  1. Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair.

    PubMed

    Potter, Hollis G; Foo, Li F

    2006-04-01

    The assessment of articular cartilage using magnetic resonance imaging has seen considerable advances in recent years. Cartilage morphologic characteristics can now be evaluated with a high degree of accuracy and reproducibility using dedicated pulse sequences, which are becoming standard at many institutions. These techniques detect clinically unsuspected traumatic cartilage lesions, allowing the physician to study their natural history with longitudinal evaluation and also to assess disease status in degenerative osteoarthritis. Magnetic resonance imaging also provides a more objective assessment of cartilage repair to augment the information obtained from more subjective clinical outcome instruments. Newly developed methods that provide detail at an ultrastructural level offer an important addition to cartilage evaluation, particularly in the detection of early alterations in the extracellular matrix. These methods have created an undeniably important role for magnetic resonance imaging in the reproducible, noninvasive, and objective evaluation and monitoring of cartilage. An overview of the advances, current techniques, and impact of magnetic resonance imaging in the setting of trauma, degenerative arthritides, and surgical treatment for cartilage injury is presented.

  2. Cardiac T1 Imaging

    PubMed Central

    Jerosch-Herold, Michael; Kwong, Raymond Y.

    2014-01-01

    T1 mapping of the heart has evolved into a valuable tool to evaluate myocardial tissue properties, with or without contrast injection, including assessment of myocardial edema and free water content, extra-cellular volume (expansion), and most recently cardiomyocyte hypertrophy. The MRI pulse sequence techniques developed for these applications have had to address at least two important considerations for cardiac applications: measure magnetization inversion recoveries during cardiac motion with sufficient temporal resolution for the shortest expected T1 values, and, secondly, obtain these measurements within a time during which a patient can comfortably suspend breathing. So-called Look-Locker techniques, and variants thereof, which all sample multiple points of a magnetization recovery after each magnetization preparation have therefore become a mainstay in this field. The rapid pace of advances and new findings based on cardiac T1 mapping for assessment of diffuse fibrosis, or myocardial edema show that these techniques enrich the capabilities of MRI for myocardial tissue profiling, which is arguably unmatched by other cardiac imaging modalities. PMID:24509619

  3. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V.; A. M. Prokhorov Institute of General Physics RAS, Moscow, 119991; Esirkepov, T. Zh.

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  4. Analysis of SET pulses propagation probabilities in sequential circuits

    NASA Astrophysics Data System (ADS)

    Cai, Shuo; Yu, Fei; Yang, Yiqun

    2018-05-01

    As the feature size of CMOS transistors scales down, single event transient (SET) has been an important consideration in designing logic circuits. Many researches have been done in analyzing the impact of SET. However, it is difficult to consider numerous factors. We present a new approach for analyzing the SET pulses propagation probabilities (SPPs). It considers all masking effects and uses SET pulses propagation probabilities matrices (SPPMs) to represent the SPPs in current cycle. Based on the matrix union operations, the SPPs in consecutive cycles can be calculated. Experimental results show that our approach is practicable and efficient.

  5. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Feasibility of generation of picosecond and subpicosecond x-ray pulses in thin films

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Dzhidzhoev, M. S.; Kolchin, V. V.; Magnitskiy, Sergey A.; Platonenko, Viktor T.; Savel'ev, Andrei B.; Tarasevitch, A. P.

    1995-02-01

    The characteristics of a femtosecond laser plasma, formed by irradiation of a thin freely suspended carbon film, are investigated numerically. It is shown that the use of thin films can increase considerably the electron temperature of a femtosecond laser plasma and make it possible to generate x-rays of shorter wavelengths. This method can also be used to increase the efficiency of conversion of the energy of laser pulses into the radiation emitted by hydrogen-like carbon ions without a significant increase in the duration of x-ray pulses.

  6. A SiGe Quadrature Pulse Modulator for Superconducting Qubit State Manipulation

    NASA Astrophysics Data System (ADS)

    Kwende, Randy; Bardin, Joseph

    Manipulation of the quantum states of microwave superconducting qubits typically requires the generation of coherent modulated microwave pulses. While many off-the-shelf instruments are capable of generating such pulses, a more integrated approach is likely required if fault-tolerant quantum computing architectures are to be implemented. In this work, we present progress towards a pulse generator specifically designed to drive superconducing qubits. The device is implemented in a commercial silicon process and has been designed with energy-efficiency and scalability in mind. Pulse generation is carried out using a unique approach in which modulation is applied directly to the in-phase and quadrature components of a carrier signal in the 1-10 GHz frequency range through a unique digital-analog conversion process designed specifically for this application. The prototype pulse generator can be digitally programmed and supports sequencing of pulses with independent amplitude and phase waveforms. These amplitude and phase waveforms can be digitally programmed through a serial programming interface. Detailed performance of the pulse generator at room temperature and 4 K will be presented.

  7. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.

    PubMed

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-05-19

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.

  8. Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits

    NASA Astrophysics Data System (ADS)

    Thom, Joseph; Yuen, Ben; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G.

    2018-05-01

    We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of > 104) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be <2.2 × 10^{-4} for averaging times from 1 to 16,384 s. Over similar times, the absolute Allan deviation of the beam position is <0.1 μm for a 45 {μ }m beam diameter. Using these residual power and position instabilities, we estimate the associated contributions to infidelity in example qubit logic gates to be below 10^{-6} per gate.

  9. Ultrafast Pulse Sequencing for Fast Projective Measurements of Atomic Hyperfine Qubits

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2015-05-01

    Projective readout of quantum information stored in atomic hyperfine structure typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also discuss methods of Doppler cooling with mode-locked lasers for trapped ions, where the creation of the necessary UV light is often difficult with CW lasers.

  10. Risk stratification for therapeutic management and prognosis.

    PubMed

    Coelho-Filho, Otavio R; Nallamshetty, Leelakrishna; Kwong, Raymond Y

    2009-07-01

    In coronary artery disease (CAD), cardiac magnetic resonance (CMR) imaging can integrate several types of pulse-sequence examinations (eg, myocardial perfusion, cine wall motion, T2-weighted imaging for myocardial edema, late gadolinium enhancement, and CMR angiography) that can provide anatomic, functional, and physiologic information about the heart in a single imaging session. Because of this ability to interrogate myocardial physiology using different pulse sequence techniques within a single CMR session, this technique has been recognized increasingly in many centers as the test of choice for assessing patients who present with cardiomyopathy of undetermined cause. This article first reviews the current evidence supporting the prognosticating role of CMR in assessing CAD and then discusses CMR applications and prognostication in many non-coronary cardiac conditions.

  11. Event sequence detector

    NASA Technical Reports Server (NTRS)

    Hanna, M. F. (Inventor)

    1973-01-01

    An event sequence detector is described with input units, each associated with a row of bistable elements arranged in an array of rows and columns. The detector also includes a shift register which is responsive to clock pulses from any of the units to sequentially provide signals on its output lines each of which is connected to the bistable elements in a corresponding column. When the event-indicating signal is received by an input unit it provides a clock pulse to the shift register to provide the signal on one of its output lines. The input unit also enables all its bistable elements so that the particular element in the column supplied with the signal from the register is driven to an event-indicating state.

  12. A Simple and Efficient Methodology To Improve Geometric Accuracy in Gamma Knife Radiation Surgery: Implementation in Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaiskos, Pantelis, E-mail: pkaraisk@med.uoa.gr; Gamma Knife Department, Hygeia Hospital, Athens; Moutsatsos, Argyris

    Purpose: To propose, verify, and implement a simple and efficient methodology for the improvement of total geometric accuracy in multiple brain metastases gamma knife (GK) radiation surgery. Methods and Materials: The proposed methodology exploits the directional dependence of magnetic resonance imaging (MRI)-related spatial distortions stemming from background field inhomogeneities, also known as sequence-dependent distortions, with respect to the read-gradient polarity during MRI acquisition. First, an extra MRI pulse sequence is acquired with the same imaging parameters as those used for routine patient imaging, aside from a reversal in the read-gradient polarity. Then, “average” image data are compounded from data acquiredmore » from the 2 MRI sequences and are used for treatment planning purposes. The method was applied and verified in a polymer gel phantom irradiated with multiple shots in an extended region of the GK stereotactic space. Its clinical impact in dose delivery accuracy was assessed in 15 patients with a total of 96 relatively small (<2 cm) metastases treated with GK radiation surgery. Results: Phantom study results showed that use of average MR images eliminates the effect of sequence-dependent distortions, leading to a total spatial uncertainty of less than 0.3 mm, attributed mainly to gradient nonlinearities. In brain metastases patients, non-eliminated sequence-dependent distortions lead to target localization uncertainties of up to 1.3 mm (mean: 0.51 ± 0.37 mm) with respect to the corresponding target locations in the “average” MRI series. Due to these uncertainties, a considerable underdosage (5%-32% of the prescription dose) was found in 33% of the studied targets. Conclusions: The proposed methodology is simple and straightforward in its implementation. Regarding multiple brain metastases applications, the suggested approach may substantially improve total GK dose delivery accuracy in smaller, outlying targets.« less

  13. Designing optimal universal pulses using second-order, large-scale, non-linear optimization

    NASA Astrophysics Data System (ADS)

    Anand, Christopher Kumar; Bain, Alex D.; Curtis, Andrew Thomas; Nie, Zhenghua

    2012-06-01

    Recently, RF pulse design using first-order and quasi-second-order pulses has been actively investigated. We present a full second-order design method capable of incorporating relaxation, inhomogeneity in B0 and B1. Our model is formulated as a generic optimization problem making it easy to incorporate diverse pulse sequence features. To tame the computational cost, we present a method of calculating second derivatives in at most a constant multiple of the first derivative calculation time, this is further accelerated by using symbolic solutions of the Bloch equations. We illustrate the relative merits and performance of quasi-Newton and full second-order optimization with a series of examples, showing that even a pulse already optimized using other methods can be visibly improved. To be useful in CPMG experiments, a universal refocusing pulse should be independent of the delay time and insensitive of the relaxation time and RF inhomogeneity. We design such a pulse and show that, using it, we can obtain reliable R2 measurements for offsets within ±γB1. Finally, we compare our optimal refocusing pulse with other published refocusing pulses by doing CPMG experiments.

  14. Phase control of attosecond pulses in a train

    NASA Astrophysics Data System (ADS)

    Guo, Chen; Harth, Anne; Carlström, Stefanos; Cheng, Yu-Chen; Mikaelsson, Sara; Mårsell, Erik; Heyl, Christoph; Miranda, Miguel; Gisselbrecht, Mathieu; Gaarde, Mette B.; Schafer, Kenneth J.; Mikkelsen, Anders; Mauritsson, Johan; Arnold, Cord L.; L'Huillier, Anne

    2018-02-01

    Ultrafast processes in matter can be captured and even controlled by using sequences of few-cycle optical pulses, which need to be well characterized, both in amplitude and phase. The same degree of control has not yet been achieved for few-cycle extreme ultraviolet pulses generated by high-order harmonic generation (HHG) in gases, with duration in the attosecond range. Here, we show that by varying the spectral phase and carrier-envelope phase (CEP) of a high-repetition rate laser, using dispersion in glass, we achieve a high degree of control of the relative phase and CEP between consecutive attosecond pulses. The experimental results are supported by a detailed theoretical analysis based upon the semi-classical three-step model for HHG.

  15. [Loudness optimized registration of compound action potential in cochlear implant recipients].

    PubMed

    Berger, Klaus; Hocke, Thomas; Hessel, Horst

    2017-11-01

    Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.

  16. Pulsed dynamical decoupling for fast and robust two-qubit gates on trapped ions

    NASA Astrophysics Data System (ADS)

    Arrazola, I.; Casanova, J.; Pedernales, J. S.; Wang, Z.-Y.; Solano, E.; Plenio, M. B.

    2018-05-01

    We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped-ion hyperfine qubits. The protocol consists of sequences of π pulses acting on ions that are oriented along an externally applied magnetic-field gradient. In contrast to existing approaches, in our design the two vibrational modes of the ion chain cooperate under the influence of the external microwave driving to achieve significantly increased gate speeds. Our scheme is robust against the dominant noise sources, which are errors on the magnetic-field and microwave pulse intensities, as well as motional heating, predicting two-qubit gates with fidelities above 99.9% in tens of microseconds.

  17. Sound spectrum of a pulsating optical discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grachev, G N; Smirnov, A L; Tishchenko, V N

    A spectrum of sound of an optical discharge generated by a repetitively pulsed (RP) laser radiation has been investigated. The parameters of laser radiation are determined at which the spectrum of sound may contains either many lines, or the main line at the pulse repetition rate and several weaker overtones, or a single line. The spectrum of sound produced by trains of RP radiation comprises the line (and overtones) at the repetition rate of train sequences and the line at the repetition rate of pulses in trains. A CO{sub 2} laser with the pulse repetition rate of f ≈ 3more » – 180 kHz and the average power of up to 2 W was used in the experiments. (optical discharges)« less

  18. Dedicated phantom to study susceptibility artifacts caused by depth electrode in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Hidalgo, S. S.; Solis, S. E.; Vazquez, D.; Nuñez, J.; Rodriguez, A. O.

    2012-10-01

    The susceptibility artifacts can degrade of magnetic resonance image quality. Electrodes are an important source of artifacts when performing brain imaging. A dedicated phantom was built using a depth electrode to study the susceptibility effects under different pulse sequences. T2-weighted images were acquired with both gradient-and spin-echo sequences. The spin-echo sequences can significantly attenuate the susceptibility artifacts allowing a straightforward visualization of the regions surrounding the electrode.

  19. Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla.

    PubMed

    Krafft, Axel J; Loeffler, Ralf B; Song, Ruitian; Tipirneni-Sajja, Aaryani; McCarville, M Beth; Robson, Matthew D; Hankins, Jane S; Hillenbrand, Claudia M

    2017-11-01

    Hepatic iron content (HIC) quantification via transverse relaxation rate (R2*)-MRI using multi-gradient echo (mGRE) imaging is compromised toward high HIC or at higher fields due to the rapid signal decay. Our study aims at presenting an optimized 2D ultrashort echo time (UTE) sequence for R2* quantification to overcome these limitations. Two-dimensional UTE imaging was realized via half-pulse excitation and radial center-out sampling. The sequence includes chemically selective saturation pulses to reduce streaking artifacts from subcutaneous fat, and spatial saturation (sSAT) bands to suppress out-of-slice signals. The sequence employs interleaved multi-echo readout trains to achieve dense temporal sampling of rapid signal decays. Evaluation was done at 1.5 Tesla (T) and 3T in phantoms, and clinical applicability was demonstrated in five patients with biopsy-confirmed massively high HIC levels (>25 mg Fe/g dry weight liver tissue). In phantoms, the sSAT pulses were found to remove out-of-slice contamination, and R2* results were in excellent agreement to reference mGRE R2* results (slope of linear regression: 1.02/1.00 for 1.5/3T). UTE-based R2* quantification in patients with massive iron overload proved successful at both field strengths and was consistent with biopsy HIC values. The UTE sequence provides a means to measure R2* in patients with massive iron overload, both at 1.5T and 3T. Magn Reson Med 78:1839-1851, 2017. © 2017 Wiley Periodicals, Inc. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    PubMed

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Considerations for human exposure standards for fast-rise-time high-peak-power electromagnetic pulses.

    PubMed

    Merritt, J H; Kiel, J L; Hurt, W D

    1995-06-01

    Development of new emitter systems capable of producing high-peak-power electromagnetic pulses with very fast rise times and narrow pulse widths is continuing. Such directed energy weapons systems will be used in the future to defeat electronically vulnerable targets. Human exposures to these pulses can be expected during testing and operations. Development of these technologies for radar and communications purposes has the potential for wider environmental exposure, as well. Current IEEE C95.1-1991 human exposure guidelines do not specifically address these types of pulses, though limits are stated for pulsed emissions. The process for developing standards includes an evaluation of the relevant bioeffects data base. A recommendation has been made that human exposure to ultrashort electromagnetic pulses that engender electromagnetic transients, called precursor waves, should be avoided. Studies that purport to show the potential for tissue damage induced by such pulses were described. The studies cited in support of the recommendation were not relevant to the issues of tissue damage by propagated pulses. A number of investigations are cited in this review that directly address the biological effects of electromagnetic pulses. These studies have not shown evidence of tissue damage as a result of exposure to high-peak-power pulsed microwaves. It is our opinion that the current guidelines are sufficiently protective for human exposure to these pulses.

  2. Bias-field equalizer for bubble memories

    NASA Technical Reports Server (NTRS)

    Keefe, G. E.

    1977-01-01

    Magnetoresistive Perm-alloy sensor monitors bias field required to maintain bubble memory. Sensor provides error signal that, in turn, corrects magnitude of bias field. Error signal from sensor can be used to control magnitude of bias field in either auxiliary set of bias-field coils around permanent magnet field, or current in small coils used to remagnetize permanent magnet by infrequent, short, high-current pulse or short sequence of pulses.

  3. Target representation of naturalistic echolocation sequences in single unit responses from the inferior colliculus of big brown bats

    NASA Astrophysics Data System (ADS)

    Sanderson, Mark I.; Simmons, James A.

    2005-11-01

    Echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals whose duration, repetition rate, and sweep structure change systematically during interception of prey. When stimulated with a 2.5-s sequence of 54 FM pulse-echo pairs that mimic sounds received during search, approach, and terminal stages of pursuit, single neurons (N=116) in the bat's inferior colliculus (IC) register the occurrence of a pulse or echo with an average of <1 spike/sound. Individual IC neurons typically respond to only a segment of the search or approach stage of pursuit, with fewer neurons persisting to respond in the terminal stage. Composite peristimulus-time-histogram plots of responses assembled across the whole recorded population of IC neurons depict the delay of echoes and, hence, the existence and distance of the simulated biosonar target, entirely as on-response latencies distributed across time. Correlated changes in pulse duration, repetition rate, and pulse or echo amplitude do modulate the strength of responses (probability of the single spike actually occurring for each sound), but registration of the target itself remains confined exclusively to the latencies of single spikes across cells. Modeling of echo processing in FM biosonar should emphasize spike-time algorithms to explain the content of biosonar images.

  4. Himawari-8 infrared observations of the June-August 2015 Mt Raung eruption, Indonesia

    NASA Astrophysics Data System (ADS)

    Kaneko, Takayuki; Takasaki, Kenji; Maeno, Fukashi; Wooster, Martin J.; Yasuda, Atsushi

    2018-05-01

    Volcanic activity involves processes that can change over short periods of time, which are sometimes closely related to the eruptive mode or the timing of its transitions. Eruptions bring high-temperature magma or gas to the surface; thermal observations of these eruptions can be used to determine the timeline of eruptive sequences or eruptive processes. In 2014, a new-generation meteorological satellite, Himawari-8, which carried a new sensor, the Advanced Himawari Imager (AHI), was launched. The AHI makes high-frequency infrared observations at a spatial resolution of 2 km during 10-min observation cycles. We analyzed an effusive eruption that occurred in 2015 at Mt Raung in Indonesia using these AHI images, which was the first attempt applying them to volcanological study. Based on the detailed analysis of the time-series variations in its thermal anomalies, this eruptive sequence was segmented into a Precursory Stage, Pulse 1, Pulse 2 and a Terminal Stage. Pulses 1 and 2 are effusive stages that exhibited a consecutive two-pulse pattern in their variations, reflecting changes in the lava effusion rate; the other stages are non-effusive. We were also able to determine the exact times of the onset and reactivation of lava flow effusion, as well as the precursory signals that preceded these events.

  5. Audiometric Testing With Pulsed, Steady, and Warble Tones in Listeners With Tinnitus and Hearing Loss

    PubMed Central

    Walker, Matthew A.; Short, Ciara E.; Skinner, Kimberly G.

    2017-01-01

    Purpose This study evaluated the American Speech-Language-Hearing Association's recommendation that audiometric testing for patients with tinnitus should use pulsed or warble tones. Using listeners with varied audiometric configurations and tinnitus statuses, we asked whether steady, pulsed, and warble tones yielded similar audiometric thresholds, and which tone type was preferred. Method Audiometric thresholds (octave frequencies from 0.25–16 kHz) were measured using steady, pulsed, and warble tones in 61 listeners, who were divided into 4 groups on the basis of hearing and tinnitus status. Participants rated the appeal and difficulty of each tone type on a 1–5 scale and selected a preferred type. Results For all groups, thresholds were lower for warble than for pulsed and steady tones, with the largest effects above 4 kHz. Appeal ratings did not differ across tone type, but the steady tone was rated as more difficult than the warble and pulsed tones. Participants generally preferred pulsed and warble tones. Conclusions Pulsed tones provide advantages over steady and warble tones for patients regardless of hearing or tinnitus status. Although listeners preferred pulsed and warble tones to steady tones, pulsed tones are not susceptible to the effects of off-frequency listening, a consideration when testing listeners with sloping audiograms. PMID:28892822

  6. Audiometric Testing With Pulsed, Steady, and Warble Tones in Listeners With Tinnitus and Hearing Loss.

    PubMed

    Lentz, Jennifer J; Walker, Matthew A; Short, Ciara E; Skinner, Kimberly G

    2017-09-18

    This study evaluated the American Speech-Language-Hearing Association's recommendation that audiometric testing for patients with tinnitus should use pulsed or warble tones. Using listeners with varied audiometric configurations and tinnitus statuses, we asked whether steady, pulsed, and warble tones yielded similar audiometric thresholds, and which tone type was preferred. Audiometric thresholds (octave frequencies from 0.25-16 kHz) were measured using steady, pulsed, and warble tones in 61 listeners, who were divided into 4 groups on the basis of hearing and tinnitus status. Participants rated the appeal and difficulty of each tone type on a 1-5 scale and selected a preferred type. For all groups, thresholds were lower for warble than for pulsed and steady tones, with the largest effects above 4 kHz. Appeal ratings did not differ across tone type, but the steady tone was rated as more difficult than the warble and pulsed tones. Participants generally preferred pulsed and warble tones. Pulsed tones provide advantages over steady and warble tones for patients regardless of hearing or tinnitus status. Although listeners preferred pulsed and warble tones to steady tones, pulsed tones are not susceptible to the effects of off-frequency listening, a consideration when testing listeners with sloping audiograms.

  7. Pulse tube cryocoolers for industrial applications

    NASA Astrophysics Data System (ADS)

    Martin, J. L.; Martin, C. M.

    2002-05-01

    Stirling-type, high frequency pulse tube cryocoolers have received considerable interest in the past decade due to their high reliability, low vibration, and high efficiency. Most of the previous development of Stirling-type pulse tube cryocoolers has focused on relatively small machines with cooling powers in the range of 5 W at 80 K. In this paper, we discuss the extension of Stirling-type pulse tube cryocoolers to higher capacities for industrial applications. Mesoscopic Devices is currently developing a family of pulse tube cryocoolers with capacities ranging from 10 W at 80 K to over 1300 W at 80 K. Each of these machines uses a 50 or 60 Hz moving magnet linear compressor, inertance tube phase shift network, and either in-line or coaxial pulse tube expanders. With input powers of up to 20 kW, these large cryocoolers require different heat exchanger and regenerator designs to efficiently exchange heat with the load and environment. Design and construction techniques for the expander and heat exchangers are discussed.

  8. S-process studies using single and pulsed neutron exposures

    NASA Astrophysics Data System (ADS)

    Beer, H.

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A = 90 to 200. For the isotopes from iron to zirconium an additional 'weak' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, the inclusion of new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of an s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process.

  9. Influence of humidity on the characteristics of negative corona discharge in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Pengfei, E-mail: xpftsh@126.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    Detailed negative corona discharge characteristics, such as the pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under various air humidities with a single artificial defect electrode. The experimental result reveals that the pulse amplitude increases with the increase of air humidity; meanwhile, the repetition frequency deceases as the air humidity increases. Empirical formulae are first established for the pulse amplitude and repetition frequency with the humidity factor taken into consideration. The effective ionization integral is calculated and a positive correlation is found between the integral and the pulse amplitude. Furthermore, a simplified negative-ionmore » cloud model is built up to investigate the mechanism of the humidity's influence on negative corona discharge. Based on the theoretical analyses, the correlation between pulse amplitude, repetition frequency, and air humidity is well explained.« less

  10. Dynamically correcting two-qubit gates against any systematic logical error

    NASA Astrophysics Data System (ADS)

    Calderon Vargas, Fernando Antonio

    The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.

  11. The thermal history of interplanetary dust particles collected in the Earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (approximately 40 micrometers in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.

  12. Optical method for the determination of stress in thin films

    DOEpatents

    Maris, H.J.

    1999-01-26

    A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer. 16 figs.

  13. Optical method for the determination of stress in thin films

    DOEpatents

    Maris, Humphrey J.

    1999-01-01

    A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer.

  14. Detection and characterization of pulses in broadband seismometers

    USGS Publications Warehouse

    Wilson, David; Ringler, Adam; Hutt, Charles R.

    2017-01-01

    Pulsing - caused either by mechanical or electrical glitches, or by microtilt local to a seismometer - can significantly compromise the long‐period noise performance of broadband seismometers. High‐fidelity long‐period recordings are needed for accurate calculation of quantities such as moment tensors, fault‐slip models, and normal‐mode measurements. Such pulses have long been recognized in accelerometers, and methods have been developed to correct these acceleration steps, but considerable work remains to be done in order to detect and correct similar pulses in broadband seismic data. We present a method for detecting and characterizing the pulses using data from a range of broadband sensor types installed in the Global Seismographic Network. The technique relies on accurate instrument response removal and employs a moving‐window approach looking for acceleration baseline shifts. We find that pulses are present at varying levels in all sensor types studied. Pulse‐detection results compared with average daily station noise values are consistent with predicted noise levels of acceleration steps. This indicates that we can calculate maximum pulse amplitude allowed per time window that would be acceptable without compromising long‐period data analysis.

  15. Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizushima, Yuki; Saito, Takayuki, E-mail: saito.takayuki@shizuoka.ac.jp

    Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10{sup −13} s) and growth (10{sup −7} s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differencesmore » in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.« less

  16. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fraggelakis, F.; Stratakis, E.; Loukakos, P. A.

    2018-06-01

    We demonstrate the capability to exercise advanced control on the laser-induced periodic surface structures (LIPSS) on silicon by combining the effect of temporal shaping, via tuning the interpulse temporal delay between double femtosecond laser pulses, along with the independent manipulation of the polarization state of each of the individual pulses. For this, cross-polarized (CP) as well as counter-rotating (CR) double circularly polarized pulses have been utilized. The pulse duration was 40 fs and the central wavelength of 790 nm. The linearly polarized double pulses are generated by a modified Michelson interferometer allowing the temporal delay between the pulses to vary from Δτ = -80 ps to Δτ = +80 ps with an accuracy of 0.2 fs. We show the significance of fluence balance between the two pulse components and its interplay with the interpulse delay and with the order of arrival of the individually polarized pulse components of the double pulse sequence on the final surface morphology. For the case of CR pulses we found that when the pulses are temporally well separated the surface morphology attains no axial symmetry. But strikingly, when the two CP pulses temporally overlap, we demonstrate, for the first time in our knowledge, the detrimental effect that the phase delay has on the ripple orientation. Our results provide new insight showing that temporal pulse shaping in combination with polarization control gives a powerful tool for drastically controlling the surface nanostructure morphology.

  17. Interactive effects of multiple stressors revealed by sequencing total (DNA) and active (RNA) components of experimental sediment microbial communities.

    PubMed

    Birrer, Simone C; Dafforn, Katherine A; Simpson, Stuart L; Kelaher, Brendan P; Potts, Jaimie; Scanes, Peter; Johnston, Emma L

    2018-05-15

    Coastal waterways are increasingly exposed to multiple stressors, e.g. contaminants that can be delivered via pulse or press exposures. Therefore, it is crucial that ecological impacts can be differentiated among stressors to manage ecosystem threats. We investigated microbial community development in sediments exposed to press and pulse stressors. Press exposures were created with in situ mesocosm sediments containing a range of 'metal' concentrations (sediment contaminated with multiple metal(loid)s) and organic enrichment (fertiliser), while the pulse exposure was simulated by a single dose of organic fertiliser. All treatments and exposure concentrations were crossed in a fully factorial field experiment. We used amplicon sequencing to compare the sensitivity of the 1) total (DNA) and active (RNA) component of 2) bacterial (16S rRNA) and eukaryotic (18S rRNA) communities to contaminant exposures. Overall microbial community change was greater when exposed to press than pulse stressors, with the bacterial community responding more strongly than the eukaryotes. The total bacterial community represents a more time-integrated measure of change and proved to be more sensitive to multiple stressors than the active community. Metals and organic enrichment treatments interacted such that the effect of metals was weaker when the sediment was organically enriched. Taxa-level analyses revealed that press enrichment resulted in potential functional changes, mainly involving nitrogen cycling. Furthermore, enrichment generally reduced the abundance of active eukaryotes in the sediment. As well as demonstrating interactive impacts of metals and organic enrichment, this study highlights the sensitivity of next-generation sequencing for ecosystem biomonitoring of interacting stressors and identifies opportunities for more targeted application. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Active control of the spatial MRI phase distribution with optimal control theory

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin

    2017-08-01

    This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.

  19. Coherent Control to Prepare an InAs Quantum Dot for Spin-Photon Entanglement

    NASA Astrophysics Data System (ADS)

    Webster, L. A.; Truex, K.; Duan, L.-M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2014-03-01

    We optically generated an electronic state in a single InAs /GaAs self-assembled quantum dot that is a precursor to the deterministic entanglement of the spin of the electron with an emitted photon in the proposal of W. Yao, R.-B. Liu, and L. J. Sham [Phys. Rev. Lett. 95, 030504 (2005).]. A superposition state is prepared by optical pumping to a pure state followed by an initial pulse. By modulating the subsequent pulse arrival times and precisely controlling them using interferometric measurement of path length differences, we are able to implement a coherent control technique to selectively drive exactly one of the two components of the superposition to the ground state. This optical transition contingent on spin was driven with the same broadband pulses that created the superposition through the use of a two pulse coherent control sequence. A final pulse affords measurement of the coherence of this "preentangled" state.

  20. General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin

    2018-03-01

    In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.

  1. A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    NASA Technical Reports Server (NTRS)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.

    1979-01-01

    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.

  2. A blind transform based approach for the detection of isolated astrophysical pulses

    NASA Astrophysics Data System (ADS)

    Alkhweldi, Marwan; Schmid, Natalia A.; Prestage, Richard M.

    2017-06-01

    This paper presents a blind algorithm for the automatic detection of isolated astrophysical pulses. The detection algorithm is applied to spectrograms (also known as "filter bank data" or "the (t,f) plane"). The detection algorithm comprises a sequence of three steps: (1) a Radon transform is applied to the spectrogram, (2) a Fourier transform is applied to each projection parametrized by an angle, and the total power in each projection is calculated, and (3) the total power of all projections above 90° is compared to the total power of all projections below 90° and a decision in favor of an astrophysical pulse present or absent is made. Once a pulse is detected, its Dispersion Measure (DM) is estimated by fitting an analytically developed expression for a transformed spectrogram containing a pulse, with varying value of DM, to the actual data. The performance of the proposed algorithm is numerically analyzed.

  3. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism

    PubMed Central

    Sarmiento-Ponce, Edith Julieta

    2017-01-01

    Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets (Gryllus bimaculatus), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. PMID:28539524

  4. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.

    PubMed

    Hedwig, Berthold; Sarmiento-Ponce, Edith Julieta

    2017-05-31

    Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets ( Gryllus bimaculatus ), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. © 2017 The Authors.

  5. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.

    PubMed

    Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg

    2014-12-01

    The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.

  6. Bridge over troubled proline: assignment of intrinsically disordered proteins using (HCA)CON(CAN)H and (HCA)N(CA)CO(N)H experiments concomitantly with HNCO and i(HCA)CO(CA)NH.

    PubMed

    Hellman, Maarit; Piirainen, Henni; Jaakola, Veli-Pekka; Permi, Perttu

    2014-01-01

    NMR spectroscopy is by far the most versatile and information rich technique to study intrinsically disordered proteins (IDPs). While NMR is able to offer residue level information on structure and dynamics, assignment of chemical shift resonances in IDPs is not a straightforward process. Consequently, numerous pulse sequences and assignment protocols have been developed during past several years, targeted especially for the assignment of IDPs, including experiments that employ H(N), H(α) or (13)C detection combined with two to six indirectly detected dimensions. Here we propose two new HN-detection based pulse sequences, (HCA)CON(CAN)H and (HCA)N(CA)CO(N)H, that provide correlations with (1)H(N)(i - 1), (13)C'(i - 1) and (15)N(i), and (1)H(N)(i + 1), (13)C'(i) and (15)N(i) frequencies, respectively. Most importantly, they offer sequential links across the proline bridges and enable filling the single proline gaps during the assignment. We show that the novel experiments can efficiently complement the information available from existing HNCO and intraresidual i(HCA)CO(CA)NH pulse sequences and their concomitant usage enabled >95 % assignment of backbone resonances in cytoplasmic tail of adenosine receptor A2A in comparison to 73 % complete assignment using the HNCO/i(HCA)CO(CA)NH data alone.

  7. Heart rate, multiple body temperature, long-range and long-life telemetry system for free-ranging animals

    NASA Technical Reports Server (NTRS)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.

    1980-01-01

    The design details and rationale for a versatile, long-range, long-life telemetry data acquisition system for heart rates and body temperatures at multiple locations from free-ranging animals are presented. The design comprises an implantable transmitter for short to medium range transmission, a receiver retransmitter collar to be worn for long-range transmission, and a signal conditioner interface circuit to assist in signal discrimination and demodulation of receiver or tape-recorded audio outputs. Implanted electrodes are used to obtain an ECG, from which R-wave characteristics are selected to trigger a short RF pulse. Pulses carrying heart rate information are interrupted periodically by a series of pulse interval modulated RF pulses conveying temperature information sensed at desired locations by thermistors. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as radio frequency interference. The implanted transmitter may be used alone for medium and short-range tracking, or with a receiver-transmitter collar that employs commercial tracking equipment for transmissions of up to 12 km. A system prototype has been tested on a dog.

  8. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon.

    PubMed

    Derrien, Thibault J-Y; Krüger, Jörg; Itina, Tatiana E; Höhm, Sandra; Rosenfeld, Arkadi; Bonse, Jörn

    2013-12-02

    The formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlinear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombination effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the "SPP active area" is calculated as function of fluence and double-pulse delay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping.

  9. Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures

    PubMed Central

    Biswas, Sanchari; Karthikeyan, Adya; Kietzig, Anne-Marie

    2016-01-01

    We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu) and titanium (Ti) using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse (FΣpulse) values and the effect on the surface texture through lacunarity analysis. Machining both metals at low FΣpulse resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing FΣpulse, the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold FΣpulse values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold FΣpulse on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing FΣpulse. However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter. PMID:28774143

  10. Single-shot pulse duration and intensity diagnostic for 10-ps MeV gamma pulses based on interferometry

    NASA Astrophysics Data System (ADS)

    Peng, Bo-dong; Hei, Dong-wei; Song, Yan; Liu, Jun; Zhao, Jun

    2018-04-01

    To measure the temporal width and the intensity evolution versus time of a MeV gamma pulse generated by a Compton Scatter Source, a time-space conversion method is proposed. This design is based on the consideration that the temporal length of the MeV pulse is proportional to the spatial length of the pulse in a certain semiconductor. The spatial length and the intensity evolution versus time of the MeV pulse can be obtained by recording the region of the refractive index change that is induced by the MeV pulse. The simulation suggests that the equivalent temporal spread of a mono-energy MeV δ pulse in a bulk semiconductor is on the order of picoseconds and does not vary significantly with photon energy and material type. According to our analysis, the excess carrier generation time, excess carrier diffusion and recombination do not significantly influence the temporal resolution of this method. The temporal response of the refractive index change to a MeV pulse is also fast enough to meet the measurement requirements. The signal generation process for measuring a 10-ps MeV pulse with a 200-fs probe beam is analyzed, revealing that the transverse size of the MeV pulse does not influence the temporal resolution of this method.

  11. Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    Morris, C. I.

    2003-01-01

    Pulse detonation engines (PDB) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional gas turbines and rocket engines. The detonative mode of combustion employed by these devices offers a theoretical thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional engines. However, the unsteady blowdown process intrinsic to all pulse detonation devices has made realistic estimates of the actual propulsive performance of PDES problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models.

  12. Whole-Genome Sequences of Two Listeria monocytogenes Serovar 1/2a Strains Responsible for a Severe Listeriosis Outbreak in Central Italy.

    PubMed

    Orsini, Massimiliano; Cornacchia, Alessandra; Patavino, Claudio; Torresi, Marina; Centorame, Patrizia; Acciari, Vicdalia Aniela; Ruolo, Anna; Marcacci, Maurilia; Ancora, Massimo; Di Domenico, Marco; Mangone, Iolanda; Blasi, Giuliana; Duranti, Anna; Cammà, Cesare; Pomilio, Francesco; Migliorati, Giacomo

    2018-06-14

    We report the whole-genome sequences of two Listeria monocytogenes strains responsible for a severe invasive listeriosis outbreak in central Italy that occurred in 2015 and 2016. These two strains differ by a single band in their pulsed-field gel electrophoresis (PFGE) profiles. Copyright © 2018 Orsini et al.

  13. Technical Note: MR-visualization of interventional devices using transient field alterations and balanced steady-state free precession imaging.

    PubMed

    Eibofner, Frank; Martirosian, Petros; Würslin, Christian; Graf, Hansjörg; Syha, Roland; Clasen, Stephan

    2015-11-01

    In interventional magnetic resonance imaging, instruments can be equipped with conducting wires for visualization by current application. The potential of sequence triggered application of transient direct currents in balanced steady-state free precession (bSSFP) imaging is demonstrated. A conductor and a modified catheter were examined in water phantoms and in an ex vivo porcine liver. The current was switched by a trigger pulse in the bSSFP sequence in an interval between radiofrequency pulse and signal acquisition. Magnitude and phase images were recorded. Regions with transient field alterations were evaluated by a postprocessing algorithm. A phase mask was computed and overlaid with the magnitude image. Transient field alterations caused continuous phase shifts, which were separated by the postprocessing algorithm from phase jumps due to persistent field alterations. The overlaid images revealed the position of the conductor. The modified catheter generated visible phase offset in all orientations toward the static magnetic field and could be unambiguously localized in the ex vivo porcine liver. The application of a sequence triggered, direct current in combination with phase imaging allows conspicuous localization of interventional devices with a bSSFP sequence.

  14. Respirometric response and microbial succession of nitrifying sludge to m-cresol pulses in a sequencing batch reactor.

    PubMed

    Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro

    2017-02-01

    A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L -1 ) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L -1 m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.

  15. Temporal selectivity by single neurons in the torus semicircularis of Batrachyla antartandica (Amphibia: Leptodactylidae).

    PubMed

    Penna, M; Lin, W Y; Feng, A S

    2001-12-01

    We investigated the response selectivities of single auditory neurons in the torus semicircularis of Batrachyla antartandica (a leptodactylid from southern Chile) to synthetic stimuli having diverse temporal structures. The advertisement call for this species is characterized by a long sequence of brief sound pulses having a dominant frequency of about 2000 Hz. We constructed five different series of synthetic stimuli in which the following acoustic parameters were systematically modified, one at a time: pulse rate, pulse duration, pulse rise time, pulse fall time, and train duration. The carrier frequency of these stimuli was fixed at the characteristic frequency of the units under study (n=44). Response patterns of TS units to these synthetic call variants revealed different degrees of selectivity for each of the temporal variables. A substantial number of neurons showed preference for pulse rates below 2 pulses s(-1), approximating the values found in natural advertisement calls. Tonic neurons generally showed preferences for long pulse durations, long rise and fall times, and long train durations. In contrast, phasic and phasic-burst neurons preferred stimuli with short duration, short rise and fall times and short train durations.

  16. Contrast Enhancement in TOF cerebral angiography at 7 T using Saturation and MT pulses under SAR constraints: impact of VERSE and sparse pulses

    PubMed Central

    Schmitter, Sebastian; Bock, Michael; Johst, Sören; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2011-01-01

    Cerebral 3D time of flight (TOF) angiography significantly benefits from ultra high fields, mainly due to higher SNR and to longer T1 relaxation time of static brain tissues, however, SAR significantly increases with B0. Thus, additional RF pulses commonly used at lower field strengths to improve TOF contrast such as saturation of venous signal and improved background suppression by magnetization transfer typically cannot be used at higher fields. In this work we aimed at reducing SAR for each RF pulse category in a TOF sequence. We use the VERSE principle for the slab selective TOF excitation as well as the venous saturation RF pulses. Additionally, MT pulses are implemented by sparsely applying the pulses only during acquisition of the central k-space lines to limit their SAR contribution. Image quality, angiographic contrast and SAR reduction were investigated as a function of VERSE parameters and of the total number of MT pulses applied. Based on these results, a TOF protocol was generated that increases the angiographic contrast by more than 50% and reduces subcutaneous fat signal while keeping the resulting SAR within regulatory limits. PMID:22139829

  17. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.

    PubMed

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Application of binomial-edited CPMG to shale characterization

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2014-01-01

    Unconventional shale resources may contain a significant amount of hydrogen in organic solids such as kerogen, but it is not possible to directly detect these solids with many NMR systems. Binomial-edited pulse sequences capitalize on magnetization transfer between solids, semi-solids, and liquids to provide an indirect method of detecting solid organic materials in shales. When the organic solids can be directly measured, binomial-editing helps distinguish between different phases. We applied a binomial-edited CPMG pulse sequence to a range of natural and experimentally-altered shale samples. The most substantial signal loss is seen in shales rich in organic solids while fluids associated with inorganic pores seem essentially unaffected. This suggests that binomial-editing is a potential method for determining fluid locations, solid organic content, and kerogen–bitumen discrimination.

  19. Representation of the quantum Fourier transform on multilevel basic elements by a sequence of selective rotation operators

    NASA Astrophysics Data System (ADS)

    Ermilov, A. S.; Zobov, V. E.

    2007-12-01

    To experimentally realize quantum computations on d-level basic elements (qudits) at d > 2, it is necessary to develop schemes for the technical realization of elementary logical operators. We have found sequences of selective rotation operators that represent the operators of the quantum Fourier transform (Walsh-Hadamard matrices) for d = 3-10. For the prime numbers 3, 5, and 7, the well-known method of linear algebra is applied, whereas, for the factorable numbers 6, 9, and 10, the representation of virtual spins is used (which we previously applied for d = 4, 8). Selective rotations can be realized, for example, by means of pulses of an RF magnetic field for systems of quadrupole nuclei or laser pulses for atoms and ions in traps.

  20. Speeding up NMR by in Situ Photo-Induced Reversible Acceleration of T1 -Relaxation (PIRAT).

    PubMed

    Stadler, Eduard; Dommaschk, Marcel; Frühwirt, Philipp; Herges, Rainer; Gescheidt, Georg

    2018-03-05

    Increasing the signal-to-noise ratio is one of the major goals in the field of NMR spectroscopy. In this proof of concept, we accelerate relaxation during an NMR pulse sequence using photo-generated paramagnetic states of an inert sensitizer. For the follow-up acquisition period, the system is converted to a diamagnetic state. The reversibility of the photo-induced switching allows extensive repetition required for multidimensional NMR. We thus eliminate the obstacle of line-broadening by the presence of paramagnetic species. In this contribution, we show how cycling of synchronized light/pulse sequences leads to an enhanced efficiency in multidimensional NMR. Our approach utilizes a molecular spin switch reversibly altering between a paramagnetic and diamagnetic state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  2. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  3. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  4. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    PubMed Central

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-01-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482

  5. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  6. Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses

    NASA Astrophysics Data System (ADS)

    Wong-Campos, J. D.; Moses, S. A.; Johnson, K. G.; Monroe, C.

    2017-12-01

    We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just ten pulses, each of ˜20 ps duration, and demonstrate an entangled Bell state with (76 ±1 )% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.

  7. Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses.

    PubMed

    Wong-Campos, J D; Moses, S A; Johnson, K G; Monroe, C

    2017-12-08

    We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just ten pulses, each of ∼20  ps duration, and demonstrate an entangled Bell state with (76±1)% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.

  8. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    PubMed

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaohao, E-mail: xiaohao.dong@xfel.eu; Sinn, Harald, E-mail: harald.sinn@xfel.eu; Shu, Deming, E-mail: shu@aps.anl.gov

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL ( http://www.xfel.eu/ ). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaohao; Shu, Deming; Sinn, Harald

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL (http://www.xfel.eu/). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  11. Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease: initial clinical evaluation.

    PubMed

    Salerno, Michael; Taylor, Angela; Yang, Yang; Kuruvilla, Sujith; Ragosta, Michael; Meyer, Craig H; Kramer, Christopher M

    2014-07-01

    Adenosine stress cardiovascular magnetic resonance perfusion imaging can be limited by motion-induced dark-rim artifacts, which may be mistaken for true perfusion abnormalities. A high-resolution variable-density spiral pulse sequence with a novel density compensation strategy has been shown to reduce dark-rim artifacts in first-pass perfusion imaging. We aimed to assess the clinical performance of adenosine stress cardiovascular magnetic resonance using this new perfusion sequence to detect obstructive coronary artery disease. Cardiovascular magnetic resonance perfusion imaging was performed during adenosine stress (140 μg/kg per minute) and at rest on a Siemens 1.5-T Avanto scanner in 41 subjects with chest pain scheduled for coronary angiography. Perfusion images were acquired during injection of 0.1 mmol/kg Gadolinium-diethylenetriaminepentacetate at 3 short-axis locations using a saturation recovery interleaved variable-density spiral pulse sequence. Significant stenosis was defined as >50% by quantitative coronary angiography. Two blinded reviewers evaluated the perfusion images for the presence of adenosine-induced perfusion abnormalities and assessed image quality using a 5-point scale (1 [poor] to 5 [excellent]). The prevalence of obstructive coronary artery disease by quantitative coronary angiography was 68%. The average sensitivity, specificity, and accuracy were 89%, 85%, and 88%, respectively, with a positive predictive value and negative predictive value of 93% and 79%, respectively. The average image quality score was 4.4±0.7, with only 1 study with more than mild dark-rim artifacts. There was good inter-reader reliability with a κ statistic of 0.67. Spiral adenosine stress cardiovascular magnetic resonance results in high diagnostic accuracy for the detection of obstructive coronary artery disease with excellent image quality and minimal dark-rim artifacts. © 2014 American Heart Association, Inc.

  12. Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ayumu; Ohba, Hironori; Toshimitsu, Masaaki; Akaoka, Katsuaki; Ruas, Alexandre; Sakka, Tetsuo; Wakaida, Ikuo

    2018-04-01

    The decommissioning of the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant is an essential issue in nuclear R&D. Fiber-optic laser-induced breakdown spectroscopy (Fiber-optic LIBS) could be used for in-situ elemental analysis of the inside of the damaged reactors. To improve the performances under difficult conditions, using a long-pulse laser can be an efficient alternative. In this work, the emission spectra of zirconium metal in air obtained for a normal-pulse laser (6 ns) and a long-pulse laser (100 ns) (wavelength: 1064 nm, pulse energy: 12.5 mJ, spot diameter: 0.35 mm) are compared to investigate the fundamental aspects of fiber-optic LIBS with the long-pulse laser. The spectral features are considerably different: when the long-pulse laser is used, the atomic and molecular emission is remarkably enhanced. The enhancement of the atomic emission at the near infrared (NIR) region would lead to the observation of emission lines with minimum overlapping. To understand the differences in the spectra induced respectively from the normal-pulse laser and the long-pulse laser, photodiode signals, time-resolved spectra, plasma parameters, emission from the ambient air, and emission regions are investigated, showing the particular characteristics of the plasma produced by the long-pulse laser.

  13. Coherent pump pulses in Double Electron Electron Resonance Spectroscopy

    PubMed Central

    Tait, Claudia E.; Stoll, Stefan

    2016-01-01

    The recent introduction of shaped pulses to Double Electron Electron Resonance (DEER) spectroscopy has led to significant enhancements in sensitivity through increased excitation bandwidths and improved control over spin dynamics. The application of DEER has so far relied on the presence of an incoherent pump channel to average out most undesired coherent effects of the pump pulse(s) on the observer spins. However, in fully coherent EPR spectrometers that are increasingly used to generate shaped pulses, the presence of coherent pump pulses means that these effects need to be explicitly considered. In this paper, we examine the effects of coherent rectangular and sech/tanh pump pulses in DEER experiments with up to three pump pulses. We show that, even in the absence of significant overlap of the observer and pump pulse excitation bandwidths, coherence transfer pathways involving both types of pulses generate spin echoes of considerable intensity. These echoes introduce artefacts, which, if not identified and removed, can easily lead to misinterpretation. We demonstrate that the observed echoes can be quantitatively modelled using a simple spin quantum dynamics approach that includes instrumental transfer functions. Based on an analysis of the echo crossing artefacts, we propose efficient phase cycling schemes for their suppression. This enables the use of advanced DEER experiments, characterized by high sensitivity and increased accuracy for long-distance measurements, on novel fully coherent EPR spectrometers. PMID:27339858

  14. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    NASA Astrophysics Data System (ADS)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  15. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  16. Quantitative analysis of image quality for acceptance and commissioning of an MRI simulator with a semiautomatic method.

    PubMed

    Chen, Xinyuan; Dai, Jianrong

    2018-05-01

    Magnetic Resonance Imaging (MRI) simulation differs from diagnostic MRI in purpose, technical requirements, and implementation. We propose a semiautomatic method for image acceptance and commissioning for the scanner, the radiofrequency (RF) coils, and pulse sequences for an MRI simulator. The ACR MRI accreditation large phantom was used for image quality analysis with seven parameters. Standard ACR sequences with a split head coil were adopted to examine the scanner's basic performance. The performance of simulation RF coils were measured and compared using the standard sequence with different clinical diagnostic coils. We used simulation sequences with simulation coils to test the quality of image and advanced performance of the scanner. Codes and procedures were developed for semiautomatic image quality analysis. When using standard ACR sequences with a split head coil, image quality passed all ACR recommended criteria. The image intensity uniformity with a simulation RF coil decreased about 34% compared with the eight-channel diagnostic head coil, while the other six image quality parameters were acceptable. Those two image quality parameters could be improved to more than 85% by built-in intensity calibration methods. In the simulation sequences test, the contrast resolution was sensitive to the FOV and matrix settings. The geometric distortion of simulation sequences such as T1-weighted and T2-weighted images was well-controlled in the isocenter and 10 cm off-center within a range of ±1% (2 mm). We developed a semiautomatic image quality analysis method for quantitative evaluation of images and commissioning of an MRI simulator. The baseline performances of simulation RF coils and pulse sequences have been established for routine QA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  17. Reliability of high- and low-field magnetic resonance imaging systems for detection of cartilage and bone lesions in the equine cadaver fetlock.

    PubMed

    Smith, M A; Dyson, S J; Murray, R C

    2012-11-01

    To determine the reliability of 2 magnetic resonance imaging (MRI) systems for detection of cartilage and bone lesions of the equine fetlock. To test the hypotheses that lesions in cartilage, subchondral and trabecular bone of the equine fetlock verified using histopathology can be detected on high- and low-field MR images with a low incidence of false positive or negative results; that low-field images are less reliable than high-field images for detection of cartilage lesions; and that combining results of interpretation from different pulse sequences increases detection of cartilage lesions. High- and low-field MRI was performed on 19 limbs from horses identified with fetlock lameness prior to euthanasia. Grading systems were used to score cartilage, subchondral and trabecular bone on MR images and histopathology. Sensitivity and specificity were calculated for images. High-field T2*-weighted gradient echo (T2*W-GRE) and low-field T2-weighted fast spin echo (T2W-FSE) images had high sensitivity but low specificity for detection of cartilage lesions. All pulse sequences had high sensitivity and low-moderate specificity for detection of subchondral bone lesions and moderate sensitivity and moderate-high specificity for detection of trabecular bone lesions (histopathology as gold standard). For detection of lesions of trabecular bone low-field T2*W-GRE images had higher sensitivity and specificity than T2W-FSE images. There is high likelihood of false positive results using high- or low-field MRI for detection of cartilage lesions and moderate-high likelihood of false positive results for detection of subchondral bone lesions compared with histopathology. Combining results of interpretation from different pulse sequences did not increase detection of cartilage lesions. MRI interpretation of trabecular bone was more reliable than cartilage or subchondral bone in both MR systems. Independent interpretation of a variety of pulse sequences may maximise detection of cartilage and bone lesions in the fetlock. Clinicians should be aware of potential false positive and negative results. © 2012 EVJ Ltd.

  18. Polymorphic amplified typing sequences (PATS) and pulsed-field gel electrophoresis (PFGE) yield comparable results in the strain typing of a diverse set of bovine Escherichia coli O157 isolates

    USDA-ARS?s Scientific Manuscript database

    The PCR-based Escherichia coli O157 (O157) strain typing system, Polymorphic Amplified Typing Sequences (PATS), targets insertions-deletions (Indels) and single nucleotide polymorphisms (SNPs) at the XbaI and AvrII(BlnI) restriction enzyme sites, respectively, besides amplifying four known virulenc...

  19. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Holmelund, E.; Schou, J.; Tougaard, S.; Larsen, N. B.

    2002-09-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced with Sn concentrations up to 16%. The specific resistivity is found to increase and the transmission of visible light to decrease with increasing Sn concentration.

  20. Cascaded chirped photon acceleration for efficient frequency conversion

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew R.; Qu, Kenan; Jia, Qing; Mikhailova, Julia M.; Fisch, Nathaniel J.

    2018-05-01

    A cascaded sequence of photon acceleration stages using the instantaneous creation of a plasma density gradient by flash ionization allows the generation of coherent and chirped ultraviolet and x-ray pulses with independently tunable frequency and bandwidth. The efficiency of the cascaded process scales with 1/ω in energy, and multiple stages produce significant frequency up-conversion with gas-density plasmas. Chirping permits subsequent pulse compression to few-cycle durations, and output frequencies are not limited to integer harmonics.

  1. The Importance of Time and Frequency Reference in Quantum Astronomy and Quantum Communications

    DTIC Science & Technology

    2007-11-01

    simulator, but the same general results are valid for optical fiber and also different quantum state transmission technologies (i.e. Entangled Photons ...protocols [6]). The Matlab simulation starts from a sequence of pulses of duration Ton; the number of photons per pulse has been implemented like a...astrophysical emission mechanisms or scattering processes by measuring the statistics of the arrival time of each incoming photon . This line of research will be

  2. Refocused continuous-wave decoupling: a new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy.

    PubMed

    Vinther, Joachim M; Nielsen, Anders B; Bjerring, Morten; van Eck, Ernst R H; Kentgens, Arno P M; Khaneja, Navin; Nielsen, Niels Chr

    2012-12-07

    A novel strategy for heteronuclear dipolar decoupling in magic-angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy is presented, which eliminates residual static high-order terms in the effective Hamiltonian originating from interactions between oscillating dipolar and anisotropic shielding tensors. The method, called refocused continuous-wave (rCW) decoupling, is systematically established by interleaving continuous wave decoupling with appropriately inserted rotor-synchronized high-power π refocusing pulses of alternating phases. The effect of the refocusing pulses in eliminating residual effects from dipolar coupling in heteronuclear spin systems is rationalized by effective Hamiltonian calculations to third order. In some variants the π pulse refocusing is supplemented by insertion of rotor-synchronized π/2 purging pulses to further reduce the residual dipolar coupling effects. Five different rCW decoupling sequences are presented and their performance is compared to state-of-the-art decoupling methods. The rCW decoupling sequences benefit from extreme broadbandedness, tolerance towards rf inhomogeneity, and improved potential for decoupling at relatively low average rf field strengths. In numerical simulations, the rCW schemes clearly reveal superior characteristics relative to the best decoupling schemes presented so far, which we to some extent also are capable of demonstrating experimentally. A major advantage of the rCW decoupling methods is that they are easy to set up and optimize experimentally.

  3. Synchronous Seasonal Change in Fin Whale Song in the North Pacific

    PubMed Central

    Oleson, Erin M.; Širović, Ana; Bayless, Alexandra R.; Hildebrand, John A.

    2014-01-01

    Fin whale (Balaenoptera physalus) song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus) and humpback whales (Megaptera novaeangliae), these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here. PMID:25521493

  4. Synchronous seasonal change in fin whale song in the North Pacific.

    PubMed

    Oleson, Erin M; Širović, Ana; Bayless, Alexandra R; Hildebrand, John A

    2014-01-01

    Fin whale (Balaenoptera physalus) song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus) and humpback whales (Megaptera novaeangliae), these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here.

  5. Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High Frequency Stimulation in Rat Hippocampus

    PubMed Central

    Cai, Ziyan; Feng, Zhouyan; Guo, Zheshan; Zhou, Wenjie; Wang, Zhaoxiang; Wei, Xuefeng

    2017-01-01

    Deep brain stimulation (DBS) has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS) sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS) were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms. PMID:29066946

  6. Localized one-dimensional single voxel magnetic resonance spectroscopy without J coupling modulations.

    PubMed

    Lin, Yanqin; Lin, Liangjie; Wei, Zhiliang; Zhong, Jianhui; Chen, Zhong

    2016-12-01

    To acquire single voxel localized one-dimensional 1 H magnetic resonance spectroscopy (MRS) without J coupling modulations, free from amplitude and phase distortions. A pulse sequence, named PRESSIR, is developed for volume localized MRS without J modulations at arbitrary echo time (TE). The J coupling evolution is suppressed by the J-refocused module that uses a 90° pulse at the midpoint of a double spin echo. The localization performance of the PRESSIR sequence was tested with a two-compartment phantom. The proposed sequence shows similar voxel localization accuracy as PRESS. Both PRESSIR and PRESS sequences were performed on MRS brain phantom and pig brain tissue. PRESS spectra suffer from amplitude and phase distortions due to J modulations, especially under moderate and long TEs, while PRESSIR spectra are almost free from distortions. The PRESSIR sequence proposed herein enables the acquisition of single voxel in-phase MRS within a single scan. It allows an enhanced signal intensity of J coupling metabolites and reducing undesired broad resonances with short T2s while suppressing J modulations. Moreover, it provides an approach for direct measurement of nonoverlapping J coupling peaks and of transverse relaxation times T2s. Magn Reson Med 76:1661-1667, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  7. Mapping Rotational Wavepacket Dynamics with Chirped Probe Pulses

    NASA Astrophysics Data System (ADS)

    Romanov, Dmitri; Odhner, Johanan; Levis, Robert

    2014-05-01

    We develop an analytical model description of the strong-field pump-probe polarization spectroscopy of rotational transients in molecular gases in a situation when the probe pulse is considerably chirped: the frequency modulation over the pulse duration is comparable with the carrier frequency. In this scenario, a femtosecond pump laser pulse prepares a rotational wavepacket in a gas-phase sample at room temperature. The rotational revivals of the wavepacket are then mapped onto a chirped broadband probe pulse derived from a laser filament. The slow-varying envelope approximation being inapplicable, an alternative approach is proposed which is capable of incorporating the substantial chirp and the related temporal dispersion of refractive indices. Analytical expressions are obtained for the probe signal modulation over the interaction region and for the resulting heterodyned transient birefringence spectra. Dependencies of the outputs on the probe pulse parameters reveal the trade-offs and the ways to optimize the temporal-spectral imaging. The results are in good agreement with the experiments on snapshot imaging of rotational revival patterns in nitrogen gas. We gratefully acknowledge financial support through AFOSR MURI Grant No. FA9550-10-1-0561.

  8. On the pulse boiling frequency in thermosyphons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.F.; Wang, J.C.Y.

    1992-02-01

    The unsteady periodic boiling phenomenon, pulse boiling, appearing in the evaporator of thermosyphons has been mentioned and investigated by many researchers. The heat transfer coefficient in evaporators was predicted according to different considerations of flow patterns. For instance, Shiraishi et al. proposed a method based on a combination flow pattern: the nucleate boiling in a liquid pool and the evaporation from a falling condensate film. Liu et al. only considered a pure pulse boiling flow pattern, and Xin et al. focused on the flow pattern of the continuous boiling process without pulse phenomenon. Besides, the forming conditions of pulse boilingmore » were also described differently. Xin et al. also reported that pulse boiling cannot occur in a carbon-steel/water heat pipe; Ma et al., however, observed this phenomenon in a carbon-steel/water thermosyphon. Nearly all researchers mentioned that this phenomenon indeed exists in glass/water thermosyphons. Although the influential factors have been discussed qualitatively, the quantitative analysis has yet to be conducted. This study focuses on the pulse boiling frequency as a criterion for the determination of flow patterns, and attempts are made to predict the frequency both experimentally and theoretically.« less

  9. Data analysis for GOPEX image frames

    NASA Technical Reports Server (NTRS)

    Levine, B. M.; Shaik, K. S.; Yan, T.-Y.

    1993-01-01

    The data analysis based on the image frames received at the Solid State Imaging (SSI) camera of the Galileo Optical Experiment (GOPEX) demonstration conducted between 9-16 Dec. 1992 is described. Laser uplink was successfully established between the ground and the Galileo spacecraft during its second Earth-gravity-assist phase in December 1992. SSI camera frames were acquired which contained images of detected laser pulses transmitted from the Table Mountain Facility (TMF), Wrightwood, California, and the Starfire Optical Range (SOR), Albuquerque, New Mexico. Laser pulse data were processed using standard image-processing techniques at the Multimission Image Processing Laboratory (MIPL) for preliminary pulse identification and to produce public release images. Subsequent image analysis corrected for background noise to measure received pulse intensities. Data were plotted to obtain histograms on a daily basis and were then compared with theoretical results derived from applicable weak-turbulence and strong-turbulence considerations. Processing steps are described and the theories are compared with the experimental results. Quantitative agreement was found in both turbulence regimes, and better agreement would have been found, given more received laser pulses. Future experiments should consider methods to reliably measure low-intensity pulses, and through experimental planning to geometrically locate pulse positions with greater certainty.

  10. Laser pulse self-compression in an active fibre with a finite gain bandwidth under conditions of a nonstationary nonlinear response

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    We study the influence of a nonstationary nonlinear response of a medium on self-compression of soliton-like laser pulses in active fibres with a finite gain bandwidth. Based on the variational approach, we qualitatively analyse the self-action of the wave packet in the system under consideration in order to classify the main evolution regimes and to determine the minimum achievable laser pulse duration during self-compression. The existence of stable soliton-type structures is shown in the framework of the parabolic approximation of the gain profile (in the approximation of the Gnizburg – Landau equation). An analysis of the self-action of laser pulses in the framework of the nonlinear Schrödinger equation with a sign-constant gain profile demonstrate a qualitative change in the dynamics of the wave field in the case of a nonsta­tionary nonlinear response that shifts the laser pulse spectrum from the amplification region and stops the pulse compression. Expressions for a minimum duration of a soliton-like laser pulse are obtained as a function of the problem parameters, which are in good agreement with the results of numerical simulation.

  11. Evaluation of non-selective refocusing pulses for 7 T MRI

    PubMed Central

    Moore, Jay; Jankiewicz, Marcin; Anderson, Adam W.; Gore, John C.

    2011-01-01

    There is a continuing need for improved RF pulses that achieve proper refocusing in the context of ultra-high field (≥ 7 T) human MRI. Simple block or sinc pulses are highly susceptible to RF field inhomogeneities, and adiabatic pulses are generally considered too SAR intensive for practical use at 7 T. The performance of the array of pulses falling between these extremes, however, has not been systematically evaluated. The aim of this work was to compare the performances of 21 non-selective refocusing pulses spanning a range of durations and SAR levels. The evaluation was based upon simulations and both phantom and in vivo human brain experiments conducted at 7 T. Tested refocusing designs included block, composite block, BIR-4, hyperbolic secant, and numerically optimized composite waveforms. These pulses were divided into three SAR classes and two duration categories, and, based on signal gain in a 3-D spin echo sequence, practical recommendations on usage are made within each category. All evaluated pulses were found to produce greater volume-averaged signals relative to a 180° block pulse. Although signal gains often come with the price of increased SAR or duration, some pulses were found to result in significant signal enhancement while also adhering to practical constraints. This work demonstrates the signal gains and losses realizable with single-channel refocusing pulse designs and should assist in the selection of suitable refocusing pulses for practical 3-D spin-echo imaging at 7 T. It further establishes a reference against which future pulses and multi-channel designs can be compared. PMID:22177384

  12. Nonlinear side effects of fs pulses inside corneal tissue during photodisruption

    NASA Astrophysics Data System (ADS)

    Heisterkamp, A.; Ripken, T.; Mamom, T.; Drommer, W.; Welling, H.; Ertmer, W.; Lubatschowski, H.

    In order to evaluate the potential for refractive surgery, fs laser pulses of 150-fs pulse duration were used to process corneal tissue of dead and living animal eyes. By focusing the laser radiation down to spot sizes of several microns, very precise cuts could be achieved inside the treated cornea, accompanied with minimum collateral damage to the tissue by thermal or mechanical effects. During histo-pathological analysis by light and transmission electron microscopy considerable side effects of fs photodisruption were found. Due to the high intensities at the focal region several nonlinear effects occurred. Self-focusing, photodissociation, UV-light production were observed, leading to streak formation inside the cornea.

  13. The Mathematical Modeling and Computer Simulation of Electrochemical Micromachining Using Ultrashort Pulses

    NASA Astrophysics Data System (ADS)

    Kozak, J.; Gulbinowicz, D.; Gulbinowicz, Z.

    2009-05-01

    The need for complex and accurate three dimensional (3-D) microcomponents is increasing rapidly for many industrial and consumer products. Electrochemical machining process (ECM) has the potential of generating desired crack-free and stress-free surfaces of microcomponents. This paper reports a study of pulse electrochemical micromachining (PECMM) using ultrashort (nanoseconds) pulses for generating complex 3-D microstructures of high accuracy. A mathematical model of the microshaping process with taking into consideration unsteady phenomena in electrical double layer has been developed. The software for computer simulation of PECM has been developed and the effects of machining parameters on anodic localization and final shape of machined surface are presented.

  14. An analytical model for the calculation of the change in transmembrane potential produced by an ultrawideband electromagnetic pulse.

    PubMed

    Hart, Francis X; Easterly, Clay E

    2004-05-01

    The electric field pulse shape and change in transmembrane potential produced at various points within a sphere by an intense, ultrawideband pulse are calculated in a four stage, analytical procedure. Spheres of two sizes are used to represent the head of a human and the head of a rat. In the first stage, the pulse is decomposed into its Fourier components. In the second stage, Mie scattering analysis (MSA) is performed for a particular point in the sphere on each of the Fourier components, and the resulting electric field pulse shape is obtained for that point. In the third stage, the long wavelength approximation (LWA) is used to obtain the change in transmembrane potential in a cell at that point. In the final stage, an energy analysis is performed. These calculations are performed at 45 points within each sphere. Large electric fields and transmembrane potential changes on the order of a millivolt are produced within the brain, but on a time scale on the order of nanoseconds. The pulse shape within the brain differs considerably from that of the incident pulse. Comparison of the results for spheres of different sizes indicates that scaling of such pulses across species is complicated. Published 2004 Wiley-Liss, Inc.

  15. Simulation of dissipative-soliton-resonance generation in a passively mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Du, Wenxiong; Li, Heping; Liu, Cong; Shen, Shengnan; Zhang, Shangjian; Liu, Yong

    2017-10-01

    We present a numerical investigation of dissipative-soliton-resonance (DSR) generation in an all-normal-dispersion Ybdoped fiber laser mode-locked by a real saturable absorber (SA). In the simulation model, the SA includes both the saturable absorption and excited-state absorption (ESA) effects. The intra-cavity pulse evolution is numerically simulated with different transmission functions of SA. When omitting the ESA effect, the transmissivity of SA increases monotonically with the input pulse power. The noise-like pulse (NLP) operation in the cavity is obtained at high pump power, which is attributed to the spectral filtering effect. When the ESA effect is activated, higher instantaneous power part of pulse encounters larger loss induced by SA, causing that the pulse peak power is clamped at a certain fixed value. With increasing pump, the pulse starts to extend in the time domain while the pulse spectrum is considerably narrowed. In this case, the NLP operation state induced by the spectral filtering effect is avoided and the DSR is generated. Our simulation results indicate that the ESA effect in the SA plays a dominant role in generating the DSR pulses, which will be conducive to comprehending the mechanism of DSR generation in passively mode-locked fiber lasers.

  16. High precision electric gate for time-of-flight ion mass spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  17. Combinatorial pulse position modulation for power-efficient free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven

    1993-01-01

    A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.

  18. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  19. Critical Infrastructure Protection: EMP Impacts on the U.S. Electric Grid

    NASA Astrophysics Data System (ADS)

    Boston, Edwin J., Jr.

    The purpose of this research is to identify the United States electric grid infrastructure systems vulnerabilities to electromagnetic pulse attacks and the cyber-based impacts of those vulnerabilities to the electric grid. Additionally, the research identifies multiple defensive strategies designed to harden the electric grid against electromagnetic pulse attack that include prevention, mitigation and recovery postures. Research results confirm the importance of the electric grid to the United States critical infrastructures system and that an electromagnetic pulse attack against the electric grid could result in electric grid degradation, critical infrastructure(s) damage and the potential for societal collapse. The conclusions of this research indicate that while an electromagnetic pulse attack against the United States electric grid could have catastrophic impacts on American society, there are currently many defensive strategies under consideration designed to prevent, mitigate and or recover from an electromagnetic pulse attack. However, additional research is essential to further identify future target hardening opportunities, efficient implementation strategies and funding resources.

  20. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    PubMed Central

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694

Top