Self-stimulation in the rat: quantitative characteristics of the reward pathway.
Gallistel, C R
1978-12-01
Quantitative characteristics of the neural pathway that carries the reinforcing signal in electrical self-stimulation of the brain were established by finding which combinations of stimulation parameters give the same performance in a runway. The reward for each run was a train of evenly spaced monophasic cathodal pulses from a monopolar electrode. With train duration and pulse frequency held constant, the required current was a hyperbolic function of pulse duration, with chronaxie c approximately 1.5 msec. With pulse duration held constant, the required strength of the train (the charge delivered per second) was a hyperbolic function of train duration, with chronaxie C approximately 500 msec. To a first approximation, the values of c and C were independent of the choice either of train duration and pulse frequency or of pulse duration, respectively. Hence, the current intensity required by any choice of train duration, pulse frequency, and pulse duration dependent on only two basic parameters, c and C, and one quantity, Qi, the required impulse charge. These may reflect, respectively, current integration by directly excited neurons; temporal integration of neural activity by synaptic processes in a neural network; and the peak of the impulse response of the network, assuming that the network has linear dynamics and that the reward depends on the peak of the output of the network.
Penna, M; Lin, W Y; Feng, A S
2001-12-01
We investigated the response selectivities of single auditory neurons in the torus semicircularis of Batrachyla antartandica (a leptodactylid from southern Chile) to synthetic stimuli having diverse temporal structures. The advertisement call for this species is characterized by a long sequence of brief sound pulses having a dominant frequency of about 2000 Hz. We constructed five different series of synthetic stimuli in which the following acoustic parameters were systematically modified, one at a time: pulse rate, pulse duration, pulse rise time, pulse fall time, and train duration. The carrier frequency of these stimuli was fixed at the characteristic frequency of the units under study (n=44). Response patterns of TS units to these synthetic call variants revealed different degrees of selectivity for each of the temporal variables. A substantial number of neurons showed preference for pulse rates below 2 pulses s(-1), approximating the values found in natural advertisement calls. Tonic neurons generally showed preferences for long pulse durations, long rise and fall times, and long train durations. In contrast, phasic and phasic-burst neurons preferred stimuli with short duration, short rise and fall times and short train durations.
Temperature dependence of the pulse-duration memory effect in NbSe3
NASA Astrophysics Data System (ADS)
Jones, T. C.; Simpson, C. R., Jr.; Clayhold, J. A.; McCarten, J. P.
2000-04-01
The temperature dependence of the oscillatory response of the 59 K charge-density wave in NbSe3 to a sequence of repetitive current pulses was investigated. For 52 K>T>45 K the learned behavior commonly referred to as the pulse-duration memory effect (PDME) is very evident; after training the voltage oscillation always finishes the pulse at a minimum. At lower temperatures the PDME changes qualitatively. In nonswitching samples the voltage oscillation always finishes the pulse increasing. In switching samples there is a conduction delay which becomes fixed after training, but no learning of the duration of the pulse.
Directly driven source of multi-gigahertz, sub-picosecond optical pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messerly, Michael J.; Dawson, Jay W.; Barty, Christopher P.J.
2015-10-20
A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulsesmore » or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.« less
NASA Astrophysics Data System (ADS)
Terrien, Soizic; Krauskopf, Bernd; Broderick, Neil G. R.; Andréoli, Louis; Selmi, Foued; Braive, Rémy; Beaudoin, Grégoire; Sagnes, Isabelle; Barbay, Sylvain
2017-10-01
A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable regime, we show that a single optical perturbation can trigger a train of pulses that is sustained for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior characteristic of a noise-induced process driven by uncorrelated white noise present in the system. The comparison of experimental observations with theoretical and numerical analysis of a minimal model yields excellent agreement. Importantly, the random switch-off process takes place between two attractors of different nature: an equilibrium and a periodic orbit. Our analysis shows that there is a small time window during which the pulsations are very sensitive to noise, and this explains the observed strong bias toward switch-off. These results raise the possibility of all optical control of the pulse train duration that may have an impact for practical applications in photonics and may also apply to the dynamics of other noise-driven excitable systems with delayed feedback.
NASA Astrophysics Data System (ADS)
Gusev, A. A.; Chuluunbaatar, O.; Popov, Yu. V.; Vinitsky, S. I.; Derbov, V. L.; Lovetskiy, K. P.
2018-04-01
The exactly soluble model of a train of zero-duration electromagnetic pulses interacting with a 1D atom with short-range interaction potential modelled by a δ-function is considered. The model is related to the up-to-date laser techniques providing the duration of pulses as short as a few attoseconds and the intensities higher than 1014 W/cm2.
Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains
NASA Astrophysics Data System (ADS)
Kozák, M.; Schönenberger, N.; Hommelhoff, P.
2018-03-01
Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.
Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan
2010-12-01
Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.
Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.
2016-02-23
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.
Enhancement cavities for zero-offset-frequency pulse trains.
Holzberger, S; Lilienfein, N; Trubetskov, M; Carstens, H; Lücking, F; Pervak, V; Krausz, F; Pupeza, I
2015-05-15
The optimal enhancement of broadband optical pulses in a passive resonator requires a seeding pulse train with a specific carrier-envelope-offset frequency. Here, we control the phase of the cavity mirrors to tune the offset frequency for which a given comb is optimally enhanced. This enables the enhancement of a zero-offset-frequency train of sub-30-fs pulses to multi-kW average powers. The combination of pulse duration, power, and zero phase slip constitutes a crucial step toward the generation of attosecond pulses at multi-10-MHz repetition rates. In addition, this control affords the enhancement of pulses generated by difference-frequency mixing, e.g., for mid-infrared spectroscopy.
Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.
2015-10-20
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Reed, Bryan W.; Dehope, William J; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M
2016-06-21
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Slow and fast light via SBS in optical fibers for short pulses and broadband pump
NASA Astrophysics Data System (ADS)
Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi
2006-12-01
Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.
On the use of a chirped Bragg grating as a cavity mirror of a picosecond Nd : YAG laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubko, A E; Shashkov, E V; Smirnov, A V
2016-02-28
The first experimental evidence is presented that the use of a chirped volume Bragg grating (CVBG) as a cavity mirror of a Q-switched picosecond Nd : YAG laser with self-mode-locking leads to significant changes in the temporal parameters of the laser output. Measurements have been performed at two positions of the CVBG: with the grating placed so that shorter wavelengths reflected from its front part lead longer wavelengths or with the grating rotated through 180°, so that longer wavelengths are reflected first. In the former case, the duration of individual pulses in a train increased from ∼35 to ∼300 ps,more » whereas the pulse train shape and duration remained the same as in the case of a conventional laser with a mirror cavity. In the latter case, the full width at half maximum of pulse trains increased from ∼70 ns (Nd : YAG laser with a mirror cavity) to ∼1 ms, and the duration of individual pulses increased from 35 ps to ∼1.2 ns, respectively, which is more typical of free-running laser operation. (laser crystals and braggg ratings)« less
2013-01-01
Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions. PMID:23374142
MULTI-CHANNEL PULSE HEIGHT ANALYZER
Boyer, K.; Johnstone, C.W.
1958-11-25
An improved multi-channel pulse height analyzer of the type where the device translates the amplitude of each pulse into a time duration electrical quantity which is utilized to control the length of a train of pulses forwarded to a scaler is described. The final state of the scaler for any one train of pulses selects the appropriate channel in a magnetic memory in which an additional count of one is placed. The improvement consists of a storage feature for storing a signal pulse so that in many instances when two signal pulses occur in rapid succession, the second pulse is preserved and processed at a later time.
Connaughton, M A; Taylor, M H; Fine, M L
2000-05-01
To categorize variation in disturbance calls of the weakfish Cynoscion regalis and to understand their generation, we recorded sounds produced by different-sized fish, and by similar-sized fish at different temperatures, as well as muscle electromyograms. Single, simultaneous twitches of the bilateral sonic muscles produce a single sound pulse consisting of a two- to three-cycle acoustic waveform. Typical disturbance calls at 18 degrees C consist of trains of 2-15 pulses with a sound pressure level (SPL) of 74 dB re 20 microPa at 10 cm, a peak frequency of 540 Hz, a repetition rate of 20 Hz and a pulse duration of 3.5 ms. The pulse duration suggests an incredibly short twitch time. Sound pressure level (SPL) and pulse duration increase and dominant frequency decreases in larger fish, whereas SPL, repetition rate and dominant frequency increase and pulse duration decreases with increasing temperature. The dominant frequency is inversely related to pulse duration and appears to be determined by the duration of muscle contraction. We suggest that the lower dominant frequency of larger fish is caused by a longer pulse (=longer muscle twitch) and not by the lower resonant frequency of a larger swimbladder.
Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J
2015-12-08
Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.
Repetitive pulses and laser-induced retinal injury thresholds
NASA Astrophysics Data System (ADS)
Lund, David J.
2007-02-01
Experimental studies with repetitively pulsed lasers show that the ED 50, expressed as energy per pulse, varies as the inverse fourth power of the number of pulses in the exposure, relatively independently of the wavelength, pulse duration, or pulse repetition frequency of the laser. Models based on a thermal damage mechanism cannot readily explain this result. Menendez et al. proposed a probability-summation model for predicting the threshold for a train of pulses based on the probit statistics for a single pulse. The model assumed that each pulse is an independent trial, unaffected by any other pulse in the train of pulses and assumes that the probability of damage for a single pulse is adequately described by the logistic curve. The requirement that the effect of each pulse in the pulse train be unaffected by the effects of other pulses in the train is a showstopper when the end effect is viewed as a thermal effect with each pulse in the train contributing to the end temperature of the target tissue. There is evidence that the induction of cell death by microcavitation bubbles around melanin granules heated by incident laser irradiation can satisfy the condition of pulse independence as required by the probability summation model. This paper will summarize the experimental data and discuss the relevance of the probability summation model given microcavitation as a damage mechanism.
Huang, Xinting; Yang, Dapeng; Yao, Li
2014-09-15
In this work, the laser-parameter effects on the high-order harmonic generation (HHG) spectrum and attosecond trains by mixing two-color laser field, a visible light field of 800 nm and a mid-infrared (mid-IR) laser pulses of 2400 nm, are theoretically demonstrated for the first time. Different schemes are applied to discuss the function of intensity, carrier-envelope phase (CEP) and pulse duration on the generation of an isolated attosecond pulse. As a consequence, an isolated 16as pulse is obtained by Fourier transforming an ultrabroad XUV continuum of 208 eV with the fundamental field of duration of 6 fs, 9×10(14)W/cm2 of intensity, the duration of 12 fs, the CEPs of the two driving pulses of -π and the relative strength ratio √R=0.2. Copyright © 2014 Elsevier B.V. All rights reserved.
Active/passive mode-locked laser oscillator
Fountain, William D.; Johnson, Bertram C.
1977-01-01
A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.
NASA Astrophysics Data System (ADS)
Naeem, Jannatul; Wong Azman, Amelia; Khan, Sheroz; Mohd Mustafah, Yasir
2013-12-01
Functional Electrical Stimulation (FES) is a method of artificially stimulating muscles or nerves in order to result in contraction or relaxation of muscles. Many studies have shown that FES system has helped patients to live a better lives especially those who are suffering from physical mobility. Unfortunately, one of the main limitations of an FES system besides of its high cost is largely due to muscle fatigue. Muscle fatigue will affect the training duration which could delay patients' recovery rate. In this paper, we analyzed the occurrence of this fatigue phenomenon in terms of stimulator parameters such as amplitude, frequency, pulse width and pulse shape. The objective of this investigation is to identify other key features of the FES system parameters in order to prolong the training duration among patients. The experiment has been done on a healthy person for the duration of one minute and later the muscles response will be observed. Resultant muscle response is recorded as force using force resistive sensor. The experimental results show muscles will get fatigue at a different rate as the frequency increases. The experiment also shows that the duty cycle is reciprocal to the resultant force.
Tooth pulp stimulation as an unconditioned stimulus in defensive instrumental conditioning.
Jastreboff, P J; Keller, O; Zieliński, K
1977-01-01
In an experiment performed on five cats, stable escape and avoidance reflexes in a bar-pressing situation were established using tooth pulp electric stimulation as the unconditioned stimulus. The influence of changes in parameters of the unconditioned stimulus (current intensity, single pulse and train durations, frequency of pulses and rate of train presentations) on unconditioned and instrumental responses was analysed in three additional subjects. Among other relationships the dependence of the threshold of bar press responses on the amount of charge in a single pulse was determined.
NASA Astrophysics Data System (ADS)
Frank, Milan; Jelínek, Michal; Kubeček, Václav
2015-01-01
In this paper the operation of pulsed diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively modelocked using semiconductor saturable absorber mirror (SAM), generating microjoule level picosecond pulses at wavelength of 1063 nm, is reported. Optimization of the output coupling for generation either Q-switched mode locked pulse trains or cavity dumped single pulses with maximum energy was performed, which resulted in extraction of single pulses as short as 10 ps and energy of 20 uJ. In comparison with the previous results obtained with this Nd:GdVO4 oscillator and saturable absorber in transmission mode, the achieved pulse duration is five times shorter. Using different absorbers and parameters of single pulse extraction enables generation of the pulses with duration up to 100 ps with the energy in the range from 10 to 20 μJ.
Mode locking of a ring cavity semiconductor diode laser
NASA Astrophysics Data System (ADS)
Desbiens, Louis; Yesayan, Ararat; Piche, Michel
2000-12-01
We report new results on the generation and characterization of picosecond pulses from a self-mode-locked semiconductor diode laser. The active medium (InGaAs, 830-870 nm) is a semiconductor optical amplifier whose facets are cut at angle and AR coated. The amplifier is inserted in a three-minor ring cavity. Mode locking is purely passive; it takes place for specific alignment conditions. Trains of counterpropagating pulses are produced, with pulse duration varying from 1 .2 to 2 ps. The spectra of the counterpropagatmg pulses do not fully overlap; their central wavelengths differ by a few nm. The pulse repetition rate has been varied from 0.3 to 3 GHz. The pulses have been compressed to less than 500-fs duration with a grating pair. We discuss some of the potential physical mechanisms that could be involved in the dynamics of the mode-locked regime. Hysteresis in the LI curve has been observed. To characterize the pulses, we introduce the idea of a Pulse Quality Factor, where the pulse duration and spectral width are calculated from the second-order moments of the measured intensity autocorrelation and power spectral density.
Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donin, V I; Yakovin, D V; Gribanov, A V
2015-12-31
The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the lasermore » field while the train contains single picosecond pulses. (control of laser radiation parameters)« less
Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B
2014-12-29
Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbertson, Steve; Khan, Sabih D.; Wu Yi
2010-08-27
Single isolated attosecond pulses can be extracted from a pulse train with an ultrafast gate in the generation target. By setting the gate width sufficiently narrow with the generalized double optical gating, we demonstrate that single isolated attosecond pulses can be generated with any arbitrary carrier-envelope phase value of the driving laser. The carrier-envelope phase only affects the photon flux, not the pulse duration or contrast. Our results show that isolated attosecond pulses can be generated using carrier-envelope phase unstabilized 23 fs pulses directly from chirped pulse amplifiers.
NASA Astrophysics Data System (ADS)
Song, Juan; Tao, Wenjun; Song, Hui; Gong, Min; Ma, Guohong; Dai, Ye; Zhao, Quanzhong; Qiu, Jianrong
2016-04-01
In this paper, a time-delay-adjustable double-pulse train with 800-nm wavelength, 200-fs pulse duration and a repetition rate of 1 kHz, produced by a collinear two-beam optical system like a Mach-Zehnder interferometer, was employed for irradiation of 6H-SiC crystal. The dependence of the induced structures on time delay of double-pulse train for parallel-polarization configuration was studied. The results show that as the time delay of collinear parallel-polarization dual-pulse train increased, the induced near-subwavelength ripples (NSWRs) turn from irregular rippled pattern to regularly periodic pattern and have their grooves much deepened. The characteristics timescale for this transition is about 6.24 ps. Besides, the areas of NSWR were found to decay exponentially for time delay from 0 to 1.24 ps and then slowly increase for time delay from 1.24 to 14.24 ps. Analysis shows that multiphoton ionization effect, grating-assisted surface plasmon coupling effect, and timely intervene of second pulse in a certain physical stage experienced by 6H-SiC excited upon first pulse irradiation may contribute to the transition of morphology details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.
2012-12-29
In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimalmore » temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.« less
Ablation of steel by microsecond pulse trains
NASA Astrophysics Data System (ADS)
Windeler, Matthew Karl Ross
Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 mus +/- 1.1 us and the exponential decays with a rate of 64 mus +/- 15 us. The phenomenological model offers an interpretation of the material removal process.
Singer, S.; Neher, L.K.
1957-09-24
A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.
0.4 mJ quasi-continuously pumped picosecond Nd:GdVO4 laser with selectable pulse duration
NASA Astrophysics Data System (ADS)
Kubeček, V.; Jelínek, M.; Čech, M.; Hiršl, P.; Diels, J.-C.
2010-02-01
A quasi-continuously pumped picosecond oscillator-amplifier Nd:GdVO4 laser system based on two identical slabs in a single bounce geometry is reported. Pulse duration is from 160 to 55 ps resulting from the pulse shortening along the extended mode locked train from passively mode locked oscillator, which was measured directly from a single laser shot. The shortest 55 ps long cavity dumped single pulses from the oscillator with the energy of 15±1 μJ and the contrast better than 10-3 were amplified to the energy of 150 μJ with the contrast better than 10-3 after the single-pass amplification and to the energy of 400 μJ after the double-pass amplification.
Banan Sadeghian, Ramin; Ebrahimi, Majid; Salehi, Sahar
2018-04-01
Skeletal muscle tissues engineered in vitro are aneural, are short in the number of fibres required to function properly and degenerate rapidly. Electrical stimulation has been widely used to compensate for such a lack of neural activity, yet the relationship between the stimulation parameters and the tissue response is subject to debate. Here we studied the effect of overnight electrical stimulation (training) on the contractility and maturity of aligned C2C12 myotubes developed on micropatterned gelatin methacryloyl (GelMA) substrates. Bipolar rectangular pulse (BRP) trains with frequency, half-duration and applied pulse train amplitudes of f = 1 Hz, t on = 0.5 ms and V app = {3 V, 4 V, 4.5 V}, respectively, were applied for 12 h to the myotubes formed on the microgrooved substrates. Aligned myotubes were contracting throughout the training period for V app ≥ 4 V. Immediately after training, the samples were subjected to series of BRPs with 2 ≤ V app ≤ 5 V and 0.2 ≤ t on ≤ 0.9 ms, during which myotube contraction dynamics were recorded. Analysis of post-training contraction revealed that only the myotubes trained at V app = 4 V displayed consistent and repeatable contraction profiles, showing the dynamics of myotube contractility as a function of triggering pulse voltage and current amplitudes, duration and imposed electrical energy. In addition, myotubes trained at V app = 4 V displayed amplified expression levels of genes pertinent to sarcomere development correlated with myotube maturation. Our findings are imperative for a better understanding of the influence of electrical pulses on the maturation of microengineered myotubes. Copyright © 2017 John Wiley & Sons, Ltd.
2.36 J, 50 Hz nanosecond pulses from a diode side-pumped Nd:YAG MOPA system
NASA Astrophysics Data System (ADS)
Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Yang, Ning; Li, Ye; Yang, Zhen; Han, Song; Shi, Junfeng; Zhou, Zewu
2017-07-01
We report on a high-energy high-repetition-rate nanosecond Nd:YAG main oscillator power amplifier (MOPA) system. Maximum output pulse energy of 2.36 J with duration of 9.4 ns at 50 Hz has been achieved. The master oscillator was a LD side-pumped electro-optical Q-switched Nd:YAG rod laser adopting unstable cavity with variable reflectivity mirror (VRM). It delivered a pulse train with energy up to 180 mJ and pulse duration of 10.7 ns. The near-field pattern demonstrated a nearly super Gaussian flat top profile. In the amplification stage, the pulse was boosted via double-pass two Nd:YAG rod amplifiers. Maximum pulse energy was obtained at the peak pump power of 37.5 kW, corresponding to an optical-optical conversion efficiency of 25.2%. The correlative peak power was deduced to be 251 MW. We also presented the result of 100 Hz nanosecond laser with average output power of >100 W.
NASA Astrophysics Data System (ADS)
Kolmasova, Ivana; Santolik, Ondrej; Farges, Thomas; Rison, William; Lan, Radek; Uhlir, Ludek
2014-05-01
We analyze pulse sequences occurring prior to first return strokes of negative cloud-to-ground lightning flashes. The magnetic-field waveforms are measured close to the thunderstorm using a broad-band analyzer with a sampling interval of 12.5 ns. The electric-field waveforms are measured at the distance of ~ 400 km using an analyzer with a sampling interval of 80 ns. The sequence is usually composed of three parts. It begins with a larger pulse train which is believed to be connected with initial breakdown processes. The train of preliminary breakdown pulses ("B" part) is followed by a relatively low and irregular pulse activity ("I" part), which is sometimes missing. The sequence ends with a pulse train attributed to the stepped leader ("L" part). We recognize two different patterns ("B-I-L" and "B-L" types) in recorded waveforms. For the first time, we analyze the time evolution of the pulse amplitudes in the "B" part of "B-I-L" type sequences. The pulse amplitude is decreasing on average by 34% of the maximum value within a given train. We observe an unusually short duration of sequences. This is probably linked to a low height of the thundercloud. Another possible explanation may be based on an untypical precipitation mix resulting in faster steeped leaders.
Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm.
Coluccelli, Nicola; Lagatsky, Alexander; Di Lieto, Alberto; Tonelli, Mauro; Galzerano, Gianluca; Sibbett, Wilson; Laporta, Paolo
2011-08-15
We demonstrate the passive mode-locking operation of an in-band-pumped Ho:YLiF(4) laser at 2.06 μm using a semiconductor saturable absorber mirror based on InGaAsSb quantum wells. A transform-limited pulse train with minimum duration of 1.1 ps and average power of 0.58 W has been obtained at a repetition frequency of 122 MHz. A maximum output power of 1.7 W has been generated with a corresponding pulse duration of 1.9 ps. © 2011 Optical Society of America
Personnel electronic neutron dosimeter
Falk, R.B.; Tyree, W.H.
1982-03-03
A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.
Personnel electronic neutron dosimeter
Falk, Roger B.; Tyree, William H.
1984-12-18
A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.
NASA Astrophysics Data System (ADS)
Nabekawa, Yasuo; Furukawa, Yusuke; Okino, Tomoya; Amani Eilanlou, A.; Takahashi, Eiji J.; Yamanouchi, Kaoru; Midorikawa, Katsumi
2016-09-01
The control of the electronic states of a hydrogen molecular ion by photoexcitation is considerably difficult because it requires multiple sub-10 fs light pulses in the extreme ultraviolet (XUV) wavelength region with a sufficiently high intensity. Here, we demonstrate the control of the dissociation pathway originating from the 2pσu electronic state against that originating from the 2pπu electronic state in a hydrogen molecular ion by using a pair of attosecond pulse trains in the XUV wavelength region with a train-envelope duration of ~4 fs. The switching time from the peak to the valley in the oscillation caused by the vibrational wavepacket motion in the 1sσg ground electronic state is only 8 fs. This result can be classified as the fastest control, to the best of our knowledge, of a molecular reaction in the simplest molecule on the basis of the XUV-pump and XUV-probe scheme.
A novel fiber laser development for photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Yavas, Seydi; Aytac-Kipergil, Esra; Arabul, Mustafa U.; Erkol, Hakan; Akcaalan, Onder; Eldeniz, Y. Burak; Ilday, F. Omer; Unlu, Mehmet B.
2013-03-01
Photoacoustic microscopy, as an imaging modality, has shown promising results in imaging angiogenesis and cutaneous malignancies like melanoma, revealing systemic diseases including diabetes, hypertension, tracing drug efficiency and assessment of therapy, monitoring healing processes such as wound cicatrization, brain imaging and mapping. Clinically, photoacoustic microscopy is emerging as a capable diagnostic tool. Parameters of lasers used in photoacoustic microscopy, particularly, pulse duration, energy, pulse repetition frequency, and pulse-to-pulse stability affect signal amplitude and quality, data acquisition speed and indirectly, spatial resolution. Lasers used in photoacoustic microscopy are typically Q-switched lasers, low-power laser diodes, and recently, fiber lasers. Significantly, the key parameters cannot be adjusted independently of each other, whereas microvasculature and cellular imaging, e.g., have different requirements. Here, we report an integrated fiber laser system producing nanosecond pulses, covering the spectrum from 600 nm to 1100 nm, developed specifically for photoacoustic excitation. The system comprises of Yb-doped fiber oscillator and amplifier, an acousto-optic modulator and a photonic-crystal fiber to generate supercontinuum. Complete control over the pulse train, including generation of non-uniform pulse trains, is achieved via the AOM through custom-developed field-programmable gate-array electronics. The system is unique in that all the important parameters are adjustable: pulse duration in the range of 1-3 ns, pulse energy up to 10 μJ, repetition rate from 50 kHz to 3 MHz. Different photocoustic imaging probes can be excited with the ultrabroad spectrum. The entire system is fiber-integrated; guided-beam-propagation rendersit misalignment free and largely immune to mechanical perturbations. The laser is robust, low-cost and built using readily available components.
Margaryan, Amur [Yerevan, AM; Gynashyan, Karlen [Yerevan, AM; Hashimoto, Osamu [Sendai, JP; Majewski, Stanislaw [Morgantown, WV; Tang, Linguang [Yorktown, VA; Marikyan, Gagik [Yerevan, AM; Marikyan, legal representative, Lia
2012-03-20
A method and apparatus of obtaining a record of repetitive optical or other phenomena having durations in the picosecond range, comprising a circular scan electron tube to receive light pulses and convert them to electron images consisting with fast nanosecond electronic signals, a continuous wave light or other particle pulses, e.g. electron picosecond pulses, and a synchronizing mechanism arranged to synchronize the deflection of the electron image (images) in the tube (tubes) with the repetition rate of the incident pulse train. There is also provided a method and apparatus for digitization of a repetitive and random optical waveform with a bandwidth higher than 10 GHz.
Femtochemistry in the electronic ground state: Dynamic Stark control of vibrational dynamics
NASA Astrophysics Data System (ADS)
Shu, Chuan-Cun; Thomas, Esben F.; Henriksen, Niels E.
2017-09-01
We study the interplay of vibrational and rotational excitation in a diatomic molecule due to the non-resonant dynamic Stark effect. With a fixed peak intensity, optimal Gaussian pulse durations for maximizing vibrational or rotational transitions are obtained analytically and confirmed numerically for the H2 and Cl2 molecules. In general, pulse trains or more advanced pulse shaping techniques are required in order to obtain significant vibrational excitation. To that end, we demonstrate that a high degree of selectivity between vibrational and rotational excitation is possible with a suitably phase-modulated Gaussian pulse.
Advances in generation of high-repetition-rate burst mode laser output.
Jiang, Naibo; Webster, Matthew C; Lempert, Walter R
2009-02-01
It is demonstrated that the incorporation of variable pulse duration flashlamp power supplies into an Nd:YAG burst mode laser system results in very substantial increases in the realizable energy per pulse, the total pulse train length, and uniformity of the intensity envelope. As an example, trains of 20 pulses at burst frequencies of 50 and 20 kHz are demonstrated with individual pulse energy at 1064 nm of 220 and 400 mJ, respectively. Conversion efficiency to the second- (532 nm) and third- (355 nm) harmonic wavelengths of approximately 50% and 35-40%, respectively, is also achieved. Use of the third-harmonic output of the burst mode laser as a pump source for a simple, home built optical parametric oscillator (OPO) produces pulse trains of broadly wavelength tunable output. Sum-frequency mixing of OPO signal output at 622 nm with residual output from the 355 nm pump beam is shown to produce uniform bursts of tunable output at approximately 226 nm, with individual pulse energy of approximately 0.5 mJ. Time-correlated NO planar laser induced fluorescence (PLIF) image sequences are obtained in a Mach 3 wind tunnel at 500 kHz, representing, to our knowledge, the first demonstration of NO PLIF imaging at repetition rates exceeding tens of hertz.
Implementation of STUD Pulses at the Trident Laser and Initial Results
NASA Astrophysics Data System (ADS)
Johnson, R. P.; Shimada, T.; Montgomery, D. S.; Afeyan, B.; Hüller, S.
2012-10-01
Controlling and mitigating laser-plasma instabilities such as stimulated Brillouin scattering, stimulated Raman scattering, and crossed-beam energy transfer is important to achieve high-gain inertial fusion using laser drivers. Recent theory and simulations show that these instabilities can be largely controlled using laser pulses consisting of spike trains of uneven duration and delay (STUD) by modulating the laser on a picosecond time scale [1,2]. We have designed and implemented a STUD pulse generator at the LANL Trident Laser Facility using Fourier synthesis to produce a 0.5-ns envelope of psec-duration STUD pulses using a spatial light modulator. Initial results from laser propagation tests and measurements as well as initial laser-plasma characterization experiments will be presented.[4pt] [1] B. Afeyan and S. H"uller, ``Optimal Control of Laser Plasma Instabilities using STUD pulses,'' IFSA 2011, P.Mo.1, to appear in Euro. Phys. J. Web of Conf. (2012).[2] S. H"uller and B. Afeyan, ``Simulations of drastically reduced SBS with STUD pulses,'' IFSA 2011, O.Tu8-1, to appear in Euro. Phys. J. Web of Conf. (2012).
Vibrotactile timing: Are vibrotactile judgements of duration affected by repetitive stimulation?
Jones, Luke A; Ogden, Ruth S
2016-01-01
Timing in the vibrotactile modality was explored. Previous research has shown that repetitive auditory stimulation (in the form of click-trains) and visual stimulation (in the form of flickers) can alter duration judgements in a manner consistent with a "speeding up" of an internal clock. In Experiments 1 and 2 we investigated whether repetitive vibrotactile stimulation in the form of vibration trains would also alter duration judgements of either vibrotactile stimuli or visual stimuli. Participants gave verbal estimates of the duration of vibrotactile and visual stimuli that were preceded either by five seconds of 5-Hz vibration trains, or, by a five-second period of no vibrotactile stimulation, the end of which was signalled by a single vibration pulse (control condition). The results showed that durations were overestimated in the vibrotactile train conditions relative to the control condition; however, the effects were not multiplicative (did not increase with increasing stimulus duration) and as such were not consistent with a speeding up of the internal clock, but rather with an additive attentional effect. An additional finding was that the slope of the vibrotactile psychometric (control condition) function was not significantly different from that of the visual (control condition) function, which replicates a finding from a previous cross-modal comparison of timing.
X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging.
Koerner, Lucas J; Gruner, Sol M
2011-03-01
Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 10(3) X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected.
X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging
Koerner, Lucas J.; Gruner, Sol M.
2011-01-01
Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 103 X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. PMID:21335901
1976-09-01
fluid. For optical measurements in the regions of extremely high absorption ( lOs — io6 cm~~) thin films are required with a thickness of 500—5000L The top...round trip in the cavity. The result is a series of extremely narrow pulses, each pulse a few picoseconds ( lO ~~2 seconds) in duration and separated...electronic pulsar and electro—optic selection elements, it is possible to extract a single picosecond pulse from the train. This is I achieved by placing a
Nano- and picosecond 3 μm Er: YSGG lasers using InAs as passive Q-switchers and mode-lockers
NASA Astrophysics Data System (ADS)
Vodopyanov, K. L.; Lukashev, A. V.; Phillips, C. C.
1993-01-01
Recent results are reported using ultra-thin molecular beam epitaxy (MBE)-grown InAs epilayers on GaAs substrates as passive shutters for 3 μm Er: YSGG lasers ( λ = 2.8 μm). The laser photon energy is 27% higher than the InAs bandgap at 300 K and bleaching occurs due to a band filling effect with a fast recovery time of < 100 ps. Depending on the resonator geometry two modes of operation can be achieved: Q-switched with pulse duration of 35 ns and 5-6 mJ energy (TEM 00 mode) and a Q-switched/mode-locked regime with an output in the form of a train of 30 pulses separated by a 4.3 ns interval, 0.25 mJ energy per spike and 30-50 ps pulse duration in a TEM 00-mode. The latter are the shortest pulses obtained with this lasing medium to date.
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Hur, Min Sup; Chung, Moses
2017-06-01
Extremely short X-ray pulses in the attosecond (as) range are important tools for ultrafast dynamics, high resolution microscopy, and nuclear dynamics study. In this paper, we numerically examine the generation of gigawatt (GW) mode-locked (ML) multichromatic X-rays using the parameters of the Pohang Accelerator Laboratory (PAL)-X-ray free electron laser (XFEL), the Korean XFEL. In this vein, we analyze the ML-FEL [Thompson and McNeil, Phys. Rev. Lett. 100, 203901 (2008)] and mode-locked afterburner (MLAB) FEL [Dunning et al., Phys. Rev. Lett. 110, 104801 (2013)] schemes on the hard X-ray beamline of the PAL-XFEL. Using the ML scheme, we numerically demonstrate a train of radiation pulses in the hard X-ray (photon energy ˜12.4 keV) with 3.5 GW power and 16 as full-width half maximum (FWHM) pulse duration. On the other hand, using the MLAB scheme, a train of radiation pulses with 3 GW power and 1 as FWHM (900 zs in RMS) pulse duration has been obtained at 12.4 keV photon energy. Both schemes generate broadband, discrete, and coherent spectrum compared to the XFEL's narrowband spectrum. Furthermore, the effect of slotted foil is also studied first time on the MLAB-FEL output. Numerical comparisons show that the temporal structure of the MLAB-FEL output can be improved significantly by the use of the slotted foil. Such short X-ray pulses at XFEL facilities will allow the studies of electron-nuclear and nuclear dynamics in atoms or molecules, and the broadband radiation will substantially improve the efficiency of the experimental techniques such as X-ray crystallography and spectroscopy, paving the way for outstanding progress in biology and material science.
Method for exciting inductive-resistive loads with high and controllable direct current
Hill, Jr., Homer M.
1976-01-01
Apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100% duty factor, amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity.
Accomando, Alyssa W.; Vargas-Irwin, Carlos E.; Simmons, James A.
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus. In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape. PMID:29472848
Accomando, Alyssa W; Vargas-Irwin, Carlos E; Simmons, James A
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus . In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape.
How can attosecond pulse train interferometry interrogate electron dynamics?
NASA Astrophysics Data System (ADS)
Arnold, C. L.; Isinger, M.; Busto, D.; Guénot, D.; Nandi, S.; Zhong, S.; Dahlström, J. M.; Gisselbrecht, M.; l'Huillier, A.
2018-04-01
Light pulses of sub-100 as (1 as=10-18 s) duration, with photon energies in the extreme-ultraviolet (XUV) spectral domain, represent the shortest event in time ever made and controlled by human beings. Their first experimental observation in 2001 has opened the door to investigating the fundamental dynamics of the quantum world on the natural time scale for electrons in atoms, molecules and solids and marks the beginning of the scientific field now called attosecond science.
Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti
2017-06-01
To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.
NASA Astrophysics Data System (ADS)
Middlebrooks, John C.
2004-07-01
Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.
Laser damage resistant nematic liquid crystal cell
NASA Astrophysics Data System (ADS)
Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.
2013-08-01
There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.
Training Effects of Alternated and Pulsed Currents on the Quadriceps Muscles of Athletes.
Oliveira, Pedro; Modesto, Karenina Arrais Guida; Bottaro, Martim; Babault, Nicolas; Durigan, João Luiz Quagliotti
2018-05-22
The aim of the study was to evaluate the effects of 6 weeks training with different neuromuscular electrical stimulation (NMES) currents (medium alternated and low-frequency pulsed current) on muscle architecture and neuromuscular performance of competitive athletes. A double-blind controlled and randomized experimental study was carried out with 33 athletes (22.2±2.6 yrs, 74.7±9.8 kg, 176.8±6.0 cm), divided into 3 groups: mid-frequency current (MF, n=12), pulsed current (PC, n=11) and the control group (CG, n=10). Quadriceps maximal voluntary peak torque (PT) and corresponding vastus lateralis electromyographic activity, evoked torque (PT-NMES), vastus lateralis muscle thickness, fascicle length, pennation angle, and level of discomfort were assessed before and after the interventions. NMES training was performed 3 times per week and consisted of 18 sessions, 15 min/session, 6 s duration in each contraction interspersed with 18 s rest. After the training period, muscle thickness increased in the MF and PC groups (p<0.05). PT-NMES increased only in the PC group (p<0.05). All currents produced similar levels of discomfort (p>0.05). Quadriceps NMES training applied through alternated or pulsed currents produced similar effects in architecture and neuromuscular performance in competitive athletes. © Georg Thieme Verlag KG Stuttgart · New York.
15 ps quasi-continuously pumped passively mode-locked highly doped Nd:YAG laser in bounce geometry
NASA Astrophysics Data System (ADS)
Jelínek, M., Jr.; Kubeček, V.
2011-09-01
A semiconductor saturable absorber mirror mode-locking of a quasi-continuously pumped laser based on 2.4 at.% Nd:YAG slab in a bounce geometry was demonstrated and investigated. Output mode-locked and Q-switched train containing 15 pulses with total energy of 500 μJ was generated directly from the oscillator. The measured 15 ps pulse duration and excellent temporal stability ±2 ps are the best values for pure passively mode-locked and Q-switched Nd:YAG laser with the pulse pumping. Furthermore, using the cavity dumping technique, single 19 ps pulse with energy of 25 μJ was extracted directly from the oscillator.
Multimodal fiber source for nonlinear microscopy based on a dissipative soliton laser
Lamb, Erin S.; Wise, Frank W.
2015-01-01
Recent developments in high energy femtosecond fiber lasers have enabled robust and lower-cost sources for multiphoton-fluorescence and harmonic-generation imaging. However, picosecond pulses are better suited for Raman scattering microscopy, so the ideal multimodal source for nonlinear microcopy needs to provide both durations. Here we present spectral compression of a high-power femtosecond fiber laser as a route to producing transform-limited picosecond pulses. These pulses pump a fiber optical parametric oscillator to yield a robust fiber source capable of providing the synchronized picosecond pulse trains needed for Raman scattering microscopy. Thus, this system can be used as a multimodal platform for nonlinear microscopy techniques. PMID:26417497
Hakami, A; Santamore, W P; Stremel, R W; Tobin, G; Hjortdal, V E
1999-08-01
Dynamic aortomyoplasty using Latissimus Dorsi muscle (LDM) has been shown to improve myocardial function. However, systematic examination of the effects of stimulation parameters on aortic wrap function has not been done. Thus, the present study measures the direct effect of stimulation voltage, pulse train duration, frequency of the pulses, and the duration of the stimulation delay from R wave on the aortic wrap function. In eight female goats, the left LDM was wrapped around the descending aorta. The muscle was then subjected to electrical stimulation, altering frequency of stimulation pulses (16.6, 20, 25, 33 and 50 Hz), amplitude (2, 4, 6, 8 and 10 V), and number of pulses (2, 4, 6, 8 and 10 pulses) in a train stimulation. Left ventricular, aortic pressure, and pressure generated by LDM on aorta (wrap pressure) was measured. The changes in hemodynamic parameters mentioned above were calculated and compared for different stimulation parameters during unassisted and assisted cardiac cycles. Aortomyoplasty counterpulsation using LDM provided significant improvement in wrap pressure (78 mmHg +/- 2), aortic diastolic pressure, and changes in aortic diastolic pressure from 2 to 4 V (P < 0.05). Further increase in amplitude did not make any significant improvements of the above mentioned parameters. Significant augmentation of wrap pressure (82 mmHg +/- 2), aortic diastolic pressure (79 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) occurred at 6 pulses (P < 0.05). Other changes in number of pulses did not show any significant improvements. Significant improvement of wrap pressure (80 mmHg +/- 2), aortic diastolic pressure (73 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) was observed with a frequency of 33 Hz. To examine a wide range of delays from the onset of the QRS complex to LDM stimulation, stimulation was delivered randomly. The exact delay was determined from the ECG signal and superimposed LDM stimulation pulses. In this study we present a new measurement, wrap pressure. We also present that in aortomyoplasty using LDM, the most significant improvement in wrap pressure, aortic diastolic pressure and changes in aortic diastolic pressure occurs when the stimulation consists of an amplitude of 4 V, a frequency of 33 Hz and a train stimulation of 6 pulses.
Cell Electrosensitization Exists Only in Certain Electroporation Buffers.
Dermol, Janja; Pakhomova, Olga N; Pakhomov, Andrei G; Miklavčič, Damijan
2016-01-01
Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting the first-order model to the experimental results, we determined the uptake due to each train (i.e. the first and the second) and the corresponding resealing constant. Cell sensitization was observed in the growth medium but not in other tested buffers. The effect of pulse repetition frequency, cell size change, cytoskeleton disruption and calcium influx do not adequately explain cell sensitization. Based on our results, we can conclude that cell sensitization is a sum of several processes and is buffer dependent. Further research is needed to determine its generality and to identify underlying mechanisms.
Cell Electrosensitization Exists Only in Certain Electroporation Buffers
Dermol, Janja; Pakhomova, Olga N.; Pakhomov, Andrei G.; Miklavčič, Damijan
2016-01-01
Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting the first-order model to the experimental results, we determined the uptake due to each train (i.e. the first and the second) and the corresponding resealing constant. Cell sensitization was observed in the growth medium but not in other tested buffers. The effect of pulse repetition frequency, cell size change, cytoskeleton disruption and calcium influx do not adequately explain cell sensitization. Based on our results, we can conclude that cell sensitization is a sum of several processes and is buffer dependent. Further research is needed to determine its generality and to identify underlying mechanisms. PMID:27454174
Skinner, Stanley; Chiri, Chala A; Wroblewski, Jill; Transfeldt, Ensor E
2007-02-01
Electrophysiological bulbocavernosus reflex (BCR) testing, during surgeries in which the constituent neural components are at risk, might supplement other low sacral (S2-4) stimulation/recording techniques. However, intraoperative BCR is not always reliably implemented. We proposed to analyze BCR signals in five surgical patients monitored with the novel application of double train stimulation (DTS) to determine if the potential could be enhanced. We prospectively planned a regime of DTS BCR with a series of intertrain delays in five monitored patients at risk for low sacral neural injury. Patients were maintained with propofol, opiate infusion, and low inhalant anesthesia without muscle relaxant. Cutaneous sensory nerves of the penis (or clitoris) were stimulated using two consecutive pulse trains (DTS). Intertrain delays were 75, 100, 125, 150, 175, 200, and 250 ms. For BCR recording, uncoated paired wires were inserted into the external anal sphincter (EAS) bilaterally. For each trial, waveform amplitude, duration, and turn count measures for the first (single train) and second (double train) response were recorded. Percent increase/decrease of the second train response compared to the first train response was calculated. There was at least a 30% increase in measures of amplitude, turn count, and duration of the second train response in 22/28, 22/28, and 14/28 of the total trials respectively. There was an insufficient number of independent observations to determine statistical significance. Intraoperative BCR is currently obtained with some difficulty using pulse train stimulation. Our preliminary evidence has identified BCR waveform enhancement using DTS and suggests that the reliability of intraoperative BCR acquisition may be further improved by the addition of this technique. Our data are insufficient to define the best intertrain interval.
Passive mode-locking of a diode-pumped Nd:YVO(4) laser by intracavity SHG in PPKTP.
Iliev, Hristo; Chuchumishev, Danail; Buchvarov, Ivan; Petrov, Valentin
2010-03-15
Experimental results on passive mode-locking of a Nd:YVO(4) laser using intracavity frequency doubling in periodically poled KTP (PPKTP) crystal are reported. Both, negative cascaded chi((2)) lensing and frequency doubling nonlinear mirror (FDNLM) are exploited for the laser mode-locking. The FDNLM based on intensity dependent reflection in the laser cavity ensures self-starting and self-sustaining mode-locking while the cascaded chi((2)) lens process contributes to substantial pulse shortening. This hybrid technique enables generation of stable trains of pulses at high-average output power with several picoseconds pulse width. The pulse repetition rate of the laser is 117 MHz with average output power ranging from 0.5 to 3.1 W and pulse duration from 2.9 to 5.2 ps.
Dynamics and detection of laser induced microbubbles in the retinal pigment epithelium (RPE)
NASA Astrophysics Data System (ADS)
Fritz, Andreas; Ptaszynski, Lars; Stoehr, Hardo; Brinkmann, Ralf
2007-07-01
Selective Retina Treatment (SRT) is a new method to treat eye diseases associated with disorders of the RPE. Selective RPE cell damage is achieved by applying a train of 1.7 μs laser pulses at 527 nm. The treatment of retinal diseases as e.g. diabetic maculopathy (DMP), is currently investigated within clinical studies, however 200 ns pulse durations are under investigation. Transient micro bubbles in the retinal pigment epithelium (RPE) are expected to be the origin of cell damage due to irradiation with laser pulses shorter than 50 μs. The bubbles emerge at the strongly absorbing RPE melanosomes. Cell membrane disruption caused by the transient associated volume increase is expected to be the origin of the angiographically observed RPE leakage. We investigate micro bubble formation and dynamics in porcine RPE using pulse durations of 150 ns. A laser interferometry system at 830 nm with the aim of an online dosimetry control for SRT was developed. Bubble formation was detected interferometrically and by fast flash photography. A correlation to cell damage observed with a vitality stain is found. A bubble detection algorithm is presented.
Tay, Yong-Kwang; Tan, Siew-Kiang
2012-02-01
The pulsed dye laser (PDL) using varying fluences and pulse durations have been used to treat hemangiomas. This study aims to examine the efficacy and safety of the 595-nm PDL for the treatment of infantile hemangiomas using short (1.5-3 milliseconds) versus long (10 milliseconds) pulse durations and high fluences. This is a retrospective study of patients with hemangiomas (n = 23) treated with the 595-nm PDL from 2003 to 2007. The parameters used for the short pulse duration group (n = 15) were 7-mm spot size, fluence 10-13.5 J/cm(2) and dynamic cooling device (DCD) spray duration of 50 milliseconds and delay of 30 milliseconds. For the long pulse duration group (n = 8), parameters were 7-mm spot size, fluence 10.5-14.5 J/cm(2) and DCD spray duration of 40 milliseconds and delay of 20 milliseconds. The number of treatments required to achieve complete or near complete resolution of the hemangioma ranged from 3 to 14 for the short pulse duration group (mean: 8) and for the long pulse duration group, 4-14 treatments (mean: 9). For both groups, more treatments were needed to achieve clearance of mixed hemangiomas (n = 13) compared to superficial hemangiomas (n = 10) (on average, 4-5 treatments more). Erythema, edema, and purpura lasted for about a week in the short pulse duration group but only 2 days in the long pulse duration group. There was no ulceration or hypertrophic scarring noted in both groups. Both short and long pulse durations using moderately high fluences are equally effective in the treatment of infantile hemangiomas. Shorter pulse durations had a slightly higher incidence of side effects compared to longer pulse duration in our patients with darker phototypes. Hemangiomas are tumors with relatively large diameter blood vessels and this provides the basis for the use of longer pulse durations. Copyright © 2012 Wiley Periodicals, Inc.
Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.
Hsieh, I-Hui; Saberi, Kourosh
2016-02-01
How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.
Risch, Denise; Castellote, Manuel; Clark, Christopher W; Davis, Genevieve E; Dugan, Peter J; Hodge, Lynne Ew; Kumar, Anurag; Lucke, Klaus; Mellinger, David K; Nieukirk, Sharon L; Popescu, Cristian Marian; Ramp, Christian; Read, Andrew J; Rice, Aaron N; Silva, Monica A; Siebert, Ursula; Stafford, Kathleen M; Verdaat, Hans; Van Parijs, Sofie M
2014-01-01
Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of these species. North Atlantic minke whales (Balaenoptera acutorostrata) perform seasonal migrations between high latitude summer feeding and low latitude winter breeding grounds. While the distribution and abundance of the species has been studied across their summer range, data on migration and winter habitat are virtually missing. Acoustic recordings, from 16 different sites from across the North Atlantic, were analyzed to examine the seasonal and geographic variation in minke whale pulse train occurrence, infer information about migration routes and timing, and to identify possible winter habitats. Acoustic detections show that minke whales leave their winter grounds south of 30° N from March through early April. On their southward migration in autumn, minke whales leave waters north of 40° N from mid-October through early November. In the western North Atlantic spring migrants appear to track the warmer waters of the Gulf Stream along the continental shelf, while whales travel farther offshore in autumn. Abundant detections were found off the southeastern US and the Caribbean during winter. Minke whale pulse trains showed evidence of geographic variation, with longer pulse trains recorded south of 40° N. Very few pulse trains were recorded during summer in any of the datasets. This study highlights the feasibility of using acoustic monitoring networks to explore migration patterns of pelagic marine mammals. Results confirm the presence of minke whales off the southeastern US and the Caribbean during winter months. The absence of pulse train detections during summer suggests either that minke whales switch their vocal behaviour at this time of year, are absent from available recording sites or that variation in signal structure influenced automated detection. Alternatively, if pulse trains are produced in a reproductive context by males, these data may indicate their absence from the selected recording sites. Evidence of geographic variation in pulse train duration suggests different behavioural functions or use of these calls at different latitudes.
Phase control of attosecond pulses in a train
NASA Astrophysics Data System (ADS)
Guo, Chen; Harth, Anne; Carlström, Stefanos; Cheng, Yu-Chen; Mikaelsson, Sara; Mårsell, Erik; Heyl, Christoph; Miranda, Miguel; Gisselbrecht, Mathieu; Gaarde, Mette B.; Schafer, Kenneth J.; Mikkelsen, Anders; Mauritsson, Johan; Arnold, Cord L.; L'Huillier, Anne
2018-02-01
Ultrafast processes in matter can be captured and even controlled by using sequences of few-cycle optical pulses, which need to be well characterized, both in amplitude and phase. The same degree of control has not yet been achieved for few-cycle extreme ultraviolet pulses generated by high-order harmonic generation (HHG) in gases, with duration in the attosecond range. Here, we show that by varying the spectral phase and carrier-envelope phase (CEP) of a high-repetition rate laser, using dispersion in glass, we achieve a high degree of control of the relative phase and CEP between consecutive attosecond pulses. The experimental results are supported by a detailed theoretical analysis based upon the semi-classical three-step model for HHG.
Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers
NASA Astrophysics Data System (ADS)
Hu, Hongyu; Zhang, Xiang; Li, Wenbo; Dutta, Niloy K.
2016-05-01
A fiber ring laser which implements hybrid mode locking technique has been proposed and experimentally demonstrated to generate pulse train at 20 GHz repetition rate with ultrashort pulse width. Graphene and charcoal nano-particles acting as passive mode lockers are inserted into a rational harmonic mode-locked fiber laser to improve the performance. With graphene saturable absorbers, the pulse duration is shortened from 5.3 ps to 2.8 ps, and with charcoal nano-particles, it is shortened to 3.2 ps. The RF spectra show that supermode noise can be removed in the presence of the saturable absorbers. Numerical simulation of the pulse transmission has also been carried out, which shows good agreement with the experimental results.
Sensitivity to binaural timing in bilateral cochlear implant users.
van Hoesel, Richard J M
2007-04-01
Various measures of binaural timing sensitivity were made in three bilateral cochlear implant users, who had demonstrated moderate-to-good interaural time delay (ITD) sensitivity at 100 pulses-per-second (pps). Overall, ITD thresholds increased at higher pulse rates, lower levels, and shorter durations, although intersubject differences were evident. Monaural rate-discrimination thresholds, using the same stimulation parameters, showed more substantial elevation than ITDs with increased rate. ITD sensitivity with 6000 pps stimuli, amplitude-modulated at 100 Hz, was similar to that with unmodulated pulse trains at 100 pps, but at 200 and 300 Hz performance was poorer than with unmodulated signals. Measures of sensitivity to binaural beats with unmodulated pulse-trains showed that all three subjects could use time-varying ITD cues at 100 pps, but not 300 pps, even though static ITD sensitivity was relatively unaffected over that range. The difference between static and dynamic ITD thresholds is discussed in terms of relative contributions from initial and later arriving cues, which was further examined in an experiment using two-pulse stimuli as a function of interpulse separation. In agreement with the binaural-beat data, findings from that experiment showed poor discrimination of ITDs on the second pulse when the interval between pulses was reduced to a few milliseconds.
Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A
2010-02-01
An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.
Kim, Jimyung; Delfyett, Peter J
2009-12-07
The spectral dependence of the linewidth enhancement factor above threshold is experimentally observed from a quantum dot Fabry-Pérot semiconductor laser. The linewidth enhancement factor is found to be reduced when the quantum dot laser operates approximately 10 nm offset to either side of the gain peak. It becomes significantly reduced on the anti-Stokes side as compared to the Stokes side. It is also found that the temporal duration of the optical pulses generated from quantum dot mode-locked lasers is shorter when the laser operates away from the gain peak. In addition, less linear chirp is impressed on the pulse train generated from the anti-Stokes side whereas the pulses generated from the gain peak and Stokes side possess a large linear chirp. These experimental results imply that enhanced performance characteristics of quantum dot lasers can be achieved by operating on the anti-Stokes side, approximately 10 nm away from the gain peak.
Poisson process stimulation of an excitable membrane cable model.
Goldfinger, M D
1986-01-01
The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed. PMID:3730505
NASA Astrophysics Data System (ADS)
Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Cheriaux, G.; Le, T. T. T.; Li, L.; Pitman, M.; Ros, D.; Sebban, S.; Velarde, P.
2012-07-01
By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of μJ. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings for maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitoun, Ph.; Oliva, E.; Fajardo, M.
2012-07-09
By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of {mu}J. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings formore » maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.« less
Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers
NASA Astrophysics Data System (ADS)
Gatti, D.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.
2007-01-01
We report on the generation of mode-locking pulse trains with high average output powers from diode-pumped Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers emitting at around 2 μm. The highest output power of 365 mW was obtained with the Tm-Ho:YLF4 laser, whereas the shortest pulse duration of 120 ps and the widest tunability range of 59 nm was achieved with the Tm-Ho:BaY2F8 laser.
Apparatus and method to enhance X-ray production in laser produced plasmas
Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.
1992-01-01
Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.
Joksimovic, Boban; Szelenyi, Andrea; Seifert, Volker; Damjanovic, Aleksandar; Damjanovic, Aleksandra; Rasulic, Lukas
2015-05-01
To evaluate the relationship between stimulus intensity by constant current transcranial electric stimulation and interstimulus interval (ISI) for eliciting muscle motor evoked potentials (MEPs) in three different hand muscles and the tibialis anterior muscles. We tested intraoperatively different monophasic constant current pulses and ISIs in 22 patients with clinically normal motor function. Motor thresholds of contralateral muscle MEPs were determined at 0.5 milliseconds (ms) pulse duration and ISIs of 1, 2, 3, 4, 5, and 10 ms using a train of 2, 3, and 5 monophasic constant current pulses of 62 to 104 mA before craniotomy and after closure of the dura mater. The lowest stimulation threshold to elicit MEPs in the examined muscles was achieved with a train of 5 pulses (ISI: 3 ms) before craniotomy, which was statistically significant compared with 2 pulses (ISI: 3 ms) as well as 3 pulses (ISIs: 3 and 10 ms). An ISI of 3 ms gave the lowest motor thresholds with statistical significance compared with the ISIs of 4 ms (2 pulses) and of 1 ms (3 pulses). All current intensity (mA) and ISI (ms) relationship graphs had a trend of the exponential function as y = a + bx + c ρ (x), where y is intensity (mA) and x is ISI (ms). The minimum of the function was determined for each patient and each muscle. The difference was statistically significant between 3 and 5 pulses before craniotomy and between 3 and 5 pulses and 2 and 5 pulses after closure of the dura mater. In adult neurosurgical patients with a normal motor status, a train of 5 pulses and an ISI of 3 ms provide the lowest motor thresholds. We provided evidence of the dependence of required stimulation current on ISI. Georg Thieme Verlag KG Stuttgart · New York.
Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate.
Franco Navarro, Pedro; Benson, David J; Nesterenko, Vitali F
2015-12-01
We study the evolution of high-amplitude stress pulses in periodic dissipative laminates taking into account the nonlinear constitutive equations of the components and their dissipative behavior. Aluminum-tungsten laminate was selected due to the large difference in acoustic impedances of components, the significant nonlinearity of the aluminum constitutive equation at the investigated range of stresses, and its possible practical applications. Laminates with different cell size, which controls the internal time scale, impacted by plates with different thicknesses that determine the incoming pulse duration, were investigated. It has been observed that the ratio of the duration of the incoming pulse to the internal characteristic time determines the nature of the high-amplitude dissipative propagating waves-a triangular oscillatory shock-like profile, a train of localized pulses, or a single localized pulse. These localized quasistationary waves resemble solitary waves even in the presence of dissipation: The similar pulses emerged from different initial conditions, indicating that they are inherent properties of the corresponding laminates; their characteristic length scale is determined by the scale of mesostructure, nonlinear properties of materials, and the stress amplitude; and a linear relationship exists between their speed and amplitude. They mostly recover their shapes after collision with phase shift. A theoretical description approximating the shape, length scale, and speed of these high-amplitude dissipative pulses was proposed based on the Korteweg-de Vries equation with a dispersive term determined by the mesostructure and a nonlinear term derived using Hugoniot curves of components.
Passive Q-switching of ˜2.7 µm Er:Lu2O3 ceramic laser with a semiconductor saturable absorber mirror
NASA Astrophysics Data System (ADS)
Ren, Xiaojing; Shen, Deyuan; Zhang, Jian; Tang, Dingyuan
2018-02-01
We demonstrate the passively Q-switched operation of an Er:Lu2O3 ceramic laser at ˜2.7 µm for the first time, to the best of our knowledge. By using a semiconductor saturable absorber mirror (SESAM), stable pulse trains with a repetition rate of 20-33.3 kHz are produced in a compacted v-shaped resonator. The pulse duration (FWHM), pulse energy, and peak power are 660 ns, 1.8 µJ, and ˜2.73 W, respectively, at 33.3 kHz repetition rate. Prospects for further improvements in terms of laser performances are discussed.
Large-area tungsten disulfide for ultrafast photonics.
Yan, Peiguang; Chen, Hao; Yin, Jinde; Xu, Zihan; Li, Jiarong; Jiang, Zike; Zhang, Wenfei; Wang, Jinzhang; Li, Irene Ling; Sun, Zhipei; Ruan, Shuangchen
2017-02-02
Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have attracted significant interest in various optoelectronic applications due to their excellent nonlinear optical properties. One of the most important applications of TMDs is to be employed as an extraordinary optical modulation material (e.g., the saturable absorber (SA)) in ultrafast photonics. The main challenge arises while embedding TMDs into fiber laser systems to generate ultrafast pulse trains and thus constraints their practical applications. Herein, few-layered WS 2 with a large-area was directly transferred on the facet of the pigtail and acted as a SA for erbium-doped fiber laser (EDFL) systems. In our study, WS 2 SA exhibited remarkable nonlinear optical properties (e.g., modulation depth of 15.1% and saturable intensity of 157.6 MW cm -2 ) and was used for ultrafast pulse generation. The soliton pulses with remarkable performances (e.g., ultrashort pulse duration of 1.49 ps, high stability of 71.8 dB, and large pulse average output power of 62.5 mW) could be obtained in a telecommunication band. To the best of our knowledge, the average output power of the mode-locked pulse trains is the highest by employing TMD materials in fiber laser systems. These results indicate that atomically large-area WS 2 could be used as excellent optical modulation materials in ultrafast photonics.
Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra
2014-01-01
Cycling induced by Functional Electrical Stimulation (FES) training currently requires a manual setting of different parameters, which is a time-consuming and scarcely repeatable procedure. We proposed an automatic procedure for setting session-specific parameters optimized for hemiparetic patients. This procedure consisted of the identification of the stimulation strategy as the angular ranges during which FES drove the motion, the comparison between the identified strategy and the physiological muscular activation strategy, and the setting of the pulse amplitude and duration of each stimulated muscle. Preliminary trials on 10 healthy volunteers helped define the procedure. Feasibility tests on 8 hemiparetic patients (5 stroke, 3 traumatic brain injury) were performed. The procedure maximized the motor output within the tolerance constraint, identified a biomimetic strategy in 6 patients, and always lasted less than 5 minutes. Its reasonable duration and automatic nature make the procedure usable at the beginning of every training session, potentially enhancing the performance of FES-cycling training.
Determination of pulse profile characteristics of multi spot retinal photocoagulation lasers.
Clarkson, Douglas McG; Makhzoum, Osama; Blackburn, John
2015-10-01
A system is described for determination of discrete pulse train characteristics of multi spot laser delivery systems for retinal photocoagulation. While photodiodes provide an ideal detection mechanism, measurement artifacts can potentially be introduced by the spatial pattern of the delivered beam relative to a discrete photodiode element. This problem was overcome by use of an integrating sphere to produce a uniform light field at the site of the photodiode detector. A basic current driven photodiode detection circuit incorporating an operational amplifier was used to generate a signal captured by a commercially available USB interface device at a rate of 10 kHz. Studies were undertaken of a Topcon Pascal Streamline laser system with output at a wavelength of 577 nm (yellow). This laser features the proprietary feature of 'Endpoint Management' ™ where pulses can be delivered as 100% of set energy levels with visible reaction on the retina and also at a reduced energy level to create potentially non visible but clinically effective lesions. Using the pulse train measurement device it was identified that the 'Endpoint Management' ™ delivery mode of pulses of lower energy was achieved by reducing the pulse duration of pulses for non-visible effect pulses while maintaining consistent beam power levels within the delivered pulse profile. The effect of eye geometry in determining safety and effectiveness of multi spot laser delivery for retinal photocoagulation is discussed. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Repetitive transcranial magnetic stimulator with controllable pulse parameters
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Repetitive transcranial magnetic stimulator with controllable pulse parameters.
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Kastelein, Ronald A; Hoek, Lean; Wensveen, Paul J; Terhune, John M; de Jong, Christ A F
2010-02-01
The underwater hearing sensitivities of two 2-year-old female harbor seals were quantified in a pool built for acoustic research by using a behavioral psycho-acoustic technique. The animals were trained only to respond when they detected an acoustic signal ("go/no-go" response). Detection thresholds were obtained for pure tone signals (frequencies: 0.2-40 kHz; durations: 0.5-5000 ms, depending on the frequency; 59 frequency-duration combinations). Detection thresholds were quantified by varying the signal amplitude by the 1-up, 1-down staircase method, and were defined as the stimulus levels, resulting in a 50% detection rate. The hearing thresholds of the two seals were similar for all frequencies except for 40 kHz, for which the thresholds differed by, on average, 3.7 dB. There was an inverse relationship between the time constant (tau), derived from an exponential model of temporal integration, and the frequency [log(tau)=2.86-0.94 log(f);tau in ms and f in kHz]. Similarly, the thresholds increased when the pulse was shorter than approximately 780 cycles (independent of the frequency). For pulses shorter than the integration time, the thresholds increased by 9-16 dB per decade reduction in the duration or number of cycles in the pulse. The results of this study suggest that most published hearing thresholds
Apparatus and method to enhance X-ray production in laser produced plasmas
Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.
1992-12-29
Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.
Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.
Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying
2017-02-01
Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.
Vagedes, Jan; Bialkowski, Anja; Wiechers, Cornelia; Poets, Christian F.; Dietz, Klaus
2014-01-01
Objective The number of desaturations determined in recordings of pulse oximeter saturation (SpO2) primarily depends on the time over which values are averaged. As the averaging time in pulse oximeters is not standardized, it varies considerably between centers. To make SpO2 data comparable, it is thus desirable to have a formula that allows conversion between desaturation rates obtained using different averaging times for various desaturation levels and minimal durations. Methods Oxygen saturation was measured for 170 hours in 12 preterm infants with a mean number of 65 desaturations <90% per hour of arbitrary duration by using a pulse oximeter in a 2–4 s averaging mode. Using 7 different averaging times between 3 and 16 seconds, the raw red-to-infrared data were reprocessed to determine the number of desaturations (D). The whole procedure was carried out for 7 different minimal desaturation durations (≥1, ≥5, ≥10, ≥15, ≥20, ≥25, ≥30 s) below SpO2 threshold values of 80%, 85% or 90% to finally reach a conversion formula. The formula was validated by splitting the infants into two groups of six children each and using one group each as a training set and the other one as a test set. Results Based on the linear relationship found between the logarithm of the desaturation rate and the logarithm of the averaging time, the conversion formula is: D2 = D1 (T2/T1)c, where D2 is the desaturation rate for the desired averaging time T2, and D1 is the desaturation rate for the original averaging time T1, with the exponent c depending on the desaturation threshold and the minimal desaturation duration. The median error when applying this formula was 2.6%. Conclusion This formula enables the conversion of desaturation rates between different averaging times for various desaturation thresholds and minimal desaturation durations. PMID:24489887
Vagedes, Jan; Bialkowski, Anja; Wiechers, Cornelia; Poets, Christian F; Dietz, Klaus
2014-01-01
The number of desaturations determined in recordings of pulse oximeter saturation (SpO2) primarily depends on the time over which values are averaged. As the averaging time in pulse oximeters is not standardized, it varies considerably between centers. To make SpO2 data comparable, it is thus desirable to have a formula that allows conversion between desaturation rates obtained using different averaging times for various desaturation levels and minimal durations. Oxygen saturation was measured for 170 hours in 12 preterm infants with a mean number of 65 desaturations <90% per hour of arbitrary duration by using a pulse oximeter in a 2-4 s averaging mode. Using 7 different averaging times between 3 and 16 seconds, the raw red-to-infrared data were reprocessed to determine the number of desaturations (D). The whole procedure was carried out for 7 different minimal desaturation durations (≥ 1, ≥ 5, ≥ 10, ≥ 15, ≥ 20, ≥ 25, ≥ 30 s) below SpO2 threshold values of 80%, 85% or 90% to finally reach a conversion formula. The formula was validated by splitting the infants into two groups of six children each and using one group each as a training set and the other one as a test set. Based on the linear relationship found between the logarithm of the desaturation rate and the logarithm of the averaging time, the conversion formula is: D2 = D1 (T2/T1)(c), where D2 is the desaturation rate for the desired averaging time T2, and D1 is the desaturation rate for the original averaging time T1, with the exponent c depending on the desaturation threshold and the minimal desaturation duration. The median error when applying this formula was 2.6%. This formula enables the conversion of desaturation rates between different averaging times for various desaturation thresholds and minimal desaturation durations.
Diotte, M; Miguelez, M; Miliaressis, E; Bielajew, C
2000-12-05
The interaction between rewarding and aversive consequences of brain stimulation were assessed in two studies. In the first, the frequency threshold for 300 ms trains of combined lateral hypothalamic (LH) and nucleus reticularis gigantocellularis (Gi) stimulation, in which each LH pulse was followed 2 ms later by the Gi one, was determined for one month. Compared to the threshold for trains of single LH pulses, combined LH-Gi stimulation initially increased the frequency threshold; however, this effect reversed within one session and was subsequently maintained for the duration of the study. The aversion produced by Gi stimulation, as measured by latency to escape, was abolished following a single session of LH-Gi pairs. In the second study, a subset of animals received both presentations of combined pulses, LH followed by Gi, and the reverse; the interval between pulses was varied from 0.2 to 6.4 ms. The effectiveness of combined stimulation, determined by the ratio of LH frequency thresholds to that of the LH-Gi ranged from 0 to 50% across animals but the individual effectiveness functions within animals did not vary with different intervals. In addition, the order of presentation of pulses was of no consequence. Thus, not only did exposure to LH stimulation appear to obliterate Gi aversion, but the combination of LH and Gi pulses added to the rewarding effect produced by LH stimulation alone.
Effects of pulse durations and environments on femtosecond laser ablation of stainless steel
NASA Astrophysics Data System (ADS)
Xu, Shizhen; Ding, Renjie; Yao, Caizhen; Liu, Hao; Wan, Yi; Wang, Jingxuan; Ye, Yayun; Yuan, Xiaodong
2018-04-01
The influence of pulse durations (35fs and 260 fs) and environments (air and vacuum) on the laser-induced damage thresholds (LIDTs) and ablation rates of 304 stainless steel were studied. Two distinct ablation regimes were obtained from the ablation rate curves. At low fluence regime, the ablation rates were similar in spite of the differences of pulse durations and experiment environments. At high fluence regime, the ablation rates of 35 fs pulse duration in vacuum were obviously higher than others. The ablation craters showed smooth edges, moth-eye such as structures, and laser-induced periodic surface structures (LIPSSs). At a fixed fluence, the periods of LIPSSs decreased monotonously in their mean spatial period between 700 nm (5 pulses) and 540 nm (200 pulses) with the increase of pulse numbers in air with 35 fs pulse duration. The formation mechanisms of moth-eye like structures and LIPSSs were also discussed.
Ai, Hiroyuki; Kai, Kazuki; Kumaraswamy, Ajayrama; Ikeno, Hidetoshi; Wachtler, Thomas
2017-11-01
Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee ( Apis mellifera ). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee. SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication. Copyright © 2017 the authors 0270-6474/17/3710624-12$15.00/0.
Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2013-01-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487
Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.
Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald
2015-04-01
In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.
NASA Astrophysics Data System (ADS)
Sanderson, Mark I.; Simmons, James A.
2005-11-01
Echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals whose duration, repetition rate, and sweep structure change systematically during interception of prey. When stimulated with a 2.5-s sequence of 54 FM pulse-echo pairs that mimic sounds received during search, approach, and terminal stages of pursuit, single neurons (N=116) in the bat's inferior colliculus (IC) register the occurrence of a pulse or echo with an average of <1 spike/sound. Individual IC neurons typically respond to only a segment of the search or approach stage of pursuit, with fewer neurons persisting to respond in the terminal stage. Composite peristimulus-time-histogram plots of responses assembled across the whole recorded population of IC neurons depict the delay of echoes and, hence, the existence and distance of the simulated biosonar target, entirely as on-response latencies distributed across time. Correlated changes in pulse duration, repetition rate, and pulse or echo amplitude do modulate the strength of responses (probability of the single spike actually occurring for each sound), but registration of the target itself remains confined exclusively to the latencies of single spikes across cells. Modeling of echo processing in FM biosonar should emphasize spike-time algorithms to explain the content of biosonar images.
Tian, Xiangling; Wei, Rongfei; Liu, Meng; Zhu, Chunhui; Luo, Zhichao; Wang, Fengqiu; Qiu, Jianrong
2018-05-24
Non-equilibrium electrons induced by ultrafast laser excitation in a correlated electron material can disturb the Fermi energy as well as optical nonlinearity. Here, non-equilibrium electrons translate a semiconductor TiS2 material into a plasma to generate broad band nonlinear optical saturable absorption with a sub-picosecond recovery time of ∼768 fs (corresponding to modulation frequencies over 1.3 THz) and a modulation response up to ∼145%. Based on this optical nonlinear modulator, a stable femtosecond mode-locked pulse with a pulse duration of ∼402 fs and a pulse train with a period of ∼175.5 ns is observed in the all-optical system. The findings indicate that non-equilibrium electrons can promote a TiS2-based saturable absorber to be an ultrafast switch for a femtosecond pulse output.
Generation of multiple spectral bands in a diode-pumped self-mode-locked Nd:YAP laser
NASA Astrophysics Data System (ADS)
Huang, Y. J.; Tzeng, Y. S.; Cho, H. H.; Chen, Y. F.; Chen, W. D.; Zhang, G.; Chen, T. C.
2016-02-01
A single- and multispectral-band diode end-pumped self-mode-locked Nd:YAP laser is originally demonstrated with an intracavity etalon to properly control the gain-to-loss ratios among the intermanifold lines on the 4F3/2 → 4I11/2 transition level. With a pulse repetition rate of 5.07 GHz, the shortest pulse durations under the single-spectral-band operation are achieved to be 11.1 ps at 1073 nm, 10.9 ps at 1080 nm, and 15.1 ps at 1084 nm, respectively. Moreover, the temporal overlapping of the multispectral-band pulses is experimentally found to lead to the generation of an intensity fringe pattern in the autocorrelation trace with the optical-beat frequency reaching several terahertz. A simple mathematical model is developed to elucidate the formation of a train of optical-beat pulses.
Effects of pulse duration on magnetostimulation thresholds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saritas, Emine U., E-mail: saritas@ee.bilkent.edu.tr; Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800; National Magnetic Resonance Research Center
Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number ofmore » cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations. Results: The magnetostimulation limits decreased with increasing pulse duration (T{sub pulse}). For T{sub pulse} < 18 ms, the thresholds were significantly higher than at the longest pulse durations (p < 0.01, paired Wilcoxon signed-rank test). The normalized magnetostimulation threshold (B{sub Norm}) vs duration curve at all three frequencies agreed almost identically, indicating that the observed effect is independent of the operating frequency. At the shortest pulse duration (T{sub pulse} ≈ 2 ms), the thresholds were approximately 24% higher than at the asymptotes. The thresholds decreased to within 4% of their asymptotic values for T{sub pulse} > 20 ms. These trends were well characterized (R{sup 2} = 0.78) by a stretched exponential function given by B{sub Norm}=1+αe{sup −(T{sub p}{sub u}{sub l}{sub s}{sub e}/β){sup γ}}, where the fitted parameters were α = 0.44, β = 4.32, and γ = 0.60. Conclusions: This work shows for the first time that the magnetostimulation thresholds decrease with increasing pulse duration, and that this effect is independent of the operating frequency. Normalized threshold vs duration trends are almost identical for a 20-fold range of frequencies: the thresholds are significantly higher at short pulse durations and settle to within 4% of their asymptotic values for durations longer than 20 ms. These results emphasize the importance of matching the human-subject experiments to the imaging conditions of a particular setup. Knowing the dependence of the safety limits to all contributing factors is critical for increasing the time-efficiency of imaging systems that utilize time-varying magnetic fields.« less
Luo, Feng; Metzner, Walter; Wu, Feijian; Wu, Feijian J; Zhang, Shuyi; Zhang, Shuyi Y; Chen, Qicai; Chen, Qicai C
2008-01-01
The present study examines duration-sensitive neurons in the inferior colliculus (IC) of the least horseshoe bat, Rhinolophus pusillus, from China. In contrast to other bat species tested for duration selectivity so far, echolocation pulses emitted by horseshoe bats are generally longer and composed of a long constant-frequency (CF) component followed by a short downward frequency-modulated (FM) sweep (CF-FM pulse). We used combined CF-FM pulses to analyze the differential effects that these two pulse components had on the duration tuning in neurons of the horseshoe bat's IC. Consistent with results from other mammals, duration-sensitive neurons found in the least horseshoe bat fall into three main classes: short-pass, band-pass, and long-pass. Using a CF stimulus alone, 54% (51/95) of all IC neurons showed at least one form of duration selectivity at one or more stimulus intensities. In 65 of the 95 IC neurons tested with CF pulses, we were also able to test their duration selectivity for a combined CF-FM pulse, which increased the ratio of duration-sensitive neurons to 66% (43/65). Seven to 15 neurons that failed to show duration tuning for CF bursts became duration sensitive for CF-FM pulses, with most of them exhibiting short-pass (depending on stimulus intensity, between 4 and 8 neurons) or band-pass tuning (1-3 neurons). Increasing stimulus intensities did not affect the duration tuning in 53% (23/43) of duration-sensitive neurons for CF bursts and in about 26% (7/27) for CF-FM stimuli. In the remaining neurons, increasing sound levels generally reduced the ratio of duration-sensitive neurons to 33% for CF and 37% for CF-FM stimulation. In those that remained duration sensitive, louder CF bursts shortened best durations in band-pass neurons and cutoff durations in short- and long-pass neurons, whereas louder CF-FM stimuli reduced the cutoff durations only in short-pass neurons. Bandwidths of band-pass neurons were not significantly affected by any stimulus configuration, with only a slight trend for increasing bandwidths for louder CF bursts (but not CF-FM stimuli). Best durations and cutoff durations reached higher values than those in the other bat species examined so far and roughly match the longer durations of echolocation pulses emitted by horseshoe bats. Therefore presentation of a CF-FM stimulus improved the duration sensitivity in IC neurons by increasing the ratio of duration-tuned neurons and making them less susceptible to changes in signal intensity.
Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).
Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.
2002-01-01
The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.
Few-cycle pulse generation in an x-ray free-electron laser.
Dunning, D J; McNeil, B W J; Thompson, N R
2013-03-08
A method is proposed to generate trains of few-cycle x-ray pulses from a free-electron laser (FEL) amplifier via a compact "afterburner" extension consisting of several few-period undulator sections separated by electron chicane delays. Simulations show that in the hard x ray (wavelength ~0.1 nm; photon energy ~10 keV) and with peak powers approaching normal FEL saturation (GW) levels, root mean square pulse durations of 700 zs may be obtained. This is approximately two orders of magnitude shorter than that possible for normal FEL amplifier operation. The spectrum is discretely multichromatic with a bandwidth envelope increased by approximately 2 orders of magnitude over unseeded FEL amplifier operation. Such a source would significantly enhance research opportunity in atomic dynamics and push capability toward nuclear dynamics.
Vogelsang, Jan; Robin, Jörg; Piglosiewicz, Björn; Manzoni, Cristian; Farinello, Paolo; Melzer, Stefan; Feru, Philippe; Cerullo, Giulio; Lienau, Christoph; Groß, Petra
2014-10-20
The investigation of fundamental mechanisms taking place on a femtosecond time scale is enabled by ultrafast pulsed laser sources. Here, the control of pulse duration, center wavelength, and especially the carrier-envelope phase has been shown to be of essential importance for coherent control of high harmonic generation and attosecond physics and, more recently, also for electron photoemission from metallic nanostructures. In this paper we demonstrate the realization of a source of 2-cycle laser pulses tunable between 1.2 and 2.1 μm, and with intrinsic CEP stability. The latter is guaranteed by difference frequency generation between the output pulse trains of two noncollinear optical parametric amplifier stages that share the same CEP variations. The CEP stability is better than 50 mrad over 20 minutes, when averaging over 100 pulses. We demonstrate the good CEP stability by measuring kinetic energy spectra of photoemitted electrons from a single metal nanostructure and by observing a clear variation of the electron yield with the CEP.
NASA Technical Reports Server (NTRS)
Alley, C. O.; Rayner, J. D.; Steggerda, C. A.; Mullendore, J. V.; Small, L.; Wagner, S.
1983-01-01
A horizontal two-way time comparison link in air between the University of Maryland laser ranging and time transfer equipment at the Goddard Optical Research Facility (GORF) 1.2 m telescope and the Time Services Division of the U.S. Naval Observatory (USNO) was established. Flat mirrors of 25 cm and 30 cm diameter respectively were placed on top of the Washington Cathedral and on a water tower at the Beltsville Agricultural Research Center. Two optical corner reflectors at the USNO reflect the laser pulses back to the GORF. Light pulses of 100 ps duration and an energy of several hundred microjoules are sent at the rate of 10 pulses per second. The detection at the USNO is by means of an RCA C30902E avalanche photodiode and the timing is accomplished by an HP 5370A computing counter and an HP 1000 computer with respect to a 10 pps pulse train from the Master Clock.
Evolution of vocal patterns: tuning hindbrain circuits during species divergence.
Barkan, Charlotte L; Zornik, Erik; Kelley, Darcy B
2017-03-01
The neural circuits underlying divergent courtship behaviors of closely related species provide a framework for insight into the evolution of motor patterns. In frogs, male advertisement calls serve as unique species identifiers and females prefer conspecific to heterospecific calls. Advertisement calls of three relatively recently (∼8.5 Mya) diverged species - Xenopus laevis , X. petersii and X. victorianus - include rapid trains of sound pulses (fast trills). We show that while fast trills are similar in pulse rate (∼60 pulses s -1 ) across the three species, they differ in call duration and period (time from the onset of one call to the onset of the following call). Previous studies of call production in X. laevis used an isolated brain preparation in which the laryngeal nerve produces compound action potentials that correspond to the advertisement call pattern (fictive calling). Here, we show that serotonin evokes fictive calling in X. petersii and X. victorianus as it does in X. laevis As in X. laevis , fictive fast trill in X. petersii and X. victorianus is accompanied by an N -methyl-d-aspartate receptor-dependent local field potential wave in a rostral hindbrain nucleus, DTAM. Across the three species, wave duration and period are strongly correlated with species-specific fast trill duration and period, respectively. When DTAM is isolated from the more rostral forebrain and midbrain and/or more caudal laryngeal motor nucleus, the wave persists at species-typical durations and periods. Thus, intrinsic differences within DTAM could be responsible for the evolutionary divergence of call patterns across these related species. © 2017. Published by The Company of Biologists Ltd.
High speed, high current pulsed driver circuit
Carlen, Christopher R.
2017-03-21
Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.
Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells
NASA Astrophysics Data System (ADS)
He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan
2018-05-01
The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2 < 1.18.
Raymond, J L; Lisberger, S G
1996-12-01
We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.
1996-01-01
We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.
Temperature variation during apicectomy with Er:YAG laser.
Bodrumlu, Emre; Keskiner, Ilker; Sumer, Mahmut; Sumer, A Pinar; Telcıoglu, N Tuba
2012-08-01
The purpose of this in vitro study was to evaluate the generated temperature of the Er:YAG laser, with three different pulse durations for apicectomy, compared with tungsten bur and surgical saw. Apicectomy is an endodontic surgery performed to remove the root apex and curette adjacent periapical tissue because of lesions of the apical area that are not healing properly. Sixty single-rooted extracted human teeth were resected by three cutting methods: tungsten bur, surgical saw, and Er:YAG laser irradiation with three different pulse durations; pulse duration 50 μs, pulse duration 100 μs, and pulse duration 300 μs. Teflon-insulated, type K thermocouples were used to measure temperature changes during the apicectomy process. Data were analyzed using the general linear models procedure of the SPSS statistical software program. Although there was no statistically significant difference for the mean values of temperature changes at 1 mm away to the cutting site of teeth, there was statistically significant difference among groups for the mean values of temperature changes at 3 mm away to the cutting site of teeth. Additionally, there was statistically significant difference among groups for the total time required for apicectomy. The laser irradiation with pulse duration 50 μs appears to have the lowest temperature rise and the shortest time required for apicectomy of the three pulse durations. However, Er:YAG laser for apicectomy in all pulse durations could be used safely for resection in endodontics in the presence of sufficient water.
Sensitivity to pulse phase duration in cochlear implant listeners: Effects of stimulation mode
Chatterjee, Monita; Kulkarni, Aditya M.
2014-01-01
The objective of this study was to investigate charge-integration at threshold by cochlear implant listeners using pulse train stimuli in different stimulation modes (monopolar, bipolar, tripolar). The results partially confirmed and extended the findings of previous studies conducted in animal models showing that charge-integration depends on the stimulation mode. The primary overall finding was that threshold vs pulse phase duration functions had steeper slopes in monopolar mode and shallower slopes in more spatially restricted modes. While the result was clear-cut in eight users of the Cochlear CorporationTM device, the findings with the six user of the Advanced BionicsTM device who participated were less consistent. It is likely that different stimulation modes excite different neuronal populations and/or sites of excitation on the same neuron (e.g., peripheral process vs central axon). These differences may influence not only charge integration but possibly also temporal dynamics at suprathreshold levels and with more speech-relevant stimuli. Given the present interest in focused stimulation modes, these results have implications for cochlear implant speech processor design and protocols used to map acoustic amplitude to electric stimulation parameters. PMID:25096116
Effect of pulse duration on photomechanical response of soft tissue during Ho:YAG laser ablation
NASA Astrophysics Data System (ADS)
Jansen, E. Duco; Motamedi, Massoud; Pfefer, T. Joshua; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Abela, George S.; Welch, Ashley J.
1995-05-01
Mechanical injury during pulsed holmium laser ablation of tissue is caused by rapid bubble expansion and collapse or by laser-induced pressure waves. In this study the effect of pulse duration on the photomechanical response of soft tissue during holmium:YAG laser ablation has been investigated. The dynamics of laser-induced bubble formation was documented in water and in transparent polyacrylamide tissue phantoms with a water concentration of 84%. Holmium:YAG laser radiation ((lambda) equals 2.12 micrometers ) was delivered in water or tissue phantoms via an optical fiber (200 or 400 micrometers ). The laser was operated in either the Q- switched mode ((tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 - 1100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation was documented using a fast flash photography setup while simultaneously a PVDP needle hydrophone (40 ns risetime), recorded pressures. The effect of the pulse duration on the photomechanical response of soft biological tissue was evaluated by delivering 5 pulses of 800 mJ to the intimal side of porcine aorta in vitro, followed by histologic evaluation. It was observed that, as the pulse duration was increased the bubble shape changed from almost spherical for Q-switched pulses to a more elongated, cylindrical shape for the longer pulse durations. The bubble expansion velocity was larger for shorter pulse durations. A thermo- elastic expansion wave was measured only during Q-switched pulse delivery. All pulses that induced bubble formation generated pressure waves upon collapse of the bubble in water as well as in the gel. The amplitude of the pressure wave depended strongly on the size and geometry of the laser-induced bubble. The important findings of this study were (1) the magnitude of collapse pressure wave decreased as laser pulse duration increased, and (2) mechanical tissue damage is reduced significantly by using longer pulse durations (> 460 microsecond(s) , for the pulse energy used).
The all-fiber cladding-pumped Yb-doped gain-switched laser.
Larsen, C; Hansen, K P; Mattsson, K E; Bang, O
2014-01-27
Gain-switching is an alternative pulsing technique of fiber lasers, which is power scalable and has a low complexity. From a linear stability analysis of rate equations the relaxation oscillation period is derived and from it, the pulse duration is defined. Good agreement between the measured pulse duration and the theoretical prediction is found over a wide range of parameters. In particular we investigate the influence of an often present length of passive fiber in the cavity and show that it introduces a finite minimum in the achievable pulse duration. This minimum pulse duration is shown to occur at longer active fibers length with increased passive length of fiber in the cavity. The peak power is observed to depend linearly on the absorbed pump power and be independent of the passive fiber length. Given these conclusions, the pulse energy, duration, and peak power can be estimated with good precision.
NASA Astrophysics Data System (ADS)
Csontos, J.; Toth, Z.; Pápa, Z.; Budai, J.; Kiss, B.; Börzsönyi, A.; Füle, M.
2016-06-01
In this work laser-induced periodic structures with lateral dimensions smaller than the central wavelength of the laser were studied on glassy carbon as a function of laser pulse duration. To generate diverse pulse durations titanium-sapphire (Ti:S) laser (center wavelength 800 nm, pulse durations: 35 fs-200 ps) and a dye-KrF excimer laser system (248 nm, pulse durations: 280 fs, 2.1 ps) were used. In the case of Ti:S laser treatment comparing the central part of the laser-treated areas a striking difference is observed between the femtoseconds and picoseconds treatments. Ripple structure generated with short pulse durations can be characterized with periodic length significantly smaller than the laser wavelength (between 120 and 165 nm). At higher pulse durations the structure has a higher periodic length (between 780 and 800 nm), which is comparable to the wavelength. In case of the excimer laser treatment the different pulse durations produced similar surface structures with different periodic length and different orientation. One of the structures was parallel with the polarization of the laser light and has a higher periodic length (~335 nm), and the other was perpendicular with smaller periodic length (~78-80 nm). The possible mechanisms of structure formation will be outlined and discussed in the frame of our experimental results.
Irastorza, Ramiro M; d'Avila, Andre; Berjano, Enrique
2018-02-01
The use of ultra-short RF pulses could achieve greater lesion depth immediately after the application of the pulse due to thermal latency. A computer model of irrigated-catheter RF ablation was built to study the impact of thermal latency on the lesion depth. The results showed that the shorter the RF pulse duration (keeping energy constant), the greater the lesion depth during the cooling phase. For instance, after a 10-second pulse, lesion depth grew from 2.05 mm at the end of the pulse to 2.39 mm (17%), while after an ultra-short RF pulse of only 1 second the extra growth was 37% (from 2.22 to 3.05 mm). Importantly, short applications resulted in deeper lesions than long applications (3.05 mm vs. 2.39 mm, for 1- and 10-second pulse, respectively). While shortening the pulse duration produced deeper lesions, the associated increase in applied voltage caused overheating in the tissue: temperatures around 100 °C were reached at a depth of 1 mm in the case of 1- and 5-second pulses. However, since the lesion depth increased during the cooling period, lower values of applied voltage could be applied in short durations in order to obtain lesion depths similar to those in longer durations while avoiding overheating. The thermal latency phenomenon seems to be the cause of significantly greater lesion depth after short-duration high-power RF pulses. Balancing the applied total energy when the voltage and duration are changed is not the optimal strategy since short pulses can also cause overheating. © 2017 Wiley Periodicals, Inc.
Interference of Overlapping Insect Vibratory Communication Signals: An Eushistus heros Model
Čokl, Andrej; Laumann, Raul Alberto; Žunič Kosi, Alenka; Blassioli-Moraes, Maria Carolina; Virant-Doberlet, Meta; Borges, Miguel
2015-01-01
Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros, produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros communicate with species and gender specific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency difference between signals by changing the frequency level and frequency modulation pattern of their calls. PMID:26098637
Synthesis of Nanosecond Ultrawideband Radiation Pulses
NASA Astrophysics Data System (ADS)
Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.
2017-12-01
The synthesis of electromagnetic pulses with an extended spectrum by summing pulses of different duration in free space has been studied. The radiation spectrum has been estimated analytically for a 4-element array of combined antennas excited by bipolar voltage pulses of duration 0.5, 1, 2, and 3 ns. It has been shown experimentally that radiation with a spectral width of more than three octaves can be produced using a 2×2 array of combined antennas excited by bipolar pulses of duration 2 and 3 ns.
Shane, Janelle C; Mazilu, Michael; Lee, Woei Ming; Dholakia, Kishan
2010-03-29
We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope's temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.
NASA Astrophysics Data System (ADS)
Klehr, A.; Liero, A.; Wenzel, H.; Bugge, F.; Brox, O.; Fricke, J.; Ressel, P.; Knigge, A.; Heinrich, W.; Tränkle, G.
2017-02-01
A new compact 1030 nm picosecond light source which can be switched between pulse gating and mode locking operation is presented. It consists of a multi-section distributed Bragg reflector (DBR) laser, an ultrafast multisection optical gate and a flared power amplifier (PA), mounted together with high frequency electronics and optical elements on a 5×4 cm micro bench. The master oscillator (MO) is a 10 mm long ridge wave-guide (RW) laser consisting of 200 μm long saturable absorber, 1500 μm long gain, 8000 μm long cavity, 200 μm long DBR and 100 μm long monitor sections. The 2 mm long optical gate consisting of several RW sections is monolithically integrated with the 4 mm long gain-guided tapered amplifier on a single chip. The light source can be switched between pulse gating and passive mode locking operation. For pulse gating all sections of the MO (except of the DBR and monitor sections) are forward biased and driven by a constant current. By injecting electrical pulses into one section of the optical gate the CW beam emitted by the MO is converted into a train of optical pulses with adjustable widths between 250 ps and 1000 ps. Peak powers of 20 W and spectral linewidths in the MHz range are achieved. Shorter pulses with widths between 4 ps and 15 ps and peak powers up to 50 W but larger spectral widths of about 300 pm are generated by mode locking where the saturable absorber section of the MO is reversed biased. The repetition rate of 4.2 GHz of the pulse train emitted by the MO can be reduced to values between 1 kHz and 100 MHz by utilizing the optical gate as pulse picker. The pulse-to-pulse distance can be controlled by an external trigger source.
Copper bromide vapour laser with an output pulse duration of up to 320 ns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubarev, F A; Fedorov, K V; Evtushenko, G S
We report the development of a copper bromide vapour laser with an output pulse duration of up to 320 ns. To lengthen the pulse, the discharge current was limited using a compound switch comprising a pulsed hydrogen thyratron and a tacitron. This technique permits limiting the excitation of the working levels at the initial stage of the discharge development to lengthen the inversion lifetime. The longest duration of a laser pulse was reached in tubes 25 and 50 mm in diameter for a pulse repetition rate of 2 – 4 kHz. (lasers and laser beams)
NASA Astrophysics Data System (ADS)
Ruppe, John M.; Pei, Hanzhang; Chen, Siyun; Sheikhsofla, Morteza; Wilcox, Russell B.; Nees, John A.; Galvanauskas, Almantas
2017-03-01
We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10's of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited 300 fs duration using a standard diffraction-grating pulse compressor.
Electron acceleration by laser produced wake field: Pulse shape effect
NASA Astrophysics Data System (ADS)
Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi
2007-12-01
Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.
In vitro investigations of propulsion during laser lithotripsy using video tracking.
Eisel, Maximilian; Ströbl, Stephan; Pongratz, Thomas; Strittmatter, Frank; Sroka, Ronald
2018-04-01
Ureteroscopic laser lithotripsy is an important and widely used method for destroying ureter stones. It represents an alternative to ultrasonic and pneumatic lithotripsy techniques. Although these techniques have been thoroughly investigated, the influence of some physical parameters that may be relevant to further improve the treatment results is not fully understood. One crucial topic is the propulsive stone movement induced by the applied laser pulses. To simplify and speed up the optimization of laser parameters in this regard, a video tracking method was developed in connection with a vertical column setup that allows recording and subsequently analyzing the propulsive stone movement in dependence of different laser parameters in a particularly convenient and fast manner. Pulsed laser light was applied from below to a cubic BegoStone phantom loosely guided within a vertical column setup. The video tracking method uses an algorithm to determine the vertical stone position in each frame of the recorded scene. The time-dependence of the vertical stone position is characterized by an irregular series of peaks. By analyzing the slopes of the peaks in this signal it was possible to determine the mean upward stone velocity for a whole pulse train and to compare it for different laser settings. For a proof of principle of the video tracking method, a specific pulse energy setting (1 J/pulse) was used in combination with three different pulse durations: short pulse (0.3 ms), medium pulse (0.6 ms), and long pulse (1.0 ms). The three pulse durations were compared in terms of their influence on the propulsive stone movement in terms of upward velocity. Furthermore, the propulsions induced by two different pulse energy settings (0.8 J/pulse and 1.2 J/pulse) for a fixed pulse duration (0.3 ms) were compared. A pulse repetition rate of 10 Hz was chosen for all experiments, and for each laser setting, the experiment was repeated on 15 different freshly prepared stones. The latter set of experiments was compared with the results of previous propulsion measurements performed with a pendulum setup. For a fixed pulse energy (1 J/pulse), the mean upward propulsion velocity increased (from 120.0 to 154.9 mm · s -1 ) with decreasing pulse duration. For fixed pulse duration (0.3 ms), the mean upward propulsion velocity increased (from 91.9 to 123.3 mm · s -1 ) with increasing pulse energy (0.8 J/pulse and 1.2 J/pulse). The latter result corresponds roughly to the one obtained with the pendulum setup (increase from 61 to 105 mm · s -1 ). While the mean propulsion velocities for the two different pulse energies were found to differ significantly (P < 0.001) for the two experimental and analysis methods, the standard deviations of the measured mean propulsion velocities were considerably smaller in case of the vertical column method with video tracking (12% and 15% for n = 15 freshly prepared stones) than in case of the pendulum method (26% and 41% for n = 50 freshly prepared stones), in spite of the considerably smaller number of experiment repetitions ("sample size") in the first case. The proposed vertical column method with video tracking appears advantageous compared to the pendulum method in terms of the statistical significance of the obtained results. This may partly be understood by the fact that the entire motion of the stones contributes to the data analysis, rather than just their maximum distance from the initial position. The key difference is, however, that the pendulum method involves only one single laser pulse in each experiment run, which renders this method rather tedious to perform. Furthermore, the video tracking method appears much better suited to model a clinical lithotripsy intervention that utilizes longer series of laser pulses at higher repetition rates. The proposed video tracking method can conveniently and quickly deliver results for a large number of laser pulses that can easily be averaged. An optimization of laser settings to achieve minimal propulsive stone movement should thus be more easily feasible with the video tracking method in connection with the vertical column setup. Lasers Surg. Med. 50:333-339, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses
MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.
1987-05-05
A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.
Acoustic transients in pulsed holmium laser ablation: effects of pulse duration
NASA Astrophysics Data System (ADS)
Asshauer, Thomas; Delacretaz, Guy P.; Jansen, E. Duco; Welch, Ashley J.; Frenz, Martin
1995-01-01
The goal of this work was to study the influence of pulse duration on acoustic transient generation in holmium laser ablation. For this, the generation and collapse of cavitation bubbles induced by Q-switched and free-running laser pulses delivered under water were investigated. Polyacrylamide gel of 84% water content served as a model for soft tissue. This gel is a more realistic tissue phantom than water because it mimics not only the optical properties but also the mechanical properties of tissue. The dynamics of bubble formation inside the clear gel were observed by 1 ns time resolved flash videography. A polyvinylidenefluoride (PVDF) needle probe transducer measured absolute values of pressure amplitudes. Pressure wave generation by cavitation bubble collapse was observed in all phantoms used. Maximum pressures of more than 180 bars at 1 mm from the collapse center were observed in water and high water-contents gels with a pulse energy of 200 mJ and a 400 micrometers fiber. A strong dependency of the bubble collapse pressure on the pulse duration for constant pulse energy was observed in gel as well as in water. For pulse durations longer than 400 microsecond(s) a 90% reduction of pressure amplitudes relative to 100 microsecond(s) pulses was found. This suggests that optimization of pulse duration offers a degree of freedom allowing us to minimize the risk of acoustical damage in medical applications like arthroscopy and angioplasty.
Vortex operation in Er:LuYAG crystal laser at ∼1.6 μm
NASA Astrophysics Data System (ADS)
Liu, Qiyao; Zhao, Yongguang; Zhou, Wei; Shen, Deyuan
2017-09-01
An Er3+-doped Lu1.5Y1.5Al5O12 (Er:LuYAG) solid-state laser with direct generation of optical vortex is reported. The vortex laser operation was realized through being pumped by an annular beam at 1532 nm, which was reformatted by a specially fabricated optical mirror. With two different laser output couplers of 10% and 20% transmissions, pure LG01 mode lasers with right-handedness at 1647.7 nm and 1619.5 nm were yielded from a simple two-mirror cavity, respectively, without any helicity control optical element. Furthermore, stable pulse trains at 1647.7 nm have been achieved via employing an acousto-optic Q-switch, and ∼0.66 mJ pulsed energy and ∼65 ns pulse duration were finally obtained at 1 kHz repetition rate, corresponding to a peak power of ∼10.2 kW. The generated pulse vortex maintained LG01 mode with well-determined right-handedness, as in the case of cw laser operation.
Lehneis, R; Jauregui, C; Steinmetz, A; Limpert, J; Tünnermann, A
2014-02-01
We present an enhanced technique for dispersion-free pulse shortening, which exploits the interplay of different third-order nonlinear effects in a waveguide structure. When exceeding a certain value of the pulse energy coupled into the waveguide, the typical oscillations of self-phase modulation (SPM)-broadened spectra vanish during pulse propagation. Such smoothed spectra ensure a high pulse quality of the spectrally filtered and, therefore, temporally shortened pulses independently of the filtering position. A reduction of the pulse duration from 138 to 24 ps has been achieved while preserving a high temporal quality. To the best of our knowledge, the nonlinear smoothing of SPM-broadened spectra is used in the context of dispersion-free pulse duration reduction for the first time.
Multi-ball and one-ball geolocation and location verification
NASA Astrophysics Data System (ADS)
Nelson, D. J.; Townsend, J. L.
2017-05-01
We present analysis methods that may be used to geolocate emitters using one or more moving receivers. While some of the methods we present may apply to a broader class of signals, our primary interest is locating and tracking ships from short pulsed transmissions, such as the maritime Automatic Identification System (AIS.) The AIS signal is difficult to process and track since the pulse duration is only 25 milliseconds, and the pulses may only be transmitted every six to ten seconds. Several fundamental problems are addressed, including demodulation of AIS/GMSK signals, verification of the emitter location, accurate frequency and delay estimation and identification of pulse trains from the same emitter. In particular, we present several new correlation methods, including cross-cross correlation that greatly improves correlation accuracy over conventional methods and cross- TDOA and cross-FDOA functions that make it possible to estimate time and frequency delay without the need of computing a two dimensional cross-ambiguity surface. By isolating pulses from the same emitter and accurately tracking the received signal frequency, we are able to accurately estimate the emitter location from the received Doppler characteristics.
Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management.
Wang, Lizhen; Xu, Peizhen; Li, Yuhang; Han, Jize; Guo, Xin; Cui, Yudong; Liu, Xueming; Tong, Limin
2018-03-16
Mode-locked Yb-doped fiber lasers around 1 μm are attractive for high power applications and low noise pulse train generation. Mode-locked fiber lasers working in soliton and stretched-pulse regime outperform others in terms of the laser noise characteristics, mechanical stability and easy maintenance. However, conventional optical fibers always show a normal group velocity dispersion around 1 μm, leading to the inconvenience for necessary dispersion management. Here we show that optical microfibers having a large anomalous dispersion around 1 μm can be integrated into mode-locked Yb-doped fiber lasers with ultralow insertion loss down to -0.06 dB, enabling convenient dispersion management of the laser cavity. Besides, optical microfibers could also be adopted to spectrally broaden and to dechirp the ultrashort pulses outside the laser cavity, giving rise to a pulse duration of about 110 fs. We believe that this demonstration may facilitate all-fiber format high-performance ultrashort pulse generation at 1 μm and may find applications in precision measurements, large-scale facility synchronization and evanescent-field-based optical sensing.
NASA Astrophysics Data System (ADS)
Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi
2017-01-01
We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zvorykin, V. D., E-mail: zvorykin@sci.lebedev.ru; Ionin, A. A.; Levchenko, A. O.
2015-02-15
Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shownmore » that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.« less
NASA Astrophysics Data System (ADS)
Eisfeld, Eugen; Roth, Johannes
2018-05-01
Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.
Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes.
Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C T Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei
2018-02-09
Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.
FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.
Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan
2018-01-01
The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.
NASA Astrophysics Data System (ADS)
Jelínek, M.; Kubeček, V.; Čech, M.; Hiršl, P.
2011-03-01
A quasi-continuously pumped picosecond oscillator-amplifier laser system based on two identical 2.4% Nd:YAG slabs in a single bounce geometry was developed and investigated. The oscillator was passively mode locked by the multiple quantum well saturable absorber inserted into the resonator in transmission mode. Output train containing 7 pulses with total energy of 900 μJ was generated directly from the oscillator. Single pulse with energy of 75 μJ, duration of 113 ps and Gaussian spatial profile was cavity dumped from the resonator and amplified by the single pass amplifier to the energy of 830 μJ. Comparison with our previously reported data obtained with similar system based on Nd:GdVO4 shows advantage of using highly doped Nd:YAG for generation of sub-millijoule pulses in one hundred picoseconds range, which might be interesting in many applications.
Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source
NASA Astrophysics Data System (ADS)
Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire
2000-11-01
We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.
Heterodimer Autorepression Loop: A Robust and Flexible Pulse-Generating Genetic Module
NASA Astrophysics Data System (ADS)
Lannoo, B.; Carlon, E.; Lefranc, M.
2016-07-01
We investigate the dynamics of the heterodimer autorepression loop (HAL), a small genetic module in which a protein A acts as an autorepressor and binds to a second protein B to form an A B dimer. For suitable values of the rate constants, the HAL produces pulses of A alternating with pulses of B . By means of analytical and numerical calculations, we show that the duration of A pulses is extremely robust against variation of the rate constants while the duration of the B pulses can be flexibly adjusted. The HAL is thus a minimal genetic module generating robust pulses with a tunable duration, an interesting property for cellular signaling.
Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre
Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang
2016-01-01
Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy. PMID:28009011
Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre.
Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang
2016-12-23
Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C 2 H 2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C 2 H 2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C 2 H 2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy.
Subfemtosecond directional control of chemical processes in molecules
NASA Astrophysics Data System (ADS)
Alnaser, Ali S.; Litvinyuk, Igor V.
2017-02-01
Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.
Tanaka, Midori; Sugawara, Motoaki; Ogasawara, Yasuo; Izumi, Tadafumi; Niki, Kiyomi; Kajiya, Fumihiko
2013-04-01
Aerobic exercise has been reported to be associated with reduced arterial stiffness. However, the intensity, duration, and frequency of aerobic exercise required to improve arterial stiffness have not been established. In addition, most reports base their conclusions on changes in pulse wave velocity, which is an indirect index of arterial stiffness. We studied the effects of short-term, intermittent, moderate-intensity exercise training on arterial stiffness based on measurements of the stiffness parameter (β) and pressure-strain elastic modulus (E p), which are direct indices of regional arterial stiffness. A total of 25 young healthy volunteers (18 men) were recruited. By use of ultrasonic diagnostic equipment we measured β and E p of the carotid artery before and after 8 weeks of exercise training. After exercise training, systolic pressure (P s), diastolic pressure (P d), pulse pressure, systolic arterial diameter (D s), and diastolic arterial diameter (D d) did not change significantly. However, the pulsatile change in diameter ((D s - D d)/D d) increased significantly, and β and E p decreased significantly. For healthy young subjects, β and E p were reduced by intermittent, moderate-intensity exercise training for only 8 weeks.
Surface nanotexturing of tantalum by laser ablation in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmina, E V; Simakin, Aleksandr V; Shafeev, Georgii A
2009-01-31
Surface nanotexturing of tantalum by ablation with short laser pulses in water has been studied experimentally using three ablation sources: a neodymium laser with a pulse duration of 350 ps, an excimer laser (248 nm) with a pulse duration of 5 ps and a Ti:sapphire laser with a pulse duration of 180 fs. The morphology of the nanotextured surfaces has been examined using a nanoprofilometer and field emission scanning electron microscope. The results demonstrate that the average size of the hillocks produced on the target surface depends on the laser energy density and is {approx}200 nm at an energy densitymore » approaching the laser-melting threshold of tantalum and a pulse duration of 350 ps. Their surface density reaches 10{sup 6} cm{sup -2}. At a pulse duration of 5 ps, the average hillock size is 60-70 nm. Nanotexturing is accompanied by changes in the absorption spectrum of the tantalum surface in the UV and visible spectral regions. The possible mechanisms of surface nanotexturing and potential applications of this effect are discussed. (nanostructures)« less
1977-08-01
period, duration/ peak power, and side lobe levels. A recommended waveform library is presented. One of the program results is that an optimum waveform...Areas a. Coding b. Pulse Repetition Period c. Peak Power/Pulse Duration d. Sidelobes 3. Performance Dependence Upon Bandwidth/Bandspan a... peak power and pulse duration, and range and Doppler sldelobe levels. The constraints upon waveforms due to the In- ability of the radar components
Steinmetz, A; Jansen, F; Stutzki, F; Lehneis, R; Limpert, J; Tünnermann, A
2012-07-01
We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Jacek; Jabczynski, Jan K.; Zendzian, Waldemar
2005-03-01
The saturable absorbers (Cr4+:YAG, GaAs and LiF crystals for 1064-nm wavelength, V3+:YAG crystals for 1340-nm respectively) were examined as passive Mode Lockers and Q-switches in diode pumped Nd:YVO4 lasers in the Z-type resonators. In each case, partially modulated long trains of QML pulses were observed. As a rule, envelopes with about 1 μs duration and more than 50% depth of modulation were observed. For stabilization of the mode locking trains nonlinear crystals (KTP or LBO) as negative feedback elements were inserted. The fully modulated QML trains for intracavity II harmonic conversion at 670-nm wavelength in V3+:YAG Q-switched Nd:YVO4 laser with LBO crystal were demonstrated.
Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Junjie; Zeng Bin; Yu Yongli
2010-11-15
We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecondmore » pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.« less
Gordon, Shira D; Ter Hofstede, Hannah M
2018-03-22
Animals co-occur with multiple predators, making sensory systems that can encode information about diverse predators advantageous. Moths in the families Noctuidae and Erebidae have ears with two auditory receptor cells (A1 and A2) used to detect the echolocation calls of predatory bats. Bat communities contain species that vary in echolocation call duration, and the dynamic range of A1 is limited by the duration of sound, suggesting that A1 provides less information about bats with shorter echolocation calls. To test this hypothesis, we obtained intensity-response functions for both receptor cells across many moth species for sound pulse durations representing the range of echolocation call durations produced by bat species in northeastern North America. We found that the threshold and dynamic range of both cells varied with sound pulse duration. The number of A1 action potentials per sound pulse increases linearly with increasing amplitude for long-duration pulses, saturating near the A2 threshold. For short sound pulses, however, A1 saturates with only a few action potentials per pulse at amplitudes far lower than the A2 threshold for both single sound pulses and pulse sequences typical of searching or approaching bats. Neural adaptation was only evident in response to approaching bat sequences at high amplitudes, not search-phase sequences. These results show that, for short echolocation calls, a large range of sound levels cannot be coded by moth auditory receptor activity, resulting in no information about the distance of a bat, although differences in activity between ears might provide information about direction. © 2018. Published by The Company of Biologists Ltd.
Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses
MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.
1988-01-01
A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).
Optimisation of thulium fibre laser parameters with generation of pulses by pump modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obronov, I V; Larin, S V; Sypin, V E
2015-07-31
The formation of relaxation pulses of a thulium fibre laser (λ = 1.9 μm) by modulating the power of a pump erbium fibre laser (λ = 1.55 μm) is studied. A theoretical model is developed to find the dependences of pulse duration and peak power on different cavity parameters. The optimal cavity parameters for achieving the minimal pulse duration are determined. The results are confirmed by experimental development of a laser emitting pulses with a duration shorter than 10 ns, a peak power of 1.8 kW and a repetition rate of 50 kHz. (control of radiation parameters)
Comas, M; Beersma, D G M; Spoelstra, K; Daan, S
2006-10-01
To understand entrainment of circadian systems to different photoperiods in nature, it is important to know the effects of single light pulses of different durations on the free-running system. The authors studied the phase and period responses of laboratory mice (C57BL6J//OlaHsd) to single light pulses of 7 different durations (1, 3, 4, 6, 9, 12, and 18 h) given once per 11 days in otherwise constant darkness. Light-pulse duration affected both amplitude and shape of the phase response curve. Nine-hour light pulses yielded the maximal amplitude PRC. As in other systems, the circadian period slightly lengthened following delays and shortened following advances. The authors aimed to understand how different parts of the light signal contribute to the eventual phase shift. When PRCs were plotted using the onset, midpoint, and end of the pulse as a phase reference, they corresponded best with each other when using the mid-pulse. Using a simple phase-only model, the authors explored the possibility that light affects oscillator velocity strongly in the 1st hour and at reduced strength in later hours of the pulse due to photoreceptor adaptation. They fitted models based on the 1-h PRC to the data for all light pulses. The best overall correspondence between PRCs was obtained when the effect of light during all hours after the first was reduced by a factor of 0.22 relative to the 1st hour. For the predicted PRCs, the light action centered on average at 38% of the light pulse. This is close to the reference phase yielding best correspondence at 36% of the pulses. The result is thus compatible with an initial major contribution of the onset of the light pulse followed by a reduced effect of light responsible for the differences between PRCs for different duration pulses. The authors suggest that the mid-pulse is a better phase reference than lights-on to plot and compare PRCs of different light-pulse durations.
Acoustic, respiratory kinematic and electromyographic effects of vocal training
NASA Astrophysics Data System (ADS)
Mendes, Ana Paula De Brito Garcia
The longitudinal effects of vocal training on the respiratory, phonatory and articulatory systems were investigated in this study. During four semesters, fourteen voice major students were recorded while speaking and singing. Acoustic, temporal, respiratory kinematic and electromyographic parameters were measured to determine changes in the three systems as a function of vocal training. Acoustic measures of the speaking voice included fundamental frequency, sound pressure level (SPL), percent jitter and shimmer, and harmonic-to-noise ratio. Temporal measures included duration of sentences, diphthongs and the closure durations of stop consonants. Acoustic measures of the singing voice included fundamental frequency and sound pressure level of the phonational range, vibrato pulses per second, vibrato amplitude variation and the presence of the singer's formant. Analysis of the data revealed that vocal training had a significant effect on the singing voice. Fundamental frequency and SPL of the 90% level and 90--10% of the phonational range increased significantly during four semesters of vocal training. Physiological data was collected from four subjects during three semesters of vocal training. Respiratory kinematic measures included lung volume, rib cage and abdominal excursions extracted from spoken sung samples. Descriptive statistics revealed that rib cage and abdominal excursions increased from the 1st to the 2nd semester and decrease from the 2nd to the 3rd semester of vocal training. Electromyographic measures of the pectoralis major, rectus abdominis and external obliques muscles revealed that burst duration means decreased from the 1st to the 2nd semester and increased from the 2nd to the 3rd semester. Peak amplitude means increased from the 1st to the 2nd and decreased from the 2nd to the 3rd semester of vocal training. Chest wall excursions and muscle force generation of the three muscles increased as the demanding level and the length of the phonatory tasks increased.
Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism
Sarmiento-Ponce, Edith Julieta
2017-01-01
Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets (Gryllus bimaculatus), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. PMID:28539524
Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.
Hedwig, Berthold; Sarmiento-Ponce, Edith Julieta
2017-05-31
Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets ( Gryllus bimaculatus ), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. © 2017 The Authors.
Temporal narrowing of neutrons produced by high-intensity short-pulse lasers
Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...
2015-07-28
The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less
Extremely High Peak Power Obtained at 29 GHZ Microwave Pulse Generation
NASA Astrophysics Data System (ADS)
Rostov, V. V.; Gunin, A. V.; Romanchenko, I. V.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shunailov, S. A.; Ul'maskulov, M. R.; Yalandin, M. I.
2017-12-01
The paper presents research results on enhancing the peak power of microwave pulses with sub- and nanosecond length using a backward-wave oscillator (BWO) operating at 29 GHz frequency and possessing a reproducible phase structure. Experiments are conducted in two modes on a high-current electron accelerator with the required electron beam power. In the first (superradiation) mode, which utilizes the elongated slow-wave structure, the BWO peak power is 3 GW at 180 ns pulse duration (full width at halfmaximum, FWHM). In the second (quasi-stationary) mode, the BWO peak power reaches 600 MW at 2 ns pulse duration (FWHM). The phase spread from pulse to pulse can vary from units to several tens of percent in a nanosecond pulse mode. The experiments do not show any influence of microwave breakdown on the BWO power generation and radiation pulse duration.
Self similar solution of superradiant amplification of ultrashort laser pulses in plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moghadasin, H.; Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Shokri, B.
2015-05-15
Based on the self-similar method, superradiant amplification of ultrashort laser pulses by the counterpropagating pump in a plasma is investigated. Here, we present a governing system of partial differential equations for the signal pulse and the motion of the electrons. These equations are transformed to ordinary differential equations by the self-similar method and numerically solved. It is found that the increase of the signal intensity is proportional to the square of the propagation distance and the signal frequency has a red shift. Also, depending on the pulse width, the signal breaks up into a train of short pulses or itsmore » duration decreases with the inverse square root of the distance. Moreover, we identified two distinct categories of the electrons by the phase space analysis. In the beginning, one of them is trapped in the ponderomotive potential well and oscillates while the other is untrapped. Over time, electrons of the second kind also join to the trapped electrons. In the potential well, the electrons are bunched to form an electron density grating which reflects the pump pulse into the signal pulse. It is shown that the backscattered intensity is enhanced with the increase of the electron bunching parameter which leads to the enhanced efficiency of superradiant amplification.« less
Long pacing pulses reduce phrenic nerve stimulation in left ventricular pacing.
Hjortshøj, Søren; Heath, Finn; Haugland, Morten; Eschen, Ole; Thøgersen, Anna Margrethe; Riahi, Sam; Toft, Egon; Struijk, Johannes Jan
2014-05-01
Phrenic nerve stimulation is a major obstacle in cardiac resynchronization therapy (CRT). Activation characteristics of the heart and phrenic nerve are different with higher chronaxie for the heart. Therefore, longer pulse durations could be beneficial in preventing phrenic nerve stimulation during CRT due to a decreased threshold for the heart compared with the phrenic nerve. We investigated if long pulse durations decreased left ventricular (LV) thresholds relatively to phrenic nerve thresholds in humans. Eleven patients, with indication for CRT and phrenic nerve stimulation at the intended pacing site, underwent determination of thresholds for the heart and phrenic nerve at different pulse durations (0.3-2.9 milliseconds). The resulting strength duration curves were analyzed by determining chronaxie and rheobase. Comparisons for those parameters were made between the heart and phrenic nerve, and between the models of Weiss and Lapicque as well. In 9 of 11 cases, the thresholds decreased faster for the LV than for the phrenic nerve with increasing pulse duration. In 3 cases, the thresholds changed from unfavorable for LV stimulation to more than a factor 2 in favor of the LV. The greatest change occurred for pulse durations up to 1.5 milliseconds. The chronaxie of the heart was significantly higher than the chronaxie of the phrenic nerve (0.47 milliseconds vs. 0.22 milliseconds [P = 0.029, Lapicque] and 0.79 milliseconds vs. 0.27 milliseconds [P = 0.033, Weiss]). Long pulse durations lead to a decreased threshold of the heart relatively to the phrenic nerve and may prevent stimulation of the phrenic nerve in a clinical setting. © 2013 Wiley Periodicals, Inc.
Favaro, Livio; Gnone, Guido; Pessani, Daniela
2013-03-01
In spite of all the information available on adult bottlenose dolphin (Tursiops truncatus) biosonar, the ontogeny of its echolocation abilities has been investigated very little. Earlier studies have reported that neonatal dolphins can produce both whistles and burst-pulsed sounds just after birth and that early-pulsed sounds are probably a precursor of echolocation click trains. The aim of this research is to investigate the development of echolocation signals in a captive calf, born in the facilities of the Acquario di Genova. A set of 81 impulsive sounds were collected from birth to the seventh postnatal week and six additional echolocation click trains were recorded when the dolphin was 1 year old. Moreover, behavioral observations, concurring with sound production, were carried out by means of a video camera. For each sound we measured five acoustic parameters: click train duration (CTD), number of clicks per train, minimum, maximum, and mean click repetition rate (CRR). CTD and number of clicks per train were found to increase with age. Maximum and mean CRR followed a decreasing trend with dolphin growth starting from the second postnatal week. The calf's first head scanning movement was recorded 21 days after birth. Our data suggest that in the bottlenose dolphin the early postnatal weeks are essential for the development of echolocation abilities and that the temporal features of the echolocation click trains remain relatively stable from the seventh postnatal week up to the first year of life. © 2013 Wiley Periodicals, Inc.
Cetacean Bioacoustics with Emphasis on Recording and Monitoring
NASA Astrophysics Data System (ADS)
Akamatsu, Tomonari
More than 80 cetacean species live in oceans, lakes, and rivers. For underwater navigation and recognition, whales and dolphins have developed unique sensory systems using acoustic signals. Toothed whales, such as dolphins and porpoises, have sonar using ultrasonic pulse trains called echolocations (Au, 1993). As top predators in the water, dolphins and porpoises rely on accurate and long-range sensory systems for catching prey. Dolphins have another type of vocalization called a whistle that is narrowband with a long duration.
Performance characteristics of a laser initiated microdetonator
NASA Technical Reports Server (NTRS)
Yang, L. C.
1981-01-01
The test results of 320 units of a laser initiated microdetonator are summarized. The commercially fabricated units used a lead styphnate/lead azide/HMX (1 mg/13.5 mg) explosive train design contained in a miniature aluminum can that was capped with a glass-metal seal window. The test parameters were the laser energy, temperature, laser pulse duration, laser wavelength and nuclear radiation (5,000,000 rad of 1 MeV gamma rays). The performance parameters were the laser energy for ignition and the actuation response time.
Cokl, A; Virant-Doberlet, M; Stritih, N
2000-01-01
Substrate born songs of the southern green stinkbug Nezara viridula (L.) from Slovenia were recorded and analysed. The male calling song is composed of narrow-band regularly repeated single pulses and of broad-band frequency modulated pulses grouped into pulse trains. The female calling song is characterised by broad-band pulsed and narrow-band non-pulsed pulse trains. A frequency modulated pre-pulse precedes the narrow-band pulse train. A frequency-modulated post-pulse usually follows the pulse train of the male courtship song. The male calling song triggers broad-band pulse trains of the female courtship song. The female also produces a repelling low-frequency vibration that inhibits male calling and courtship. The male rival song is characterised by prolonged pulses with a typical frequency modulation.
Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel
2016-01-01
Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521
A long-pulse repetitive operation magnetically insulated transmission line oscillator.
Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang
2014-05-01
The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.
Logic circuit detects both present and missing negative pulses in superimposed wave trains
NASA Technical Reports Server (NTRS)
Rice, R. E.
1967-01-01
Pulse divide and determination network provides a logical determination of pulse presence within a data train. The network uses digital logic circuitry to divide positive and negative pulses, to shape the separated pulses, and to determine, by means of coincidence logic, if negative pulses are missing from the pulse train.
Wang, Cong; Jiang, Lan; Wang, Feng; Li, Xin; Yuan, Yanping; Xiao, Hai; Tsai, Hai-Lung; Lu, Yongfeng
2012-07-11
A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train.
Pulse duration dependent nonlinear optical response in black phosphorus dispersions
NASA Astrophysics Data System (ADS)
Tang, Shana; He, Zhiliang; Liang, Guowen; Chen, Si; Ge, Yanqi; Sang, David K.; Lu, Jianxin; Lu, Shunbin; Wen, Qiao; Zhang, Han
2018-01-01
Black phosphorus (BP), is the most thermodynamically stable allotrope of phosphorus, the narrow direct band gap and the strong light-matter interaction make BP a promising nonlinear optical (NLO) nano-material. In this paper, we use the open aperture Z- scan method to measure the NLO property of BP dispersion. Saturable absorption was observed in the BP material through the excitation of Ti: sapphire laser at 800 nm. Three different excitation pulse duration (100 fs, 1 ps and 10 ps) were used in the experiments, and BP exhibited different NLO performance. The results show that nonlinear absorption coefficient and figure of merit of BP nanosheets are proportional to the pulse duration while saturable intensity is opposite to pulse duration.
NASA Astrophysics Data System (ADS)
Surzhikov, V. P.; Demikhova, A. A.
2017-01-01
Results of research of influence of the excitation pulse duration on the parameters of the electromagnetic response of epoxy samples with filler the quartz sand presented in the paper. The electric component of a response was registered by the capacitive sensors using a differential amplifier. Measurements were carried out at two frequencies of the master generator of 65 kHz and 74 kHz. The pulse duration was changing from 10 to 100 microseconds. The stepped sort of dependence of the integrated oscillations energy in the response from duration of the excitation pulse was discovered. The conclusion was made about the determining role of the normal oscillations in formation of such dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Z. Y.; Ma, L.; Yin, Y.
2010-08-01
In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior.more » In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (E{sub p}) in the {nu}f{sub {nu}} spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, Ayaka, E-mail: tamura.ayaka.88m@st.kyoto-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya
We investigate the effects of temporal laser profile on the emission spectra of laser ablation plasma in water. We use short-interval (76 ns) double pulses with different pulse durations of the composing two pulses for the irradiation of underwater target. Narrow atomic spectral lines in emission spectra are obtained by the irradiation, where the two pulses are wide enough to be merged into a single-pulse-like temporal profile, while deformed spectra are obtained when the two pulses are fully separated. The behavior of the atomic spectral lines for the different pulse durations is consistent with that of the temporal profiles of themore » optical emission intensities of the plasma. All these results suggest that continuous excitation of the plasma during the laser irradiation for ∼100 ns is a key to obtain narrow emission spectral lines.« less
Initial Breakdown Pulse Parameters in Intracloud and Cloud-to-Ground Lightning Flashes
NASA Astrophysics Data System (ADS)
Smith, E. M.; Marshall, T. C.; Karunarathne, S.; Siedlecki, R.; Stolzenburg, M.
2018-02-01
This study analyzes the largest initial breakdown (IB) pulse in flashes from four storms in Florida; data from three sensor arrays are used. The range-normalized, zero-to-peak amplitude of the largest IB pulse was determined along with its altitude, duration, and timing within each flash. Appropriate data were available for 40 intracloud (IC) and 32 cloud-to-ground (CG) flashes. Histograms of amplitude of the largest IB pulse by flash type were similar, with mean (median) values of 1.49 (1.05) V/m for IC flashes and -1.35 (-0.87) V/m for CG flashes. The largest IB pulse in 30 IC flashes showed a weak inverse relation between pulse amplitude and altitude. Amplitude of the largest IB pulse for 25 CG flashes showed no altitude correlation. Duration of the largest IB pulse in ICs averaged twice as long as in CGs (96 μs versus 46 μs), and all of the CG durations were <100 μs. Among the ICs, there is a positive relation between largest IB pulse duration and amplitude; the linear correlation coefficient is 0.385 with outliers excluded. The largest IB pulse in IC flashes typically occurred at a longer time after the first IB pulse (average 4.1 ms) than was the case in CG flashes (average 0.6 ms). In both flash types, the largest IB pulse was the first IB pulse in about 30% of the cases. In one storm all 42 IC flashes with triggered data had IB pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, D.R.; Goldizen, V.C.; Clare, V.R.
1961-06-15
A total of 661 animals was exposed to sharp''-rising overpressures of 3 to 4 msec duration using a shock tube of novel design which produced a pressure pulse similar to that obtained with high explosives. The reflected shock overpressures associated with 50% lethality were 29.0, rabbit, respectively. Other observations included the time of death in mortally wounded animals and gross pathological lesions likely to contribute to mortality. Selected data from the literature bearing upon the influence of overpressure and pulse duration on lethality were reviewed. These included pulse durations ranging from less than 1 msec to 8 sec. The criticalmore » pulse duration, that duration shorter than which the overpressures required for mortality increases sharply, was noted to depend upon animal size and to be of the order of many hundreds of microseconds to very few milliseconds for smaller'' animals and a few to many tens of milliseconds for larger'' animals. (auth)« less
Initial Breakdown Pulse Amplitudes in Intracloud and Cloud-to-Ground Lightning Flashes
NASA Astrophysics Data System (ADS)
Marshall, T. C.; Smith, E. M.; Stolzenburg, M.; Karunarathne, S.; Siedlecki, R. D., II
2017-12-01
This study analyzes the largest initial breakdown (IB) pulse in flashes from three storms in Florida. The study was motivated in part by the possibility that IB pulses of IC flashes may cause of terrestrial gamma-ray flashes (TGFs). The range-normalized, zero-to-peak amplitude of the largest IB pulse within each flash was determined along with its altitude, duration, and occurrence time in the flash. Appropriate data were available for 40 intracloud (IC) and 32 cloud-to-ground (CG) flashes. Histograms of the magnitude of the largest IB pulse amplitude by flash type were similar, with mean (median) values of 1.49 (1.05) V/m for IC flashes and -1.35 (-0.87) V/m for CG flashes. The mean amplitude of the largest IC IB pulses are substantially smaller (roughly an order of magnitude smaller) than the few known pulse amplitudes of TGF events and TGF candidate events. The largest IB pulse in 30 IC flashes showed a weak inverse relation between pulse amplitude and altitude. Amplitude of the largest IB pulse for 25 CG flashes showed no altitude correlation. Duration of the largest IB pulse in ICs averaged twice as long as in CGs (96 μs versus 46 μs); all of the CG durations were <100 μs. Among the ICs, there is a positive relation between largest IB pulse duration and amplitude; the linear correlation coefficient is 0.385 with outliers excluded. The largest IB pulse in IC flashes typically occurred at a longer time after the first IB pulse (average 4.1 ms) than was the case in CG flashes (average 0.6 ms). In both flash types, the largest IB pulse was the first IB pulse in about 30% of the cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Guangjin, E-mail: guangjin.ma@mpq.mpg.de; Max-Planck-Institut für Quantenoptik, D-85748 Garching; Dallari, William
2015-03-15
We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.
Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.
Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus
2016-09-19
We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.
Self-seeding ring optical parametric oscillator
Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM
2005-12-27
An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.
Dejonckere, P H; Wieneke, G H; Bloemenkamp, D; Lebacq, J
1996-04-01
Sustained phonations were compared in two groups of children (aged 7-12), one with special artistic voice education and one from a normal school, without voice complaints or problems. The hypothesis of specific (better) biomechanical vocal fold properties in the first group is confronted with the hypothesis of differences solely related to training of voice control. In both groups, Fo-aperiodicity was measured in a sustained phonation at 3 different SPL levels. As a general rule, aperiodicity clearly decreases when the voice becomes louder. Aperiodicity is highly significantly lower, at all SPL-levels, in children with trained singing voices: this implies better mechanical properties of the vocal oscillator. The Fo/SPL relation on a sustained /a:/ does not differ in trained and untrained children's voices: out of singing context, trained children do not spontaneously control the Fo/SPL dynamics differently from untrained children. The higher regularity of vocal fold pulses is not related to the duration of training.
NASA Astrophysics Data System (ADS)
Jensen, Jens H.; Helpern, Joseph A.
2011-06-01
Hardware constraints typically require the use of extended gradient pulse durations for clinical applications of diffusion-weighted magnetic resonance imaging (DW-MRI), which can potentially influence the estimation of diffusion metrics. Prior studies have examined this effect for the apparent diffusion coefficient. This study employs a two-compartment exchange model in order to assess the gradient pulse duration sensitivity of the apparent diffusional kurtosis (ADK), a quantitative index of diffusional non-Gaussianity. An analytic expression is derived and numerically evaluated for parameter ranges relevant to DW-MRI of brain. It is found that the ADK differs from the true diffusional kurtosis by at most a few percent. This suggests that ADK estimates for brain may be robust with respect to changes in pulse gradient duration.
Single-electron pulses for ultrafast diffraction
Aidelsburger, M.; Kirchner, F. O.; Krausz, F.; Baum, P.
2010-01-01
Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode’s work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics. PMID:21041681
Compact conductively cooled electro-optical Q-switched Nd:YAG laser
NASA Astrophysics Data System (ADS)
Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Zang, Yannan; Yang, Zhen; Han, Song; Li, Ye; Yang, Ning; Shi, Junfeng; Zhou, Zewu
2017-11-01
We report on a compact conductively cooled high-repetition-rate nanosecond Nd:YAG laser. The oscillator was an laser diode side-pumped electro-optical (EO) Q-switched Nd:YAG rod laser adopting unstable cavity with a variable reflectivity mirror. A pulse train of 142 mJ with duration of 10 ns, repetition rate of 80 Hz at 1064 nm has been achieved. Maximum pulse energy was obtained at the pump energy of 1380 mJ, corresponding to the optical-optical conversion efficiency of 10.3%. The peak power was deduced to be 14.2 MW. The near-field pattern demonstrated a nearly super Gaussian flat top profile. To our knowledge, this is the highest repetition rate operation for a conductively cooled EO Q-switched Nd:YAG rod laser.
Svaasand, Lars O; Nelson, J Stuart
2004-01-01
The physical basis for optimization of wavelength, pulse duration, and cooling for laser-induced selective photothermolysis of hair follicles in human skin is discussed. The results indicate that the most important optimization parameter is the cooling efficiency of the technique utilized for epidermal protection. The optical penetration is approximately the same for lasers at 694, 755, and 800 nm. The penetration of radiation from Nd:yttrium-aluminum-garnet lasers at 1064 nm is, however, somewhat larger. Photothermal damage to the follicle is shown to be almost independent of laser pulse duration up to 100 ms. The results reveal that epidermal cooling by a 30-80-ms-long cryogen spurt immediately before laser exposure is the only efficient technique for laser pulse durations less than 10 ms. For longer pulse durations in the 30-100 ms range, protection can be done efficiently by skin cooling during laser exposure. For laser pulses of 100 ms, an extended precooling period, e.g., by bringing a cold object into good thermal contact with the skin for about 1 s, can be of value. Thermal quenching of laser induced epidermal temperature rise after pulsed exposure can most efficiently be done with a 20 ms cryogen spurt applied immediately after irradiation. (c) 2004 Society of Photo-Optical Instrumentation Engineers.
Femtosecond all-optical synchronization of an X-ray free-electron laser
Schulz, S.; Grguraš, I.; Behrens, C.; ...
2015-01-20
Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less
Femtosecond all-optical synchronization of an X-ray free-electron laser
Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.
2015-01-01
Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823
Cardiovascular responses to railway noise during sleep in young and middle-aged adults.
Tassi, Patricia; Saremi, Mahnaz; Schimchowitsch, Sarah; Eschenlauer, Arnaud; Rohmer, Odile; Muzet, Alain
2010-03-01
The aim of this study was to investigate the effects of nocturnal railway noise on cardiovascular reactivity in young (25.8 +/- 2.6 years) and middle-aged (52.2 +/- 2.5 years) adults during sleep. Thirty-eight subjects slept three nights in the laboratory at 1-week interval. They were exposed to 48 randomized pass-bys of Freight, Passenger and Automotive trains either at an 8-h equivalent sound level of 40 dBA (Moderate) and 50 dBA (High) or at a silent Control night. Heart rate response (HRR), heart response amplitude (HRA), heart response latency (HRL) and finger pulse response (FPR), finger pulse amplitude (FPA) and finger pulse latency (FPL) were recorded to measure cardiovascular reactivity after each noise onset and for time-matched pseudo-noises in the control condition. Results show that Freight trains produced the highest cardiac response (increased HRR, HRA and HRL) compared to Passenger and Automotive. But the vascular response was similar whatever the type of train. Juniors exhibited an increased HRR and HRA as compared to seniors, but there was no age difference on vasoconstriction, except a shorter FPL in seniors. Noise level produced dose-dependent effects on all the cardiovascular indices. Sleep stage at noise occurrence was ineffective for cardiac response, but FPA was reduced when noise occurred during REM sleep. In conclusion, our study is in favor of an important impact of nocturnal railway noise on the cardiovascular system of sleeping subjects. In the limit of the samples studied, Freight trains are the most harmful, probably more because of their special length (duration) than because of their speed (rise time).
Ultrasound use during cardiopulmonary resuscitation is associated with delays in chest compressions.
Huis In 't Veld, Maite A; Allison, Michael G; Bostick, David S; Fisher, Kiondra R; Goloubeva, Olga G; Witting, Michael D; Winters, Michael E
2017-10-01
High-quality chest compressions are a critical component of the resuscitation of patients in cardiopulmonary arrest. Point-of-care ultrasound (POCUS) is used frequently during emergency department (ED) resuscitations, but there has been limited research assessing its benefits and harms during the delivery of cardiopulmonary resuscitation (CPR). We hypothesized that use of POCUS during cardiac arrest resuscitation adversely affects high-quality CPR by lengthening the duration of pulse checks beyond the current cardiopulmonary resuscitation guidelines recommendation of 10s. We conducted a prospective cohort study of adults in cardiac arrest treated in an urban ED between August 2015 and September 2016. Resuscitations were recorded using video equipment in designated resuscitation rooms, and the use of POCUS was documented and timed. A linear mixed-effects model was used to estimate the effect of POCUS on pulse check duration. Twenty-three patients were enrolled in our study. The mean duration of pulse checks with POCUS was 21.0s (95% CI, 18-24) compared with 13.0s (95% CI, 12-15) for those without POCUS. POCUS increased the duration of pulse checks and CPR interruption by 8.4s (95% CI, 6.7-10.0 [p<0.0001]). Age, body mass index (BMI), and procedures did not significantly affect the duration of pulse checks. The use of POCUS during cardiac arrest resuscitation was associated with significantly increased duration of pulse checks, nearly doubling the 10-s maximum duration recommended in current guidelines. It is important for acute care providers to pay close attention to the duration of interruptions in the delivery of chest compressions when using POCUS during cardiac arrest resuscitation. Copyright © 2017 Elsevier B.V. All rights reserved.
Motor unit recruitment in human biceps brachii during sustained voluntary contractions.
Riley, Zachary A; Maerz, Adam H; Litsey, Jane C; Enoka, Roger M
2008-04-15
The purpose of the study was to examine the influence of the difference between the recruitment threshold of a motor unit and the target force of the sustained contraction on the discharge of the motor unit at recruitment. The discharge characteristics of 53 motor units in biceps brachii were recorded after being recruited during a sustained contraction. Some motor units (n = 22) discharged action potentials tonically after being recruited, whereas others (n = 31) discharged intermittent trains of action potentials. The two groups of motor units were distinguished by the difference between the recruitment threshold of the motor unit and the target force for the sustained contraction: tonic, 5.9 +/- 2.5%; intermittent, 10.7 +/- 2.9%. Discharge rate for the tonic units decreased progressively (13.9 +/- 2.7 to 11.7 +/- 2.6 pulses s(-1); P = 0.04) during the 99 +/- 111 s contraction. Train rate, train duration and average discharge rate for the intermittent motor units did not change across 211 +/- 153 s of intermittent discharge. The initial discharge rate at recruitment during the sustained contraction was lower for the intermittent motor units (11.0 +/- 3.3 pulses s(-1)) than the tonic motor units (13.7 +/- 3.3 pulses s(-1); P = 0.005), and the coefficient of variation for interspike interval was higher for the intermittent motor units (34.6 +/- 12.3%) than the tonic motor units (21.2 +/- 9.4%) at recruitment (P = 0.001) and remained elevated for discharge duration (34.6 +/- 9.2% versus 19.1 +/- 11.7%, P < 0.001). In an additional experiment, 12 motor units were recorded at two different target forces below recruitment threshold (5.7 +/- 1.9% and 10.5 +/- 2.4%). Each motor unit exhibited the two discharge patterns (tonic and intermittent) as observed for the 53 motor units. The results suggest that newly recruited motor units with recruitment thresholds closer to the target force experienced less synaptic noise at the time of recruitment that resulted in them discharging action potentials at more regular and greater rates than motor units with recruitment thresholds further from the target force.
Simultaneous multislice refocusing via time optimal control.
Rund, Armin; Aigner, Christoph Stefan; Kunisch, Karl; Stollberger, Rudolf
2018-02-09
Joint design of minimum duration RF pulses and slice-selective gradient shapes for MRI via time optimal control with strict physical constraints, and its application to simultaneous multislice imaging. The minimization of the pulse duration is cast as a time optimal control problem with inequality constraints describing the refocusing quality and physical constraints. It is solved with a bilevel method, where the pulse length is minimized in the upper level, and the constraints are satisfied in the lower level. To address the inherent nonconvexity of the optimization problem, the upper level is enhanced with new heuristics for finding a near global optimizer based on a second optimization problem. A large set of optimized examples shows an average temporal reduction of 87.1% for double diffusion and 74% for turbo spin echo pulses compared to power independent number of slices pulses. The optimized results are validated on a 3T scanner with phantom measurements. The presented design method computes minimum duration RF pulse and slice-selective gradient shapes subject to physical constraints. The shorter pulse duration can be used to decrease the effective echo time in existing echo-planar imaging or echo spacing in turbo spin echo sequences. © 2018 International Society for Magnetic Resonance in Medicine.
Bartulevicius, Tadas; Frankinas, Saulius; Michailovas, Andrejus; Vasilyeu, Ruslan; Smirnov, Vadim; Trepanier, Francois; Rusteika, Nerijus
2017-08-21
In this work, a compact fiber chirped pulse amplification system exploiting a tandem of a chirped fiber Bragg grating stretcher and a chirped volume Bragg grating compressor with matched chromatic dispersion is presented. Chirped pulses of 230 ps duration were amplified in a Yb-doped fiber amplifier and re-compressed to 208 fs duration with good fidelity. The compressed pulse duration was fine-tuned by temperature gradient along the fiber Bragg grating stretcher.
NASA Astrophysics Data System (ADS)
Düsterer, S.; Rehders, M.; Al-Shemmary, A.; Behrens, C.; Brenner, G.; Brovko, O.; DellAngela, M.; Drescher, M.; Faatz, B.; Feldhaus, J.; Frühling, U.; Gerasimova, N.; Gerken, N.; Gerth, C.; Golz, T.; Grebentsov, A.; Hass, E.; Honkavaara, K.; Kocharian, V.; Kurka, M.; Limberg, Th.; Mitzner, R.; Moshammer, R.; Plönjes, E.; Richter, M.; Rönsch-Schulenburg, J.; Rudenko, A.; Schlarb, H.; Schmidt, B.; Senftleben, A.; Schneidmiller, E. A.; Siemer, B.; Sorgenfrei, F.; Sorokin, A. A.; Stojanovic, N.; Tiedtke, K.; Treusch, R.; Vogt, M.; Wieland, M.; Wurth, W.; Wesch, S.; Yan, M.; Yurkov, M. V.; Zacharias, H.; Schreiber, S.
2014-12-01
One of the most challenging tasks for extreme ultraviolet, soft and hard x-ray free-electron laser photon diagnostics is the precise determination of the photon pulse duration, which is typically in the sub 100 fs range. Nine different methods, able to determine such ultrashort photon pulse durations, were compared experimentally at FLASH, the self-amplified spontaneous emission free-electron laser at DESY in Hamburg, in order to identify advantages and disadvantages of different methods. Radiation pulses at a wavelength of 13.5 and 24.0 nm together with the corresponding electron bunch duration were measured by indirect methods like analyzing spectral correlations, statistical fluctuations, and energy modulations of the electron bunch and also by direct methods like autocorrelation techniques, terahertz streaking, or reflectivity changes of solid state samples. In this paper, we present a comprehensive overview of the various techniques and a comparison of the individual experimental results. The information gained is of utmost importance for the future development of reliable pulse duration monitors indispensable for successful experiments with ultrashort extreme ultraviolet pulses.
Spectral Effects for an Ultrashort Pulse Train Propagating in a Two-Level Atom Medium
NASA Astrophysics Data System (ADS)
Liu, Bing-Xin; Gong, Shang-Qing; Song, Xiao-Hong; Li, Ru-Xin; Xu, Zhi-Zhan
2005-06-01
We investigate the spectra of a femtosecond pulse train propagating in a resonant two-level atom (TLA) medium. It is found that higher spectral components can be produced even for a 2π femtosecond pulse train. Furthermore, the spectral effects depend crucially on both the relative shift Φ and the delay time τ between the successive pulses of the femtosecond pulse train.
Electromagnetic pulse propagation in dispersive planar dielectrics.
Moten, K; Durney, C H; Stockham, T G
1989-01-01
The responses of a plane-wave pulse train irradiating a lossy dispersive dielectric half-space are investigated. The incident pulse train is expressed as a Fourier series with summing done by the inverse fast Fourier transform. The Fourier series technique is adopted to avoid the many difficulties often encountered in finding the inverse Fourier transform when transform analyses are used. Calculations are made for propagation in pure water, and typical waveforms inside the dielectric half-space are presented. Higher harmonics are strongly attenuated, resulting in a single continuous sinusoidal waveform at the frequency of the fundamental depth in the material. The time-averaged specific absorption rate (SAR) for pulse-train propagation is shown to be the sum of the time-averaged SARs of the individual harmonic components of the pulse train. For the same average power, calculated SARs reveal that pulse trains generally penetrate deeper than carrier-frequency continuous waves but not deeper than continuous waves at frequencies approaching the fundamental of the pulse train. The effects of rise time on the propagating pulse train in the dielectrics are shown and explained. Since most practical pulsed systems are very limited in bandwidth, no pronounced differences between their response and continuous wave (CW) response would be expected. Typical results for pulse-train propagation in arrays of dispersive planar dielectric slabs are presented. Expressing the pulse train as a Fourier series provides a practical way of interpreting the dispersion characteristics from the spectral point of view.
Pair Production Induced by Ultrashort and Ultraintense Laser Pulses in Plasmas
NASA Astrophysics Data System (ADS)
Luo, Yue-E.; Wang, Xue-Wen; Wang, Yuan-Sheng; Ji, Shen-Tong; Yu, Hong
2018-06-01
The probability of Schwinger pair production is calculated, which is induced by an ultraintense and ultrashort laser pulse propagating in a plasma. The dependence of the probability on the amplitude of the laser pulse and the frequency of plasmas is analyzed. Particularly, the effect of the pulse duration on the probability is discussed, by introducing a pulse-shape function to describe the temporal shape of the laser pulse. The results show that a laser with shorter pulse is more efficient in pair production. The probability of pair production increases when the order of the duration is comparable to the period of a laser.
Circadian system of mice integrates brief light stimuli.
Van Den Pol, A N; Cao, V; Heller, H C
1998-08-01
Light is the primary sensory stimulus that synchronizes or entrains the internal circadian rhythms of animals to the solar day. In mammals photic entrainment of the circadian pacemaker residing in the suprachiasmatic nuclei is due to the fact that light at certain times of day can phase shift the pacemaker. In this study we show that the circadian system of mice can integrate extremely brief, repeated photic stimuli to produce large phase shifts. A train of 2-ms light pulses delivered as one pulse every 5 or 60 s, with a total light duration of 120 ms, can cause phase shifts of several hours that endure for weeks. Single 2-ms pulses of light were ineffective. Thus these data reveal a property of the mammalian circadian clock: it can integrate and store latent sensory information in such a way that a series of extremely brief photic stimuli, each too small to cause a phase shift individually, together can cause a large and long-lasting change in behavior.
Divided-pulse nonlinear amplification and simultaneous compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Qiang; Zhang, Qingshan; Sun, Tingting
2015-03-09
We report on a fiber laser system delivering 122 fs pulse duration and 600 mW average power at 1560 nm by the interplay between divided pulse amplification and nonlinear pulse compression. A small-core double-clad erbium-doped fiber with anomalous dispersion carries out the pulse amplification and simultaneously compresses the laser pulses such that a separate compressor is no longer necessary. A numeric simulation reveals the existence of an optimum fiber length for producing transform-limited pulses. Furthermore, frequency doubling to 780 nm with 240 mW average power and 98 fs pulse duration is achieved by using a periodically poled lithium niobate crystal at roommore » temperature.« less
Performance characteristics and statistics of a laser initiated microdetonator
NASA Technical Reports Server (NTRS)
Yang, L. C.
1979-01-01
The test results of 320 units of the laser initiated microdetonator are summarized. The commercially fabricated units used a lead styphnate/lead azide/HMX (1 mg/17.5 mg/13.5 mg) explosive train design contained in a miniature aluminum can and completed with a glass-metal seal window. The test parameters were the high and low laser energy, high and low temperature, laser pulse duration, laser wavelength and nuclear radiation (5 x 10 to the 6th rads of 1 MeV gamma ray). The performance parameters were the laser energy for ignition and the actuation response time. Included also is a description of the development of a flexible, continuously advanced train of explosive devices by using the units, miniature optics and fiber optics.
NASA Astrophysics Data System (ADS)
Gilbertson, Steve
The observation and control of dynamics in atomic and molecular targets requires the use of laser pulses with duration less than the characteristic timescale of the process which is to be manipulated. For electron dynamics, this time scale is on the order of attoseconds where 1 attosecond = 10 -18 seconds. In order to generate pulses on this time scale, different gating methods have been proposed. The idea is to extract or "gate" a single pulse from an attosecond pulse train and switch off all the other pulses. While previous methods have had some success, they are very difficult to implement and so far very few labs have access to these unique light sources. The purpose of this work is to introduce a new method, called double optical gating (DOG), and to demonstrate its effectiveness at generating high contrast single isolated attosecond pulses from multi-cycle lasers. First, the method is described in detail and is investigated in the spectral domain. The resulting attosecond pulses produced are then temporally characterized through attosecond streaking. A second method of gating, called generalized double optical gating (GDOG), is also introduced. This method allows attosecond pulse generation directly from a carrier-envelope phase un-stabilized laser system for the first time. Next the methods of DOG and GDOG are implemented in attosecond applications like high flux pulses and extreme broadband spectrum generation. Finally, the attosecond pulses themselves are used in experiments. First, an attosecond/femtosecond cross correlation is used for characterization of spatial and temporal properties of femtosecond pulses. Then, an attosecond pump, femtosecond probe experiment is conducted to observe and control electron dynamics in helium for the first time.
Practical witness for electronic coherences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Allan S.; Department of Physics, Imperial College London, London; Yuen-Zhou, Joel
2014-12-28
The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse centralmore » frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.« less
Heating of solid targets with laser pulses
NASA Technical Reports Server (NTRS)
Bechtel, J. H.
1975-01-01
Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.
Practical witness for electronic coherences.
Johnson, Allan S; Yuen-Zhou, Joel; Aspuru-Guzik, Alán; Krich, Jacob J
2014-12-28
The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse central frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.
Autoionizing states driven by stochastic electromagnetic fields
NASA Astrophysics Data System (ADS)
Mouloudakis, G.; Lambropoulos, P.
2018-01-01
We have examined the profile of an isolated autoionizing resonance driven by a pulse of short duration and moderately strong field. The analysis has been based on stochastic differential equations governing the time evolution of the density matrix under a stochastic field. Having focused our quantitative analysis on the 2{{s}}2{{p}}({}1{{P}}) resonance of helium, we have investigated the role of field fluctuations and of the duration of the pulse. We report surprisingly strong distortion of the profile, even for peak intensity below the strong field limit. Our results demonstrate the intricate connection between intensity and pulse duration, with the latter appearing to be the determining influence, even for a seemingly short pulse of 50 fs. Further effects that would arise under much shorter pulses are discussed.
Method for distance determination using range-gated imaging suitable for an arbitrary pulse shape
NASA Astrophysics Data System (ADS)
Kabashnikov, Vitaly; Kuntsevich, Boris
2017-10-01
A method for distance determination with the help of range-gated viewing systems suitable for the arbitrary shape of the illumination pulse is proposed. The method is based on finding the delay time at which maximum of the return pulse energy takes place. The maximum position depends on the pulse and gate durations and, generally speaking, on the pulse shape. If the pulse length is less than or equal to the gate duration, the delay time appropriate to the maximum does not depend on the pulse shape. At equal pulse and gate durations, there is a strict local maximum, which turns into a plateau when pulse is shorter than gate duration. A delay time appropriate to the strict local maximum or the far boundary of the plateau (where non-strict maximum is) is directly related to the distance to the object. These findings are confirmed by analytical relationships for trapezoid pulses and numerical results for the real pulse shape. To verify the proposed method we used a vertical wall located at different distances from 15 to 120m as an observed object. Delay time was changing discretely in increments of 5 ns. Maximum of the signal was determined by visual observation of the object on the monitor screen. The distance defined by the proposed method coincided with the direct measurement with accuracy 1- 2m, which is comparable with the delay time step multiplied by half of the light velocity. The results can be useful in the development of 3-D vision systems.
Chaotic carrier pulse position modulation communication system and method
Abarbanel, Henry D. I.; Larson, Lawrence E.; Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.; Volkovskii, Alexander R.
2001-01-01
A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.
NASA Astrophysics Data System (ADS)
Jang, Hun-jae; Park, Mi-ae; Sirotkin, Fedir V.; Yoh, Jack J.
2013-12-01
The expansion of the laser-induced bubble is the main mechanism in the developed microjet injector. In this study, Nd:YAG and Er:YAG lasers are used as triggers of the bubble formation. The impact of the laser parameters on the bubble dynamics is studied and the performance of the injector is evaluated. We found that the main cause of the differences in the bubble behavior comes from the pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the behavior of the bubble close to that of the cavitation bubble, while in Er:YAG case, the high absorption in the water and long pulse duration change the initial behavior of the bubble making it close to a vapor bubble. The contraction and subsequent rebound are typical for cavitation bubbles in both cases. The results show that the laser-induced microjet injector generates velocity which is sufficient for the drug delivery for both laser beams of different pulse duration. We estimate the typical velocity within 30-80 m/s range and the breakup length to be larger than 1 mm suitable for trans-dermal drug injection.
Modified Blumlein pulse-forming networks for bioelectrical applications.
Romeo, Stefania; Sarti, Maurizio; Scarfì, Maria Rosaria; Zeni, Luigi
2010-07-01
Intense nanosecond pulsed electric fields (nsPEFs) have been shown to induce, on intracellular structures, interesting effects dependent on electrical exposure conditions (pulse length and amplitude, repetition frequency and number of pulses), which are known in the literature as "bioelectrical effects" (Schoenbach et al., IEEE Trans Plasma Sci 30:293-300, 2002). In particular, pulses with a shorter width than the plasma membrane charging time constant (about 100 ns for mammalian cells) can penetrate the cell and trigger effects such as permeabilization of intracellular membranes, release of Ca(2+) and apoptosis induction. Moreover, the observed effects have led to exploration of medical applications, like the treatment of melanoma tumors (Nuccitelli et al., Biochem Biophys Res Commun 343:351-360, 2006). Pulsed electric fields allowing such effects usually range from several tens to a few hundred nanoseconds in duration and from a few to several tens of megavolts per meter in amplitude (Schoenbach et al., IEEE Trans Diel Elec Insul 14:1088-1109, 2007); however, the biological effects of subnanosecond pulses have been also investigated (Schoenbach et al., IEEE Trans Plasma Sci 36:414-422, 2008). The use of such a large variety of pulse parameters suggests that highly flexible pulse-generating systems, able to deliver wide ranges of pulse durations and amplitudes, are strongly required in order to explore effects and applications related to different exposure conditions. The Blumlein pulse-forming network is an often-employed circuit topology for the generation of high-voltage electric pulses with fixed pulse duration. An innovative modification to the Blumlein circuit has been recently devised which allows generation of pulses with variable amplitude, duration and polarity. Two different modified Blumlein pulse-generating systems are presented in this article, the first based on a coaxial cable configuration, matching microscopic slides as a pulse-delivery system, and the other based on microstrip transmission lines and designed to match cuvettes for the exposure of cell suspensions.
Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture
NASA Astrophysics Data System (ADS)
Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.
2015-07-01
We have experimentally studied the heat transfer under conditions of pulsed multinozzle jet spray impact onto a vertical surface. The working coolant fluid was aqueous ethanol solution in a range of concentrations K 1 = 0-96%. The duration of spray pulses was τ = 2, 4, and 10 ms at a repetition frequency of 10 Hz. The maximum heat transfer coefficient was achieved at an ethanol solution concentration within 50-60%. The thermal efficiency of pulsed spray cooling grows with increasing ethanol concentration and decreasing jet spray pulse duration.
Water impact shock test system
NASA Technical Reports Server (NTRS)
1977-01-01
The basic objective was to design, manufacture, and install a shock test system which, in part, would have the ability to subject test articles weighing up to 1,000 pounds to both half sine and/or full sine pulses having peak levels of up to 50 G's with half sine pulse durations of 100 milliseconds or full sine period duration of 200 milliseconds. The tolerances associated with the aforementioned pulses were +20% and -10% for the peak levels and plus or minus 10% for the pulse durations. The subject shock test system was to be capable of accepting test article sizes of up to 4 feet by 4 feet mounting surface by 4 feet in length.
Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W
2010-01-20
We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.
Ultrashort electromagnetic pulse control of intersubband quantum well transitions
2012-01-01
We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π. PMID:22916956
Ultrashort electromagnetic pulse control of intersubband quantum well transitions.
Paspalakis, Emmanuel; Boviatsis, John
2012-08-23
: We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π.
Human auditory event-related potentials predict duration judgments.
Bendixen, Alexandra; Grimm, Sabine; Schröger, Erich
2005-08-05
Internal clock models postulate a pulse accumulation process underlying timing activities, with more accumulated pulses resulting in longer perceived durations. We investigated whether this accumulation is reflected in the amplitude of event-related brain potentials (ERPs) elicited by auditory stimuli with durations of 400-600 ms. In a duration discrimination paradigm, we found more negative amplitudes to physically identical stimuli when they were judged as longer than the memorized standard duration (500 ms) as compared to being classified as shorter. This sustained negativity was already developing during the first 100 ms after stimulus onset. It could not be explained as a bias to respond with a particular hand (lateralized readiness potential), but rather reflects a processing difference between the tones to be judged as shorter or longer. Our results are in line with models of time processing which assume that higher numbers of accumulated pulses of a temporal processor result in an increase in perceived duration.
NASA Astrophysics Data System (ADS)
Gusev, A. I.; Pedos, M. S.; Rukin, S. N.; Timoshenkov, S. P.
2017-07-01
In this work, experiments were made in which gyromagnetic nonlinear transmission line (NLTL) operates as a peak power amplifier of the input pulse. At such an operating regime, the duration of the input pulse is close to the period of generated oscillations, and the main part of the input pulse energy is transmitted only to the first peak of the oscillations. Power amplification is achieved due to the voltage amplitude of the first peak across the NLTL output exceeding the voltage amplitude of the input pulse. In the experiments, the input pulse with an amplitude of 500 kV and a half-height pulse duration of 7 ns is applied to the NLTL with a natural oscillation frequency of ˜300 MHz. At the output of the NLTL in 40 Ω coaxial transmission line, the pulse amplitude is increased to 740 kV and the pulse duration is reduced to ˜2 ns, which correspond to power amplification of the input pulse from ˜6 to ˜13 GW. As a source of input pulses, a solid-state semiconductor opening switch generator was used, which allowed carrying out experiments at pulse repetition frequency up to 1 kHz in the burst mode of operation.
Nonlinear resonance scattering of femtosecond X-ray pulses on atoms in plasmas
NASA Astrophysics Data System (ADS)
Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.; Moroz, N. N.
2017-11-01
It is shown that for sufficiently short pulses the resonance scattering probability becomes a nonlinear function of the pulse duration. For fs X-ray pulses scattered on atoms in plasmas maxima and minima develop in the nonlinear regime whereas in the limit of long pulses the probability becomes linear and turns over into the standard description of the electromagnetic pulse scattering. Numerical calculations are carried out in terms of a generalized scattering probability for the total time of pulse duration including fine structure splitting and ion Doppler broadening in hot plasmas. For projected X-ray monocycles, the generalized nonlinear approach differs by 1-2 orders of magnitude from the standard theory.
Balashov, A M; Selishchev, S V
2004-01-01
An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.
"Bird Song Metronomics": Isochronous Organization of Zebra Finch Song Rhythm.
Norton, Philipp; Scharff, Constance
2016-01-01
The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a "signal-derived pulse," or pulse(S), of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulse(S) significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulse(P)), as yet untested. Strikingly, in our study, pulses(S) that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulse(S) periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music.
“Bird Song Metronomics”: Isochronous Organization of Zebra Finch Song Rhythm
Norton, Philipp; Scharff, Constance
2016-01-01
The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a “signal-derived pulse,” or pulseS, of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulseS significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulseP), as yet untested. Strikingly, in our study, pulsesS that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulseS periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music. PMID:27458334
Measurement and Control of Attosecond Pulses
2016-04-25
high harmonic train in the medium but each pulse in the train is travelling in a different direction. Therefore, as the beam propagates, it...pulses in the far field. The train of pulses created in this way are shown in the plot of angle of the radiation (vertical axis) as a function of
Octave-spanning carrier-envelope phase stabilized visible pulse with sub-3-fs pulse duration.
Okamura, Kotaro; Kobayashi, Takayoshi
2011-01-15
The visible second harmonic of the idler output from a noncollinear optical parametric amplifier was compressed using adaptive dispersion control with a deformable mirror. The amplifier was pumped by and seeded in the signal path by a common 400 nm second-harmonic pulse from a Ti:sapphire regenerative amplifier. Thus, both the idler output and the second harmonic of the idler were passively carrier-envelope phase stabilized. The shortest pulse duration achieved was below 3 fs.
NASA Astrophysics Data System (ADS)
Gotz, M.; Karsch, L.; Pawelke, J.
2017-11-01
In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 μs at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.
Gotz, M; Karsch, L; Pawelke, J
2017-11-01
In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.
Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, V., E-mail: arora@rrcat.gov.in; Naik, P. A.; Chakera, J. A.
2014-04-15
We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Timore » (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.« less
Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme.
Mero, M; Sipos, A; Kurdi, G; Osvay, K
2011-05-09
Femtosecond green pulses were generated from broadband pulses centered at 800 nm and quasi-monochromatic pulses centered at 532 nm using noncollinear optical parametric chirped pulse amplification (NOPCPA) followed by sum frequency mixing. In addition to amplifying the 800-nm pulses, the NOPCPA stage pumped by a Q-switched, injection seeded Nd:YAG laser also provided broadband idler pulses at 1590 nm. The signal and idler pulses were sum frequency mixed using achromatic and chirp assisted phase matching yielding pulses near 530 nm with a bandwidth of 12 nm and an energy in excess of 200 μJ. The generated pulses were recompressed with a grating compressor to a duration of 150 fs. The technique is scalable to high energies, broader bandwidths, and shorter pulse durations with compensation for higher order chirps and dedicated engineering of the interacting beams. © 2011 Optical Society of America
Short pulse free electron laser amplifier
Schlitt, Leland G.; Szoke, Abraham
1985-01-01
Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.
Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei
2016-03-15
A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.
Sound production and mechanism in Heniochus chrysostomus (Chaetodontidae).
Parmentier, Eric; Boyle, Kelly S; Berten, Laetitia; Brié, Christophe; Lecchini, David
2011-08-15
The diversity in calls and sonic mechanisms appears to be important in Chaetodontidae. Calls in Chaetodon multicinctus seem to include tail slap, jump, pelvic fin flick and dorsal-anal fin erection behaviors. Pulsatile sounds are associated with dorsal elevation of the head, anterior extension of the ventral pectoral girdle and dorsal elevation of the caudal skeleton in Forcipiger flavissiumus. In Hemitaurichthys polylepis, extrinsic swimbladder muscles could be involved in sounds originating from the swimbladder and correspond to the inward buckling of tissues situated dorsally in front of the swimbladder. These examples suggest that this mode of communication could be present in other members of the family. Sounds made by the pennant bannerfish (Heniochus chrysostomus) were recorded for the first time on coral reefs and when fish were hand held. In hand-held fishes, three types of calls were recorded: isolated pulses (51%), trains of four to 11 pulses (19%) and trains preceded by an isolated pulse (29%). Call frequencies were harmonic and had a fundamental frequency between 130 and 180 Hz. The fundamental frequency, sound amplitude and sound duration were not related to fish size. Data from morphology, sound analysis and electromyography recordings highlight that the calls are made by extrinsic sonic drumming muscles in association with the articulated bones of the ribcage. The pennant bannerfish system differs from other Chaetodontidae in terms of sound characteristics, associated body movements and, consequently, mechanism.
The influence of laser pulse waveform on laser-TIG hybrid welding of AZ31B magnesium alloy
NASA Astrophysics Data System (ADS)
Song, Gang; Luo, Zhimin
2011-01-01
By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.
Do, Ltk; Wittayarat, M; Terazono, T; Sato, Y; Taniguchi, M; Tanihara, F; Takemoto, T; Kazuki, Y; Kazuki, K; Oshimura, M; Otoi, T
2016-12-01
The current applications for cat cloning include production of models for the study of human and animal diseases. This study was conducted to investigate the optimal fusion protocol on in vitro development of transgenic cloned cat embryos by comparing duration of electric pulse. Cat fibroblast cells containing a human artificial chromosome (HAC) vector were used as genetically modified nuclear donor cells. Couplets were fused and activated simultaneously with a single DC pulse of 3.0 kV/cm for either 30 or 60 μs. Low rates of fusion and embryo development to the blastocyst stage were observed in the reconstructed HAC-transchromosomic embryos, when the duration of fusion was prolonged to 60 μs. In contrast, the prolongation of electric pulse duration improved the embryo development and quality in the reconstructed control embryos without HAC vector. Our results suggested that the optimal parameters of electric pulses for fusion in cat somatic cell nuclear transfer vary among the types used for donor cells. © 2016 Blackwell Verlag GmbH.
Lam, Jessica; Rennick, Christopher J; Softley, Timothy P
2015-05-01
A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80,000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.
Dispersion-free pulse duration reduction of passively Q-switched microchip lasers.
Lehneis, R; Steinmetz, A; Jauregui, C; Limpert, J; Tünnermann, A
2012-11-01
We present a dispersion-free method for the pulse duration reduction of passively Q-switched microchip laser (MCL) seed sources. This technique comprises two stages: one that carries out the self-phase modulation induced spectral broadening in a waveguide structure and a subsequent spectral filtering stage in order to shorten the pulses in time domain. The setup of a proof-of-principle experiment consists of a fiber-amplified passively Q-switched MCL, a passive single-mode fiber used as nonlinear element in which the spectrum is broadened, and a reflective volume-Bragg-grating acting as bandpass filter. A reduction of the pulse duration from 118 to 32 ps with high temporal quality has been achieved with this setup.
NASA Astrophysics Data System (ADS)
Ith, M.; Pratisto, H.; Altermatt, H. J.; Frenz, M.; Weber, H. P.
1994-12-01
The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.
2016-01-01
The objectives of the study were to (1) investigate the potential of using monopolar psychophysical detection thresholds for estimating spatial selectivity of neural excitation with cochlear implants and to (2) examine the effect of site removal on speech recognition based on the threshold measure. Detection thresholds were measured in Cochlear Nucleus® device users using monopolar stimulation for pulse trains that were of (a) low rate and long duration, (b) high rate and short duration, and (c) high rate and long duration. Spatial selectivity of neural excitation was estimated by a forward-masking paradigm, where the probe threshold elevation in the presence of a forward masker was measured as a function of masker-probe separation. The strength of the correlation between the monopolar thresholds and the slopes of the masking patterns systematically reduced as neural response of the threshold stimulus involved interpulse interactions (refractoriness and sub-threshold adaptation), and spike-rate adaptation. Detection threshold for the low-rate stimulus most strongly correlated with the spread of forward masking patterns and the correlation reduced for long and high rate pulse trains. The low-rate thresholds were then measured for all electrodes across the array for each subject. Subsequently, speech recognition was tested with experimental maps that deactivated five stimulation sites with the highest thresholds and five randomly chosen ones. Performance with deactivating the high-threshold sites was better than performance with the subjects’ clinical map used every day with all electrodes active, in both quiet and background noise. Performance with random deactivation was on average poorer than that with the clinical map but the difference was not significant. These results suggested that the monopolar low-rate thresholds are related to the spatial neural excitation patterns in cochlear implant users and can be used to select sites for more optimal speech recognition performance. PMID:27798658
Chirped pulse Raman amplification in warm plasma: towards controlling saturation
Yang, X.; Vieux, G.; Brunetti, E.; Ersfeld, B.; Farmer, J. P.; Hur, M. S.; Issac, R. C.; Raj, G.; Wiggins, S. M.; Welsh, G. H.; Yoffe, S. R.; Jaroszynski, D. A.
2015-01-01
Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10’s – 100’s fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153
Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.
2010-02-16
Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.
Precision measurement of electric organ discharge timing from freely moving weakly electric fish.
Jun, James J; Longtin, André; Maler, Leonard
2012-04-01
Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).
Laser micro-machining strategies for transparent brittle materials using ultrashort pulsed lasers
NASA Astrophysics Data System (ADS)
Bernard, Benjamin; Matylitsky, Victor
2017-02-01
Cutting and drilling of transparent materials using short pulsed laser systems are important industrial production processes. Applications ranging from sapphire cutting, hardened glass processing, and flat panel display cutting, to diamond processing are possible. The ablation process using a Gaussian laser beam incident on the topside of a sample with several parallel overlapping lines leads to a V-shaped structured groove. This limits the structuring depth for a given kerf width. The unique possibility for transparent materials to start the ablation process from the backside of the sample is a well-known strategy to improve the aspect ratio of the ablated features. This work compares the achievable groove depth depending on the kerf width for front-side and back-side ablation and presents the best relation between the kerf width and number of overscans. Additionally, the influence of the number of pulses in one burst train on the ablation efficiency is investigated. The experiments were carried out using Spirit HE laser from Spectra-Physics, with the features of adjustable pulse duration from <400 fs to 10 ps, three different repetition rates (100 kHz, 200 kHz and 400 kHz) and average output powers of >16 W ( at 1040 nm wavelength).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plettner, T; Byer, R.L.; /Stanford U., Ginzton Lab.
This article presents the concept of an all-dielectric laser-driven undulator for the generation of coherent X-rays. The proposed laser-driven undulator is expected to produce internal deflection forces equivalent to a several-Tesla magnetic field acting on a speed-of-light particle. The key idea for this laser-driven undulator is its ability to provide phase synchronicity between the deflection force and the electron beam for a distance that is much greater than the laser wavelength. The potential advantage of this undulator is illustrated with a possible design example that assumes a small laser accelerator which delivers a 2 GeV, 1 pC, 1 kHz electronmore » bunch train to a 10 cm long, 1/2 mm period laser-driven undulator. Such an undulator could produce coherent X-ray pulses with {approx}10{sup 9} photons of 64 keV energy. The numerical modeling for the expected X-ray pulse shape was performed with GENESIS, which predicts X-ray pulse durations in the few-attosecond range. Possible applications for nonlinear electromagnetic effects from these X-ray pulses are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Vitzthum, Veronika; Caporini, Marc A.; Ulzega, Simone; Bodenhausen, Geoffrey
2011-09-01
A train of short rotor-synchronized pulses in the manner of Delays Alternating with Nutations for Tailored Excitation (DANTE) applied to nitrogen-14 nuclei ( I = 1) in samples spinning at the magic angle at high frequencies (typically νrot = 62.5 kHz so that τrot = 16 μs) allows one to achieve uniform excitation of a great number of spinning sidebands that arise from large first-order quadrupole interactions, as occur for aromatic nitrogen-14 nuclei in histidine. With routine rf amplitudes ω1( 14N)/(2 π) = 60 kHz and very short pulses of a typical duration 0.5 < τp < 2 μs, efficient excitation can be achieved with 13 rotor-synchronized pulses in 13 τrot = 208 μs. Alternatively, with 'overtone' DANTE sequences using 2, 4, or 8 pulses per rotor period one can achieve efficient broadband excitation in fewer rotor periods, typically 2-4 τrot. These principles can be combined with the indirect detection of 14N nuclei via spy nuclei with S = ½ such as 1H or 13C in the manner of Dipolar Heteronuclear Multiple-Quantum Correlation (D-HMQC).
NASA Astrophysics Data System (ADS)
Yousef, Adel K. M.; Taha, Ziad. A.; Shehab, Abeer A.
2011-01-01
This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conta, A. von; Huppert, M.; Wörner, H. J.
2016-07-15
We present a new design of a time-preserving extreme-ultraviolet (XUV) monochromator using a semi-infinite gas cell as a source. The performance of this beamline in the photon-energy range of 20 eV–42 eV has been characterized. We have measured the order-dependent XUV pulse durations as well as the flux and the spectral contrast. XUV pulse durations of ≤40 fs using 32 fs, 800 nm driving pulses were measured on the target. The spectral contrast was better than 100 over the entire energy range. A simple model based on the strong-field approximation is presented to estimate different contributions to the measured XUVmore » pulse duration. On-axis phase-matching calculations are used to rationalize the variation of the photon flux with pressure and intensity.« less
Picosecond transient backward stimulated Raman scattering and pumping of femtosecond dye lasers
NASA Astrophysics Data System (ADS)
Arrivo, Steven M.; Spears, Kenneth G.; Sipior, Jeffrey
1995-02-01
We report studies of transient, backward stimulated, Raman scattering (TBSRS) in solvents with a 10 Hz, 27 ps, 532 nm pump laser. The TBSRS effect was used to create pulses at 545 nm and 630 nm with durations of 2-3 ps and 5-10 μJ of energy. The duration, energy and fluctuations of the Raman pulse were studied as a function of pump energy and focal parameters. A 5 μJ Raman pulse was amplified in either a Raman amplifier or two stage dye amplifier to 1 mJ levels. A 545 nm pulse of 3 ps duration was generated in CCl 4 and was then used to pump a short cavity dye laser (SCDL). The SCDL oscillator and a 5 stage dye amplifier provided a pulse of 700 fs and 400 μJ that was tunable near 590 nm.
Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism
Xie, Xiaoliang Sunney [Lexington, MA; Freudiger, Christian [Boston, MA; Min, Wei [Cambridge, MA
2011-09-27
A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.
Q-switched all-fiber laser with short pulse duration based on tungsten diselenide
NASA Astrophysics Data System (ADS)
Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun
2018-05-01
Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.
Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.
Parkins, C W; Colombo, J
1987-12-31
Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.
XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms
NASA Astrophysics Data System (ADS)
Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.
2017-12-01
Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.
Xu, Yifang; Collins, Leslie M
2007-08-01
Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.
Dependence of Nd:YAG laser derusting and passivation of iron artifacts on pulse duration
NASA Astrophysics Data System (ADS)
Osticioli, Iacopo; Siano, Salvatore
2013-11-01
In this work laser derusting and passivation process of iron objects of conservation interest were investigated. In particular, the effects induced by laser irradiation of three lasers with different temporal emission regimes were studied, exhibiting very different behavior. Nd:YAG(1064 nm) laser systems were employed in the experiments: a Q-Switching laser with pulse duration of 8 ns, a Long Q-Switching laser with pulse duration of 120 ns and a Short Free Running pulse duration in a range of 40-120 μs. These lasers are commonly used in conservation. Lasers treatments were applied on iron samples subjected to natural weathering in outdoor conditions for about five years. Moreover some experiments were also performed on metallic parts of an original chandelier from the seventies as well as on a deeply corroded Roman sword. Results obtained reveals that longer pulse duration leads to phase changes on the rust layer and a homogeneous black-grayish coating is formed on the surface (identified as magnetite) after treatment. Whereas, QS laser pulses are capable to induce ablation of the corrosion layer exposing the pure metal underneath. Finally, LQS interaction includes deep ablation with localized micro-melting of the metal surface and partial transformation of the residual mineral areas was observed. The irradiation results were characterized through optical and BS- ESEM along with Raman spectroscopy, which allowed a clear phenomenological differentiation among the three operating regimes and provided information on their optimal exploitation in restoration of iron artifacts.
NASA Astrophysics Data System (ADS)
Herda, Robert; Zach, Armin
2015-03-01
We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.
NASA Astrophysics Data System (ADS)
Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.
2013-04-01
The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.
Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan
2004-11-01
The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.
NASA Astrophysics Data System (ADS)
Sramek, Christopher; Leung, Loh-Shan; Leng, Theodore; Brown, Jefferson; Paulus, Yannis M.; Schuele, Georg; Palanker, Daniel
2011-02-01
Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are investigated: (a) decreasing the central irradiance of the laser beam and (b) temporally modulating the pulse. An annular beam with adjustable central irradiance was created by coupling a 532-nm laser into a 200-μm core multimode optical fiber at a 4-7 deg angle to normal incidence. Pulse shapes were optimized using a computational model, and a waveform generator was used to drive a PASCAL photocoagulator (532 nm), producing modulated laser pulses. Acute thresholds for mild coagulation and rupture were measured in Dutch-Belted rabbit in vivo with an annular beam (154-163 μm retinal diameter) and modulated pulse (132 μm, uniform irradiance ``flat-top'' beam) with 2-50 ms pulse durations. Thresholds with conventional constant-power pulse and a flat-top beam were also determined. Both annular beam and modulated pulse provided a 28% increase in TW at 10-ms duration, affording the same TW as 20-ms pulses with conventional parameters.
Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo
2004-12-01
To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.
MacPherson, David C.; Nelson, Loren D.; O'Brien, Martin J.
1996-01-01
Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength.
MacPherson, D.C.; Nelson, L.D.; O`Brien, M.J.
1996-12-10
Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength. 30 figs.
Self-reflection of extremely short light pulses in nonlinear optical waveguides
NASA Astrophysics Data System (ADS)
Kurasov, Alexander E.; Kozlov, Sergei A.
2004-07-01
An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.
NASA Astrophysics Data System (ADS)
Tishchenko, V. N.; Grachev, G. N.; Pavlov, A. A.; Smirnov, A. L.; Pavlov, A. A.; Golubev, M. P.
2008-01-01
The effect of energy removal from the combustion zone of a motionless optical pulsating discharge in the horizontal direction along the axis of a repetitively pulsed laser beam producing the discharge is discovered. The directivity diagram of a hot gas flow is formed during the action of hundreds of pulses. The effect is observed for short pulse durations, when the discharge efficiently generates shock waves. For long pulse durations, the heated gas propagates upward, as in a thermal source.
Ginzburg, N S; Zotova, I V; Sergeev, A S
2010-12-31
Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.
Femtosecond versus picosecond laser pulses for film-free laser bioprinting.
Petit, Stephane; Kérourédan, Olivia; Devillard, Raphael; Cormier, Eric
2017-11-01
We investigate the properties of microjets in the context of film-free laser induced forward transfer in the femtosecond and picosecond regimes. The influence of the pulse duration (ranging from 0.4 to 12 ps) and the energy (ranging from 6 to 12 μJ) is systematically studied on the height, diameter, speed, volume, and shape of the jets. The 400 fs pulses generate thin and stable jets compatible with bioprinting, while 14 ps pulses generate more unstable jets. A pulse duration around 8 ps seems, therefore, to be an interesting trade-off to cover many bio-applications of microjets generated by lasers.
Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution.
Chong, A; Liu, H; Nie, B; Bale, B G; Wabnitz, S; Renninger, W H; Dantus, M; Wise, F W
2012-06-18
With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration.
Ibey, Bennett L.; Xiao, Shu; Schoenbach, Karl H.; Murphy, Michael R.; Pakhomov, Andrei G.
2008-01-01
We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (Rm) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting Rm decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 °C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, lowaverage power EMF emissions. PMID:18839412
Commercial mode-locked vertical external cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.
2018-02-01
This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.
Virtual active touch using randomly patterned intracortical microstimulation.
O'Doherty, Joseph E; Lebedev, Mikhail A; Li, Zheng; Nicolelis, Miguel A L
2012-01-01
Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices.
Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V
2012-08-01
This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.
Methods and apparatus for broadband frequency comb stabilization
Cox, Jonathan A; Kaertner, Franz X
2015-03-17
Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.
Xu, Yifang; Collins, Leslie M
2004-04-01
The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Pranb K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Chandra Pal
2015-03-15
We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmissionmore » characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.« less
Steering population transfer of the Na2 molecule by an ultrashort pulse train
NASA Astrophysics Data System (ADS)
Niu, Dong-Hua; Wang, Shuo; Zhan, Wei-Shen; Tao, Hong-Cai; Wang, Si-Qi
2018-05-01
We theoretically investigate the complete population transfer among quantum states of the Na2 molecule using ultrashort pulse trains using the time-dependent wave packet method. The population accumulation of the target state can be steered by controlling the laser parameters, such as the variable pulse pairs, the different pulse widths, the time delays and the repetition period between two contiguous pulses; in particular, the pulse pairs and the pulse widths have a great effect on the population transfer. The calculations show that the ultrashort pulse train is a feasible solution, which can steer the population transfer from the initial state to the target state efficiently with lower peak intensities.
Scaling of echolocation call parameters in bats.
Jones, G
1999-12-01
I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.
Towards sub-100 fs multi-GW pulses directly emitted from a Thulium-doped fiber CPA system
NASA Astrophysics Data System (ADS)
Gaida, C.; Gebhardt, M.; Stutzki, F.; Jauregui, C.; Limpert, J.; Tünnermann, A.
2017-02-01
Experimental demonstrations of Tm-doped fiber amplifiers (typically in CW- or narrow-band pulsed operation) span a wavelength range going from about 1700 nm to well beyond 2000 nm. Thus, it should be possible to obtain a bandwidth of more than 100 nm, which would enable sub-100 fs pulse duration in an efficient, linear amplification scheme. In fact, this would allow the emission of pulses with less than 20 optical cycles directly from a Tm-doped fiber system, something that seems to be extremely challenging for other dopants in a fused silica fiber. In this contribution, we summarize the current development of our Thulium-doped fiber CPA system, demonstrate preliminary experiments for further scaling and discuss important design factors for the next steps. The current single-channel laser system presented herein delivers a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. Special care has been taken to reduce the detrimental impact of water vapor absorption by placing the whole system in a dry atmosphere housing (<0.1% rel. humidity) and by using a sufficiently long wavelength (1920-1980 nm). The utilization of a low-pressure chamber in the future will allow for the extension of the amplification bandwidth. Preliminary experiments demonstrating a broader amplification bandwidth that supports almost 100 fs pulse duration and average power scaling to < 100W have already been performed. Based on these results, a Tm-doped fiber CPA with sub-100 fs pulse duration, multi-GW pulse peak power and >100 W average power can be expected in the near future.
Dedova, Irina V
2016-01-01
Background Sustained cardiac rehabilitation is the key intervention in the prevention and treatment of many human diseases. However, implementation of exercise programs can be challenging because of early fatigability in patients with chronic diseases, overweight individuals, and aged people. Current methods of fatigability assessment are based on subjective self-reporting such as rating of perceived exertion or require specialized laboratory conditions and sophisticated equipment. A practical approach allowing objective measurement of exercise-induced fatigue would be useful for the optimization of sustained delivery of cardiac rehabilitation to improve patient outcomes. Objectives The objective of this study is to develop and validate an innovative approach, allowing for the objective assessment of exercise-induced fatigue using the Web-enabled leg rehabilitation system. Methods MedExercise training devices were equipped with wireless temperature sensors in order to monitor their usage by temperature rise in the resistance unit (Δt°). Since Δt° correlated with the intensity and duration of exercise, this parameter was used to characterize participants’ leg work output (LWO). Personal smart devices such as laptop computers with wireless gateways and relevant software were used for monitoring of self-control training. Connection of smart devices to the Internet and cloud-based software allowed remote monitoring of LWO in participants training at home. Heart rates (HRs) were measured by fingertip pulse oximeters simultaneously with Δt° in 7 healthy volunteers. Results Exercise-induced fatigue manifested as the decline of LWO and/or rising HR, which could be observed in real-time. Conversely, training at the steady-state LWO and HR for the entire duration of exercise bout was considered as fatigue-free. The amounts of recommended daily physical activity were expressed as the individual Δt° values reached during 30-minute fatigue-free exercise of moderate intensity resulting in a mean of 8.1°C (SD 1.5°C, N=7). These Δt° values were applied as the thresholds for sending automatic notifications upon taking the personalized LWO doses by self-control training at home. While the mean time of taking LWO doses was 30.3 (SD 4.1) minutes (n=25), analysis of times required to reach the same Δt° by the same participant revealed that longer durations were due to fatigability, manifesting as reduced LWO at the later stages of training bouts. Typically, exercising in the afternoons associated with no fatigue, although longer durations of evening sessions suggested a diurnal fatigability pattern. Conclusions This pilot study demonstrated the feasibility of objective monitoring of fatigue development in real-time and online as well as retrospective fatigability quantification by the duration of training bouts to reach the same exercise dose. This simple method of leg training at home accompanied by routine fatigue monitoring might be useful for the optimization of exercise interventions in primary care and special populations. PMID:27549345
Electric fence standards comport with human data and AC limits.
Kroll, Mark W; Perkins, Peter E; Panescu, Dorin
2015-08-01
The ubiquitous electric fence is essential to modern agriculture and has saved lives by reducing the number of livestock automobile collisions. Modern safety standards such as IEC 60335-2-76 and UL 69 have played a role in this positive result. However, these standards are essentially based on energy and power (RMS current), which have limited direct relationship to cardiac effects. We compared these standards to bioelectrically more relevant units of charge and average current in view of recent work on VF (ventricular fibrillation) induction and to existing IEC AC current limits. There are 3 limits for normal (low) pulsing rate: IEC energy limit, IEC current limit, and UL current limit. We then calculated the delivered charge allowed for each pulse duration for these limits and then compared them to a charge-based safety model derived from published human ventricular-fibrillation induction data. Both the IEC and UL also allow for rapid pulsing for up to 3 minutes. We calculated maximum outputs for various pulse durations assuming pulsing at 10, 20, and 30 pulses per second. These were then compared to standard utility power safety (AC) limits via the conversion factor of 7.4 to convert average current to RMS current for VF risk. The outputs of TASER electrical weapons (typically < 100 μC and ~100 μs duration) were also compared. The IEC and UL electric fence energizer normal rate standards are conservative in comparison with actual human laboratory experiments. The IEC and UL electric fence energizer rapid-pulsing standards are consistent with accepted IEC AC current limits for commercially used pulse durations.
Evaluation of non-selective refocusing pulses for 7 T MRI
Moore, Jay; Jankiewicz, Marcin; Anderson, Adam W.; Gore, John C.
2011-01-01
There is a continuing need for improved RF pulses that achieve proper refocusing in the context of ultra-high field (≥ 7 T) human MRI. Simple block or sinc pulses are highly susceptible to RF field inhomogeneities, and adiabatic pulses are generally considered too SAR intensive for practical use at 7 T. The performance of the array of pulses falling between these extremes, however, has not been systematically evaluated. The aim of this work was to compare the performances of 21 non-selective refocusing pulses spanning a range of durations and SAR levels. The evaluation was based upon simulations and both phantom and in vivo human brain experiments conducted at 7 T. Tested refocusing designs included block, composite block, BIR-4, hyperbolic secant, and numerically optimized composite waveforms. These pulses were divided into three SAR classes and two duration categories, and, based on signal gain in a 3-D spin echo sequence, practical recommendations on usage are made within each category. All evaluated pulses were found to produce greater volume-averaged signals relative to a 180° block pulse. Although signal gains often come with the price of increased SAR or duration, some pulses were found to result in significant signal enhancement while also adhering to practical constraints. This work demonstrates the signal gains and losses realizable with single-channel refocusing pulse designs and should assist in the selection of suitable refocusing pulses for practical 3-D spin-echo imaging at 7 T. It further establishes a reference against which future pulses and multi-channel designs can be compared. PMID:22177384
Synthesis of oxide and nitride ceramics in high-power gyrotron discharge
NASA Astrophysics Data System (ADS)
Akhmadullina, N. S.; Skvortsova, N. N.; Obraztsova, E. A.; Stepakhin, V. D.; Konchekov, E. M.; Kargin, Yu F.; Shishilov, O. N.
2017-12-01
Synthesis of oxides, nitrides, and oxynitrides of silicon and aluminium by a pulsed microwave discharge in the mixtures of metal and dielectric powders is described. The microwave pulses were generated by high-power gyrotron (frequency 75 GHz, power up to 550 kW, pulse duration from 0.1 to 15ms). SiO2 + β-Si3N4 (1:1 by molar) and α-Al2O3 + AlN (2:1 by molar) mixtures with Mg (1 and 5wt%) were treated in air with microwave pulses with power of 250÷400 kW and duration of 2÷8 ms. It was found that the discharge cannot be initiated for both mixtures in absence of Mg at any pulse power and duration. When 1% of Mg was added, the discharge was observed for both mixtures under 8 ms pulses of 400 kW; however, the amounts of materials produced were not enough for analysis. With 5% of Mg the discharge was observed for both mixtures under 8 ms pulses of 350 kW, and products of the plasma-chemical processes in the Al2O3 + AlN mixture were analyzed.
Teissié, J; Ramos, C
1998-01-01
Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion. PMID:9545050
Teissié, J; Ramos, C
1998-04-01
Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion.
Optical stimulation of the hearing and deaf cochlea under thermal and stress confinement condition
NASA Astrophysics Data System (ADS)
Schultz, M.; Baumhoff, P.; Kallweit, N.; Sato, M.; Krüger, A.; Ripken, T.; Lenarz, T.; Kral, A.
2014-03-01
There is a controversy, to which extend cochlear stimulation with near infrared laser pulses at a wavelength of 1860 nm is based on optoacoustic stimulation of intact hair cells or -in contrast- is based on direct stimulation of the nerve cells in absence of functional hair cells. Thermal and stress confinement conditions apply, because of the pulse duration range (5 ns, 10 μs-20 ms) of the two lasers used. The dependency of the signal characteristics on pulse peak power and pulse duration was investigated in this study. The compound action potential (CAP) was measured during stimulation of the cochlea of four anaesthetized guinea pigs, which were hearing at first and afterwards acutely deafened using intracochlear neomycin-rinsing. For comparison hydrophone measurements in a water tank were performed to investigate the optoacoustic signals at different laser interaction regimes. With rising pulse peak power CAPs of the hearing animals showed first a threshold, then a positively correlated and finally a saturating dependency. CAPs also showed distinct responses at laser onset and offset separated with the pulse duration. At pulse durations shorter than physiological response times the signals merged. Basically the same signal characteristics were observed in the optoacoustic hydrophone measurements, scaled with the sensitivity and response time of the hydrophone. Taking together the qualitative correspondence in the signal response and the absence of any CAPs in deafened animals our results speak in favor of an optoacoustic stimulation of intact hair cells rather than a direct stimulation of nerve cells.
NASA Astrophysics Data System (ADS)
Ben Neriah, Asaf; Paster, Amir
2017-10-01
Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode.
Cutaneous pain effects induced by Nd:YAG and CO2 laser stimuli
NASA Astrophysics Data System (ADS)
Wang, Jia-Rui; Yu, Guang-Yuan; Yang, Zai-Fu; Chen, Hong-Xia; Hu, Dong-Dong; Zou, Xian-Biao
2012-12-01
The near infrared laser technique can activate cutaneous nociceptors with high specificity and reproducibility and be used in anti-riot equipment. This study aimed to explore cutaneous pain effect and determine the threshold induced by Nd:YAG and CO2 laser stimuli. The corresponding wavelength was 1.32μm and 10.6μm. The pain effect was assessed in three healthy subjects (1 woman and 2 men) on the skin of dorsum of both hands. The energy of each pulse and whether the subjects felt a painful sensation after each stimulus were recorded. A simplified Bliss Method was used to calculate the pain threshold which were determined under three pulse durations for Nd:YAG laser and one pulse duration for CO2 laser. As a result the pain thresholds were determined to be 5.6J/cm2, 5.4J/cm2 and 5.0J/cm2 respectively when using Nd:YAG laser, 4.0mm beam diameter, 8ms, 0.1s and 1s pulse duration. The pain threshold was 1.0J/cm2 when using CO2 laser, 4.0mm beam diameter and 0.1s pulse duration. We concluded that the threshold of cutaneous pain elicited by 1.32μm laser was independent upon the pulse duration when the exposure time ranged from 8ms to 1s. Under the same exposure condition, the threshold of cutaneous pain elicited by 1.32μm laser was higher than that elicited by 10.6μm laser.
38 CFR 21.6072 - Extending the duration of a vocational training program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Extending the duration of... Vocational Training for Certain New Pension Recipients Duration of Training § 21.6072 Extending the duration... training, the originally planned period of training may be extended to a total period consisting of the...
38 CFR 21.6072 - Extending the duration of a vocational training program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Extending the duration of... Vocational Training for Certain New Pension Recipients Duration of Training § 21.6072 Extending the duration... training, the originally planned period of training may be extended to a total period consisting of the...
38 CFR 21.6072 - Extending the duration of a vocational training program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Extending the duration of... Vocational Training for Certain New Pension Recipients Duration of Training § 21.6072 Extending the duration... training, the originally planned period of training may be extended to a total period consisting of the...
A compact nanosecond pulse generator for DBD tube characterization.
Rai, S K; Dhakar, A K; Pal, U N
2018-03-01
High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.
A compact nanosecond pulse generator for DBD tube characterization
NASA Astrophysics Data System (ADS)
Rai, S. K.; Dhakar, A. K.; Pal, U. N.
2018-03-01
High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.
Binary power multiplier for electromagnetic energy
Farkas, Zoltan D.
1988-01-01
A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.
Deng, Jian-Liao; Wei, Qing; Wang, Yu-Zhu; Li, Yong-Qing
2005-05-16
We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous-wave(cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result.
NASA Astrophysics Data System (ADS)
Dharmadhikari, Aditya; Bhowmik, Achintya; Ahyi, Ayayi; Thakur, Mrinal
2000-03-01
We have recently reported observation of spectral narrowing and high-conversion laser-like emission in a solution of styrylpyridinium cynanine dye (SPCD) at a low threshold energy, pumped with the second-harmonic of a picosecond Nd:YAG laser. Fundamental and second-harmonic pulses from a Nd:YAG laser of 80 ps duration at 10 Hz repetition rate were used to pump 0.1 mol/l concentration of SPCD in methanol in two separate pumping arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of spectrally narrowed emission in both cases was measured by background-free SHG intensity autocorrelation technique. A BBO crystal was used for the autocorrelation measurement. The measured duration of the pulses was 40 ps. These pulses having a spectral linewidth of 10 nm (FWHM) were used as a probe to measure the gain in SPCD solution in a pump-probe set up. The results will be discussed.
Generation of nanosecond neutron pulses in vacuum accelerating tubes
NASA Astrophysics Data System (ADS)
Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.
2014-06-01
The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.
Noseleaf dynamics during pulse emission in horseshoe bats.
Feng, Lin; Gao, Li; Lu, Hongwang; Müller, Rolf
2012-01-01
Horseshoe bats emit their biosonar pulses nasally and diffract the outgoing ultrasonic waves by conspicuous structures that surrounded the nostrils. Here, we report quantitative experimental data on the motion of a prominent component of these structures, the anterior leaf, using synchronized laser Doppler vibrometry and acoustic recordings in the greater horseshoe bat (Rhinolophus ferrumequinum). The vibrometry data has demonstrated non-random motion patterns in the anterior leaf. In these patterns, the outer rim of the walls of the anterior leaf twitches forward and inwards to decrease the aperture of the noseleaf and increase the curvature of its surfaces. Noseleaf displacements were correlated with the emitted ultrasonic pulses. After their onset, the inward displacements increased monotonically towards their maximum value which was always reached within the duration of the biosonar pulse, typically towards its end. In other words, the anterior leaf's surfaces were moving inwards during most of the pulse. Non-random motions were not present in all recorded pulse trains, but could apparently be switched on or off. Such switches happened between sequences of consecutive pulses but were never observed between individual pulses within a sequence. The amplitudes of the emitted biosonar pulse and accompanying noseleaf movement were not correlated in the analyzed data set. The measured velocities of the noseleaf surface were too small to induce Doppler shifts of a magnitude with a likely significance. However, the displacement amplitudes were significant in comparison with the overall size of the anterior leaf and the sound wavelengths. These results indicate the possibility that horseshoe bats use dynamic sensing principles on the emission side of their biosonar system. Given the already available evidence that such mechanisms exist for biosonar reception, it may be hypothesized that time-variant mechanisms play a pervasive role in the biosonar sensing of horseshoe bats.
Noseleaf Dynamics during Pulse Emission in Horseshoe Bats
Feng, Lin; Gao, Li; Lu, Hongwang; Müller, Rolf
2012-01-01
Horseshoe bats emit their biosonar pulses nasally and diffract the outgoing ultrasonic waves by conspicuous structures that surrounded the nostrils. Here, we report quantitative experimental data on the motion of a prominent component of these structures, the anterior leaf, using synchronized laser Doppler vibrometry and acoustic recordings in the greater horseshoe bat (Rhinolophus ferrumequinum). The vibrometry data has demonstrated non-random motion patterns in the anterior leaf. In these patterns, the outer rim of the walls of the anterior leaf twitches forward and inwards to decrease the aperture of the noseleaf and increase the curvature of its surfaces. Noseleaf displacements were correlated with the emitted ultrasonic pulses. After their onset, the inward displacements increased monotonically towards their maximum value which was always reached within the duration of the biosonar pulse, typically towards its end. In other words, the anterior leaf’s surfaces were moving inwards during most of the pulse. Non-random motions were not present in all recorded pulse trains, but could apparently be switched on or off. Such switches happened between sequences of consecutive pulses but were never observed between individual pulses within a sequence. The amplitudes of the emitted biosonar pulse and accompanying noseleaf movement were not correlated in the analyzed data set. The measured velocities of the noseleaf surface were too small to induce Doppler shifts of a magnitude with a likely significance. However, the displacement amplitudes were significant in comparison with the overall size of the anterior leaf and the sound wavelengths. These results indicate the possibility that horseshoe bats use dynamic sensing principles on the emission side of their biosonar system. Given the already available evidence that such mechanisms exist for biosonar reception, it may be hypothesized that time-variant mechanisms play a pervasive role in the biosonar sensing of horseshoe bats. PMID:22574110
Wavelength-dependence of double optical gating for attosecond pulse generation
NASA Astrophysics Data System (ADS)
Tian, Jia; Li, Min; Yu, Ji-Zhou; Deng, Yong-Kai; Liu, Yun-Quan
2014-10-01
Both polarization gating (PG) and double optical gating (DOG) are productive methods to generate single attosecond (as) pulses. In this paper, considering the ground-state depletion effect, we investigate the wavelength-dependence of the DOG method in order to optimize the generation of single attosecond pulses for the future application. By calculating the ionization probabilities of the leading edge of the pulse at different driving laser wavelengths, we obtain the upper limit of duration for the driving laser pulse for the DOG setup. We find that the upper limit duration increases with the increase of laser wavelength. We further describe the technical method of choosing and calculating the thickness values of optical components for the DOG setup.
Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain
2012-02-27
We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.
Determination of pulse energy dependence for skin denaturation from 585nm fibre laser
NASA Astrophysics Data System (ADS)
Mujica-Ascencio, S.; Velazquez-Gonzalez, J. S.; Mujica-Ascencio, C.; Alvarez-Chavez, J. A.
2014-05-01
In this paper, simulation and mathematical analysis for the determination of pulse energy from a Q-switched Yb3+-doped fibre laser is required in Port Wine Stain (PWS) treatment. The pulse energy depends on average power, gain, volume, repetition rate and pulse duration. In some treatments such as Selective Photothermolysis (SP), the peak power at the end of the optical fibre and pulse duration can be obtained and modified via a cavity design. For that purpose, a 585nm optical fibre laser full design which considers all of the above besides the average losses through the optical devices proposed for the design and the Ytterbium optical fibre overall gain will be presented.
Impact of pumping configuration on all-fibered femtosecond chirped pulse amplification
NASA Astrophysics Data System (ADS)
Lecourt, Jean-Bernard; Duterte, Charles; Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico
2008-04-01
We experimentally compared the co- and counter-propagative pumping scheme for the amplification of ultra-short optical pulses. According to pumping direction we show that optical pulses with a duration of 75 fs and 100mW of average output power can be obtained for co-propagative pumping, while pulse duration is never shorter than 400 fs for the counter-propagative case. We show that the impact of non-linear effects on pulse propagation is different for the two pumping configurations. We assume that Self Phase Modulation (SPM) is the main effect in the copropagative case, whereas the impact of Stimulated Raman Scattering is bigger for the counter-propagative case.
USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 34
1977-04-27
Russian abstract provided by the source] [Text] The relationship of duration and intensity of ultrashort pulses in a mode-locked ruby laser with Q...Excess charge carriers have been found to appear in pure Ge and Si crystals irradiated with short pulses from a C02 laser . The high purity and perfection...Illustrations 2; References 15: 8 Russian, 7 Western. USSR UDC 621.378.325 CONTROL OF DURATION OF ULTRASHORT PULSES IN MODE-LOCKED LASERS ZHURNAL
A feasible repetitive transcranial magnetic stimulation clinical protocol in migraine prevention.
Zardouz, Shawn; Shi, Lei; Leung, Albert
2016-01-01
This case series was conducted to determine the clinical feasibility of a repetitive transcranial magnetic stimulation protocol for the prevention of migraine (with and without aura). Five patients with migraines underwent five repetitive transcranial magnetic stimulation sessions separated in 1- to 2-week intervals for a period of 2 months at a single tertiary medical center. Repetitive transcranial magnetic stimulation was applied to the left motor cortex with 2000 pulses (20 trains with 1s inter-train interval) delivered per session, at a frequency of 10 Hz and 80% resting motor threshold. Pre- and post-treatment numerical rating pain scales were collected, and percent reductions in intensity, frequency, and duration were generated. An average decrease in 37.8%, 32.1%, and 31.2% were noted in the intensity, frequency, and duration of migraines post-repetitive transcranial magnetic stimulation, respectively. A mean decrease in 1.9±1.0 (numerical rating pain scale ± standard deviation; range: 0.4-2.8) in headache intensity scores was noted after the repetitive transcranial magnetic stimulation sessions. The tested repetitive transcranial magnetic stimulation protocol is a well-tolerated, safe, and effective method for migraine prevention.
Ultrashort-pulse-train pump and dump excitation of a diatomic molecule
NASA Astrophysics Data System (ADS)
de Araujo, Luís E. E.
2010-09-01
An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.
Ultrashort-pulse-train pump and dump excitation of a diatomic molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araujo, Luis E. E. de
An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.
Goto, Nobuo; Miyazaki, Yasumitsu
2014-06-01
Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100 Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.
Virtual Active Touch Using Randomly Patterned Intracortical Microstimulation
O’Doherty, Joseph E.; Lebedev, Mikhail A.; Li, Zheng; Nicolelis, Miguel A.L.
2012-01-01
Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices. PMID:22207642
Compton, Jonathan L.; Hellman, Amy N.; Venugopalan, Vasan
2013-01-01
Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180–1100 ps and pulse energies of 0.5–10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of pulse energy and pulse duration. These results provide a mechanistic foundation and design strategy applicable to a broad range of laser-based cellular manipulation procedures. PMID:24209868
Determination of sensation threshold from small pulse trains of 2.01μm laser light
NASA Astrophysics Data System (ADS)
Dugan, Daniel C.; Johnson, Thomas E.
2009-02-01
The determination of sensation thresholds has applications ranging from uses in the medical community such as neural pathway mapping and for the diagnosis of diabetic neuropathy, to potential uses in determining safety standards. This study sought to determine the sensation threshold, and the distribution of sensation probabilities, for pulse trains ranging from two 10 ms pulses to nine 10 ms pulses from 2.01 μm laser light incident on a human forearm and chest. Threshold was defined as the energy density that would elicit sensation 50% of the time (ED50). A method of levels approach was used in conjunction with a monovariate binary response model to determine the ED50. We determined the ED50 and also a distribution of threshold probabilities. Threshold was found to be largely dependant on total energy deposited for smaller pulse trains, and thus independent of the number of pulses. Total energy becomes less important as the number of pulses increases however, and a decrease in threshold was measured for a nine pulse train as compared to one through four pulse trains. Thus we have demonstrated that this method is a useful and easy way for determining sensation thresholds from a 2.01 μm laser for possible clinical use. We have also demonstrated that lower power lasers when pulsed can elicit sensation at comparable levels to higher power single pulse lasers.
Tantalum pentoxide waveguides and microresonators for VECSEL based frequency combs
NASA Astrophysics Data System (ADS)
Chen Sverre, T.; Woods, J. R. C.; Shaw, E. A.; Hua, Ping; Apostolopoulos, V.; Wilkinson, J. S.; Tropper, A. C.
2018-02-01
Tantalum pentoxide (Ta2O5) is a promising material for mass-producible, multi-functional, integrated photonics circuits on silicon, exhibiting robust electrical, mechanical and thermal properties, as well as good CMOS compatibility. In addition, Ta2O5 has been reported to demonstrate a non-linear response comparable to that of chalcogenide glass, in the region of 3-6 times larger than that of materials such as silica (SiO2) or silicon nitride (Si3N4). In contrast to Si-based dielectrics, it will accept trivalent ytterbium and erbium dopant ions, opening the possibility of on-chip amplification. The high refractive index of Ta2O5 is consistent with small guided mode cross-section area, and allows the construction of micro-ring resonators. Propagation losses as low as 0.2 dB=cm have been reported. In this paper we describe the design of a planar Ta2O5 waveguides optimised for the generation of coherent continuum with near infrared pulse trains at kW peak powers. The Pulse Repetition Frequency (PRF) of the VECSEL can be tuned to a sub-harmonic of the planar micro-ring and the optical pump power applied to the VECSEL can be adjusted so that mode-matching of the VECSEL pulse train with the micro-ring resonator can be achieved. We shall describe the fabrication of Ta2O5 guiding structures, and the characterisation of their nonlinear and other optical properties. Characterisation with conventional lasers will be used to assess the degree of coherent spectral broadening likely to be achievable using these devices when driven by mode-locked VECSELs operating near the current state-of- art for pulse energy and duration.
Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit
NASA Astrophysics Data System (ADS)
Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong
2018-06-01
A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.
Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.
2016-01-01
In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594
NASA Astrophysics Data System (ADS)
Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng
2018-05-01
Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.
Ti:sapphire/KrF hybrid laser system generating trains of subterawatt subpicosecond UV pulses
NASA Astrophysics Data System (ADS)
Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Mesyats, G. A.; Seleznev, L. V.; Sinitsyn, D. V.; Ustinovskii, N. N.; Shutov, A. V.
2014-05-01
The GARPUN-MTW Ti:sapphire/KrF hybrid laser system is used to investigate different multipass schemes for amplifying trains of ultrashort pulses (USPs) of subpicosecond duration. It is shown that, for an USP repetition period of 3 - 5 ns, which exceeds the gain-medium recovery time (~2 ns), trains are amplified in the same way as single USPs. Due to this, a train can efficiently extract pump energy from the amplifier and sum energies of individual USPs. The energy of a four-USP train, extracted during four passes through the preamplifier and two passes through the final KrF amplifier (4 + 2 scheme), is saturated at a level of 1.6 J and corresponds to maximum USP peak powers of about 0.6 TW. The energy of amplified spontaneous emission (ASE), on the contrary, rapidly increases at a large total gain length Leff ≈ 6 m and is approximately equal to the USP energy. In the (4 + 1) and (2 + 2) schemes the USP energy decreases only slightly, to Eout = 1.3 and 1.2 J, and the ASE fraction is reduced to about 10% and 3%, respectively. USP self-focusing leads to multiple laser beam filamentation and a 200-fold local increase in the radiation intensity in filaments, to ~2 × 1011 W cm-2, a level at which the nonlinear loss in the output CaF2 windows of the KrF amplifier, caused by three-photon absorption, nonlinear scattering, and broadening of the radiation spectrum to a value exceeding the gain band of the KrF laser transition, becomes the main factor determining the saturation of the USP output energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misochko, O. V., E-mail: misochko@issp.ac.ru
Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separationmore » between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.« less
NASA Astrophysics Data System (ADS)
Smetanin, S. N.; Jelínek, M.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.
2016-10-01
A new effect of the pulse shortening of the parametrically generated radiation down to hundreds of picosecond via depletion of pumping of intracavity Raman conversion in the miniature passively Q-switched Nd: SrMoO4 parametric self-Raman laser with the increasing energy of the shortened pulse under pulsed pumping by a high-power laser diode bar is demonstrated. The theoretical estimation of the depletion stage duration of the convertible fundamental laser radiation via intracavity Raman conversion is in agreement with the experimentally demonstrated duration of the parametrically generated pulse. Using the mathematical modeling of the pulse shortening quality and quantity deterioration is disclosed, and the solution ways are found by the optimization of the laser parameters.
Method and apparatus for electrical cable testing by pulse-arrested spark discharge
Barnum, John R.; Warne, Larry K.; Jorgenson, Roy E.; Schneider, Larry X.
2005-02-08
A method for electrical cable testing by Pulse-Arrested Spark Discharge (PASD) uses the cable response to a short-duration high-voltage incident pulse to determine the location of an electrical breakdown that occurs at a defect site in the cable. The apparatus for cable testing by PASD includes a pulser for generating the short-duration high-voltage incident pulse, at least one diagnostic sensor to detect the incident pulse and the breakdown-induced reflected and/or transmitted pulses propagating from the electrical breakdown at the defect site, and a transient recorder to record the cable response. The method and apparatus are particularly useful to determine the location of defect sites in critical but inaccessible electrical cabling systems in aging aircraft, ships, nuclear power plants, and industrial complexes.
Diode end-pumped passively Q-switched Tm:YAP laser with 1.85-mJ pulse energy.
Sebbag, Daniel; Korenfeld, Arik; Ben-Ami, Udi; Elooz, David; Shalom, Eran; Noach, Salman
2015-04-01
Passive Q switching of a Tm:YAP solid-state laser at 1935 nm with Cr:ZnSe and Cr:ZnS polycrystalline saturable absorbers is demonstrated for the first time, to the best of our knowledge. With Cr:ZnS, a maximum pulse energy of 1.85 mJ is obtained for a pulse duration of 35.8 ns, resulting in a peak power of 51.7 kW. With Cr:ZnSe, the achieved pulse energy of 1.55 mJ with a pulse duration of 42.2 ns leads to 36.7-kW peak power. These high pulse energies, together with the unique lasing wavelength at 1935 nm, make this laser a promising tool for biomedical and microsurgery applications.
Improved safety of retinal photocoagulation with a shaped beam and modulated pulse
NASA Astrophysics Data System (ADS)
Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel
2010-02-01
Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.
Saturation pulse design for quantitative myocardial T1 mapping.
Chow, Kelvin; Kellman, Peter; Spottiswoode, Bruce S; Nielles-Vallespin, Sonia; Arai, Andrew E; Salerno, Michael; Thompson, Richard B
2015-10-01
Quantitative saturation-recovery based T1 mapping sequences are less sensitive to systematic errors than the Modified Look-Locker Inversion recovery (MOLLI) technique but require high performance saturation pulses. We propose to optimize adiabatic and pulse train saturation pulses for quantitative T1 mapping to have <1 % absolute residual longitudinal magnetization (|MZ/M0|) over ranges of B0 and [Formula: see text] (B1 scale factor) inhomogeneity found at 1.5 T and 3 T. Design parameters for an adiabatic BIR4-90 pulse were optimized for improved performance within 1.5 T B0 (±120 Hz) and [Formula: see text] (0.7-1.0) ranges. Flip angles in hard pulse trains of 3-6 pulses were optimized for 1.5 T and 3 T, with consideration of T1 values, field inhomogeneities (B0 = ±240 Hz and [Formula: see text]=0.4-1.2 at 3 T), and maximum achievable B1 field strength. Residual MZ/M0 was simulated and measured experimentally for current standard and optimized saturation pulses in phantoms and in-vivo human studies. T1 maps were acquired at 3 T in human subjects and a swine using a SAturation recovery single-SHot Acquisition (SASHA) technique with a standard 90°-90°-90° and an optimized 6-pulse train. Measured residual MZ/M0 in phantoms had excellent agreement with simulations over a wide range of B0 and [Formula: see text]. The optimized BIR4-90 reduced the maximum residual |MZ/M0| to <1 %, a 5.8× reduction compared to a reference BIR4-90. An optimized 3-pulse train achieved a maximum residual |MZ/M0| <1 % for the 1.5 T optimization range compared to 11.3 % for a standard 90°-90°-90° pulse train, while a 6-pulse train met this target for the wider 3 T ranges of B0 and [Formula: see text]. The 6-pulse train demonstrated more uniform saturation across both the myocardium and entire field of view than other saturation pulses in human studies. T1 maps were more spatially homogeneous with 6-pulse train SASHA than the reference 90°-90°-90° SASHA in both human and animal studies. Adiabatic and pulse train saturation pulses optimized for different constraints found at 1.5 T and 3 T achieved <1 % residual |MZ/M0| in phantom experiments, enabling greater accuracy in quantitative saturation recovery T1 imaging.
Monolithic hybrid optics for focusing ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Fuchs, U.
2014-03-01
Almost any application of ultrashort laser pulses involves focusing them in order to reach high intensities and/or small spot sizes as needed for micro-machining or Femto-LASIK. Hence, it is indispensable to be able to understand pulse front distortion caused by real world optics. Focusing causes pulse front distortion due to aberrations, dispersion and diffraction. Thus, the spatio-temporal profile of ultrashort laser is altered, which increases automatically the pulse duration and the focusing spot. Consequently, the main advantage of having ultrashort laser pulses - pulse durations way below 100 fs - can be lost in that one last step of the experimental set-up by focusing them unfavorable. Since compensating for dispersion, aberration and diffraction effects is quite complicated and not always possible, we pursue a different approach. We present a specially designed monolithic hybrid optics comprising refraction and diffraction effects for tight spatial and temporal focusing of ultrashort laser pulses. Both aims can be put into practice by having a high numerical aperture (NA = 0.35) and low internal dispersion at the same time. The focusing properties are very promising, due to a design, which provides diffraction limited focusing for 100 nm bandwidth at 780 nm center wavelength. Thus, pulses with durations as short as 10 fs can be focused without pulse front distortion. The outstanding performance of this optics is shown in theory and experimentally. Above that, such focusing optics are easily adapted to their special purpose - changing the center wavelength, achromatic bandwidth or even correcting for focusing into material is possible.
Domingue, Scott R.; Bartels, Randy A.
2014-12-04
Here, we demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26more » fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.« less
2006-08-01
injuries, including corneal, lenticular , and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser...little for skin effects. Unlike most other laser wavelengths, 1315-nm irradiation has been shown to cause damage at corneal, lenticular , and retinal
NASA Astrophysics Data System (ADS)
Vaulin, V. A.; Slinko, V. N.; Sulakshin, S. S.
1990-12-01
An excimer laser (λ approx 308 nm) utilizing an Ne-Xe-HCl mixture was excited by microwave (ν0 = 3.07 GHz) pulses of 2.8-μs duration and ~ 0.9 MW power delivered by a commercial microwave oscillator. A peak laser radiation power of 130 W was obtained in pulses of 280 ns duration. Laser radiation from along the center of a laser tube was recorded in addition to that from the skin layer.
12 mJ Yb:YAG/Cr:YAG microchip laser
NASA Astrophysics Data System (ADS)
Guo, Xiaoyang; Tokita, Shigeki; Kawanaka, Junji
2018-02-01
By cryogenically cooling the Yb:YAG/Cr:YAG medium, one can break through the damage limit of Yb:YAG/Cr:YAG passively Q-switched microchip lasers at room temperature and thus achieve a shorter minimum pulse duration. In the proof of principle experiment we carried out, a 160.6 ps pulse duration was obtained. To the best of our knowledge, this is the first realization of sub-200 ps pulse operation for an Yb:YAG/Cr:YAG microchip laser
Characterizing the graded structure of false killer whale (Pseudorca crassidens) vocalizations.
Murray, S O; Mercado, E; Roitblat, H L
1998-09-01
The vocalizations from two, captive false killer whales (Pseudorca crassidens) were analyzed. The structure of the vocalizations was best modeled as lying along a continuum with trains of discrete, exponentially damped sinusoidal pulses at one end and continuous sinusoidal signals at the other end. Pulse trains were graded as a function of the interval between pulses where the minimum interval between pulses could be zero milliseconds. The transition from a pulse train with no inter-pulse interval to a whistle could be modeled by gradations in the degree of damping. There were many examples of vocalizations that were gradually modulated from pulse trains to whistles. There were also vocalizations that showed rapid shifts in signal type--for example, switching immediately from a whistle to a pulse train. These data have implications when considering both the possible function(s) of the vocalizations and the potential sound production mechanism(s). A short-time duty cycle measure was developed to characterize the graded structure of the vocalizations. A random sample of 500 vocalizations was characterized by combining the duty cycle measure with peak frequency measurements. The analysis method proved to be an effective metric for describing the graded structure of false killer whale vocalizations.
McCosh, R B; Berry, E M; Wehrman, M E; Redden, R R; Hallford, D M; Berardinelli, J G
2015-03-01
The objectives of this study were to determine if exposing seasonally anovular ewes to rams would alter patterns of cortisol concentrations, and if these changes are associated with changes in characteristics of LH concentrations. Seasonally anestrous ewes were assigned to be exposed to rams (RE; n=11) or wethers (NE; n=12). Blood samples were collected at 15-min intervals beginning 120 min before introduction of males (time=0 min), and continued for 360 min after male exposure. Characteristics of cortisol and LH concentrations included: mean and baseline concentrations, pulse amplitude, duration, frequency, and time to first pulse. Mean and baseline cortisol concentrations, and cortisol pulse amplitude, frequency, and time to first pulse after male exposure did not differ between RE and NE ewes. Cortisol pulse duration was longer (P<0.05) in RE ewes than in NE ewes. Mean LH and LH pulse amplitude, duration, and time to first pulse after male exposure did not differ between RE and NE ewes. Baseline LH concentrations and LH pulse frequency were greater (P<0.05) in RE than in NE ewes. In RE ewes, but not NE ewes, LH pulse frequency tended to increase (P=0.06) as pulse frequency of cortisol decreased. In conclusion, exposing ewes to mature rams during the transition into the breeding season increased LH pulse frequency which hastened ovulatory activity. However, the results do not support the hypothesis that changes in cortisol concentrations plays a significant role in the 'ram effect'. Copyright © 2015 Elsevier B.V. All rights reserved.
Single-beam Denisyuk holograms recording with pulsed 30Hz RGB laser
NASA Astrophysics Data System (ADS)
Zacharovas, Stanislovas; Bakanas, Ramūnas; Stankauskas, Algimantas
2016-03-01
It is well known fact that holograms can be recorded either by continuous wave (CW) laser, or by single pulse coming from pulsed laser. However, multi-pulse or multiple-exposure holograms were used only in interferometry as well as for information storage. We have used Geola's single longitudinal mode pulsed RGB laser to record Denisyuk type holograms. We successfully recorded objects situated at the distance of more than 30cm, employing the multi-pulse working regime of the laser. To record Denisyuk hologram we have used 50 ns duration 440, 660nm wavelength and 35ns duration 532nm wavelength laser pulses at the repetition rate of 30Hz. As photosensitive medium we have used Slavich-Geola PFG-03C glass photoplate. Radiations with different wavelengths were mixed into "white" beam, collimated and directed onto the photoplate. For further objects illumination an additional flat silver coated mirror was used.
Neuhaus, Joerg; Bauer, Dominik; Zhang, Jing; Killi, Alexander; Kleinbauer, Jochen; Kumkar, Malte; Weiler, Sascha; Guina, Mircea; Sutter, Dirk H; Dekorsy, Thomas
2008-12-08
The pulse shaping dynamics of a diode-pumped laser oscillator with active multipass cell was studied experimentally and numerically. We demonstrate the generation of high energy subpicosecond pulses with a pulse energy of up to 25.9 microJ at a pulse duration of 928 fs directly from a thin-disk laser oscillator. These results are achieved by employing a selfimaging active multipass geometry operated in ambient atmosphere. Stable single pulse operation has been obtained with an average output power in excess of 76 W and at a repetition rate of 2.93 MHz. Self starting passive mode locking was accomplished using a semiconductor saturable absorber mirror. The experimental results are compared with numerical simulations, showing good agreement including the appearance of Kelly sidebands. Furthermore, a modified soliton-area theorem for approximating the pulse duration is presented. (c) 2008 Optical Society of America
Modulation of H-Reflex Depression with Paired-Pulse Stimulation in Healthy Active Humans.
Oza, Preeti D; Dudley-Javoroski, Shauna; Shields, Richard K
2017-01-01
Depression of the Hoffman reflex (H-reflex) is used to examine spinal control mechanisms during exercise, fatigue, and vibration and in response to training. H-reflex depression protocols frequently use trains of stimuli; this is time-consuming and prevents instantaneous assessment of motor neuronal excitability. The purpose of this study was to determine if paired-pulse H-reflex depression is reproducible and whether paired-pulse stimulation adequately estimates the depression induced by the more traditional ten-pulse train. H-reflexes were elicited via ten-pulse trains at 0.1, 0.2, 1, 2, and 5 Hz in ten neurologically intact individuals on two separate days. We measured the depression elicited by the second pulse (H2) and the mean depression elicited by pulses 2-10 (Hmean). H2 was consistent at all frequencies on both days ( r 2 = 0.97, p < 0.05, and ICC (3,1) = 0.81). H2 did not differ from Hmean ( p > 0.05). The results indicate that paired-pulse H-reflex depression has high between-day reliability and yields depression estimates that are comparable to those obtained via ten-pulse trains. Paired-pulse H-reflex depression may be especially useful for studies that require rapid assessment of motor neuronal excitability, such as during exercise, fatigue, and vibration, or to establish recovery curves following inhibition.
Ben Neriah, Asaf; Paster, Amir
2017-10-01
Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.
Non-plasmonic nanostructures for subwavelength nonlinear optics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shcherbakov, Maxim R.
2016-09-01
Thin films of hydrogenated amorphous silicon were grown on cover glasses by PECVD in an Oxford PlasmaLab System 100. The thickness of the films and their linear optical properties were characterized by J.A. Woollam Co. Spectroscopic Ellipsometer M-2000D. The follow-up procedure was to spin coat the negative tone ma-N 2403 electron-beam resist over the film, and expose the resist using an electron-beam lithography system (Raith 150). The exposed film was developed and brought to the reactive ion etching facility. We performed conventional apertureless z-scan and I-scan measurements. A train of femtosecond laser pulses form a Coherent Micra 5 laser with an output mean power of 250 mW passed through a precompressor for a negative chirp. A thin-film nanoparticle polarizer (ThorLabs LPVIS050) and a Glan laser-grade polarizer were used to adjust the fluence values in the range of 0.1-10 mJ/cm2. For the pump-probe measurements, a train of femtosecond laser pulses form the laser passed through a pre-compressor for a negative chirp. The pulses were split into two; the resulting mean power values of pump and probe beams at the sample site were approximately 40 mW and 1.5 mW, respectively. The pulses were measured to have 45 fs intensity autocorrelation FHWM duration, and a spectral FWHM width of 19 nm, resulting in a time-bandwidth product of 0.4. Focusing through a silica lens pair achieved waists of roughly 30 μm in diameter, resulting in modest pump fluence values of approximately 30 μJ/cm2, a pump pulse energy of 0.25 nJ, and per-disk deposited energy of 13 fJ. The third-harmonic generation experiment description can be found as the supplementary information of the following publication: http://pubs.acs.org/doi/abs/10.1021/nl503029j
Carlsen, Berit C; Wenande, Emily; Erlendsson, Andres M; Faurschou, Annesofie; Dierickx, Christine; Haedersdal, Merete
2017-01-01
Pulsed dye laser (PDL) represents the gold-standard treatment for port wine stains (PWS). However, approximately 20% of patients are poor responders and yield unsatisfactory end-results. The Alexandrite (Alex) laser may be a therapeutic alternative for selected PWS subgroups, but optimal laser parameters are not known. The aim of this study was to assess clinical PWS clearance and safety of Alex laser at a range of pulse durations. Sixteen individuals (14 previously PDL-treated) with deep red (n = 4), purple macular (n = 5) and purple hypertrophic (n = 7) PWS were included. Four side-by-side test areas were marked within each lesion. Three test areas were randomized to Alex laser at pulse durations of 3, 5, or 10 ms (8 mm spot, DCD 60/40), while the fourth was untreated. The lowest effective fluence to create purpura within the entire test spot was titrated and applied to intervention areas. Standardized clinical photographs were taken prior to, immediately after laser exposure and at 6-8 weeks follow up. Clinical PWS clearance and laser-related side effects were assessed using clinical photos. Alex laser at 3, 5, and 10 ms pulse durations demonstrated significant clearance compared to untreated controls (P < 0.001). Three milli second pulse duration exhibited improved clearance versus 5 ms (P = 0.016) and 10 ms (P = 0.004), while no difference between five and 10 ms was shown (P = 0.063). Though not significant, good responders (>50% clearance) were more likely to have purple hypertrophic PWS (5/7) compared to purple macular (2/5) and deep red lesions (1/4). Eight laser-exposed test areas (17%) developed hypopigmented atrophic scarring. Side effects tended to be more frequently observed with 5 ms (n = 4) and 10 ms (n = 3) versus 3 ms pulse duration (n = 1). Correspondingly, 3 ms was associated with a superior (n = 6) or comparable (n = 10) overall cosmetic appearance for all individuals. Alex laser at 3 ms pulse duration offers superior clinical clearance and safety compared to 5 and 10 ms, and seems best suited for purple hypertrophic PWS. Treatment should be restricted to experienced personnel due to a particularly narrow therapeutic window. Lasers Surg. Med. 49:97-103, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gordienko, Vyacheslav M.; Platonenko, Viktor T.; Sterzhantov, A. F.
2009-07-01
The propagation of ultrashort 10-μm laser pulses of power exceeding the critical self-focusing power in xenon and air is numerically simulated. It is shown that the pulse duration in certain regimes in xenon can be decreased by 3-4 times simultaneously with the increase in the pulse power by 2-3 times. It is found that the average energy of electrons in a filament upon filamentation of 10-μm laser pulses in air can exceed 200 eV. The features of the third harmonic and terahertz radiation generation upon filamentation are discussed.
Mesoscopic fluctuations of the population of a qubit in a strong alternating field
NASA Astrophysics Data System (ADS)
Denisenko, M. V.; Satanin, A. M.
2016-12-01
Fluctuations of the population of a Josephson qubit in an alternating field, which is a superposition of electromagnetic pulses with large amplitudes, are studied. It is shown that the relative phase of pulses is responsible for the rate of Landau-Zener transitions and, correspondingly, for the frequency of transitions between adiabatic states. The durations of pulses incident on the qubit are controlled with an accuracy of the field period, which results in strong mesoscopic fluctuations of the population of the qubit. Similar to the magnetic field in mesoscopic physics, the relative phase of pulses can destroy the interference pattern of the population of the qubit. The influence of the duration of the pulse and noise on the revealed fluctuation effects is studied.
Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser
NASA Astrophysics Data System (ADS)
Zheng, Lihe; Taira, Takunori
2016-03-01
A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.
Stunf Pukl, Spela; Drnovšek-Olup, Brigita
2018-02-01
To evaluate the efficacy of selective laser trabeculoplasty (SLT) to lower intraocular pressure (IOP) in patients with primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) or ocular hypertension (OHT), when performed with laser pulse duration of 1 ns compared with standard 3-5 ns. Bilateral SLT with a 532 nm Q-switched neodymium-doped yttrium aluminium garnet laser was conducted in 30 patients (60 eyes) with POAG (n = 5), NTG (n = 2) or OHT (n = 23). Pulse duration was 1 ns in the right eye (30 eyes; cases) and 3-5 ns in all left eyes (controls). Main outcome measures were IOP at 1 h, 1 day, 8 weeks and 6 months, and the rate of adverse ocular tissue reactions in all eyes. Mean 1 ns and 3-5 ns SLT IOPs were 24.1 and 24.3 mmHg, respectively, at baseline. No statistically significant difference in mean 1 ns and 3-5 ns SLT IOP was observed at 1 h (P = 0.761), 1 day (P = 0.758), 8 weeks (P = 0.352) and 6 months postoperatively (P = 0.879). No significant difference in postoperative anterior chamber inflammation was observed between the eyes (P = 0.529). Treatment with both laser pulse durations resulted in minor ultrastructural changes in the drainage angle. SLT performed with a 1 ns laser pulse duration does not appear to be inferior to SLT performed with the standard 3-5 ns duration at lowering IOP in treatment-naïve patients with POAG, NTG or OHT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, Ayaka, E-mail: atamura@hiroshima-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya
2015-05-07
We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of themore » short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.« less
Nakahara, Tatsushi; Takahashi, Ryo
2013-05-06
We propose a novel, self-stabilizing optical clock pulse-train generator for processing preamble-free, asynchronous optical packets with variable lengths. The generator is based on an optical loop that includes a semiconductor optical amplifier (SOA) and a high-extinction spin-polarized saturable absorber (SA), with the loop being self-stabilized by balancing out the gain and absorption provided by the SOA and SA, respectively. The optical pulse train is generated by tapping out a small portion of a circulating seed pulse. The convergence of the generated pulse energy is enabled by the loop round-trip gain function that has a negative slope due to gain saturation in the SOA. The amplified spontaneous emission (ASE) of the SOA is effectively suppressed by the SA, and a backward optical pulse launched into the SOA enables overcoming the carrier-recovery speed mismatch between the SOA and SA. Without external control for the loop gain, a stable optical pulse train consisting of more than 50 pulses with low jitter is generated from a single 10-ps seed optical pulse even with a variation of 10 dB in the seed pulse intensity.
Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan; ...
2017-09-01
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
NASA Astrophysics Data System (ADS)
Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.
2016-11-01
Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
Strong and Long Makes Short: Strong-Pump Strong-Probe Spectroscopy.
Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang
2011-01-20
We propose a new time-domain spectroscopic technique that is based on strong pump and probe pulses. The strong-pump strong-probe (SPSP) technique provides temporal resolution that is not limited by the durations of the pump and probe pulses. By numerically exact simulations of SPSP signals for a multilevel vibronic model, we show that the SPSP signals exhibit electronic and vibrational beatings on time scales which are significantly shorter than the pulse durations. This suggests the possible application of SPSP spectroscopy for the real-time investigation of molecular processes that cannot be temporally resolved by pump-probe spectroscopy with weak pump and probe pulses.
Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu
2009-12-21
In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.
Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment
NASA Astrophysics Data System (ADS)
Hamedi, M. J.; Torkamany, M. J.; Sabbaghzadeh, J.
2011-04-01
Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koptev, M Yu; Anashkina, E A; Lipatov, D S
2015-05-31
We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm rangemore » and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)« less
Zhou, Yufeng; Gao, Xiaobin Wilson
2013-08-01
High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1 Hz. Altogether, bubble cavitation and thermal field vary with the progress of HIFU treatment with different sonication parameters, which provide insights into the interaction of ultrasound burst with the induced bubbles for both soft tissue fractionation and enhancement in thermal accumulation. Appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety.
XUV pulse effect on signal modulations of harmonic spectra from H2+ and T2+
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Liu, Hang; Kapteyn, Henry J.; Feng, April Y.
2018-05-01
The effects of signal modulations on the molecular high-order harmonic generations in H2^{+ } and T2+ have been theoretically investigated. It is found that with the introduction of the XUV pulse, due to the absorption of the extra XUV photons in the recombination process, multiplateaus on the harmonic spectra, separated by the XUV photon energy can be found. Moreover, this multiplateau structure is insensitive to the wavelength of the XUV pulse. In shorter pulse duration, the intensities of the multiplateaus from H2+ are higher than those from T2+; while in longer pulse duration, the opposite results can be found. Finally, by changing the delay time of the XUV pulse, the signal modulations (including the amplitude and the frequency modulations) of the multiplateaus can be controlled.
Auditory Temporal Acuity Probed With Cochlear Implant Stimulation and Cortical Recording
Kirby, Alana E.
2010-01-01
Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms. PMID:19923242
Plasma Membrane Permeabilization by Trains of Ultrashort Electric Pulses
Ibey, Bennett L.; Mixon, Dustin G.; Payne, Jason A.; Bowman, Angela; Sickendick, Karl; Wilmink, Gerald J.; Roach, W. Patrick; Pakhomov, Andrei G.
2010-01-01
Ultrashort electric pulses (USEP) cause long-lasting increase of cell membrane electrical conductance, and that a single USEP increased cell membrane electrical conductance proportionally to the absorbed dose (AD) with a threshold of about 10 mJ/g. The present study extends quantification of the membrane permeabilization effect to multiple USEP and employed a more accurate protocol that identified USEP effect as the difference between post- and pre-exposure conductance values (Δg) in individual cells. We showed that Δg can be increased by either increasing the number of pulses at a constant E-field, or by increasing the E-field at a constant number of pulses. For 60-ns pulses, an E-field threshold of 6 kV/cm for a single pulse was lowered to less than 1.7 kV/cm by applying 100-pulse or longer trains. However, the reduction of the E-field threshold was only achieved at the expense of a higher AD compared to a single pulse exposure. Furthermore, the effect of multiple pulses was not fully determined by AD, suggesting that cells permeabilized by the first pulse(s) in the train become less vulnerable to subsequent pulses. This explanation was corroborated by a model that treated multiple-pulse exposures as a series of single-pulse exposures and assumed an exponential decline of cell susceptibility to USEP as Δg increased after each pulse during the course of the train. PMID:20171148
Hydrophobicity of silver surfaces with microparticle geometry
NASA Astrophysics Data System (ADS)
Macko, Ján; Oriňaková, Renáta; Oriňak, Andrej; Kovaľ, Karol; Kupková, Miriam; Erdélyi, Branislav; Kostecká, Zuzana; Smith, Roger M.
2016-11-01
The effect of the duration of the current deposition cycle and the number of current pulses on the geometry of silver microstructured surfaces and on the free surface energy, polarizability, hydrophobicity and thus adhesion force of the silver surfaces has been investigated. The changes in surface hydrophobicity were entirely dependent on the size and density of the microparticles on the surface. The results showed that formation of the silver microparticles was related to number of current pulses, while the duration of one current pulse played only a minor effect on the final surface microparticle geometry and thus on the surface tension and hydrophobicity. The conventional geometry of the silver particles has been transformed to the fractal dimension D. The surface hydrophobicity depended predominantly on the length of the dendrites not on their width. The highest silver surface hydrophobicity was observed on a surface prepared by 30 current pulses with a pulse duration of 1 s, the lowest one when deposition was performed by 10 current pulses with a duration of 0.1 s. The partial surface tension coefficients γDS and polarizability kS of the silver surfaces were calculated. Both parameters can be applied in future applications in living cells adhesion prediction and spectral method selection. Silver films with microparticle geometry showed a lower variability in final surface hydrophobicity when compared to nanostructured surfaces. The comparisons could be used to modify surfaces and to modulate human cells and bacterial adhesion on body implants, surgery instruments and clean surfaces.
CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.
Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P
2010-03-15
We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.
Molecular spinning by a chiral train of short laser pulses
NASA Astrophysics Data System (ADS)
Floß, Johannes; Averbukh, Ilya Sh.
2012-12-01
We provide a detailed theoretical analysis of molecular rotational excitation by a chiral pulse train, a sequence of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. Molecular rotation with a preferential rotational sense (clockwise or counterclockwise) can be excited by this scheme. We show that the directionality of the rotation is caused by quantum interference of different excitation pathways. The chiral pulse train is capable of selective excitation of molecular isotopologs and nuclear spin isomers in a mixture. We demonstrate this using 14N2 and 15N2 as examples for isotopologs and para- and ortho-nitrogen as examples for nuclear-spin isomers.
Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon
2014-01-01
We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).
NASA Astrophysics Data System (ADS)
Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.
2018-03-01
This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.
Excitation of atoms and ions in plasmas by ultra-short electromagnetic pulses
NASA Astrophysics Data System (ADS)
Astapenko, V. A.; Sakhno, S. V.; Svita, S. Yu; Lisitsa, V. S.
2017-02-01
The problem of atoms and ions diagnostics in rarefied and dense plasmas by ultrashort laser pulses (USP) is under consideration. The application of USP provides: 1) excitation from ground states due to their carrier frequency high enough, 2) penetration into optically dense media due to short pulses duration. The excitation from ground atomic states increases sharply populations of excited atomic states in contrast with standard laser induced fluorescence spectroscopy based on radiative transitions between excited atomic states. New broadening parameter in radiation absorption, namely inverse pulse duration time 1/τ appears in addition to standard line-shape width in the profile G(ω). The Lyman-beta absorption spectra for USP are calculated for Holtsmark static broadening mechanism. Excitation of highly charged H-like ions in hot plasmas is described by both Gaussian shapes for Doppler broadening and pulse spectrum resulting in analytical absorption line-shape. USP penetration into optically thick media and corresponding excitation probability are calculated. It is shown a great effect of USP duration on excitation probabilities in optically thick media. The typical situations for plasma diagnostics by USP are discussed in details.
NASA Astrophysics Data System (ADS)
Pakmanesh, M. R.; Shamanian, M.
2018-02-01
In this study, the optimization of pulsed Nd:YAG laser welding parameters was done on the lap-joint of a 316L stainless steel foil with the aim of reducing weld defects through response surface methodology. For this purpose, the effects of peak power, pulse-duration, and frequency were investigated. The most important weld defects seen in this method include underfill and undercut. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to balance the welding parameters. The results showed that underfill increased with the increased power and reduced frequency, it first increased and then decreased with the increased pulse-duration; and the most important parameter affecting it was the power, whose effect was 65%. The undercut increased with the increased power, pulse-duration, and frequency; and the most important parameter affecting it was the power, whose effect was 64%. Finally, by superimposing different responses, improved conditions were presented to attain a weld with no defects.
Hou, Lei; Guo, Hongyu; Wang, Yonggang; Sun, Jiang; Lin, Qimeng; Bai, Yang; Bai, Jintao
2018-04-02
Ultrafast fiber laser light sources attract enormous interest due to the booming applications they are enabling, including long-distance communication, optical metrology, detecting technology of infra-biophotons, and novel material processing. In this paper, we demonstrate 175 fs dispersion-managed soliton (DMS) mode-locked ytterbium-doped fiber (YDF) laser based on single-walled carbon nanotubes (SWCNTs) saturable absorber (SA). The output DMSs have been achieved with repetition rate of 21.2 MHz, center wavelength of 1025.5 nm, and a spectral width of 32.7 nm. The operation directly pulse duration of 300 fs for generated pulse is the reported shortest pulse width for broadband SA based YDF lasers. By using an external grating-based compressor, the pulse duration could be compressed down to 175 fs. To the best of our knowledge, it is the shortest pulse duration obtained directly from YDF laser based on broadband SAs. In this paper, SWCNTs-SA has been utilized as the key optical component (mode locker) and the grating pair providing negative dispersion acts as the dispersion controller.
Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.
Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan
2004-10-01
In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse size and soil water response. Building on this conceptual framework and developing a greater understanding of the complexities of these eco-hydrologic systems may enhance our ability to describe the ecology of desert ecosystems and their sensitivity to global change.
Observations of double layer-like and soliton-like structures in the ionosphere
NASA Technical Reports Server (NTRS)
Boehm, M. H.; Carlson, C. W.; Mcfadden, J.; Mozer, F. S.
1984-01-01
Two types of large electric field signatures, individual pulses and pulse trains, were observed on a sounding rocket launched into the afternoon auroral zone on January 21, 1982. The typical electric fields in the individual pulses were 50 mV/m or larger, aligned mostly parallel to B, and the corresponding potentials were at leat 100 mV (kT approximately 0.3 eV). A lower limit of 15 km/sec can be set on the velocity of these structures, indicating that they were not ion acoustic double layers. The pulse trains, each consisting of on the order of 100 pulses, were observed in close association with intense plasma frequency waves. This correlation is consistent with the interpretation of these trains as Langmuir solitons. The pulse trains correlate better with the intensity of the field-aligned currents than with the energetic electron flux.
Effects of high-level pulse train stimulation on retinal function.
Cohen, Ethan D
2009-06-01
We examined how stimulation of the local retina by high-level current pulse trains affected the light-evoked responses of the retinal ganglion cells. The spikes of retinal ganglion cell axons were recorded extracellularly using an in vitro eyecup preparation of the rabbit retina. Epiretinal electrical stimulation was delivered via a 500 microm inner diameter saline-filled, transparent tube positioned over the retinal surface forming the receptive field center. Spot stimuli were presented periodically to the receptive field center during the experiment. Trains of biphasic 1 ms current pulses were delivered to the retina at 50 Hz for 1 min. Pulse train charge densities of 1.3-442 microC/cm(2)/phase were examined. After pulse train stimulation with currents >or=300 microA (133 microC/cm(2)/phase), the ganglion cell's ability to respond to light was depressed and a significant time was required for recovery of the light-evoked response. During train stimulation, the ganglion cell's ability to spike following each current pulse fatigued. The current levels evoking train-evoked depression were suprathreshold to those evoking action potentials. Train-evoked depression was stronger touching the retinal surface, and in some cases impaired ganglion cell function for up to 30 min. This overstimulation could cause a transient refractory period for electrically stimulated perception in the retinal region below the electrode.
Adel, Youssef; Hilkhuysen, Gaston; Noreña, Arnaud; Cazals, Yves; Roman, Stéphane; Macherey, Olivier
2017-06-01
Electrical stimulation of auditory nerve fibers using cochlear implants (CI) shows psychophysical forward masking (pFM) up to several hundreds of milliseconds. By contrast, recovery of electrically evoked compound action potentials (eCAPs) from forward masking (eFM) was shown to be more rapid, with time constants no greater than a few milliseconds. These discrepancies suggested two main contributors to pFM: a rapid-recovery process due to refractory properties of the auditory nerve and a slow-recovery process arising from more central structures. In the present study, we investigate whether the use of different maskers between eCAP and psychophysical measures, specifically single-pulse versus pulse train maskers, may have been a source of confound.In experiment 1, we measured eFM using the following: a single-pulse masker, a 300-ms low-rate pulse train masker (LTM, 250 pps), and a 300-ms high-rate pulse train masker (HTM, 5000 pps). The maskers were presented either at same physical current (Φ) or at same perceptual (Ψ) level corresponding to comfortable loudness. Responses to a single-pulse probe were measured for masker-probe intervals ranging from 1 to 512 ms. Recovery from masking was much slower for pulse trains than for the single-pulse masker. When presented at Φ level, HTM produced more and longer-lasting masking than LTM. However, results were inconsistent when LTM and HTM were compared at Ψ level. In experiment 2, masked detection thresholds of single-pulse probes were measured using the same pulse train masker conditions. In line with our eFM findings, masked thresholds for HTM were higher than those for LTM at Φ level. However, the opposite result was found when the pulse trains were presented at Ψ level.Our results confirm the presence of slow-recovery phenomena at the level of the auditory nerve in CI users, as previously shown in animal studies. Inconsistencies between eFM and pFM results, despite using the same masking conditions, further underline the importance of comparing electrophysiological and psychophysical measures with identical stimulation paradigms.
Zaugg, Serge; van der Schaar, Mike; Houégnigan, Ludwig; André, Michel
2013-02-01
The analysis of acoustic data from the ocean is a valuable tool to study free ranging cetaceans and anthropogenic noise. Due to the typically large volume of acquired data, there is a demand for automated analysis techniques. Many cetaceans produce acoustic pulses (echolocation clicks) with a pulse repetition interval (PRI) remaining nearly constant over several pulses. Analyzing these pulse trains is challenging because they are often interleaved. This article presents an algorithm that estimates a pulse's PRI with respect to neighboring pulses. It includes a deinterleaving step that operates via a spectral dissimilarity metric. The sperm whale (SW) produces trains with PRIs between 0.5 and 2 s. As a validation, the algorithm was used for the PRI-based identification of SW click trains with data from the NEMO-ONDE observatory that contained other pulsed sounds, mainly from ship propellers. Separation of files containing SW clicks with a medium and high signal to noise ratio from files containing other pulsed sounds gave an area under the receiver operating characteristic curve value of 0.96. This study demonstrates that PRI can be used for the automated identification of SW clicks and that deinterleaving via spectral dissimilarity contributes to algorithm performance.
Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.
Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R
2015-10-19
We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.
Alonso, Benjamín; Sola, Íñigo J; Crespo, Helder
2018-02-19
In most applications of ultrashort pulse lasers, temporal compressors are used to achieve a desired pulse duration in a target or sample, and precise temporal characterization is important. The dispersion-scan (d-scan) pulse characterization technique usually involves using glass wedges to impart variable, well-defined amounts of dispersion to the pulses, while measuring the spectrum of a nonlinear signal produced by those pulses. This works very well for broadband few-cycle pulses, but longer, narrower bandwidth pulses are much more difficult to measure this way. Here we demonstrate the concept of self-calibrating d-scan, which extends the applicability of the d-scan technique to pulses of arbitrary duration, enabling their complete measurement without prior knowledge of the introduced dispersion. In particular, we show that the pulse compressors already employed in chirped pulse amplification (CPA) systems can be used to simultaneously compress and measure the temporal profile of the output pulses on-target in a simple way, without the need of additional diagnostics or calibrations, while at the same time calibrating the often-unknown differential dispersion of the compressor itself. We demonstrate the technique through simulations and experiments under known conditions. Finally, we apply it to the measurement and compression of 27.5 fs pulses from a CPA laser.
Ion tracking in photocathode rf guns
NASA Astrophysics Data System (ADS)
Lewellen, John W.
2002-02-01
Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.
Laser technology for high precision satellite tracking
NASA Technical Reports Server (NTRS)
Plotkin, H. H.
1974-01-01
Fixed and mobile laser ranging stations have been developed to track satellites equipped with retro-reflector arrays. These have operated consistently at data rates of once per second with range precision better than 50 cm, using Q-switched ruby lasers with pulse durations of 20 to 40 nanoseconds. Improvements are being incorporated to improve the precision to 10 cm, and to permit ranging to more distant satellites. These include improved reflector array designs, processing and analysis of the received reflection pulses, and use of sub-nanosecond pulse duration lasers.
Plasma channel localisation during multiple filamentation in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panov, N A; Kosareva, O G; Kandidov, V P
It is shown by numerical simulations that multiple filamentation of a femtosecond laser pulse with a negative initial phase modulation in air leads to an increase in the density of self-induced laser plasma compared to the case when a transform-limited laser pulse of the same duration is used. Simultaneous control of the duration of the chirped pulse and the beam diameter results in an increase in the distance over which the first filament is formed, the length of the plasma channel, and its linear density. (nonlinear optical phenomena)
Prantil, Matthew A.; Cormier, Eric; Dawson, Jay W.; ...
2013-08-19
An 11 GHz fiber laser built on a modulated CW platform is described and characterized. This compact, vibrationinsensitive, fiber based system can be operated at wavelengths compatible with high energy fiber technology, is driven by an RF signal directly, and is tunable over a wide range of drive frequencies. The demonstration system when operated at 1040 nm is capable of 50 ns bursts of 575 micro-pulses produced at a macro-pulse rate of 83 kHz where the macro-pulse and micro-pulse energies are 1.8 μJ and 3.2 nJ respectively. Micro-pulse durations of 850 fs are demonstrated. Finally, we discuss extensions to shortermore » duration.« less
Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator
NASA Astrophysics Data System (ADS)
Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M.; Suits, Arthur G.
2014-11-01
Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.
Note: a short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator.
Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M; Suits, Arthur G
2014-11-01
Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.
Mesoscopic fluctuations of the population of a qubit in a strong alternating field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisenko, M. V., E-mail: mar.denisenko@gmail.com; Satanin, A. M.
Fluctuations of the population of a Josephson qubit in an alternating field, which is a superposition of electromagnetic pulses with large amplitudes, are studied. It is shown that the relative phase of pulses is responsible for the rate of Landau–Zener transitions and, correspondingly, for the frequency of transitions between adiabatic states. The durations of pulses incident on the qubit are controlled with an accuracy of the field period, which results in strong mesoscopic fluctuations of the population of the qubit. Similar to the magnetic field in mesoscopic physics, the relative phase of pulses can destroy the interference pattern of themore » population of the qubit. The influence of the duration of the pulse and noise on the revealed fluctuation effects is studied.« less
Patterned retinal coagulation with a scanning laser
NASA Astrophysics Data System (ADS)
Palanker, Daniel; Jain, ATul; Paulus, Yannis; Andersen, Dan; Blumenkranz, Mark S.
2007-02-01
Pan-retinal photocoagulation in patients with diabetic retinopathy typically involves application of more than 1000 laser spots; often resulting in physician fatigue and patient discomfort. We present a semi-automated patterned scanning laser photocoagulator that rapidly applies predetermined patterns of lesions; thus, greatly improving the comfort, efficiency and precision of the treatment. Patterns selected from a graphical user interface are displayed on the retina with an aiming beam, and treatment can be initiated and interrupted by depressing a foot pedal. To deliver a significant number of burns during the eye's fixation time, each pulse should be considerably shorter than conventional 100ms pulse duration. We measured coagulation thresholds and studied clinical and histological outcomes of the application of laser pulses in the range of 1-200ms in pigmented rabbits. Laser power required for producing ophthalmoscopically visible lesions with a laser spot of 132μm decreased from 360 to 37mW with pulse durations increasing from 1 to 100ms. In the range of 10-100ms clinically and histologically equivalent light burns could be produced. The safe therapeutic range of coagulation (ratio of the laser power required to produce a rupture to that for a light burn) decreased with decreasing pulse duration: from 3.8 at 100ms, to 3.0 at 20ms, to 2.5 at 10ms, and to 1.1 at 1ms. Histology demonstrated increased confinement of the thermal damage with shorter pulses, with coagulation zone limited to the photoreceptor layer at pulses shorter than 10ms. Durations of 10-20ms appear to be a good compromise between the speed and safety of retinal coagulation. Rapid application of multiple lesions greatly improves the speed, precision, and reduces pain in retinal photocoagulation.
Distance Determination by Gated Viewing Systems Taking into Account the Illuminating Pulse Shape
NASA Astrophysics Data System (ADS)
Gorobets, V. A.; Kuntsevich, B. F.; Shabrov, D. V.
2017-11-01
For gated viewing systems with triangular and trapezoidal illuminating pulses, we have obtained the range-intensity profiles (RIPs) of the signal as the time delay was varied between the leading edges of the gate pulse and the illuminating pulse. We have established that if the duration of the illuminating pulse Δtlas is less than or equal to the duration of the gate pulse ΔtIC, then the expressions for the characteristic distances are the same as for rectangular pulses and they can be used to determine the distance to objects. When Δtlas > ΔtIC, in the case of triangular illuminating pulses the RIP is bell-shaped. For trapezoidal pulses, the RIP is bell-shaped with or without a plateau section. We propose an empirical method for determining the characteristic distances to the RIP maximum and the boundary points for the plateau section, which we then use to calculate the distance to the object. Using calibration constants, we propose a method for determining the distance to an object and we have experimentally confirmed the feasibility of this method.
NASA Astrophysics Data System (ADS)
Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting
2018-02-01
Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.
NASA Astrophysics Data System (ADS)
Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus
2018-01-01
We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.
Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center.
Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz
2013-12-01
Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.
Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
Erpelding, Todd N; Hollman, Kyle W; O'Donnell, Matthew
2007-02-01
Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young's modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200 and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size.
Bubble-Based Acoustic Radiation Force Using Chirp Insonation to Reduce Standing Wave Effects
Erpelding, Todd N.; Hollman, Kyle W.; O’Donnell, Matthew
2007-01-01
Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young’s modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200, and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size. PMID:17306697
Evidence for and implications of self-healing pulses of slip in earthquake rupture
Heaton, T.H.
1990-01-01
Dislocation time histories of models derived from waveforms of seven earthquakes are discussed. In each model, dislocation rise times (the duration of slip for a given point on the fault) are found to be short compared to the overall duration of the earthquake (??? 10%). However, in many crack-like numerical models of dynamic rupture, the slip duration at a given point is comparable to the overall duration of the rupture; i.e. slip at a given point continues until information is received that the rupture has stopped propagating. Alternative explanations for the discrepancy between the short slip durations used to model waveforms and the long slip durations inferred from dynamic crack models are: (1) the dislocation models are unable to resolve the relatively slow parts of earthquake slip and have seriously underestimated the dislocations for these earthquakes; (2) earthquakes are composed of a sequence of small-dimension (short duration) events that are separated by locked regions (barriers); (3) rupture occurs in a narrow self-healing pulse of slip that travels along the fault surface. Evidence is discussed that suggests that slip durations are indeed short and that the self-healing slip-pulse model is the most appropriate explanation. A qualitative model is presented that produces self-healing slip pulses. The key feature of the model is the assumption that friction on the fault surface is inversely related to the local slip velocity. The model has the following features: high static strength of materials (kilobar range), low static stress drops (in the range of tens of bars), and relatively low frictional stress during slip (less than several hundreds of bars). It is suggested that the reason that the average dislocation scales with fault length is because large-amplitude slip pulses are difficult to stop and hence tend to propagate large distances. This model may explain why seismicity and ambient stress are low along fault segments that have experienced large earthquakes. It also qualitatively explains why the recurrence time for large earthquakes may be irregular. ?? 1990.
Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction
NASA Astrophysics Data System (ADS)
Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.
2017-02-01
Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.
Method and device for measuring single-shot transient signals
Yin, Yan
2004-05-18
Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.
152 fs nanotube-mode-locked thulium-doped all-fiber laser
Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique
2016-01-01
Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps2, and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials. PMID:27374764
Buzmakov, Alexey; Jurek, Zoltan; Loh, Ne-Te Duane; Samoylova, Liubov; Santra, Robin; Schneidmiller, Evgeny A.; Tschentscher, Thomas; Yakubov, Sergey; Yoon, Chun Hong; Yurkov, Michael V.; Ziaja-Motyka, Beata; Mancuso, Adrian P.
2017-01-01
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs. PMID:28989713
Reaction time to changes in the tempo of acoustic pulse trains.
NASA Technical Reports Server (NTRS)
Smith, R. P.; Warm, J. S.; Westendorf, D. H.
1973-01-01
Investigation of the ability of human observers to detect accelerations and decelerations in the rate of presentation of pulsed stimuli, i.e., changes in the tempo of acoustic pulse trains. Response times to accelerations in tempo were faster than to decelerations. Overall speed of response was inversely related to the pulse repetition rate.
Commercial mode-locked vertical external cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.
2017-02-01
In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.
Yalin, Azer P; Joshi, Sachin
2014-06-03
An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was <6 mJ, and the duration of the laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.
Figueiro, Mariana G; Plitnick, Barbara; Rea, Mark S
2014-01-01
Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue) light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study) and on delaying circadian phase (field study). Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour). The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting.
Kikuchi, Hisaji; Kurotani, Tomoko; Kaketani, Masahiro; Hiraguchi, Hisako; Hirose, Hideharu; Yoneyama, Takayuki
2011-09-01
Using tensile tests, this study investigated differences in the welding strength of casts of cobalt-chromium and gold alloys resulting from changes in the voltage and pulse duration in order to clarify the optimum conditions of laser irradiation for achieving favorable welding strength. Laser irradiation was performed at voltages of 150 V and 170 V with pulse durations of 4, 8, and 12 ms. For cobalt-chromium and gold alloys, it was found that a good welding strength could be achieved using a voltage of 170 V, a pulse duration of 8 ms, and a spot diameter of 0.5 mm. However, when the power density was set higher than this, defects tended to occur, suggesting the need for care when establishing welding conditions.
Large-amplitude acoustic solitary waves in a Yukawa chain
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Gallagher, James C.
2017-06-01
We experimentally study the excitation and propagation of acoustic solitary waves in a one-dimensional dusty plasma (i.e. a Yukawa chain) with particles interacting through a screened Coulomb potential. The lattice constant mm. Waves are launched by applying a 100 mW laser pulse to one end of the chain for laser pulse durations from 0.10 to 2.0 s. We observe damped solitary waves which propagate for distances with an acoustic speed s=11.5\\pm 0.2~\\text{mm}~\\text{s}-1$ . The maximum velocity perturbation increases with laser pulse duration for durations s and then saturates at . The wave speed is found to be independent of the maximum amplitude, indicating that the formation of nonlinear solitons is prevented by neutral-gas damping.
Comparison of two new generation pulse oximeters during emergency ambulance transportation.
Weber, Ulrike; Tomschik, Elvira; Resch, Irene; Adelmann, Krista; Hasun, Matthias; Mora, Bruno; Malzer, Reinhard; Kober, Alexander
2011-02-01
We wanted to test whether there is a difference between the total number and duration of malfunctions and a correlation between the oxygen saturation and pulse rate values of two new generation pulse oximeters (Masimo 'Radical 7' and Nellcor 'N 600') during emergency ambulance transportation. Patients were monitored with two pulse oximeters ('Radical 7' and 'N 600') on different randomly selected fingers of the same hand during transportation. Data of both devices were recorded continuously by a laptop computer. Fifty-two patients with signs of peripheral vasoconstriction (including 22 patients with a blood pressure ≤100/60) were included. There were 0.21 ± 0.72 (0-4) malfunctions per patient lasting for a mean 113.55 ± 272.55 s in the 'Radical 7' and 0.13 ± 0.49 (0-3) malfunctions per patient with a mean duration of 301.0 ± 426.58 s in the 'N 600'. Oxygen saturation and pulse rate values correlated significantly [r² = 0.9608 (SpO₂), r² = 0.9608 (pulse rate)] between the devices and showed a bias of -0.177770 (SpO₂) and 0.310883 (pulse rate) with a standard deviation of 1.68367 (SpO₂) and 4.46532 (pulse rate) in a Bland-Altman test. Although number and duration of malfunctions did not differ significantly between the devices, they showed a very low number of malfunctions even in hypotensive patients with peripheral vasoconstriction. Oxygen saturation correlated significantly in the two devices investigated at 49.409 time points. In addition, pulse rate also correlated significantly.
NASA Astrophysics Data System (ADS)
Tatsuura, Satoshi; Wada, Osamu; Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Iwasa, Izumi; Pu, Lyong Sun
2001-04-01
In this study, we introduce a new concept of all-optical two-dimensional serial-to-parallel pulse converters. Femtosecond optical pulses can be understood as thin plates of light traveling in space. When a femtosecond signal-pulse train and a single gate pulse were fed onto a material with a finite incident angle, each signal-pulse plate met the gate-pulse plate at different locations in the material due to the time-of-flight effect. Meeting points can be made two-dimensional by adding a partial time delay to the gate pulse. By placing a nonlinear optical material at an appropriate position, two-dimensional serial-to-parallel conversion of a signal-pulse train can be achieved with a single gate pulse. We demonstrated the detection of parallel outputs from a 1-Tb/s optical-pulse train through the use of a BaB2O4 crystal. We also succeeded in demonstrating 1-Tb/s serial-to-parallel operation through the use of a novel organic nonlinear optical material, squarylium-dye J-aggregate film, which exhibits ultrafast recovery of bleached absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P.
A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br{sub 2} and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br{sub 2}. The duration is consistent with a simple analyticalmore » model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.« less
Adaptive mass expulsion attitude control system
NASA Technical Reports Server (NTRS)
Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Carrou, Stephane (Inventor)
2001-01-01
An attitude control system and method operative with a thruster controls the attitude of a vehicle carrying the thruster, wherein the thruster has a valve enabling the formation of pulses of expelled gas from a source of compressed gas. Data of the attitude of the vehicle is gathered, wherein the vehicle is located within a force field tending to orient the vehicle in a first attitude different from a desired attitude. The attitude data is evaluated to determine a pattern of values of attitude of the vehicle in response to the gas pulses of the thruster and in response to the force field. The system and the method maintain the attitude within a predetermined band of values of attitude which includes the desired attitude. Computation circuitry establishes an optimal duration of each of the gas pulses based on the pattern of values of attitude, the optimal duration providing for a minimal number of opening and closure operations of the valve. The thruster is operated to provide gas pulses having the optimal duration.
NASA Astrophysics Data System (ADS)
Rodin, Aleksej M.; Grishin, Mikhail; Michailovas, Andrejus
2016-01-01
We report results of design and optimization of high average output power picosecond and nanosecond laser operating at 1342 nm wavelength. Developed for selective micromachining, this DPSS laser is comprised of master oscillator, regenerative amplifier and output pulse control module. Passively mode-locked by means of semiconductor saturable absorber mirror and pumped with 808 nm wavelength Nd:YVO4 master oscillator emits 12.5 ps pulses at repetition rate of 55 MHz with average output power of ∼100 mW. The four-pass confocal delay line forms a longest part of the oscillator cavity in order to suppress thermo-mechanical misalignment. Picked from the train seed pulses were injected to the cavity of regenerative amplifier based on composite Nd:YVO4 crystal with diffusion-bonded segments of multiple Nd doping concentration end-pumped at 880 nm wavelength. Laser produces pulses of ∼13 ps duration at 300 kHz repetition rate with average output power of 11 W and nearly diffraction limited beam quality of M2∼1.03. Attained high peak power ∼2.8 MW facilitates conversion to the 2nd, 3rd and 6th harmonics at 671 nm, 447 nm and 224 nm wavelengths with 80%, 50% and 15% efficiency respectively. Without seeding the regenerative amplifier transforms to electro-optically cavity-dumped Q-switched laser providing 10 ns output pulses at high repetition rates with beam propagation factor of M2∼1.06.
Pulse Duration of Seeded Free-Electron Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finetti, Paola; Hoppner, Hauke; Allaria, Enrico
The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seededmore » FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. Finally, the measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.« less
Pulse Duration of Seeded Free-Electron Lasers
Finetti, Paola; Hoppner, Hauke; Allaria, Enrico; ...
2017-06-16
The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seededmore » FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. Finally, the measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.« less
NASA Astrophysics Data System (ADS)
Phipps, C. R.; Boustie, M.; Chevalier, J.-M.; Baton, S.; Brambrink, E.; Berthe, L.; Schneider, M.; Videau, L.; Boyer, S. A. E.; Scharring, S.
2017-11-01
At the École Polytechnique « LULI » facility, we have measured the impulse coupling coefficient Cm (target momentum per joule of incident laser light) with several target materials in vacuum, at 1057 nm and 400 fs and 80 ps pulse duration. A total of 64 laser shots were completed in a two-week experimental campaign, divided between the two pulse durations and among the materials. Our main purpose was to resolve wide discrepancies among reported values for Cm in the 100 ps region, where many applications exist. A secondary purpose was to compare Cm at 400 fs and 80 ps pulse duration. The 80 ps pulse was obtained by partial compression. Materials were Al, Ta, W, Au, and POM (polyoxymethylene, trade name Delrin). One application of these results is to pulsed laser ablation propulsion in space, including space debris re-entry, where narrow ranges in Cm and specific impulse Isp spell the difference between dramatic and uneconomical performance. We had difficulty measuring mass loss from single shots. Imparted momentum in single laser shots was determined using pendulum deflection and photonic Doppler velocimetry. Cm was smaller at the 400 fs pulse duration than at 80 ps. To our surprise, Cm for Al at 80 ps was at most 30 N/MW with 30 kJ/m2 incident fluence. On the other extreme, polyoxymethylene (POM, trade name Delrin) demonstrated 770 N/MW under these conditions. Together, these results offer the possibility of designing a Cm value suited to an application, by mixing the materials appropriately.
Scattering Response of Sucrose Clusters with Intense XFEL Pulses in Water Window
NASA Astrophysics Data System (ADS)
Ho, Phay; Benedikt Daurer, Benedikt; Bielecki, Johan; Hantke, Max; Maia, Filipe; Knight, Chris; Hajdu, Janos; Young, Linda; Bostedt, Christoph
2017-04-01
We present a combined experimental and theoretical study about the effects of non-linear x-ray ionization dynamics on the scattering response of molecular clusters in the soft x-ray regime that includes and goes beyond the water window. Nanosized sucrose clusters were irradiated with intense XFEL pulses (photon energy from 500 to 1500 eV and pulse duration of 180 fs). Surprisingly, the measured scattering signals near the oxygen K-edge in the water window are found to be substantially smaller than those at higher photon energies. We employ Monte-Carlo/Molecular Dynamics calculations to investigate the x-ray processes as a function of pulse parameters (photon energy, bandwidth and pulse duration) and cluster size. We demonstrate the important role of resonant excitation (RE) in the molecular scattering response in the water window. In particular, 1s ->2p RE cycling enabled in the oxygen atom/ion provide additional ionization pathways which, combined with the long pulse duration, lead to substantial reduction in scattering power of sugar clusters for photon energies just below the oxygen K-edge. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.
Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth
NASA Astrophysics Data System (ADS)
Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.
2015-10-01
Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.
Cain, C P; Polhamus, G D; Roach, W P; Stolarski, D J; Schuster, K J; Stockton, K L; Rockwell, B A; Chen, Bo; Welch, A J
2006-01-01
With the advent of such systems as the airborne laser and advanced tactical laser, high-energy lasers that use 1315-nm wavelengths in the near-infrared band will soon present a new laser safety challenge to armed forces and civilian populations. Experiments in nonhuman primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular, and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser safety standards have traditionally been based on experimental data, and there is scant data for this wavelength. We are reporting minimum visible lesion (MVL) threshold measurements using a porcine skin model for two different pulse durations and spot sizes for this wavelength. We also compare our measurements to results from our model based on the heat transfer equation and rate process equation, together with actual temperature measurements on the skin surface using a high-speed infrared camera. Our MVL-ED50 thresholds for long pulses (350 micros) at 24-h postexposure are measured to be 99 and 83 J cm(-2) for spot sizes of 0.7 and 1.3 mm diam, respectively. Q-switched laser pulses of 50 ns have a lower threshold of 11 J cm(-2) for a 5-mm-diam top-hat laser pulse.
Tactile information transfer: A comparison of two stimulation sites
NASA Astrophysics Data System (ADS)
Summers, Ian R.; Whybrow, Jon J.; Gratton, Denise A.; Milnes, Peter; Brown, Brian H.; Stevens, John C.
2005-10-01
Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (~100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s-1 at the wrist and 5 bits s-1 at the fingertip.
Tactile information transfer: a comparison of two stimulation sites.
Summers, lan R; Whybrow, Jon J; Gratton, Denise A; Milnes, Peter; Brown, Brian H; Stevens, John C
2005-10-01
Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (approximately 100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s(-1) at the wrist and 5 bits s(-1) at the fingertip.
Laser lift-off scribing of the CZTSe thin-film solar cells at different pulse durations
Markauskas, Edgaras; Gečys, Paulius; Repins, Ingrid; ...
2017-04-27
Here, the transition to fully sized solar modules requires additional three-step laser structuring processes to preserve small-scale cell efficiencies over the large areas. The adjacent cell isolation (the P3 scribe) was found to be the most sensitive process in the case of laser induced damage. The laser induced layer lift-off mechanism seems to be a very attractive process for the P3 patterning, since almost all the laser affected material is removed by mechanical spallation. However, a laser induced layer spallation behavior together with scribe electrical validation under the different laser pulse durations was not investigated extensively in the past. Therefore,more » we report our novel results on the P2 and P3 laser lift-off processing of the Cu 2ZnSn(S, Se 4) (CZTSe) thin-film solar cells covering the pulse duration range from 300 fs to 60 ps. Shorter sub-ps pulses enabled us to process smaller P2 and P3 craters, although the lift-off threshold fluences were higher compared to the longer ps pulses. In the case of the layer lift-off, the laser radiation had to penetrate through the layer stack down to the CZTSe/Mo interface. At shorter sub-ps pulses, the nonlinear effects triggered absorption of the laser radiation in the bulk of the material, resulting in increased damage of the CZTSe layer. The Raman measurements confirmed the CZTSe surface stoichiometry changes for shorter pulses. Furthermore, shorter pulses induced higher electrical conductivity of a scribe, resulting in lower photo-electrical efficiency during the mini-module simulation. In the case of the P3 lift-off scribing, the 10 ps pulses were more favorable than shorter femtosecond pulses.« less
Laser lift-off scribing of the CZTSe thin-film solar cells at different pulse durations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markauskas, Edgaras; Gečys, Paulius; Repins, Ingrid
Here, the transition to fully sized solar modules requires additional three-step laser structuring processes to preserve small-scale cell efficiencies over the large areas. The adjacent cell isolation (the P3 scribe) was found to be the most sensitive process in the case of laser induced damage. The laser induced layer lift-off mechanism seems to be a very attractive process for the P3 patterning, since almost all the laser affected material is removed by mechanical spallation. However, a laser induced layer spallation behavior together with scribe electrical validation under the different laser pulse durations was not investigated extensively in the past. Therefore,more » we report our novel results on the P2 and P3 laser lift-off processing of the Cu 2ZnSn(S, Se 4) (CZTSe) thin-film solar cells covering the pulse duration range from 300 fs to 60 ps. Shorter sub-ps pulses enabled us to process smaller P2 and P3 craters, although the lift-off threshold fluences were higher compared to the longer ps pulses. In the case of the layer lift-off, the laser radiation had to penetrate through the layer stack down to the CZTSe/Mo interface. At shorter sub-ps pulses, the nonlinear effects triggered absorption of the laser radiation in the bulk of the material, resulting in increased damage of the CZTSe layer. The Raman measurements confirmed the CZTSe surface stoichiometry changes for shorter pulses. Furthermore, shorter pulses induced higher electrical conductivity of a scribe, resulting in lower photo-electrical efficiency during the mini-module simulation. In the case of the P3 lift-off scribing, the 10 ps pulses were more favorable than shorter femtosecond pulses.« less
Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong
2016-06-01
It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.
Modelling the isometric force response to multiple pulse stimuli in locust skeletal muscle.
Wilson, Emma; Rustighi, Emiliano; Mace, Brian R; Newland, Philip L
2011-02-01
An improved model of locust skeletal muscle will inform on the general behaviour of invertebrate and mammalian muscle with the eventual aim of improving biomedical models of human muscles, embracing prosthetic construction and muscle therapy. In this article, the isometric response of the locust hind leg extensor muscle to input pulse trains is investigated. Experimental data was collected by stimulating the muscle directly and measuring the force at the tibia. The responses to constant frequency stimulus trains of various frequencies and number of pulses were decomposed into the response to each individual stimulus. Each individual pulse response was then fitted to a model, it being assumed that the response to each pulse could be approximated as an impulse response and was linear, no assumption were made about the model order. When the interpulse frequency (IPF) was low and the number of pulses in the train small, a second-order model provided a good fit to each pulse. For moderate IPF or for long pulse trains a linear third-order model provided a better fit to the response to each pulse. The fit using a second-order model deteriorated with increasing IPF. When the input comprised higher IPFs with a large number of pulses the assumptions that the response was linear could not be confirmed. A generalised model is also presented. This model is second-order, and contains two nonlinear terms. The model is able to capture the force response to a range of inputs. This includes cases where the input comprised of higher frequency pulse trains and the assumption of quasi-linear behaviour could not be confirmed.
Design and development of compact pulsed power driver for electron beam experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb, Pankaj; Sharma, S.K.; Adhikary, B.
2014-07-01
Pulsed electron beam generation requires high power pulses of fast rise, short duration pulse with flat top. With this objective we have designed a low cost compact pulsed power driver based on water dielectric transmission line. The paper describes the design aspects and construction of the pulse power driver and its experimental results. The pulsed power driver consist of a capacitor bank and its charging power supply, high voltage generator, high voltage switch and pulse compression system. (author)
Intense terahertz pulses from SLAC electron beams using coherent transition radiation.
Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron
2013-02-01
SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.
Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan
2014-11-15
Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercialmore » fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.« less
Enhanced diffusion weighting generated by selective adiabatic pulse trains
NASA Astrophysics Data System (ADS)
Sun, Ziqi; Bartha, Robert
2007-09-01
A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1-Ph-6) were studied on a 4 T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3-0.8 mM) water solutions (Ph-2-Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H 2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2-Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant.
Propagation of femtosecond laser pulses through water in the linear absorption regime.
Naveira, Lucas M; Strycker, Benjamin D; Wang, Jieyu; Ariunbold, Gombojav O; Sokolov, Alexei V; Kattawar, George W
2009-04-01
We investigate the controversy regarding violations of the Bouguer-Lambert-Beer (BLB) law for ultrashort laser pulses propagating through water. By working at sufficiently low incident laser intensities, we make sure that any nonlinear component in the response of the medium is negligible. We measure the transmitted power and spectrum as functions of water cell length in an effort to confirm or disprove alleged deviations from the BLB law. We perform experiments at two different laser pulse repetition rates and explore the dependence of transmission on pulse duration. Specifically, we vary the laser pulse duration either by cutting its spectrum while keeping the pulse shape near transform-limited or by adjusting the pulses chirp while keeping the spectral intensities fixed. Over a wide range of parameters, we find no deviations from the BLB law and conclude that recent claims of BLB law violations are inconsistent with our experimental data. We present a simple linear theory (based on the BLB law) for propagation of ultrashort laser pulses through an absorbing medium and find our experimental results to be in excellent agreement with this theory.
NASA Astrophysics Data System (ADS)
Yang, Sidney S.; Wei, Tai-Huei; Huang, Tzer-Hsiang; Chang, Yun-Ching
2007-02-01
Using the Z-scan technique, we studied the nonlinear absorption and refraction behaviors of a dilute toluene solution of a silicon naphthalocyanine (Si(OSi(n-hexyl)3)2, SiNc) at 532 nanometer with both a 2.8-nanosecond pulse and a 21-nanosecond (HW1/eM) pulse train containing 11 18-picosecond pulses 7 nanosecond apart. A thermal acoustic model and its steady-state approximation account for the heat generated by the nonradiative relaxations subsequent to the absorption. We found that when the steady-state approximation satisfactorily explained the results obtained with a 21-nanosecond pulse train, only the thermal-acoustic model fit the 2.8-nanosecond experimental results, which supports the approximation criterion established by Kovsh et al.
Urgency is a non-monotonic function of pulse rate.
Russo, Frank A; Jones, Jeffery A
2007-11-01
Magnitude estimation was used to assess the experience of urgency in pulse-train stimuli (pulsed white noise) ranging from 3.13 to 200 Hz. At low pulse rates, pulses were easily resolved. At high pulse rates, pulses fused together leading to a tonal sensation with a clear pitch level. Urgency ratings followed a nonmonotonic (polynomial) function with local maxima at 17.68 and 200 Hz. The same stimuli were also used in response time and pitch scaling experiments. Response times were negatively correlated with urgency ratings. Pitch scaling results indicated that urgency of pulse trains is mediated by the perceptual constructs of speed and pitch.
NASA Technical Reports Server (NTRS)
Lokerson, D. C. (Inventor)
1977-01-01
A speech signal is analyzed by applying the signal to formant filters which derive first, second and third signals respectively representing the frequency of the speech waveform in the first, second and third formants. A first pulse train having approximately a pulse rate representing the average frequency of the first formant is derived; second and third pulse trains having pulse rates respectively representing zero crossings of the second and third formants are derived. The first formant pulse train is derived by establishing N signal level bands, where N is an integer at least equal to two. Adjacent ones of the signal bands have common boundaries, each of which is a predetermined percentage of the peak level of a complete cycle of the speech waveform.
Remote sensing of the lightning heating effect duration with ground-based microwave radiometer
NASA Astrophysics Data System (ADS)
Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui
2018-06-01
Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.
High-energy long duration frequency-doubled Nd:YAG laser and application to venous occlusion
NASA Astrophysics Data System (ADS)
Zhang, Laiming; Yang, Guilong; Li, Dianjun; Lu, Qipeng; Gu, Huadong; Zhu, Linlin; Zhao, Zhenwu; Li, Xin; Tang, Yuguo; Guo, Jin
2005-01-01
Laser treatment represents an attractive option to other methods of vessel diseases especially varicose veins. A long pulse (30~50ms) 532nm laser (Fig.1) is used in our experiments with the pulse duration matching the thermal relaxation time of the vessels and the green laser matching the absorption spectrum peak of the blood. Laser irradiates nude vein vessels directly or exterior skin to finish operation faster and to acquire the practical data for upper enteron varicose vein treatment in several animal experiments performed in vivo. The 5J-energy pulse allows us to finely occlude rabbit or dog"s vein vessels up to 2 mm in diameter when irradiating them off external skin (Fig.2). Blood vessels are occluded at once and later biopsy specimens show the immediate and long-term lasting occlusion effect. While irradiating vessels directly (Fig.3), the vessels are usually irradiated to perforate, detailed causes are still under investigation. Animal experiments show long pulse green laser therapy is a safe and effective solution to the vein"s occlusion, which promises such laser with high energy of each pulse and 30~50 ms duration is an ideal candidate for vessel diseases treatment.
Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output.
Smith, G; Damzen, M J
2007-05-14
An investigation is made into a quasi-CW (QCW) diode-pumped holographic adaptive laser utilising an ultra high gain (approximately 10(4)) Nd:YVO(4) bounce amplifier. The laser produces pulses at 1064 nm with energy approximately 0.6 mJ, duration <3 ns and peak power approximately 200 kW, with high stability, via self-Q-switching effects due to the transient dynamics of the writing and replay of the gain hologram for each pump pulse. The system produces a near-diffraction-limited output with M(2)<1.3 and operates with a single longitudinal mode. In a further adaptive laser configuration, the output was amplified to obtain pulses of approximately 5.6 mJ energy, approximately 7 ns duration and approximately 1 MW peak power. The output spatial quality is also M(2)<1.3 with SLM operation. Up to 2.9 mJ pulse energy of frequency doubled green (532 nm) radiation is obtained, using an LBO crystal, representing approximately 61% conversion efficiency. This work shows that QCW diode-pumped self-adaptive holographic lasers can provide a useful source of high peak power, short duration pulses with excellent spatial quality and narrow linewidth spectrum.
Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam
NASA Astrophysics Data System (ADS)
Andreev, Andrey
2005-10-01
The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.
Laser fusion pulse shape controller
Siebert, Larry D.
1977-01-01
An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.
Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers.
Blackmon, Richard L; Case, Jason R; Trammell, Susan R; Irby, Pierce B; Fried, Nathaniel M
2013-02-01
Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ~2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.
Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...
2016-06-02
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.
Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration.
Murtagh, Michelle; Lin, Jipeng; Mildren, Richard P; Spence, David J
2014-05-15
We report a synchronously pumped femtosecond diamond Raman laser operating at 895 nm with a 33% slope efficiency. Pumped using a mode-locked Ti:sapphire laser at 800 nm with a duration of 170 fs, the bandwidth of the Stokes output is broadened and chirped to enable subsequent pulse compression to 95 fs using a prism pair. Modeling results indicate that self-phase modulation drives the broadening of the Stokes spectrum in this highly transient laser. Our results demonstrate the potential for Raman conversion to extend the wavelength coverage and pulse shorten Ti:sapphire lasers.
Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm.
Lagatsky, A A; Calvez, S; Gupta, J A; Kisel, V E; Kuleshov, N V; Brown, C T A; Dawson, M D; Sibbett, W
2011-05-09
Efficient mode-locking in a Tm:KY(WO(4))(2) laser is demonstrated by using InGaAsSb quantum-well SESAMs. Self-starting ultrashort pulse generation was realized in the 1979-2074 nm spectral region. Maximum average output power up to 411 mW was produced around 1986 nm with the corresponding pulse duration and repetition rate of 549 fs and 105 MHz respectively. Optimised pulse durations of 386 fs were produced with an average power of 235 mW at 2029 nm. © 2011 Optical Society of America
Sub-nanosecond lasers for cosmetics and dermatology
NASA Astrophysics Data System (ADS)
Tarasov, Aleksandr A.; Chu, Hong
2018-02-01
We report about the development of two new subnanosecond solid-state laser models for application in dermatology and cosmetics. One model uses subnanosecond Nd: YAG microchip laser as a master oscillator and includes Nd: YAG double- and single-pass amplifiers. At 10 Hz this laser produces more than 600 mJ pulse energy with duration 500 +/- 5 ps. Another model (under development) is gain-switched Ti: Sapphire laser with short cavity. This laser produces 200 mJ, 560 ps pulses at 790 nm and uses standard Q-Switched Nd: YAG laser with nanosecond pulse duration as a pumping sourse.
Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.
Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T
2015-11-16
We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.
Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation.
Negres, Raluca A; Norton, Mary A; Cross, David A; Carr, Christopher W
2010-09-13
The growth behavior of laser-induced damage sites is affected by a large number of laser parameters as well as site morphology. Here we investigate the effects of pulse duration on the growth rate of damage sites located on the exit surface of fused silica optics. Results demonstrate a significant dependence of the growth parameters on laser pulse duration at 351 nm from 1 ns to 15 ns, including the observation of a dominant exponential versus linear, multiple-shot growth behavior for long and short pulses, respectively. These salient behaviors are tied to the damage morphology and suggest a shift in the fundamental growth mechanisms for pulses in the 1-5 ns range.
Generating A Strobed Laser Light Sheet
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.; Franke, John M.; Rhodes, David B.; Jones, Stephen B.
1994-01-01
An optoelectronic system generating synchronous, strobed sheet of laser light developed for use in making visible flow of air about model helicopter rotor. Used in wind-tunnel tests to determine actual locations of vortices for comparison with locations predicted by mathematical models to validate models. Each blade tip produces vortex. By establishing successive vortex locations, researcher determines trajectory of vortex pattern. Light-sheet strobe circuits provide selection of blade positions, strobe-pulse durations, and multiple pulses per revolution for rotors having two to nine blades. To make flow visible, vaporizing propylene glycol injected upstream of model. System also provides calibrated trigger delay of strobe pulses, adjustable strobe-pulse durations, selectable number of blades, and slip-sync mode to make flow visible as though in slow motion.
Design and calibration of zero-additional-phase SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, Peter; Riedle, Eberhard
2005-09-01
Zero-additional-phase spectral phase interferometry for direct electric field reconstruction (ZAP-SPIDER) is a novel technique for measuring the temporal shape and phase of ultrashort optical pulses directly at the interaction point of a spectroscopic experiment. The scheme is suitable for an extremely wide wavelength region from the ultraviolet to the near infrared. We present a comprehensive description of the experimental setup and design guidelines to effectively apply the technique to various wavelengths and pulse durations. The calibration of the setup and procedures to check the consistency of the measurement are discussed in detail. We show experimental data for various center wavelengthsmore » and pulse durations down to 7 fs to verify the applicability to a wide range of pulse parameters.« less
Ting, S K S; Chan, Y M; Cheong, P W T; Wong, M; Fook-Chong, S; Lo, Y L
2011-09-01
Tinnitus is a subjective auditory perception of sounds or noise not triggered by external auditory stimuli. To date, treatment in severe cases is generally unsatisfactory. Characteristic functional brain imaging changes associated with tinnitus include hyperactivity encompassing both the primary auditory cortex (AC) and the secondary or associative cortex. Brief repetitive transcranial magnetic stimulation (rTMS) trains applied to the scalp overlying the hyperactive left AC is known to produce moderate tinnitus attenuation. Although Western studies have documented the value of rTMS in tinnitus treatment, we evaluate the efficacy of a short duration rTMS protocol for the first time in the Asian setting. Consecutive patients were recruited at our tinnitus clinic. Detailed history, examination, audiogram and baseline tinnitus scales were recorded. RTMS consisted of 1000 pulses/day at 1 Hz and 110% of the motor threshold, for five consecutive days over the left temporoparietal cortex. Tinnitus ratings were determined weekly for 4 weeks after rTMS. Fifteen patients completed the trial; none experienced significant side effects. Repeated measures ANOVA showed significant linear decrease in Tinnitus Handicap Inventory (THI) scores over the time period (F((1,14))=4.7, p=0.04). However, none of the other parameters (severity, annoyance, effect on lifestyle and overall impression: visual analogue scale) showed beneficial outcomes. Our findings point to a positive effect of short duration rTMS in tinnitus treatment using the THI. However, no significant benefits were demonstrated for other subjective patient ratings. Although well tolerated and convenient, short duration rTMS may prove inadequate for modulating maladaptive plastic changes at the cortical level, and our results suggest the need for delivery of more stimuli. Future studies will utilize at least 2000 pulses/day, in line with previous experience in Western settings. Copyright © 2011 Elsevier B.V. All rights reserved.
Kubo, Keitaro; Kanehisa, Hiroaki; Fukunaga, Tetsuo
2001-01-01
The present study aimed to investigate the influence of isometric training protocols with long- and short-duration contractions on the elasticity of human tendon structures in vivo. The elasticity was assessed through in vivo determination of the elongation (L) of the tendons and aponeuroses using ultrasonography, while the subjects performed ramp isometric exercise up to maximum voluntary contraction (MVC).Eight young males completed 12 weeks (4 days per week) of a unilateral isometric training programme on knee extensors, which consisted of two different combinations of contraction and relaxation times at 70 % MVC: one leg was trained using a short-duration protocol (3 sets of 50 repetitions of contraction for 1 s and relaxation for 2 s), and the other leg was trained using a long-duration protocol (4 sets of a combination of contraction for 20 s and relaxation for 1 min). The training volume per session, expressed as the integrated torque, was the same for the two protocols.Both protocols resulted in a significant increase in MVC: 31.8 ± 17.2 % for the short-duration protocol and 33.9 ± 14.4 % for the long-duration protocol. Moreover, the training produced significant increases in the muscle volume of the constituents of the quadriceps femoris, with similar relative gains for the two protocols: 7.4 ± 3.9 % for the short-duration protocol and 7.6 ± 4.3 % for the long-duration protocol.The short-duration protocol produced no significant change in L values at any of the force production levels. For the long-duration protocol, however, the L values above 550 N were significantly shorter after training. Analysis revealed that the group × test time interaction effect on tendon stiffness was significant. Stiffness increased significantly for the long-duration protocol, but not for the short-duration protocol.The present study demonstrates a greater increase in stiffness of human tendon structures following isometric training using longer duration contractions compared to shorter contractions. This suggests that the changes in the elasticity of the tendon structures after resistance training may be affected by the duration of muscle contraction. PMID:11600697
How short are ultra short light pulses? (looking back to the mid sixties)
NASA Astrophysics Data System (ADS)
Weber, H. P.; Dändliker, R.
2010-09-01
With the arrival of mode locking for Q-switched lasers to generate ultra short light pulses, a method to measure their expected time duration in the psec range was needed. A novel method, based on an intensity correlation measurement using optical second harmonic generation, was developed. Other reported approaches for the same purpose were critically analysed. Theoretical and subsequent experimental studies lead to surprising new insight into the ultra fast temporal behaviour of broadband laser radiation: Any non mode locked multimode emission of a laser consists of random intensity fluctuations with duration of the total inverse band width of emitted radiation. However, it was shown, that with mode locking isolated ultra short pulses of psec duration can be generated. This article summarizes activities performed in the mid sixties at the University of Berne, Switzerland.
Homogenization of Vehicle Fleet Frontal Crash Pulses from 2000–2010
Locey, Caitlin M.; Garcia-Espana, J. Felipe; Toh, Akira; Belwadi, Aditya; Arbogast, Kristy B.; Maltese, Matthew R.
2012-01-01
Full-scale vehicle crash tests are performed globally to assess vehicle structure and restraint system performance. The crash pulse, captured by accelerometers mounted within the occupant compartment, measures the motion of the vehicle during the impact event. From an occupant’s perspective, the crash pulse is the inertial event to which the vehicle’s restraint systems must respond in order to mitigate the forces and accelerations that act on a passenger, and thus reduce injury risk. The objective of this study was to quantify the characteristics of crash pulses for different vehicle types in the contemporary North American fleet, and delineate current trends in crash pulse evolution. NHTSA and Transport Canada crash test databases were queried for full-frontal rigid barrier crash tests of passenger vehicles model year 2000–2010 with impact angle equaling zero degrees. Acceleration-time histories were analyzed for all accelerometers attached to the vehicle structure within the occupant compartment. Custom software calculated the following crash pulse characteristics (CPCs): peak deceleration, time of peak deceleration, onset rate, pulse duration, and change in velocity. Vehicle body types were classified by adapting the Highway Loss Data Institute (HLDI) methodology, and vehicles were assigned a generation start year in place of model year in order to more accurately represent structural change over time. 1094 vehicle crash tests with 2795 individual occupant compartment-mounted accelerometers were analyzed. We found greater peak decelerations and and shorter pulse durations across multiple vehicle types in newer model years as compared to older. For midsize passenger cars, large passenger cars, and large SUVs in 56 km/h rigid barrier tests, maximum deceleration increased by 0.40, 0.96, and 1.57 g/year respectively, and pulse duration decreased by 0.74, 1.87, and 2.51 ms/year. We also found that the crash pulse characteristics are becoming more homogeneous in the modern vehicle fleet; the range of peak deceleration values for all vehicle classes decreased from 17.1 g in 1997–1999 generation start years to 10.7 g in 2009–2010 generation years, and the pulse duration range decreased from 39.5 ms to 13.4 ms for the same generation year groupings. This latter finding suggests that the designs of restraint systems may become more universally applicable across vehicle body types, since the occupant compartment accelerations are not as divergent for newer vehicles. PMID:23169139
Pulse Detecting Genetic Circuit - A New Design Approach.
Noman, Nasimul; Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C
2016-01-01
A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse-analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event.
Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun
2015-03-09
In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses.
Pulse thermal processing of functional materials using directed plasma arc
Ott, Ronald D [Knoxville, TN; Blue, Craig A [Knoxville, TN; Dudney, Nancy J [Knoxville, TN; Harper, David C [Kingston, TN
2007-05-22
A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.
Multipulsed dynamic moire interferometer
Deason, Vance A.
1991-01-01
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
Multiple acousto-optic q-switch
Deason, Vance A.
1993-01-01
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
Multiple acousto-optic q-switch
Deason, Vance A.
1993-12-07
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
NASA Astrophysics Data System (ADS)
Toyota, Koudai
2016-10-01
The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. 17, 073005 (2015), 10.1088/1367-2630/17/7/073005] is applied to further study a detachment dynamics of a model negative ion in one dimension in the high-frequency regime. This method is based on the Floquet approach, but the time dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photon absorption or emission, but also a nonadiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schrödinger equation, and the underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we explore two more aspects of the detachment dynamics, which were not considered in our previous work. First, we determine the features of both a spatial and temporal interference of photoelectron wave packets in a photon-absorption process. We conclude that both of the interference mechanisms are universal in ionization dynamics in the high-frequency regime. Second, we extract a pulse duration which maximizes a yield of the nonadiabatic transition as a function of a pulse duration. It is shown that it becomes maximum when the pulse duration is comparable to a time scale of an electron.
A high-power synthesized ultrawideband radiation source
NASA Astrophysics Data System (ADS)
Efremov, A. M.; Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.
2017-09-01
A high-power ultrawideband radiation source has been developed which is capable of synthesizing electromagnetic pulses with different frequency bands in free space. To this end, a new circuit design comprising a four-channel former of bipolar pulses of durations 2 and 3 ns has been elaborated and conditions for the stable operation of gas gaps of independent channels without external control pulses have been determined. Each element of the 2 × 2 array of combined antennas is driven from an individual channel of the pulse former. Antennas excited by pulses of the same duration are arranged diagonally. Two radiation synthesis modes have been examined: one aimed to attain ultimate field strength and the other aimed to attain an ultimate width of the radiation spectrum. The modes were changed by changing the time delay between the 2-ns and 3-ns pulses. For the first mode, radiation pulses with a frequency band of 0.2-0.8 GHz and an effective potential of 500 kV have been obtained. The synthesized radiation pulses produced in the second mode had an extended frequency band (0.1-1 GHz) and an effective potential of 220 kV. The pulse repetition frequency was 100 Hz.
Cavitation bubble dynamics during thulium fiber laser lithotripsy
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.
2016-02-01
The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.
New laser surface treatments: cleaning, derusting, deoiling, depainting, deoxidizing, and degreasing
NASA Astrophysics Data System (ADS)
Daurelio, Giuseppe; Chita, Giuseppe; Cinquepalmi, Massimo
1997-08-01
Many materials as substrates and surface products have been tested. Typically ferrous (Carbon Steels and Stainless Steels) and non ferrous (Al and Cu metals and its alloys) ones have been employed. Some epoxy, polyurethane, polyester and acrylic paints in different thickness and color have been tested. Many types of the surface rust and oxide on different bulk material have been undertaken to test. Similarly some different types of oils and greases, usually used in industry against the oxidation, have been studied. Anyway many types of dirt, grit, calcareous one and so on, present on industrial components, have been laser cleaned without using solvents, acid baths and other ones. Different types of laser sources have been employed: an axial fast flow, 1.5 KW CO2 c.w. and pulsed laser source, emitting a 10.6 micrometers beam; a portable CO2 laser, c.w. (1 to 25 W) and pulsed (1 to 100 Hz and 400 ms max pulse duration) source, emitting a 10.6 micrometers beam with a multi-articulated seven mirrors guiding device and focussing head; a portable Nd-YAG laser, Q-switched and normal-mode source. 1st harmonic 1.06 micrometers (6 ns pulse duration), 2nd harmonic 532 nm (120 microsecond(s) duration pulse- 1J max per-pulse) wavelengths, multi-articulated seven mirrors beam guiding device, 20 Hz repetition rate. This lets shots with 600 mJ max energy per pulse and 100 MW peak power per-pulse with a very low beam divergence, 0.5 mrad at full angle; a transverse fast flow 2.5 kW CO2 laser.
NASA Astrophysics Data System (ADS)
Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.
2018-07-01
We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.
Cerebral arterial oxygen saturation measurements using a fiber-optic pulse oximeter.
Phillips, J P; Langford, R M; Chang, S H; Maney, K; Kyriacou, P A; Jones, D P
2010-10-01
A pilot investigation was undertaken to assess the performance of a novel fiber-optic cerebral pulse oximetry system. A fiber-optic probe designed to pass through the lumen of a cranial bolt of the type used to make intracranial pressure measurements was used to obtain optical reflectance signals directly from brain tissue. Short-duration measurements were made in six patients undergoing neurosurgery. These were followed by a longer duration measurement in a patient recovering from an intracerebral hematoma. Estimations of cerebral arterial oxygen saturation derived from a frequency domain-based algorithm are compared with simultaneous pulse oximetry (SpO2) and hemoximeter (SaO2) blood samples. The short-duration measurements showed that reliable photoplethysmographic signals could be obtained from the brain tissue. In the long-duration study, the mean (±SD) difference between cerebral oxygen saturation (ScaO2) and finger SpO2 (in saturation units) was -7.47(±3.4)%. The mean (±SD) difference between ScaO2 and blood SaO2 was -7.37(±2.8)%. This pilot study demonstrated that arterial oxygen saturation may be estimated from brain tissue via a fiber-optic pulse oximeter used in conjunction with a cranial bolt. Further studies are needed to confirm the clinical utility of the technique.
NASA Technical Reports Server (NTRS)
Brody, Adam R.; Ellis, Stephen R.
1992-01-01
Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better.
Analysis of erythema after Er:YAG laser skin resurfacing.
Ko, Na Young; Ahn, Hyo-Hyun; Kim, Soo-Nam; Kye, Young-Chul
2007-11-01
Postoperative erythema can be expected to occur in every patient after laser resurfacing, and pigmentary disturbances may be related to the intensity and the duration of erythema. This study was undertaken to assess the clinical features of erythema, the factors that influence its duration, and the relation between the duration of erythema and the incidence of hyperpigmentation and hypopigmentation in skin of Asian persons after Er:YAG laser resurfacing. A total of 218 patients (skin phototypes III to V) were recruited and treated with a short-pulsed Er:YAG laser, a variable-pulsed Er:YAG laser, or a dual-mode Er:YAG laser for skin resurfacing. Clinical assessments were performed retrospectively using medical charts and serial photographs. Postoperative erythema was observed in all patients after Er:YAG laser resurfacing with a mean duration of 4.72 months. In 98.2% of patients, erythema faded completely within 12 months. Postinflammatory hyperpigmentation was observed in 38.1% of patients after Er:YAG laser resurfacing. Skin phototype, level of ablation, and depth of thermal damage caused by a long-pulsed laser appear to be important factors that affect the duration of erythema. Moreover, prolonged erythema was related to the risk of postinflammatory hyperpigmentation.
Research Laboratory of Electronic Progress Report Number 135.
1993-06-01
78 @ 1.12 Ultrashort Pulse Generation in Solid State Lasers ...generation the use of intracavity self-phase-modulation and of ultrashort laser pulses is essential for studies of negative group velocity dispersion... pulses . Our studies focus on exploiting mode locked solid state lasers . While the dominant the short pulse durations and high peak intensity of effect of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinnikova, E. I.; Levchenko, V. D.
2008-04-15
Results are presented from full-scale numerical simulations of the excitation of wake waves by a sequence of weakly relativistic laser pulses in a subcritical plasma. Computations were carried out with a 2D3V version of the SUR-CA code that is based on the local-recursive nonlocal-asynchronous algorithm of the particle-in-cell method. The parameters of a train of laser pulses were chosen to correspond to the resonant excitation of the wake field. The curvature of the envelope of the pulses was chosen to depend on the number of the pulse in the train. Numerical simulations showed that there are plane waves during themore » first period of the plasma wave behind the pulse train.« less
Pulsed voltage electrospray ion source and method for preventing analyte electrolysis
Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN
2011-12-27
An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi
2010-11-15
We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulsemore » duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.« less
Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong
2015-11-17
We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.
Laser heating and ablation at high repetition rate in thermal confinement regime
NASA Astrophysics Data System (ADS)
Brygo, François; Semerok, A.; Oltra, R.; Weulersse, J.-M.; Fomichev, S.
2006-09-01
Laser heating and ablation of materials with low absorption and thermal conductivity (paint and cement) were under experimental and theoretical investigations. The experiments were made with a high repetition rate Q-switched Nd:YAG laser (10 kHz, 90 ns pulse duration and λ = 532 nm). High repetition rate laser heating resulted in pulse per pulse heat accumulation. A theoretical model of laser heating was developed and demonstrated a good agreement between the experimental temperatures measured with the infrared pyrometer and the calculated ones. With the fixed wavelength and laser pulse duration, the ablation threshold fluence of paint was found to depend on the repetition rate and the number of applied pulses. With a high repetition rate, the threshold fluence decreased significantly when the number of applied pulses was increasing. The experimentally obtained thresholds were well described by the developed theoretical model. Some specific features of paint heating and ablation with high repetition rate lasers are discussed.
NASA Astrophysics Data System (ADS)
Oguri, Katsuya; Mashiko, Hiroki; Ogawa, Tatsuya; Hanada, Yasutaka; Nakano, Hidetoshi; Gotoh, Hideki
2018-04-01
We demonstrate the generation of ultrabroad bandwidth attosecond continua extending to sub-50-as duration in the extreme ultraviolet (EUV) region based on a 1.6-cycle Ti:sapphire laser pulse. The combination of the amplitude gating scheme with a sub-two-cycle driver pulse and the double optical gating scheme achieves the continuum generation with a bandwidth of 70 eV at the full width at half maximum near the peak photon energy of 140 eV, which supports a Fourier-transform-limited pulse duration as short as 32 as. The carrier-envelope-phase (CEP) dependence of the attosecond continua shows a single-peak structure originating from the half-cycle cut-off at appropriate CEP values, which strongly indicates the generation of a single burst of an isolated attosecond pulse. Our approach suggests a possibility for isolated sub-50-as pulse generation in the EUV region by compensating for the intrinsic attosecond chirp with a Zr filter.
Transient photothermal spectra of plasmonic nanobubbles.
Lukianova-Hleb, Ekaterina Y; Sassaroli, Elisabetta; Jones, Alicia; Lapotko, Dmitri O
2012-03-13
The photothermal efficacy of near-infrared gold nanoparticles (NP), nanoshells, and nanorods was studied under pulsed high-energy optical excitation in plasmonic nanobubble (PNB) mode as a function of the wavelength and duration of the excitation laser pulse. PNBs, transient vapor nanobubbles, were generated around individual and clustered overheated NPs in water and living cells. Transient PNBs showed two photothermal features not previously observed for NPs: the narrowing of the spectral peaks to 1 nm and the strong dependence of the photothermal efficacy upon the duration of the laser pulse. Narrow red-shifted (relative to those of NPs) near-infrared spectral peaks were observed for 70 ps excitation laser pulses, while longer sub- and nanosecond pulses completely suppressed near-infrared peaks and blue shifted the PNB generation to the visual range. Thus, PNBs can provide superior spectral selectivity over gold NPs under specific optical excitation conditions.
High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers
Dumitrache, Ciprian; Rath, Jordan; Yalin, Azer P.
2014-01-01
This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs), the hollow core kagome fibers have larger core diameter (~50 µm), which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25). We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine. PMID:28788155
Mook, H.A. Jr.
1984-01-01
In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.
Mook, Jr., Herbert A.
1985-01-01
In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.
Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman
2014-04-15
The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, themore » energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.« less
NASA Astrophysics Data System (ADS)
Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.
1986-11-01
In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.
Ju, Xiaowei; Zhu, Lvgang; Huang, Changlin; Huang, Tao; Zuo, Xincheng; Gao, Chunfang
2013-01-01
Fatigue is synonymous with a wide spectrum of familiar physiological conditions, from pathology and general health, to sport and physical exercise. Strenuous, prolonged exercise training causes fatigue. Although several studies have investigated the effects of electrical stimulation frequency on muscle fatigue, the effects of percutaneous pulse current stimulation on fatigue in the hepatic tissue of trained rats is still unclear. In order to find an effective strategy to prevent fatigue or enhance recovery, the effects of pulse current on endurance exercise and its anti-fatigue properties in exercised rats were studied. Rats were subjected to one, three or five weeks of swimming exercise training. After exercise training, rats in the treated group received daily applications of pulse current. All rats were sacrificed after one, three or five weeks of swimming exercise, and the major biochemical indexes were measured in serum and liver. The results demonstrate that pulse current could prolong the exhaustion swimming time, as well as decrease serum ALT, AST and LD levels and liver MDA content. It also elevated serum LDH activity, liver SOD activity and glycogen content. Furthermore, pulse current increased the expression of Bcl-2 and decreased the expression of Bax. Taken together, these results show that pulse current can elevate endurance capacity and facilitate recovery from fatigue. PMID:24116026
Deuteron flux production in a small high-voltage high-current diode with pulsed magnetic insulation
NASA Astrophysics Data System (ADS)
Shikanov, A. E.; Vovchenko, E. D.; Isaev, A. A.; Kozlovskii, K. I.; Shatokhin, V. L.
2017-06-01
The results of new studies on the production of accelerated deuteron fluxes in a small ion diode with pulsed magnetic insulation of electrons have been presented. A plasma anode of the diode has been formed under the action of a 1.06 μm laser radiation with a pulse duration of 10 ns, a pulse energy of up to 1 J, and a power density on the target of 5 × 1015 W m-2. An accelerating voltage of up to 300 kV has been created using an Arkad'ev-Marx pulsed voltage generator with a stored energy of 50 J and a repetition rate of 1 Hz. A magnetic field of higher than 0.6 T for insulating electrons has been formed by a current pulse of the first cascade of the generator in a spiral line before a conical cascade. Stable deuteron acceleration to 300 keV with a current of up to 1.5 kA and a pulse duration of 0.3 μs has been achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.
In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less
Laser induced mortality of Anopheles stephensi mosquitoes
NASA Astrophysics Data System (ADS)
Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty
2016-02-01
Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.
Pulse Detecting Genetic Circuit – A New Design Approach
Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C.
2016-01-01
A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse–analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event. PMID:27907045
Kinetics of transmembrane transport of small molecules into electropermeabilized cells.
Pucihar, Gorazd; Kotnik, Tadej; Miklavcic, Damijan; Teissié, Justin
2008-09-15
The transport of propidium iodide into electropermeabilized Chinese hamster ovary cells was monitored with a photomultiplier tube during and after the electric pulse. The influence of pulse amplitude and duration on the transport kinetics was investigated with time resolutions from 200 ns to 4 ms in intervals from 400 micros to 8 s. The transport became detectable as early as 60 micros after the start of the pulse, continued for tens of seconds after the pulse, and was faster and larger for higher pulse amplitudes and/or longer pulse durations. With fixed pulse parameters, transport into confluent monolayers of cells was slower than transport into suspended cells. Different time courses of fluorescence increase were observed during and at various times after the pulse, reflecting different transport mechanisms and ongoing membrane resealing. The data were compared to theoretical predictions of the Nernst-Planck equation. After a delay of 60 micros, the time course of fluorescence during the pulse was approximately linear, supporting a mainly electrophoretic solution of the Nernst-Planck equation. The time course after the pulse agreed with diffusional solution of the Nernst-Planck equation if the membrane resealing was assumed to consist of three distinct components, with time constants in the range of tens of microseconds, hundreds of microseconds, and tens of seconds, respectively.
NASA Astrophysics Data System (ADS)
Bobkowski, Romuald; Fedosejevs, Robert; Broughton, James N.
1999-06-01
A process has been developed for the purpose of fabricating 0.1 micron linewidth interdigital electrode patterns based on proximity x-ray lithography using a laser-plasma source. Such patterns are required in the manufacture of surface acoustic wave devices. The x-ray lithography was carried out using emission form a Cu plasma produced by a 15Hz, 248nm KrF excimer laser. A temporally multiplexed 50ps duration seed pulse was used to extract the KrF laser energy producing a train of several 50ps pulses spaced approximately 2ns apart within each output pulse. Each short pulse within the train gave the high focal spot intensity required to achieve high efficiency emission of keV x-rays. The first stage of the overall process involves the fabrication of x-ray mask patterns on 1 micron thick Si3N4 membranes using 3-beam lithography followed by gold electroplating. The second stage involves x-ray exposure of a chemically amplified resist through the mask patterns to produce interdigital electrode patterns with 0.1 micron linewidth. Helium background gas and thin polycarbonate/aluminum filters are employed to prevent debris particles from the laser-plasma source form reaching the exposed sample. A computer control system fires the laser and monitors the x-ray flux from the laser-plasma source to insure the desired x-ray exposure is achieved at the resist. In order to reduce diffusion effects in the chemically amplified resist during the post exposure bake the temperature had to be reduced from that normally used. Good reproduction of 0.1 micron linewidth patterns into the x-ray resist was obtained once the exposure parameters and post exposure bake were optimized. A compact exposure station using flowing helium at atmospheric pressure has also been developed for the process, alleviating the need for a vacuum chamber. The details of the overall process and the compact exposure station will be presented.
STREAK CAMERA MEASUREMENTS OF THE APS PC GUN DRIVE LASER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooling, J. C.; Lumpkin, A. H.
We report recent pulse-duration measurements of the APS PC Gun drive laser at both second harmonic and fourth harmonic wavelengths. The drive laser is a Nd:Glass-based chirped pulsed amplifier (CPA) operating at an IR wavelength of 1053 nm, twice frequency-doubled to obtain UV output for the gun. A Hamamatsu C5680 streak camera and an M5675 synchroscan unit are used for these measurements; the synchroscan unit is tuned to 119 MHz, the 24th subharmonic of the linac s-band operating frequency. Calibration is accomplished both electronically and optically. Electronic calibration utilizes a programmable delay line in the 119 MHz rf path. Themore » optical delay uses an etalon with known spacing between reflecting surfaces and is coated for the visible, SH wavelength. IR pulse duration is monitored with an autocorrelator. Fitting the streak camera image projected profiles with Gaussians, UV rms pulse durations are found to vary from 2.1 ps to 3.5 ps as the IR varies from 2.2 ps to 5.2 ps.« less
Experimental Investigation into Beam-Riding Physics of Lightcraft Engines: Progress Report
NASA Astrophysics Data System (ADS)
Kenoyer, David A.; Myrabo, Leik N.; Notaro, Samuel J.; Bragulla, Paul W.
2010-05-01
A twin Lumonics K922M pulsed TFA CO2 laser system (pulse duration of approximately 200 ns FWHM spike with 1 us tail) was employed to experimentally measure beam-riding behavior of Type ♯200 lightcraft engines, using the Angular Impulse Measurement Device (AIMD). Beam-riding forces and moments were examined along with engine thrust-vectoring behavior, as a function of: a) laser beam angular and lateral offset from the vehicle axis of symmetry; b) laser pulse energy 12 to 36 joules); c) pulse duration (100 ns and 1 μs); and d) engine size (97.7 mm to 161.2 mm). Maximum lateral momentum coupling coefficients (CM) of 135 N-s/MJ were achieved with the K922M laser whereas previous PLVTS laser (420 J, 18 μs duration) results indicated 15-30 N-s/MJ—an improvement of 4.5x to 9x. Maximum axial CM performance with the K922M is li1ely to be 4x to 7x larger than lateral CM values, but must await confirmation in upcoming tests.
Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers
NASA Astrophysics Data System (ADS)
Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.
2013-02-01
Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.
Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hongyu; Liu Jiansheng; Wang Cheng
The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effectsmore » of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.« less
Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse
NASA Astrophysics Data System (ADS)
Li, Hongyu; Liu, Jiansheng; Wang, Cheng; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan
2006-08-01
The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.
NASA Astrophysics Data System (ADS)
Dharmadhikari, Aditya K.; Bhowmik, Achintya K.; Ahyi, Ayayi C.; Thakur, Mrinal
2001-11-01
Highly efficient spectrally narrowed emission (SNE) was observed in the solution of strylpyridinium cyanine dye (SPCD) pumped by fundamental and second harmonic of a picosecond Nd:YAG laser in two separate arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of the SNE was measured by background free SHG intensity autocorrelation technique. The measured duration of the pulses was 40 ps. These pulses, having a spectral linewidth of 10 nm (full width at half maximum), were used as a probe to measure the transient changes in the transmission in SPCD solution using a pump-probe setup. The transient optical transmission indicated a gain at the overlap and no gain was observed beyond a delay of 40 ps.
Arranz, P; DeRuiter, S L; Stimpert, A K; Neves, S; Friedlaender, A S; Goldbogen, J A; Visser, F; Calambokidis, J; Southall, B L; Tyack, P L
2016-09-15
Early studies that categorized odontocete pulsed sounds had few means of discriminating signals used for biosonar-based foraging from those used for communication. This capability to identify the function of sounds is important for understanding and interpreting behavior; it is also essential for monitoring and mitigating potential disturbance from human activities. Archival tags were placed on free-ranging Grampus griseus to quantify and discriminate between pulsed sounds used for echolocation-based foraging and those used for communication. Two types of rapid click-series pulsed sounds, buzzes and burst pulses, were identified as produced by the tagged dolphins and classified using a Gaussian mixture model based on their duration, association with jerk (i.e. rapid change of acceleration) and temporal association with click trains. Buzzes followed regular echolocation clicks and coincided with a strong jerk signal from accelerometers on the tag. They consisted of series averaging 359±210 clicks (mean±s.d.) with an increasing repetition rate and relatively low amplitude. Burst pulses consisted of relatively short click series averaging 45±54 clicks with decreasing repetition rate and longer inter-click interval that were less likely to be associated with regular echolocation and the jerk signal. These results suggest that the longer, relatively lower amplitude, jerk-associated buzzes are used in this species to capture prey, mostly during the bottom phase of foraging dives, as seen in other odontocetes. In contrast, the shorter, isolated burst pulses that are generally emitted by the dolphins while at or near the surface are used outside of a direct, known foraging context. © 2016. Published by The Company of Biologists Ltd.
Method and apparatus for measuring frequency and phase difference
NASA Technical Reports Server (NTRS)
Shores, Paul (Inventor); Lichtenberg, Christopher (Inventor); Kobayashi, Herbert S. (Inventor); Cunningham, Allen R. (Inventor)
1986-01-01
The present invention is a system for deriving direct digital indications of frequency and phase difference between two incoming pulse trains adaptable for collision avoidance systems or the like. A pair of radar beams are directed toward a target and corresponding beams returning therefrom are detected. A digital difference circuit forms a pulse train from the Doppler shift frequencies of each beam pair having a repetition rate functionally related to the difference in magnitude of the shift frequencies. Pulses from the pulse train are counted as a function of time. Visual indications thereof on display are correlative to target position relative to beams.
Joiner, Wilsaan M.; Brayanov, Jordan B.
2013-01-01
The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9–12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect. PMID:23719204
Joiner, Wilsaan M; Brayanov, Jordan B; Smith, Maurice A
2013-08-01
The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9-12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect.
Demodulator for binary-phase modulated signals having a variable clock rate
NASA Technical Reports Server (NTRS)
Wu, Ta Tzu (Inventor)
1976-01-01
Method and apparatus for demodulating binary-phase modulated signals recorded on a magnetic stripe on a card as the card is manually inserted into a card reader. Magnetic transitions are sensed as the card is read and the time interval between immediately preceeding basic transitions determines the duration of a data sampling pulse which detects the presence or absence of an intermediate transition pulse indicative of two respective logic states. The duration of the data sampling pulse is approximately 75 percent of the preceeding interval between basic transitions to permit tracking succeeding time differences in basic transition intervals of up to approximately 25 percent.
Laser Pulse Duration Is Critical For the Generation of Plasmonic Nanobubbles
2015-01-01
Plasmonic nanobubbles (PNBs) are transient vapor nanobubbles generated in liquid around laser-overheated plasmonic nanoparticles. Unlike plasmonic nanoparticles, PNBs’ properties are still largely unknown due to their highly nonstationary nature. Here we show the influence of the duration of the optical excitation on the energy efficacy and threshold of PNB generation. The combination of picosecond pulsed excitation with the nanoparticle clustering provides the highest energy efficacy and the lowest threshold fluence, around 5 mJ cm–2, of PNB generation. In contrast, long excitation pulses reduce the energy efficacy of PNB generation by several orders of magnitude. Ultimately, the continuous excitation has the minimal energy efficacy, nine orders of magnitude lower than that for the picosecond excitation. Thus, the duration of the optical excitation of plasmonic nanoparticles can have a stronger effect on the PNB generation than the excitation wavelength, nanoparticle size, shape, or other “stationary” properties of plasmonic nanoparticles. PMID:24916057
Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.
Akosman, Ahmet E; Sander, Michelle Y
2017-08-07
Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.
Efficiency Enhancement in DC Pulsed Gas Discharge Memory Panel
NASA Astrophysics Data System (ADS)
Okamoto, Yukio
1983-01-01
Much improvement in the luminous efficiency of a dc pulsed gas discharge memory panel for color TV display was achieved by shortening the sustaining pulse duration. High energy electrons can thus be produced in the pulsed discharge with fast rise times. Calculated optimum value of E/P in a Xe gas discharge is 7-8 V/cm\\cdotTorr.
Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens
NASA Astrophysics Data System (ADS)
Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.
2018-04-01
Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.
Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers.
Saraceno, C J; Heckl, O H; Baer, C R E; Südmeyer, T; Keller, U
2011-01-17
We report on two pulse compressors for a high-power thin disk laser oscillator using rod-type fiber amplifiers. Both systems are seeded by a standard SESAM modelocked thin disk laser that delivers 16 W of average power at a repetition rate of 10.6 MHz with a pulse energy of 1.5 μJ and a pulse duration of 1 ps. We discuss two results with different fiber parameters with different trade-offs in pulse duration, average power, damage and complexity. The first amplifier setup consists of a Yb-doped fiber amplifier with a 2200 μm2 core area and a length of 55 cm, resulting in a compressed average power of 55 W with 98-fs pulses at a repetition rate of 10.6 MHz. The second system uses a shorter 36-cm fiber with a larger core area of 4500 μm2. In a stretcher-free configuration we obtained 34 W of compressed average power and 65-fs pulses. In both cases peak powers of > 30 MW were demonstrated at several μJ pulse energies. The power scaling limitations due to damage and self-focusing are discussed.
2-μm Cr2+: CdSe passively Q-switched laser
NASA Astrophysics Data System (ADS)
Ji, E. C.; Liu, Q.; Yao, Y.; Lu, S.; Lue, Q. T.
2018-02-01
We demonstrate the bleaching characteristics of Cr2+: CdSe (Cr: CdSe) crystal around 2 μm and prove that Cr: CdSe crystal is an effective saturable absorber to obtain Q-switched pulsed output in Tm3+-doped fiber laser pumped Ho: YAG system. The saturable absorption property of Cr: CdSe is investigated with a pulsed source at 2090 nm. The laserinduced damage threshold of uncoated Cr: CdSe is estimated around 9.92 J/cm2 at 2090 nm with the pulse duration of 30 ns. With the measured bleaching curve, the estimated pulse saturation fluence is around 1.06 J/cm2, and the estimated ground-state absorption cross section is 8.97×10-20 cm2, which is very close to the experimental value. The preliminary laser experiments are all finished with an antireflection coated Cr: CdSe crystal to reduce the insertion loss. The maximum output pulse energy is about 1.8 mJ with repetition frequency of 685 Hz, pulse duration of 15.4 ns, and pulse peak power of 115 kW. The pulsed laser wavelength is measured to be 2090.2 nm.
Range gated strip proximity sensor
McEwan, T.E.
1996-12-03
A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.
Range gated strip proximity sensor
McEwan, Thomas E.
1996-01-01
A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.
Batista Napotnik, Tina; Reberšek, Matej; Vernier, P Thomas; Mali, Barbara; Miklavčič, Damijan
2016-08-01
For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1-10ns, B: 11-100ns and C: 101-999ns. The analysis confirmed that the plasma membrane is more affected with longer pulses than with short pulses, seen best in uptake of dye molecules after applying single pulses. Additionally, we have reviewed measurements of nsEP and evaluations of the electric fields to which cells were exposed in these reports, and we provide recommendations for assessing nanosecond pulsed electric field effects in electroporation studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Tsakiraki, Eleni S; Tsiaparas, Nikolaos N; Christopoulou, Maria I; Papageorgiou, Charalabos Ch; Nikita, Konstantina S
2014-01-01
The aim of the paper is the assessment of neural potentials disorder during a differential sensitivity psychoacoustic procedure. Ten volunteers were asked to compare the duration of two acoustic pulses: one reference with stable duration of 500 ms and one trial which varied from 420 ms to 620 ms. During the discrimination task, Electroencephalogram (EEG) and Event Related Potential (ERP) signals were recorded. The mean Relative Wavelet Energy (mRWE) and the normalized Shannon Wavelet Entropy (nSWE) are computed based on the Discrete Wavelet analysis. The results are correlated to the data derived by the psychoacoustic analysis on the volunteers responses. In most of the electrodes, when the duration of the trial pulse is 460 ms and 560 ms, there is an increase and a decrease in nSWE value, respectively, which is determined mostly by the mRWE in delta rhythm. These extrema are correlated to the Just Noticeable Difference (JND) in pulses duration, calculated by psychoacoustic analysis. The dominance of delta rhythm during the whole auditory experiment is noteworthy. The lowest values of nSWE are noted in temporal lobe.
Ultrahigh-Repetition Pulse Train with Absolute-Phase Control Produced by AN Adiabatic Raman Process
NASA Astrophysics Data System (ADS)
Katsuragawa, M.; Suzuki, T.; Shiraga, K.; Arakawa, M.; Onose, T.; Yokoyama, K.; Hong, F. L.; Misawa, K.
2010-02-01
We describe the generation of an ultrahigh-repetition-rate train of ultrashort pulses on the basis of an adiabatic Raman process. We also describe recent progress in studies toward the ultimate regime: realization of an ultrahigh-repetition-rate train of monocycle pulses with control of the absolute phase. We comment on the milestones expected in the near future in terms of the study of such novel light sources and the new field of optical science stimulated by their development.
Effect of Pulse Rate on Loudness Discrimination in Cochlear Implant Users.
Azadpour, Mahan; McKay, Colette M; Svirsky, Mario A
2018-03-12
Stimulation pulse rate affects current amplitude discrimination by cochlear implant (CI) users, indicated by the evidence that the JND (just noticeable difference) in current amplitude delivered by a CI electrode becomes larger at higher pulse rates. However, it is not clearly understood whether pulse rate would affect discrimination of speech intensities presented acoustically to CI processors, or what the size of this effect might be. Intensity discrimination depends on two factors: the growth of loudness with increasing sound intensity and the loudness JND (or the just noticeable loudness increment). This study evaluated the hypothesis that stimulation pulse rate affects loudness JND. This was done by measuring current amplitude JNDs in an experiment design based on signal detection theory according to which loudness discrimination is related to internal noise (which is manifested by variability in loudness percept in response to repetitions of the same physical stimulus). Current amplitude JNDs were measured for equally loud pulse trains of 500 and 3000 pps (pulses per second) by increasing the current amplitude of the target pulse train until it was perceived just louder than a same-rate or different-rate reference pulse train. The JND measures were obtained at two presentation levels. At the louder level, the current amplitude JNDs were affected by the rate of the reference pulse train in a way that was consistent with greater noise or variability in loudness perception for the higher pulse rate. The results suggest that increasing pulse rate from 500 to 3000 pps can increase loudness JND by 60 % at the upper portion of the dynamic range. This is equivalent to a 38 % reduction in the number of discriminable steps for acoustic and speech intensities.
Control of wavepacket dynamics in mixed alkali metal clusters by optimally shaped fs pulses
NASA Astrophysics Data System (ADS)
Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda, Š.; Wöste, L.
We have performed adaptive feedback optimization of phase-shaped femtosecond laser pulses to control the wavepacket dynamics of small mixed alkali-metal clusters. An optimization algorithm based on Evolutionary Strategies was used to maximize the ion intensities. The optimized pulses for NaK and Na2K converged to pulse trains consisting of numerous peaks. The timing of the elements of the pulse trains corresponds to integer and half integer numbers of the vibrational periods of the molecules, reflecting the wavepacket dynamics in their excited states.
NASA Astrophysics Data System (ADS)
Afeyan, Bedros
2013-10-01
We have recently introduced and extensively studied a new adaptive method of LPI control. It promises to extend the effectiveness of laser as inertial fusion drivers by allowing active control of stimulated Raman and Brillouin scattering and crossed beam energy transfer. It breaks multi-nanosecond pulses into a series of picosecond (ps) time scale spikes with comparable gaps in between. The height and width of each spike as well as their separations are optimization parameters. In addition, the spatial speckle patterns are changed after a number of successive spikes as needed (from every spike to never). The combination of these parameters allows the taming of parametric instabilities to conform to any desired reduced reflectivity profile, within the bounds of the performance limitations of the lasers. Instead of pulse shaping on hydrodynamical time scales, far faster (from 1 ps to 10 ps) modulations of the laser profile will be needed to implement the STUD pulse program for full LPI control. We will show theoretical and computational evidence for the effectiveness of the STUD pulse program to control LPI. The physics of why STUD pulses work and how optimization can be implemented efficiently using statistical nonlinear optical models and techniques will be explained. We will also discuss a novel diagnostic system employing STUD pulses that will allow the boosted measurement of velocity distribution function slopes on a ps time scale in the small crossing volume of a pump and a probe beam. Various regimes from weak to strong coupling and weak to strong damping will be treated. Novel pulse modulation schemes and diagnostic tools based on time-lenses used in both microscope and telescope modes will be suggested for the execution of the STUD pule program. Work Supported by the DOE NNSA-OFES Joint Program on HEDLP and DOE OFES SBIR Phase I Grants.
NASA Astrophysics Data System (ADS)
Buckman, S. M.; Ius, D.
1996-02-01
This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method.
In vivo lactate and beta-hydroxybutyrate editing using a pure-phase refocusing pulse train.
Shen, J; Novotny, E J; Rothman, D L
1998-11-01
A refocusing pulse train consisting of a semiselective refocusing pulse and a selective inversion pulse to obtain a pure-phase refocusing at the frequency of maximal excitation of the semiselective refocusing pulse is proposed and applied to in vivo lactate and beta-hydroxybutyrate editing using difference spectroscopy. It is shown, using both rotation matrix theory and phantom experiments, that the soft inversion pulse has to be halved to flank the semiselective pulse to obtain perfect refocusing and cancellation of interfering resonances. The editing method is used to obtain lactate and beta-hydroxybutyrate spectra from the occipital cortex of juvenile epilepsy patients before and after ketogenic diet treatment.
Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions
NASA Astrophysics Data System (ADS)
El-Sherif, Ashraf Fathy
The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum is presented. Appropriate design precautions have been undertaken to ensure that prelasing does not occur. In this system, the main Q-switched pulse may be followed by one pulse of lower amplitude "postlasing" when an optimised quarter wave voltage of 750 V is applied. It was found that the laser produced 320 ns pulses with 2.5 mJ pulse energy and 3.3 kW peak power at low repetition rates of 50-70 Hz. This is the first time that such studies of electro-optic modulator (EOM) Q-switched Tm3+ fibre lasers have been reported. The maximum peak power was obtained for an optimum cavity length of 2.15 meters, made up of fibre length, broadband beamsplitter polarizer, Q-switch crystal and passive space. Computer simulation of Tm3+doped silica and Er2-doped fluorozirconate fibre lasers using general laser analysis and design (GLAD) software has been successfully investigated for the first time. Input files, which are very similar to language are created to model three designs of fibre lasers, two for Tm3+-doped silica fibre lasers, core pumped at 1.57 mum and cladding pumped at 790 nm, and one for a 2.7 mum Er3+-doped fluorozirconate fibre laser cladding pumped at 975 nm. Results are presented from a relatively comprehensive computer model, which simulates CW operation of the fibre lasers. The simulation suggests that to enhance the conversion energy we have to optimise between the absorption coefficient of the fibre and the diffraction algorithms. Comparison of soft and hard tissue ablation with high peak power Q-switched and CW Tm3+-silica fibre lasers are presented. The ablation of chicken breast and lamb liver tissues as a soft tissue and cartilage as a hard tissue have been investigated using a free running CW-Tm3+-doped fibre laser (wavelength 1.99 mum, with self-pulsation duration ranging over 1 to few tens of microseconds) and for Q-switched operation of the same laser (pulse duration ranging from 150 ns to 900 ns and pulse repetition rates from 100 Hz to 17 kHz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.
NASA Astrophysics Data System (ADS)
Prziwarka, T.; Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Weyers, M.; Knigge, A.; Tränkle, G.
2018-02-01
Monolithic laser diodes which generate short infrared pulses in the picosecond and sub-picosecond ranges with high peak power are ideal sources for many applications like e.g. THz-time-domain spectroscopy (TDS) scanning systems. The achievable THz bandwidth is limited by the length of the optical pulses. Due to the fact that colliding-pulse mode locking (CPM) leads to the shortest pulses which could reached by passive mode locking, we experimentally investigated in detail the dynamical and electro optical performance of InGaAsP based quantum well CPM laser diodes with well-established vertical layer structures. Simple design modifications whose implementation is technically easy were realized. Improvements of the device performance in terms of pulse duration, output power, and noise properties are presented in dependence on the different adaptions. From the results we extract an optimized configuration with which we have reached pulses with durations of ≍1.5 ps, a peak power of > 1 W and a pulse-to-pulse timing jitter < 200 fs. The laser diodes emit pulses at a wavelength around 850 nm with a repetition frequency of ≍ 12.4 GHz and could be used as pump source for GaAs antennas to generate THz-radiation. Approaches for reducing pulse width, increasing output power, and improving noise performance are described.
The development of novel Ytterbium fiber lasers and their applications
NASA Astrophysics Data System (ADS)
Nie, Bai
The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several imaging methods, such as two-photon-excited fluorescence, second harmonic generation, and third harmonic generation, were performed. Not only were single layers of thin tissue imaged, but also depth resolved imaging of thick samples was tested, and three-dimensional image reconstruction was demonstrated. The other project was to develop a simple fiber oscillator for laser-induced breakdown spectroscopy (LIBS). Laser pulses with high energy, high ablation efficiency and low ablation threshold are desirable for this application. We built a fiber laser using up to 200 m long fiber and scaled the output pulse energy up to 450 nJ. This laser was operated in an unusual mode-locking regime and produced noise-like pulses, which have a picosecond long pulse envelope containing multiple irregular femtosecond sub-pulses. This type of pulse was mostly ignored by many earlier researchers. Intra-cavity spectral filters did not affect the laser performance as much as in the similariton lasers and were removed from the laser cavity. Characteristics of our noise-like laser, such as MHz repetition rate, broad spectrum, and picosecond-long pulse envelope containing multiple femtosecond sub-pulses, were found to meet the requirement of an ideal laser source for LIBS. A simple LIBS setup using our laser was demonstrated and atomic emission spectra with very good signal-to-noise ratio were obtained. Composition detection, qualitative concentration determination, and trace detection were also tested. These tests show that our noise-like fiber laser is an ideal laser source for a low-cost and portable LIBS system.
Albert, V; Mndolo, S; Harrison, E M; O'Sullivan, E; Wilson, I H; Walker, I A
2017-06-01
Pulse oximetry is an essential monitor for safe anaesthesia but is often not available in low-income countries. The aim of this study was to determine whether the introduction of pulse oximetry with training was feasible and could reduce the incidence of oxygen desaturation during anaesthesia in a low-income country. Pulse oximeters were donated, with training, to 83 non-physician anaesthetists in Malawi. Knowledge was tested immediately before and after training and at follow-up. Providers were asked to record the lowest peripheral oxygen saturation (SpO 2 ) for the first 100 cases anaesthetised after training. The primary clinical outcome was the proportion of cases with an oxygen desaturation event (SpO 2 < 90%). Seventy-seven of 83 (93%) participants completed all pre- and post-training tests. Pulse oximetry knowledge improved after training from a median (IQR [range]) score of 39 (37-42 [28-48]) to 44 (42-46 [35-50]) and this knowledge was maintained for 8 months (p < 0.001). Oxygen saturation data and provider responses were recorded for 4772 cases. The proportion of oxygen desaturation episodes decreased from 17.2% to 6.5%, representing a 36% reduction in the odds of an oxygen desaturation event in the second 50 cases compared with the first 50 (OR 0.64, 95%CI 0.50-0.82, p < 0.001). We conclude that donation of pulse oximeters, with training, in Malawi was feasible, improved knowledge and reduced the incidence of oxygen desaturation events. © 2017 The Association of Anaesthetists of Great Britain and Ireland.
NASA Astrophysics Data System (ADS)
Stanislauskas, Tomas; Budriūnas, Rimantas; Veitas, Gediminas; Gadonas, Darius; Adamonis, Jonas; Aleknavičius, Aidas; Masian, Gžegož; Kuprionis, Zenonas; Hoff, Dominik; Paulus, Gerhard G.; Börzsönyi, Ádám.; Toth, Szabolcs; Kovacs, Mate; Csontos, János; López-Martens, Rodrigo; Osvay, Károly
2017-05-01
ELI-ALPS in Hungary, one of the three pillars of the Extreme Light Infrastructure, aims at providing diverse light sources, including energetic attosecond pulses at the highest possible repetition rates. One of the main laser systems for driving plasma and gas-based HHG stages, is a state-of-the-art 1 kHz few-cycle laser called SYLOS. Targeted pulse parameters are an energy of 100 mJ and a duration shorter than two optical cycles (<6 fs), with outstanding energy, phase and pointing stability as well as high spatiotemporal quality. The first phase of the laser system has already set a new standard in kHz laser system engineering and technology. The performance and reliability of the SYLOS laser have been consistently tested over the course of a six-month trial period. During this time the system was running at least 8 hours a day at full power for more than 5 months. The current output parameters are 5 TW peak power, 45 mJ pulse energy with 9 fs duration and 300 mrad CEP stability, while the spectrum spans over 300 nm around 840 nm central wavelength. The layout follows the general scheme NOPCPA architecture with a passively CEP-stabilized front-end. The pulses are negatively chirped for the amplification process and compressed by a combination of large aperture bulk glass blocks and positively chirped mirrors under vacuum conditions at the output. During the trial period, the laser system demonstrated outstanding reliability. Daily startup and shutdown procedures take only a few minutes, and the command-control system enables pulse parameters to be modified instantly. Controlling the delays of individual NOPCPA stages makes it possible to tailor the output spectrum of the pulses and tune the central wavelength between 770 nm and 940 nm. We performed several experimental tests to find out the pulse characteristics. Pulse duration was verified with Wizzler, chirp-scan, autocorrelation methods and a stereo-ATI independently. All of them confirmed the sub-9 fs pulse duration. We recorded the long-term waveform and pointing stabilities of the beam in order to find out the effect of the temperature load on optical elements. Excluding a short initial warm up time, stable signals were observed in general. The in-loop and out-of-loop CEP stability was cross-checked between f-to-2f and stereo-ATI devices. Moreover, the inherent CEP stability of the system without feedback loop was also found to be surprisingly robust thanks to the passive CEP stabilization of the front-end. The polarization contrast was better than 1000:1. The temporal contrast was also measured independently with Sequoia and Tundra cross-correlators, and on the ns scale with a fast photodiode and GHz oscilloscope as well. Results showed that the pulse pedestal generally consists of parametric superfluorescence below the 1E-7 level and about 100 ps long, well in accordance with the pump duration. Delaying the pump pulse allows us to shift the seed pulse to the front and reach a pre-pulse pedestal below 1E-11 at 30 ps before the pulse peak. Detailed findings on all the examined pulse characteristics of the SYLOS laser will be reported in this presentation.
NASA Astrophysics Data System (ADS)
Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep
2015-12-01
The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w = 230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.
Pulsed DF chain-laser breakdown induced by maritime aerosols
NASA Astrophysics Data System (ADS)
Amimoto, S. T.; Whittier, J. S.; Ronkowski, F. G.; Valenzuela, P. R.; Harper, G.
1982-08-01
Thresholds for breakdown induced by liquid and solid aerosols in room air have been measured for a 1 microsec-duration pulsed D2-F2 laser of 3.58 -4.78 micron bandwidth. The DF laser beam was directed into an aerosol chamber that simulated maritime atmospheres on the open sea. Both focus and collimated beams were studied. For a focused beam in which the largest encountered aerosol particles were of 1 to 4 micron diameter, pulsed DF breakdown thresholds were measured to lie in the range 0.6 to 1.8 GW/sq cm. Salt-water aerosol breakdown thresholds for micron-size particles were found to be 15 to 30% higher than the corresponding thresholds for fresh-water particles. For a collimated beam that encountered particle diameters as large as 100 microns, breakdown could not be induced using 0.5- microsec (FWHM) pulses at peak intensities of 59 MW/sq cm. Image converter camera measurements of the radial plasma growth rate of 1.3 cm/microsec (at 1.4 GW/sq cm) were consistent with measurements of the cutoff rate of the transmitted laser beam. Pulsed DF breakdown thresholds of 32 MW/sq cm for 30- micron diameter Al2O3 particles were also measured to permit comparison with the earlier pulsed-HF breakdown results of Lencioni, et al.; the solid-particle threshold measurements agree with the Lencioni data if one assumes that the thresholds for microsecond-duration pulses scales is 1/lambda. An approximate theoretical model of the water particle breakdown process is presented that permits the scaling of the present results to other laser pulse durations, aerosol distributions, and transmission path lengths.
Fiber optic suctioning of urinary stone phantoms during laser lithotripsy
NASA Astrophysics Data System (ADS)
Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.
2013-03-01
Fiber optic attraction of urinary stones during laser lithotripsy has been previously observed, and this phenomenon may potentially be exploited to pull stones inside the urinary tract without mechanical grasping tools, thus saving the urologist valuable time and space in the ureteroscope's single working channel. In this study, Thulium fiber laser (TFL) high-pulse-rate/low-pulse-energy operation and Holmium:YAG low-pulse-rate/high-pulse-energy operation are compared for fiber optic "suctioning" of Plaster-of-Paris stone phantoms. A TFL with wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10-350 Hz, and Holmium laser with wavelength of 2120 nm, pulse energy of 35-360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz were tested using 270-μm-core fibers. A peak "pull" speed of 2.5 mm/s was measured for both TFL (35 mJ and 150-250 Hz) and Holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber optic suctioning of urinary stone phantoms is feasible for both lasers. However, TFL operation at high-pulse-rates/low-pulse-energies provides faster, smoother stone pulling than Holmium operation at low-pulserates/ high-pulse-energies. After further study, this method may be used to manipulate urinary stones in the clinic.
Electric field measurements in nanosecond pulse discharges in air over liquid water surface
NASA Astrophysics Data System (ADS)
Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.
2018-01-01
Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.
Episodicity of Orogeny Revisited
NASA Astrophysics Data System (ADS)
Condie, K. C.; Aster, R. C.
2008-12-01
Although it is well established that orogeny is episodic, the duration, correlation and geographic distribution of orogenic episodes is not well constrained. Using large numbers of concordant U/Pb zircon ages from subduction-related granitoids (> 7000), it is now possible to better constrain these variables. Monte Carlo simulation probabilistic histograms of zircon age spectra remove questionable and spurious age peaks, yet allow resolution of peaks with >10 My duration with the data sets. Orogenic episodes with durations < 20 My, herein called pulses, are generally of regional geographic extent, whereas long-lived events (100-250 My), herein called periods, may be of regional or global extent. Orogenic periods comprise several to many pulses. Most orogenic pulses reflect geographic variations in intensity of subduction or/and plate collisions as for instance recorded around the perimeter of the Pacific basin in the last 100 My. Neither of the widely recognized pulses at 2.7 nor 1.9 Ga is global in extent. Orogenic pulses at 2700 and 2680 Ma occur on four continents each (2700: Superior, Hearne-Rae, Nain, North China; 2680: Yilgarn, Africa, Slave, Wyoming). Likewise, an orogenic pulse at 1880 is found on four continents (Laurentia, Baltica, East Asia, South America), and another pulse at 1860 Ma occurs on three continents (Africa, Siberia, Australia). Some orogenic pulses track lateral continental growth, such as 2730, 2715, and 2700 Ma pulses in the Abitibi greenstone belt, and 850, 800 and 750 Ma pulses in the Arabian-Nubian shield. Major orogenic periods are recognized at 2750-2650, 1900-1650, and 1250-1000 Ma and each of these is associated with supercontinent formation. Orogenic periods at 2600-2500 (China and India) and 2150-2050 Ma (West Africa, Amazonia, Rio de la Plata) may be associated with the formation of small supercontinents. Our results suggest that orogenic periods with intervening gaps may not require sudden and short-lived changes in mantle behavior, but may be associated primarily with the supercontinent cycle, and thus be a characteristic feature of planets with plate tectonics.
NASA Astrophysics Data System (ADS)
Salehi, M.; Mirzanejad, S.
2017-05-01
Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.
Pitkänen, Minna; Kallioniemi, Elisa; Julkunen, Petro
2017-01-01
Repetition suppression (RS) is evident as a weakened response to repeated stimuli after the initial response. RS has been demonstrated in motor-evoked potentials (MEPs) induced with transcranial magnetic stimulation (TMS). Here, we investigated the effect of inter-train interval (ITI) on the induction of RS of MEPs with the attempt to optimize the investigative protocols. Trains of TMS pulses, targeted to the primary motor cortex by neuronavigation, were applied at a stimulation intensity of 120% of the resting motor threshold. The stimulus trains included either four or twenty pulses with an inter-stimulus interval (ISI) of 1 s. The ITI was here defined as the interval between the last pulse in a train and the first pulse in the next train; the ITIs used here were 1, 3, 4, 6, 7, 12, and 17 s. RS was observed with all ITIs except with the ITI of 1 s, in which the ITI was equal to ISI. RS was more pronounced with longer ITIs. Shorter ITIs may not allow sufficient time for a return to baseline. RS may reflect a startle-like response to the first pulse of a train followed by habituation. Longer ITIs may allow more recovery time and in turn demonstrate greater RS. Our results indicate that RS can be studied with confidence at relatively short ITIs of 6 s and above.