Science.gov

Sample records for pulse width analysis

  1. Energy-landscape-model analysis for irreversibility and its pulse-width dependence in cells subjected to a high-intensity ultrashort electric pulse

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Hu, Q.; Schoenbach, K. H.; Beebe, S. J.

    2004-05-01

    We provide a simple, but physical analysis for cell irreversibility and apoptosis in response to an ultrashort (nanosecond), high-intensity electric pulse. Our approach is based on an energy landscape model for determining the temporal evolution of the configurational probability function p(q). The primary focus is on obtaining qualitative predictions of a pulse width dependence to apoptotic cell irreversibility that has been observed experimentally. The analysis couples a distributed electrical model for current flow with the Smoluchowski equation to provide self-consistent, time-dependent transmembrane voltages. The model captures the essence of the experimentally observed pulse-width dependence, and provides a possible physical picture that depends only on the electrical trigger. A number of interesting features are predicted.

  2. Energy-landscape-model analysis for irreversibility and its pulse-width dependence in cells subjected to a high-intensity ultrashort electric pulse.

    PubMed

    Joshi, R P; Hu, Q; Schoenbach, K H; Beebe, S J

    2004-05-01

    We provide a simple, but physical analysis for cell irreversibility and apoptosis in response to an ultrashort (nanosecond), high-intensity electric pulse. Our approach is based on an energy landscape model for determining the temporal evolution of the configurational probability function p(q). The primary focus is on obtaining qualitative predictions of a pulse width dependence to apoptotic cell irreversibility that has been observed experimentally. The analysis couples a distributed electrical model for current flow with the Smoluchowski equation to provide self-consistent, time-dependent transmembrane voltages. The model captures the essence of the experimentally observed pulse-width dependence, and provides a possible physical picture that depends only on the electrical trigger. A number of interesting features are predicted.

  3. Pulse width modulation inverter with battery charger

    DOEpatents

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  4. Pulse width modulation inverter with battery charger

    NASA Technical Reports Server (NTRS)

    Slicker, James M. (Inventor)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  5. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  6. Three-Level 48-Pulse STATCOM with Pulse Width Modulation

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Srinivas, Kadagala Venkata

    2016-03-01

    In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.

  7. Modelling and analysis of a high-performance Class D audio amplifier using unipolar pulse-width-modulation

    NASA Astrophysics Data System (ADS)

    Zhou, Zekun; Shi, Yue; Ming, Xin; Zhang, Bo; Li, Zhaoji; Chen, Zao

    2012-02-01

    A high-performance class D audio amplifier using unipolar pulse-width-modulation (PWM) with double-sided natural sampling is presented in this article. In order to comprehend and design the system properly, the class D audio amplifier is modelled and analysed. A wide range triangle-wave signal with good linearity and magnitude proportional to supply voltage is embedded in the proposed class D audio amplifier for maximum output power, high power supply rejection ratio (PSRR) and low total harmonic distortion (THD). Design results based on CSMC 0.5-µm 5-V complementary metal-oxide-semiconductor process demonstrate that the proposed class D audio amplifier can operate with supply voltage in the range 2.4-5.5 V and supports 2.8 W output power from a 5.5 V supply; the maximum efficiency is above 95%, the PSRR is -82 dB, the signal-to-noise ratio (SNR) is 97 dB and the total harmonic distortion plus noise (THD+N) is less than 0.1% between 20 and 20 kHz with output power 0.4 W; the quiescent current without load is 1.8 mA, and the shutdown current is 0.01 µA. The active area of the class-D audio power amplifier is 1.5 mm × 1.5 mm.

  8. Influence of pulse width and detuning on coherent phonon generation

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazutaka G.; Shikano, Yutaka; Kayanuma, Yosuke

    2015-10-01

    We investigated the coherent phonon generation mechanism by irradiation of an ultrashort pulse with a simple two-level model. Our derived formulation shows that both impulsive stimulated Raman scattering (ISRS) and impulsive absorption (IA) simultaneously occur, and phonon wave packets are generated in the electronic ground and excited states by ISRS and IA, respectively. We identify the dominant process from the amplitude of the phonon oscillation. For short pulse widths, ISRS is very small and becomes larger as the pulse width increases. We also show that the initial phase is dependent on the pulse width and the detuning.

  9. Transient analysis and control of bias magnetic state in the transformer of on-line pulse-width-modulation switching full bridge direct current-direct current converter

    NASA Astrophysics Data System (ADS)

    Chen, Jiaxin; Guo, Youguang; Zhu, Jianguo; Wei Lin, Zhi

    2012-04-01

    This paper presents a finite element analysis (FEA) based method for analyzing and controlling the bias magnetic state of the transformer of a pulse-width-modulation (PWM) switching full bridge dc-dc converter. A field-circuit indirect coupling method for predicting the transient bias magnetic state is introduced first. To increase flexibility of the proposed method, a novel transformer model which can address not only its basic input-output characteristic, but also the nonlinear magnetizing inductance, is proposed. Both the asymmetric characteristic and the variable laws of the current flowing through the two secondary windings during the period of PWM switching-off state are highlighted. Finally, the peak magnetizing current controlled method based on the on-line magnetizing current computation is introduced. Analysis results show that this method can address the magnetic saturation at winding ends, and hence many previous difficulties, such as the start-up process and asymmetry of power electronics, can be easily controlled.

  10. Capacitor charging FET switcher with controller to adjust pulse width

    NASA Astrophysics Data System (ADS)

    Mihalka, A. M.

    1986-04-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20 to 50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the dc input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  11. Capacitor charging FET switcher with controller to adjust pulse width

    DOEpatents

    Mihalka, Alex M.

    1986-01-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  12. FREQUENCY DEPENDENCE OF PULSE WIDTH FOR 150 RADIO NORMAL PULSARS

    SciTech Connect

    Chen, J. L.; Wang, H. G.

    2014-11-01

    The frequency dependence of the pulse width is studied for 150 normal pulsars, mostly selected from the European Pulsar Network, for which the 10% multifrequency pulse widths can be well fit with the Thorsett relationship W {sub 10} = Aν{sup μ} + W {sub 10,} {sub min}. The relative fraction of pulse width change between 0.4 GHz and 4.85 GHz, η = (W {sub 4.85} – W {sub 0.4})/W {sub 0.4}, is calculated in terms of the best-fit relationship for each pulsar. It is found that 81 pulsars (54%) have η < –10% (group A), showing considerable profile narrowing at high frequencies, 40 pulsars (27%) have –10% ≤η ≤ 10% (group B), meaning a marginal change in pulse width, and 29 pulsars (19%) have η > 10% (group C), showing a remarkable profile broadening at high frequencies. The fractions of the group-A and group-C pulsars suggest that the profile narrowing phenomenon at high frequencies is more common than the profile broadening phenomenon, but a large fraction of the group-B and group-C pulsars (a total of 46%) is also revealed. The group-C pulsars, together with a portion of group-B pulsars with slight pulse broadening, can hardly be explained using the conventional radius-to-frequency mapping, which only applies to the profile narrowing phenomenon. Based on a recent version of the fan beam model, a type of broadband emission model, we propose that the diverse frequency dependence of pulse width is a consequence of different types of distribution of emission spectra across the emission region. The geometrical effect predicting a link between the emission beam shrinkage and spectrum steepening is tested but disfavored.

  13. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  14. A high-precision pulse-width modulator source.

    SciTech Connect

    Lenkszus, F.; Laird, R.

    1999-09-30

    A novel high-resolution pulse-width modulator (PWM) is being developed for a new digital regulator for the Advanced Photon Source power converters. The circuit features 82-ps setability over an 80-{micro}s range. Our application requires a 50-{micro}s fill-scale range; therefore the 82-ps setability is equivalent to better than 19 bits. The circuit is presently implemented as a VME module and is an integral part of the digital regulator prototype. The design concept and performance results will be presented.

  15. Fractal Reference Signals in Pulse-Width Modulation

    NASA Technical Reports Server (NTRS)

    Lurie, Boris; Lurie, Helen

    2005-01-01

    A report proposes the use of waveforms having fractal shapes reminiscent of sawteeth (in contradistinction to conventional regular sawtooth waveforms) as reference signals for pulse-width modulation in control systems for thrusters of spacecraft flying in formation. Fractal reference signals may also be attractive in some terrestrial control systems - especially those in which pulse-width modulation is used for precise control of electric motors. The report asserts that the use of fractal reference signals would enable the synchronous control of several variables of a spacecraft formation, such that consumption of propellant would be minimized, intervals between thruster firings would be long (as preferred for performing scientific observations), and delays in controlling large-thrust maneuvers for retargeting would be minimized. The report further asserts that whereas different controllers would be needed for different modes of operation if conventional pulsewidth modulation were used, the use of fractal reference signals would enable the same controller to function nearly optimally in all regimes of operation, so that only this one controller would be needed.

  16. Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width

    NASA Astrophysics Data System (ADS)

    Eyres, Loren A.; Morehead, James J.; Gregg, Jeffrey; Richard, Derek J.; Grossman, William

    2006-02-01

    We demonstrate a variable pulse width, internally-frequency-converted, near-diffraction-limited Nd:YAG laser with output power up to 40 Watts at 532 nm and pulse widths electronically adjustable over a 40-300 ns range. The variable pulse width is achieved by clipping the pulse decaying edge with the Q-switch in a laser cavity optimized for post-pulse gain insensitivity. This approach makes possible frequency converted lasers with pulse width and output power substantially independent of repetition rate.

  17. A compact high current pulsed electron gun with subnanosecond electron pulse widths

    NASA Technical Reports Server (NTRS)

    Khakoo, M. A.; Srivastava, S. K.

    1984-01-01

    A magnetically-collimated, double-pulsed electron gun capable of generating electron pulses with a peak instantaneous current of approximately 70 microamps and a temporal width of 0.35 ns (FWHM) has been developed. Calibration is accomplished by measuring the lifetime of the well known 2(1P)-to-1(1S) transition in helium (58.4nm) at a near-threshold electron-impact energy by use of the delayed-coincidence technique.

  18. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    PubMed Central

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  19. Improving luminous efficacy using dual sustain pulse waveform associated with short sustain pulse width in AC-plasma display panels

    NASA Astrophysics Data System (ADS)

    Park, Hyung Dal; Kim, Jae Hyun; Shin, Bhum Jae; Seo, Jeong Hyun; Tae, Heung-Sik

    2015-05-01

    In the previous work, we reported that the luminous efficacy was significantly improved using the short sustain pulse width with sufficiently long off-time between sustain pulses. In this paper, we have proposed the dual sustain pulse as an alternative of short sustain pulse width when the off-time is short. We demonstrate that the luminous efficacy can be significantly improved by using the new dual sustain waveform, which is attribute to the effects of the dual sustain pulse as well as short sustain pulse width when the off-time is 1μs. The proper adjustment of the 1st sustain discharge can induce the 2nd sustain discharge out of the sustain pulse, resulting in the high luminous efficacy. Comparing to the luminous efficacy of the conventional case, it is improved by approximately 130 % due to the effects of dual sustain pulse as well as short sustain pulse width.

  20. Single event transient pulse width measurement of 65-nm bulk CMOS circuits

    NASA Astrophysics Data System (ADS)

    Suge, Yue; Xiaolin, Zhang; Xinyuan, Zhao

    2015-11-01

    Heavy ion results of a 65-nm CMOS SET pulse width testchip are given. The influences of device threshold voltage, temperature and well separation on pulse width are discussed. Experimental data implied that the low device threshold, high temperature and well speraration would contribute to wider SET. The multi-peak phenomenon in the distribution of SET pulse width was first observed and its dependence on various factors is also discussed.

  1. A high voltage nanosecond pulser with independently adjustable output voltage, pulse width, and pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Carscadden, John; Slobodov, Ilia

    2014-10-01

    Eagle Harbor Technologies (EHT) is developing a high voltage nanosecond pulser capable of generating microwaves and non-equilibrium plasmas for plasma medicine, material science, enhanced combustion, drag reduction, and other research applications. The EHT nanosecond pulser technology is capable of producing high voltage (up to 60 kV) pulses (width 20-500 ns) with fast rise times (<10 ns) at high pulse repetition frequency (adjustable up to 100 kHz) for CW operation. The pulser does not require the use of saturable core magnetics, which allows for the output voltage, pulse width, and pulse repetition frequency to be fully adjustable, enabling researchers to explore non-equilibrium plasmas over a wide range of parameters. A magnetic compression stage can be added to improve the rise time and drive lower impedance loads without sacrificing high pulse repetition frequency operation. Work supported in part by the US Navy under Contract Number N00014-14-P-1055 and the US Air Force under Contract Number FA9550-14-C-0006.

  2. Experimental study on the single event effects in pulse width modulators by laser testing

    NASA Astrophysics Data System (ADS)

    Wen, Zhao; Xiaoqiang, Guo; Wei, Chen; Hongxia, Guo; Dongsheng, Lin; Hanning, Wang; Yinhong, Luo; Lili, Ding; Yuanming, Wang

    2015-11-01

    This paper presents single event effect (SEE) characteristics of UC1845AJ pulse width modulators (PWMs) by laser testing. In combination with analysis to map PWM circuitry in the microchip dies, the typical SEE response waveforms for laser pulses located in different circuit blocks of UC1845AJ are obtained and the SEE mechanisms are analyzed. The laser SEE test results show that there are some differences in the SEE mechanisms of different circuit blocks, and phase shifts or changes in the duty cycles of few output pulses are the main SEE behaviors for UC1845AJ. In addition, a new SEE behavior which manifests as changes in the duty cycles of many output pulses is revealed. This means that an SEE hardened design should be considered.

  3. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning.

    PubMed

    Andrieu, Patrice; Billot, Pierre-Édouard; Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  4. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning

    PubMed Central

    Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  5. Generation of an ultra-short electrical pulse with width shorter than the excitation laser

    PubMed Central

    Shi, Wei; Wang, Shaoqiang; Ma, Cheng; Xu, Ming

    2016-01-01

    We demonstrate experimentally a rare phenomenon that the width of an electrical response is shorter than that of the excitation laser. In this work, generation of an ultrashort electrical pulse is by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) and the generated electrical pulse width is shorter than that of the excitation laser from diode laser. When the pulse width and energy of the excitation laser are fixed at 25.7 ns and 1.6 μJ respectively, the width of the generated electrical pulse width by 3-mm-gap GaAs PCSS at the bias voltage of 9 kV is only 7.3 ns. The model of photon-activated charge domain (PACD) is used to explain the peculiar phenomenon in our experiment. The ultrashort electrical pulse width is mainly relevant to the time interval of PACD from occurrence to disappearance in the mode. The shorter the time interval is, the narrower the electrical pulse width will become. In more general terms, our result suggests that in nonlinear regime a response signal can have a much short width than the excitation pulses. The result clearly indicates that generating ultrashort electrical pulses can be achieved without the need of ultrashort lasers. PMID:27273512

  6. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Guibo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  7. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  8. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  9. High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-01-15

    Chirped fiber Bragg gratings control the pulse width and energy in Kerr mode-locked erbium fiber soliton lasers. We create high-energy pulses by providing large amounts of excessive negative dispersion, which increases the pulse width while keeping the nonlinearity of the cavity constant. With a chirped fiber grating of 3.4-ps{sup 2} dispersion, 3-ps pulses with an energy content higher than 1 nJ are generated at a repetition rate of 27 MHz. By controlling the polarization state in the cavity, we obtain a tuning range from 1.550 to 1.562 {mu}m.

  10. Sub-nanosecond ranging possibilities of optical radar at various signal levels and transmitted pulse widths

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1971-01-01

    The behavior of the photomultiplier is considered, as well as the method of derivation of the photomultiplier output pulse and its relation to the reflected light pulse width and amplitude, and the calibration of range precision and accuracy. Pulsed laser radars with light pulse widths of 30, 3, and 0.1 nanosec a considered, with the 0.1 nanosec system capable of highest precision in several modes of operation, including a high repetition rate, single photoelectron reception mode. An alternate calibration scheme using a fast, triggerable light pulser is described in detail.

  11. Pulse-Width Control in Ladder Structure Four-Phase Rectifier for AC-Electromotive

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Myatez, S. V.; Langeman, E. G.; Schurov, N. I.

    2016-04-01

    Based on these studies the ways of power factor of the single-phase rectifiers operating in a single-phase AC network improving are suggested. The ladder four-phase rectifier is offered as a technical mean using a pulse-width method of controlling the rectified voltage. The pulse-width control efficiency as a way of the power factor rectifier with a ladder structure for AC electromotive improving is evaluated.

  12. Investigation of passively mode-locked fiber laser with adjustable pulse-width

    NASA Astrophysics Data System (ADS)

    Xu, Huiwen; Fu, Xiquan; Lei, Dajun; Wen, Shuangchun

    2006-09-01

    In the paper, we have numerically studied how the initial conditions influence the mode-locked soliton formation in the passively mode-locked fiber laser by using the nonlinear polarization rotation technique. We find that once the laser gain is fixed, a soliton with fixed peak power and pulse width will be formed, which is independent of the initial seed pulse conditions. Further numerical simulations have shown that both the peak power and the pulse width of the mode-locked soliton are varied with the linear cavity delay bias setting. We identified that the larger the linear cavity phase setting, the higher the soliton peak and the narrower the soliton pulse achievable in certain range, and adjustable pulse width passively mode-locked fiber laser can be formed by turning the linear cavity delay bias.

  13. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.; Meguid, S. A.

    2016-07-01

    This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.

  14. Pulse self-compression to single-cycle pulse widths a few decades above the self-focusing threshold

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Zheltikov, A. M.

    2016-08-01

    We identify a physical scenario whereby optical-field waveforms with peak powers several decades above the critical power of self-focusing can self-compress to subcycle pulse widths. With beam breakup, intense hot spots, and optical damage of the material avoided within the pulse compression length by keeping this length shorter than the modulation-instability buildup length, the beam is shown to preserve its continuity at the point of subcycle pulse generation.

  15. [Doppler effect on width of characteristic line in plasma induced by pulsed laser ablating Al].

    PubMed

    Song, Yi-Zhong; He, An-Zhi

    2005-05-01

    Aluminum (Al) plasma was induced with a pulsed Nd: YAG laser beam ablating Al target in Ar. Time-resolved information of the plasma radiation was taken with time-resolved technique, and the spectra of the radiation were recorded with an optical multi-path analyzer (OMA III ), whereupon, time-resolved spectra of the plasma radiation induced by pulsed laser were acquired. Based on the experiment data, Al resonant double lines, Al I 396.15 nm, Al I 394.40 nm, were respectively fitted with Lorentz, Gauss and their linear integrated function (abbr. Integrated function), whereupon, Lorentz and Gauss elements were separated from the experiment data profile curve. By contrasting Lorentz with Gauss curve separated, it was found that the experiment curve mainly consisted of Lorentz element, a with little Gauss. By contrasting Lorentz with Integrated fitting curve for experiment data, a visual picture of the characteristic lines broadened by Doppler effect was exhibited. According to the visual picture, the increase of full half-high width of the characteristic line broadened by Doppler effect was estimated. It was about 2 x 10(-)3 -8 x 10(-3) nm, approximating the theoretical value 6.7 x 10(-)3 nm. As a result, Doppler effect on the width of characteristic lines in the plasma could be reasonably explained by curve fitting analysis and theoretical calculation.

  16. Comparative study of SVPWM (space vector pulse width modulation) & SPWM (sinusoidal pulse width modulation) based three phase voltage source inverters for variable speed drive

    NASA Astrophysics Data System (ADS)

    Ahmed, Waheed; Usman Ali, Syed M.

    2013-12-01

    We have performed comparative studies of Space Vector Pulse Width Modulation (SVPWM) and Sinusoidal Pulse Width Modulation (SPWM) techniques utilizing MATLAB tools. During these investigations, we carried out intensive simulations, comprehensively analyzed the obtained results and compared the harmonic density, power factor (PF), & switching losses of SVPWM and SPWM. It has been observed during investigations that if the switching frequency is high then losses due to harmonics are negligible, thus based on obtained results we suggested that the SVPWM technique is a more reliable solution. Because SVPWM utilizes DC bus voltage more efficiently, generates less Total Harmonic Distortion (THD) and has higher output quality it provides flexible control of output voltage and output frequency for Variable Speed Drive (VSD).

  17. Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL)

    NASA Astrophysics Data System (ADS)

    Rifin, S. N. M.; Zulkifli, M. Z.; Hassan, S. N. M.; Munajat, Y.; Ahmad, H.

    2016-11-01

    We demonstrate two flat plateaus and the low-noise spectrum of supercontinuum generation (SCG) in a highly nonlinear fiber (HNLF), injected by an amplified picosecond pulse seed of a carbon nanotube-based passively mode locked erbium-doped fiber laser. A broad spectrum of width approximately 1090 nm spanning the range 1130-2220 nm is obtained and the pulse width is compressed to the shorter duration of 70 fs. Variations of the injected peak power up to 33.78 kW into the HNLF are compared and the broad spectrum SCG profiles slightly expand for each of the injected peak powers. This straightforward configuration of SCG offers low output power and ultra-narrow femtosecond pulse width. The results facilitate the development of all fiber time-domain spectroscopy systems based on the photoconductive antenna technique.

  18. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  19. Characterization of a DBD-Based Plasma Jet Using a Variable Pulse Width Nanosecond Pulser

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Picard, Julian; Prager, James; Miller, Kenneth; Carscadden, John

    2015-11-01

    Most high voltage pulsers used to drive dielectric barrier discharges (DBDs), produce a single pulse shape (width and voltage), thus making it challenging to assess the effect of pulse shape on the production of different chemical species during a discharge. Eagle Harbor Technologies, Inc. (EHT) has developed a high voltage nanosecond pulser that enables independent control of the output voltage, pulse width, and pulse repetition frequency. This pulser has been specifically designed to drive dielectric barrier discharges (DBD). EHT has used this pulser to conduct a parametric investigation of a DBD-based jet utilizing spectroscopic diagnostics. A better understanding of this parameter dependency can allow for more targeted and effective application of plasma in medical, environmental, industrial, and other applications. Results comparing DBD voltage and current waveforms with plasma spectrographic measurements will be presented.

  20. Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation

    PubMed Central

    Peterchev, Angel V.; Goetz, Stefan M.; Westin, Gregory G.; Luber, Bruce; Lisanby, Sarah H.

    2013-01-01

    Objective To demonstrate the use of a novel controllable pulse parameter TMS (cTMS) device to characterize human corticospinal tract physiology. Methods Motor threshold and input-output (IO) curve of right first dorsal interosseus were determined in 26 and 12 healthy volunteers, respectively, at pulse widths of 30, 60, and 120 μs using a custom-built cTMS device. Strength–duration curve rheobase and time constant were estimated from the motor thresholds. IO slope was estimated from sigmoid functions fitted to the IO data. Results All procedures were well tolerated with no seizures or other serious adverse events. Increasing pulse width decreased the motor threshold and increased the pulse energy and IO slope. The average strength–duration curve time constant is estimated to be 196 μs, 95% CI [181 μs, 210 μs]. IO slope is inversely correlated with motor threshold both across and within pulse width. A simple quantitative model explains these dependencies. Conclusions Our strength–duration time constant estimate compares well to published values and may be more accurate given increased sample size and enhanced methodology. Multiplying the IO slope by the motor threshold may provide a sensitive measure of individual differences in corticospinal tract physiology. Significance Pulse parameter control offered by cTMS provides enhanced flexibility that can contribute novel insights in TMS studies. PMID:23434439

  1. A Time-Domain Reflectometry Method with Variable Needle Pulse Width for Measuring the Dielectric Properties of Materials

    PubMed Central

    Wilczek, Andrzej; Szypłowska, Agnieszka; Kafarski, Marcin; Skierucha, Wojciech

    2016-01-01

    Time-domain reflectometry (TDR) methods used for measuring the dielectric properties of materials mostly utilize step or needle electrical pulses of constant amplitudes and shapes. Our novel approach enables determining the dielectric relaxation time of a sample using the analysis of the amplitudes of reflected pulses of two widths, in addition to bulk dielectric permittivity and electrical conductivity commonly obtained by the TDR technique. The method was developed for various values of electrical conductivity and relaxation time using numerical simulations of a five-rod probe placed in a material with complex dielectric permittivity described by the Debye model with an added electrical conductivity term. The characterization of amplitudes of two pulses of selected widths was done with regard to the dielectric parameters of simulated materials. The required probe parameters were obtained solely from numerical simulations. Verification was performed for the probe placed in aqueous KCl solutions with 14 different electrical conductivity values. The determined relaxation time remained roughly constant and independent of electrical conductivity. The obtained electrical conductivity agreed with the reference values. Our results indicate that the relaxation time, dielectric permittivity and electrical conductivity of the tested solutions can be simultaneously determined using a simple analysis of the amplitude and reflection time of two needle pulses of different widths. PMID:26861318

  2. A Time-Domain Reflectometry Method with Variable Needle Pulse Width for Measuring the Dielectric Properties of Materials.

    PubMed

    Wilczek, Andrzej; Szypłowska, Agnieszka; Kafarski, Marcin; Skierucha, Wojciech

    2016-02-04

    Time-domain reflectometry (TDR) methods used for measuring the dielectric properties of materials mostly utilize step or needle electrical pulses of constant amplitudes and shapes. Our novel approach enables determining the dielectric relaxation time of a sample using the analysis of the amplitudes of reflected pulses of two widths, in addition to bulk dielectric permittivity and electrical conductivity commonly obtained by the TDR technique. The method was developed for various values of electrical conductivity and relaxation time using numerical simulations of a five-rod probe placed in a material with complex dielectric permittivity described by the Debye model with an added electrical conductivity term. The characterization of amplitudes of two pulses of selected widths was done with regard to the dielectric parameters of simulated materials. The required probe parameters were obtained solely from numerical simulations. Verification was performed for the probe placed in aqueous KCl solutions with 14 different electrical conductivity values. The determined relaxation time remained roughly constant and independent of electrical conductivity. The obtained electrical conductivity agreed with the reference values. Our results indicate that the relaxation time, dielectric permittivity and electrical conductivity of the tested solutions can be simultaneously determined using a simple analysis of the amplitude and reflection time of two needle pulses of different widths.

  3. A Time-Domain Reflectometry Method with Variable Needle Pulse Width for Measuring the Dielectric Properties of Materials.

    PubMed

    Wilczek, Andrzej; Szypłowska, Agnieszka; Kafarski, Marcin; Skierucha, Wojciech

    2016-01-01

    Time-domain reflectometry (TDR) methods used for measuring the dielectric properties of materials mostly utilize step or needle electrical pulses of constant amplitudes and shapes. Our novel approach enables determining the dielectric relaxation time of a sample using the analysis of the amplitudes of reflected pulses of two widths, in addition to bulk dielectric permittivity and electrical conductivity commonly obtained by the TDR technique. The method was developed for various values of electrical conductivity and relaxation time using numerical simulations of a five-rod probe placed in a material with complex dielectric permittivity described by the Debye model with an added electrical conductivity term. The characterization of amplitudes of two pulses of selected widths was done with regard to the dielectric parameters of simulated materials. The required probe parameters were obtained solely from numerical simulations. Verification was performed for the probe placed in aqueous KCl solutions with 14 different electrical conductivity values. The determined relaxation time remained roughly constant and independent of electrical conductivity. The obtained electrical conductivity agreed with the reference values. Our results indicate that the relaxation time, dielectric permittivity and electrical conductivity of the tested solutions can be simultaneously determined using a simple analysis of the amplitude and reflection time of two needle pulses of different widths. PMID:26861318

  4. Pulse-width-independent low power programmable low temperature poly-Si thin-film transistor shift register

    NASA Astrophysics Data System (ADS)

    Song, Eunji; Song, Seok-Jeong; Nam, Hyoungsik

    2015-05-01

    This paper demonstrates a low power programmable pulse width LTPS TFT shift register which achieves the constant power consumption over various pulse widths with the smaller number of TFTs compared to the previous programmable shift register. The proposed shift register consists of nine n-channel LTPS TFTs and one coupling capacitor. By eliminating the shoot-through current path in a NOT-AND logic, the simulation ensures that the proposed structure reduces the power consumption significantly by 60.5% for two line pulse width and by 88.6% for ten line pulse width from the previous programmable pulse width shift register. The power consumption of 12 shift registers is measured at 0.235 mW, independently of programmed pulse widths.

  5. Capacitor discharge pulse analysis.

    SciTech Connect

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  6. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1994-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  7. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1996-01-23

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

  8. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1996-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  9. A solid-state single-phase pulse-width-code modulated inverter

    NASA Astrophysics Data System (ADS)

    Baranov, V. K.; Kriuchkov, V. V.; Malyshkov, G. M.; Khrunova, S. S.; Iakovlev, A. N.

    Analog-digital and digital control schemes for single-phase thyristor pulse-width modulated inverters are presented which allow the selective exclusion of a series of higher harmonics from the approximating voltage. The use of more complex control schemes is shown to be justified in the case of high-power inverters.

  10. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1994-02-15

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.

  11. Doppler and Band-width Characteristics of Periodic Binary Code Compressed to Several Sub-pulses

    NASA Astrophysics Data System (ADS)

    Yamashita, Shinichi; Shinriki, Masanori; Susaki, Hironori

    The new periodic binary codes compressed to several sub-pulses are shown. The Doppler characteristics and band-width characteristics are studied by using of MATLAB / Simulink. The results are compared with the characteristics of the M-sequence. It is demonstrated the new periodic binary codes have better these characteristics than M-sequences.

  12. Pulse-width considerations for nonlinear Raman brain imaging: whither the optimum?

    NASA Astrophysics Data System (ADS)

    Lanin, A. A.; Stepanov, E. A.; Tikhonov, R. A.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-11-01

    We propose simple, yet efficient strategies of pulse-width optimization applicable for nonlinear Raman brain imaging. With the spectral bandwidth of laser pulses accurately matched against the bandwidth of molecular vibrations, the coherent Raman signal is shown to be radically enhanced, enabling higher sensitivities and higher frame rates in nonlinear Raman brain imaging. As a specific example, we show that subpicosecond pulses offer a powerful tool for the detection of brain tumors using stimulated Raman microscopy, as they provide a strong signal without compromising the molecular specificity.

  13. High-resolution width-modulated pulse rebalance electronics for strapdown gyroscopes and accelerometers

    NASA Technical Reports Server (NTRS)

    Kennedy, E. J.; Blalock, T. V.; Bryan, W. L.; Rush, K.

    1974-01-01

    Three different rebalance electronic loops were designed, implemented, and evaluated. The loops were width-modulated binary types using a 614.4 kHz keying signal; they were developed to accommodate the following three inertial sensors with the indicated resolution values: (1) Kearfott 2412 accelerometer - resolution = 260 micro-g/data pulse, (2) Honeywell GG334 gyroscope - resolution = 3.9 milli-arc-sec/data pulse, (3) Kearfott 2401-009 accelerometer - resolution = 144 milli-g/data pulse. Design theory, details of the design implementation, and experimental results for each loop are presented.

  14. Improvement of deoxidization efficiency of nitric monoxide by shortening pulse width of semiconductor opening switch pulse power generator

    NASA Astrophysics Data System (ADS)

    Kakuta, Takatoshi; Yagi, Ippei; Takaki, Koichi

    2015-01-01

    The deoxidization efficiency of nitric monoxide (NO) was improved by shortening the pulse width of the voltage applied to a corona reactor. The deoxidization efficiency of NO was evaluated as the NO removal efficiency in nitrogen (N2) gas containing 200 ppm NO. The corona reactor had a coaxial geometry and consisted of center high-voltage wire and outer grounded cylinder electrodes. A nanosecond high-voltage pulse was generated using an inductive energy storage pulse power circuit with a semiconductor opening switch and was applied to the center wire electrode in the corona reactor. Fast recovery diodes were utilized as a semiconductor opening switch. The pulse width of the applied voltage was reduced from 21 to 14 ns with the arrester connected in parallel to the reactor. The energy efficiency for NO removal was improved from 8.2 to 35.7 g kW-1 h-1 with the arrester connected. The pulse width was also reduced to 8 ns by optimizing the circuit parameters. It was confirmed from observation with an intensified charge-coupled device (ICCD) camera that the streamer corona discharge transited to a glowlike discharge after the streamer propagated from the center wire electrode to the outer cylinder electrode. The duration of the glowlike phase was reduced with the arrester connected. The energy consumed in the glowlike phase was also reduced from 15.7 to 4.6 mJ with the arrester connected.

  15. Theoretical and experimental study for shortening laser pulse width by pinhole plasma shutter

    NASA Astrophysics Data System (ADS)

    Jaafari, Ebrahim; Kavosh Tehrani, Masoud; Mohammad, Mohammad Malek; Saghafifar, Hossian

    2015-05-01

    In this article, a theoretical model is presented to calculate the laser clipped pulse temporal width by the pinhole plasma shutter, and then the model results are compared with the experimental results of CO2 laser clipped pulses by aluminum and copper pinhole plasma shutters. In this model, it is assumed that the laser clipped pulse width is approximately equal to the sum of the plasma formation time and the plasma propagation time in order to reach from pinhole edges to the pinhole center. Furthermore, we assume that the plasma formation time is approximately equal to the time for the surface temperature of pinhole metal plate to reach the boiling point by absorbing the laser pulse energy. Heat conduction equation is used to calculate the time of plasma formation, and Taylor-Sedov's model is used to calculate the plasma propagation time to reach the pinhole center. By these assumptions, a relationship has been established between the laser clipped pulse width on the one hand, and thermo-dynamical and optical parameters of plasma shutter and the involved laser optical parameters on the other. Results of this model are in good agreement with experimental results.

  16. Simple autocorrelator for ultraviolet pulse-width measurements based on the nonlinear photoelectric effect.

    PubMed

    Takagi, Y

    1994-09-20

    An optical pulse-width measurement in the ultraviolet spectral region has been performed in a simple manner by introducing into the second-order autocorrelator a nonlinear response of the optical detector based on the two-photon photoelectric effect. The pulse widths of the third, fourth, and fifth harmonics of a mode-locked Nd:YAG laser were measured by the use of a photomultiplier with a cesium iodide photocathode with a minimum required pulse energy of 10 nJ and a power density of 10 kW/cm(2). The effect of transient interband optical excitation with different photon energies on the intensity correlation profile was also studied for the case of a copper iodide photocathode, and the result provides a background-free intensity correlation in a part of the ultraviolet spectral region.

  17. Determination of the stimulated raman scattering threshold for a pump pulse of arbitrary width

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.

    2016-09-01

    A theoretical solution to the problem of determining the stimulated Raman scattering (SRS) threshold has been found within the undepleted pump approximation for a pump pulse of arbitrary width, which distinguishes it from the known solutions for the limiting cases of very short (highly transient SRS) and very long (quasi-steady-state SRS) pump pulses with respect to the oscillation dephasing time of the SRS medium. The general formula of the theoretical estimate of SRS threshold, in dependence of not only the pump radiation intensity and the SRS interaction length but also the pump-pulse width, is obtained based on the found solution. The theoretical estimate of the SRS threshold has been shown to be in good agreement with the experimental results on the excitation of picosecond SRS in crystals, which justifies the new express method for estimating the SRS gain in experimental measurements of the picosecond SRS threshold.

  18. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    NASA Astrophysics Data System (ADS)

    Zhao, Quantang; Zhang, Z. M.; Yuan, P.; Cao, S. C.; Shen, X. K.; Jing, Y.; Yu, C. S.; Li, Z. P.; Liu, M.; Xiao, R. Q.; Zong, Y.; Wang, Y. R.; Zhao, H. W.

    2013-11-01

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60-70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article.

  19. Real time pulse width monitor for Intensified Charge Coupled Device (ICCD) electro-optic shutters

    SciTech Connect

    Yates, G.J.

    1996-12-01

    A method is described or controlling and measuring the pulse width of electrical gate pulses used for optical shuttering of image intensifier. The intensifiers are coupled to high frame rate Charge-Coupled-Devices (CCD) or Focus-Projection Scan (FPS) vidicon TV cameras for readout and telemetry of time resolved image sequences. The shutter duration or gate width of individual shutters is measured in real time and encoded in the video frame corresponding to a given shutter interval. The shutter information is updated once catch video frame by strobing new data with each TV camera vertical sync pulse. This circuitry is used in conjunction with commercial video insertion/annotation equipment to provide die shutter width information in alpha numeric text form along with the time resolved video image on a frame-by-frame basis. The measurement technique and circuitry involving a combination of high speed digital counters and analog integrators for measurements in the Ins to 1024 ns range are described. The accuracy obtained is compared with measurements obtained using batch speed DSOs. The measured data are provided in 10-bit Binary (Bi) and four decades of Binary Coded Decimal (BCD) and also displayed on four digit seven segment displays. The control circuitry including digital and analog input means for gate width selection are described. The implementation of both measurement and control circuitry into an Intensified Shuttered CCD (ISCCD) radiometric system for recording fast shuttered images at RS-170 to 4 KHz frame rates is presented.

  20. A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy.

    PubMed

    Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio

    2008-03-01

    We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20GHz from an input of 4-5GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6mT using 80 degrees pulses of 1.5ns. PMID:18248828

  1. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  2. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  3. Resolution limitations from detector pulse width and jitter in a linear orthogonal-acceleration time-of-flight mass spectrometer.

    PubMed

    Coles, J N; Guilhaus, M

    1994-08-01

    Recent and ongoing advances in timing electronics together with the development of ionization techniques suited to time-of-flight mass spectrometry (TOF-MS) have contributed to renewed interest in this method of mass analysis. Whereas low resolving powers (m/†m < 500) were once an almost unavoidable drawback in TOF-MS, recent developments in instrument geometries have produced much higher resolving powers for many ion sources. The temporal width of detector pulses and jitter in timing electronics, however, lead to contributions to peak widths that are essentially independent of the mass-analyzer ion optics. The effective detector pulse width (†t d ≈ 1-10 ns typically) can be a limiting factor in the development of high resolution time-of-flight (TOF) instruments with modest drift lengths (∼1 m), It also reduces the mass resolution more seriously for light ions. This article presents a method for distinguishing the instrumental "ion arrival-time" resolution (R o) of a linear TOF mass analyzer from that which is locally measured at a particular mass, limited by the broadening of the detector pulse width and electronics. The method also provides an estimate of †t d, that is useful in determining the temporal performance of the detection system. The model developed here is tested with data from a recently constructed orthogonal-acceleration TOF mass spectrometer equipped with a commercially available transient recorder (a LeCroy 400-Msamplejs digital oscilloscope) from which we obtained R o = 4240 ± 100 [full width at half maximum (FWHM)) and †t d = 3.0 ± 0.1 ns (FWHM).

  4. Influence of Pulse Width on CdS Film Prepared by YAG Laser Ablation

    NASA Astrophysics Data System (ADS)

    Ezumi, Hiromichi; Keitoku, Susumu

    1993-04-01

    CdS films were deposited on glass substrates using two kinds of YAG lasers: one with a long pulse width of τ{=}100 μs and one with a short pulse width of τ{=}15 ns. Scanning electron microscopy observation and X-ray diffraction patterns showed that the film formed by the long pulse laser with a low energy density has a smooth surface and highly oriented texture. Resistivity is distributed in a wide range: 100-2000 Ω\\cdotcm and 10-100 Ω\\cdotcm for the films formed by long and short pulse lasers, respectively. Measurement of optical transmission spectra suggests the existence of an impurity level in the low resistivity film. Streak image of the plume obtained using an image converter camera showed that the average velocity of ablated luminous particles is about 5× 104 cm/s for long pulse laser ablation and (3-9)× 105 cm/s for the short one.

  5. Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier

    NASA Astrophysics Data System (ADS)

    Song, Rui; Lei, Cheng-Min; Chen, Sheng-Ping; Wang, Ze-Feng; Hou, Jing

    2015-08-01

    The effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier is investigated theoretically and experimentally. The complex Ginzburg-Landau equation and adaptive split-step Fourier method are used to simulate the propagation of pulses with different pulse widths in the fiber amplifier, and the results show that a longer pulse is more profitable in near-infrared supercontinuum generation if the central wavelength of the input laser lies in the normal dispersion region of the gain fiber. A four-stage master oscillator power amplifier configuration is adopted and the output spectra under picosecond and nanosecond input pulses are compared with each other. The experimental results are in good accordance with the simulations which can provide some guidance for further optimization of the system. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404404 and 11274385) and the Outstanding Youth Fund Project of Hunan Province and the Fund of Innovation of National University of Defense Technology, China (Grant No. B120701).

  6. Effect of electron beam pulse width on time-of-flight spectra

    NASA Technical Reports Server (NTRS)

    Misakian, M.; Mumma, M. J.

    1974-01-01

    A simple but useful formula describing the effect of electron gun pulse width on the time of flight (TOF) spectra measured in translational spectroscopy experiments is developed. An approximately monoenergetic pulsed electrostatically focused electron beam traverses a scattering cell filled with a Maxwellian gas. Inelastic electron collisions with the gas produce metastable particles, ions, scattered electrons, and photons which then pass through a collimating slit system at right angles to the electron beam. TOF techniques are used to separate the photon signal from the metastable particle signal and to measure the TOF distribution of the metastable species.

  7. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (<0.02 nm) diode laser that is discretely driven in a new short-pulsed mode, enabling continuously tunable seed pulse widths in the 0.2-to-0.4-ns range. The amplifier gain unit consists of a pair of Brewster-cut 6-bounce zigzag Nd:YAG laser slabs, oriented 90deg relative to each other in the amplifier head. This arrangement creates a net-symmetrical thermal lens effect (an opposing singleaxis effect in each slab), and makes thermo-optical corrections simple by optimizing the curvature of the nearest cavity mirror. Each slab is pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling

  8. Pulse-Width Increase of Reflex Triode Vircator Using the Carbon Fibre Cathode

    NASA Astrophysics Data System (ADS)

    Liu, Lie; Li, Li-Min; Zhang, Xiao-Ping; Wen, Jian-Chun; Wan, Hong

    2006-04-01

    We present the investigation on the reflex triode virtual cathode oscillator in which performances of carbon-fibre and stainless-steel cathodes are compared with each other. The experimental results and analyses show that surface tracking induces the electron emission of the carbon fibre cathode. There are electron emission phenomena observed not only from the top of the carbon fibre but also from its side surface. Compared with the case of the stainless steel cathode, the plasma expansion velocity for the carbon fibre cathode is slower, and using the carbon fibre cathode can widen the pulse width of output microwave. The output microwave pulse width reaches an increase of about 20%. This mechanism is different from the conventional explosive emission of metal cathodes.

  9. Influence of nanorod absorption spectrum width on superluminality effect for laser pulse propagation

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2016-03-01

    We investigate the influence of the finite absorption spectrum width on the soliton formation and superluminality phenomenon at a femtosecond pulse propagation in a medium with noble nanoparticles. These effects take place if a positive phase-amplitude grating is induced by laser radiation. We take into account the two-photon absorption (TPA) of laser radiation by nanorods, and time-dependent nanorod aspect ratio changing due to their melting or reshaping because of laser energy absorption, and the nanorod absorption spectrum width. On the basis of computer simulation we demonstrate these effects in a medium with positive phase-amplitude grating, induced by laser radiation, if a weak laser energy absorption takes place on the laser pulse dispersion length.

  10. Mechanism and influencing factors on critical pulse width of oil-immersed polymer insulators under short pulses

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Su, Jian Cang; Li, Rui; Zeng, Bo; Cheng, Jie; Zheng, Lei; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng

    2015-04-01

    The critical pulse width (τc) is a pulse width at which the surface flashover threshold (Ef) is equal to the bulk breakdown threshold (EBD) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854-857]. In this paper, the mechanism of τc is interpreted in perspective of the threshold and the time delay (td) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τc: (1) EBD is lower than Ef; (2) td of bulk breakdown is shorter than td of surface flashover. In addition, factors which have influences on τc are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τc is expected to increase: (1) factors causing EBD to decrease, such as increasing the pulse number or employing a dielectric of lower EBD; (2) factors causing Ef to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing EBD and Ef to increase together, but Ef increases faster than EBD, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τc for solid insulation design is presented and the significance of τc on solid insulation design and on solid demolition are discussed.

  11. Adaptive pulse width control and sampling for low power pulse oximetry.

    PubMed

    Gubbi, Sagar Venkatesh; Amrutur, Bharadwaj

    2015-04-01

    Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry. PMID:25014964

  12. Laser ion source with long pulse width for RHIC-EBIS

    SciTech Connect

    Kondo, K.; Kanesue, T.; Okamura, M.

    2011-03-28

    The Electron Beam Ion Source (EBIS) at Brookhaven National Laboratory is a new heavy ion-projector for RHIC and NASA Space Radiation Laboratory. Laser Ion Source (LIS) with solenoid can supply many kinds of ion from solid targets and is suitable for long pulse length with low current as ion provider for RHIC-EBIS. In order to understand a plasma behavior for fringe field of solenoid, we measure current, pulse width and total ion charges by a new ion probe. The experimental result indicates that the solenoid confines the laser ablation plasma transversely. Laser ion source needs long pulse length with limited current as primary ion provider for RHIC-EBIS. New ion probe can measure current distribution for the radial positions along z axis. The beam pulse length is not effected by magnetic field strength. However, the currents and charges decay with the distance from the end of solenoid. These results indicate that solenoid field has important role for plasma confinement not longitudinally but transversely and solenoid is able to have long pulse length with sufficient total ion charges. Moreover, the results are useful for a design of the extraction system for RHIC-EBIS.

  13. Ocular effects of pulsed neodymium laser radiation: variation of threshold with pulse width. Final report

    SciTech Connect

    Allen, R.G.; Thomas, S.J.; Harrison, R.F.; Zuclich, J.A.; Blankenstein, M.F.

    1985-11-01

    This study of retinal damage thresholds in the rhesus monkey investigated the effects of Nd:YAG laser radiation at four pulsewidths: 4, 30, and 200 nansec, and 10 microsecs. The thresholds causing minimal, ophthalmoscopically visible lesions for the four pulsewidths were 158, 326, 170, and 425 micron j respectively, incident at the eye in single-pulse exposures. The data are interpreted to imply a flat trend for thresholds at pulsewidths examined. This agrees with the maximum permissible exposures set by current safety standards. This finding contrasts with the hypothesis of an anomalous trend of increasing threshold with decreasing pulsewidth suggested for pulsewidths ranging from nanosec-microsecs.

  14. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive

    NASA Astrophysics Data System (ADS)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.

    2010-05-01

    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  15. New autocorrelation technique for the IR FEL optical pulse width measurements

    SciTech Connect

    Amirmadhi, F.; Brau, K.A.; Becker, C.

    1995-12-31

    We have developed a new technique for the autocorrelation measurement of optical pulse width at the Vanderbilt University FEL center. This method is based on nonlinear absorption and transmission characteristics of semiconductors such as Ge, Te and InAs suitable for the wavelength range from 2 to over 6 microns. This approach, aside being simple and low cost, removes the phase matching condition that is generally required for the standard frequency doubling technique and covers a greater wavelength range per nonlinear material. In this paper we will describe the apparatus, explain the principal mechanism involved and compare data which have been acquired with both frequency doubling and two-photon absorption.

  16. Mechanism and influencing factors on critical pulse width of oil-immersed polymer insulators under short pulses

    SciTech Connect

    Zhao, Liang Li, Rui; Zheng, Lei; Su, Jian Cang; Cheng, Jie; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng; Zeng, Bo

    2015-04-15

    The critical pulse width (τ{sub c}) is a pulse width at which the surface flashover threshold (E{sub f}) is equal to the bulk breakdown threshold (E{sub BD}) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854–857]. In this paper, the mechanism of τ{sub c} is interpreted in perspective of the threshold and the time delay (t{sub d}) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τ{sub c}: (1) E{sub BD} is lower than E{sub f}; (2) t{sub d} of bulk breakdown is shorter than t{sub d} of surface flashover. In addition, factors which have influences on τ{sub c} are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τ{sub c} is expected to increase: (1) factors causing E{sub BD} to decrease, such as increasing the pulse number or employing a dielectric of lower E{sub BD}; (2) factors causing E{sub f} to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing E{sub BD} and E{sub f} to increase together, but E{sub f} increases faster than E{sub BD}, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τ{sub c} for solid insulation design is presented and the significance of τ{sub c} on solid insulation design and on solid demolition are discussed.

  17. A novel approach for pulse width measurements with a high precision (8 ps RMS) TDC in an FPGA

    NASA Astrophysics Data System (ADS)

    Ugur, C.; Linev, S.; Michel, J.; Schweitzer, T.; Traxler, M.

    2016-01-01

    High precision time measurements are a crucial element in particle identification experiments, which likewise require pulse width information for Time-over-Threshold (ToT) measurements and charge measurements (correlated with pulse width). In almost all of the FPGA-based TDC applications, pulse width measurements are implemented using two of the TDC channels for leading and trailing edge time measurements individually. This method however, requires twice the number of resources. In this paper we present the latest precision improvements in the high precision TDC (8 ps RMS) developed before [1], as well as the novel way of measuring ToT using a single TDC channel, while still achieving high precision (as low as 11.7 ps RMS). The effect of voltage, generated by a DC-DC converter, over the precision is also discussed. Finally, the outcome of the temperature change over the pulse width measurement is shown and a correction method is suggested to limit the degradation.

  18. A 200 MHz-to-1.4 GHz fast-locking pulse width control loop

    NASA Astrophysics Data System (ADS)

    Abrishamifar, Adib; Navidi, Mir Mohammad; Karimi, Yasha

    2014-03-01

    In this article, we propose a wide frequency range low lock time pulse width control loop (PWCL) circuit. The control stage of the PWCL with proposed frequency selection block can increase its output charge/discharge current at high frequency clocks. Therefore, narrow pulses can be generated at the output of this stage, which leads to the enhancement of the frequency range. Lock time of the circuit is also reduced, owing to the use of optimised second-order passive lead-lag loop filters instead of conventional loop filters. A 0.18-µm CMOS technology and 1.8-V supply voltage are used to verify the operation of the circuit. The simulation results show that the acceptable frequency range is from 200 MHz to 1.4 GHz, while maximum lock time of the circuit at this frequency range is about 580 ns. The proposed PWCL consumes 1 mW of power at 1.4 GHz.

  19. Controllable pulse width of bright similaritons in a tapered graded index diffraction decreasing waveguide.

    PubMed

    Prakash, S Arun; Malathi, V; Mani Rajan, M S; Loomba, Shally

    2016-03-01

    We obtain the bright similariton solutions for generalized inhomogeneous nonlinear Schrödinger equation (GINLSE) which governs the pulse propagation in a tapered graded index diffraction decreasing waveguide (DDW). The exact solutions have been worked out by employing similarity transformations which involve the mapping of the GINLSE to standard NLSE for the certain conditions of the parameters. By making use of the exact analytical solutions, we have investigated the dynamical behavior of optical similariton pairs and have suggested the methods to control them as they propagate through DDW. Moreover, pulse width of similariton is controlled through various profiles. These results are helpful to understand the similaritons in DDW and can be potentially useful for future experiments in optical communications which involve optical amplifiers and long-haul telecommunication networks. PMID:27036193

  20. Controllable pulse width of bright similaritons in a tapered graded index diffraction decreasing waveguide

    NASA Astrophysics Data System (ADS)

    Prakash, S. Arun; Malathi, V.; Mani Rajan, M. S.; Loomba, Shally

    2016-03-01

    We obtain the bright similariton solutions for generalized inhomogeneous nonlinear Schrödinger equation (GINLSE) which governs the pulse propagation in a tapered graded index diffraction decreasing waveguide (DDW). The exact solutions have been worked out by employing similarity transformations which involve the mapping of the GINLSE to standard NLSE for the certain conditions of the parameters. By making use of the exact analytical solutions, we have investigated the dynamical behavior of optical similariton pairs and have suggested the methods to control them as they propagate through DDW. Moreover, pulse width of similariton is controlled through various profiles. These results are helpful to understand the similaritons in DDW and can be potentially useful for future experiments in optical communications which involve optical amplifiers and long-haul telecommunication networks.

  1. Feedforward Compensation of Harmonic Distortion Produced by Pulse Width Modulation For Full-digital Audio Amplifier

    NASA Astrophysics Data System (ADS)

    Yoneya, Akihiko; Watanabe, Akira

    The full-digital audio amplifiers are advantageous with the points of its high power efficiency and its possibility of high fidelity due to the digital signal processing. With the full-digital amplifier, class-D amplifiers are used to drive the load with PWM signals produced from the source signal. Unfortunately, the signals are distorted when the PCM signals are converted to the PWM signals because the pulse-width modulation is a nonlinear conversion from the viewpoint of transient responses. This paper proposes a way to compensate the distortion caused by the pulse-width modulation. A feedforward compensation approach is used because of the simplicity of implementation. The distortion components are estimated with the source signals and its time-derivative signals and used to cancel out them by subtracting them from the source signals. A numerical example with two-tone test is performed to show the effectiveness of the proposed method. The distortion compensation scheme used here may be applicative to other applications.

  2. Design of low-power hybrid digital pulse width modulator with piecewise calibration scheme

    NASA Astrophysics Data System (ADS)

    Zhen, Shaowei; Hou, Sijian; Gan, Wubing; Chen, Jingbo; Luo, Ping; Zhang, Bo

    2015-12-01

    A low-power hybrid digital pulse width modulator (DPWM) is proposed in the paper. Owing to the piecewise calibration scheme, the delay time of delay line is locked to target frequency. The delay line consists of two piecewise lines with different control codes. The delay time of each cell in one sub-delay-line is longer than the last significant bit (LSB) of DPWM, while the delay time of each cell in the other sub-delay-line is shorter than LSB. Optimum linearity is realised with minimum standard cells. Simulation results show that the differential nonlinearity and integral nonlinearity are improved from 5.1 to 0.4 and from 5 to 1.3, respectively. The DPWM is fully synthesised and fabricated in a 90-nm CMOS process. The proposed DPWM occupies a silicon area of 0.01 mm2, with 31.5 μw core power consumption. Experimental results are shown to demonstrate the 2-MHz, 10-bit resolution implementation. Pulse width histogram is firstly introduced to characterise the linearity of the DPWM.

  3. Size and geometry of microearthquake seismic ruptures from P and S pulse width data

    NASA Astrophysics Data System (ADS)

    de Lorenzo, Salvatore; Zollo, Aldo

    2003-11-01

    We propose a method to estimate the radius, dip and strike of a circular seismic rupture through the inversion of first P- and S-wave pulse widths measured on microearthquake records. The method is based on quite general, numerically calibrated relationships relating source and Q parameters under the assumption that the waves are radiated by a circular crack propagating at a constant rupture velocity. To study the influence of both the source and receiver configuration and the properties of seismic rupture, a detailed resolution study on synthetic data has been carried out. For a microearthquake rupture, the pulse width variations with azimuths depend critically on the fault plane orientation and the resolution on fault angle parameters can be qualitatively assessed by the parameter η, defined as the relative variation of the take-off angles with respect to their average value. A statistical approach based on mapping random deviations on data in the (δ, φ) parameter space has been adopted to quantify the uncertainty affecting the fault plane estimates. The method is applied to estimate the source parameters of an ML= 3.1 event recorded during the 1997 Umbria-Marche earthquake sequence. For the considered event, the fault plane solution is in good agreement with the δ-φ estimates obtained by the method of the joint inversion of P polarities and S polarizations.

  4. Single Event Effects Testing of the Linfinity SG1525A Pulse Width Modulator Controller

    NASA Technical Reports Server (NTRS)

    Howard, J. W., Jr.; Carts, M. A.; LaBel, K. A.; Forney, J. D.; Irwin, T. L.

    2003-01-01

    Pulse Width Modulator (PWM) Controllers are the heart of switching power supply systems in development today. The PWMs considered here have the same integration advantages as many other controllers but it also includes the interface drivers for the follow-on power Field Effect Transistors (FET). Previous work on these types of devices looked into the required test methodologies [ 11 and the impact of radiation on the soft start and shutdown circuits of typically incorporated in the technology [2]. Taking advantage of this previous work this study was undertaken to determine the single event destructive and transient susceptibility of the Linfinity SG1525A Pulse Width Modulator Controller. The device was monitored for transient interruptions in the output signals and for destructive events induced by exposing it to a heavy ion beam at the Texas A&M University Cyclotron Single Event Effects Test Facility. After exposing these devices to the beam, a new upset mode has been identified that can lead to catastrophic power supply system failure if this event would occur while drive power FETs off the two device outputs. The devices and the test methods used will be described first. This will be followed by a brief description of the data collected to date (not all data can be presented with the length constraints of the summary) and a summary of the key results.

  5. Development and performance of pulse-width-modulated static inverter and converter modules

    NASA Technical Reports Server (NTRS)

    Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.

    1971-01-01

    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.

  6. Jitter model and signal processing techniques for pulse width modulation optical recording

    NASA Technical Reports Server (NTRS)

    Liu, Max M.-K.

    1991-01-01

    A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.

  7. Polar Dunes Resolved by the Mars Orbiter Laser Altimeter Gridded Topography and Pulse Widths

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.

    2003-01-01

    The Mars Orbiter Laser Altimeter (MOLA) polar data have been refined to the extent that many features poorly imaged by Viking Orbiters are now resolved in densely gridded altimetry. Individual linear polar dunes with spacings of 0.5 km or more can be seen as well as sparsely distributed and partially mantled dunes. The refined altimetry will enable measurements of the extent and possibly volume of the north polar ergs. MOLA pulse widths have been recalibrated using inflight data, and a robust algorithm applied to solve for the surface optical impulse response. It shows the surface root-mean-square (RMS) roughness at the 75-m-diameter MOLA footprint scale, together with a geological map. While the roughness is of vital interest for landing site safety studies, a variety of geomorphological studies may also be performed. Pulse widths corrected for regional slope clearly delineate the extent of the polar dunes. The MOLA PEDR profile data have now been re-released in their entirety (Version L). The final Mission Experiment Gridded Data Records (MEGDR's) are now provided at up to 128 pixels per degree globally. Densities as high as 512 pixels per degree are available in a polar stereographic projection. A large computational effort has been expended in improving the accuracy of the MOLA altimetry themselves, both in improved orbital modeling and in after-the-fact adjustment of tracks to improve their registration at crossovers. The current release adopts the IAU2000 rotation model and cartographic frame recommended by the Mars Cartography Working Group. Adoption of the current standard will allow registration of images and profiles globally with an uncertainty of less than 100 m. The MOLA detector is still operational and is currently collecting radiometric data at 1064 nm. Seasonal images of the reflectivity of the polar caps can be generated with a resolution of about 300 m per pixel.

  8. Effects of trigger laser pulse width on the jitter time of GaAs photoconductive semiconductor switch.

    PubMed

    Shi, Wei; Gui, Huaimeng; Zhang, Lin; Ma, Cheng; Li, Mengxia; Xu, Ming; Wang, Luyi

    2013-07-01

    The effects of trigger laser pulse width on the jitter time of a GaAs photoconductive semiconductor switch (PCSS) is investigated in the experiment. The laser is split into two optical beams by a cross grating to excite two 3 mm gap GaAs PCSSs in parallel at the same time. This work reveals that the jitter time of the GaAs PCSS is reduced as the trigger laser pulse width decreases. Our results overcome a significant obstacle that hinders the testing and theory of GaAs PCSSs in high-time-precision synchronous control.

  9. CMOS pulse-width-modulation readout circuit with a wide modulation range for ion-sensitive FET-based sensors

    NASA Astrophysics Data System (ADS)

    Wang, Ruey-Lue; Wu, Wei-De; Yu, Chi; Chiu, Po-Hung; Shi, Jian-Liang; Hao, Yi-Fan; Liao, Hsin-Hao; Tsai, Hann-Huei; Juang, Ying-Zong

    2015-04-01

    A CMOS pulse-width-modulation readout circuit for sensors is presented. An input voltage, Vsen, which comes from a sensor, is converted into a current Isen and then the Isen is used to generate a single pulse by a procedure of constant-time charging and then constant-current discharging. With two signals RESET and SW, a control signal generator produces two signals MS1 and MS2 to control the charging and discharging of the capacitor Cp, and hence the sensitivity of the pulse width can be tuned by changing the period of the SW. The pulse width linearly depends on the Vsen with a linearity of at least 99.996%. The integration of the readout circuit with an ion-sensitive field effect transistor (ISFET) exhibits a measured transfer characteristic of pulse width versus pH value with a sensitivity of -31.6 µs/pH and a linearity of 99.35% after a charging time of 500 µs at 25 °C.

  10. Cuff width alters the amplitude envelope of wrist cuff pressure pulse waveforms.

    PubMed

    Jilek, Jiri; Stork, Milan

    2010-07-01

    The accuracy of noninvasive blood pressure (BP) measurement with any method is affected by cuff width. Measurement with a too narrow cuff overestimates BP and measurement with a too wide cuff underestimates BP. Automatic wrist cuff BP monitors use permanently attached narrow cuffs with bladders about 6 cm wide. Such narrow cuffs should result in under-cuffing for wrist circumferences larger than 15 cm. The objective of this qualitative study was to show that a narrow wrist cuff results in increased BP values when a cuff pulse amplitude ratio algorithm is used. According to the algorithm used in this study, systolic pressure (SBP) corresponds to the point of 50% of maximal amplitude; for diastolic pressure (DBP) the ratio is 70%. Data were acquired from 12 volunteers in the sitting position. The mean wrist circumference was 18 cm. The acquired cuff pulse data were used to compute SBP, mean pressure (MAP) and DBP. The mean values for a 6 cm cuff were SBP = 144 mmHg, MAP = 104 mmHg and DBP = 88 mmHg. The values for a 10 cm cuff were SBP = 128 mmHg, MAP = 93 mmHg and DBP = 78 mmHg. The reference BP values were SBP = 132 mmHg, MAP = 96 mmHg and DBP = 80 mmHg. All narrow (6 cm) cuff BP values were higher than wide (10 cm) cuff or reference BP values. The results indicate that wider wrist cuffs may be desirable for more accurate and reliable BP measurement with wrist monitors. PMID:20505218

  11. Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser

    SciTech Connect

    Dong, Jun; Ueda, Ken-ichi

    2006-05-15

    Repetitively nanosecond pulse-width transverse pattern formation in a plane-parallel microchip Cr,Nd: yttrium-aluminum-garnet (YAG) self-Q-switched laser was investigated. The complex point-symmetric transverse patterns were observed by varying the pump beam diameter incident on the Cr,Nd:YAG crystal. The gain guiding effect and the thermal effect induced by the pump power in microchip Cr,Nd:YAG laser control the oscillating transverse modes. These transverse pattern formations were due to the variation of the saturated inversion population and the thermal induced index profile along radial and longitudinal direction in the Cr,Nd:YAG crystal induced by the pump power incident on the Cr,Nd:YAG crystal. These were intrinsic properties of such a microchip self-Q-switched laser. The longitudinal distribution of the saturated inversion population inside the gain medium plays an important role on the transverse pattern formation. Different sets of the transverse patterns corresponds to the different saturated inversion population distribution inside microchip Cr,Nd:YAG crystal.

  12. Dual Data Pulse Width Modulator for Radio Frequency Identification Biosensor Signal Modulation

    NASA Astrophysics Data System (ADS)

    Kim, Boram; Nakazato, Kazuo

    2013-04-01

    A dual data pulse width modulator is proposed and demonstrated for radio frequency identification (RFID) biosensor signal modulation. Simultaneous wireless measurement of two sensors can be carried out using this circuit, in which two analog signals are modulated and transmitted in a single clock cycle. The measured modulation sensitivity of the two input channels is 84.69 and 85.16 µs/V and the dynamic range is 55.6 and 63.5 dB, respectively. Here, redox potential and temperature are measured wirelessly using the proposed circuit. Temperature change measurement shows a sensitivity of 9.501 µs/°C in the range of 25-40 °C. The measured redox potential shows fairly good linearity for a concentration ratio of hexacyanoferrate (III) to (II) ranging from 10-2 to 102 and the slope is 58.0 mV/decade, almost the same as the theoretical value. The chip area and power consumption are 0.36 mm2 and 650 µW, respectively, using 1.2-µm, 2-metal, 2-poly CMOS technology.

  13. Predicted effects of pulse width programming in spinal cord stimulation: a mathematical modeling study.

    PubMed

    Lee, Dongchul; Hershey, Brad; Bradley, Kerry; Yearwood, Thomas

    2011-07-01

    To understand the theoretical effects of pulse width (PW) programming in spinal cord stimulation (SCS), we implemented a mathematical model of electrical fields and neural activation in SCS to gain insight into the effects of PW programming. The computational model was composed of a finite element model for structure and electrical properties, coupled with a nonlinear double-cable axon model to predict nerve excitation for different myelinated fiber sizes. Mathematical modeling suggested that mediolateral lead position may affect chronaxie and rheobase values, as well as predict greater activation of medial dorsal column fibers with increased PW. These modeling results were validated by a companion clinical study. Thus, variable PW programming in SCS appears to have theoretical value, demonstrated by the ability to increase and even 'steer' spatial selectivity of dorsal column fiber recruitment. It is concluded that the computational SCS model is a valuable tool to understand basic mechanisms of nerve fiber excitation modulated by stimulation parameters such as PW and electric fields.

  14. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator

    PubMed Central

    Ayvali, Elif; Desai, Jaydev P.

    2013-01-01

    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories. PMID:24791130

  15. A pulse width modulated picket fence pulser to reduce accelerator start-up transients

    SciTech Connect

    Reass, William A; Balmes, Anthony A; Bradley, Joseph T; Netz, Dana; Sandoval, Jacob B

    2010-01-01

    This paper describes a solid state modulator used to control the input beam to the Los Alamos Neutron Science Center 'LANSCE' 800 MeV accelerator. This electrostatic Ground Level Deflector (GLD) chops the beam after the 750 keV injection energy. Two GLD's are utilized, one for the 'H+' beam and another for the 'H-' beam. These modulators are mounted on the vacuum beam pipe and directly operate sets of deflection plates. To minimize the accelerator beam start up transients, the beam is let into the accelerator cavity structures by a pulse width modulated picket fence operating between 0 and 12 kV. As the deflection plate structure appears as a capacitive load, a totem-pole switching network is utilized to facilitate rise and fall times of {approx}50 ns that is able to sink and source current to minimize beam induced sidewall activation. This paper will describe the system design and provides operational results as now presently utilized on the LANSCE accelerator system.

  16. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source. PMID:26521006

  17. ENERGY-DEPENDENT GAMMA-RAY BURST PULSE WIDTH DUE TO THE CURVATURE EFFECT AND INTRINSIC BAND SPECTRUM

    SciTech Connect

    Peng, Z. Y.; Ma, L.; Zhao, X. H.; Yin, Y.; Bao, Y. Y.

    2012-06-20

    Previous studies have found that the width of the gamma-ray burst (GRB) pulse is energy dependent and that it decreases as a power-law function with increasing photon energy. In this work we have investigated the relation between the energy dependence of the pulse and the so-called Band spectrum by using a sample including 51 well-separated fast rise and exponential decay long-duration GRB pulses observed by BATSE (Burst and Transient Source Experiment on the Compton Gamma Ray Observatory). We first decompose these pulses into rise and decay phases and find that the rise widths and the decay widths also behave as a power-law function with photon energy. Then we investigate statistically the relations between the three power-law indices of the rise, decay, and total width of the pulse (denoted as {delta}{sub r}, {delta}{sub d}, and {delta}{sub w}, respectively) and the three Band spectral parameters, high-energy index ({alpha}), low-energy index ({beta}), and peak energy (E{sub p} ). It is found that (1) {alpha} is strongly correlated with {delta}{sub w} and {delta}{sub d} but seems uncorrelated with {delta}{sub r}; (2) {beta} is weakly correlated with the three power-law indices, and (3) E{sub p} does not show evident correlations with the three power-law indices. We further investigate the origin of {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha}. We show that the curvature effect and the intrinsic Band spectrum could naturally lead to the energy dependence of the GRB pulse width and also the {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha} correlations. Our results hold so long as the shell emitting gamma rays has a curved surface and the intrinsic spectrum is a Band spectrum or broken power law. The strong {delta}{sub d}-{alpha} correlation and inapparent correlations between {delta}{sub r} and the three Band spectral parameters also suggest that the rise and decay phases of the GRB pulses have different origins.

  18. Atmospheric velocity spectral width measurements using the statistical distribution of pulsed CO2 lidar return signal intensities

    NASA Technical Reports Server (NTRS)

    Ancellet, Gerard M.; Menzies, Robert T.; Grant, William B.

    1989-01-01

    A pulsed CO2 lidar with coherent detection has been used to measure the correlation time of backscatter from an ensemble of atmospheric aerosol particles which are illuminated by the pulsed radiation. The correlation time of the backscatter of the return signal, which is directly related to the velocity spectral width, can be used to study the velocity structure constant of atmospheric turbulence and wind shear. Various techniques for correlation time measurement are discussed, and several measurement results are presented for the technique using the information contained in the statistical distribution of a set of lidar return signal intensities.

  19. Analyzing the effectiveness of flare dispensing programs against pulse width modulation seekers using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Şahingil, Mehmet C.; Aslan, Murat Š.

    2013-10-01

    Infrared guided missile seekers utilizing pulse width modulation in target tracking is one of the threats against air platforms. To be able to achieve a "soft-kill" protection of own platform against these type of threats, one needs to examine carefully the seeker operating principle with its special electronic counter-counter measure (ECCM) capability. One of the cost-effective ways of soft kill protection is to use flare decoys in accordance with an optimized dispensing program. Such an optimization requires a good understanding of the threat seeker, capabilities of the air platform and engagement scenario information between them. Modeling and simulation is very powerful tool to achieve a valuable insight and understand the underlying phenomenology. A careful interpretation of simulation results is crucial to infer valuable conclusions from the data. In such an interpretation there are lots of factors (features) which affect the results. Therefore, powerful statistical tools and pattern recognition algorithms are of special interest in the analysis. In this paper, we show how self-organizing maps (SOMs), which is one of those powerful tools, can be used in analyzing the effectiveness of various flare dispensing programs against a PWM seeker. We perform several Monte Carlo runs for a typical engagement scenario in a MATLAB-based simulation environment. In each run, we randomly change the flare dispending program and obtain corresponding class: "successful" or "unsuccessful", depending on whether the corresponding flare dispensing program deceives the seeker or not, respectively. Then, in the analysis phase, we use SOMs to interpret and visualize the results.

  20. Power, pulse width, and repetition rate agile low-cost multi-spectral semi-active laser simulator

    NASA Astrophysics Data System (ADS)

    O'Daniel, Jason K.; Young, Preston; Golden, Eric; Barton, Robert; Snyder, Donald

    2010-04-01

    The emergence of spectrally multimode smart missiles requires hardware-in-the-loop (HWIL) facilities to simulate multiple spectral signatures simultaneously. While traditional diode-pumped solid-state (DPSS) sources provide a great basic testing source for smart missiles, they typically are bulky and provide substantially more power peak power than what is required for laboratory simulation, have fixed pulse widths, and require some external means to attenuate the output power. HWIL facilities require systems capable of high speed variability of the angular divergence and optical intensity over several orders of magnitude, which is not typically provided by basic DPSS systems. In order to meet the needs of HWIL facilities, we present a low-cost semi-active laser (SAL) simulator source using laser diode sources that emits laser light at the critical wavelengths of 1064 nm and 1550 nm, along with light in the visible for alignment, from a single fiber aperture. Fiber delivery of the multi-spectral output can provide several advantages depending on the testing setup. The SAL simulator source presented is capable of providing attenuation of greater than 70 dB with a response time of a few milliseconds and provides a means to change the angular divergence over an entire dynamic range of 0.02- 6º in less than 400 ms. Further, the SAL simulator is pulse width and pulse repetition rate agile making it capable of producing both current and any future coding format necessary.

  1. Dependence of the phase-coherence time in CdS1-xSex on the laser pulse width

    NASA Astrophysics Data System (ADS)

    Schwab, H.; Klingshirn, C.

    1992-03-01

    We performed degenerate-four-wave-mixing (DFWM) experiments in CdS1-xSex mixed crystals with laser pulses of different duration. It was found that the measured phase-coherence times (T2) are critically dependent on the spectral width and by that on the temporal half-width (τlaser) of the exciting laser. In an experiment with 10-ps pulses we find values for T2 of up to 3 ns. Under the same conditions in the same sample, the maximum observed value for T2 is 100 ps for τlaser=1 ps. With even shorter pulses, the phase-coherence time drops below 80 fs, which is the temporal resolution of our experiment. In addition, the line shape of the dephasing curves as well as the density dependence of T2 are substantially changed. The reason for these findings is based on the structure of these crystals. The compositional disorder leads to the formation of localized states. Within the same spectral region, one also finds extended excitons. The interaction of carriers of both kinds is then responsible for the observed effects.

  2. Ultrasonic spectrum analysis using frequency-tracked gated RF pulses

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.; Heyman, J. S.

    1980-01-01

    A new method of ultrasonic frequency analysis is introduced which employs frequency-tracked gated RF drive pulses rather than shock-excited broadband spikes to generate the ultrasonic waveform. The new technique, a variation of the sampled-continuous wave technique, eliminates problems associated with finite pulse widths of conventional methods. It is shown to yield correct ultrasonic wave velocity measurements of the sample irrespective of receiver gate width or position provided any portions of two successive echoes are gated simultaneously into the spectrum analyzer. The experimental observations are substantiated by a theoretical model based on the time-frequency domain formulation of ultrasonic frequency analysis.

  3. Characterization of a Surface-Flashover Ion Source with 10 - 250 ns Pulse Width

    SciTech Connect

    Falabella, S; Guethlein, G; Kerr, P L; Meyer, G A; Sampayan, S E; Tang, V; Morse, J D

    2008-08-05

    As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact ion source is needed. Towards that end, we are testing a pulsed, surface flashover source, with deuterated titanium films deposited on alumina substrates as the electrodes. An electrochemically-etched mask was used to define the electrode areas on the substrate during the sputtered deposition of the titanium films. Deuterium loading of the films was performed in an all metal-sealed vacuum chamber containing a heated stage. Deuterium ion current from the source was determined by measuring the neutrons produced when the ions impacted a deuterium-loaded target held at -90 kV. As the duration of the arc current is varied, it was observed that the integrated deuteron current per pulse initially increases rapidly, then reaches a maximum near a pulse length of 100 ns.

  4. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-01

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

  5. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-01

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output. PMID:24216924

  6. Vertical Roughness of the Polar Regions of Mars from Mars Orbiter Laser Altimeter Pulse-Width Measurements

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.

    2000-01-01

    The sub-kilometer scale vertical roughness of the martian surface in the polar regions can be investigated using calibrated, optical pulse width data provided by the Mars Orbiter Laser Altimeter (MOLA). Garvin and others have previously discussed initial observations of what we have called "total vertical roughness" or TVR, as derived from MOLA optical pulse width observations acquired during the pre-mapping phases of the Mars Global Surveyor (MGS) mission. Here we present the first assessment of the Mars polar region properties of the TVR parameter from more than nine months of continuous mapping by MOLA as part of the MGS mapping mission. Other than meter-scale surface properties directly inferred from Mars Orbiter Camera (MOC) images, MOLA measurements of footprint-scale TVR represent the only direct measurements of the local vertical structure of the martian surface at approx. 150 m length scales. These types of data have previously been shown to correlate with geologic process histories for terrestrial desert surfaces on the basis of Shuttle Laser Altimeter (SLA) observations. Additional information is obtained in the original extended abstract.

  7. Pulse width modulated push-pull driven parallel resonant converter with active free-wheel

    DOEpatents

    Reass, William A.; Schrank, Louis

    2004-06-22

    An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.

  8. On an assessment of surface roughness estimates from lunar laser altimetry pulse-widths for the Moon from LOLA using LROC narrow-angle stereo DTMs.

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter; Poole, William

    2013-04-01

    Neumann et al. [1] proposed that laser altimetry pulse-widths could be employed to derive "within-footprint" surface roughness as opposed to surface roughness estimated from between laser altimetry pierce-points such as the example for Mars [2] and more recently from the 4-pointed star-shaped LOLA (Lunar reconnaissance Orbiter Laser Altimeter) onboard the NASA-LRO [3]. Since 2009, the LOLA has been collecting extensive global laser altimetry data with a 5m footprint and ?25m between the 5 points in a star-shape. In order to assess how accurately surface roughness (defined as simple RMS after slope correction) derived from LROC matches with surface roughness derived from LOLA footprints, publicly released LROC-NA (LRO Camera Narrow Angle) 1m Digital Terrain Models (DTMs) were employed to measure the surface roughness directly within each 5m footprint. A set of 20 LROC-NA DTMs were examined. Initially the match-up between the LOLA and LROC-NA orthorectified images (ORIs) is assessed visually to ensure that the co-registration is better than the LOLA footprint resolution. For each LOLA footprint, the pulse-width geolocation is then retrieved and this is used to "cookie-cut" the surface roughness and slopes derived from the LROC-NA DTMs. The investigation which includes data from a variety of different landforms shows little, if any correlation between surface roughness estimated from DTMs with LOLA pulse-widths at sub-footprint scale. In fact there is only any perceptible correlation between LOLA and LROC-DTMs at baselines of 40-60m for surface roughness and 20m for slopes. [1] Neumann et al. Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness. Geophysical Research Letters (2003) vol. 30 (11), paper 1561. DOI: 10.1029/2003GL017048 [2] Kreslavsky and Head. Kilometer-scale roughness of Mars: results from MOLA data analysis. J Geophys Res (2000) vol. 105 (E11) pp. 26695-26711. [3] Rosenburg et al. Global surface slopes and roughness of the

  9. Influence of pulse width on the laser ablation of zinc in nitrogen ambient

    NASA Astrophysics Data System (ADS)

    Smijesh, N.; Rao, Kavya H.; Philip, Reji

    2016-04-01

    Time-resolved spectroscopic measurements of expanding plasma plumes generated by irradiating a solid zinc target with laser pulses of 7 ns and 100 fs durations are carried out in the ambient pressure range of 0.05-200 Torr of nitrogen. At the relatively high input fluence of ~16 J/cm2, fast and slow atomic species are found to appear at different times in the optical time-of-flight (OTOF) spectra, the dynamics of which is primarily determined by the pulse duration of the excitation laser. In fs LPP, the average speed of fast species is unaffected by an increase in ambient pressure, while in ns LPP, the speed is found to reduce with pressure. The slow species shows a sharp peak in the OTOF spectra with a narrow velocity distribution for fs LPP, indicating a large number density and low electron temperature, which is consistent with optical emission spectroscopic (OES) studies. On the other hand, for ns LPP, the OTOF of slow species shows a more broadened profile which can be attributed to strong plume-laser interaction. The dynamics of slow species is heavily influenced by the presence of shock waves, which leads to the occurrence of much slower species at larger pressures.

  10. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    DOE PAGES

    Bak, Moon Soo; Cappelli, Mark A.

    2012-01-01

    Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronicmore » states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.« less

  11. Analysis on the characteristics of pulsed laser proximity fuze's echo

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  12. A theoretical analysis of river bars stability under changing channel width

    NASA Astrophysics Data System (ADS)

    Zen, S.; Zolezzi, G.; Tubino, M.

    2014-04-01

    In this paper we propose a new theoretical model to investigate the influence of temporal changes in channel width on river bar stability. This is achieved by performing a nonlinear stability analysis, which includes temporal width variations as a small-amplitude perturbation of the basic flow. In order to quantify width variability, channel width is related with the instantaneous discharge using existing empirical formulae proposed for channels with cohesionless banks. Therefore, width can vary (increase and/or decrease) either because it adapts to the temporally varying discharge or, if discharge is constant, through a relaxation relation describing widening of an initially overnarrow channel towards the equilibrium width. Unsteadiness related with changes in channel width is found to directly affect the instantaneous bar growth rate, depending on the conditions under which the widening process occurs. The governing mathematical system is solved by means of a two-parameters (ɛ, δ) perturbation expansion, where ɛ is related to bar amplitude and δ to the temporal width variability. In general width unsteadiness is predicted to play a destabilizing role on free bar stability, namely during the peak stage of a flood event in a laterally unconfined channel and invariably for overnarrow channels fed with steady discharge. In this latter case, width unsteadiness tends to shorten the most unstable bar wavelength compared to the case with constant width, in qualitative agreement with existing experimental observations.

  13. Time-Domain Quaternary-Weighted Pulse Width Modulation Driving Method for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Sang; Kuk, Seung-Hee; Han, Min-Koo

    2008-03-01

    We proposed a new digital driving method and its pixel structure for active matrix organic light-emitting diode (AMOLED) displays employing time-domain quaternary-weighted pulse width modulation. In the new digital driving method, the luminance of AMOLED displays is accurately determined by averaging photon flux to the desired level over a frame period. The proposed pixel was verified by spice simulation and the output linearity between the grayscale and the OLED current was successfully achieved. In the proposed digital driving pixel, the timing margin was increased and the effect on luminance of AMOLED displays by the troublesome variation of the thin-film transistors (TFTs) was suppressed without additional compensation schemes.

  14. Impact Of The Pulse Width Modulation On The Temperature Distribution In The Armature Of A Solenoid Valve

    NASA Astrophysics Data System (ADS)

    Goraj, R.

    2015-12-01

    In order to estimate the inductive power set in the armature of the high-speed solenoid valve (HSV) during the open loop control (OLC) using pulse width modulation (PWM) an analytical explicit formula has been derived. The simplifications taken both in the geometry and in the physical behavior of the HSV were described. The inductive power was calculated for different boundary conditions and shown as a function of the frequency of the coil current. The power set in the armature was used as an input to the thermal calculation. The thermal calculation had an objective to estimate the time dependent temperature distribution in the armature of the HSV. All the derivation steps were presented and the influence of different boundary conditions was shown and discussed. The increase of the temperature during the heating with inductive power has been evaluated both in the core and on the side surface of the HSV.

  15. A Q-Switched All-Solid-State Single-Longitudinal-Mode Laser with Adjustable Pulse-Width and High Repetition Rate

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Xu, Shi-Zhong; Hou, Xia; Wei, Hui; Chen, Wei-Biao

    2006-01-01

    A single-longitudinal-mode (SLM) laser-diode pumped Nd: YAG laser with adjustable pulse width is developed by using the techniques of pre-lasing and changing polarization of birefingent crystal. The Q-switching voltage is triggered by the peak of the pre-lasing pulse to achieve the higher stability of output pulse energy. The output energy of more than 1 mJ is obtained with output energy stability of 3% (rms) at 100 Hz. The pulse-width can be adjusted from 30 ns to 300 ns by changing the Q-switching voltage. The probability of putting out single-longitudinal-mode pulses is almost 100%. The laser can be run over four hours continually without mode hopping.

  16. Morphometric comparison of the acute rabbit corneal response to 1540-nm laser light following in-vitro exposure to millisecond or nanosecond pulse widths

    NASA Astrophysics Data System (ADS)

    Eurell, Thomas E.; Johnson, Thomas E.; Roach, William P.

    2002-06-01

    Significant damage to rabbit corneal tissue was produced by a single pulse, in vitro exposure of 1540 m infrared laser light operating in either millisecond or nanosecond pulse widths. Millisecond pulse widths of infrared laser light produced a marked coagulative necrosis of both the corneal epithelium and stroma. We also noted histologic alterations in the stromal matrix within the beam path that we interpreted as matrix remodeling. To test this interpretation, we used an indirect immunohistochemical procedure to detect Matrix Metalloproteinase-2 (MMP-2) activity. Immunohistochemistry revealed that the MMP-2 reaction was mostly limited to the margins of the beam path. In addition, the MMP-2 reaction was less intense than expected given the significant tissue changes observed in the histologic sections. Exposure of rabbit corneal tissue to the nanosecond pulse widths produced a less severe coagulative necrosis of the tissue when compared to the millisecond exposures. However, a markedly stronger immunohistochemical pattern than would have been predicted from the histologic sections was observed, with approximately half of the beam path filled with MMP-2 reaction product. These data suggest an association between infrared laser pulse width and the degree of extracellular matrix remodeling in rabbit corneal tissue.

  17. Resolution enhancement using pulse width modulation in digital micromirror device-based point-array scanning pattern exposure

    NASA Astrophysics Data System (ADS)

    Kuo, Hung-Fei; Huang, Yi-Jun

    2016-04-01

    Digital-mask lithography systems, with a digital micromirror device (DMD) as their central piece, have been widely used for defining patterns on printed circuit board (PCB). This study designed optical module parameters for point-array projection lithography based on field tracing technique to improve the quality of the aerial image on the exposure plane. In the realized optical module for the point-array projection lithography, a DMD was used as the dynamic digital-mask, and a 405-nm-wavelength laser was used to illuminate the DMD. The laser was then focused through the micro-lens array in the optical module to form a point array and was projected onto a dynamic scanning stage. By calculating the beam-overlapping rate, stage velocity, spot diameter, and DMD frame rate and programming them into the stage- and DMD-synchronized controller, the point array formed line patterns on the photoresist. Furthermore, using pulse width modulation (PWM) technique to operate the activation periods of the DMD mirrors effectively controlled the exposure and achieved a feature linewidth of less than 10 μm.

  18. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  19. Automated calculation of stenosis diameters from the width of the velocity jet with the use of a multi-gate pulsed Doppler system.

    PubMed

    de Knecht, S; Hopman, J C; Alsters, J L; Daniëls, O; Hoeks, A P; Reneman, R S

    1988-01-01

    The aim of this study was to evaluate an algorithm for automated estimation of the width of a jet stream originating from a stenosis. The evaluation was performed in a pulsatile flow model. The width of the jetstream was assessed by measuring the diameter of the region with relatively high velocities (the jet) in the velocity profiles, as recorded with a multi-gate pulsed Doppler system. Measurements were performed at 3, 6, and 9 mm downstream of three different stenoses (stenosis diameter: 3, 5, or 8 mm) at different Reynolds numbers (200-1600) based on time averaged flow velocity for a tube of diameter 15 mm. The developed algorithm was used successfully for automated detection and quantification of jet flow diameters downstream to a stenosis. The algorithm can be used for calculating the stenosis diameter notwithstanding a theoretically predictable overestimation of about 1 mm, depending on the Reynolds number and the distance from the stenosis. PMID:2974211

  20. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  1. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  2. Single-pulse laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass for pulse widths of 500  fs, 10  ps, 20  ns.

    PubMed

    Nieto, Daniel; Arines, Justo; O'Connor, Gerard M; Flores-Arias, María Teresa

    2015-10-10

    In this work, we report a comparative study of the laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass as a function of the pulse width and for IR laser wavelengths. We determine the ablation threshold for three different pulse durations: τ=500  fs, 10 ps, and 20 ns. Experiments have been performed using a single laser pulse per shot in an ambient (air) environment. The results show a significant difference, of two orders of magnitude, between the group of ablation thresholds obtained for femtosecond, picosecond, and nanosecond pulses. This difference is reduced to 1 order of magnitude in the soda-lime substrate with tin impurities, pointing out the importance of the incubation effect. The morphology of the marks generated over the different glass materials by one single pulse of different pulse durations has been analyzed using a scanning electron microscope (FESEM ULTRA Plus). Our results are important for practical purposes, providing the ablation threshold data of four commonly used substrates at three different pulse durations in the infrared regime (1030-1064 nm) and complete data for increasing the understanding of the differences in the mechanism's leading ablation in the nanosecond, picosecond, and femtosecond regimes.

  3. Finite element analysis of femoral neck stress in relation to pelvic width.

    PubMed

    Schwarzkopf, Ran; Dong, Nick N G; Fetto, Joseph F

    2011-01-01

    Hip resurfacing arthroplasty has been developed as an alternative to traditional total hip arthroplasty, in an effort to minimize the loss of native bone in young patients with symptomatic hip osteoarthritis. Femoral neck fracture following hip resurfacing is a unique complication; several risk factors are associated with this complication, including female gender. In the present study, we used finite element models of the proximal femur to simulate stresses across the femoral neck in pelvis models with varying widths. This analysis demonstrated an increase in hip reaction forces as the width of the pelvis increases, a condition that simulates a resurfacing condition in a female pelvis. This difference in peak stress on the femoral neck may explain the increased incidence of femoral neck fractures seen in female patients following hip resurfacing.

  4. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  5. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media.

    PubMed

    Mair, R W; Hürlimann, M D; Sen, P N; Schwartz, L M; Patz, S; Walsworth, R L

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects. PMID:11445310

  6. Men's facial width-to-height ratio predicts aggression: a meta-analysis.

    PubMed

    Haselhuhn, Michael P; Ormiston, Margaret E; Wong, Elaine M

    2015-01-01

    Recent research has identified men's facial width-to-height ratio (fWHR) as a reliable predictor of aggressive tendencies and behavior. Other research, however, has failed to replicate the fWHR-aggression relationship and has questioned whether previous findings are robust. In the current paper, we synthesize existing work by conducting a meta-analysis to estimate whether and how fWHR predicts aggression. Our results indicate a small, but significant, positive relationship between men's fWHR and aggression. PMID:25849992

  7. Men’s Facial Width-to-Height Ratio Predicts Aggression: A Meta-Analysis

    PubMed Central

    Haselhuhn, Michael P.; Ormiston, Margaret E.; Wong, Elaine M.

    2015-01-01

    Recent research has identified men’s facial width-to-height ratio (fWHR) as a reliable predictor of aggressive tendencies and behavior. Other research, however, has failed to replicate the fWHR-aggression relationship and has questioned whether previous findings are robust. In the current paper, we synthesize existing work by conducting a meta-analysis to estimate whether and how fWHR predicts aggression. Our results indicate a small, but significant, positive relationship between men’s fWHR and aggression. PMID:25849992

  8. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A.

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  9. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    PubMed Central

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID

  10. Resummation Analysis of the τ-DECAY Width Using the Four-Loop β-FUNCTION

    NASA Astrophysics Data System (ADS)

    Groote, S.; Körner, J. G.; Pivovarov, A. A.

    We extract the strong coupling constant α s(m2_r) from the semileptonic τ-decay width taking into account resummation effects from the running of the strong coupling constant. In the /line{MS} scheme. The result reads αs=0.375±0.007 to third-order and αs=0.378±0.007 to fourth-order in the β-function, respectively, where we use the recently computed four-loop coefficient β3. These values for the coupling constant have to be compared with the value αs=0.354±0.005 derived from a third-order analysis of τ-decays. We determine the exact value of the convergence radius of the perturbation series by analyzing the singularity structure of the complex coupling constant plane.

  11. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    SciTech Connect

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  12. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  13. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    NASA Astrophysics Data System (ADS)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.

  14. Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

    NASA Astrophysics Data System (ADS)

    Surovtsev, Yurii S.; Bydžovský, Petr; Kamiński, Robert; Lyubovitskij, Valery E.; Nagy, Miroslav

    2014-02-01

    The peculiarities of obtaining parameters for broad multi-channel resonances from data are discussed, analyzing the experimental data on processes \\pi \\pi \\rightarrow \\pi \\pi ,K\\overline{K} in the IGJPC = 0+0++ channel in a model-independent approach based on analyticity and unitarity, and using an uniformization procedure. We show that it is possible to obtain a good description of the ππ scattering data from the threshold to 1.89 GeV with parameters of resonances cited in the Particle Data Group tables as preferred. However, in this case, first, the representation of the ππ background is unsatisfactory; second, the data on the coupled process \\pi \\pi \\rightarrow K\\overline{K} are not well described even qualitatively above 1.15 GeV when using the resonance parameters from only the ππ scattering analysis. The combined analysis of these coupled processes is needed, and is carried out satisfactorily. Then, both of the above-indicated issues related to the analysis of ππ scattering only are overcome. The most remarkable change of parameters with respect to the values of the ππ scattering only analysis appears for the mass of the f0(600), which is now in some accordance with the Weinberg prediction on the basis of mended symmetry and with an analysis using the large-Nc consistency conditions between the unitarization and resonance saturation. The obtained ππ scattering length a_0^0, in the case where we are restricted to the analysis of the ππ scattering or where we consider the so-called A-solution (with a lower mass and width of f0(600) meson), agrees well with the prediction of the chiral perturbation theory and with data extracted at CERN by the NA48/2 collaboration from the analysis of the Ke4 decay and by the DIRAC collaboration from the measurement of the π+π- lifetime.

  15. Analysis of shock pulses for environmental tests

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1977-01-01

    Specifications for shock testing of components that will be used on the Space Shuttle vehicles require very high acceleration levels. A special shock machine was built for testing of rocket components to determine if they can meet the specified accelerations. Calibrations of transducers and methods to monitor the shock tests raised several signature-analysis questions. In this report, calibration capabilities of shock accelerometers are found to be limited to 10,000g. Equivalency of the mechanical shock test and the rocket pyrotechnic shock are examined, and two simple relationships for equivalency are proposed. Five different pulse signature-analysis techniques are tested on analytical and experimental pulse data and recommendations are made for the signature technique which most clearly identifies the magnitude of the impulse applied to the test specimen.

  16. Study of the Effect of the Pulse Width of the Excitation Source on the Two-Photon Absorption and Two-Photon Circular Dichroism Spectra of Biaryl Derivatives.

    PubMed

    Vesga, Yuly; Hernandez, Florencio E

    2016-09-01

    Herein we report on the expanded theoretical calculations and the experimental measurements of the two-photon absorption (TPA) and two-photon circular dichroism (TPCD) spectra of a series of optically active biaryl derivatives (R-BINOL, R-VANOL, and R-VAPOL) using femtosecond pulses. The comparative analysis of the experimental TPCD spectra obtained with our tunable amplified femtosecond system with those previously measured in our group on the same series of compounds in the picosecond regime reveals a decrease in the amplitude of the signal and an improvement in matching with the theory in the former. These results can be explained based on the negligible contribution of excited state absorption (ESA) using femtosecond pulses compared to the picosecond regime. We show how ESA affects both the strength of the signal and the shape of the TPA and TPCD spectra. TPA and TPCD spectra were obtained using the double L-scan technique over a broad spectral range (450-750 nm) using 90 fs pulses at 50 Hz repetition rate produced by an amplified femtosecond system. The theoretical calculations were performed using modern analytical response theory within the time-dependent density functional theory (TD-DFT) approach using CAM-B3LYP and 6-311++G(d,p) basis sets. PMID:27525702

  17. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space

    NASA Astrophysics Data System (ADS)

    Thorne, Robert G.; Nicholson, Charles

    2006-04-01

    Diffusion within the extracellular space (ECS) of the brain is necessary for chemical signaling and for neurons and glia to access nutrients and therapeutics; however, the width of the ECS in living tissue remains unknown. We used integrative optical imaging to show that dextrans and water-soluble quantum dots with Stokes-Einstein diameters as large as 35 nm diffuse within the ECS of adult rat neocortex in vivo. Modeling the ECS as fluid-filled "pores" predicts a normal width of 38-64 nm, at least 2-fold greater than estimates from EM of fixed tissue. ECS width falls below 10 nm after terminal ischemia, a likely explanation for the small ECS visualized in electron micrographs. Our results will improve modeling of neurotransmitter spread after spillover and ectopic release and establish size limits for diffusion of drug delivery vectors such as viruses, liposomes, and nanoparticles in brain ECS. drug delivery | integrative optical imaging | nanoparticles | restricted diffusion | somatosensory cortex

  18. Dual-Pulse Pulse Position Modulation (DPPM) for Deep-Space Optical Communications: Performance and Practicality Analysis

    NASA Technical Reports Server (NTRS)

    Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel

    2012-01-01

    Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.

  19. Progress in Using the Generalized Wigner Distribution in the Analysis of Terrace-Width Distributions of Vicinal Surfaces

    NASA Astrophysics Data System (ADS)

    Cohen, S. D.; Richards, Howard L.; Einstein, T. L.

    2000-03-01

    The so-called generalized Wigner distribution (GWD) may provide at least as good a description of terrace width distributions (TWDs) on vicinal surfaces as the standard Gaussian fit.(T.L. Einstein and O. Pierre-Louis, Surface Sci. 424), L299 (1999). It works well for weak elastic repulsion strengths A between steps (where the latter fails), as illustrated explicitly(S.D. Cohen, H.L. Richards, TLE, and M. Giesen, cond- mat/9911319.) for vicinal Pt(110).( K. Swamy, E. Bertel, and I. Vilfan, Surface Sci. 425), L369 (1999). Applications to vicinal copper surfaces confirms the general viability of the new analysis procedure.(M. Giesen and T.L. Einstein, submitted to Surface Sci.) For troublesome data, we can treat the GWD as a two-parameter fit that allows the terrace widths to be scaled by an optimal effective mean width.^3 With Monte Carlo simulations we show that for physical values of A, the GWD provides a better overall estimate than the Gaussian models. We quantify how a GWD approaches a Gaussian for large A and present a convenient but accurate new expression relating the variance of the TWD to A.^3 We also mention how discreteness of terrace widths impacts the standard continuum analysis.^3

  20. Attributes of GRB Pulses: Analysis of BATSE TTE Data

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Scargle, J. D.; Bonnell, J. T.; Nemiroff, R. J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Our extensive program of modeling GRB profiles is aimed at elucidating the physical processes responsible for the burst itself, as well as possible extrinsic phenomena (e.g. time dilation) as discussed in another paper in this Symposium (Norris et al., "GRB PROFILES AS COSMIC PROBES"). We have developed special methods to extract the wealth of short time-scale information contained in the BATSE time-tag event (TTE) data. Our algorithm yields a piecewise-constant representation of the light curve -- using only the raw photon arrival times, and based on Bayesian change-point methods. This representation in effect lets the data determine the bin size and location, and avoids unwanted effects due to arbitrary choices of the bin parameters. We have determined widths, separations, and amplitudes of pulses contained in the bursts, without invoking a specific pulse model. The effect of cosmic time dilation can be easily seen in a direct plot of amplitude vs. time scale for individual pulses, without the need to lump the data into a small number of brightness classes. We are also performing noise equalization on these data (to reduce a well-known bias of pulse width as a function of signal-to-noise ratio), as well as fits of parametric pulse-shape models -- including explicit energy dependence of the pulse parameters. Such refinements are expected to improve the quality and physical significance of these results.

  1. Arrhythmic Pulses Detection Using Lempel-Ziv Complexity Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Lisheng; Zhang, David; Wang, Kuanquan; Wang, Lu

    2006-12-01

    Computerized pulse analysis based on traditional Chinese medicine (TCM) is relatively new in the field of automatic physiological signal analysis and diagnosis. Considerable researches have been done on the automatic classification of pulse patterns according to their features of position and shape, but because arrhythmic pulses are difficult to identify, until now none has been done to automatically identify pulses by their rhythms. This paper proposes a novel approach to the detection of arrhythmic pulses using the Lempel-Ziv complexity analysis. Four parameters, one lemma, and two rules, which are the results of heuristic approach, are presented. This approach is applied on 140 clinic pulses for detecting seven pulse patterns, not only achieving a recognition accuracy of 97.1% as assessed by experts in TCM, but also correctly extracting the periodical unit of the intermittent pulse.

  2. High-resolution pluronic-filled microchip CE-SSCP analysis system via channel width control.

    PubMed

    Shin, Giyoung; Kim, Dong-Kyun; Doh, Junsang; Lee, Daeyeon; Lee, Nam Ki; Jung, Gyoo Yeol

    2016-02-01

    Although the resolution of CE-SSCP has been significantly improved by using a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO; Pluronic(®)) triblock copolymer as a separation medium, CE-SSCP on a microchip format is not widely applicable because their resolution is limited by short channel length. Therefore, a strategy to improve the resolution in channels of limited lengths is highly required for enabling microchip-based CE-SSCP. In this study, we developed a high-resolution CE-SSCP microchip system by controlling the width of the pluronic-filled channel. We tested four different channel widths of 180, 240, 300, and 400 μm, and found that 300 μm showed the highest resolution in the separation of two pathogen specific markers. Potential applications of our method in various genetic analyses were also shown by using SNP markers for spinal muscular atrophy. PMID:26542319

  3. Magnitude and frequency analysis on river width widening caused by Typhoon Morakot in the Kaoping River watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jan, C. D.; Wang, Y. C.

    2014-12-01

    Active evolving rivers are some of the most dynamic and sensitive parts of landscapes. From geologic and geomorphic perspectives, a stable river channel can adjust its width, depth, and slope to prevent significant aggradation or degradation caused by external triggers, e.g., hydrologic events caused by typhoon storms. In particular, the processes of lateral riverbank erosion play a majorly important role in forming horizontal river geomorphology, dominating incised river widens and meanders. Sediment materials produced and mobilized from riverbanks can also be substantial sediment supplying into river channel networks, affecting watershed sediment yield. In Taiwan, the geological and climatic regimes usually combine to generate severely lateral erosion and/or riverbed deposition along river channels, causing the significant change in river width. In the August of 2009, Typhoon Morakot brought severe rainfall of about 2000 mmin Southern Taiwan during three days at the beginning of Aug. 5, leading to significant changes in geomorphic system. Here we characterized river width widening (including Cishan, Laonong, and Ilao Rivers) in the Kaoping River watershed after Typhoon Morakot disturbance interpreted through a power law. On the basis of a temporal pair (2008 and 2009) of Formosat-II (Formosa satellite II) images analysis, the river channels were digitalized within geographic information system (GIS), and river widths were extracted per 100 m along the rivers, then differentiating the adjustment of river width before and after Typhoon Morkot. The river width adjusted from -83 m (contracting) to 1985 m (widening), with an average of 170 m. The noncumulative frequency-magnitude distribution for river width adjustment caused by Typhoon Morakot in the study area satisfies a power-law relation with a determined coefficient (r2) of 0.95, over the range from 65 m to 2373m in the study area. Moreover, the value of the power-law exponent is equal to -2.09. This pattern

  4. A pulse generator simulating slit-scan chromosome analysis signals.

    PubMed

    Weier, H U; Eisert, W G

    1986-01-01

    A simple circuit is described for generating a variety of electronic pulses to test hardware and software for slit-scan chromosome analysis in a flow cytometer. The pulse shape can be changed to have different numbers of local minima, thereby simulating fluorescence pulses from acrocentric, monocentric, and dicentric chromosomes. Long pulses simulate aggregates of chromosomes. The pulse repetition rate as well as the pulse amplitude is variable. Although the circuitry is built with only three integrated circuits, the pulse-to-pulse variation in shape and height is quite small. After digitization of the analog signals, the constructed histograms of pulse integrals show a relative coefficient of variation below 1%. This signal generator provides a valuable tool for a number of electronic test applications that would otherwise require expensive standard particles analyzed in a well-tuned flow cytometer.

  5. Optimization of the pulse-width of diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs saturable absorber.

    PubMed

    Han, Chao; Zhao, Shengzhi; Li, Dechun; Li, Guiqiu; Yang, Kejian; Zhang, Gang; Cheng, Kang

    2011-11-01

    By considering the single-photon absorption and two-photon absorption processes in the GaAs saturable absorber, the coupled rate equations for a diode-pumped passively Q-switched and mode-locked (QML) laser with GaAs coupler under Gaussian approximation are given. These rate equations are solved numerically. The key parameters of an optimally coupled passively QML laser with the shortest pulse-width envelope are determined. These key parameters include the parameters of the gain medium, the saturable absorber, and the resonator, which can minimize the pulse-width of a singly Q-switched envelope. Sample calculations for a diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO(4) laser with a GaAs coupler are presented to demonstrate that the shortest pulse-width envelope can be obtained by selecting the optimal small-signal transmission of the saturable absorber and the reflectivity of the output mirror.

  6. Theoretical analysis of direct CP violation and differential decay width in in phase space around the resonances and

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Hua; Song, Ren; Su, Yu-Mo; Lü, Gang; Zheng, Bo

    2015-09-01

    We perform a theoretical study on direct CP violation in in phase space around the intermediate states and . The possible interference between the amplitudes corresponding to the two resonances is taken into account, and the relative strong phase of the two amplitudes is treated as a free parameter. Our analysis shows that by a properly chosen strong phase, both the CP violation strength and the differential decay width accommodate the experimental results.

  7. Quantitative signal analysis in pulsed resonant photoacoustics

    NASA Astrophysics Data System (ADS)

    Schäfer, Stefan; Miklós, András; Hess, Peter

    1997-05-01

    The pulsed excitation of acoustic resonances was studied by means of a high- Q photoacoustic resonator with different types of microphone. The signal strength of the first radial mode was calculated by the basic theory as well as by a modeling program, which takes into account the acoustic impedances of the resonator, the acoustic filter system, and the influence of the microphone coupling on the photoacoustic cavity. When the calculated signal strength is used, the high- Q system can be calibrated for trace-gas analysis without a certified gas mixture. The theoretical results were compared with measurements and show good agreement for different microphone configurations. From the measured pressure signal (in pascals per joule), the absorption coefficient of ethylene was calculated; it agreed within 10 with literature values. In addition, a Helmholtz configuration with a highly sensitive 1-in. (2.54-cm) microphone was realized. Although the Q factor was reduced, the sensitivity could be increased by the Helmholtz resonator in the case of pulsed experiments. A maximum sensitivity of the coupled system of 341 mV Pa was achieved.

  8. Rapid riparian buffer width and quality analysis using lidar in South Carolina

    NASA Astrophysics Data System (ADS)

    Akturk, Emre

    The importance of protecting water quality and aquatic resources are increasing because of harmful human impacts within and around waterways. Establishing or restoring functional riparian areas protect water quality and are a good mechanism to conserve aquatic systems, plants, and wildlife. Laser-based remote sensing technology offers a high resolution approach to both characterize and document changes in riparian buffer zones (RBZs). The objectives of this study were to build a model to calculate riparian buffer width on both sides of a stream using a LiDAR-derived slope variable, to classify riparian buffers and determine their quality, and to evaluate the appropriateness of using LiDAR in riparian buffer assessment. For this purpose, RBZs were delineated for Hunnicutt and King Creek, which are located in Oconee and Pickens counties, in South Carolina. Results show that LiDAR was effective in delineating required riparian buffer widths based on the topography slope of upstream areas, and to calculate the ratio of tree cover in those riparian buffer zones to qualify them. Furthermore, the riparian buffer assessment model that was created in this research has potential for use in different sites and different studies.

  9. A novel pulse height analysis technique for nuclear spectroscopic and imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Wang, C. Y.; Chou, H. P.

    2005-08-01

    The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.

  10. Comparison of the Width of Peritumoral Surgical Margin in Open and Robotic Partial Nephrectomy: A Propensity Score Matched Analysis

    PubMed Central

    Oh, Jong Jin; Lee, Jung Keun; Kim, Kwangmo; Byun, Seok-Soo; Lee, Sang Eun

    2016-01-01

    Background To compare the surgical margin status after open partial nephrectomy (OPN) and robotic partial nephrectomy (RPN) performed in patients with T1a renal cell carcinoma (RCC). Methods This was a propensity score-matched study including 702 patients with cT1a RCC treated with partial nephrectomy (PN) between May 2003 and July 2015. Perioperative parameters, including surgical margin width after PN, were compared between two surgical methods. After determining propensity score for tumor size and location, the width of peritumoral surgical margin was investigated. Multivariate logistic analysis to predict peritumoral surgical margin less than 1mm was analyzed. Results The mean width of peritumoral surgical margin was 2.61 ± 2.15 mm in OPN group (n = 385), significantly wider than the 2.29 ± 2.00 mm of RPN group (n = 317) (p = 0.042). The multivariate analysis showed surgical methods was significant factors to narrow surgical margin less than 1mm (p = 0.031). After propensity score matching, the surgical margin width was significantly longer in OPN (2.67 ± 2.14 mm) group than RPN (2.25 ± 2.03 mm) group (p = 0.016). A positive resection margin occurred in 7 (1.8%) patients in the OPN group and 4 (1.3%) in the RPN group. During the median follow-up of 48.3 months, two patients who underwent OPN had tumor bed recurrence. Conclusions RPN may result in a narrower peritumoral surgical margin than OPN. Further investigation on the potential impact of such a phenomenon should be performed in a larger-scale study. PMID:27336438

  11. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  12. Modeling and analysis of pulse electrochemical machining

    NASA Astrophysics Data System (ADS)

    Wei, Bin

    Pulse Electrochemical Machining (PECM) is a potentially cost effective technology meeting the increasing needs of precision manufacturing of superalloys, like titanium alloys, into complex shapes such as turbine airfoils. This dissertation reports: (1) an assessment of the worldwide state-of-the-art PECM research and industrial practice; (2) PECM process model development; (3) PECM of a superalloy (Ti-6Al-4V); and (4) key issues in future PECM research. The assessment focuses on identifying dimensional control problems with continuous ECM and how PECM can offer a solution. Previous research on PECM system design, process mechanisms, and dimensional control is analysed, leading to a clearer understanding of key issues in PECM development such as process characterization and modeling. New interelectrode gap dynamic models describing the gap evolution with time are developed for different PECM processes with an emphasis on the frontal gaps and a typical two-dimensional case. A 'PECM cosine principle' and several tool design formulae are also derived. PECM processes are characterized using concepts such as quasi-equilibrium gap and dissolution localization. Process simulation is performed to evaluate the effects of process inputs on dimensional accuracy control. Analysis is made on three types (single-phase, homogeneous, and inhomogeneous) of models concerning the physical processes (such as the electrolyte flow, Joule heating, and bubble generation) in the interelectrode gap. A physical model is introduced for the PECM with short pulses, which addresses the effect of electrolyte conductivity change on anodic dissolution. PECM of the titanium alloy is studied from a new perspective on the pulsating currents influence on surface quality and dimension control. An experimental methodology is developed to acquire instantaneous currents and to accurately measure the coefficient of machinability. The influence of pulse parameters on the surface passivation is explained based

  13. Analysis of the spectral width and validation of the LHBEAM code

    SciTech Connect

    Bertelli, N.; Maj, O.; Poli, E.; Pereverzev, G. V.; Peysson, Y.; Decker, J.

    2008-11-01

    A crucial point of the theoretical study of lower-hybrid (LH) current drive in a tokamak plasma is the spectral gap problem, i.e., the fact that the parallel (to the magnetic field) refractive index spectrum generated at the plasma edge does not appear to be wide enough for the interaction of the wave with a large number of electrons. This is in contrast with experimental observations. Diffraction is one of the mechanisms that can lead to the observed wave spectrum broadening and solve the spectral gap problem. For this reason, a new beam tracing code, LHBEAM, has been developed in order to study the diffraction effects on the propagation and the absorption of LH waves in tokamak plasma. In this work, the parallel spectral width is addressed on the basis of the beam tracing approximate solution. A preliminary implementation of the results is done in LHBEAM which has been also compared with the ray tracing code C3PO for the assessment of the trajectory of the central ray and of the evolution of the parallel refractive index on this ray.

  14. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  15. Pulse-chase analysis for studying protein synthesis and maturation.

    PubMed

    Fritzsche, Susanne; Springer, Sebastian

    2014-11-03

    Pulse-chase analysis is a well-established and highly adaptable tool for studying the life cycle of endogenous proteins, including their synthesis, folding, subunit assembly, intracellular transport, post-translational processing, and degradation. This unit describes the performance and analysis of a radiolabel pulse-chase experiment for following the folding and cell surface trafficking of a trimeric murine MHC class I glycoprotein. In particular, the unit focuses on the precise timing of pulse-chase experiments to evaluate early/short-time events in protein maturation in both suspended and strictly adherent cell lines. The advantages and limitations of radiolabel pulse-chase experiments are discussed, and a comprehensive section for troubleshooting is provided. Further, ways to quantitatively represent pulse-chase results are described, and feasible interpretations on protein maturation are suggested. The protocols can be adapted to investigate a variety of proteins that may mature in very different ways.

  16. Arterial stiffness estimation based photoplethysmographic pulse wave analysis

    NASA Astrophysics Data System (ADS)

    Huotari, Matti; Maatta, Kari; Kostamovaara, Juha

    2010-11-01

    Arterial stiffness is one of the indices of vascular healthiness. It is based on pulse wave analysis. In the case we decompose the pulse waveform for the estimation and determination of arterial elasticity. Firstly, optically measured with photoplethysmograph and then investigating means by four lognormal pulse waveforms for which we can find very good fit between the original and summed decomposed pulse wave. Several studies have demonstrated that these kinds of measures predict cardiovascular events. While dynamic factors, e.g., arterial stiffness, depend on fixed structural features of the vascular wall. Arterial stiffness is estimated based on pulse wave decomposition analysis in the radial and tibial arteries. Elucidation of the precise relationship between endothelial function and vascular stiffness awaits still further study.

  17. Laser drilling of via micro-holes in single-crystal semiconductor substrates using a 1070nm fibre laser with millisecond pulse widths

    NASA Astrophysics Data System (ADS)

    Maclean, Jessica O.; Hodson, Jonathan R.; Voisey, K. T.

    2015-07-01

    Micro-machining of semiconductors is relevant to fabrication challenges within the semiconductor industry. For via holes for solar cells, laser drilling potentially avoids deep plasma etching which requires sophisticated equipment and corrosive, high purity gases. Other applications include backside loading of cold atoms into atom chips and ion traps for quantum physics research, for which holes through the semiconductor substrate are needed. Laser drilling, exploiting the melt ejection material removal mechanism, is used industrially for drilling hard to machine materials such as superalloys. Lasers of the kind used in this work typically form holes with diameters of 100's of microns and depths of a few millimetres in metals. Laser drilling of semiconductors typically uses short pulses of UV or long wavelength IR to achieve holes as small as 50 microns. A combination of material processes occurs including laser absorption, heating, melting, vaporization with vapour and dust particle ejection and resolidification. An investigation using materials with different fundamental material parameters allows the suitability of any given laser for the processing of semiconductors to be determined. We report results on the characterization of via holes drilled using a 2000 W maximum power 1070 nm fibre laser with 1-20 ms pulses using single crystal silicon, gallium arsenide and sapphire. Holes were characterised in cross-section and plan view. Significantly, relatively long pulses were effective even for wide bandgap substrates which are nominally transparent at 1070 nm. Examination of drilled samples revealed holes had been successfully generated in all materials via melt ejection.

  18. GEOS-1 laser pulse return shape analysis

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.

    1972-01-01

    An attempt has been made to predict the shape of the laser return pulse from the corner cube retroreflectors on the GEOS-1 spacecraft. The study is geometrical only, and neglects factors such as optical interference, atmospheric perturbations, etc. A function giving the intensity of the return signal at any given time has been derived. In addition, figures are given which show the predicted return pulse shape as a function of time, the angle between the beam and the spin axis, and an in-plane angle (designating the orientation of the intersection of the planar waves with the plane of the corner cubes).

  19. Stress analysis of bearings of main eccentric shaft for width mill

    NASA Astrophysics Data System (ADS)

    Feng, Xianzhang; Liu, Yuanpeng; Cui, Yanmei; Jiang, Zhiqiang

    2009-07-01

    In order to analyze the dynamic load and lifespan of bearing of maim eccentric axis of mill in the course of working, the mechanical model of maim eccentric axis was established using the theory of free beam in material mechanics under the research load character of metal rolling, make the results of the finite element analysis as conditions for the model during rolling metal. The force and lifespan calculation were studied for the bearing systematically, the calculated results show that the bearings exist periodicity force of impact, the same rules as testing inline. The calculated results coincide better with practical measured results and completely achieve the prediction accuracy requirements required by the engineering, and the bearings can meet requirements in the field.

  20. Analysis and mitigation of systematic errors in spectral shearing interferometry of pulses approaching the single-cycle limit [Invited

    SciTech Connect

    Birge, Jonathan R.; Kaertner, Franz X.

    2008-06-15

    We derive an analytical approximation for the measured pulse width error in spectral shearing methods, such as spectral phase interferometry for direct electric-field reconstruction (SPIDER), caused by an anomalous delay between the two sheared pulse components. This analysis suggests that, as pulses approach the single-cycle limit, the resulting requirements on the calibration and stability of this delay become significant, requiring precision orders of magnitude higher than the scale of a wavelength. This is demonstrated by numerical simulations of SPIDER pulse reconstruction using actual data from a sub-two-cycle laser. We briefly propose methods to minimize the effects of this sensitivity in SPIDER and review variants of spectral shearing that attempt to avoid this difficulty.

  1. SETI Pulse Detection Algorithm: Analysis of False-alarm Rates

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1983-01-01

    Some earlier work by the Search for Extraterrestrial Intelligence (SETI) Science Working Group (SWG) on the derivation of spectrum analyzer thresholds for a pulse detection algorithm based on an analysis of false alarm rates is extended. The algorithm previously analyzed was intended to detect a finite sequence of i periodically spaced pulses that did not necessarily occupy the entire observation interval. This algorithm would recognize the presence of such a signal only if all i-received pulse powers exceeded a threshold T(i): these thresholds were selected to achieve a desired false alarm rate, independent of i. To simplify the analysis, it was assumed that the pulses were synchronous with the spectrum sample times. This analysis extends the earlier effort to include infinite and/or asynchronous pulse trains. Furthermore, to decrease the possibility of missing an extraterrestrial intelligence signal, the algorithm was modified to detect a pulse train even if some of the received pulse powers fall below the threshold. The analysis employs geometrical arguments that make it conceptually easy to incorporate boundary conditions imposed on the derivation of the false alarm rates. While the exact results can be somewhat complex, simple closed form approximations are derived that produce a negligible loss of accuracy.

  2. Micro-Pulse Lidar Signals: Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Micro-pulse lidar (MPL) systems are small, autonomous, eye-safe lidars used for continuous observations of the vertical distribution of cloud and aerosol layers. Since the construction of the first MPL in 1993, procedures have been developed to correct for various instrument effects present in MPL signals. The primary instrument effects include afterpulse, laser-detector cross-talk, and overlap, poor near-range (less than 6 km) focusing. The accurate correction of both afterpulse and overlap effects are required to study both clouds and aerosols. Furthermore, the outgoing energy of the laser pulses and the statistical uncertainty of the MPL detector must also be correctly determined in order to assess the accuracy of MPL observations. The uncertainties associated with the afterpulse, overlap, pulse energy, detector noise, and all remaining quantities affecting measured MPL signals, are determined in this study. The uncertainties are propagated through the entire MPL correction process to give a net uncertainty on the final corrected MPL signal. The results show that in the near range, the overlap uncertainty dominates. At altitudes above the overlap region, the dominant source of uncertainty is caused by uncertainty in the pulse energy. However, if the laser energy is low, then during mid-day, high solar background levels can significantly reduce the signal-to-noise of the detector. In such a case, the statistical uncertainty of the detector count rate becomes dominant at altitudes above the overlap region.

  3. Collision cross sectional areas from analysis of Fourier transform ion cyclotron resonance line width: a new method for characterizing molecular structure.

    PubMed

    Yang, Fan; Voelkel, Jacob E; Dearden, David V

    2012-06-01

    We demonstrate a technique for determining molecular collision cross sections via measuring the variation of Fourier transform ion cyclotron resonance (FTICR) line width with background damping gas pressure, under conditions where the length of the FTICR transient is pressure limited. Key features of our method include monoisotopic isolation of ions, the pulsed introduction of damping gas to a constant pressure using a pulsed leak valve, short excitation events to minimize collisions during the excitation, and proper choice of damping gas (Xe is superior to He). The measurements are reproducible within a few percent, which is sufficient for distinguishing between many structural possibilities and is comparable to the uncertainty in cross sections calculated from computed molecular structures. These techniques complement drift ion mobility measurements obtained on dedicated instruments. They do not require a specialized instrument, but should be easily performed on any FTICR mass spectrometer equipped with a pulsed leak valve.

  4. Thermoacoustic analysis of a pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Biwa, T.

    2012-12-01

    Thermoacoustic devices use acoustic gas oscillations in place of pistons. They execute mutual energy conversion between work flow and heat flow through the heat exchange between the gas and the channel walls. Understanding of the acoustic field is necessary to control the resulting energy flows in thermoacoustic devices. We will present from experimental point of view the physical mechanism of a pulse tube refrigerator that is one of the travelling wave thermoacoustic heat engines.

  5. Theoretical analysis of planar pulse microwiggler

    SciTech Connect

    Qing-Xiang Liu |; Yong Xu

    1995-12-31

    The Magnetic field distributions of a planar pulse microwiggler are studied analytically and numerically. Exact solutions of two-dimensional magnetic fields are derived, which show that along the electron axis the fields have a variation close enough to a sine wave. We also investigate wiggler field errors due to machining tolerance and effects of the field errors on trajectories of electron with the help numerical simulations. The results are critical for successful operation of CAEP compact free-electron laser experiment under preparation.

  6. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  7. Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation.

    PubMed

    Zhao, Zhihua; Zheng, Zhiqin; Roux, Clément; Delmas, Céline; Marty, Jean-Daniel; Kahn, Myrtil L; Mingotaud, Christophe

    2016-08-22

    Analysis of nanoparticle size through a simple 2D plot is proposed in order to extract the correlation between length and width in a collection or a mixture of anisotropic particles. Compared to the usual statistics on the length associated with a second and independent statistical analysis of the width, this simple plot easily points out the various types of nanoparticles and their (an)isotropy. For each class of nano-objects, the relationship between width and length (i.e., the strong or weak correlations between these two parameters) may suggest information concerning the nucleation/growth processes. It allows one to follow the effect on the shape and size distribution of physical or chemical processes such as simple ripening. Various electron microscopy pictures from the literature or from the authors' own syntheses are used as examples to demonstrate the efficiency and simplicity of the proposed 2D plot combined with a multivariate analysis.

  8. Analysis of Ion Currents Generated with a Pulsed Laser

    SciTech Connect

    Krasa, J.; Jungwirth, K.; Krousky, E.; Laska, L.; Pfeifer, M.; Rohlena, K.; Velyhan, A.; Ullschmied, J.

    2008-03-19

    A deconvolution analysis of ion currents, which is based on the use of shifted Maxwell-Boltzmann velocity distribution, is applied to determine the temperatures and the centre-of-mass velocities of ions emitted from polyethylene and Cu targets irradiated by pulsed laser beams. This analysis can render important details in establishing the mechanisms responsible for the ion emission.

  9. External Pulsed Plasma Propulsion (EPPP) Analysis Maturation

    NASA Technical Reports Server (NTRS)

    Bonometti, Joesph A.; Morton, P. Jeff; Schmidt, George R. (Technical Monitor)

    2000-01-01

    External Pulsed Plasma Propulsion (EPPP) systems are at the stage of engineering infancy with evolving paradigms for application. performance and general characteristics. Recent efforts have focused on an approach that employs existing technologies with near term EPPP development for usage in interplanetary exploration and asteroid/comet deflection. if mandated. The inherent advantages of EPPP are discussed and its application to a variety of propulsion concepts is explored. These include, but are not limited to, utilizing energy sources such as fission. fusion and antimatter, as well as, improved chemical explosives. A mars mission scenario is presented as a demonstration of its capability using existing technologies. A suggested alternate means to improve EPPP efficiencies could also lead to a heavy lift (non-nuclear) launch vehicle capability. Conceivably, true low-cost, access to space is possible using advanced explosive propellants and/or coupling the EPPP vehicle to a "beam propellant" concept. EPPP systems appear to offer an approach that can potentially cover ETO through interstellar transportation capability. A technology roadmap is presented that shows mutual benefits pertaining to a substantial number of existing space propulsion and research areas.

  10. Analysis of Vacuous Pulse and Replete Pulse Using a Clip-type Pulsimeter Equipped with a Hall Sensor.

    PubMed

    Lee, Nam-Kyu; Rhee, Jin-Kyu; Lee, Sang-Suk

    2015-04-01

    A logistic regression equation for the vacuous pulse and the replete pulse was determined based on data obtained using a clip-type pulsimeter equipped with a Hall device that sensed the change in the magnetic field due to the minute movement of a radial artery. To evaluate the efficacy of the two different pulses from the deficiency and the excess syndrome groups, we performed a clinical trial, and we used a statistical regression analysis to process the clinical data from the 180 participants who were enrolled in this study. The ratio of the systolic peak's amplitude to its time in the pulse's waveform was found to be a major efficacy parameter for differentiating between the vacuous pulse and the replete pulse using an empirical equation that was deduced from the data using a statistical logistic regression method. This logistic regression equation can be applied to develop a novel algorithm for pulse measurements based on Oriental medical diagnoses.

  11. Analysis of Finger Pulse by Standard Deviation Using Moving Average

    NASA Astrophysics Data System (ADS)

    Asakawa, Takashi; Nishihara, Kazue; Yoshidome, Tadashi

    We propose a method of analyzing a finger pulse by standard deviation using moving average for measuring mental load. Frequency analysis, Lorentz plot and Lyapnov exponent have been carried out to present measurement. However, this technique is analyzable in a shorter time than the existing technique.

  12. Crack Width Analysis of Floor Slabs from Hyster 550 FS Lift Truck with 55 Kip Pay Load

    SciTech Connect

    BLACK, D.G.

    2003-06-05

    This calculation determines the probable crack width experienced by the slab on grade floor at Building 2404WA from a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing Standard Waste Disposal Boxes within the building.

  13. Wavelet Analysis on Detecting Pulse-Like Earthquakes

    SciTech Connect

    Bosi, Anna; Mariano, Paolo Maria; Mollaioli, Fabrizio

    2008-07-08

    A quantitative approach for identifying pulse-like ground motions is proposed herein. It is based on the use of the wavelet transform which has the peculiarity to detect sudden jumps in time histories by separating the contributions of different levels of frequency. Moreover, it has the advantage of low computational cost. Three different wavelet-based signal processing procedures are considered here in order to detect large pulses in near-fault ground motions. The first one is based on the direct decomposition of velocity time histories in frequency level and has been exploited elsewhere in the scientific literature. The other two are introduced here and take into account energy and power spectra. It is shown that wavelet analysis of the energy allows one to put in evidence even pulses that can be hardly recognized in the analysis of velocity time-histories. The proposed procedure permits also to distinguish the various energy contributions in different frequency ranges. By analyzing the wavelet coefficients, in fact, it is possible to verify if the mechanical energy release rate associated with a certain earthquake is due to a few severe events or to a series of 'small' events. It is also possible to evidence the frequency contents of a specific pulse (let say the one with highest amount of energy and corresponding power), isolating its analysis from the rest of the ground motion.

  14. Experimental verification and analysis of wavelength effect on pulse stretching and compressing in mid-IR chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Zhong, Haizhe; Yuan, Peng; Zhao, Kun; Zhang, Lifu; Ma, Jingui; Li, Ying; Fan, Dianyuan

    2016-02-01

    As a consequence of the general experimental challenge to detect signals in mid-IR range, taking dispersive chirped near-IR laser pulses as the injected signal source seems to be an artistic route avoiding the daunting mid-IR stretcher and constantly was applied in moderate energy mid-IR optical parametric chirped-pulse amplifications (OPCPA) systems. In this paper we study the wavelength effect on pulse stretching and compressing in detail. Beginning with the theoretical analysis on each dispersion term of grating pairs, we evaluate the residual dispersions when pulse stretcher and compressor work at distinct wavelengths, which shows that this wavelength effect will result in poorly compressed pulses far from transform-limited. Via proof-of-principle experiments based on mid-IR OPCPAs and corresponding numerical simulations, we show that this artful configuration led to un-compressible pulses of ∼2 ps with a time-bandwidth product of ∼ 10 when the chirped-pulse duration is ∼400 ps. To overcome this effect, we demonstrate a simple design of pulse stretcher and compressor. The presented design consisted of a reflection grism-pair compressor can simultaneously cancel the quadric and cubic dispersions of conventional grating based stretcher, showing a potential ability of supporting high-contrast, sub-100-fs pulse-duration and 10,000× of pulse expansion.

  15. Demonstration of a low-voltage three-transistor-per-pixel CMOS imager based on a pulse-width-modulation readout scheme employed with a one-transistor in-pixel comparator

    NASA Astrophysics Data System (ADS)

    Shishido, S.; Nagahata, I.; Sasaki, T.; Kagawa, K.; Nunoshita, M.; Ohta, J.

    2007-02-01

    To realize a low-voltage CMOS imager with a small pixel size, we have proposed a new pixel structure composed of only three transistors without any circuit sharing technique. The pixel has a gate-common transistor that compares a photodiode voltage on the gate node with a ramp signal on the source node to perform a single-slope A/D conversion based on a pulse-width-modulation pixel-reading scheme. The large gain of the in-pixel comparator contribute to the small input-referred noise and surpress column-to-column fixed-pattern-noise (FPN). Pixel-to-pixel FPN is suppressed by a feedback reset. Our CMOS imager can lower the operating voltage with less degradation of the dynamic range than that of ordinary active pixel sensors. We have fabricated a 128×96-pixel prototype sensor with an on-chip ramp generator and bootstrap circuits in a 0.35-μm CMOS technology, and successfully demonstrated its operations with a 1.5-V single power-supply voltage.

  16. Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method

    NASA Astrophysics Data System (ADS)

    Wu, Shun-Der; Glytsis, Elias N.

    2002-10-01

    The effects of finite number of periods (FNP) and finite incident beams on the diffraction efficiencies of holographic gratings are investigated by the finite-difference frequency-domain (FDFD) method. Gratings comprising 20, 15, 10, 5, and 3 periods illuminated by TE and TM incident light with various beam sizes are analyzed with the FDFD method and compared with the rigorous coupled-wave analysis (RCWA). Both unslanted and slanted gratings are treated in transmission as well as in reflection configurations. In general, the effect of the FNP is a decrease in the diffraction efficiency with a decrease in the number of periods of the grating. Similarly, a decrease in incident-beam width causes a decrease in the diffraction efficiency. Exceptions appear in off-Bragg incidence in which a smaller beam width could result in higher diffraction efficiency. For beam widths greater than 10 grating periods and for gratings with more than 20 periods in width, the diffraction efficiencies slowly converge to the values predicted by the RCWA (infinite incident beam and infinite-number-of-periods grating) for both TE and TM polarizations. Furthermore, the effects of FNP holographic gratings on their diffraction performance are found to be comparable to their counterparts of FNP surface-relief gratings. 2002 Optical Society of America

  17. Analysis of Pulsed Flow Modification Alternatives, Lower Missouri River, 2005

    USGS Publications Warehouse

    Jacobson, Robert B.

    2008-01-01

    The graphical, tabular, and statistical data presented in this report resulted from analysis of alternative flow regime designs considered by a group of Missouri River managers, stakeholders, and scientists during the summer of 2005. This plenary group was charged with designing a flow regime with increased spring flow pulses to support reproduction and survival of the endangered pallid sturgeon. Environmental flow components extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes. The analysis is based on modeled flow releases from Gavins Point Dam (near Yankton, South Dakota) for nine design alternatives and two reference scenarios; the reference scenarios are the run-of-the-river and the water-control plan implemented in 2004. The alternative designs were developed by the plenary group with the goal of providing pulsed spring flows, while retaining traditional social and economic uses of the river.

  18. Quantitative analysis of dose distribution to determine optimal width of respiratory gating window using Gafchromic EBT2 film

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hyun; Kim, Kum Bae; Kim, Mi-Sook; Yoo, Hyung-Jun; Park, Seungwoo; Jung, Haijo; Ji, Young Hoon; Yi, Chul-Young

    2013-02-01

    The purpose of this study was to determine the dependence of the dose distribution on the width of the respiratory gating window by using radiochromic Gafchromic EBT2 film. An in-house three-dimensional breathing simulator was used with a 4-s cycle and a 3-cm movement. The gamma index and the 50, 95, and 20-80% dose distributions were individually analyzed with regard to static, 100 (full motion), 60, 40, 30, 20, and 15% respiratory gating windows. In addition, dose differences based on the different extents of exposure were compared and analyzed along with total beam delivery time. Dose distributions became increasingly similar to the static value with decreasing respiratory gating window width. The extent differences from the static case for the low-dose region were not significant; neither were the extent differences for the high-dose region and 30, 20, and 15% gating windows (P = 0.388, 0.275, respectively). However, the 40% gating window showed a significant difference (P = 0.001). Moreover, the treatment time for the 30% gating window was reduced by more than half compared to that for the 15% gating window. Thus, the 30% window would be a reasonable choice for maximizing the range of the gating window while markedly decreasing the dose difference and the treatment time.

  19. Laser speckle contrast analysis for pulse waveform extraction

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro; Santos, Pedro; Figueiras, Edite; Correia, Carlos; Humeau-Heurtier, Anne; Cardoso, João.

    2015-07-01

    The present paper shows a method for pulse waveform extraction using laser speckle contrast analysis. An experimental apparatus was assembled, using a coherent light source and a digital video camera to record time varying speckle patterns emitted from the radial artery. The speckle data were analysed by computing the speckle pattern contrast on a sequence of video frames. The speckle pulse wave signal was then compared with a photoplethysmographic signal both time and frequency domain. A total of thirty data-sets were acquired from 10 individuals. Subjects heart rate was identified with a root mean square error of 1.3 beats per minute. Signals similarity was evaluated using spectral coherence with an overall mean coherence of 0.63. Speckle contrast analysis is a newly commercialized technique to monitor microvascular blood flow. However, these results demonstrate the ability of the same technique to extract pulse waveform information. The inclusion of this feature in the current speckle devices is only associated with a slightly change in the signal processing techniques and video acquisition parameters but can be very useful in clinical context.

  20. Automatic landslide length and width estimation based on the geometric processing of the bounding box and the geomorphometric analysis of DEMs

    NASA Astrophysics Data System (ADS)

    Niculiţǎ, Mihai

    2016-08-01

    The morphology of landslides is influenced by the slide/flow of the material downslope. Usually, the distance of the movement of the material is greater than the width of the displaced material (especially for flows, but also the majority of slides); the resulting landslides have a greater length than width. In some specific geomorphologic environments (monoclinic regions, with cuesta landforms type) or as is the case for some types of landslides (translational slides, bank failures, complex landslides), for the majority of landslides, the distance of the movement of the displaced material can be smaller than its width; thus the landslides have a smaller length than width. When working with landslide inventories containing both types of landslides presented above, the analysis of the length and width of the landslides computed using usual geographic information system techniques (like bounding boxes) can be flawed. To overcome this flaw, I present an algorithm which uses both the geometry of the landslide polygon minimum oriented bounding box and a digital elevation model of the landslide topography for identifying the long vs. wide landslides. I tested the proposed algorithm for a landslide inventory which covers 131.1 km2 of the Moldavian Plateau, eastern Romania. This inventory contains 1327 landslides, of which 518 were manually classified as long and 809 as wide. In a first step, the difference in elevation of the length and width of the minimum oriented bounding box is used to separate long landslides from wide landslides (long landslides having the greatest elevation difference along the length of the bounding box). In a second step, the long landslides are checked as to whether their length is greater than the length of flow downslope (estimated with a flow-routing algorithm), in which case the landslide is classified as wide. By using this approach, the area under the Receiver Operating Characteristic curve value for the classification of the long vs. wide

  1. Multi-Level Analysis of Pulsed Detonation Engines

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present study explores some issues concerning the operational performance of pulsed detonation engines. Zero-, one- and two-dimensional, transient models are employed in a synergistic manner to elucidate the various characteristics that can be expected from each level of analysis. The zero-dimensional model provides rapid parametric trends that help to identify the global characteristics of pulsed detonation engines. The one-dimensional model adds key wave propagation issues that are omitted in the zero-dimensional model and helps to assess its limitations. Finally, the two-dimensional model allows estimates of the first-order multi-dimensional effects and provides an initial multi-dimensional end-correction for the one-dimensional model. The zero-dimensional results indicate that the pulsed detonation engine is competitive with a rocket engine when exhausting to vacuum conditions. At finite back pressures, the PDE out-performs the rocket if the combustion pressure rise from the detonation is added to the chamber pressure in the rocket. If the two peak pressures are the same, the rocket performance is higher. Two-dimensional corrections added to the one-dimensional model result in a modest improvement in predicted specific impulse over the constant pressure boundary condition.

  2. Analysis of thermodynamic effect in Si irradiated by pulsed-laser

    NASA Astrophysics Data System (ADS)

    Guo, Ming; Jin, Guangyong; Li, Mingxin; Ma, Yao; Yuan, Boshi; Yu, Huadong

    2014-12-01

    According to the heat conduction equation, thermoelastic equation and boundary conditions of finite, using the finite element method(FEM), established the three-dimensional finite element calculation model of thermal elastic ,numerical simulation the transient temperature field and stress field distribution of the single crystal silicon materials by the pulsing laser irradiation, and analytic solution the temperature distribution and stress distribution of laser irradiation on the silicon material , and analyzes the different parameters such as laser energy, pulse width, pulse number influence on temperature and stress, and the intrinsic damage mechanism of pulsed laser irradiation on silicon were studied. The results show that the silicon material is mainly in hot melt under the action of ablation damage.According to the irradiation of different energy and different pulse laser ,we can obtain the center temperature distribution, then get the law of the change of temperature with the variation of laser energy and pulse width in silicon material; according to the principal stress and shear stress distribution in 110 direction with different energy and different pulse, we can get the law of the change of stress distribution with the variation of laser energy and pulse width ;according to the principal stress distribution of single pulse and pulse train in 110 direction, we can get the law of the change of stress with pulse numbers in silicon.When power density of laser on optical material surface (or energy density) is the damage threshold, the optical material surface will form a spontaneous, periodic, and permanent surface ripple, it is called periodic surface structure laser induced (LIPSS).It is the condensed optical field of work to generate low dimensional quantum structures by laser irradiation on Si samples. The pioneering work of research and development and application of low dimensional quantum system has important academic value.The result of this paper

  3. Structural Analysis Using Phase-Stepped, Double Pulsed ESPI

    NASA Astrophysics Data System (ADS)

    Tyrer, John R.

    1990-04-01

    Optical whole-field testing techniques have been carrots dangled in front of engineers' noses for a considerable period of time. The promise of acquiring meaningful data without upsetting the component nor its environment, has significant attractions. ESPI technology has been modified and pursued with these goals in mind. This paper presents some of the recent work containing several developments which now make the engineering realisations a near term possibility. An overview of the correlation imaging mechanism is presented with a discussion on how this principle type of optical interferometer can be configured to provide the data necessary for analytical use. Attempts to produce instrumentation able to function outside the laboratory have required replacement of continuous wave lasers with Nd.YAG pulsed lasers. The new pulsed lasers are able to be combined with the computer based fringe pattern analysis which has been produced to suit the requirements of the engineer. Experimental results using such equipment are presented and further work is included which demonstrates the ability for speckle interferometry to produce three-dimensional analysis with the data being presented in conventional cartesian form.

  4. Source parameters and three-dimensional attenuation structure from the inversion of microearthquake pulse width data: Qp imaging and inferences on the thermal state of the Campi Flegrei caldera (southern Italy)

    NASA Astrophysics Data System (ADS)

    de Lorenzo, Salvatore; Zollo, Aldo; Mongelli, Francesco

    2001-01-01

    The three-dimensional P wave attenuation structure of the Campi Flegrei caldera and the estimate of source parameters for 87 local microearthquakes is obtained by the nonlinear inversion of pulse width and rise time measurements by using the method described by Zollo and de Lorenzo (this issue). Source radii represent the better resolved parameters with values ranging from 70 m to 230 m; the dip and strike angles defining fault orientations are usually affected by larger uncertainties and are well constrained only for 11 events. The dip fault is usually confined in the range 30°-60° (with an average uncertainty of 12°) the fault strikes mainly range between -60° and 60° and seem to define preferential directions oriented radially from the symmetry axis of the ground deformation. Stress drop estimates indicate rather low values (0.01-1 MPa) which suggest low strength properties of the incoherent and brittle materials filling the caldera (primarily yellow tuffs). The three-dimensional Qp images obtained from the inversion of P pulse durations show two significant low-Qp anomalies between 0 and 1 km of depth, in the north-eastern sector and at 2-3 km of depth in the central eastern sector of the caldera. The high degree of spatial correlation of the low-Qp zone and low-Vs (as inferred by Aster and Meyer (1988)) at 0-1 km in depth and other geophysical and geochemical observations suggest that this anomaly can be related to the presence of densely fractured, porous, and fluid-filled rocks in the NE sector of the caldera. The deeper low-Qp anomaly is interpreted as being related to a dominant thermal effect. We used the surface and deep borehole temperature measurements available in the area to obtain a local calibration curve to convert Qp in temperature at Campi Flegrei. The retrieved T(Qp) map shows a high thermal deep disturbance (450°-500°C) at depths between 2 and 3 km in the eastern sector of the caldera, where the most recent eruptive activity is

  5. Source parameters and three-dimensional attenuation structure from the inversion of microearthquake pulse width data: Qp imaging and inferences on the thermal state of the Campi Flegrei caldera (southern Italy)

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Zollo, Aldo; Mongelli, Francesco

    2001-01-01

    The three-dimensional P wave attenuation structure of the Campi Flegrei caldera and the estimate of source parameters for 87 local microearthquakes is obtained by the nonlinear inversion of pulse width and rise time measurements by using the method described by Zollo and de Lorenzo (this issue). Source radii represent the better resolved parameters with values ranging from 70 m to 230 m; the dip and strike angles defining fault orientations are usually affected by larger uncertainties and are well constrained only for 11 events. The dip fault is usually confined in the range 30°-60° (with an average uncertainty of 12°); the fault strikes mainly range between -60° and 60° and seem to define preferential directions oriented radially from the symmetry axis of the ground deformation. Stress drop estimates indicate rather low values (0.01-1 MPa) which suggest low strength properties of the incoherent and brittle materials filling the caldera (primarily yellow tuffs). The three-dimensional Qp images obtained from the inversion of P pulse durations show two significant low-Qp anomalies between 0 and 1 km of depth, in the north-eastern sector and at 2-3 km of depth in the central eastern sector of the caldera. The high degree of spatial correlation of the low-Qp zone and low-Vs (as inferred by Aster and Meyer (1988)) at 0-1 km in depth and other geophysical and geochemical observations suggest that this anomaly can be related to the presence of densely fractured, porous, and fluid-filled rocks in the NE sector of the caldera. The deeper low-Qp anomaly is interpreted as being related to a dominant thermal effect. We used the surface and deep borehole temperature measurements available in the area to obtain a local calibration curve to convert Qp in temperature at Campi Flegrei. The retrieved T(Qp) map shows a high thermal deep disturbance (450°-500°C) at depths between 2 and 3 km in the eastern sector of the caldera, where the most recent eruptive activity is

  6. Constrained independent component analysis approach to nonobtrusive pulse rate measurements

    NASA Astrophysics Data System (ADS)

    Tsouri, Gill R.; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K.

    2012-07-01

    Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.

  7. Analysis of laser return pulse from multilayered objects

    NASA Astrophysics Data System (ADS)

    Hollinger, Jim; Vessey, Alyssa; Close, Ryan; Middleton, Seth; Williams, Kathryn; Rupp, Ronald; Nguyen, Son

    2016-05-01

    Commercial Lidar often focus on reporting the range associated with the strongest laser return pulse, first return pulse, or last return pulse. This technique works well when observing discrete objects separated by a distance greater than the laser pulse length. However, multiple reflections due to more closely layered objects produce overlapping laser return pulses. Resolving the multi-layered object ranges in the resulting complex waveforms is the subject of this paper. A laboratory setup designed to investigate the laser return pulse produced by multi-layered objects is described along with a comparison of a simulated laser return pulse and the corresponding digitized laser return pulse. Variations in the laboratory setup are used to assess different strategies for resolving multi-layered object ranges and how this additional information can be applied to detecting objects partially obscured in vegetation.

  8. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  9. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  10. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  11. Photorefractive deceleration of light pulses

    NASA Astrophysics Data System (ADS)

    Sturman, B.; Podivilov, E.; Gorkunov, M.

    2008-04-01

    We theoretically study the effect of light deceleration in photorefractive nonlinear media. This includes consideration of different types of the photorefractive nonlinear response, different wave interaction schemes, and an analysis of the influence of the input parameters, such as the input temporal pulse width and the coupling strength, on the output pulse characteristics: the time delay, the propagation velocity, the amplification factor, and the output width. We show that photorefractive light deceleration has numerous advantages over other known techniques. It works already at low intensities, at room temperature, and within wide spectral ranges and offers a vast variety of handles for manipulating light pulses. An analogy with the light deceleration method based on the quantum effect of electromagnetically induced transparency in ultracold resonant gases is also considered.

  12. Simple circuit produces high-speed, fixed duration pulses

    NASA Technical Reports Server (NTRS)

    Garrahan, N. M.

    1965-01-01

    Circuit generates an output pulse of fixed width from a variable width input pulse. The circuit consists of a tunnel diode in parallel with an inductance driven by a constant current generator. It is used for pulsed communication equipment design.

  13. Diatomic predissociation line widths

    NASA Technical Reports Server (NTRS)

    Child, M. S.

    1973-01-01

    Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.

  14. STATISTICAL STUDIES OF GIANT PULSE EMISSION FROM THE CRAB PULSAR

    SciTech Connect

    Majid, Walid A.; Naudet, Charles J.; Lowe, Stephen T.; Kuiper, Thomas B. H.

    2011-11-01

    We have observed the Crab pulsar with the Deep Space Network Goldstone 70 m antenna at 1664 MHz during three observing epochs for a total of 4 hr. Our data analysis has detected more than 2500 giant pulses, with flux densities ranging from 0.1 kJy to 150 kJy and pulse widths from 125 ns (limited by our bandwidth) to as long as 100 {mu}s, with median power amplitudes and widths of 1 kJy and 2 {mu}s, respectively. The most energetic pulses in our sample have energy fluxes of approximately 100 kJy {mu}s. We have used this large sample to investigate a number of giant pulse emission properties in the Crab pulsar, including correlations among pulse flux density, width, energy flux, phase, and time of arrival. We present a consistent accounting of the probability distributions and threshold cuts in order to reduce pulse-width biases. The excellent sensitivity obtained has allowed us to probe further into the population of giant pulses. We find that a significant portion, no less than 50%, of the overall pulsed energy flux at our observing frequency is emitted in the form of giant pulses.

  15. Analysis of the width-[Formula: see text] non-adjacent form in conjunction with hyperelliptic curve cryptography and with lattices.

    PubMed

    Krenn, Daniel

    2013-06-17

    In this work the number of occurrences of a fixed non-zero digit in the width-[Formula: see text] non-adjacent forms of all elements of a lattice in some region (e.g. a ball) is analysed. As bases, expanding endomorphisms with eigenvalues of the same absolute value are allowed. Applications of the main result are on numeral systems with an algebraic integer as base. Those come from efficient scalar multiplication methods (Frobenius-and-add methods) in hyperelliptic curves cryptography, and the result is needed for analysing the running time of such algorithms. The counting result itself is an asymptotic formula, where its main term coincides with the full block length analysis. In its second order term a periodic fluctuation is exhibited. The proof follows Delange's method.

  16. Independent vector analysis based on overlapped cliques of variable width for frequency-domain blind signal separation

    NASA Astrophysics Data System (ADS)

    Lee, Intae; Jang, Gil-Jin

    2012-12-01

    A novel method is proposed to improve the performance of independent vector analysis (IVA) for blind signal separation of acoustic mixtures. IVA is a frequency-domain approach that successfully resolves the well-known permutation problem by applying a spherical dependency model to all pairs of frequency bins. The dependency model of IVA is equivalent to a single clique in an undirected graph; a clique in graph theory is defined as a subset of vertices in which any pair of vertices is connected by an undirected edge. Therefore, IVA imposes the same amount of statistical dependency on every pair of frequency bins, which may not match the characteristics of real-world signals. The proposed method allows variable amounts of statistical dependencies according to the correlation coefficients observed in real acoustic signals and, hence, enables more accurate modeling of statistical dependencies. A number of cliques constitutes the new dependency graph so that neighboring frequency bins are assigned to the same clique, while distant bins are assigned to different cliques. The permutation ambiguity is resolved by overlapped frequency bins between neighboring cliques. For speech signals, we observed especially strong correlations across neighboring frequency bins and a decrease in these correlations with an increase in the distance between bins. The clique sizes are either fixed, or determined by the reciprocal of the mel-frequency scale to impose a wider dependency on low-frequency components. Experimental results showed improved performances over conventional IVA. The signal-to-interference ratio improved from 15.5 to 18.8 dB on average for seven different source locations. When we varied the clique sizes according to the observed correlations, the stability of the proposed method increased with a large number of cliques.

  17. A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins

    PubMed Central

    Couchinho, Miguel N.; dos Santos, Manuel E.

    2016-01-01

    Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011–2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk’s Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type–short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts

  18. A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.

    PubMed

    Luís, Ana Rita; Couchinho, Miguel N; Dos Santos, Manuel E

    2016-01-01

    Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts of

  19. Relationship between stroke volume and pulse pressure during blood volume perturbation: a mathematical analysis.

    PubMed

    Bighamian, Ramin; Hahn, Jin-Oh

    2014-01-01

    Arterial pulse pressure has been widely used as surrogate of stroke volume, for example, in the guidance of fluid therapy. However, recent experimental investigations suggest that arterial pulse pressure is not linearly proportional to stroke volume. However, mechanisms underlying the relation between the two have not been clearly understood. The goal of this study was to elucidate how arterial pulse pressure and stroke volume respond to a perturbation in the left ventricular blood volume based on a systematic mathematical analysis. Both our mathematical analysis and experimental data showed that the relative change in arterial pulse pressure due to a left ventricular blood volume perturbation was consistently smaller than the corresponding relative change in stroke volume, due to the nonlinear left ventricular pressure-volume relation during diastole that reduces the sensitivity of arterial pulse pressure to perturbations in the left ventricular blood volume. Therefore, arterial pulse pressure must be used with care when used as surrogate of stroke volume in guiding fluid therapy.

  20. Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Yan, D.; Cecil, T.; Gades, L.; Jacobsen, C.; Madden, T.; Miceli, A.

    2016-07-01

    We present a method using principal component analysis (PCA) to process x-ray pulses with severe shape variation where traditional optimal filter methods fail. We demonstrate that PCA is able to noise-filter and extract energy information from x-ray pulses despite their different shapes. We apply this method to a dataset from an x-ray thermal kinetic inductance detector which has severe pulse shape variation arising from position-dependent absorption.

  1. Influence of the electron velocity spread and the beam width on the efficiency and mode competition in the high-power pulsed gyrotron for 300 GHz band collective Thomson scattering diagnostics in the large helical device

    NASA Astrophysics Data System (ADS)

    Dumbrajs, O.; Saito, T.; Tatematsu, Y.; Yamaguchi, Y.

    2016-09-01

    We present results of a theoretical study of influence of the electron velocity spread and the radial width on the efficiency and mode competition in a 300-kW, 300-GHz gyrotron operating in the T E22 ,2 mode. This gyrotron was developed for application to collective Thomson scattering diagnostics in the large helical device and 300-kW level high power single T E22 ,2 mode oscillation has been demonstrated [Yamaguchi et al., J. Instrum. 10, c10002 (2015)]. Effects of a finite voltage rise time corresponding to the real power supply of this gyrotron are also considered. Simulations tracking eight competing modes show that the electron velocity spread and the finite beam width influence not only the efficiency of the gyrotron operation but also the mode competition scenario during the startup phase. A combination of the finite rise time with the electron velocity spread or the finite beam width affects the mode competition scenario. The simulation calculation reproduces the experimental observation of high power single mode oscillation of the T E22 ,2 mode as the design mode. This gives a theoretical basis of the experimentally obtained high power oscillation with the design mode in a real gyrotron and moreover shows a high power oscillation regime of the design mode.

  2. Analysis of Sterilization Effect of Atmospheric Pressure Pulsed Plasma

    SciTech Connect

    Ekem, N.; Akan, T.; Pat, S.; Akgun, Y.; Kiremitci, A.; Musa, G.

    2007-04-23

    We have developed a new technology, the High Voltage Atmospheric Pressure Pulsed Plasma (HVAPPP), for bacteria killing. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria.

  3. Low power pulsed MPD thruster system analysis and applications

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Domonkos, Matthew; Gilland, James H.

    1993-01-01

    Pulsed MPD thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component. Results indicate that for payloads of 1000 and 2000 kg, pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg relative to hydrogen arcjets, reducing launch vehicle class and launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.

  4. Analysis of femtosecond quantum control mechanisms with colored double pulses

    SciTech Connect

    Vogt, Gerhard; Nuernberger, Patrick; Selle, Reimer; Dimler, Frank; Brixner, Tobias; Gerber, Gustav

    2006-09-15

    Fitness landscapes based on a limited number of laser pulse shape parameters can elucidate reaction pathways and can help to find the underlying control mechanism of optimal pulses determined by adaptive femtosecond quantum control. In a first experiment, we employ colored double pulses and systematically scan both the temporal subpulse separation and the relative amplitude of the two subpulses to acquire fitness landscapes. Comparison with results obtained from a closed-loop experiment demonstrates the capability of fitness landscapes for the revelation of possible control mechanisms. In a second experiment, using transient absorption spectroscopy, we investigate and compare the dependence of the excitation efficiency of the solvated dye molecule 5,5{sup '}-dichloro-11-diphenylamino-3,3{sup '}-diethyl-10,12-ethylene thiatricarbocyanine perchlorate (IR140) on selected pulse shapes in two parametrizations. The results show that very different pulse profiles can be equivalently adequate to maximize a given control objective. Fitness landscapes thus provide valuable information about different pathways along which a molecular system can be controlled with shaped laser pulses.

  5. Low power pulsed MPD thruster system analysis and applications

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Domonkos, Matthew; Gilland, James H.

    1993-01-01

    Pulsed magnetoplasmadynamic (MPD) thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component using off-the-shelf technology whenever possible. Results indicate that for payloads of 1000 and 2000 kg pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg over those achievable with hydrogen arcjets, which can be used to reduce launch vehicle class and the associated launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.

  6. Width of nonlinear resonance

    SciTech Connect

    Ohnuma, S.

    1984-03-01

    Two approximations are made, one essential and the other not so essential but convenient to keep the analytical treatment manageable: (1) Only one nonlinear resonance is considered at a time so that the treatment is best suited when the tune is close to one resonance only. To improve this approximation, one must go to the next order which involves a canonical transformation of dynamical variables. Analytical treatment of more than one resonance is not possible for general cases. (2) In the formalism using the action-angle variables, the Hamiltonian can have terms which are independent of the angle variables. These terms are called phase-independent terms or shear terms. The tune is then a function of the oscillation amplitudes. In the lowest-order treatment, the (4N)-pole components but not the (4N + 2)-pole components contribute to this dependence. In deriving the resonance width analytically, one ignores these terms in the Hamiltonian for the sake of simplicity. If these are retained, one needs at least three extra parameters and the analytical treatment becomes rather unwieldy.

  7. The effect of laser pulse tailored welding of Inconel 718

    NASA Technical Reports Server (NTRS)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  8. Aerosol analysis techniques and results from micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Spinhirne, James D.; Campbell, James R.; Reagan, John A.; Powell, Donna

    1998-01-01

    The effect of clouds and aerosol on the atmospheric energy balance is a key global change problem. Full knowledge of aerosol distributions is difficult to obtain by passive sensing alone. Aerosol and cloud retrievals in several important areas can be significantly improved with active remote sensing by lidar. Micro Pulse Lidar (MPL) is an aerosol and cloud profilometer that provides a detailed picture of the vertical structure of boundary layer and elevated dust or smoke plume aerosols. MPL is a compact, fully eyesafe, ground-based, zenith pointing instrument capable of full-time, long-term unattended operation at 523 nm. In October of 1993, MPL began taking full-time measurements for the Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) site and has since expanded to ARM sites in the Tropical West Pacific (TWP) and the North Slope of Alaska (NSA). Other MPL's are moving out to some of the 60 world-wide Aerosol Robotic Network (AERONET) sites which are already equipped with automatic sun-sky scanning spectral radiometers providing total column optical depth measurements. Twelve additional MPL's have been purchased by NASA to add to the aerosol and cloud database of the EOS ground validation network. The original MPL vertical resolution was 300 meters but the newer versions have a vertical resolution of 30 meters. These expanding data sets offer a significant new resource for atmospheric radiation analysis. Under the direction of Jim Spinhirne, the MPL analysis team at NASA/GSFC has developed instrument correction and backscatter analysis techniques for ARM to detect cloud boundaries and analyze vertical aerosol structures. A summary of MPL applications is found in Hlavka (1997). With the aid of independent total column optical depth instruments such as the Multifilter Rotating Shadowband Radiometer (MFRSR) at the ARM sites or sun photometers at the AERONET sites, the MPL data can be calibrated, and time-resolved vertical profiles of

  9. Theoretical analysis of pressure pulse propagation in arterial vessels.

    PubMed

    Belardinelli, E; Cavalcanti, S

    1992-11-01

    An original mathematical model of viscous fluid motion in a tapered and distensible tube is presented. The model equations are deduced by assuming a two-dimensional flow and taking into account the nonlinear terms in the fluid motion equations, as well as the nonlinear deformation of the tube wall. One distinctive feature of the model is the formal integration with respect to the radial coordinate of the Navier-Stokes equations by power series expansion. The consequent computational frame allows an easy, accurate evaluation of the effects produced by changing the values of all physical and geometrical tube parameters. The model is employed to study the propagation along an arterial vessel of a pressure pulse produced by a single flow pulse applied at the proximal vessel extremity. In particular, the effects of the natural taper angle of the arterial wall on pulse propagation are investigated. The simulation results show that tapering considerably influences wave attenuation but not wave velocity. The substantially different behavior of pulse propagation, depending upon whether it travels towards the distal extremity or in the opposite direction, is observed: natural tapering causes a continuous increase in the pulse amplitude as it moves towards the distal extremity; on the contrary, the reflected pulse, running in the opposite direction, is greatly damped. For a vessel with physical and geometrical properties similar to those of a canine femoral artery and 0.1 degree taper angle, the forward amplification is about 0.9 m-1 and the backward attenuation is 1.4 m-1, so that the overall tapering effect gives a remarkably damped pressure response. For a natural taper angle of 0.14 degrees the perturbation is almost extinct when the pulse wave returns to the proximal extremity. PMID:1400535

  10. Time and Frequency Domain Analysis of Thunderstorm - Narrow Bipolar Electromagnetic Pulses and Cloud To-Ground Lightning Fields.

    NASA Astrophysics Data System (ADS)

    Medelius, Pedro Javier

    Single-station electric field (E) and electric field derivative (dE/dt) waveforms were recorded at digitization rates up to 400 MS/s during 1989 and 1990 at the Kennedy Space Center. Narrow bipolar pulses (NBP's) were found to occur separate from typical lightning events, but to be thunderstorm related. Frequency spectra for E obtained from NBP's dropped at a rate of close to 1/f up to 125 MHz. In comparison, the frequency spectra reported by Willett et al. (1989) for similar pulses dropped as 1/f up to about 20 MHz and became flat afterwards up to their 50 MHz Nyquist frequency. NBP's contained higher energy than return strokes above 10-20 MHz. NBP Spectra found from the output of digitally simulated narrowband receivers tended to underestimate the wideband frequency spectra by as much as 10 dB, indicating that the spectra obtained using narrowband receivers are unreliable. Initial E-field peaks of NBP's had a mean rise time of 1.38 mus. Large positive dE/dt pulses had a mean half width of 7 ns, much shorter than the 49 ns reported by Willett et al. (1989). The existence of a single process responsible for VHF radiation from lightning, such as that proposed by Labaune et al. (1990), was tested using deconvolution methods on the NBP waveforms. Our analysis failed to identify a single basic component in these pulses. Electric fields from lightning strikes at distances within 1-2 km consistently exhibited a chaotic behavior during the stepped leader, whereas distant stepped leaders did not. This "chaos" ranged from pulses occurring at rates close to one pulse per mus to a continuous noise-like high frequency signal with frequency components extending beyond 120 MHz. In agreement with other reports in the literature, we found that HF radiation following return strokes peaked 20-30 mus after the onset of the return stroke, and persisted for several tens of microseconds after the peak. However, the short propagation path (less than 7.5 km) over salt water does not

  11. Variational analysis of self-focusing of intense ultrashort pulses in gases

    SciTech Connect

    Arevalo, E.; Becker, A.

    2005-08-01

    By using perturbation theory we derive an expression for the electrical field of a Gaussian laser beam propagating in a gas medium. This expression is used as a trial solution in a variational method to get quasianalytical solutions for the width, intensity, and self-focusing distance. The approximation gives a better agreement with results of numerical simulations for a broad range of values of the input power than previous analytical results available in the literature. The results apply in the case of ultrashort pulses too.

  12. Remote Pulsed-Laser Raman Spectroscopy System for Mineral Analysis

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Angel, S. M.; Ghosh, M.; Hubble, H. W.; Lucey, P. G.

    2001-01-01

    We have measured Raman spectra of carbonate, silicate, and hydrous silicate and sulfate minerals, our new remote-pulsed Raman system, indicating that it can be used to analyze the minerals on planetary surfaces to a distance of 10 to 66 meters. Additional information is contained in the original extended abstract.

  13. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei

    2016-08-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  14. Transient analysis of single stage GM type double inlet pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Gujarati, P. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    2015-12-01

    Transient analysis of single stage GM type double inlet pulse tube cryocooler is carried out using a one dimensional numerical model based on real gas properties of helium. The model solves continuity, momentum and energy equation for gas and solid to analyse the physical process occurring inside of the pulse tube cryocooler. Finite volume method is applied to discretize the governing equations with realistic initial and boundary conditions. Input data required for solving the model are the design data and operating parameters viz. pressure waveform from the compressor, regenerator matrix data, and system geometry including pulse tube, regenerator size and operating frequency for pulse tube cryocooler. The model investigates the effect of orifice opening, double inlet opening, pressure ratio, system geometry on no load temperature and refrigeration power at various temperatures for different charging pressure. The results are compared with experimental data and reasonable agreement is observed. The model can further be extended for designing two stage pulse tube cryocooler.

  15. Estimation of Arterial Stiffness by Time-Frequency Analysis of Pulse Wave

    NASA Astrophysics Data System (ADS)

    Saito, Masashi; Yamamoto, Yuya; Shibayama, Yuka; Matsukawa, Mami; Watanabe, Yoshiaki; Furuya, Mio; Asada, Takaaki

    2011-07-01

    Evaluation of a pulse wave is effective for the early diagnosis of arteriosclerosis because the pulse wave contains the reflected wave that is the age- and stiffness-dependent component. In this study, we attempted to extract the parameter reflecting the component by pulse wave analysis using continuous wavelet transform. The Morlet wavelet was used as the mother wavelet. We then investigated the relationship between the parameter and the reflected wave that was extracted from the pulse wave by our previously reported separation technique. Consequently, the result of wavelet transform of the differentiated pulse waveform changed markedly owing to age and had medium correlation with the peak of the reflected wave (R=0.68).

  16. Pulse to pulse klystron diagnosis system

    SciTech Connect

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 ..mu..s. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations.

  17. Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas

    SciTech Connect

    Roy, A. E-mail: aroy@barc.gov.in; Harilal, S. S.; Polek, M. P.; Hassan, S. M.; Hassanein, A.; Endo, A.

    2014-03-15

    We investigated the role of laser pulse duration and intensity on extreme ultraviolet (EUV) generation and ion emission from a laser produced Sn plasma. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm Nd:YAG laser pulses with varying pulse duration (5–20 ns) and intensity. Experimental results performed at CMUXE indicate that the conversion efficiency (CE) of the EUV radiation strongly depend on laser pulse width and intensity, with a maximum CE of ∼2.0% measured for the shortest laser pulse width used (5 ns). Faraday Cup ion analysis of Sn plasma showed that the ion flux kinetic profiles are shifted to higher energy side with the reduction in laser pulse duration and narrower ion kinetic profiles are obtained for the longest pulse width used. However, our initial results showed that at a constant laser energy, the ion flux is more or less constant regardless of the excitation laser pulse width. The enhanced EUV emission obtained at shortest laser pulse duration studied is related to efficient laser-plasma reheating supported by presence of higher energy ions at these pulse durations.

  18. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  19. Focal spot analysis of radially polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sun, Wenchao; Hu, Wenhua; Qi, Junli; Wang, Weiming; Liao, Jiali; Yi, Wenjun; Jia, Hui; Li, Xiujian

    2014-09-01

    When radially polarized light beams focus through high numerical-aperture lens, there will be a very strong longitudinal component of the light field near the focus. And, under the condition of certain system parameters, they can shape a spot which is over the focusing spot of the diffraction limit, which are the superiorities that linearly polarized light and circularly polarized light do not have. Besides, what we have found in the experiment is that radially polarized femtosecond laser pulses own the same superiorities, which provides the basis for using the focusing characteristics of radially polarized light beams under the condition of shorter and more powerful laser pulses. So far, although people have studied a lot on radially polarized light beams, this kind of light beams' focusing characters are rarely researched. What is worse, most research of its focusing characters still stays in the stage of theoretical simulation,and it seems that none of people have really studied it by the way of experiments. This article is precisely based on this. On the basis of predecessors' a lot of theoretical research, the article pays more attention on analyzing radially polarized light beams' focusing character through experiments. What's more, the article, based on femtosecond laser pulses, compares the differences of the focusing nature among linearly polarized light, circularly polarized light and radially polarized light. And it gets the conclusion that radially polarized femtosecond laser pulses have better focusing character in longitudinal light field, confirming the feasibility that radially polarized light beams can be used in the fields of pulling, catching, and accelerating particles, metal cutting and high-density storage.

  20. Pulsed-field gel electrophoretic analysis of leptospiral DNA.

    PubMed Central

    Taylor, K A; Barbour, A G; Thomas, D D

    1991-01-01

    The genomic structures of spirochete species are not well characterized, and genetic studies on these organisms have been hampered by lack of a genetic exchange mechanism in these bacteria. In view of these observations, pulsed-field gel electrophoresis was used to examine the genomes of Leptospira species. Live cells, prepared in agarose plugs, were lysed in situ, and the DNA was analyzed under different electrophoretic conditions. Pulsed-field gel electrophoresis of DNA digested with infrequently cutting restriction enzymes showed that the genome of Leptospira interrogans serovar canicola is approximately 3.1 Mb, while that of the saprophytic L. biflexa serovar patoc I is 3.5 Mb. DNA forms of approximately 2,000 and 350 kb which were present in samples from L. interrogans serovars were not readily detected in nonpathogenic serovars. Three distinct populations, designated type alpha, beta, and gamma, of L. interrogans DNA molecules were further analyzed with two-dimensional gel electrophoresis. Evidence suggested that two of these DNA forms, type alpha and gamma, were linear structures. Pulsed-field gel electrophoresis has proven to be a valuable tool with which to size bacterial genomes and to take the first steps toward characterization of a form of leptospiral DNA which behaves as a linear molecule and which may be related to the virulence of L. interrogans. Images PMID:1987046

  1. The Width of a Proof

    ERIC Educational Resources Information Center

    Hanna, Gila

    2014-01-01

    This paper's aim is to discuss the concept of width of a proof put forward by Timothy Gowers. It explains what this concept means and attempts to show how it relates to other concepts discussed in the existing literature on proof and proving. It also explores how the concept of width of a proof might be used productively in the mathematics…

  2. Phase width reduction project summary

    SciTech Connect

    Clark, D.J.; Xie, Z.Q.; McMahan, M. A.

    1999-11-01

    The purpose of the phase width reduction project, 1993--96, was to reduce the phase width of the 88-Inch Cyclotron beam on target from 5--10 ns to 1--2 ns for certain experiments, such as Gammasphere, which use time-of-flight identification. Since reducing the phase width also reduces beam intensity, tuning should be done to also optimize the transmission. The Multi-turn Collimator slits in the cyclotron center region were used to collimate the early turns radially, thus reducing the phase width from about 5 ns to 1--2 ns FWHM for a Gammasphere beam. The effect of the slits on phase width was verified with a Fast Faraday Cup and with particle and gamma-ray detectors in the external beamline.

  3. Visualization and analysis of modulated pulses in magnetic resonance by joint time-frequency representations.

    PubMed

    Köcher, S S; Heydenreich, T; Glaser, S J

    2014-10-17

    We study the utility of joint time-frequency representations for the analysis of shaped or composite pulses for magnetic resonance. Such spectrograms are commonly used for the visualization of shaped laser pulses in optical spectroscopy. This intuitive representation provides additional insight compared to conventional approaches, which exclusively show either temporal or spectral information. We focus on the short-time Fourier transform, which provides not only amplitude but also phase information. The approach is illustrated for broadband inversion pulses, multiple quantum excitation and broadband heteronuclear decoupling. The physical interpretation and validity of the approach is discussed.

  4. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness

    PubMed Central

    Doupis, John; Papanas, Nikolaos; Cohen, Alison; McFarlan, Lyndsay; Horton, Edward

    2016-01-01

    The aim of our study was to investigate the association between pulse wave velocity (PWV) and pulse wave analysis (PWA)-derived measurements for the evaluation of arterial stiffness. A total of 20 (7 male and 13 female) healthy, non-smoking individuals, with mean age 31 ± 12years were included. PWV and PWA measurements were performed using a SphygmoCor apparatus (Atcor Medical Blood Pressure Analysis System, Sydney Australia). PWV significantly correlated with all central aortic haemodynamic parameters, especially with pulse pressure (PP) (p < 0.0001), augmentation index corrected for 75 pulses/min (AI75) (p = 0.035) and augmentation pressure (AP) (p = 0.005). Male subjects presented significantly higher PWV compared with females (p = 0.03), while there were no differences in PP, AP and AI75. In conclusion, PWA is strongly correlated with PWV as a method for the evaluation of arterial stiffness.

  5. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness.

    PubMed

    Doupis, John; Papanas, Nikolaos; Cohen, Alison; McFarlan, Lyndsay; Horton, Edward

    2016-01-01

    The aim of our study was to investigate the association between pulse wave velocity (PWV) and pulse wave analysis (PWA)-derived measurements for the evaluation of arterial stiffness. A total of 20 (7 male and 13 female) healthy, non-smoking individuals, with mean age 31 ± 12years were included. PWV and PWA measurements were performed using a SphygmoCor apparatus (Atcor Medical Blood Pressure Analysis System, Sydney Australia). PWV significantly correlated with all central aortic haemodynamic parameters, especially with pulse pressure (PP) (p < 0.0001), augmentation index corrected for 75 pulses/min (AI75) (p = 0.035) and augmentation pressure (AP) (p = 0.005). Male subjects presented significantly higher PWV compared with females (p = 0.03), while there were no differences in PP, AP and AI75. In conclusion, PWA is strongly correlated with PWV as a method for the evaluation of arterial stiffness. PMID:27651842

  6. RF Pulse Signal Integrity Analysis for Nonlinear Ended Microstrip Line Atom-Probe Tomography

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Delamare, A.; Normand, A.; Delaroche, F.; Latry, O.; Vurpillot, F.; Ravelo, B.

    2016-03-01

    A signal integrity (SI) analysis of high voltage rectangular short pulses for the atom- probe system is explored in this paper. The operated RF transient pulse is considered for exciting on material sample inside an ultra-high vacuum (UHV) cryogenic chamber. The ns- duration pulse signal is injected into the cryogenic analysis chamber through the transmitting system mainly constituted by a microstrip interconnect line ended by optical controlled nonlinear load. The whole system frequency characterization is performed based on the S- parameter measurements. As expected, a challenging ultra-short rectangular shape pulse is exhibited by the pulser. Promising experimental results with the improvement of ion mass spectrum is demonstrated with the designed RF pulser.

  7. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness

    PubMed Central

    Doupis, John; Papanas, Nikolaos; Cohen, Alison; McFarlan, Lyndsay; Horton, Edward

    2016-01-01

    The aim of our study was to investigate the association between pulse wave velocity (PWV) and pulse wave analysis (PWA)-derived measurements for the evaluation of arterial stiffness. A total of 20 (7 male and 13 female) healthy, non-smoking individuals, with mean age 31 ± 12years were included. PWV and PWA measurements were performed using a SphygmoCor apparatus (Atcor Medical Blood Pressure Analysis System, Sydney Australia). PWV significantly correlated with all central aortic haemodynamic parameters, especially with pulse pressure (PP) (p < 0.0001), augmentation index corrected for 75 pulses/min (AI75) (p = 0.035) and augmentation pressure (AP) (p = 0.005). Male subjects presented significantly higher PWV compared with females (p = 0.03), while there were no differences in PP, AP and AI75. In conclusion, PWA is strongly correlated with PWV as a method for the evaluation of arterial stiffness. PMID:27651842

  8. Double-pulse digital speckle pattern interferometry for vibration analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Dazhi; Xue, Jingfeng; Chen, Lu; Wen, Juying; Wang, Jingjing

    2014-12-01

    The double-pulse Digital Speckle Pattern Interferometry (DSPI) in the laboratory is established. Two good performances have been achieved at the same time, which is uniform distribution of laser beam energy by space filter and recording two successive pictures by a CCD camera successfully. Then two-dimensional discrete orthogonal wavelet transform method is used for the process of filtering method. By using the DSPI, speckle pattern of a vibrated object is obtained with interval of (2~800)μs, and 3D plot of the transient vibration is achieved. Moreover, good agreements of the mode shapes and displacement are obtained by comparing with Laser Doppler Vibrometer (LDV) .

  9. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made

  10. Residual gas analysis for long-pulse, advanced tokamak operation.

    PubMed

    Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.

  11. Residual gas analysis for long-pulse, advanced tokamak operation

    SciTech Connect

    Klepper, C. C.; Hillis, D. L.; Bucalossi, J.; Douai, D.; Oddon, P.; Vartanian, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-10-15

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This ''diagnostic RGA'' has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H{sub 2}/D{sub 2} isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H{sub 2} injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H{sub 2} could increase due to thermodesorption of overheated plasma facing components.

  12. Residual Gas Analysis for Long-Pulse, Advanced Tokamak Operation

    SciTech Connect

    Klepper, C Christopher; Hillis, Donald Lee; Bucalossi, J.; Douai, D.; OddonCEA, IRFM, P.; VartanianCEA-Cadarach, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-01-01

    A shielded residual gas analyzer RGA system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This diagnostic RGA has been used in long-pulse up to 6 min discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2 /D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses 4 min absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components. 2010 American Institute of Physics.

  13. Residual gas analysis for long-pulse, advanced tokamak operationa)

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Hillis, D. L.; Bucalossi, J.; Douai, D.; Oddon, P.; Vartanian, S.; Colas, L.; Manenc, L.; Pégourié, B.

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2/D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components.

  14. Compton imaging with a planar semiconductor system using pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Sweeney, Anthony; Boston, Andrew J.; Boston, Helen C.; Cresswell, John P.; Dormand, Jamie; Ellis, Mark; Harkness, Laura J.; Jones, Martin; Judson, Daniel S.; Nolan, Paul J.; Oxley, David C.; Scraggs, David P.; Slee, Mike J.; Thandi, Amandeep

    2011-05-01

    Homeland security agencies have a requirement to locate and identify nuclear material. Compton cameras [1, 2] offer a more efficient method of gamma-ray detection than collimated detector systems. The resolution of the interaction positions within the detectors greatly influences the accuracy of a reconstructed Compton image. Utilizing digital electronics and applying pulse shape analysis [3] allows the spatial resolution to be enhanced beyond the pixel granularity in three dimensions. Analytically reconstructed Compton images from a range of radiation sources shall be presented with and without pulse shape analysis showing the improvements gained along with a discussion of our analysis methods.

  15. The optimum choice of gate width for neutron coincidence counting

    NASA Astrophysics Data System (ADS)

    Croft, S.; Henzlova, D.; Favalli, A.; Hauck, D. K.; Santi, P. A.

    2014-11-01

    In the measurement field of international nuclear safeguards, passive neutron coincidence counting is used to quantify the spontaneous fission rate of certain special nuclear materials. The shift register autocorrelation analysis method is the most commonly used approach. However, the Feynman-Y technique, which is more commonly applied in reactor noise analysis, provides an alternative means to extract the correlation information from a pulse train. In this work we consider how to select the optimum gate width for each of these two time-correlation analysis techniques. The optimum is considered to be that which gives the lowest fractional precision on the net doublets rate. Our theoretical approach is approximate but is instructional in terms of revealing the key functional dependence. We show that in both cases the same performance figure of merit applies so that common design criteria apply to the neutron detector head. Our prediction is that near optimal results, suitable for most practical applications, can be obtained from both techniques using a common gate width setting. The estimated precision is also comparable in the two cases. The theoretical expressions are tested experimentally using 252Cf spontaneous fission sources measured in two thermal well counters representative of the type in common use by international inspectorates. Fast accidental sampling was the favored method of acquiring the Feynman-Y data. Our experimental study confirmed the basic functional dependences predicted although experimental results when available are preferred. With an appropriate gate setting Feynman-Y analysis provides an alternative to shift register analysis for safeguards applications which is opening up new avenues of data collection and data reduction to explore.

  16. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    PubMed

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  17. Pulsed microdischarge with inductively coupled plasma mass spectrometry for elemental analysis on solid metal samples.

    PubMed

    Li, Weifeng; Yin, Zhibin; Cheng, Xiaoling; Hang, Wei; Li, Jianfeng; Huang, Benli

    2015-05-01

    Pulsed microdischarge employed as source for direct solid analysis was investigated in N2 environment at atmospheric pressure. Compared with direct current (DC) microdischarge, it exhibits advantages with respect to the ablation and emission of the sample. Comprehensive evidence, including voltage-current relationship, current density (j), and electron density (ne), suggests that pulsed microdischarge is in the arc regime while DC microdischarge belongs to glow. Capability in ablating metal samples demonstrates that pulsed microdischarge is a viable option for direct solid sampling because of the enhanced instantaneous energy. Using optical spectrometer, only common emission lines of N2 can be acquired in DC mode, whereas primary atomic and ionic lines of the sample are obtained in the case of pulsed mode. Calculations show a significant difference in N2 vibrational temperatures between DC and pulsed microdischarge. Combined with inductively coupled plasma mass spectrometry (ICPMS), pulsed microdischarge exhibits much better performances in calibration linearity and limits of detection (LOD) than those of DC discharge in direct analysis of samples of different matrices. To improve transmission efficiency, a mixture of Ar and N2 was employed as discharge gas as well as carrier gas in follow-up experiments, facilitating that LODs of most elements reached ng/g. PMID:25851038

  18. Analysis of 808nm centered optical parametric chirped pulse amplifier based on DKDP crystals

    NASA Astrophysics Data System (ADS)

    Sun, Meizhi; Cui, Zijian; Kang, Jun; Zhang, Yanli; Zhang, Junyong; Cui, Ying; Xie, Xinglong; Liu, Cheng; Liu, Dean; Zhu, Jianqiang; Lin, Zunqi

    2015-08-01

    The non-collinear phase-matching in Potassium Dideuterium Phosphate (DKDP) crystal is analyzed in detail with signal pulse of center wavelength at 808 nm and pump pulse of wavelength at 526.5 nm. By numerical analysis, parametric bandwidths for various DKDP crystals of different deuteration level are presented. In particularly for DKDP crystals of 95% deuteration level, the optimal non-collinear angles, phase-matching angles, parametric bandwidths, walk-off angles, acceptance angles, efficiency coefficients, gain and gain bandwidths are provided based on the parameter concepts. Optical parametric chirped pulse amplifier based on DKDP crystal is designed and the output characteristics are simulated by OPA coupled wave equations for further discuss. It is concluded that DKDP crystals higher than 90% deuteration level can be utilized in ultra-short high power laser systems with compressed pulses broader than 30fs. The disadvantage is that the acceptance angles are small, increasing the difficulty of engineering regulation.

  19. Detection of coincident radiations in a single transducer by pulse shape analysis

    DOEpatents

    Warburton, William K.

    2008-03-11

    Pulse shape analysis determines if two radiations are in coincidence. A transducer is provided that, when it absorbs the first radiation produces an output pulse that is characterized by a shorter time constant and whose area is nominally proportional to the energy of the absorbed first radiation and, when it absorbs the second radiation produces an output pulse that is characterized by a longer time constant and whose area is nominally proportional to the energy of the absorbed second radiation. When radiation is absorbed, the output pulse is detected and two integrals are formed, the first over a time period representative of the first time constant and the second over a time period representative of the second time constant. The values of the two integrals are examined to determine whether the first radiation, the second radiation, or both were absorbed in the transducer, the latter condition defining a coincident event.

  20. A compact nanosecond pulse modulator

    NASA Astrophysics Data System (ADS)

    Sha, Jizhang; Xue, Jianchao; Qiang, Bohan

    Two circuits of nanosecond pulse modulator which generate two different width rectangular pulses respectively are described. The basic configuration of the modulator is the Marx circuit, in which avalanche transistors are used as switching devices. In order to obtain the rectangular pulses a pulse-forming network (PFN) is introduced and fitted into the Marx. A multi-parallel arrangement of the Marx is used to satisfy the broad pulse requirement. Experiments have shown that the two different width rectangular pulses which have 130 V amplitudes and 30 and 200 ns widths respectively can be obtained at a 50 ohms load. The two pulses have steep front edges (3.6 ns and 10 ns respectively) and flat tops with less than + or - 5 percent ripples. Therefore, the modulator can meet the requirements of the nanosecond pulse radar.

  1. Genome-wide linkage analysis for loci affecting pulse pressure: the Family Blood Pressure Program.

    PubMed

    Bielinski, Suzette J; Lynch, Amy I; Miller, Michael B; Weder, Alan; Cooper, Richard; Oberman, Albert; Chen, Yii-Der Ida; Turner, Stephen T; Fornage, Myriam; Province, Michael; Arnett, Donna K

    2005-12-01

    Pulse pressure, the difference between systolic and diastolic blood pressure, is an independent risk factor for cardiovascular disease. Increased pulse pressure reflects reduced compliance of arteries and is a marker of atherosclerosis. To locate genes that affect pulse pressure, a genome-wide linkage scan for quantitative trait loci influencing pulse pressure was performed using variance components methods as implemented in sequential oligogenic linkage analysis routines. The analysis sample included 10 798 participants in 3320 families who were recruited as part of the Family Blood Pressure Program and were phenotyped with an oscillometric blood pressure measurement device using a consistent protocol across centers. Pulse pressure was adjusted for the effects of sex, age, age2, age-by-sex interaction, age2-by-sex interaction, body mass index, and field center to remove sources of variation other than the genetic effects related to pulse pressure. Significant linkage was observed on chromosome 18 (logarithm of odds [LOD]=3.2) in a combined racial sample, chromosome 20 (LOD=4.4), and 17 (LOD=3.6) in Hispanics, chromosome 21 (LOD=4.3) in whites, chromosome 19 (LOD=3.1) in a combined sample of blacks and whites, and chromosome 7 (logarithm of odds [LOD]=3.1) in blacks from the GenNet Network. Our genome scan shows significant evidence for linkage for pulse pressure in multiple areas of the genome, supporting previous published linkage studies. The identification of these loci for pulse pressure and the apparent congruence with other blood pressure phenotypes provide increased support that these regions contain genes influencing blood pressure phenotypes.

  2. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure

    PubMed Central

    2014-01-01

    Background There is a significant need for continuous noninvasive blood pressure (cNIBP) monitoring, especially for anesthetized surgery and ICU recovery. cNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes. The test system examined here is the CareTaker® and a pulse contour analysis algorithm, Pulse Decomposition Analysis (PDA). PDA’s premise is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses that are due to the left ventricular ejection and reflections and re-reflections from only two reflection sites within the central arteries. The hypothesis examined here is that the model’s principal parameters P2P1 and T13 can be correlated with, respectively, systolic and pulse pressures. Methods Central arterial blood pressures of patients (38 m/25 f, mean age: 62.7 y, SD: 11.5 y, mean height: 172.3 cm, SD: 9.7 cm, mean weight: 86.8 kg, SD: 20.1 kg) undergoing cardiac catheterization were monitored using central line catheters while the PDA parameters were extracted from the arterial pulse signal obtained non-invasively using CareTaker system. Results Qualitative validation of the model was achieved with the direct observation of the five component pressure pulses in the central arteries using central line catheters. Statistically significant correlations between P2P1 and systole and T13 and pulse pressure were established (systole: R square: 0.92 (p < 0.0001), diastole: R square: 0.78 (p < 0.0001). Bland-Altman comparisons between blood pressures obtained through the conversion of PDA parameters to blood pressures of non-invasively obtained pulse signatures with catheter-obtained blood pressures fell within the trend guidelines of the Association for the Advancement of Medical Instrumentation SP-10 standard (standard deviation: 8 mmHg(systole: 5.87 mmHg, diastole: 5.69 mmHg)). Conclusions The results indicate that arterial

  3. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy.

    PubMed

    Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong

    2015-11-17

    We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.

  4. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy.

    PubMed

    Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong

    2015-11-17

    We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis. PMID:26488206

  5. Pulse Diagnosis Signals Analysis of Fatty Liver Disease and Cirrhosis Patients by Using Machine Learning

    PubMed Central

    Youhua, Yu; Dawei, Huang; Bin, Xu; Jia, Liu; Tongda, Li; Liyuan, Xue; Zengyu, Shan; Yanping, Chen; Jia, Wang

    2015-01-01

    Objective. To compare the signals of pulse diagnosis of fatty liver disease (FLD) patients and cirrhosis patients. Methods. After collecting the pulse waves of patients with fatty liver disease, cirrhosis patients, and healthy volunteers, we do pretreatment and parameters extracting based on harmonic fitting, modeling, and identification by unsupervised learning Principal Component Analysis (PCA) and supervised learning Least squares Regression (LS) and Least Absolute Shrinkage and Selection Operator (LASSO) with cross-validation step by step for analysis. Results. There is significant difference between the pulse diagnosis signals of healthy volunteers and patients with FLD and cirrhosis, and the result was confirmed by 3 analysis methods. The identification accuracy of the 1st principal component is about 75% without any classification formation by PCA, and supervised learning's accuracy (LS and LASSO) was even more than 93% when 7 parameters were used and was 84% when only 2 parameters were used. Conclusion. The method we built in this study based on the combination of unsupervised learning PCA and supervised learning LS and LASSO might offer some confidence for the realization of computer-aided diagnosis by pulse diagnosis in TCM. In addition, this study might offer some important evidence for the science of pulse diagnosis in TCM clinical diagnosis. PMID:27088124

  6. Energy response improvement for photon dosimetry using pulse analysis

    NASA Astrophysics Data System (ADS)

    Zaki, Dizaji H.

    2016-02-01

    During the last few years, active personal dosimeters have been developed and have replaced passive personal dosimeters in some external monitoring systems, frequently using silicon diode detectors. Incident photons interact with the constituents of the diode detector and produce electrons. These photon-induced electrons deposit energy in the detector's sensitive region and contribute to the response of diode detectors. To achieve an appropriate photon dosimetry response, the detectors are usually covered by a metallic layer with an optimum thickness. The metallic cover acts as an energy compensating shield. In this paper, a software process is performed for energy compensation. Selective data sampling based on pulse height is used to determine the photon dose equivalent. This method is applied to improve the energy response in photon dosimetry. The detector design is optimized for the response function and determination of the photon dose equivalent. Photon personal dose equivalent is determined in the energy range of 0.3-6 MeV. The error values of the calculated data for this wide energy range and measured data for 133Ba, 137Cs, 60Co and 241Am-Be sources respectively are up to 20% and 15%. Fairly good agreement is seen between simulation and dose values obtained from our process and specifications from several photon sources.

  7. Analysis of melt ejection during long pulsed laser drilling

    NASA Astrophysics Data System (ADS)

    Ting-Zhong, Zhang; Zhi-Chao, Jia; Hai-Chao, Cui; De-Hua, Zhu; Xiao-Wu, Ni; Jian, Lu

    2016-05-01

    In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. KYLX_0341) and the National Natural Science Foundation of China (Grant No. 61405147).

  8. Analysis of melt ejection during long pulsed laser drilling

    NASA Astrophysics Data System (ADS)

    Ting-Zhong, Zhang; Zhi-Chao, Jia; Hai-Chao, Cui; De-Hua, Zhu; Xiao-Wu, Ni; Jian, Lu

    2016-05-01

    In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. KYLX_0341) and the National Natural Science Foundation of China (Grant No. 61405147).

  9. Use of a prototype pulse oximeter for time series analysis of heart rate variability

    NASA Astrophysics Data System (ADS)

    González, Erika; López, Jehú; Hautefeuille, Mathieu; Velázquez, Víctor; Del Moral, Jésica

    2015-05-01

    This work presents the development of a low cost pulse oximeter prototype consisting of pulsed red and infrared commercial LEDs and a broad spectral photodetector used to register time series of heart rate and oxygen saturation of blood. This platform, besides providing these values, like any other pulse oximeter, processes the signals to compute a power spectrum analysis of the patient heart rate variability in real time and, additionally, the device allows access to all raw and analyzed data if databases construction is required or another kind of further analysis is desired. Since the prototype is capable of acquiring data for long periods of time, it is suitable for collecting data in real life activities, enabling the development of future wearable applications.

  10. Transient analysis of a pulsed detonation combustor using the numerical propulsion system simulation

    NASA Astrophysics Data System (ADS)

    Hasler, Anthony Scott

    The performance of a hybrid mixed flow turbofan (with detonation tubes installed in the bypass duct) is investigated in this study and compared with a baseline model of a mixed flow turbofan with a standard combustion chamber as a duct burner. Previous studies have shown that pulsed detonation combustors have the potential to be more efficient than standard combustors, but they also present new challenges that must be overcome before they can be utilized. The Numerical Propulsion System Simulation (NPSS) will be used to perform the analysis with a pulsed detonation combustor model based on a numerical simulation done by Endo, Fujiwara, et. al. Three different cases will be run using both models representing a take-off situation, a subsonic cruise and a supersonic cruise situation. Since this study investigates a transient analysis, the pulse detonation combustor is run in a rig setup first and then its pressure and temperature are averaged for the cycle to obtain quasi-steady results.

  11. Variability, polarimetry, and timing properties of single pulses from PSR J1713+0747 using the Large European Array for Pulsars

    NASA Astrophysics Data System (ADS)

    Liu, K.; Bassa, C. G.; Janssen, G. H.; Karuppusamy, R.; McKee, J.; Kramer, M.; Lee, K. J.; Perrodin, D.; Purver, M.; Sanidas, S.; Smits, R.; Stappers, B. W.; Weltevrede, P.; Zhu, W. W.

    2016-09-01

    Single pulses preserve information about the pulsar radio emission and propagation in the pulsar magnetosphere, and understanding the behaviour of their variability is essential for estimating the fundamental limit on the achievable pulsar timing precision. Here we report the findings of our analysis of single pulses from PSR J1713+0747 with data collected by the Large European Array for Pulsars (LEAP). We present statistical studies of the pulse properties that include distributions of their energy, phase and width. Two modes of systematic sub-pulse drifting have been detected, with a periodicity of 7 and 3 pulse periods. The two modes appear at different ranges of pulse longitude but overlap under the main peak of the integrated profile. No evidence for pulse micro-structure is seen with a time resolution down to 140 ns. In addition, we show that the fractional polarisation of single pulses increases with their pulse peak flux density. By mapping the probability density of linear polarisation position angle with pulse longitude, we reveal the existence of two orthogonal polarisation modes. Finally, we find that the resulting phase jitter of integrated profiles caused by single pulse variability can be described by a Gaussian probability distribution only when at least 100 pulses are used for integration. Pulses of different flux densities and widths contribute approximately equally to the phase jitter, and no improvement on timing precision is achieved by using a sub-set of pulses with a specific range of flux density or width.

  12. Analysis of collective spin-wave modes at different points within the hysteresis loop of a one-dimensional magnonic crystal comprising alternative-width nanostripes

    NASA Astrophysics Data System (ADS)

    Tacchi, S.; Madami, M.; Gubbiotti, G.; Carlotti, G.; Goolaup, S.; Adeyeye, A. O.; Singh, N.; Kostylev, M. P.

    2010-11-01

    The Brillouin light-scattering technique has been applied to study collective spin waves in a dense array of dipolarly coupled Ni80Fe20 stripes of alternating widths, during the magnetization reversal process. Both the saturated “ferromagnetic” state, where the magnetizations of wide and narrow stripes are parallel, and the “antiferromagnetic” state, characterized by an antiparallel alignment of the static magnetization in adjacent stripes, have been analyzed. The experimental data provide strong evidence of sustained collective excitations in the form of Bloch waves with permitted and forbidden magnonic energy bands. The measured frequencies as a function of the exchanged wave vector have been satisfactorily reproduced by numerical simulations which enabled us to calculate the spatial profiles of the Bloch waves, showing that some of the modes are preferentially localized in either the wide or the narrow stripes. We estimated the expected light-scattering cross section for each mode at different magnetic ground states, achieving a good agreement with the measured intensities. The alternating-width stripes system studied here represents a one-dimensional artificial magnonic crystal with a complex base and can be considered as a model system for reprogrammable dynamical response, where the band structure of collective spin waves can be tailored by changing the applied magnetic field.

  13. Radial evolution of the finite-width plasma sheet in a z-pinch: A parametric analysis based on conservation laws

    SciTech Connect

    Sherar, A.G.

    1996-12-31

    A simple method that allows to estimate the macroscopic variables (width, temperature, density, radial velocity, etc.) of the plasma sheet in the first compression of a z-pinch, is presented. Following the snow-plow model, the radial compression is assumed as a process in which the mass is swept by a sheet of finite width. Very high pressures can be reached inside the sheet due to magnetic compression, higher than the filling gas pressure. A quasi-equilibrium hypothesis for the pressure of the layer is defined. From this assumption the thickness of the dense plasma sheet can be estimated. A set of MHD equations that include a term to compute total energy losses is used. The system of equations is written in the interface reference system in which the internal boundary of the sheet is at rest. In this early stage of the compression, the plasma temperature is mainly due to heavy particles. The results obtained using this model can explain ionic temperatures measured in cold plasmas which cannot be explained from electron-ion collisions. From an analytical study of the formation solution, a well-defined range of validity for each parameter of the model has been found. Based on physical conditions, these ranges of validity give a criterion to understanding the necessary conditions to build and maintain a moving plasma sheet. Using this model, other geometries besides the cylindrical one can be analyzed in the future.

  14. Cost analysis of commercial pasteurization of orange juice by pulsed electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cost of pulsed electric field (PEF) pasteurization of orange juice was estimated. The cost analysis was based on processing conditions that met the US FDA (5 log reduction) requirement for fruit juice pasteurization and that achieved a 2 month microbial shelf-life. PEF-treated samples processed ...

  15. Double-pulse laser-induced breakdown spectroscopy for trace element analysis in sintered iron oxide ceramics

    NASA Astrophysics Data System (ADS)

    Heilbrunner, H.; Huber, N.; Wolfmeir, H.; Arenholz, E.; Pedarnig, J. D.; Heitz, J.

    2012-01-01

    Double-pulse laser-induced breakdown spectroscopy (LIBS) is an emerging technique for accurate compositional analysis of many different materials. We present a systematic study of collinear double-pulse LIBS for analysis of the trace and side elements boron, manganese, copper, aluminum, titanium, silicon, chromium, nickel, potassium, and calcium in sintered iron oxide targets. The samples were ablated in air by single-pulse and double-pulse Nd:YAG laser radiation (6 ns pulse duration, laser wavelength of 532 nm) and spectra were recorded with an Echelle spectrometer equipped with an ICCD camera. We investigated the evolution of atomic and ionic line emission intensities for different interpulse delay times between the laser pulses (from 100 ns to 50 μs) and gate delays after the second laser pulse. We also varied the energy partition between the first and second laser pulse and the size of the irradiated spot at the sample surface. For the trace and side elements, we observed double-pulse LIBS signals that were enhanced as compared to single-pulse measurements depending on the interpulse delay time, the energy partition between the pulses, and the spot size. For the elements boron, copper, aluminum, titanium, chromium, potassium, and calcium limits of detection below 10 ppm were achieved.

  16. RACC Code System for Computing Radioactivity-Related Parameters for Fusion Reactor Systems Modified for Pulsed/Intermittent Activation Analysis.

    1996-04-30

    Version 00 CCC-388/RACC was specifically developed to compute the radioactivity and radioactivity-related parameters (e.g., afterheat, biological hazard potential, etc.) due to neutron activation within Inertial Fusion Energy and Magnetic Fusion Energy reactor systems. It can also be utilized to compute the radioactivity in fission, accelerator or any other neutron generating and neutron source system. This new version designated RACC-PULSE is based on CCC-388 and has the capability to model irradiation histories of varying flux levelsmore » having varying pulse widths (on times) and dwell periods (off times) and varying maintenance periods. This provides the user with the flexibility of modeling most any complexity of irradiation history beginning with simple steady state operating systems to complex multi-flux level pulse/intermittent operating systems.« less

  17. PERFORMANCE STUDIES OF CDZNTE DETECTOR BY USING A PULSE SHAPE ANALYSIS.

    SciTech Connect

    BOLOTNIKOV, A.

    2005-07-31

    Pulse shape analysis is proved to be a powerful tool to characterize the performance of CdZnTe devices and understand their operating principles. It allows one to investigate the device configurations, electron transport properties, effects governing charge collection, electric-field distributions, signal charge formation, etc. This work describes an application of different techniques based on the pulse shape measurements to characterize pixel, coplanar-grid, and virtual Frisch-grid devices and understand the electronic properties of CZT material provided by different vendors. We report new results that may explain the performance limits of these devices.

  18. Pulsed Laser Microbeam-Induced Cell Lysis: Time-Resolved Imaging and Analysis of Hydrodynamic Effects

    PubMed Central

    Rau, Kaustubh R.; Quinto-Su, Pedro A.; Hellman, Amy N.; Venugopalan, Vasan

    2006-01-01

    Time-resolved imaging was used to examine the use of pulsed laser microbeam irradiation to produce cell lysis. Lysis was accomplished through the delivery of 6 ns, λ = 532 nm laser pulses via a 40×, 0.8 NA objective to a location 10 μm above confluent monolayers of PtK2 cells. The process dynamics were examined at cell surface densities of 600 and 1000 cells/mm2 and pulse energies corresponding to 0.7×, 1×, 2×, and 3× the threshold for plasma formation. The cell lysis process was imaged at times of 0.5 ns to 50 μs after laser pulse delivery and revealed the processes of plasma formation, pressure wave propagation, and cavitation bubble dynamics. Cavitation bubble expansion was the primary agent of cell lysis with the zone of lysed cells fully established within 600 ns of laser pulse delivery. The spatial extent of cell lysis increased with pulse energy but decreased with cell surface density. Hydrodynamic analysis indicated that cells subject to transient shear stresses in excess of a critical value were lysed while cells exposed to lower shear stresses remained adherent and viable. This critical shear stress is independent of laser pulse energy and varied from ∼60–85 kPa for cell monolayers cultured at a density of 600 cells/mm2 to ∼180–220 kPa for a surface density of 1000 cells/mm2. The implications for single cell lysis and microsurgery are discussed. PMID:16617076

  19. Autonomic Nervous System Responses to Concussion: Arterial Pulse Contour Analysis.

    PubMed

    La Fountaine, Michael F; Toda, Michita; Testa, Anthony J; Hill-Lombardi, Vicci

    2016-01-01

    The arterial pulse wave (APW) has a distinct morphology whose contours reflect dynamics in cardiac function and peripheral vascular tone as a result of sympathetic nervous system (SNS) control. With a transition from rest to increased metabolic demand, the expected augmentation of SNS outflow will not only affect arterial blood pressure and heart rate but it will also induce changes to the contours of the APW. Following a sports concussion, a transient state cardiovascular autonomic dysfunction is present. How this state affects the APW has yet to be described. A prospective, parallel-group study on cardiovascular autonomic control (i.e., digital electrocardiogram and continuous beat-to-beat blood pressure) was performed in the seated upright position in 10 athletes with concussion and 7 non-injured control athletes. Changes in APW were compared at rest and during the first 60 s (F60) of an isometric handgrip test (IHGT) in concussed athletes and non-injured controls within 48 h and 1 week of injury. The concussion group was further separated by the length of time until they were permitted to return to play (RTP > 1week; RTP ≤ 1week). SysSlope, an indirect measurement of stroke volume, was significantly lower in the concussion group at rest and during F60 at 48 h and 1week; a paradoxical decline in SysSlope occurred at each visit during the transition from rest to IHGT F60. The RTP > 1week group had lower SysSlope (405 ± 200; 420 ± 88; 454 ± 236 mmHg/s, respectively) at rest 48 h compared to the RTP ≤ 1week and controls. Similarly at 48 h rest, several measurements of arterial stiffness were abnormal in RTP > 1week compared to RTP ≤ 1week and controls: peak-to-notch latency (0.12 ± 0.04; 0.16 ± 0.02; 0.17 ± 0.05, respectively), notch relative amplitude (0.70 ± 0.03; 0.71 ± 0.04; 0.66 ± 0.14, respectively), and stiffness index (6.4 ± 0.2; 5.7 ± 0.4; 5.8 ± 0

  20. Autonomic Nervous System Responses to Concussion: Arterial Pulse Contour Analysis

    PubMed Central

    La Fountaine, Michael F.; Toda, Michita; Testa, Anthony J.; Hill-Lombardi, Vicci

    2016-01-01

    The arterial pulse wave (APW) has a distinct morphology whose contours reflect dynamics in cardiac function and peripheral vascular tone as a result of sympathetic nervous system (SNS) control. With a transition from rest to increased metabolic demand, the expected augmentation of SNS outflow will not only affect arterial blood pressure and heart rate but it will also induce changes to the contours of the APW. Following a sports concussion, a transient state cardiovascular autonomic dysfunction is present. How this state affects the APW has yet to be described. A prospective, parallel-group study on cardiovascular autonomic control (i.e., digital electrocardiogram and continuous beat-to-beat blood pressure) was performed in the seated upright position in 10 athletes with concussion and 7 non-injured control athletes. Changes in APW were compared at rest and during the first 60 s (F60) of an isometric handgrip test (IHGT) in concussed athletes and non-injured controls within 48 h and 1 week of injury. The concussion group was further separated by the length of time until they were permitted to return to play (RTP > 1week; RTP ≤ 1week). SysSlope, an indirect measurement of stroke volume, was significantly lower in the concussion group at rest and during F60 at 48 h and 1week; a paradoxical decline in SysSlope occurred at each visit during the transition from rest to IHGT F60. The RTP > 1week group had lower SysSlope (405 ± 200; 420 ± 88; 454 ± 236 mmHg/s, respectively) at rest 48 h compared to the RTP ≤ 1week and controls. Similarly at 48 h rest, several measurements of arterial stiffness were abnormal in RTP > 1week compared to RTP ≤ 1week and controls: peak-to-notch latency (0.12 ± 0.04; 0.16 ± 0.02; 0.17 ± 0.05, respectively), notch relative amplitude (0.70 ± 0.03; 0.71 ± 0.04; 0.66 ± 0.14, respectively), and stiffness index (6.4 ± 0.2; 5.7 ± 0.4; 5.8 ± 0

  1. Autonomic Nervous System Responses to Concussion: Arterial Pulse Contour Analysis.

    PubMed

    La Fountaine, Michael F; Toda, Michita; Testa, Anthony J; Hill-Lombardi, Vicci

    2016-01-01

    The arterial pulse wave (APW) has a distinct morphology whose contours reflect dynamics in cardiac function and peripheral vascular tone as a result of sympathetic nervous system (SNS) control. With a transition from rest to increased metabolic demand, the expected augmentation of SNS outflow will not only affect arterial blood pressure and heart rate but it will also induce changes to the contours of the APW. Following a sports concussion, a transient state cardiovascular autonomic dysfunction is present. How this state affects the APW has yet to be described. A prospective, parallel-group study on cardiovascular autonomic control (i.e., digital electrocardiogram and continuous beat-to-beat blood pressure) was performed in the seated upright position in 10 athletes with concussion and 7 non-injured control athletes. Changes in APW were compared at rest and during the first 60 s (F60) of an isometric handgrip test (IHGT) in concussed athletes and non-injured controls within 48 h and 1 week of injury. The concussion group was further separated by the length of time until they were permitted to return to play (RTP > 1week; RTP ≤ 1week). SysSlope, an indirect measurement of stroke volume, was significantly lower in the concussion group at rest and during F60 at 48 h and 1week; a paradoxical decline in SysSlope occurred at each visit during the transition from rest to IHGT F60. The RTP > 1week group had lower SysSlope (405 ± 200; 420 ± 88; 454 ± 236 mmHg/s, respectively) at rest 48 h compared to the RTP ≤ 1week and controls. Similarly at 48 h rest, several measurements of arterial stiffness were abnormal in RTP > 1week compared to RTP ≤ 1week and controls: peak-to-notch latency (0.12 ± 0.04; 0.16 ± 0.02; 0.17 ± 0.05, respectively), notch relative amplitude (0.70 ± 0.03; 0.71 ± 0.04; 0.66 ± 0.14, respectively), and stiffness index (6.4 ± 0.2; 5.7 ± 0.4; 5.8 ± 0

  2. Effects of irradiation of energetic heavy ions on digital pulse shape analysis with silicon detectors

    NASA Astrophysics Data System (ADS)

    Barlini, S.; Carboni, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Piantelli, S.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Fazia Collaboration

    2013-04-01

    The next generation of 4π detector arrays for heavy ion studies will largely use Pulse Shape Analysis to push the performance of silicon detectors with respect to ion identification. Energy resolution and pulse shape identification capabilities of silicon detectors under prolonged irradiation by energetic heavy ions have thus become a major issue. In this framework, we have studied the effects of irradiation by energetic heavy ions on the response of neutron transmutation doped (nTD) silicon detectors. Sizeable effects on the amplitude and the risetime of the charge signal have been found for detectors irradiated with large fluences of stopped heavy ions, while much weaker effects were observed by punching-through ions. The robustness of ion identification based on digital pulse shape techniques has been evaluated.

  3. Q-factor analysis of nonlinear impairments in ultrahigh-speed Nyquist pulse transmission.

    PubMed

    Hirooka, Toshihiko; Nakazawa, Masataka

    2015-12-28

    We present detailed analytical and numerical results of the dispersion and nonlinear tolerances of RZ and Nyquist optical pulses in ultrahigh-speed TDM transmissions. From a Q-map analysis, i.e. by numerically calculating the Q-factor distribution as a function of transmission power and fiber dispersion, we found that Nyquist TDM transmission has a substantially larger Q margin as regards both dispersion and optical power thanks to ISI-free overlapped TDM. We also show that the optimum transmission power for Nyquist pulses is 2 dB lower than for RZ pulses. An analytical model is provided to explain the overlap-induced nonlinear impairments in Nyquist TDM transmission in a high power regime, which agrees well with numerical results.

  4. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra.

    PubMed

    Engel, Robin; Düsterer, Stefan; Brenner, Günter; Teubner, Ulrich

    2016-01-01

    For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH's data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded. PMID:26698053

  5. Laboratory pulse modulator uses minority carrier storage diodes

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Pulse modulator is capable of continuously variable pulse width over a 10 to 1 range of 1.0 microsecond to 0.1 microsecond and operates over a wide range of pulse repetition rates. Pulse width diversity is obtained by operating step-recovery diodes in the reverse conduction mode.

  6. Parameter sensitivity analysis of tailored-pulse loading stimulation of Devonian gas shale

    SciTech Connect

    Barbour, T.G.; Mihalik, G.R.

    1980-11-01

    An evaluation of three tailored-pulse loading parameters has been undertaken to access their importance in gas well stimulation technology. This numerical evaluation was performed using STEALTH finite-difference codes and was intended to provide a measure of the effects of various tailored-pulse load configurations on fracture development in Devonian gas shale. The three parameters considered in the sensitivity analysis were: loading rate; decay rate; and sustained peak pressures. By varying these parameters in six computations and comparing the relative differences in fracture initiation and propagation the following conclusions were drawn: (1) Fracture initiation is directly related to the loading rate aplied to the wellbore wall. Loading rates of 10, 100 and 1000 GPa/sec were modeled. (2) If yielding of the rock can be prevented or minimized, by maintaining low peak pressures in the wellbore, increasing the pulse loading rate, to say 10,000 GPa/sec or more, should initiate additional multiple fractures. (3) Fracture initiation does not appear to be related to the tailored-pulse decay rate. Fracture extension may be influenced by the rate of decay. The slower the decay rate, the longer the crack extension. (4) Fracture initiation does not appear to be improved by a high pressure plateau in the tailored-pulse. Fracture propagation may be enhanced if the maintained wellbore pressure plateau is of sufficient magnitude to extent the range of the tangential tensile stresses to greater radial distances. 26 figures, 2 tables.

  7. Multielement analysis utilizing pulsed fast/thermal neutron analysis for contraband detection

    NASA Astrophysics Data System (ADS)

    Womble, Phillip C.; Vourvopoulos, George; Paschal, Jonathon; Dokhale, P. A.

    1999-10-01

    Pulsed Fast/Thermal Neutron Analysis (PFTNA) is being employed in such diverse applications as: on-line coal analysis, detection of improvised explosive devices (IEDs), detection of contraband drugs, characterization of unexploded ordnance, and detection of landmines. In this work, the current research in the utilization of PFTNA in detection of drugs and IEDs will be discussed. Man-portable PFTNA systems have been built and currently are undergoing field trials. These systems can be inserted in confined spaces such as the boiler of a ship or into a tanker truck filled with liquid. The PFTNA system provides information on the major and minor chemical elements which compose the interrogated object. By measuring the elemental content or ratios of various elements, this system can differentiate between innocuous materials and materials such as drugs and IEDs. In laboratory trials, the PFTNA system can measure the carbon to oxygen ratio to an accuracy of 15% within a 5 minute time period. In all cases, hidden drugs and IEDs are identified through the measurement of the elemental content of the object, and the comparison of expected and measured elemental ratios.

  8. On the maximal diphoton width

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto; Staub, Florian; Strumia, Alessandro; Urbano, Alfredo

    2016-03-01

    Motivated by the 750 GeV diphoton excess found at LHC, we compute the maximal width into γγ that a neutral scalar can acquire through a loop of charged fermions or scalars as function of the maximal scale at which the theory holds, taking into account vacuum (meta)stability bounds. We show how an extra gauge symmetry can qualitatively weaken such bounds, and explore collider probes and connections with Dark Matter.

  9. Using pulsed neutron transmission for crystalline phase imaging and analysis

    SciTech Connect

    Steuwer, A.; Withers, P. J.; Santisteban, J. R.; Edwards, L.

    2005-04-01

    The total scattering cross section of polycrystalline materials in the thermal neutron region contains valuable information about the scattering processes that neutrons undergo as they pass through the sample. In particular, it displays characteristic discontinuities or Bragg edges of selected families of lattice planes. We have developed a pixelated time-of-flight transmission detector able to record these features and in this paper we examine the potential for quantitative phase analysis and crystalline phase imaging through the examination of a simple two-phase test object. Two strategies for evaluation of the absolute phase volumes (path lengths) are examined. The first approach is based on the evaluation of the Bragg edge amplitude using basic profile information. The second approach focuses on the information content of certain regions of the spectrum using a Rietveld-type fit after first identifying the phases via the characteristic edges. The phase distribution is determined and the coarse chemical species radiographic image reconstructed. The accuracy of this method is assessed.

  10. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples.

  11. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples. PMID:24054645

  12. DynPeak: An Algorithm for Pulse Detection and Frequency Analysis in Hormonal Time Series

    PubMed Central

    Vidal, Alexandre; Zhang, Qinghua; Médigue, Claire; Fabre, Stéphane; Clément, Frédérique

    2012-01-01

    The endocrine control of the reproductive function is often studied from the analysis of luteinizing hormone (LH) pulsatile secretion by the pituitary gland. Whereas measurements in the cavernous sinus cumulate anatomical and technical difficulties, LH levels can be easily assessed from jugular blood. However, plasma levels result from a convolution process due to clearance effects when LH enters the general circulation. Simultaneous measurements comparing LH levels in the cavernous sinus and jugular blood have revealed clear differences in the pulse shape, the amplitude and the baseline. Besides, experimental sampling occurs at a relatively low frequency (typically every 10 min) with respect to LH highest frequency release (one pulse per hour) and the resulting LH measurements are noised by both experimental and assay errors. As a result, the pattern of plasma LH may be not so clearly pulsatile. Yet, reliable information on the InterPulse Intervals (IPI) is a prerequisite to study precisely the steroid feedback exerted on the pituitary level. Hence, there is a real need for robust IPI detection algorithms. In this article, we present an algorithm for the monitoring of LH pulse frequency, basing ourselves both on the available endocrinological knowledge on LH pulse (shape and duration with respect to the frequency regime) and synthetic LH data generated by a simple model. We make use of synthetic data to make clear some basic notions underlying our algorithmic choices. We focus on explaining how the process of sampling affects drastically the original pattern of secretion, and especially the amplitude of the detectable pulses. We then describe the algorithm in details and perform it on different sets of both synthetic and experimental LH time series. We further comment on how to diagnose possible outliers from the series of IPIs which is the main output of the algorithm. PMID:22802933

  13. Analysis of induced effects in matter during pulsed Nd:YAG laser welding by flash radiography

    NASA Astrophysics Data System (ADS)

    Pascal, G.; Noré, D.; Girard, K.; Perret, O.; Naudy, P.

    2000-05-01

    Tantalum and TA6V (titanium alloy) are respectively used in corrosive chemical product containers and in aircraft and aerospace industries. The objective of this study was to analyze the dynamic behavior of the matter during deep laser spot welding of these materials. The obtained images should allow a better understanding of laser-matter interaction and should validate a model developed for porosities formation. Because of the afterglow of detectors, classical video x-ray systems are not suitable for the analysis of short dynamic effects during and after the laser pulse. An experimental device, based on a flash x-ray generator EUROPULSE 600 kV and a QUANTEL pulsed Nd:YAG laser, has been used. The flash x-ray generator is triggered, after a programmed delay, by the laser shot. The x-ray pulse duration is 30 ns. Welding parameters (pulse duration and energy) yield molten zones of 2 mm depth. Both materials, tantalum and TA6V, have been tested. Radiological films BIOMAX coupled with radioluminescent screens and direct exposure film (DEF) were respectively used for tantalum and TA6V samples. A fine collimation was studied to avoid the scattering effect in the material and in the radioluminescent screen. Radiological test samples, made of tantalum and TA6V, were performed to estimate the images qualities obtained by flash radiography. About 270 laser/x-rays shots were performed. The radiographic images have been digitalized and processed. The results show a deep and narrow capillary hole called "keyhole" which appears a few milliseconds after the beginning of the interaction. The "keyhole" hollows until the end of the laser pulse. After the end of the laser pulse, the molten bath collapses in less than 1 ms, trapping cavities.

  14. Multispectrum Analysis of 12CH4 in the v4 Band: I. Air-Broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing

    NASA Technical Reports Server (NTRS)

    Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi

    2009-01-01

    Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.

  15. Giant pulses from the Crab pulsar. A wide-band study

    NASA Astrophysics Data System (ADS)

    Karuppusamy, R.; Stappers, B. W.; van Straten, W.

    2010-06-01

    The Crab pulsar is well-known for its anomalous giant radio pulse emission. Past studies have concentrated only on the very bright pulses or were insensitive to the faint end of the giant pulse luminosity distribution. With our new instrumentation offering a large bandwidth and high time resolution combined with the narrow radio beam of the Westerbork Synthesis Radio Telescope (WSRT), we seek to probe the weak giant pulse emission regime. The WSRT was used in a phased array mode, resolving a large fraction of the Crab nebula. The resulting pulsar signal was recorded using the PuMa II pulsar backend and then coherently dedispersed and searched for giant pulse emission. After careful flux calibration, the data were analysed to study the giant pulse properties. The analysis includes the distributions of the measured pulse widths, intensities, energies, and scattering times. The weak giant pulses are shown to form a separate part of the intensity distribution. The large number of giant pulses detected were used to analyse scattering and scintillation in giant pulses. We report for the first time the detection of giant pulse emission at both the main- and interpulse phases within a single rotation period. The rate of detection is consistent with the appearance of pulses at either pulse phase as being independent. These pulse pairs were used to examine the scintillation timescales within a single pulse period.

  16. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  17. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    NASA Astrophysics Data System (ADS)

    Kavrigin, P.; Finocchiaro, P.; Griesmayer, E.; Jericha, E.; Pappalardo, A.; Weiss, C.

    2015-09-01

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a 6Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of 6Li(n,T)4He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in 6Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  18. Pulse contour analysis: Is it able to reliably detect changes in cardiac output in the haemodynamically unstable patient?

    PubMed Central

    2011-01-01

    Three pulse contour systems for monitoring cardiac output - LiDCO Plus™, PiCCO Plus™ and FloTrac™ - were compared in postcardiac surgery patients. None of the three methods demonstrated good trending ability according to concordance analysis. Pulse contour systems remain unreliable in the haemodynamically unstable patient. PMID:21349140

  19. Brillouin optical time-domain analysis sensor with pump pulse amplification.

    PubMed

    Mompó, Juan José; Urricelqui, Javier; Loayssa, Alayn

    2016-06-13

    We demonstrate a simple technique to provide conventional Brillouin optical time-domain analysis sensors with mitigation for pump pulse attenuation. The technique is based on operating the sensor in loss configuration so that energy is transferred from the probe wave to the pump pulse that becomes amplified as it counter-propagates with the probe wave. Furthermore, the optical frequency of the probe wave is modulated along the fiber so that the pump pulse experiences a flat total gain spectrum that equally amplifies all the spectral components of the pulse, hence, preventing distortion. This frequency modulation of the probe brings additional advantages because it provides increased tolerance to non-local effects and to spontaneous Brillouin scattering noise, so that a probe power above the Brillouin threshold of the fiber can be safely deployed, hence, increasing the signal-to-noise ratio of the measurement. The method is experimentally demonstrated in a 100-km fiber link, obtaining a measurement uncertainty of 1 MHz at the worst-contrast position. PMID:27410288

  20. Validation of noninvasive MOEMS-assisted measurement system based on CCD sensor for radial pulse analysis.

    PubMed

    Malinauskas, Karolis; Palevicius, Paulius; Ragulskis, Minvydas; Ostasevicius, Vytautas; Dauksevicius, Rolanas

    2013-01-01

    Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner's subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation. PMID:23609803

  1. Theoretical analysis on pulsed microwave heating of pork meat supported on ceramic plate.

    PubMed

    Basak, Tanmay; Rao, Badri S

    2010-11-01

    Theoretical analysis has been carried out to study the role of ceramic plates (alumina and SiC) and pulsed microwave heating of pork meat (Pork Luncheon Roll (PLR) and White Pudding (WP)) samples. Spatial hot spots occur either at the center of the sample or at the outer face or at the face attached with alumina plate and application of pulsing minimizes formation of hot spots within meat samples. Pulsing of microwave is characterized by set point for temperature difference (ΔTS) and on-off constraints for temperature (T'). It is found that alumina plate with higher ΔTS and lower T' may be recommended for thick meat samples (both WP and PLR) whereas for thin meat samples, lower ΔTS with alumina plate/without plate may be preferred. It is also observed that SiC plate may be selectively used with ΔTS=20K for both the pork meats. The distributed microwave incidence is found to be effective due to lesser degree of thermal runaway in absence of pulsing for both meat samples.

  2. Simple parametrization of fragment reduced widths in heavy ion collisions.

    PubMed

    Tripathi, R K; Townsend, L W

    1994-04-01

    A systematic analysis of the observed reduced widths obtained in relativistic heavy ion fragmentation reactions is used to develop a phenomenological parametrization of these data. The parametrization is simple, accurate, and completely general in applicability.

  3. Analysis of Salmonella typhi isolates from Southeast Asia by pulsed-field gel electrophoresis.

    PubMed Central

    Thong, K L; Puthucheary, S; Yassin, R M; Sudarmono, P; Padmidewi, M; Soewandojo, E; Handojo, I; Sarasombath, S; Pang, T

    1995-01-01

    Pulsed-field gel electrophoresis (PFGE) revealed that multiple genetic variants of Salmonella typhi are simultaneously present in Southeast Asia and are associated with sporadic cases of typhoid fever and occasional outbreaks. Comparative analysis of PFGE patterns also suggested that considerable genetic diversity exists among S. typhi strains and that some PFGE patterns are shared between isolates obtained from Malaysia, Indonesia, and Thailand, implying movement of these strains within these regions of Southeast Asia, where they are endemic. PMID:7665677

  4. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  5. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  6. Plate-Tectonic Analysis of Shallow Seismicity: Apparent Boundary Width, beta-Value, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in 7 Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kagan, Y. Y.

    2003-12-01

    A new plate model [Bird, 2003, G3, 10.1029/2001GC000252] is used to analyze the mean seismicities of 7 types of plate boundary (CRB continental rift boundary, CTF continental transform fault, CCB continental convergent boundary, OSR oceanic spreading ridge, OTF oceanic transform fault, OCB oceanic convergent boundary, SUB subduction zone). We compare the plate-like (non-orogen) regions of model PB2002 with the CMT catalog to select apparent boundary half-widths, and then assign 95% of shallow earthquakes to one of these settings. A tapered Gutenberg-Richter model of the frequency/moment relation is fit to the subcatalog for each setting by maximum-likelihood. Best-fitting β values range from 0.53 to 0.92, but all 95%-confidence ranges are consistent with a common value of 0.61-0.66. To better determine some corner magnitudes we expand the subcatalogs by: (1) inclusion of orogens; and (2) inclusion of years 1900-1975 from the catalog of Pacheco and Sykes [1992]. Combining both earthquake statistics and the plate-tectonic constraint on moment rate, corner magnitudes include: CRB 7.64-.26+.76, CTF 8.01-.21+.45, CCB 8.46-.39+.21, OCB 8.04-.22+.52, and SUB 9.58-.46+.48. Coupled lithosphere thicknesses are found to be: CRB 3.0-1.4+7.0 km; CTF 8.6-4.1+11 km; CCB 18-11+? km; OSR 0.13-0.09+.13 km for normal-faulting and 0.40-.21+? km for strike-slip; OTF 12-7.1+?, 1.6-0.5+1.4, and 1.5-0.6+1.2 km at low, medium, and high velocities; OCB 3.8-2.3+13.7 km, and SUB 18.0-10.8+? km. Generally high coupling of subduction and continental plate boundaries suggests that here all seismic gaps are dangerous unless proven to be creeping. Generally low coupling within oceanic lithosphere suggests a different model of isolated seismic asperities surrounded by large seismic gaps which may be permanent.

  7. A NEW METHOD OF PULSE-WISE SPECTRAL ANALYSIS OF GAMMA-RAY BURSTS

    SciTech Connect

    Basak, Rupal; Rao, A. R. E-mail: arrao@tifr.res.in

    2013-05-10

    Time-resolved spectral analysis, though a very promising method to understand the emission mechanism of gamma-ray bursts (GRBs), is difficult to implement in practice because of poor statistics. We present a new method for pulse-wise time-resolved spectral study of the individual pulses of GRBs, using the fact that many spectral parameters are either constants or smooth functions of time. We use this method for the two pulses of GRB 081221, the brightest GRB with separable pulses. We choose, from the literature, a set of possible models that includes the Band model, blackbody with a power law (BBPL), and a collection of blackbodies with a smoothly varying temperature profile, along with a power law (mBBPL), and two blackbodies with a power law (2BBPL). First, we perform a time-resolved study to confirm the spectral parameter variations, and then we construct the new model to perform a joint spectral fit. We find that any photospheric emission in terms of blackbodies is required mainly in the rising parts of the pulses and the falling part can be adequately explained in terms of the Band model, with the low-energy photon index within the regime of synchrotron model. Interestingly, we find that 2BBPL is comparable or sometimes even better, though marginally, than the Band model, in all episodes. Consistent results are also obtained for the brightest GRB of Fermi era-GRB 090618. We point out that the method is generic enough to test any spectral model with well-defined parameter variations.

  8. [The kinesiological, chemical and pathological analysis in pulsed magnetic stimulation to the brain].

    PubMed

    Mano, Y; Funakawa, I; Nakamuro, T; Takayanagi, T; Matsui, K

    1989-08-01

    Pulsed magnetic stimulation of the human brain and spinal region has been reported recently. Unlike electrical stimulation, magnetic stimulation excites the motor cortex without discomfort to the subject. This method will be used as a new clinical test to study the central motor pathway. Although no deleterious effects have been observed thus far, the safety of this technique is regarded as unproven. We have investigated kinesiological, neurochemical and pathological analysis. Our pulsed magnetic discharge system consists of a high voltage capacitor bank and flat circular coil of insulated copper wire. The high voltage capacitor bank has a maximum voltage of 900 V, a maximum current flow of 8,000 amp and 1,637 uF in condenser capacitance. Sixty four normal wistar rats each weighing 200 g were used in this study. The rats were separated into two groups. Rats in one group received pulsed magnetic stimulation 50 times in 0.5 Hz by a flat circular coil which surrounded the head of rat at 1 cm in front of the interauricular line. The rats were housed in a long circular chamber. Rats in the other group did not receive the pulsed magnetic stimulation in the long circular chamber. The details of kinesiological analysis by Animex II measurement were described in an other paper (Act Neurologica Scandinavica 73; 352-358, 1986). The measurement of monoamines, dopamine (DA), homovalinic acid (HVA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT), were made according to the Mefford's method 1 hour and 4 days after the magnetic stimulation. The analysis of the pathological state was also studied 1 hour and 4 days after the magnetic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2574648

  9. [Arc spectrum diagnostic and heat coupling mechanism analysis of double wire pulsed MIG welding].

    PubMed

    Liu, Yong-qiang; Li, Huan; Yang, Li-jun; Zheng, Kai; Gao, Ying

    2015-01-01

    A double wire pulsed MIG welding test system was built in the present paper, in order to analyze the heat-coupling mechanism of double wire pulsed MIG welding, and study are temperature field. Spectroscopic technique was used in diagnostic analysis of the are, plasma radiation was collected by using hollow probe method to obtain the arc plasma optical signal The electron temperature of double wire pulsed MIG welding arc plasma was calculated by using Boltzmann diagram method, the electron temperature distribution was obtained, a comprehensive analysis of the arc was conducted combined with the high speed camera technology and acquisition means of electricity signal. The innovation of this paper is the combination of high-speed camera image information of are and optical signal of arc plasma to analyze the coupling mechanism for dual arc, and a more intuitive analysis for are temperature field was conducted. The test results showed that a push-pull output was achieved and droplet transfer mode was a drop in a pulse in the welding process; Two arcs attracted each other under the action of a magnetic field, and shifted to the center of the arc in welding process, so a new heat center was formed at the geometric center of the double arc, and flowing up phenomenon occurred on the arc; Dual arc electronic temperature showed an inverted V-shaped distribution overall, and at the geometric center of the double arc, the arc electron temperature at 3 mm off the workpiece surface was the highest, which was 16,887.66 K, about 4,900 K higher than the lowest temperature 11,963.63 K. PMID:25993809

  10. [Arc spectrum diagnostic and heat coupling mechanism analysis of double wire pulsed MIG welding].

    PubMed

    Liu, Yong-qiang; Li, Huan; Yang, Li-jun; Zheng, Kai; Gao, Ying

    2015-01-01

    A double wire pulsed MIG welding test system was built in the present paper, in order to analyze the heat-coupling mechanism of double wire pulsed MIG welding, and study are temperature field. Spectroscopic technique was used in diagnostic analysis of the are, plasma radiation was collected by using hollow probe method to obtain the arc plasma optical signal The electron temperature of double wire pulsed MIG welding arc plasma was calculated by using Boltzmann diagram method, the electron temperature distribution was obtained, a comprehensive analysis of the arc was conducted combined with the high speed camera technology and acquisition means of electricity signal. The innovation of this paper is the combination of high-speed camera image information of are and optical signal of arc plasma to analyze the coupling mechanism for dual arc, and a more intuitive analysis for are temperature field was conducted. The test results showed that a push-pull output was achieved and droplet transfer mode was a drop in a pulse in the welding process; Two arcs attracted each other under the action of a magnetic field, and shifted to the center of the arc in welding process, so a new heat center was formed at the geometric center of the double arc, and flowing up phenomenon occurred on the arc; Dual arc electronic temperature showed an inverted V-shaped distribution overall, and at the geometric center of the double arc, the arc electron temperature at 3 mm off the workpiece surface was the highest, which was 16,887.66 K, about 4,900 K higher than the lowest temperature 11,963.63 K.

  11. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    SciTech Connect

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Sheng, Y.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  12. SINGLE-PULSE RADIO OBSERVATIONS OF THE GALACTIC CENTER MAGNETAR PSR J1745–2900

    SciTech Connect

    Yan, Zhen; Shen, Zhi-Qiang; Wu, Ya-Jun; Zhao, Rong-Bing; Fan, Qing-Yuan; Hong, Xiao-Yu; Jiang, Dong-Rong; Li, Bin; Liang, Shi-Guang; Ling, Quan-Bao; Liu, Qing-Hui; Qian, Zhi-Han; Zhang, Xiu-Zhong; Zhong, Wei-Ye; Ye, Shu-Hua; Wu, Xin-Ji; Manchester, R. N.; Weltevrede, P.; Yuan, Jian-Ping; Lee, Ke-Jia

    2015-11-20

    In this paper, we report radio observations of the Galactic Center magnetar PSR J1745–2900 at six epochs between 2014 June and October. These observations were carried out using the new Shanghai Tian Ma Radio Telescope at a frequency of 8.6 GHz. Both the flux density and integrated profile of PSR J1745–2900 show dramatic changes from epoch to epoch, showing that the pulsar was in its “erratic” phase. On MJD 56836, the flux density of this magnetar was about 8.7 mJy, which was 10 times larger than that reported at the time of discovery, enabling a single-pulse analysis. The emission is dominated by narrow “spiky” pulses that follow a log-normal distribution in peak flux density. From 1913 pulses, we detected 53 pulses whose peak flux densities are 10 times greater than that of the integrated profile. They are concentrated in pulse phase at the peaks of the integrated profile. The pulse widths at the 50% level of these bright pulses were between 0.°2 and 0.°9, much narrower than that of the integrated profile (∼12°). The observed pulse widths may be limited by interstellar scattering. No clear correlation was found between the widths and peak flux density of these pulses and no evidence was found for subpulse drifting. Relatively strong spiky pulses are also detected in the other five epochs of observation, showing the same properties as those detected in MJD 56836. These strong spiky pulses cannot be classified as “giant” pulses but are more closely related to normal pulse emission.

  13. Opacity and atomic analysis of double pulse laser ablated Li plasma

    NASA Astrophysics Data System (ADS)

    Sivakumaran, V.; Joshi, H. C.; Kumar, Ajai

    2014-09-01

    Opacity effects for neutral and ionic emission lines of lithium have been investigated by Atomic Data Analysis Structure (ADAS). Line ratios and opacity corrected photon emissivity coefficients are calculated over a wide range of electron temperatures and densities. The experimentally measured temporal evolution of the line profiles of the over dense Li plasma formed in the double pulse laser ablation experiment have been explained using the ADAS analysis and the plasma parameters of the plasma plume under consideration have been estimated. These results could be projected as a diagnostic tool to estimate plasma parameters of an over dense lithium plasma.

  14. Diagrammatic analysis of the density operator for nonlinear optical calculations Pulsed and CW responses

    NASA Technical Reports Server (NTRS)

    Yee, T. K.; Gustafson, T. K.

    1978-01-01

    In the present paper a diagrammatic analysis of the density operator for the evaluation of nonlinear optical quantities is considered. The present approach extends earlier diagrammatic analysis by treating the time evolution of both the wave function and its complex conjugate. Time-ordered graphs result, each of which corresponds to a term in the density matrix. Examples involving the third-order susceptibility are discussed for both monochromatic and pulse excitation. In particular coherent rotational transient birefringence is discussed. The diagrams provide a convenient means by which nonlinear optical processes can be precisely defined and the susceptibility readily evaluated.

  15. Principal Component Analysis of Long-Lag,Wide-Pulse Gamma-Ray Burst Data

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Yang; Liu, Wen-Shuai

    2014-09-01

    We have carried out a Principal Component Analysis (PCA) of the temporal and spectral variables of 24 long-lag, wide-pulse gamma-ray bursts (GRBs) presented by Norris et al. (2005). Taking all eight temporal and spectral parameters into account, our analysis shows that four principal components are enough to describe the variation of the temporal and spectral data of long-lag bursts. In addition, the first-two principal components are dominated by the temporal variables while the third and fourth principal components are dominated by the spectral parameters.

  16. Theoretical analysis of ozone generation by pulsed dielectric barrier discharge in oxygen

    NASA Astrophysics Data System (ADS)

    Wei, L. S.; Zhou, J. H.; Wang, Z. H.; Cen, K. F.

    2007-08-01

    The use of very short high-voltage pulses combined with a dielectric layer results in high-energy electrons that dissociate oxygen molecules into atoms, which are a prerequisite for the subsequent production of ozone by collisions with oxygen molecules and third particles. The production of ozone depends on both the electrical and the physical parameters. For ozone generation by pulsed dielectric barrier discharge in oxygen, a mathematical model, which describes the relation between ozone concentration and these parameters that are of importance in its design, is developed according to dimensional analysis theory. A formula considering the ozone destruction factor is derived for predicting the characteristics of the ozone generation, within the range of the corona inception voltage to the gap breakdown voltage. The trend showing the dependence of the concentration of ozone in oxygen on these parameters generally agrees with the experimental results, thus confirming the validity of the mathematical model.

  17. 3D thermal analysis of rectangular microscale inorganic light-emitting diodes in a pulsed operation

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Bian, Z.; Li, Y.; Xing, Y.; Song, J.

    2016-10-01

    Microscale inorganic light-emitting diodes (µ-ILEDs) have attracted much attention due to their excellent performance in biointegrated applications such as optogenetics. The thermal behaviors of µ-ILEDs are critically important since a certain temperature increase may degrade the LED performance and cause tissue lesion. The µ-ILEDs in a pulsed operation offer an advantage in thermal management. In this paper, a 3D analytic model, as validated by finite element analysis, is developed to study the thermal response of rectangular µ-ILEDs in a pulsed operation. A scaling law for the maximum normalized temperature increase of rectangular µ-ILEDs in terms of non-dimensional parameters is established. The influences of geometric (i.e. shape factor) and loading parameters (e.g. duty cycle and period) on the temperature increase are systematically investigated. These results are very helpful in designing µ-ILEDs by providing guidelines to avoid adverse thermal effects.

  18. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    SciTech Connect

    Prabhu Gaunkar, N. Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  19. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  20. Analysis of DC gas flow in GM type double inlet pulse tube refrigerators

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Nogawa, Masafumi; Inoue, Tatsuo

    2009-02-01

    In a GM type double inlet pulse tube refrigerator, a DC gas flow is an intrinsic phenomenon. It is important to understand the characteristics of the DC gas flow. In this paper, the relation between the DC gas flow, valve operating time intervals, and flow patterns in the bypass of the GM type double inlet pulse tube refrigerator is studied with a numerical simulation when a symmetric bypass is used. The governing equations of the numerical simulation based on the nodal analysis are discretized with an implicit finite volume method. The simulation result shows that the valve opening angle difference is the main parameter having influence on the DC gas flow, and the effect depends on the flow patterns in the bypass.

  1. Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card.

    PubMed

    Werley, Christopher A; Teo, Stephanie M; Nelson, Keith A

    2011-12-01

    A photodiode and data acquisition card whose sampling clock is synchronized to the repetition rate of a laser are used to measure the energy of each laser pulse. Simple analysis of the data yields the noise spectrum from very low frequencies up to half the repetition rate and quantifies the pulse energy distribution. When two photodiodes for balanced detection are used in combination with an optical modulator, the technique is capable of detecting very weak pump-probe signals (ΔI/I(0) ~ 10(-5) at 1 kHz), with a sensitivity that is competitive with a lock-in amplifier. Detection with the data acquisition card is versatile and offers many advantages including full quantification of noise during each stage of signal processing, arbitrary digital filtering in silico after data collection is complete, direct readout of percent signal modulation, and easy adaptation for fast scanning of delay between pump and probe.

  2. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    NASA Astrophysics Data System (ADS)

    Bruyneel, B.; Birkenbach, B.; Reiter, P.

    2016-03-01

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ-ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed.

  3. Correlation of hemodynamically significant internal carotid stenosis with pulsed Doppler frequency analysis.

    PubMed Central

    Blackshear, W M; Lamb, S L; Kollipara, V S; Anderson, J D; Murtagh, F R; Shah, C P; Farber, M S

    1984-01-01

    Systolic and mean pressure gradients across internal carotid stenoses were measured at the time of carotid endarterectomy in the arteries of 90 patients, all of whom underwent angiography. Eighty-two of these patients also had pulsed Doppler ultrasonic arteriography with real-time spectrum analysis. There were 71 (79%) high grade stenoses of greater than 50% diameter reduction by angiography. Significant systolic pressure gradients (greater than or equal to 10 mmHg) were identified in 41 patients (46%), 38 (46%) of whom underwent ultrasonic evaluation. A pulsed Doppler frequency measured within the stenosis equal to or greater than 6.5 kiloHertz had a sensitivity of 94.7% (36/38) in identifying pressure reducing lesions with a specificity of 47.7% (21/44). Positive predictive value was 61% (36/59). Angiographic criteria (50% diameter reduction) exhibited a sensitivity of 97.6% (40/41), a specificity of 36.7% (18/49) and a positive predictive value of 56.3% (40/71). Negative predictive value was 94.7% for angiography and 91.3% for ultrasonic arteriography. A pulsed Doppler frequency equal to or greater than 6.5 kiloHertz appears to accurately identify lesions that are at risk to reduce distal internal carotid pressure under operative conditions with a sensitivity similar to angiography. This criterion has a positive predictive value and specificity that is slightly superior to angiography and a high negative predictive value. Pulsed Doppler spectrum analysis provides physiologic information relative to blood flow velocity that is complimentary to the anatomic data provided by angiography for assessing the potential for hemodynamic significance of internal carotid stenoses. Images Fig. 1. PMID:6712324

  4. Investigation of the effect of finite pulse errors on the BABA pulse sequence using the Floquet-Magnus expansion approach

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene S.; Reid, Alicia E.

    2013-01-01

    This paper presents a study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order ? is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the ? function not present in other schemes. This function provides an easy way for evaluating the spin evolution during the time in between' through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of ? is particularly useful for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provide a natural choice of ? , is ignored. This work uses the ? function to compare the efficiency of the BABA pulse sequence with ? and the BABA pulse sequence with finite pulses. Calculations of ? and ? are presented.

  5. Proliferation pattern during rostrum regeneration of the symbiotic flatworm Paracatenula galateia: a pulse-chase-pulse analysis.

    PubMed

    Dirks, Ulrich; Gruber-Vodicka, Harald R; Egger, Bernhard; Ott, Jörg A

    2012-08-01

    The remarkable totipotent stem-cell-based regeneration capacities of the Platyhelminthes have brought them into the focus of stem cell and regeneration research. Although selected platyhelminth groups are among the best-studied invertebrates, our data provide new insights into regenerative processes in the most basally branching group of the Platyhelminthes, the Catenulida. The mouth- and gutless free-living catenulid flatworm Paracatenula galateia harbors intracellular bacterial symbionts in its posterior body region, the trophosome region, accounting for up to 50% of the volume. Following decapitation of this flatworm, we have analyzed the behavior of the amputated fragments and any anterior and posterior regeneration. Using an EdU-pulse-chase/BrdU-pulse thymidine analog double-labeling approach combined with immunohistochemistry, we show that neoblasts are the main drivers of the regeneration processes. During anterior (rostrum) regeneration, EdU-pulse-chase-labeled cells aggregate inside the regenerating rostrum, whereas BrdU pulse-labeling before fixation indicates clusters of S-phase neoblasts at the same position. In parallel, serotonergic nerves reorganize and the brain regenerates. In completely regenerated animals, the original condition with S-phase neoblasts being restricted to the body region posterior to the brain is restored. In contrast, no posterior regeneration or growth of the trophosome region in anterior fragments cut a short distance posterior to the brain has been observed. Our data thus reveal interesting aspects of the cellular processes underlying the regeneration of the emerging catenulid-bacteria symbiosis model P. galateia and show that a neoblast stem cell system is indeed a plesiomorphic feature of basal platyhelminths.

  6. Study on Analysis and Pattern Recognition of the Manifestation of the Pulse Detection of Cerebrovascular Disease

    NASA Astrophysics Data System (ADS)

    Jing, J.; Wang, Y. C.; Hong, W. X.; Zhang, W. P.

    2006-10-01

    Cerebrovascular Disease (CVD) is also called stroke in Traditional Chinese Medicine (TCM). CVD is a kind of frequent diseases with high incidence, high death rate, high deformity rate and high relapse rate. The pathogenesis of CVD has relation to many factors. In modern medicine, we can make use of various instruments to check many biochemical parameters. However, at present, the early detection of CVD can mostly be done artificially by specialists. In TCM the salted expert can detect the state of a CVD patient by felling his (or her) pulse. It is significant to apply the modern information and engineering techniques to the early discovery of CVD. It is also a challenge to do this in fact. In this paper, the authors presented a detection method of CVD basing on analysis and pattern recognition of Manifestation of the Pulse of TCM using wavelet technology and Neural Networks. Pulse signals from normal health persons and CVD patients were studied comparatively. This research method is flexible to deal with other physiological signals.

  7. Photoplethysmography beyond perfusion and oxygenation monitoring: Pulse wave analysis for hepatic graft monitoring

    SciTech Connect

    Akl, Tony; Wilson, Mark A.; Ericson, Milton Nance; Cote, Gerard L.

    2014-01-01

    Photoplethysmography is a widely used technique in monitoring perfusion and blood oxygen saturation by using the amplitude of the pulsatile signal on one or multiple wavelengths. However, the pulsatile signal carries in its waveform a substantial amount of information about the mechanical properties of the tissue and vasculature under investigation that is still yet to be utilized to its full potential. In this work, we present the feasibility of pulse wave analysis for the application of monitoring hepatic implants and diagnosing graft complications. In particular, we show the possibility of computing the slope of the pulse during the diastole phase to assess the location of vascular complications when they take place. This hypothesis was tested in a series of in vitro experiments using a PDMS based phantom mimicking the optical and mechanical properties of the portal vein. The emptying time of the vessel increased from 305 ms to 515 ms when an occlusion was induced downstream from the phantom. However, in the case of upstream occlusions, the emptying time remained constant. In both cases, a decrease in the amplitude of the pulse was recorded indicating the drop in flow levels. In addition, we show that quantifying the emptying time of the vasculature under investigation can be used to assess its compliance. The emptying time decreased from 305 ms for phantoms with compliance of 15 KPa to 195 ms for phantoms with compliance of 100 KPa. These compliance levels mimic those seen for normal and fibrotic hepatic tissue respectively.

  8. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  9. Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect

    SciTech Connect

    Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa; Yamashita, Mikio

    2005-12-15

    A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, both theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It

  10. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  11. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  12. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    SciTech Connect

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil

    2015-08-15

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  13. Molecular karyotype analysis of Perkinsus atlanticus (Phylum Perkinsozoa) by pulsed field gel electrophoresis.

    PubMed

    Leonor Teles-Grilo, M; Duarte, Sérgio M; Tato-Costa, Joana; Gaspar-Maia, Alexandre; Oliveira, Carla; Rocha, António A; Marques, Américo; Cordeiro-da-Silva, Anabela; Azevedo, Carlos

    2007-11-01

    Perkinsus atlanticus is a pathogenic protist that infects the clam Ruditapes decussatus. Although it was recently proposed that the genus Perkinsus belongs to a new phylum, Perkinsozoa, in the infra-kingdom Alveolata, there remain different opinions about whether this genus should form a phylum on its own and consequently divergent views about its taxonomic characterization. In this work, we have identified nine chromosomes by pulsed field gel electrophoresis (PFGE) combined with densitometry analysis. The obtained karyotype of Perkinsus atlanticus, like that of other early branches of the dinoflagellate lineage, displays a more conventional chromosome organization, different from that of most dinoflagellates. PMID:17822886

  14. Analysis and measurements of Eddy current effects of a beam tube in a pulsed magnet

    SciTech Connect

    Fang, S.

    1997-05-01

    The power supply design of the {gamma}{sub f} - jump system in FNAL Main Injector uses a resonant circuit. A critical design parameter is the ac losses of the beam tube in a pulsed quadrupole. This paper gives an analysis to this problem. An equivalent circuit model based on the impedance measurement was established. The measured and calculated losses are in agreement. Another effect of the eddy current is the distortion of the magnetic field inside the beam tube. A Morgan coil was used for field measurements up to 10 KHz. These results are presented in this paper.

  15. Inverted fractal analysis of TiOx thin layers grown by inverse pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Égerházi, L.; Smausz, T.; Bari, F.

    2013-08-01

    Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed fD = 1.83 ± 0.01 for TiOx layers grown at 5-50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of fD not only confirms the fractal structure of TiOx IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.

  16. DrSPINE - New approach to data reduction and analysis for neutron spin echo experiments from pulsed and reactor sources

    SciTech Connect

    Monkenbusch, Michael; Holderer, Olaf; Ohl, Michael

    2015-01-01

    Neutron spin echo (NSE) method at a pulsed neutron source presents new challenges to the data reduction and analysis as compared to the instruments installed at reactor sources. The main advantage of the pulsed source NSE is the ability to resolve the neutron wavelength and collect neutrons over a wider bandwidth. This allows us to more precisely determine the symmetry phase and measure the data for several Q-values at the same time. Based on the experience gained at the SNS NSE - the first, and to date the only one, NSE instrument installed at a pulsed spallation source, we propose a novel and unified approach to the NSE data processing.

  17. Characterization of x-ray framing cameras for the National Ignition Facility using single photon pulse height analysis

    NASA Astrophysics Data System (ADS)

    Holder, J. P.; Benedetti, L. R.; Bradley, D. K.

    2016-11-01

    Single hit pulse height analysis is applied to National Ignition Facility x-ray framing cameras to quantify gain and gain variation in a single micro-channel plate-based instrument. This method allows the separation of gain from detectability in these photon-detecting devices. While pulse heights measured by standard-DC calibration methods follow the expected exponential distribution at the limit of a compound-Poisson process, gain-gated pulse heights follow a more complex distribution that may be approximated as a weighted sum of a few exponentials. We can reproduce this behavior with a simple statistical-sampling model.

  18. Maxillary and mandibular anterior crown width/height ratio and its relation to various arch perimeters, arch length, and arch width groups

    PubMed Central

    Shahid, Fazal; Alam, Mohammad Khursheed; Khamis, Mohd Fadhli

    2015-01-01

    Objective: To investigate the maxillary and mandibular anterior crown width/height ratio and its relation to various arch perimeters, arch length, and arch width (intercanine, interpremolar, and intermolar) groups. Materials and Methods: The calculated sample size was 128 subjects. The crown width/height, arch length, arch perimeter, and arch width of the maxilla and mandible were obtained via digital calliper (Mitutoyo, Japan). A total of 4325 variables were measured. The sex differences in the crown width and height were evaluated. Analysis of variance was applied to evaluate the differences between arch length, arch perimeter, and arch width groups. Results: Males had significantly larger mean values for crown width and height than females (P ≤ 0.05) for maxillary and mandibular arches, both. There were no significant differences observed for the crown width/height ratio in various arch length, arch perimeter, and arch width (intercanine, interpremolar, and intermolar) groups (P ≤ 0.05) in maxilla and mandible, both. Conclusions: Our results indicate sexual disparities in the crown width and height. Crown width and height has no significant relation to various arch length, arch perimeter, and arch width groups of maxilla and mandible. Thus, it may be helpful for orthodontic and prosthodontic case investigations and comprehensive management. PMID:26929686

  19. Rotating compensator spectroscopic ellipsometry for line-width control

    NASA Astrophysics Data System (ADS)

    Lee, Ha-Young; Bang, Kyoung-Yoon; Lee, Jaeho; Bak, Heungin; Sohn, Young-Soo; An, Ilsin

    2002-07-01

    Rotating compensator spectroscopic ellipsometry (RCSE) was applied to the characterization of line-width in deep UV photoresist films. Variation of line-width in few nm was distinguishable by comparing the features in conventional ellipsometry parameters or the degree of polarization spectra obtainable form RCSE. The variations in the former spectra were caused by the density change in patterned PR films. Meanwhile, the variations in latter spectra wee caused by the surface profile of the film. Once the spectral positions of the features were related to the result of CD- SEM, both spectra could be used to estimate the line-width of patterned PR without in-depth analysis. Further, when uniaxial anisotropy was assumed for the film, the line-width could be roughly deduced in the process of extracting the optical properties of film via an effective medium approximation.

  20. A time-dependent angular analysis of B0s to J/psi phi and B0d to J/psi Kstar0, and, A measurement of the width difference in the B0s system

    NASA Astrophysics Data System (ADS)

    Li, Ke

    The mixing between Bs0 - Bs0 bar and Bd0 - Bd0 bar leads to the two eigenstates of definite masses (heavy, m H and light, m L) and widths (GammaH and GammaL). The mass differences in the two systems have an important impact on our knowledge of the unitary triangle and the Standard Model. The mass difference Delta md has been well measured. However no direct measurements of Delta m s have been made because of the high oscillation frequency in B0s system. A large mass difference suggests a large and measurable width difference (Delta m s ≡ Gamma L - Gamma H, which can be used (and may be the only achievable way currently) to determine Delta m s. The B0s to J/psi phi and B0d to J/psi Kstar0 are pseudo-sealer to vector-vector decays governed by three decay amplitudes, representing the coupling of the B meson to states polarized longitudinally A0, and parallel A parallel or perpendicularly A perp in the transverse plane. In the B0s system, the mass eigenstates are nearly CP eigenstates and so are the final observed polarized states. A combined analysis based on lifetime and angular information allows for a separation of the heavy (CP odd) and light (CP even) eigenstates and a measurement of the width difference. The channel B0d to J/psi Kstar0 is related to B0s to J/psi phi by SU(3) flavor symmetry, and provides a powerful validation of the analysis technique. In this dissertation, I present a time-dependent analysis of these decays based on the dimuon data collected by the CDF Collaboration at Fermi National Accelerator Laboratory from February 2002 to February 2004 during the Run II of the Tevatron, corresponding to a total luminosity of approximately 260 inv pb. From these data, I measure the transverse amplitudes of the two decays, the lifetimes of the B0s (heavy and light) and the B0d and the width difference in the B0s system. For B0s, we obtain: A0=0.784+/-0.039+/-0.007 Aparallel=0.510+/-0.08 2+/-0.013e1.94+/- 0.36+/-0.03i Aperp=0. 354+/-0.098+/-0.003 tauL=1

  1. Theoretical calculation of a composite pulse for 2H broadband excitation by average Hamiltonian theory

    PubMed Central

    Shen, Ming; Roopchand, Rabia; Amoureux, Jean-Paul; Chen, Qun

    2015-01-01

    Quadrupolar echo NMR spectroscopy of solids often requires RF pulse excitation that covers spectral widths exceeding 100 kHz. In a recent work we found out that a four pulse, composite pulse COM-II ( 90180¯90135¯45 ), provided robust broadband excitation for deuterium quadrupolar echo spectroscopy. Moreover, when combined with an eight step phase cycle, spectral distortions arising from finite pulse widths were greatly supressed. In this paper we report on a theoretical analysis COM-II with 8-step phase cycle by average Hamiltonian theory. This treatment is combined with the fictitious spin-1 operator formalism, and the mechanism of the 8-step phase cycling that minimizes the spectral distortions is discussed. PMID:26681896

  2. Uncalibrated pulse power analysis fails to reliably measure cardiac output in patients undergoing coronary artery bypass surgery

    PubMed Central

    2011-01-01

    Introduction Uncalibrated arterial pulse power analysis has been recently introduced for continuous monitoring of cardiac index (CI). The aim of the present study was to compare the accuracy of arterial pulse power analysis with intermittent transpulmonary thermodilution (TPTD) before and after cardiopulmonary bypass (CPB). Methods Forty-two patients scheduled for elective coronary surgery were studied after induction of anaesthesia, before and after CPB respectively. Each patient was monitored with the pulse contour cardiac output (PiCCO) system, a central venous line and the recently introduced LiDCO monitoring system. Haemodynamic variables included measurement of CI derived by transpulmonary thermodilution (CITPTD) or CI derived by pulse power analysis (CIPP), before and after calibration (CIPPnon-cal., CIPPcal.). Percentage changes of CI (ΔCITPTD, ΔCIPPnon-cal./PPcal.) were calculated to analyse directional changes. Results Before CPB there was no significant correlation between CIPPnon-cal. and CITPTD (r2 = 0.04, P = 0.08) with a percentage error (PE) of 86%. Higher mean arterial pressure (MAP) values were significantly correlated with higher CIPPnon-cal. (r2 = 0.26, P < 0.0001). After CPB, CIPPcal. revealed a significant correlation compared with CITPTD (r2 = 0.77, P < 0.0001) with PE of 28%. Changes in CIPPcal. (ΔCIPPcal.) showed a correlation with changes in CITPTD (ΔCITPTD) only after CPB (r2 = 0.52, P = 0.005). Conclusions Uncalibrated pulse power analysis was significantly influenced by MAP and was not able to reliably measure CI compared with TPTD. Calibration improved accuracy, but pulse power analysis was still not consistently interchangeable with TPTD. Only calibrated pulse power analysis was able to reliably track haemodynamic changes and trends. PMID:21356060

  3. PULSE RATE DIVIDER

    DOEpatents

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  4. Investigation of bed load sediment pulse sources and frequencies using spectral and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Boyd, J. S.; Yager, E. M.

    2011-12-01

    analysis on the bedload transport data to determine if there are dominant frequencies in sediment pulses through space and time. Further spectral and wavelet analysis will reveal whether flow turbulence pulses correlate to instantaneous transport rates, rates shifted in time, or if no correlation exists. Preliminary results show little change in the power of transport from low to high sampling frequencies despite a decline in velocity power spectra with increasing sampling frequency. This decline is due to change in turbulent eddy size and strength at higher frequencies. The lack of change in the power of transport suggests that the more numerous small scale eddies provide nearly equal contribution to the overall bedload transport as less frequent, large scale eddies. Transport equality at all frequencies may also be due to the domino/cluster disintegration effect masking the changes in bedload transport power by frequency.

  5. Application of Pressure Pulse Test Analysis in CO2 Leakage Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Shakiba, M.; Hosseini, S. A.

    2015-12-01

    Over the past decade, numerous research and industrial projects have been devoted to investigate the feasibility and efficiency of carbon dioxide capture, storage, and utilization. Besides the studies over the characteristics of candidate formations for CO2 injection, much attention has been paid to answer the environmental concerns regarding the CO2 leak to overlying formations. To first detect and then track a possible CO2 leak, different techniques have been proposed in the literature; however, most of them examine only a small portion of the formation and have a low resolution for early leak detection. To further increase the extent of the investigation zone and to monitor a large section of the formation in more detail, multi-well testing techniques have received a significant attention. Pressure pulse testing is a multi-well test technique in which a pressure signal generated by periods of injection and shut-in from a pulser well is propagated inside the formation, and the corresponding response is recorded at the observer wells. The recorded pressure response is then analyzed to measure the rock and fluid properties and to monitor the possible changes over the time. In this research study, we have applied frequency methods as well as superposition principle to interpret the pressure pulse test data and monitor the changes in transmissibility and storativity of the formation between the well pairs. We have used synthetic reservoir models and numerical reservoir simulations to produce the pressure pulse test data. The analysis of the simulation results indicated that even a small amount of CO2 leak in the investigation zone can have a measurable effect on the calculated storativity and transmissibility factors. This can be of a great importance when an early leak detection is of interest. Moreover, when multiple wells are available in the formation, the distribution of the calculated parameters can visualize the extent of CO2 leak, which has a great

  6. Controlling vibrational cooling with zero-width resonances: An adiabatic Floquet approach

    NASA Astrophysics Data System (ADS)

    Leclerc, Arnaud; Viennot, David; Jolicard, Georges; Lefebvre, Roland; Atabek, Osman

    2016-10-01

    In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead to unexpected zero-width resonances (ZWRs) with, in principle, infinite lifetimes. Their potential to induce basic quenching mechanisms has recently been devised in the laser control of vibrational cooling through filtration strategies [O. Atabek et al., Phys. Rev. A 87, 031403(R) (2013), 10.1103/PhysRevA.87.031403]. A full quantum adiabatic control theory based on the adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be envelope-shaped and frequency-chirped so as to protect a given initial vibrational state against dissociation, taking advantage of its continuous transport on the corresponding ZWR all along the pulse duration. As compared with previous control scenarios that actually suffered from nonadiabatic contamination, drastically different and much more efficient filtration goals are achieved. A semiclassical analysis helps us to find and interpret a complete map of ZWRs in the laser parameter plane. In addition, the choice of a given ZWR path, among the complete series identified by the semiclassical approach, turns out to be crucial for the cooling scheme, targeting a single vibrational state population left at the end of the pulse, while all others have almost completely decayed. The illustrative example, which has the potential to be transposed to other diatomics, is Na2 prepared by photoassociation in vibrationally hot but translationally and rotationally cold states.

  7. Influence of the incident laser pulse energy on jitter time of GaAs photoconductive semiconductor switches.

    PubMed

    Shi, Wei; Gui, Huai-meng; Zhang, Lin; Li, Meng-xia; Ma, Cheng; Wang, Lu-yi; Jiang, Huan

    2013-11-01

    We have experimentally investigated the jitter time of a GaAs photoconductive switch (PCSS) when it is triggered by a laser pulse with 30 ns pulse width and 1064 nm wavelength. It is found that the jitter time decreases as the incident laser pulse energy increases from 0.40 to 1.6 mJ. In addition, a theoretical analysis indicates that the jitter time is proportional to relative deviation of the laser pulse energy. This work provides a path to improve the performance of the PCSS, which is used in applications such as a high time precision synchronous control system and ultrawide-band radiation source.

  8. A new soft x-ray pulse height analysis array in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P.; Liu Yi; Yang, J. W.; Song, X. Y.; Liao, M.; Li, X.; Yuan, G. L.; Yang, Q. W.; Duan, X. R.; Pan, C. H.

    2009-12-15

    A new soft x-ray pulse height analysis (PHA) array including nine independent subsystems, on basis of a nonconventional software multichannel analysis system and a silicon drift detector (SDD) linear array consisting of nine high performance SDD detectors, has been developed in the HL-2A tokamak. The use of SDD has greatly improved the measurement accuracy and the spatiotemporal resolutions of the soft x-ray PHA system. Since the ratio of peak to background counts obtained from the SDD PHA system is very high, p/b{>=}3000, the soft x-ray spectra measured by the SDD PHA system can approximatively be regarded as electron velocity distribution. The electron velocity distribution can be well derived in the pure ohmic and auxiliary heating discharges. The performance of the new soft x-ray PHA array and the first experimental results with some discussions are presented.

  9. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    NASA Astrophysics Data System (ADS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1-10 Hz) at various laser fluences ranging from 0.2 to 11 J cm-2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He-Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm-2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm-2. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  10. Ablation and analysis of small cell populations and single cells by consecutive laser pulses

    NASA Astrophysics Data System (ADS)

    Shrestha, Bindesh; Nemes, Peter; Vertes, Akos

    2010-10-01

    Laser ablation of single cells through a sharpened optical fiber is used for the detection of metabolites by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Ablation of the same Allium cepa epidermal cell by consecutive pulses indicates the rupture of the cell wall by the second shot. Intracellular sucrose heterogeneity is detected by subsequent laser pulses pointing to rupturing the vacuolar membrane by the third exposure. Ion production by bursts of laser pulses shows that the drying of ruptured A. cepa cells occurs in ˜50 s at low pulse rates (10 pulses/s bursts) and significantly faster at high pulse rates (100 pulses/s bursts). These results point to the competing role of cytoplasm ejection and evaporative drying in diminishing the LAESI-MS signal in ˜50 s or 100 laser pulses, whichever occurs first.

  11. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  12. Comprehensive intermaxillary tooth width proportion of Bangkok residents.

    PubMed

    Manopatanakul, Somchai; Watanawirun, Narumon

    2011-01-01

    Proper occlusion depends on the correct width ratio between upper and lower teeth, known as Bolton's ratio. In fact, this ratio can be calculated for each pair of teeth from the central incisor to the first permanent molar. This set of ratios, known as comprehensive cumulative percentage ratios (CPRs), can be used not only to determine which tooth or teeth have a tooth width discrepancy, but can also enable the partial graphical analysis of tooth width discrepancy when there is agenesis of certain permanent teeth. Although CPRs have been calculated for Caucasians, tooth width is known to vary depending on racial origin. Therefore, a test of differences between racial groups should be carried out. If these ratios of the Caucasians and Bangkokians are significantly different, the ratio of the Bangkokians is recommended. The objective of this study was to measure tooth size disproportion for Thai patients and to calculate a corresponding set of CPRs. Thirty-seven pairs of dental models were made from a group of Bangkok residents with normal occlusion. Mesiodistal tooth width was measured for each model. The intra- and inter-examiner measurement errors were ascertained as insignificant (p > 0.05). CPRs were then calculated and compared to those derived from other studies. Ten of thirteen CPRs were significantly different from corresponding values derived from Caucasians. We conclude that tooth width ratios vary between different racial groups, and therefore that these should be calculated specifically for each patient racial group.

  13. Quantifying River Widths of North America from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.; Miller, Z.

    2013-12-01

    River width is a fundamental predictor variable in many hydrologic, geomorphic, and biogeochemical models, yet current large-scale models rely on theoretical hydraulic geometry relationships that do not fully capture natural variability in river form. Here we present the first high-resolution dataset of long-term mean width of North American rivers wider than 30 m. The dataset contains 7.93 million georeferenced width measurements derived from Landsat TM and ETM+ imagery that were acquired when rivers were most likely to be at mean discharge. We built the dataset by developing an automated procedure that selects and downloads raw imagery, creates cloud-free normalized difference water index images, histogram balances and mosaics them together, and produces a water mask using a dynamic water-land threshold technique. We then visually inspected and corrected the mask for errors and used RivWidth software to calculate river width at each river centerline pixel. We validated our dataset using >1000 United States Geological Survey and Water Survey of Canada in situ gauge station measurements. Error analysis shows a robust relationship between the remotely sensed widths and in situ gauge measurements with an r 2 = 0.86 (Spearman's = 0.81) and a mean absolute error of 27.5 m. We find that North American river widths lie on logarithmic frequency curve with some notable exceptions at widths <100 m. This dataset can be used to improve our understanding of the water, carbon, and nitrogen cycles, as well as large-scale landscape evolution models. Our results also allow for the characterization of the extent of rivers likely to be observable by the planned Surface Water and Ocean Topography (SWOT) satellite mission.

  14. Optically thick line widths in pyrotechnic flares

    NASA Technical Reports Server (NTRS)

    Douda, B. E.; Exton, R. J.

    1975-01-01

    Experimentally determined sodium line widths for pyrotechnic flares are compared with simple analytical, optically-thick-line-shape calculations. Three ambient pressure levels are considered (760, 150 and 30 torr) for three different flare compositions. The measured line widths range from 1.3 to 481 A. The analytic procedure emphasizes the Lorentz line shape as observed under optically-thick conditions. Calculated widths are in good agreement with the measured values over the entire range.

  15. Pulse-chase analysis for studies of MHC class II biosynthesis, maturation, and peptide loading

    PubMed Central

    Hou, Tieying; Rinderknecht, Cornelia H; Hadjinicolaou, Andreas V; Busch, Robert; Mellins, Elizabeth

    2014-01-01

    Pulse-chase analysis is a commonly used technique for studying the synthesis, processing and transport of proteins. Cultured cells expressing proteins of interest are allowed to take up radioactively labeled amino acids for a brief interval (“pulse”), during which all newly synthesized proteins incorporate the label. The cells are then returned to non-radioactive culture medium for various times (“chase”), during which proteins may undergo conformational changes, trafficking, or degradation. Proteins of interest are isolated (usually by immunoprecipitation) and resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the fate of radiolabeled molecules is examined by autoradiography. This chapter describes a pulse-chase protocol suitable for studies of major histocompatibility complex (MHC) class II biosynthesis and maturation. We discuss how results are affected by the recognition by certain anti-class II antibodies of distinct class II conformations associated with particular biosynthetic states. Our protocol can be adapted to follow the fate of many other endogenously synthesized proteins, including viral or transfected gene products, in cultured cells. PMID:23329504

  16. Terahertz pulse imaging in reflection geometry of skin tissue using time-domain analysis techniques

    NASA Astrophysics Data System (ADS)

    Woodward, Ruth M.; Wallace, Vincent P.; Cole, Bryan E.; Pye, Richard J.; Arnone, Donald D.; Linfield, Edmund H.; Pepper, Michael

    2002-06-01

    We demonstrate the application of Terahertz Pulse Imaging (TPI) in reflection geometry for the study of skin tissue and related cancers. The terahertz frequency regime of 0.1-100THz excites the vibrational modes of molecules, allowing for spectroscopic investigation. The sensitivity of terahertz to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the stratum corneum and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Measurements on scar tissue, which is known to contain less water than the surrounding skin, and on regions of inflammation, show a clear contrast in the THz image compared to normal skin. We discuss the time domain analysis techniques used to classify the different tissue types. Basal cell carcinoma shows a positive terahertz contrast, and inflammation and scar tissue shows a negative terahertz contrast compared to normal tissue. This demonstrates for the first time the potential of TPI both in the study of skin cancer and inflammatory related disorders.

  17. AFM and pulsed laser ablation methods for Cultural Heritage: application to archeometric analysis of stone artifacts

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Veltri, S.; Stranges, F.; Bonanno, A.; Xu, F.; Antici, P.

    2015-09-01

    In this paper, we introduce the use of the atomic force microscope (AFM) and of the pulsed laser ablation as methods for morphological diagnostic with nanoscale precision of archeological artifacts and corrosive patina removal from stone artifacts. We test our methodology on stone artifacts extracted from the Church of Sotterra (located in Calabria, South Italy). The AFM microscopy was compared with different petrographic, chemical, optical and morphological analysis methods for identifying the textural characteristics, evaluating the state of preservation and formulating some hypotheses about the provenance and composition of the impurity patina located on the artifact surfaces. We demonstrate that with the nanometric precision obtained with AFM microscopy, it is possible to distinguish the different states of preservation, much better than using conventional petrographic methods. The surface's roughness is evaluated from very small artifact's fragments, reducing the coring at micrometric scale with a minimal damage to the artworks. After the diagnosis, we performed restoration tests using the pulsed laser ablation (PLA) method and compared it with the more common micro-sandblasting under dry conditions. We find that the PLA is highly effective for the removal of the surficial patina, with a control of a few hundreds of nanometers in the cleaning of surface, without introducing chemical or morphological damages to the artifacts. Moreover, PLA can be easily implemented in underwater conditions; this has the great advantage that stone and pottery artifacts for marine archeological sites do not need to be removed from the site.

  18. Analysis of ringing due to magnetic core materials used in pulsed nuclear magnetic resonance applications

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam; Nlebedim, Cajetan; Hadimani, Ravi; Bulu, Irfan; Song, Yi-Qiao; Mina, Mani; Jiles, David

    Oil-field well logging instruments employ pulsed nuclear magnetic resonance (NMR) techniques and use inductive sensors to detect and evaluate the presence of particular fluids in geological formations. Acting as both signal transmitters and receivers most inductive sensors employ magnetic cores to enhance the quality and amplitude of signals recorded during field measurements. It is observed that the magnetic core also responds to the applied input signal thereby generating a signal (`ringing') that interferes with the measurement of the signals from the target formations. This causes significant noise and receiver dead time and it is beneficial to eliminate/suppress the signals received from the magnetic core. In this work a detailed analysis of the magnetic core response and in particular loading of the sensor due to the presence of the magnetic core is presented. Pulsed NMR measurements over a frequency band of 100 kHz to 1MHz are used to determine the amplitude and linewidth of the signals acquired from different magnetic core materials. A lower signal amplitude and a higher linewidth are vital since these would correspond to minimal contributions from the magnetic core to the inductive sensor response and thus leading to minimized receiver dead time.

  19. Pulsed thermographic inspection of CFRP structures: experimental results and image analysis tools

    NASA Astrophysics Data System (ADS)

    Theodorakeas, P.; Avdelidis, N. P.; Ibarra-Castanedo, C.; Koui, M.; Maldague, X.

    2014-03-01

    In this study, three different CFRP specimens with internal artificial delaminations of various sizes and located at different depths were investigated by means of Pulsed Thermography (PT) under laboratory conditions. The three CFRP panels, having the same thickness and defects characteristics but with a different shape (planar, trapezoid and curved), were assessed after applying various signal processing tools on the acquired thermal data (i.e. Thermographic Signal Reconstruction, Pulsed Phase Thermography and Principal Component Thermography). The effectiveness of the above processing tools was initially evaluated in a qualitative manner, comparing the imaging outputs and the information retrieval in terms of defect detectability enhancement and noise reduction. Simultaneously, the produced defect detectability was evaluated through Signal-to-Noise Ratio (SNR) computations, quantifying the image quality and the intensity contrast produced between the defected area and the adjacent background area of the test panel. From the results of this study, it can be concluded that the implementation of PT along with the application of advanced signal processing algorithms can be a useful technique for NDT assessment, providing enhanced qualitative information. Nevertheless, SNR analysis showed that despite the enhanced visibility resulting from these algorithms, these can be properly applied in order to retrieve the best possible information according to the user's demands.

  20. Analysis of organic pollutant degradation in pulsed plasma by coherent anti-Stokes Raman spectroscopy

    SciTech Connect

    Bratescu, Maria Antoneta; Hieda, Junko; Umemura, Tomonari; Saito, Nagahiro; Takai, Osamu

    2011-05-15

    The degradation of p-benzoquinone (p-BQ) in water was investigated by the coherent anti-Stokes Raman spectroscopy (CARS) method, in which the change of the anti-Stokes signal intensity corresponding to the vibrational transitions of the molecule is monitored during and after solution plasma processing (SPP). In the beginning of SPP treatment, the CARS signal intensity of the ring vibrational molecular transitions at 1233 and 1660 cm{sup -1} increases under the influence of the electric field of the plasma, depending on the delay time between the plasma pulse and the laser firing pulse. At the same time, the plasma contributes to the degradation of p-BQ molecules by generating hydrogen and hydroxyl radicals, which decompose p-BQ into different carboxylic acids. After SPP, the CARS signal intensity of the vibrational bands of p-BQ ceased and the degradation of p-BQ was confirmed by UV-visible absorption spectroscopy and liquid chromatography analysis.

  1. Twenty-Four-Hour Ambulatory Pulse Wave Analysis in Hypertension Management: Current Evidence and Perspectives.

    PubMed

    Omboni, Stefano; Posokhov, Igor N; Kotovskaya, Yulia V; Protogerou, Athanase D; Blacher, Jacques

    2016-10-01

    The predictive value of vascular biomarkers such as pulse wave velocity (PWV), central arterial pressure (CAP), and augmentation index (AIx), obtained through pulse wave analysis (PWA) in resting conditions, has been documented in a variety of patient groups and populations. This allowed to make appropriate recommendations in clinical practice guidelines of several scientific societies. Due to advances in technologies, largely operator-independent methods are currently available for estimating vascular biomarkers also in ambulatory conditions, over the 24 h. According to the acceptable accuracy and reproducibility of 24-h ambulatory PWA, it appears to be a promising tool for evaluating vascular biomarkers in daily life conditions. This approach may provide an opportunity to further improve the early cardiovascular screening in subjects at risk. However, concerning the clinical use of PWA over the 24 h in ambulatory conditions at the moment, there is no sufficient evidence to support its routine clinical use. In particular, long-term outcome studies are needed to show the predictive value of 24-h PWV, CAP, and AIx values, provided by these devices, over and beyond peripheral blood pressure, and to answer the many technical and clinical questions still open. To this regard, the VASOTENS Registry, an international observational prospective study recently started, will help providing answers on a large sample of hypertensive patients recruited worldwide. PMID:27659178

  2. Analysis and classification of broadband echoes using bio-inspired dolphin pulses.

    PubMed

    Pailhas, Yan; Capus, Chris; Brown, Keith; Moore, Patrick

    2010-06-01

    To date most sonars use narrow band pulses and often only the echo envelope is used for object detection and classification. This paper considers the advantages afforded by bio-inspired sonar for object identification and classification through the analysis and the understanding of the broadband echo structure. Using the biomimetic dolphin based sonar system in conjunction with bio-inspired pulses developed from observations of bottlenose dolphins performing object identification tasks, results are presented from experiments carried out in a wave tank and harbor. In these experiments responses of various targets to two different bio-inspired signals are measured and analyzed. The differences in response demonstrate the strong dependency between signal design and echo interpretation. In the simulations and empirical data, the resonance phenomena of these targets cause strong notches and peaks in the echo spectra. With precision in the localization of these peaks and dips of around 1 kHz, the locations are very stable for broadside insonification of the targets and they can be used as features for classification. This leads to the proposal of a broadband classifier which operates by extracting the notch positions in the target echo spectra.

  3. Analysis of Mg spectral features produced by irradiations of laser pulses with different contrast and pulse durations

    NASA Astrophysics Data System (ADS)

    Stafford, A.; Safronova, A. S.; Safronova, U. I.; Kantsyrev, V. L.; Faenov, A. Y.; Wiewior, P.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Paudel, Y.

    2014-03-01

    Experiments performed at the Leopard Laser Facility at the Nevada Terawatt Facility of the University of Nevada, Reno have produced K-shell Mg spectra with complex satellite features. K-shell Mg spectra were collected from experiments comprised of three different conditions related to laser pulse and contrast. Two spectrometers were fielded: a survey convex spectrometer with a potassium hydrogen phthalate (KAP) crystal (R ˜ 300) and a high resolution focusing spectrometer with spatial resolution using a spherically bent mica crystal (R ˜ 3000). These spectra included dielectronic satellite (DS) lines that were investigated using the quasi-relativistic many-body perturbation theory (MZ) code for previously identified transitions from autoionizing 2lnl‧ states in He-like Mg and new transitions involving autoionizing 1s3lnl‧ states in Li-like Mg and 1s3l3l‧3l″ in Be-like Mg calculated using the Hartree-Fock-relativistic method (COWAN code). Radiative and non-radiative data are combined to obtain branching ratios, intensities and effective emission rate coefficients of DS lines. Synthetic spectra were matched to experimental data to identify strong satellite structures to the Heβ (7.8507 Å) and Lyα (8.4192 Å) resonance transitions.

  4. Count rate limitations for pulse-counting instrumentation in pulsed accelerator fields.

    PubMed

    Justus, Alan L

    2012-01-01

    This paper discusses various concepts involved in the counting losses of pulse-counting health physics instrumentation when used within the pulsed radiation environments of typical accelerator fields in order to preestablish appropriate limitations in use. Discussed are the "narrow" pulse and the "wide" pulse cases, the special effect of neutron moderating assemblies, and the effect of pulse fine microstructure on the counting losses of the pulse-counting instrumentation. In the narrow-pulse case, the accelerator pulse width is less than or equal to the instrument's dead time; whereas in the wide-pulse case, the accelerator pulse width is significantly longer than the instrument's dead time. Examples are provided that highlight the various concepts and limitations.

  5. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair.

    PubMed

    Dong, Yongkang; Zhang, Hongying; Chen, Liang; Bao, Xiaoyi

    2012-03-20

    We report a high-spatial-resolution and long-range distributed temperature sensor through optimizing differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). In DPP-BOTDA, the differential signal suffers from a signal-to-noise ratio (SNR) reduction with respect to the original signals, and for a fixed pulse-width difference the SNR reduction increases with the pulse width. Through reducing the pulse width to a transient regime (near to or less than the phonon lifetime) to decrease the SNR reduction after the differential process, the optimized 8/8.2 ns pulse pair is applied to realize a 2 cm spatial resolution, where a pulse generator with a 150 ps fall-time is used to ensure the effective resolution of DPP-BOTDA. In the experiment, a 2 cm spatial-resolution hot-spot detection with a 2 °C temperature accuracy is demonstrated over a 2 km sensing fiber. PMID:22441465

  6. Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis.

    PubMed

    Savas, Jeffrey N; Park, Sung Kyu; Yates, John R

    2016-01-01

    The analysis of protein half-life and degradation dynamics has proven critically important to our understanding of a broad and diverse set of biological conditions ranging from cancer to neurodegeneration. Historically these protein turnover measures have been performed in cells by monitoring protein levels after "pulse" labeling of newly synthesized proteins and subsequent chase periods. Comparing the level of labeled protein remaining as a function of time to the initial level reveals the protein's half-life. In this method we provide a detailed description of the workflow required for the determination of protein turnover rates on a whole proteome scale in vivo. Our approach starts with the metabolic labeling of whole rodents by restricting all the nitrogen in their diet to exclusively nitrogen-15 in the form of spirulina algae. After near complete organismal labeling with nitrogen-15, the rodents are then switched to a normal nitrogen-14 rich diet for time periods of days to years. Tissues are harvested, the extracts are fractionated, and the proteins are digested to peptides. Peptides are separated by multidimensional liquid chromatography and analyzed by high resolution orbitrap mass spectrometry (MS). The nitrogen-15 containing proteins are then identified and measured by the bioinformatic proteome analysis tools Sequest, DTASelect2, and Census. In this way, our metabolic pulse-chase approach reveals in vivo protein decay rates proteome-wide. PMID:26867752

  7. Multidiagnostic analysis of ultrafast laser ablation of metals with pulse pair irradiation

    NASA Astrophysics Data System (ADS)

    Amoruso, S.; Bruzzese, R.; Wang, X.; O'Connell, G.; Lunney, J. G.

    2010-12-01

    Copper targets are irradiated in the ablation regime by pairs of equal, time-delayed collinear laser pulses separated on a timescale going from ≈2 ps to ≈2 ns. The ablation plume is characterized by ion probe diagnostic, fast imaging, and temporally and spatially resolved optical emission spectroscopy. The variation in the ablation efficiency with the delay between the pulses is analyzed by measuring the ablation crater profile with a contact profilometer. The second laser pulse modifies the characteristics of the plasma plume produced by the first pulse and the ablation efficiency. The different mechanisms involved in double pulse ultrafast laser ablation are identified and discussed. The experimental findings are interpreted in the frame of a simple model of the interaction of the second pulse with the nascent ablation plume produced by the first pulse. This model yields consistent and quantitative agreement with the experimental findings predicting the observed experimental trends of the ablation depth reduction and ion yield increase with the delay between the pulses, as well as the characteristic timescale of the observed changes. The possibility of controlling the characteristics of the plumes produced during ultrafast laser ablation via an efficient coupling of the energy of the second pulse to the various ablation components produced by the first pulse is of particular interest in ultrafast pulsed laser deposition and microprobe analyses of materials.

  8. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  9. Time resolved measurements by the pulse height analysis soft x-ray diagnostic on TCV

    SciTech Connect

    Madeira, T. I.; Amorim, P.; Duval, B. P.; Varandas, C. A. F.

    2007-08-15

    A single chord, single processing chain, hybrid (analog/digital) pulse height analysis diagnostic has been developed for the TCV tokamak, aiming to provide the evolution of the plasma electron temperature with a software selectable minimum temporal resolution of 100 ms. The high count rate ({approx}65 kHz) together with an energy resolution of 190 eV (at 5.9 keV) were achieved by encoding the data stream with an on-site developed interface amplifier and time generator. The diagnostic was also used to investigate the non-Maxwellian behavior of the electron energy distribution function with strong electron cyclotron resonance heating and to monitor the presence of intrinsic and injected impurities in the 700 eV-20 keV energy range. The conversion of this diagnostic into a real-time control tool is under development.

  10. Analysis of Doppler Effect on the Pulse Compression of Different Codes Emitted by an Ultrasonic LPS

    PubMed Central

    Paredes, José A.; Aguilera, Teodoro; Álvarez, Fernando J.; Lozano, Jesús; Morera, Jorge

    2011-01-01

    This work analyses the effect of the receiver movement on the detection by pulse compression of different families of codes characterizing the emissions of an Ultrasonic Local Positioning System. Three families of codes have been compared: Kasami, Complementary Sets of Sequences and Loosely Synchronous, considering in all cases three different lengths close to 64, 256 and 1,024 bits. This comparison is first carried out by using a system model in order to obtain a set of results that are then experimentally validated with the help of an electric slider that provides radial speeds up to 2 m/s. The performance of the codes under analysis has been characterized by means of the auto-correlation and cross-correlation bounds. The results derived from this study should be of interest to anyone performing matched filtering of ultrasonic signals with a moving emitter/receiver. PMID:22346670

  11. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    SciTech Connect

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 ..mu..amp proton beam is 4.0 x 10/sup 11/ n/cm/sup 2/-s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error.

  12. Analysis of Doppler effect on the pulse compression of different codes emitted by an ultrasonic LPS.

    PubMed

    Paredes, José A; Aguilera, Teodoro; Alvarez, Fernando J; Lozano, Jesús; Morera, Jorge

    2011-01-01

    This work analyses the effect of the receiver movement on the detection by pulse compression of different families of codes characterizing the emissions of an ultrasonic local positioning system. Three families of codes have been compared: Kasami, Complementary Sets of Sequences and Loosely Synchronous, considering in all cases three different lengths close to 64, 256 and 1,024 bits. This comparison is first carried out by using a system model in order to obtain a set of results that are then experimentally validated with the help of an electric slider that provides radial speeds up to 2 m/s. The performance of the codes under analysis has been characterized by means of the auto-correlation and cross-correlation bounds. The results derived from this study should be of interest to anyone performing matched filtering of ultrasonic signals with a moving emitter/receiver.

  13. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  14. Measurement of the Optical Coherence of a Femtosecond Pulsed Laser by Shearing Interferometry with a Double-Frequency Grating

    NASA Astrophysics Data System (ADS)

    Ming, Hai; Qian, Jiang-yuan; Xie, Jian-ping; A, B. Fedotov; X, Xiao; M, M. T. Loy

    1998-01-01

    Shearing interferometry of an ion-etched holographic double-frequency grating is used to measure the optical coherence of femtosecond pulsed lasers. The experimental results show that the optical coherence of the femtosecond light beam is not only related to the spectral width and size of the light source but is also related to the pulse duration and mode-locked laser state. The results of theoretical analysis and numerical calculation are also given. Application of this research is also discussed.

  15. TDR-oriented behavioral modeling of reflected pulse in DSL line

    NASA Astrophysics Data System (ADS)

    Opalska, Katarzyna

    2011-10-01

    The paper presents black-box type, behavioral model of pulse reflection from the open end of a transmission line. Model allows for setting measurements limits of TDR-based systems dedicated for DSL line diagnosis. Two main factors responsible for shape deterioration of the signal propagating through the line are ohmic conductor losses and frequency-dependent parasitic resistance induced mostly by a skin effect. Formal analysis of a problem is complicated, as it requires solving a set of differential equations. Behavioral model presented in this paper allows for easy estimation of amplitude and rise time of a reflected pulse using compact, analytical function of line length and testing pulse width.

  16. A comparative study of principal component analysis and independent component analysis in eddy current pulsed thermography data processing.

    PubMed

    Bai, Libing; Gao, Bin; Tian, Shulin; Cheng, Yuhua; Chen, Yifan; Tian, Gui Yun; Woo, W L

    2013-10-01

    Eddy Current Pulsed Thermography (ECPT), an emerging Non-Destructive Testing and Evaluation technique, has been applied for a wide range of materials. The lateral heat diffusion leads to decreasing of temperature contrast between defect and defect-free area. To enhance the flaw contrast, different statistical methods, such as Principal Component Analysis and Independent Component Analysis, have been proposed for thermography image sequences processing in recent years. However, there is lack of direct and detailed independent comparisons in both algorithm implementations. The aim of this article is to compare the two methods and to determine the optimized technique for flaw contrast enhancement in ECPT data. Verification experiments are conducted on artificial and thermal fatigue nature crack detection.

  17. A comparative study of principal component analysis and independent component analysis in eddy current pulsed thermography data processing

    NASA Astrophysics Data System (ADS)

    Bai, Libing; Gao, Bin; Tian, Shulin; Cheng, Yuhua; Chen, Yifan; Tian, Gui Yun; Woo, W. L.

    2013-10-01

    Eddy Current Pulsed Thermography (ECPT), an emerging Non-Destructive Testing and Evaluation technique, has been applied for a wide range of materials. The lateral heat diffusion leads to decreasing of temperature contrast between defect and defect-free area. To enhance the flaw contrast, different statistical methods, such as Principal Component Analysis and Independent Component Analysis, have been proposed for thermography image sequences processing in recent years. However, there is lack of direct and detailed independent comparisons in both algorithm implementations. The aim of this article is to compare the two methods and to determine the optimized technique for flaw contrast enhancement in ECPT data. Verification experiments are conducted on artificial and thermal fatigue nature crack detection.

  18. a Portable Pulsed Neutron Generator

    NASA Astrophysics Data System (ADS)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  19. Effect of micropulse duration on tissue ablation using a stretched free electron laser pulse train

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Mackanos, Mark A.; Mendenhall, Marcus H.; Jansen, E. Duco

    2004-06-01

    The pulse train from a Mark III FEL tuned to a wavelength of 6.45 microns has been shown to be efficient at ablating soft tissue with minimal collateral damage. This laser has a unique pulse structure consisting of a train of 1ps micropulses spaced 350ps apart, which is maintained for 4-5 microseconds (the macropulse) and is repeated at 1-30Hz. We are investigating the role of the pulse structure in the ablation mechanism. In order to determine the importance of non-linear effects potentially induced by the high peak power of the micropulses, we are using a grating pulse stretcher optimized for 6.45 microns to vary the micropulse duration while maintaining the macropulse duration and micropulse frequency. The technique allows use of the same pulse energy and average power with widely variable peak power. Ablation thresholds were measured using PROB-IT analysis and crater depths were measured using OCT imaging. In water, gelatin, and mouse dermis, we have found no statistically significant difference in the ablation threshold of pulses having widths of 1, 30, 60, and 100ps. The measured ablation efficiency of mouse dermis also showed no significant difference over the same range of pulse widths. This data suggests that the ablation characteristics obtained with the FEL at 6.45 microns are independent of the micropulse duration and do not rely on the high peak power of the FEL pulse train.

  20. Analysis of pollutant chemistry in combustion by in situ pulsed photoacoustic laser diagnostics

    NASA Astrophysics Data System (ADS)

    Stenberg, Jari; Hernberg, Rolf; Vattulainen, Juha

    1995-12-01

    A technique for gas analysis based on pulsed-laser-induced photoacoustic spectroscopy in the UV and the visible is presented. The laser-based technique and the associated analysis probe have been developed for the analysis of pollutant chemistry in fluidized beds and other combustion environments with limited or no optical access. The photoacoustic-absorption spectrum of the analyzed gas is measured in a test cell located at the end of a tubular probe. This test cell is subject to the prevailing temperature and pressure in the combustion process. The instrument response has been calibrated for N2O, NO, NO2, NH3, SO2, and H2 S at atmospheric pressure between 20 and 910 deg C. The response of the probe was found to increase with pressure for N2O, NO, NH 3, and NO2 up to 1.2 MPa pressure. The method and the probe have been used for detection and ranging of gas concentrations in a premixed methane flame. Some preliminary tests in a large 12-MW circulating bed boiler have also been done.

  1. Quantitative analysis of polymer mixtures in solution by pulsed field-gradient spin echo NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Van Lokeren, Luk; Ben Sassi, Hanen; Van Assche, Guy; Ribot, François

    2013-06-01

    Pulsed Field-Gradient Spin Echo (PGSE) NMR, which associates to a spectral dimension the measure of diffusion coefficients, is a convenient technique for mixture analysis. Unfortunately, because of relaxation, the quantification of mixtures by PGSE NMR is far from straightforward for mixtures with strong spectral overlap. Antalek (J. Am. Chem. Soc. 128 (2006) 8402-8403) proposed a quantification strategy based on DECRA analysis and extrapolation to zero of the diffusion delay. More recently, Barrère et al. (J. Magn. Reson. 216 (2012) 201-208) presented a new strategy based also on DECRA and on the renormalization of the intensities using estimates of the T1 and T2 relaxation times. Here we report an alternative quantification approach in which the fractions are obtained by analyzing the PGSE attenuation profile with a general Stejskal-Tanner equation that explicitly includes the relaxation effects. The required values of T1 and T2 relaxation times are either independently measured with conventional sequences or determined, along with the fractions and the diffusion coefficients, from the simultaneous analysis of up to 6 PGSE data sets recorded with different diffusion delays. This method yields errors lower than 3% for the fractions, even for complete spectral overlap, as demonstrated on model binary and ternary mixtures of polystyrene in the case of a convection compensating double stimulated echo (DSTE) sequence.

  2. Statistical-fluctuation analysis for quantum key distribution with consideration of after-pulse contributions

    NASA Astrophysics Data System (ADS)

    Li, Hongxin; Jiang, Haodong; Gao, Ming; Ma, Zhi; Ma, Chuangui; Wang, Wei

    2015-12-01

    The statistical fluctuation problem is a critical factor in all quantum key distribution (QKD) protocols under finite-key conditions. The current statistical fluctuation analysis is mainly based on independent random samples, however, the precondition cannot always be satisfied because of different choices of samples and actual parameters. As a result, proper statistical fluctuation methods are required to solve this problem. Taking the after-pulse contributions into consideration, this paper gives the expression for the secure key rate and the mathematical model for statistical fluctuations, focusing on a decoy-state QKD protocol [Z.-C. Wei et al., Sci. Rep. 3, 2453 (2013), 10.1038/srep02453] with a biased basis choice. On this basis, a classified analysis of statistical fluctuation is represented according to the mutual relationship between random samples. First, for independent identical relations, a deviation comparison is made between the law of large numbers and standard error analysis. Second, a sufficient condition is given that the Chernoff bound achieves a better result than Hoeffding's inequality based on only independent relations. Third, by constructing the proper martingale, a stringent way is proposed to deal issues based on dependent random samples through making use of Azuma's inequality. In numerical optimization, the impact on the secure key rate, the comparison of secure key rates, and the respective deviations under various kinds of statistical fluctuation analyses are depicted.

  3. Quantitative analysis of polymer mixtures in solution by pulsed field-gradient spin echo NMR spectroscopy.

    PubMed

    Van Lokeren, Luk; Ben Sassi, Hanen; Van Assche, Guy; Ribot, François

    2013-06-01

    Pulsed Field-Gradient Spin Echo (PGSE) NMR, which associates to a spectral dimension the measure of diffusion coefficients, is a convenient technique for mixture analysis. Unfortunately, because of relaxation, the quantification of mixtures by PGSE NMR is far from straightforward for mixtures with strong spectral overlap. Antalek (J. Am. Chem. Soc. 128 (2006) 8402-8403) proposed a quantification strategy based on DECRA analysis and extrapolation to zero of the diffusion delay. More recently, Barrère et al. (J. Magn. Reson. 216 (2012) 201-208) presented a new strategy based also on DECRA and on the renormalization of the intensities using estimates of the T1 and T2 relaxation times. Here we report an alternative quantification approach in which the fractions are obtained by analyzing the PGSE attenuation profile with a general Stejskal-Tanner equation that explicitly includes the relaxation effects. The required values of T1 and T2 relaxation times are either independently measured with conventional sequences or determined, along with the fractions and the diffusion coefficients, from the simultaneous analysis of up to 6 PGSE data sets recorded with different diffusion delays. This method yields errors lower than 3% for the fractions, even for complete spectral overlap, as demonstrated on model binary and ternary mixtures of polystyrene in the case of a convection compensating double stimulated echo (DSTE) sequence.

  4. Pulse waveform analysis of arterial compliance: relation to other techniques, age, and metabolic variables.

    PubMed

    Resnick, L M; Militianu, D; Cunnings, A J; Pipe, J G; Evelhoch, J L; Soulen, R L; Lester, M A

    2000-12-01

    To assess the physiologic and clinical relevance of newer noninvasive measures of vascular compliance, computerized arterial pulse waveform analysis (CAPWA) of the radial pulse was used to calculate two components of compliance, C1 (capacitive) and C2 (oscillatory or reflective), in 87 normotensive (N1BP, n = 20), untreated hypertensive (HiBP, n = 21), and treated hypertensive (HiBP-Rx, n = 46) subjects. These values were compared with two other indices of compliance, the ratio of stroke volume to pulse pressure (SV/PP) and magnetic resonance imaging (MRI)-based aortic distensibility; and were also correlated with demographic and biochemical values. The HiBP subjects displayed lower C1 (1.34 +/- 0.09 v. 1.70 +/- 0.11 mL/mm Hg, significance [sig] = .05) and C2 (0.031 +/- 0.003 v 0.073 +/- 0.02 mL/mm Hg, sig = .005) than N1BP subjects. This was not true for C1 (1.64 +/- 0.08 mL/mm Hg) and C2 (0.052 +/- 0.005 mL/mm Hg) values in HiBP-Rx subjects. The C1 (r = 0.917, P < .0001) and C2 (r = 0.677, P < .0001) were both closely related to SV/PP, whereas C1 (r = 0.748, P = .002), but not C2, was significantly related to MRI-determined aortic distensibility. Among other factors measured, age exerted a strong negative influence on both C1 (r = -0.696, P < .0001) and C2 (r = -0.611, P < .0001) compliance components. Positive correlations were observed between C1 (r = 0.863, P = .006), aortic distensibility (r = 0.597, P = .19) and 24-h urinary sodium excretion, and between C1- and MR spectroscopy-determined in situ skeletal muscle intracellular free magnesium (r = 0.827, P = .006), whereas C2 was inversely related to MRI-determined abdominal visceral fat area (r = -0.512, P = .042) and fasting blood glucose (r = -0.846, P = .001). Altogether, the close correspondence between CAPWA, other compliance techniques, and known cardiovascular risk factors suggests the clinical relevance of CAPWA in the assessment of altered vascular function in hypertension. PMID:11130766

  5. Radiographic X-Ray Pulse Jitter

    SciTech Connect

    Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

    2011-01-15

    The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

  6. Quantization effects in radiation spectroscopy based on digital pulse processing

    SciTech Connect

    Jordanov, V. T.; Jordanova, K. V.

    2011-07-01

    Radiation spectra represent inherently quantization data in the form of stacked channels of equal width. The spectrum is an experimental measurement of the discrete probability density function (PDF) of the detector pulse heights. The quantization granularity of the spectra depends on the total number of channels covering the full range of pulse heights. In analog pulse processing the total number of channels is equal to the total digital values produced by a spectroscopy analog-to-digital converter (ADC). In digital pulse processing each detector pulse is sampled and quantized by a fast ADC producing certain number of quantized numerical values. These digital values are linearly processed to obtain a digital quantity representing the peak of the digitally shaped pulse. Using digital pulse processing it is possible to acquire a spectrum with the total number of channels greater than the number of ADC values. Noise and sample averaging are important in the transformation of ADC quantized data into spectral quantized data. Analysis of this transformation is performed using an area sampling model of quantization. Spectrum differential nonlinearity (DNL) is shown to be related to the quantization at low noise levels and small number of averaged samples. Theoretical analysis and experimental measurements are used to obtain the condition to minimize the DNL due to quantization. (authors)

  7. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    NASA Astrophysics Data System (ADS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  8. Free-electron-laser-induced shock-wave control and mechanistic analysis using pulse control

    SciTech Connect

    Kanai, Taizo; Yoshihashi-Suzuki, Sachiko; Awazu, Kunio

    2008-11-01

    The wavelength of the free electron laser (FEL) in Osaka University can be continuously varied in the range of 5.0-20.0 {mu}m. The FEL has a double-pulse structure, consisting of a train of macropulses of pulse duration 12 {mu}s. Each macropulse contains a train of 330 micropulses of pulse duration 5 ps. The tunability and picosecond pulses afford new medical and biological applications. However, a macropulse of long pulse duration leads to undesirable secondary effects. Precise control of the macropulse duration is essential for the high-precision applications of the FEL. An FEL pulse control system using acousto-optic modulators has been developed to investigate mechanical (shock-wave) effects of the FEL on living tissues. With this system, we have controlled photoinduced shock waves and determine the mechanism of interaction during FEL-induced tissue ablation.

  9. Critical comparison of Kramers' fission width with the stationary width from the Langevin equation

    SciTech Connect

    Sadhukhan, Jhilam; Pal, Santanu

    2009-06-15

    It is shown that Kramers' fission width, originally derived for a system with constant inertia, can be extended to systems with a deformation-dependent collective inertia, which is the case for nuclear fission. The predictions of Kramers' width for systems with variable inertia are found to be in very good agreement with the stationary fission widths obtained by solving the corresponding Langevin equations.

  10. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    SciTech Connect

    Zajnulina, M.; Giannone, D.; Haynes, R.; Roth, M. M.; Böhm, M.; Blow, K.; Rieznik, A. A.

    2015-10-15

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  11. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    SciTech Connect

    Yuan, D.; Li, B.; Pascoe, D. J.; Nakariakov, V. M.; Keppens, R. E-mail: bbl@sdu.edu.cn

    2015-02-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere.

  12. Automated width measurements of Martian dust devil tracks

    NASA Astrophysics Data System (ADS)

    Statella, Thiago; Pina, Pedro; da Silva, Erivaldo Antônio

    2016-03-01

    Studying dust devils is important to better understand Mars climate and resurfacing phenomena. This paper presents an automated approach to calculate the width of tracks in orbital images. The method is based on Mathematical Morphology and was applied to a set of 200 HiRISE and MOC images of five Mars quadrangles, which were Aeolis, Argyre, Noachis, Hellas and Eridania. Information obtained by our method was compared with results of manual analysis performed by other authors. In addition, we show that track widths do not follow a normal distribution.

  13. Fjords in viscous fingering: selection of width and opening scale

    SciTech Connect

    Mineev-weinstein, Mark; Ristroph, Leif; Thrasher, Matthew; Swinney, Harry

    2008-01-01

    Our experiments on viscous fingering of air into oil contained between closely spaced plates reveal two selection rules for the fjords of oil that separate fingers of air. (Fjords are the building blocks of solutions of the zero-surface-tension Laplacian growth equation.) Experiments in rectangular and circular geometries yield fjords with base widths {lambda}{sub c}/2, where {lambda}{sub c} is the most unstable wavelength from a linear stability analysis. Further, fjords open at an angle of 8.0{sup o}{+-}1.0{sup o}. These selection rules hold for a wide range of pumping rates and fjord lengths, widths, and directions.

  14. Perch width preferences of laying hens.

    PubMed

    Struelens, E; Tuyttens, F A M; Ampe, B; Odberg, F; Sonck, B; Duchateau, L

    2009-07-01

    1. In order to investigate the effect of perch width on perching behaviour of laying hens, two experiments in which hens could choose between 7 different perch widths (1.5, 3.0, 4.5, 6.0, 7.5, 9.0 and 10.5 cm) were conducted. In one experiment (EXP-2P) test cages contained two long perches gradually broadening and narrowing stepwise, in the other experiment (EXP-7P) 7 separate short perches differing in width were placed in the test cages. In each experiment 12 groups of 4 hens were filmed during day and night. The behaviour and location of the hens were recorded and whether the nest box affected hen distribution over the perches was investigated. 2. During daytime, in EXP-2P, there was an increase in perch use with increasing perch width. Hens spent less time on perches of 1.5 cm wide compared to perches of 9.0 and 10.5 cm wide. In EXP-7P, the 1.5-cm wide perch was also used the least (but only the difference with 4.5-cm wide perches was statistically significant) but perch use did not increase linearly with perch width. During the night, there were no significant perch width preferences in either experiment. 3. The percentage of active behaviours (preening, walking, drinking, pecking at hen) versus passive behaviours (standing, sitting, sleeping) did not differ significantly according to perch width. 4. In EXP-7P, there was a trend for perch use to decrease with greater distances to the nest box in the morning. 5. A perch width of 1.5 cm is not recommended for laying hens. For wider perch widths, results were equivocal: they tend to support rather than challenge the widespread use of 4.5-cm wide perches in commercial units.

  15. Collection and analysis of specific ELINT Signal Parameters

    NASA Technical Reports Server (NTRS)

    Wilson, Lonnie A.

    1985-01-01

    This report was a followup to, Collection and Analysis of Specific ELINT Signal Parameters, DTIC A166507, 23 June 1985. The programs and hardware assembled for the above mentioned report were used to analyze two types of radar, the PPS-6 and the HOOD radars. The typical ELINT parameters of frequency, pulse width, and pulse repetition rate were collected and analyzed.

  16. Effective Widths of Compression-Loaded Plates With a Cutout

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2000-01-01

    A study of the effects of cutouts and laminate construction on the prebuckling and initial postbuckling stiffnesses, and the effective widths of compression-loaded, laminated-composite and aluminum square plates is presented. The effective-width concept is extended to plates with cutouts, and experimental and nonlinear finite-element analysis results are presented. Behavioral trends are compared for seven plate families and for cutout-diameter-to-plate-width ratios up to 0.66. A general compact design curve that can be used to present and compare the effective widths for a wide range of laminate constructions is also presented. A discussion of how the results can be used and extended to include certain types of damage, cracks, and other structural discontinuities or details is given. Several behavioral trends are described that initially appear to be nonintuitive. The results demonstrate a complex interaction between cutout size and plate orthotropy that affects the axial stiffness and effective width of a plate subjected to compression loads.

  17. On the holographic width of flux tubes

    NASA Astrophysics Data System (ADS)

    Giataganas, Dimitrios; Irges, Nikos

    2015-05-01

    We investigate the width of the flux tube between heavy static quark charges. Using the gauge/gravity duality, we find the properties of the minimal connected surface related to the width of the bound state. We show that in the confining phase, the logarithmic broadening predicted by the effective string description and observed in lattice simulations is a generic property of all confining backgrounds. We also study the transverse fluctuations of the string connecting two static quarks in curved backgrounds. Our formalism is applied to AdS space where we compute the expectation value of the square of transverse deviations of the string, a quantity related to the width.

  18. Preliminary Optical And Electric Field Pulse Statistics From Storm Overflights During The Altus Cumulus Electrification Study

    NASA Technical Reports Server (NTRS)

    Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.

  19. Digital Pulse Shape Analysis with Phoswich Detectors to Simplify Coincidence Measurements of Radioactive Xenon

    SciTech Connect

    Hennig, Wolfgang; Tan, Hui; Warburton, William K.; McIntyre, Justin I.

    2005-08-31

    The Comprehensive Nuclear-Test-Ban Treaty establishes a network of monitoring stations to detect radioactive Xenon in the atmosphere from nuclear weapons testing. One such monitoring system is the Automated Radio-xenon Sampler/Analyzer (ARSA) developed at Pacific Northwest National Laboratory, which uses a complex arrangement of separate beta and gamma detectors to detect beta-gamma coincidences from the Xe isotopes of interest. The coincidence measurement is very sensitive, but the large number of detectors and photomultiplier tubes require careful calibration which makes the system hard to use. It has been suggested that beta-gamma coincidences could be detected with only a single photomultiplier tube and electronics channel by using a phoswich detector consisting of optically coupled beta and gamma detectors (Ely, 2003). In that work, rise time analysis of signals from a phoswich detector was explored as a method to determine if interactions occurred in either the beta or the gamma detector or in both simultaneously. However, this approach was not able to detect coincidences with the required sensitivity or to measure the beta and gamma energies with sufficient precision for Xenon monitoring. In this paper, we present a new algorithm to detect coincidences by pulse shape analysis of the signals from a BC-404/CsI(Tl) phoswich detector. Implemented on fast digital readout electronics, the algorithm achieves clear separation of beta only, gamma only and coincidence events, accurate measurement of both beta and gamma energies, and has an error rate for detecting coincidences of less than 0.1%. Monte Carlo simulations of radiation transport and light collection were performed to optimize design parameters for a replacement detector module for the ARSA system, obtaining an estimated coincidence detection efficiency of 82-92% and a background rejection rate better than 99%. The new phoswich/pulse shape analysis method is thus suitable to simplify the existing ARSA

  20. [Calculation and analysis of arc temperature field of pulsed TIG welding based on Fowler-Milne method].

    PubMed

    Xiao, Xiao; Hua, Xue-Ming; Wu, Yi-Xiong; Li, Fang

    2012-09-01

    Pulsed TIG welding is widely used in industry due to its superior properties, and the measurement of arc temperature is important to analysis of welding process. The relationship between particle densities of Ar and temperature was calculated based on the theory of spectrum, the relationship between emission coefficient of spectra line at 794.8 nm and temperature was calculated, arc image of spectra line at 794.8 nm was captured by high speed camera, and both the Abel inversion and Fowler-Milne method were used to calculate the temperature distribution of pulsed TIG welding. PMID:23240389

  1. In-depth analysis of Coulomb Volkov approaches to ionization and excitation by laser pulses

    NASA Astrophysics Data System (ADS)

    R, Guichard; H, Bachau; E, Cormier; R, Gayet; D, Rodriguez V.

    2007-10-01

    In perturbation conditions, above-threshold ionization spectra produced in the interaction of atoms with femtosecond short-wavelength laser pulses are well predicted by a theoretical approach called CV2-, which is based on Coulomb-Volkov-type states. However, when resonant intermediate states play a significant role in a multiphoton transition, the CV2- transition amplitude does not take their influence into account. In a previous paper, this influence has been introduced separately as a series of additional sequential processes interfering with the direct process. To give more credit to this procedure, called modified CV2- (MCV2-), a perturbation expansion of the standard CV2- transition amplitude is compared here to the standard time-dependent perturbation series and the strong field approximation. It is shown that the CV2- transition amplitude consists merely in a simultaneous absorption of all photons involved in the transition, thus avoiding all intermediate resonant state influence. The present analysis supports the MCV2- procedure that consists in introducing explicitly the other quantum paths, which contribute significantly to ionization, such as passing through intermediate resonances. Further, this analysis permits to show that multiphoton excitation may be addressed by a Coulomb-Volkov approach akin to MCV2-.

  2. Rapid analysis of non-uniformly sampled pulsed field gradient data for velocity estimation.

    PubMed

    Raghavan, K; Park, J C; Pavlovskaya, G E; Gibbs, S J

    2001-06-01

    Bretthorst's recent generalization of the Lomb-Scargle periodogram shows that a sufficient statistic for frequency estimation from non-uniformly, but simultaneously sampled quadrature data is equivalent to the FFT of those data with the missing samples replaced by zeros. We have applied this concept to the rapid analysis of pulsed field gradient MRI data which have been non-uniformly sampled in the velocity encoding wave vector q. For a small number of q samples, it is more computationally efficient to calculate the periodogram directly rather than using the FFT algorithm with a large number of zeros. The algorithm we have implemented for finding the peak of the generalized periodogram is simple and robust; it involves repeated apodization and grid searching of the periodogram until the desired velocity resolution is achieved. The final estimate is refined by quadratic interpolation. We have tested the method for fully developed Poiseuille flow of a Newtonian fluid and have demonstrated substantial improvement in the precision of velocity measurement achievable in a fixed acquisition time with non-uniform sampling. The method is readily extendible to multidimensional data. Analysis of a 256 by 256 pixel image with 8 q samples and an effective velocity resolution of better than 1/680 of the Nyquist range requires approximately 1 minute computation time on a 400 MHz SUN Ultrasparc II processor. PMID:11672628

  3. Theoretical analysis of saturation and limit cycles in short pulse FEL oscillators

    SciTech Connect

    Piovella, N.; Chaix, P.; Jaroszynski, D.

    1995-12-31

    We derive a model for the non linear evolution of a short pulse oscillator from low signal up to saturation in the small gain regime. This system is controlled by only two independent parameters: cavity detuning and losses. Using a closure relation, this model reduces to a closed set of 5 non linear partial differential equations for the EM field and moments of the electron distribution. An analysis of the linearised system allows to define and calculate the eigenmodes characterising the small signal regime. An arbitrary solution of the complete nonlinear system can then be expanded in terms of these eigenmodes. This allows interpreting various observed nonlinear behaviours, including steady state saturation, limit cycles, and transition to chaos. The single mode approximation reduces to a Landau-Ginzburg equation. It allows to obtain gain, nonlinear frequency shift, and efficiency as functions of cavity detuning and cavity losses. A generalisation to two modes allows to obtain a simple description of the limit cycle behaviour, as a competition between these two modes. An analysis of the transitions to more complex dynamics is also given. Finally, the analytical results are compared to the experimental data from the FELIX experiment.

  4. Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data

    SciTech Connect

    Dowla, F.U.; Skokowski, P.G.; Leach, R.R. Jr.

    1996-03-01

    Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensor consists of red and infrared light sources and photodetectors. A method based on neural networks and wavelet analysis is developed for improved saturation estimation in the presence of sensor motion. Spectral and correlation functions of the dual channel oximetry data are used by a backpropagation neural network to characterize the type of motion. Amplitude ratios of red to infrared signals as a function of time scale are obtained from the multiresolution wavelet decomposition of the two-channel data. Motion class and amplitude ratios are then combined to obtain a short-time estimate of the oxygen saturation level. A final estimate of oxygen saturation is obtained by applying a 15 s smoothing filter on the short-time measurements based on 3.5 s windows sampled every 1.75 s. The design employs two backpropagation neural networks. The first neural network determines the motion characteristics and the second network determines the saturation estimate. Our approach utilizes waveform analysis in contrast to the standard algorithms that are based on the successful detection of peaks and troughs in the signal. The proposed algorithm is numerically efficient and has stable characteristics with a reduced false alarm rate with a small loss in detection. The method can be rapidly developed on a digital signal processing platform.

  5. Gamma-ray pulse height spectrum analysis on systems with multiple Ge detectors using spectrum summing

    SciTech Connect

    Killian, E.W.

    1997-11-01

    A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radionuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radio-nuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogeneous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio-nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container. 2 refs., 2 figs.

  6. Analysis of pulsed eddy current data using regression models for steam generator tube support structure inspection

    NASA Astrophysics Data System (ADS)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2016-02-01

    Nuclear steam generators (SGs) are a critical component for ensuring safe and efficient operation of a reactor. Life management strategies are implemented in which SG tubes are regularly inspected by conventional eddy current testing (ECT) and ultrasonic testing (UT) technologies to size flaws, and safe operating life of SGs is predicted based on growth models. ECT, the more commonly used technique, due to the rapidity with which full SG tube wall inspection can be performed, is challenged when inspecting ferromagnetic support structure materials in the presence of magnetite sludge and multiple overlapping degradation modes. In this work, an emerging inspection method, pulsed eddy current (PEC), is being investigated to address some of these particular inspection conditions. Time-domain signals were collected by an 8 coil array PEC probe in which ferromagnetic drilled support hole diameter, depth of rectangular tube frets and 2D tube off-centering were varied. Data sets were analyzed with a modified principal components analysis (MPCA) to extract dominant signal features. Multiple linear regression models were applied to MPCA scores to size hole diameter as well as size rectangular outer diameter tube frets. Models were improved through exploratory factor analysis, which was applied to MPCA scores to refine selection for regression models inputs by removing nonessential information.

  7. SmartPET: Applying HPGe and pulse shape analysis to small-animal PET

    NASA Astrophysics Data System (ADS)

    Cooper, R. J.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R. A.

    2007-08-01

    The SmartPET project is the development of a prototype small-animal imaging system based on the use of Hyperpure Germanium (HPGe) detectors. The use of digital electronics and application of Pulse Shape Analysis (PSA) techniques provide fine spatial resolution, while the excellent intrinsic energy resolution of HPGe detectors makes the system ideal for multi-nuclide imaging. As a result, the SmartPET system has the potential to function as a dual modality imager, operating as a dual-head Positron Emission Tomography (PET) camera or in a Compton Camera configuration for Single Photon Emission Computed Tomography (SPECT) imaging. In this paper, we discuss how the use of simple PSA techniques greatly improves the position sensitivity of the detector yielding improved spatial resolution in reconstructed images. The PSA methods presented have been validated by comparison to data from high-precision scanning of the detectors. Results from this analysis are presented along with initial images from the SmartPET system, which demonstrates the impact of these techniques on PET images.

  8. Instantaneous frequency time analysis of physiology signals: The application of pregnant women’s radial artery pulse signals

    NASA Astrophysics Data System (ADS)

    Su, Zhi-Yuan; Wang, Chuan-Chen; Wu, Tzuyin; Wang, Yeng-Tseng; Tang, Feng-Cheng

    2008-01-01

    This study used the Hilbert-Huang transform, a recently developed, instantaneous frequency-time analysis, to analyze radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy. The acquired instantaneous frequency-time spectrum (Hilbert spectrum) is further compared with the Morlet wavelet spectrum. Results indicate that the Hilbert spectrum is especially suitable for analyzing the time series of non-stationary radial artery pulse signals since, in the Hilbert-Huang transform, signals are decomposed into different mode functions in accordance with signal’s local time scale. Therefore, the Hilbert spectrum contains more detailed information than the Morlet wavelet spectrum. From the Hilbert spectrum, we can see that radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy have different patterns. This approach could be applied to facilitate non-invasive diagnosis of fetus’ physiological signals in the future.

  9. 7 CFR 29.6054 - Width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6054 Width. The relative breadth of a tobacco leaf expressed in relation to its length. (See chart.) Elements of Quality...

  10. Analysis of electromagnetic pulse (EMP) measurements in the National Ignition Facility's target bay and chamber

    NASA Astrophysics Data System (ADS)

    Brown, C. G.; Clancy, T. J.; Eder, D. C.; Ferguson, W.; Throop, A. L.

    2013-11-01

    From May 2009 to the present we have recorded electromagnetic pulse (EMP) strength and spectrum (100 MHz - 5 GHz) in the target bay and chamber of the National Ignition Facility (NIF). The dependence of EMP strength and frequency spectrum on target type and laser energy is discussed. The largest EMP measured was for relatively low-energy, short-pulse (100 ps) flat targets.

  11. An analysis on the theory of pulse oximetry by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Fan, Shangchun; Cai, Rui; Xing, Weiwei; Liu, Changting; Chen, Guangfei; Wang, Junfeng

    2008-10-01

    The pulse oximetry is a kind of electronic instrument that measures the oxygen saturation of arterial blood and pulse rate by non-invasive techniques. It enables prompt recognition of hypoxemia. In a conventional transmittance type pulse oximeter, the absorption of light by oxygenated and reduced hemoglobin is measured at two wavelength 660nm and 940nm. But the accuracy and measuring range of the pulse oximeter can not meet the requirement of clinical application. There are limitations in the theory of pulse oximetry, which is proved by Monte Carlo method. The mean paths are calculated in the Monte Carlo simulation. The results prove that the mean paths are not the same between the different wavelengths.

  12. Importance of re-calibration time on pulse contour analysis agreement with thermodilution measurements of cardiac output: a retrospective analysis of intensive care unit patients.

    PubMed

    Scully, Christopher G; Gomatam, Shanti; Forrest, Shawn; Strauss, David G

    2016-10-01

    We assessed the effect of re-calibration time on cardiac output estimation and trending performance in a retrospective analysis of an intensive care unit patient population using error grid analyses. Paired thermodilution and arterial blood pressure waveform measurements (N = 2141) from 222 patient records were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. Pulse contour analysis was performed by implementing a previously reported algorithm at calibration times of 1, 2, 8 and 24 h. Cardiac output estimation agreement was assessed using Bland-Altman and error grid analyses. Trending was assessed by concordance and a 4-Quadrant error grid analysis. Error between pulse contour and thermodilution increased with longer calibration times. Limits of agreement were -1.85 to 1.66 L/min for 1 h maximum calibration time compared to -2.70 to 2.41 L/min for 24 h. Error grid analysis resulted in 74.2 % of points bounded by 20 % error limits of thermodilution measurements for 1 h calibration time compared to 65 % for 24 h. 4-Quadrant error grid analysis showed <75 % of changes in pulse contour estimates to be within ±80 % of the change in the thermodilution measurement at any calibration time. Shorter calibration times improved the agreement of cardiac output pulse contour estimates with thermodilution. Use of minimally invasive pulse contour methods in intensive care monitoring could benefit from prospective studies evaluating calibration protocols. The applied pulse contour analysis method and thermodilution showed poor agreement to monitor changes in cardiac output.

  13. Widely tunable repetition-rate and pulse-duration nanosecond pulses from two spectral beam combined fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Hu, Man; Zheng, Ye; Yang, Yifeng; Chen, Xiaolong; Zhao, Chun; Liu, Kai; Wang, Jianhua; Qi, Yunfeng; He, Bing; Zhou, Jun

    2016-10-01

    Nanosecond pulses with a widely tunable repetition-rate and pulse-duration at 1 μm wavelength are obtained by spectrally combining two pulse fiber amplifiers using a home-made polarization-independent multilayer dielectric reflective diffraction grating. The width of the combined pulses can be tuned from 4 ns to 800 ns, and the pulse repetition-rate can be ranged from 1 MHz to 200 MHz. Thanks to the spectral beam combining system, the maximum repetition-rate and pulse-duration of the combined pulses are doubled, compared to the single pulse fiber amplifier, by setting a proper temporal delay between the two pulse channels.

  14. Pulse distortion in single-mode fibers.

    PubMed

    Marcuse, D

    1980-05-15

    A theory is presented of the propagation of Gaussian pulses in single-mode optical fibers by expanding the propagation constant in a Taylor series that includes the third derivative with respect to frequency. The light source is assumed to have a Gaussian spectral distribution whose width relative to the width of the Gaussian signal pulse is arbitrary. Formulas are derived for the spectrum of the ensemble average of the optical pulse, from which the shape of the average pulse itself is obtained by the fast Fourier transform. Also derived is an expression for the rms pulse width. The theory is applicable at all wavelengths including the vicinity of the zero first-order dispersion point.

  15. Detection and analysis of multi-dimensional pulse wave based on optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shen, Yihui; Li, Zhifang; Li, Hui; Chen, Haiyu

    2014-11-01

    Pulse diagnosis is an important method of traditional Chinese medicine (TCM). Doctors diagnose the patients' physiological and pathological statuses through the palpation of radial artery for radial artery pulse information. Optical coherence tomography (OCT) is an useful tool for medical optical research. Current conventional diagnostic devices only function as a pressure sensor to detect the pulse wave - which can just partially reflect the doctors feelings and lost large amounts of useful information. In this paper, the microscopic changes of the surface skin above radial artery had been studied in the form of images based on OCT. The deformation of surface skin in a cardiac cycle which is caused by arterial pulse is detected by OCT. The patient's pulse wave is calculated through image processing. It is found that it is good consistent with the result conducted by pulse analyzer. The real-time patient's physiological and pathological statuses can be monitored. This research provides a kind of new method for pulse diagnosis of traditional Chinese medicine.

  16. Key research issues in the pulsed fast-neutron analysis technique for cargo inspection

    SciTech Connect

    Micklich, B.J.; Fink, C.L.; Yule, T.J.

    1994-07-01

    Non-invasive inspection systems based on the use of fast neutrons are being studied for the inspection of large cargo containers. A key advantage of fast neutrons is their sensitivity to low-Z elements such as carbon, nitrogen, and oxygen, which are the primary constituents of explosives and narcotics. The high energy allows penetration of relatively large containers. The pulsed fast-neutron analysis (PFNA) technique is currently the baseline system. A workshop on the PFNA technique involving industrial, government, and university participants was held at Argonne National Lab. in January 1994. The purpose of this workshop was to review the status of research on the key technical issues involved in PFNA, and to develop a list of those areas where additional modeling and/or experimentation were needed. The workshop also focused on development of a near-term experimental assessment program using existing prototypes and on development of a long-term test program at the Tacoma Testbed, where a PFNA prototype will be installed in 1995. A summary of conclusions reached at this workshop is presented. Results from analytic and Monte Carlo modeling of simplified PFNA systems are also presented.

  17. Key research issues in the pulsed fast-neutron analysis technique for cargo inspection

    NASA Astrophysics Data System (ADS)

    Micklich, Bradley J.; Fink, Charles L.; Yule, Thomas J.

    1994-10-01

    Non-invasive inspection systems based on the use of fast neutrons are being studied for the inspection of large cargo containers. A key advantage of fast neutrons is their sensitivity to low-Z elements such as carbon, nitrogen, and oxygen, which are the primary constituents of explosives and narcotics. The high energy allows penetration of relatively large containers. The pulsed fast-neutron analysis (PFNA) technique is currently the baseline system. A workshop on the PFNA technique involving industrial, government, and university participants was held at Argonne National Laboratory in January 1994. The purpose of this workshop was to review the status of research on the key technical issues involved in PFNA, and to develop a list of those areas where additional modeling and/or experimentation were needed. The workshop also focused on development of a near-term experimental assessment program using existing prototypes and on development of a long-term test program at the Tacoma Testbed, where a PFNA prototype will be installed in 1995. A summary of conclusions reached at this workshop is presented. Results from analytic and Monte Carlo modeling of simplified PFNA systems are also presented.

  18. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    PubMed

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.

  19. Analysis of defects patterned by femtosecond pulses inside KBr and SiO2 glass

    NASA Astrophysics Data System (ADS)

    Wang, X. W.; Buividas, R.; Funabiki, F.; Stoddart, P. R.; Hosono, H.; Juodkazis, S.

    2016-03-01

    Colour centres in KBr and defects in silica glass were formed by focused femtosecond laser pulses. It is shown that under simple laser exposure, KBr develops a similar colouration as that achieved with electron and ion bombardment or high-energy X-ray irradiation. The three-dimensional (3D) character of direct laser writing in the volume of KBr allows a new level of control in the spatial arrangement of colour centres and defects. Five different colour centres were identified in KBr through the absorption spectrum; they have different charge and vacancy distribution configurations. The densities of the V- and F-centres were estimated to be 3.9 × 1019 and 3.4 × 1019 cm-3 using Smakula's formula. In silica, a high density of paramagnetic E' centres ~1.9 × 1020 cm-3 was determined by quantitative electron spin resonance spectroscopy. Birefringence due to colour centres and laser-induced defects was measured using Stokes polarimetry. In the case of colour centres in KBr, retardation in excess of 0.05π was determined throughout the visible spectrum from 400 to 800 nm. The use of polariscopy for analysis of high-pressure and high-temperature phase formation induced by 3D laser structuring is discussed.

  20. Application of stroboscopic and pulsed-laser electronic speckle pattern interferometry (ESPI) to modal analysis problems

    NASA Astrophysics Data System (ADS)

    Van der Auweraer, H.; Steinbichler, H.; Vanlanduit, S.; Haberstok, C.; Freymann, R.; Storer, D.; Linet, V.

    2002-04-01

    Accurate structural models are key to the optimization of the vibro-acoustic behaviour of panel-like structures. However, at the frequencies of relevance to the acoustic problem, the structural modes are very complex, requiring high-spatial-resolution measurements. The present paper discusses a vibration testing system based on pulsed-laser holographic electronic speckle pattern interferometry (ESPI) measurements. It is a characteristic of the method that time-triggered (and not time-averaged) vibration images are obtained. Its integration into a practicable modal testing and analysis procedure is reviewed. The accumulation of results at multiple excitation frequencies allows one to build up frequency response functions. A novel parameter extraction approach using spline-based data reduction and maximum-likelihood parameter estimation was developed. Specific extensions have been added in view of the industrial application of the approach. These include the integration of geometry and response information, the integration of multiple views into one single model, the integration with finite-element model data and the prior identification of the critical panels and critical modes. A global procedure was hence established. The approach has been applied to several industrial case studies, including car panels, the firewall of a monovolume car, a full vehicle, panels of a light truck and a household product. The research was conducted in the context of the EUREKA project HOLOMODAL and the Brite-Euram project SALOME.

  1. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    PubMed

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed.

  2. Irradiation Effects for the Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System

    SciTech Connect

    Slater, C.O.

    2001-02-02

    At the request of Safety and Ecology Corporation of Tennessee, radiation effects of the proposed Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System have been examined. First, fissile cargo were examined to determine if a significant neutron signal would be observable during interrogation. Results indicated that ample multiplication would be seen for near critical bare targets. The water-reflected sphere showed relatively little multiplication. By implication, a fissile target shielded by hydrogenous cargo might not be detectable by neutron interrogation, particularly if reliance is placed on the neutron signal. The cargo may be detectable if use can be made of the ample increase in the photon signal. Second, dose rates were calculated at various locations within and just outside the facility building. These results showed that some dose rates may be higher than the target dose rate of 0.05 mrem/h. However, with limited exposure time, the total dose may be well below the allowed total dose. Lastly, estimates were made of the activation of structures and typical cargo. Most cargo will not be exposed long enough to be activated to levels of concern. On the other hand, portions of the structure may experience buildup of some radionuclides to levels of concern.

  3. Irreversible and reversible reactive chromatography: analytical solutions and moment analysis for rectangular pulse injections.

    PubMed

    Bibi, Sameena; Qamar, Shamsul; Seidel-Morgenstern, Andreas

    2015-03-13

    This work is concerned with the analysis of models for linear reactive chromatography describing irreversible A→B and reversible A↔B reactions. In contrast to previously published results rectangular reactant pulses are injected into initially empty or pre-equilibrated columns assuming both Dirichlet and Danckwerts boundary conditions. The models consist of two partial differential equations, accounting for convection, longitudinal dispersion and first order chemical reactions. Due to the effect of involved mechanisms on solute transport, analytical and numerical solutions of the models could be helpful to understand, design and optimize chromatographic reactors. The Laplace transformation is applied to solve the model equations analytically for linear adsorption isotherms. Statistical temporal moments are derived from solutions in the Laplace domain. Analytical results are compared with numerical predictions generated using a high-resolution finite volume scheme for two sets of boundary conditions. Several case studies are carried out to analyze reactive liquid chromatographic processes for a wide range of mass transfer and reaction kinetics. Good agreements in the results validate the correctness of the analytical solutions and accuracy of the proposed numerical algorithm.

  4. MHD-EMP analysis and protection. Technical report. [MHD-EMP (magnetohydrodynamic-electromagnetic pulse)

    SciTech Connect

    Barnes, P.R.; Tesche, F.M.; McConnell, B.W.; Vance, E.F.

    1993-09-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic-electromagnetic pulse (MHD-EMP). MHD-EMP is similar to solar geomagnetic storms in its global and low frequency (less than 1 Hz) nature except that it can be more intense with a shorter duration. It will induce quasi-dc currents in long lines. The MHD-EMP induced currents may cause large voltage fluctuations and severe harmonic distortion in commercial electric power systems. Several MHD-EMP coupling models for predicting the induced current on a wide variety of conducting structures are described, various simulation concepts are summarized, and the results from several MHD-EMP tests are presented. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building, and the commercial power harmonics and voltage swings must be addressed. It is found that facilities can be protected against MHD-EMP by using methods which are consistent with standard engineering practices. MHD-EMP Interaction Analysis, Power Line Model, MHD-EMP Protection Guidelines, Transformer Test.

  5. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    PubMed

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition. PMID:22105226

  6. Double-pulse laser-induced breakdown spectroscopy analysis of scales from petroleum pipelines

    NASA Astrophysics Data System (ADS)

    Cavalcanti, G. H.; Rocha, A. A.; Damasceno, R. N.; Legnaioli, S.; Lorenzetti, G.; Pardini, L.; Palleschi, V.

    2013-09-01

    Pipeline scales from the Campos Bay Petroleum Field near Rio de Janeiro, Brazil have been analyzed by both Raman spectroscopy and by laser-induced breakdown spectroscopy (LIBS) using a double-pulse, calibration-free approach. Elements that are characteristic of petroleum (e.g. C, H, N, O, Mg, Na, Fe and V) were detected, in addition to the Ca, Al, and Si which form the matrix of the scale. The LIBS results were compared with the results of micro-Raman spectroscopy, which confirmed the nature of the incrustations inferred by the LIBS analysis. Results of this preliminary study suggest that diffusion of pipe material into the pipeline intake column plays an important role in the growth of scale. Thanks to the simplicity and relative low cost of equipment and to the fact that no special chemical pre-treatment of the samples is needed, LIBS can offer very fast acquisition of data and the possibility of in situ measurements. LIBS could thus represent an alternative or complementary method for the chemical characterization of the scales by comparison to conventional analytical techniques, such as X-ray diffraction or X-ray fluorescence.

  7. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus

    SciTech Connect

    Giacomelli, L.; Conroy, S.; Gorini, G.; Horton, L.; Murari, A.; Popovichev, S.; Syme, D. B.

    2014-02-15

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

  8. Localized wave pulse experiments

    SciTech Connect

    Chambers, D L; Henderson, T L; Krueger, K L; Lewis, D K; Zilkowski, R N

    1999-06-01

    The Localized Wave project of the Strategic System Support Program has recently finished an experiment in cooperation with the Advanced SONAR group of the Applied Research Laboratory of the University of Texas at Austin. The purpose of the experiment was three-fold. They wanted to see if (1) the LW pulse could propagate over significant distances, to see if (2) a new type of array and drive system specifically designed for the pulse would increase efficiency over single frequency tone bursts, and to see if (3) the complexity of our 24 channel drivers resulted in better efficiency than a single equivalent pulse driving a piston. In the experiment, several LW pulses were launched from the Lake Travis facility and propagated over distances of either 100 feet or 600 feet, through a thermocline for the 600 foot measurements. The results show conclusively that the Localized Wave will propagate past the near field distance. The LW pulses resulted in extremely broad frequency band width pulses with narrow spatial beam patterns and unmeasurable side lobes. Their array gain was better than most tone bursts and further, were better than their equivalent piston pulses. This marks the first test of several Low Diffraction beams against their equivalent piston pulses, as well as the first propagation of LW pulses over appreciable distances. The LW pulse is now proven a useful tool in open water, rather than a laboratory curiosity. The experimental system and array were built by ARL, and the experiments were conducted by ARL staff on their standard test range. The 600 feet measurements were made at the farthest extent of that range.

  9. Analysis of Uptime Efficiency of the SLC as Measured by Pulse Accounting

    SciTech Connect

    Krejik, P .

    2006-04-19

    The repetition frequency of a linear collider can deviate substantially from nominal design values as a result of lost pulses. Pulses are typically lost as a result of a veto imposed by the many machine protection systems (MPSs). A system has been installed at the Stanford Linear Collider (SLC) to use the existing beam position monitor hardware to count every beam pulse that passes each of the strategic locations. Also counted are the signals from various beam dumpers, as well as trigger signals generated by the MPS. Representative data of SLC running that have been used to determine how to improve running efficiency are shown.

  10. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  11. Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: A numerical simulation study

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Schoenbach, K. H.

    2000-07-01

    A model analysis of electroporation dynamics in biological cells has been carried out based on the Smoluchowski equation. Results of the cellular response to short, electric pulses are presented, taking account of the growth and resealing dynamics of transient aqueous pores. It is shown that the application of large voltages alone may not be sufficient to cause irreversible breakdown, if the time duration is too short. Failure to cause irreversible damage at small pulse widths could be attributed to the time inadequacy for pores to grow and expand beyond a critical threshold radius. In agreement with earlier studies, it is shown that irreversible breakdown would lead to the formation of a few large pores, while a large number of smaller pores would appear in the case of reversible breakdown. Finally, a pulse width dependence of the applied voltage for irreversible breakdown has been obtained. It is shown that in the absence of dissipation, the associated energy input necessary reduces with decreasing pulse width to a limiting value. However, with circuit effects taken into account, a local minima in the pulse dependent energy function is predicted, in keeping with previously published experimental reports.

  12. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  13. Pulse distortion in single-mode fibers. Part 2.

    PubMed

    Marcuse, D

    1981-09-01

    The theory of pulse distortion in single-mode fibers is extended to include laser sources such as injection lasers operating simultaneously at several distinct wavelengths. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the spectral width of the source and of its asymmetry on the shape and rms width of the pulse.

  14. Analysis of process parameter for the ablation of optical glasses with femto- and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Schindler, Christian; Friedrich, Maria; Bliedtner, Jens

    2016-03-01

    Experiments with an ultrashort pulsed laser system emitting pulses ranging from 350 fs to 10 ps and a maximum average power of 50 W at 1030 nm are presented. The laser beam gets deflected by a galvanometric scan-system with maximum scan speed of 2500 mm/s and focused by F-theta lenses onto the substrates. By experiments the influences of pulse energy, fluence, laser wavelength, pulse length and material conditions on the target figures is analyzed. These are represented by the material characteristics mean squared roughness, ablation depths as well as the microcrack distribution in depth. The experimental procedure is applied onto a series of fused silica and SF6 samples.

  15. Numerical analysis of pulse signal restoration by stochastic resonance in a buckled microcavity.

    PubMed

    Sun, Heng; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu; Han, Jing

    2016-04-20

    A novel scheme is proposed to restore weak pulse signals immersed in noise by stochastic resonance based on photothermal-effect-induced optical bistability in a buckled dome microcavity. The bistable properties of the dome microcavity are analyzed with different initial detuning wavelengths and effective cavity lengths, and bistable transmission can be obtained for input powers in submilliwatt range. A theoretical model is derived to interpret the nonlinear process of pulse signal recovery through double-well potential theory. The cross-correlation coefficient between output signals and pure input pulses is calculated to quantitatively analyze the influence of noise intensity on stochastic resonance. A cross-correlation gain of 7 is obtained, and the noise-hidden signal can be recovered effectively though the buckled dome microcavity with negligible distortion. The simulation results show the potential of using this structure to restore low-level or noise-hidden pulse signals in all-optical integrated systems. PMID:27140110

  16. Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip.

    PubMed

    Pelusi, M D; Vo, T D; Luan, F; Madden, S J; Choi, D-Y; Bulla, D A P; Luther-Davies, B; Eggleton, B J

    2009-05-25

    We report the first demonstration of the use of an RF spectrum analyser with multi-terahertz bandwidth to measure the properties of femtosecond optical pulses. A low distortion and broad measurement bandwidth of 2.78 THz (nearly two orders of magnitude greater than conventional opto-electronic analyzers) was achieved by using a 6 cm long As(2)S(3) chalcogenide waveguide designed for high Kerr nonlinearity and near zero dispersion. Measurements of pulses as short as 260 fs produced from a soliton-effect compressor reveal features not evident from the pulse's optical spectrum. We also applied an inverse Fourier transform numerically to the captured data to re-construct a time-domain waveform that resembled pulse measurement obtained from intensity autocorrelation. PMID:19466183

  17. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    SciTech Connect

    Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

    2008-03-16

    The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric, in that the pulse travelled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity, and consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially improve the interpretation of pulse tests during reservoir characterization.

  18. Comparative analysis of short and long GPR pulses for landmine detection

    NASA Astrophysics Data System (ADS)

    Temlioǧlu, Eyyup; Nazlı, Hakkı; Aksoy, Serkan

    2016-05-01

    Ground Penetrating Radar (GPR) is one of the most popular subsurface sensing devices. It has a wide range of applications such as landmine detection, archeological investigations, road condition survey and so on. Hardware and software requirements of the GPR system are strongly dependent on type of applications. Principally, lower frequencies provide deeper penetration and low resolution, but higher frequencies are able to detect shallow objects with high resolution. As a fundamental design criterion, there is a trade-off between penetration depth and vertical resolution. In impulse radar, pulse duration (frequency related) is a key parameter because it affects the system detection performance. Specially, optimization of the pulse duration is a challenging problem for landmine detection because the GPR performance has been strongly affected from mine types, varying terrain and environmental conditions. In this work, two GPR systems with pulse durations of 650 ps and 870 ps are compared for evaluation of their detection performance. The pulses are tested with extensive data sets collected from different soil types by using surrogate mines and other objects. Receiver Operating Characteristic (ROC) curves of the system is also calculated. It seems that the 650 ps pulse duration gives better performance than the 870 ps pulse duration for the shallow landmine detection.

  19. Analysis of the hole shape evolution in fs-pulse percussion drilling with bursts

    NASA Astrophysics Data System (ADS)

    Kämmer, H.; Dreisow, F.; Tünnermann, A.; Nolte, Stefan

    2016-03-01

    We analyze the use of bursts of ultra-short pulses in order to improve drilling efficiency and quality. Silicon is used as a non-transparent model material, in which the behavior of laser percussion drilling with 1030 nm bursts consisting of 200 fs pulses separated by a time delay between 1 ps and 4 ns was investigated. The deep drilling process is directly imaged perpendicular to the drilling direction using a CCD camera and an illumination beam at 1064 nm, where the silicon sample is transparent. The results are compared to drilling without bursts for different pulse energies. The efficiency of the drilling process, hole quality, as well as reproducibility of the hole shape are analyzed. Pulse separation times within the burst from 1 ps to 8 ps result in deeper holes with a larger silhouette area, however equal or reduced hole quality and reproducibility compared to drilling with individual pulses. In contrast with pulse separation times from 510 ps to 4 ns a quality and reproducibility improvement is visible. For these delay times the achieved depth was equal or higher compared to micromachining without bursts.

  20. Cubic-quintic saturable nonlinearity effects on a light pulse strongly distorted by the fourth-order dispersion

    NASA Astrophysics Data System (ADS)

    Atangana, J.; Onana Essama, B. G.; Mokhtari, B.; Kofane, T. C.

    2013-02-01

    We analyze a useful process able to safeguard the fundamental soliton light pulse stability in a strongly perturbed environment by the fourth-order dispersion (FOD). This optical pulse propagation is described by the nonlinear Schrödinger equation (NLSE) with cubic-quintic saturable nonlinearities. Some pulse parameters, called collective variables (CVs) such as amplitude, temporal position, width, chirp, frequency shift and constant phase are obtained analytically. Numerical evolution of CVs and their stability are studied under a typical example to verify our analysis.

  1. The Stokes line width and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Nikishov, A. I.; Ritus, V. I.

    1994-01-01

    For a function given by contour integral the two types (conventions) of asymptotic representations are considered: the usual representation by asymptotic series in inverse powers of large parameters and the special division of contour integral in contributions of high and low saddle points. It is shown that the width of the recessive term formation zone (Stokes strip) in the second convention is determined by uncertainty relation and is much less than the zone width in the first convention. The reasons of such a difference is clarified. The results of the work are useful for understanding of formation region of the exponentially small process arising on the background of the strong one.

  2. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  3. Supercontinuum in ionization by relativistically intense and short laser pulses: Ionization without interference and its time analysis

    NASA Astrophysics Data System (ADS)

    Krajewska, K.; Kamiński, J. Z.

    2016-07-01

    Ionization by relativistically intense laser pulses of finite duration is considered in the framework of strong-field quantum electrodynamics. We show that the resulting ionization spectra change their behavior from the interference-dominated oscillatory pattern to the interference-free smooth supercontinuum, the latter being the main focus of this paper. More specifically, when studying the energy distributions of photoelectrons ionized by circularly polarized and short pulses, we observe the appearance of broad structures lacking the interference patterns. These supercontinua extend over hundreds of driving photon energies, thus corresponding to high-order nonlinear processes. Their positions on the electron energy scale can be controlled by changing the pulse duration. The corresponding polar-angle distributions show asymmetries which are attributed to the radiation pressure experienced by photoelectrons. Moreover, our time analysis shows that the electrons comprising the supercontinuum can form pulses of short duration. While we present the fully numerical results, their interpretation is based on the saddle-point approximation for the ionization probability amplitude.

  4. Pulse shaping system

    DOEpatents

    Skeldon, Mark D.; Letzring, Samuel A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  5. Pulse shaping system

    DOEpatents

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  6. Rietveld X-ray diffraction analysis of nanostructured rutile films of titania prepared by pulsed laser deposition

    SciTech Connect

    Murugesan, S.; Kuppusami, P.; Mohandas, E.

    2010-01-15

    Rietveld powder X-ray diffraction analysis of the rutile films of titanium oxide prepared by pulsed laser deposition was carried out. The crystallite size increased with increase of substrate temperature, while the strain showed a reverse trend. The films synthesized at temperature {>=}573 K showed that the crystal structure was almost close to that of bulk rutile structure. The influence of the substrate temperature on the lattice parameters and oxygen coordinates were also studied in the present work.

  7. Pulse transit time variability analysis in an animal model of endotoxic shock.

    PubMed

    Tang, Collin H H; Chan, Gregory S H; Middleton, Paul M; Cave, Grant; Harvey, Martyn; Javed, Faizan; Savkin, Andrey V; Lovell, Nigel H

    2010-01-01

    The use of non-invasively measured pulse transit time (PTT) to monitor the cardiovascular systems in critically ill patients, like sepsis, can be of significant clinical value. In this study, the potential of PTT and its variability in cardiovascular system monitoring in a mechanically ventilated and anesthetized rabbit model of endotoxic shock was assessed. Eight adult New Zealand white rabbits, which were treated with endotoxin bolus infusion, were studied. Measurements of PTT, pre-ejection period (PEP), and vascular transit time (VTT) were obtained in pre- and post-intervention stages (before and 90 minutes after the administration of endotoxin). The decrease in mean PTT (p < 0.05) and PEP (p < 0.01) in the post-intervention stage reflected sympathetic activation, whilst the increase in respiratory variation in PTT (p < 0.01), PEP (p 〈 0.01), and VTT (p < 0.01) could be attributed to an enhancement of respiratory variation in stroke volume associated with hypovolemia in endotoxic shock. The relationship between beat-to-beat variability in PTT and all other cardiovascular time series were further investigated through linear regression analysis, which revealed that PTT was most strongly correlated with VTT (R(2) ≥ 0.84 with positive slope). Computation of coherence and phase shift in the ventilating frequency band (HF: 0.50 - 0.75 Hz) showed that the respiratory variation in PTT was synchronized with both PEP and VTT (coherence > 0.84 with phase shift less than one cardiac beat). These results highlighted the potential value of PTT and its respiratory variation in characterizing the pathophysioloigcal hemodynamic change in endotoxic shock.

  8. Generation of optical frequency combs in fibres: an optical pulse analysis

    NASA Astrophysics Data System (ADS)

    Zajnulina, Marina; Böhm, Michael; Blow, Keith; Chavez Boggio, José M.; Rieznik, Andres A.; Haynes, Roger; Roth, Martin M.

    2014-07-01

    The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.

  9. Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwak, Ji-hyun; Lenth, Christoph; Salb, Christian; Ko, Eun-Joung; Kim, Kyoung-Woong; Park, Kihong

    2009-10-01

    A double pulse-laser induced breakdown spectroscopy (DP-LIBS) was used to determine arsenic (As) concentration in 16 soil samples collected from 5 different mine tailing sites in Korea. We showed that the use of double pulse laser led to enhancements of signal intensity (by 13% on average) and signal-to-noise ratio of As emission lines (by 165% on average) with smaller relative standard deviation compared to single pulse laser approach. We believe this occurred because the second laser pulse in the rarefied atmosphere produced by the first pulse led to the increase of plasma temperature and populations of exited levels. An internal standardization method using a Fe emission line provided a better correlation and sensitivity between As concentration and the DP-LIBS signal than any other elements used. The Fe was known as one of the major components in current soil samples, and its concentration varied not substantially. The As concentration determined by the DP-LIBS was compared with that obtained by atomic absorption spectrometry (AAS) to evaluate the current LIBS system. They are correlated with a correlation coefficient of 0.94. The As concentration by the DP-LIBS was underestimated in the high concentration range (>1000 mg-As/kg). The loss of sensitivity that occurred at high concentrations could be explained by self-absorption in the generated plasma.

  10. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Width. 29.1085 Section 29.1085 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ) (2 ) Waste tolerance (2 ) (2 ) (2 ) 1 Expressed in inches. 2 Expressed in percentage. elements...

  11. Bounding the Higgs boson width through interferometry.

    PubMed

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  12. 14 CFR 121.115 - Route width.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... clearance. (2) Minimum en route altitudes. (3) Ground and airborne navigation aids. (4) Air traffic density... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Route width. 121.115 Section 121.115 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR...

  13. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... altitudes. (3) Ground and airborne navigation aids. (4) Air traffic density. (5) ATC procedures. (b) Any... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Route width. 121.95 Section 121.95 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR...

  14. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Width. 29.1085 Section 29.1085 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Heavy Fleshy Medium Thin Oil Lean Oily Rich Color intensity Pale Weak Moderate Strong Deep....

  15. 14 CFR 121.115 - Route width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... clearance. (2) Minimum en route altitudes. (3) Ground and airborne navigation aids. (4) Air traffic density... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Route width. 121.115 Section 121.115 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR...

  16. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Route width. 121.95 Section 121.95 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Approval of Routes: Domestic and Flag Operations § 121.95 Route...

  17. Evolution of niche width and adaptive diversification.

    PubMed

    Ackermann, Martin; Doebeli, Michael

    2004-12-01

    Theoretical models suggest that resource competition can lead to the adaptive splitting of consumer populations into diverging lineages, that is, to adaptive diversification. In general, diversification is likely if consumers use only a narrow range of resources and thus have a small niche width. Here we use analytical and numerical methods to study the consequences for diversification if the niche width itself evolves. We found that the evolutionary outcome depends on the inherent costs or benefits of widening the niche. If widening the niche did not have costs in terms of overall resource uptake, then the consumer evolved a niche that was wide enough for disruptive selection on the niche position to vanish; adaptive diversification was no longer observed. However, if widening the niche was costly, then the niche widths remained relatively narrow, allowing for adaptive diversification in niche position. Adaptive diversification and speciation resulting from competition for a broadly distributed resource is thus likely if the niche width is fixed and relatively narrow or free to evolve but subject to costs. These results refine the conditions for adaptive diversification due to competition and formulate them in a way that might be more amenable for experimental investigations. PMID:15696740

  18. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Flue-Cured Tobacco (u.s. Types 11, 12, 13, 14 and Foreign Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length... Heavy Fleshy Medium Thin Oil Lean Oily Rich Color intensity Pale Weak Moderate Strong Deep....

  19. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSPECTION Standards Official Standard Grades for Flue-Cured Tobacco (u.s. Types 11, 12, 13, 14 and Foreign Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length... Heavy Fleshy Medium Thin Oil Lean Oily Rich Color intensity Pale Weak Moderate Strong Deep....

  20. Definition of the {delta} mass and width

    SciTech Connect

    Djukanovic, D.; Scherer, S.; Gegelia, J.

    2007-08-01

    In the framework of effective field theory we show that, at two-loop order, the mass and width of the {delta} resonance defined via the (relativistic) Breit-Wigner parametrization both depend on the choice of field variables. In contrast, the complex-valued position of the pole of the propagator is independent of this choice.

  1. Analysis of the scintillation mechanism in a pressurized {sup 4}He fast neutron detector using pulse shape fitting

    SciTech Connect

    Kelley, R.P. Ray, H.; Jordan, K.A.; Murer, D.

    2015-03-15

    An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  2. Microarray Analysis of Port Wine Stains Before and After Pulsed Dye Laser Treatment

    PubMed Central

    Laquer, Vivian T.; Hevezi, Peter A.; Albrecht, Huguette; Chen, Tina S.; Zlotnik, Albert; Kelly, Kristen M.

    2014-01-01

    Background and Objectives Neither the pathogenesis of port wine stain (PWS) birthmarks nor tissue effects of pulsed dye laser (PDL) treatment of these lesions is fully understood. There are few published reports utilizing gene expression analysis in human PWS skin. We aim to compare gene expression in PWS before and after PDL, using DNA microarrays that represent most, if not all, human genes to obtain comprehensive molecular profiles of PWS lesions and PDL-associated tissue effects. Materials and Methods Five human subjects had PDL treatment of their PWS. One week later, three biopsies were taken from each subject: normal skin (N); untreated PWS (PWS); PWS post-PDL (PWS + PDL). Samples included two lower extremity lesions, two facial lesions, and one facial nodule. High-quality total RNA isolated from skin biopsies was processed and applied to Affymetrix Human gene 1.0ST microarrays for gene expression analysis. We performed a 16 pair-wise comparison identifying either up- or down-regulated genes between N versus PWS and PWS versus PWS + PDL for four of the donor samples. The PWS nodule (nPWS) was analyzed separately. Results There was significant variation in gene expression profiles between individuals. By doing pair-wise comparisons between samples taken from the same donor, we were able to identify genes that may participate in the formation of PWS lesions and PDL tissue effects. Genes associated with immune, epidermal, and lipid metabolism were up-regulated in PWS skin. The nPWS exhibited more profound differences in gene expression than the rest of the samples, with significant differential expression of genes associated with angiogenesis, tumorigenesis, and inflammation. Conclusion In summary, gene expression profiles from N, PWS, and PWS + PDL demonstrated significant variation within samples from the same donor and between donors. By doing pair-wise comparisons between samples taken from the same donor and comparing these results between donors, we were

  3. Morphodynamic response of a variable-width channel to changes in sediment supply

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Brew, Andrew K.; Morgan, Jacob A.

    2015-07-01

    River channels commonly exhibit downstream variations in channel width, which can lead to the development of alternating shallow and deep areas known as riffle-pool sequences. The response of these channels to variations in sediment supply remains largely unexplored. Here we investigate the morphodynamic response of a variable-width channel to changes in sediment supply through laboratory experiments conducted in a straight flume in which we imposed sinusoidal variations in width. We first developed equilibrium conditions under a constant sediment supply and then eliminated the sediment feed to create a degraded, armored bed. This sediment-starved bed was subjected to two types of sediment supply increases: a return to the initial constant supply, and the introduction of a well-sorted sediment pulse (analogous to gravel augmentation). Riffles and pools formed in wide and narrow areas, respectively, and the location of and relief between riffles and pools remained the same throughout all experimental runs, regardless of the sediment supply. The primary channel response to changes in supply was adjustment of the overall slope. The sediment pulse evolved primarily through dispersion rather than translation, which contrasts with prior gravel augmentation experiments conducted in constant-width channels and suggests that width variation and resulting riffle-pool topography enhances pulse dispersion. Our results indicate that width variation is a primary control on the location and relief of riffles and pools in straight channels, and sediment supply changes are unlikely to affect riffle-pool morphology when bank geometry is fixed and water discharge is steady.

  4. Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications.

    PubMed

    Pearson, Guy N; Roberts, P John; Eacock, Justin R; Harris, Michael

    2002-10-20

    The antenna and the Doppler estimation characteristics of a coherent pulsed lidar intended for short-range aerosol backscatter applications have been analyzed. The system used fiber-optic interconnects and operated at a wavelength of 1.548 microm. The range dependence of the signal for various bistatic and monostatic antenna configurations has been determined. The system operated in a low-pulse-energy, high-pulse-repetition-rate mode, and the Doppler estimates from the return signal were achieved with a multipulse accumulation procedure. The expected performance of the accumulation in this low-photocount regime was compared with the data obtained from the system, and a reasonable level of agreement was demonstrated. PMID:12396197

  5. Brachial vs. central systolic pressure and pulse wave transmission indicators: a critical analysis.

    PubMed

    Izzo, Joseph L

    2014-12-01

    This critique is intended to provide background for the reader to evaluate the relative clinical utilities of brachial cuff systolic blood pressure (SBP) and its derivatives, including pulse pressure, central systolic pressure, central augmentation index (AI), and pulse pressure amplification (PPA). The critical question is whether the newer indicators add sufficient information to justify replacing or augmenting brachial cuff blood pressure (BP) data in research and patient care. Historical context, pathophysiology of variations in pulse wave transmission and reflection, issues related to measurement and model errors, statistical limitations, and clinical correlations are presented, along with new comparative data. Based on this overview, there is no compelling scientific or practical reason to replace cuff SBP with any of the newer indicators in the vast majority of clinical situations. Supplemental value for central SBP may exist in defining patients with exaggerated PPA ("spurious systolic hypertension"), managing cardiac and aortic diseases, and in studies of cardiovascular drugs, but there are no current standards for these possibilities.

  6. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    PubMed

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-01

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  7. Defining the boundaries of bedside pulse contour analysis: dynamic arterial elastance.

    PubMed

    Pinsky, Michael R

    2011-01-01

    Assessment of vasomotor tone is essential in defining appropriate resuscitation strategies for the hypotensive patient. Although changes in mean arterial pressure to cardiac output define arterial resistance, resistance is only one component of vasomotor tone. Compliance is the other component. The reciprocal of compliance is arterial elastance (Ea). Importantly, dynamic Ea can be estimated by the pulse pressure variation to stroke volume variation relation. Dynamic Ea is only one component of vasomotor tone, however, and increases in pulse pressure may not be proportional to increases in mean arterial pressure. Also, devices that use the arterial pressure pulse to calculate the stroke volume have an inherent bias that is different amongst devices based on their transfer function algorithms. The use of dynamic Ea for clinical decision-making thus needs to be validated separately for different devices and types of patients. PMID:21345250

  8. Safety Aspects of Pulsed Dose Rate Brachytherapy: Analysis of Errors in 1,300 Treatment Sessions

    SciTech Connect

    Koedooder, Kees Wieringen, Niek van; Grient, Hans N.B. van der; Herten, Yvonne R.J. van; Pieters, Bradley R.; Blank, Leo

    2008-03-01

    Purpose: To determine the safety of pulsed-dose-rate (PDR) brachytherapy by analyzing errors and technical failures during treatment. Methods and Materials: More than 1,300 patients underwent treatment with PDR brachytherapy, using five PDR remote afterloaders. Most patients were treated with consecutive pulse schemes, also outside regular office hours. Tumors were located in the breast, esophagus, prostate, bladder, gynecology, anus/rectum, orbit, head/neck, with a miscellaneous group of small numbers, such as the lip, nose, and bile duct. Errors and technical failures were analyzed for 1,300 treatment sessions, for which nearly 20,000 pulses were delivered. For each tumor localization, the number and type of occurring errors were determined, as were which localizations were more error prone than others. Results: By routinely using the built-in dummy check source, only 0.2% of all pulses showed an error during the phase of the pulse when the active source was outside the afterloader. Localizations treated using flexible catheters had greater error frequencies than those treated with straight needles or rigid applicators. Disturbed pulse frequencies were in the range of 0.6% for the anus/rectum on a classic version 1 afterloader to 14.9% for orbital tumors using a version 2 afterloader. Exceeding the planned overall treatment time by >10% was observed in only 1% of all treatments. Patients received their dose as originally planned in 98% of all treatments. Conclusions: According to the experience in our institute with 1,300 PDR treatments, we found that PDR is a safe brachytherapy treatment modality, both during and outside of office hours.

  9. Analysis of the spatial distribution of free radicals in ammonium tartrate by pulse EPR techniques.

    PubMed

    Marrale, Maurizio; Brai, Maria; Barbon, Antonio; Brustolon, Marina

    2009-03-01

    Using pulse electron paramagnetic resonance (EPR) on a series of l(+)-ammonium tartrate (AT) dosimeters exposed to radiations with different linear energy transfer (LET), we assessed the ability of pulse EPR spectroscopy to discriminate the quality of various radiation beams such as (60)Co gamma-ray photons, protons and thermal neutrons at various doses by analyzing the local radical distributions produced by the different beams. We performed two types of pulse EPR investigations: two-pulse electron spin echo decay obtained by varying the microwave power, and a double electron-electron resonance (DEER) study. Both methods provide information about the dipolar interactions among the free radicals and about their spatial distributions. The first method provided information on the instantaneous diffusion and hence the microscopic concentration of the radicals that is compared with the macroscopic one obtained by CW-EPR. The DEER spectra yielded the distributions of distances between pairs of radicals two to five crystal cells apart produced by the same radiation event, a result reported here for the first time. The inter-radical distributions given by the DEER results have been simulated by modeling the radical distributions according to the details of the matter-radiation interactions for the various beams. The results of both types of pulse experiments are strongly dependent on the radiation quality. This was also observed for samples giving indistinguishable CW-EPR spectral profiles. We conclude that the pulse EPR measurements can be valuable tools for distinguishing the LET of the radiation beams, an important parameter for radiobiological considerations. PMID:19267562

  10. Non-invasive assessment of hemodynamics: a comparative analysis of fingertip pulse contour analysis and impedance cardiography

    PubMed Central

    Sauder, Katherine A.; Pokorney, Paige E.; McCrea, Cindy E.; Ulbrecht, Jan S.; Kris-Etherton, Penny M.; West, Sheila G.

    2015-01-01

    Objective Systemic hemodynamic assessment is useful for characterizing the underlying physiology of hypertension, selecting individualized treatment approaches, and understanding the underlying mechanisms of action of interventions. Invasive methods are not suitable for routine clinic or research use, and non-invasive methods such as impedance cardiography have technical and practical limitations. Fingertip pulse contour analysis measured with the Nexfin device is a novel alternative for non-invasive assessment of blood pressure and hemodynamics. While both impedance cardiography and the Nexfin have been validated against invasive methods, the extent to which they correlate with each other is unknown. This study is a comparative analysis of data simultaneously obtained with impedance cardiography and the Nexfin device. Methods As part of a larger clinical trial, 13 adults with type 2 diabetes completed cardiovascular reactivity testing on three occasions: at study baseline and after two 4-week dietary treatment periods. Blood pressure, hemodynamics, and heart rate variability were assessed at rest and during acute mental stress. Results Blood pressure, heart rate, and heart rate variability data were significantly correlated between the two devices, but hemodynamic data (stroke volume, cardiac output, total peripheral resistance) were not significantly correlated. Both techniques detected treatment-related changes in blood pressure and total peripheral resistance, but significantly differed in magnitude and/or direction of the treatment effects. Conclusions We conclude that Nexfin is not an appropriate alternative to impedance cardiography for measurement of underlying hemodynamics in psychophysiological research, but may be useful for beat-to-beat monitoring of blood pressure and heart rate variability. PMID:25815738

  11. Theoretical analysis of fluorescence signals in filamentation of femtosecond laser pulses in nitrogen molecular gas

    SciTech Connect

    Arevalo, E.; Becker, A.

    2005-10-15

    We study numerically and analytically the role of the combined effect of self-focusing, geometrical focusing, and the plasma defocusing in the formation of the fluorescence signal during the filamentation of a Ti:sapphire laser pulse in nitrogen molecular gas. Results of numerical simulations are used to estimate the number of excited ions in the focal volume, which is proportional to the fluorescence signal. We find good agreement between the theoretical results and the experimental data, showing that such data can be used to get further insight into the effective focal volume during filamentation of femtosecond laser pulses in transparent media.

  12. Transient thermal analysis and mechanical strength testing of pulsed laser welded ribbons to feedthru joints

    NASA Astrophysics Data System (ADS)

    Lin, Yaomin; Jiang, Guangqiang

    2012-03-01

    In this work, a laser welding process for attaching conducting ribbons to a miniaturized feedthru is introduced. A pulsed 1064nm Nd:YAG laser was used as an example in this study. A numerical simulation by means of finite element method (FEM) for the prediction of temperatures in the feedthru assembly is presented. The approach used was intended to solve the energy balance equation with appropriate initial and boundary conditions. A laser weld joint strength test was conducted using a Mechanical Strength Tester. The influence of processing parameters, such as laser power and pulse duration, on the temperature distribution and the weld joint strength are investigated and discussed.

  13. Depth profile analysis of amorphous silicon thin film solar cells by pulsed radiofrequency glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Sanchez, Pascal; Menéndez, Armando; Pereiro, Rosario; Sanz-Medel, Alfredo; Fernández, Beatriz

    2015-02-01

    Among the different solar cell technologies, amorphous silicon (a-Si:H) thin film solar cells (TFSCs) are today very promising and, so, TFSCs analytical characterization for quality control issues is increasingly demanding. In this line, depth profile analysis of a-Si:H TFSCs on steel substrate has been investigated by using pulsed radiofrequency glow discharge-time of flight mass spectrometry (rf-PGD-TOFMS). First, to discriminate potential polyatomic interferences for several analytes (e.g., (28)Si(+), (31)P(+), and (16)O(+)) appropriate time positions along the GD pulse profile were selected. A multi-matrix calibration approach, using homogeneous certified reference materials without hydrogen as well as coated laboratory-made standards containing hydrogen, was employed for the methodological calibration. Different calibration strategies (in terms of time interval selection on the pulse profile within the afterglow region) have been compared, searching for optimal calibration graphs correlation. Results showed that reliable and fast quantitative depth profile analysis of a-Si:H TFSCs by rf-PGD-TOFMS can be achieved. PMID:25404156

  14. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  15. Pulse-shaping circuit for laser excitation

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.

    1981-01-01

    Narrower, impedence-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedence of gas.

  16. Analysis and design modifications for upgrade of storage ring bump pulse system driving the injection bump magnets at the ALS

    SciTech Connect

    Stover, G.D.

    1995-04-01

    A fast (4.0 ms half period) resonant discharge pulse system, using SCRs, was designed and constructed to drive the injection bump magnet system at the Advanced Light Source (ALS). The commissioning process revealed a high frequency resonance (T = 800 NS) superimposed on the driver discharge wave form. In addition, the peak amplitude of the magnet load recovery current exceeded design specifications. A SPICE analysis confirmed the suspected mechanisms for the parasitic ringing and the excessive load current {open_quotes}undershoot{close_quotes}. This paper will address the subsequent analysis, measurements, and modifications carried out during the maintenance shutdown in June 1993.

  17. High-order harmonic generation by chirped and self-guided femtosecond laser pulses. II. Time-frequency analysis

    SciTech Connect

    Tosa, V.; Kim, H.T.; Kim, I.J.; Nam, C.H.

    2005-06-15

    We present a time-dependent analysis of high-order harmonics generated by a self-guided femtosecond laser pulse propagating through a long gas jet. A three-dimensional model is used to calculate the harmonic fields generated by laser pulses, which only differ by the sign of their initial chirp. The time-frequency distributions of the single-atom dipole and harmonic field reveal the dynamics of harmonic generation in the cutoff. A time-dependent phase-matching calculation was performed, taking into account the self-phase modulation of the laser field. Good phase matching holds for only few optical cycles, being dependent on the electron trajectory. When the cutoff trajectory is phase matched, emitted harmonics are locked in phase and the emission intensity is maximized.

  18. One-dimensional model for the intracranial pulse morphological analysis during hyperventilation and CO2 inhalation tests

    NASA Astrophysics Data System (ADS)

    Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.

    2015-11-01

    The brain's CO2 reactivity mechanism is coupled with cerebral autoregulation and other unique features of cerebral hemodynamics. We developed a one-dimensional nonlinear model of blood flow in the cerebral arteries coupled to lumped parameter (LP) networks. The LP networks incorporate cerebral autoregulation, CO2 reactivity, intracranial pressure, cerebrospinal fluid, and cortical collateral blood flow models. The model was used to evaluate hemodynamic variables (arterial deformation, blood velocity and pressure) in the cerebral vasculature during hyperventilation and CO2 inhalation test. Tests were performed for various arterial blood pressure (ABP) representing normal and hypotensive conditions. The increase of the cerebral blood flow rates agreed well with the published measurements for various ABP measurements taken during clinical CO2 reactivity tests. The changes in distal vasculature affected the reflected pulse wave energy, which caused the waveform morphological changes at the middle cerebral, common and internal carotid arteries. The pulse morphological analysis demonstrated agreement with previous clinical measurements for cerebral vasoconstriction and vasodilation.

  19. Cooperative pulses

    NASA Astrophysics Data System (ADS)

    Braun, Michael; Glaser, Steffen J.

    2010-11-01

    We introduce the concept of cooperative (COOP) pulses which are designed to compensate each other's imperfections. In multi-scan experiments, COOP pulses can cancel undesired signal contributions, complementing and generalizing phase cycles. COOP pulses can be efficiently optimized using an extended version of the optimal-control-based gradient ascent pulse engineering (GRAPE) algorithm. The advantage of the COOP approach is experimentally demonstrated for broadband and band-selective pulses.

  20. Analysis of the cryogenic system behavior for pulsed heat load in EAST

    NASA Astrophysics Data System (ADS)

    Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H.

    2014-01-01

    EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

  1. Cramer-rao bounds and coherence performance analysis for next generation radar with pulse trains.

    PubMed

    Tang, Xiaowei; Tang, Jun; He, Qian; Wan, Shuang; Tang, Bo; Sun, Peilin; Zhang, Ning

    2013-01-01

    We study the Cramer-Rao bounds of parameter estimation and coherence performance for the next generation radar (NGR). In order to enhance the performance of NGR, the signal model of NGR with master-slave architecture based on a single pulse is extended to the case of pulse trains, in which multiple pulses are emitted from all sensors and then integrated spatially and temporally in a unique master sensor. For the MIMO mode of NGR where orthogonal waveforms are emitted, we derive the closed-form Cramer-Rao bound (CRB) for the estimates of generalized coherence parameters (GCPs), including the time delay differences, total phase differences and Doppler frequencies with respect to different sensors. For the coherent mode of NGR where the coherent waveforms are emitted after pre-compensation using the estimates of GCPs, we develop a performance bound of signal-to-noise ratio (SNR) gain for NGR based on the aforementioned CRBs, taking all the estimation errors into consideration. It is shown that greatly improved estimation accuracy and coherence performance can be obtained with pulse trains employed in NGR. Numerical examples demonstrate the validity of the theoretical results. PMID:23612588

  2. Cramer-Rao Bounds and Coherence Performance Analysis for Next Generation Radar with Pulse Trains

    PubMed Central

    Tang, Xiaowei; Tang, Jun; He, Qian; Wan, Shuang; Tang, Bo; Sun, Peilin; Zhang, Ning

    2013-01-01

    We study the Cramer-Rao bounds of parameter estimation and coherence performance for the next generation radar (NGR). In order to enhance the performance of NGR, the signal model of NGR with master-slave architecture based on a single pulse is extended to the case of pulse trains, in which multiple pulses are emitted from all sensors and then integrated spatially and temporally in a unique master sensor. For the MIMO mode of NGR where orthogonal waveforms are emitted, we derive the closed-form Cramer-Rao bound (CRB) for the estimates of generalized coherence parameters (GCPs), including the time delay differences, total phase differences and Doppler frequencies with respect to different sensors. For the coherent mode of NGR where the coherent waveforms are emitted after pre-compensation using the estimates of GCPs, we develop a performance bound of signal-to-noise ratio (SNR) gain for NGR based on the aforementioned CRBs, taking all the estimation errors into consideration. It is shown that greatly improved estimation accuracy and coherence performance can be obtained with pulse trains employed in NGR. Numerical examples demonstrate the validity of the theoretical results. PMID:23612588

  3. Cramer-rao bounds and coherence performance analysis for next generation radar with pulse trains.

    PubMed

    Tang, Xiaowei; Tang, Jun; He, Qian; Wan, Shuang; Tang, Bo; Sun, Peilin; Zhang, Ning

    2013-01-01

    We study the Cramer-Rao bounds of parameter estimation and coherence performance for the next generation radar (NGR). In order to enhance the performance of NGR, the signal model of NGR with master-slave architecture based on a single pulse is extended to the case of pulse trains, in which multiple pulses are emitted from all sensors and then integrated spatially and temporally in a unique master sensor. For the MIMO mode of NGR where orthogonal waveforms are emitted, we derive the closed-form Cramer-Rao bound (CRB) for the estimates of generalized coherence parameters (GCPs), including the time delay differences, total phase differences and Doppler frequencies with respect to different sensors. For the coherent mode of NGR where the coherent waveforms are emitted after pre-compensation using the estimates of GCPs, we develop a performance bound of signal-to-noise ratio (SNR) gain for NGR based on the aforementioned CRBs, taking all the estimation errors into consideration. It is shown that greatly improved estimation accuracy and coherence performance can be obtained with pulse trains employed in NGR. Numerical examples demonstrate the validity of the theoretical results.

  4. Analysis of physicochemical properties of nanoparticles obtained by pulsed electric discharges in water

    NASA Astrophysics Data System (ADS)

    Rutberg, F. G.; Gusarov, V. V.; Kolikov, V. A.; Voskresenskaya, I. P.; Snegov, V. N.; Stogov, A. Yu.; Cherepkova, I. A.

    2012-12-01

    Aqueous dispersions of nanoparticles are obtained by pulsed electric discharges in water between silver, copper, and iron electrodes. It is shown that depending on the type of the electrode metal, metallic and oxide nanoparticles with the I and II degrees of oxidation, as well as nanoparticles with the magnetite and hematite structure, are formed.

  5. [Simulation Analysis of the Pulse Signal on the Electricity Network of Cardiovascular System].

    PubMed

    Liu, Ying; Yin, Yanfei; Zhang, Defa; Wang, Menghong; Bi, Yongqiang

    2015-12-01

    Pulse waves contain abundant physiological and pathological information of human body. Research of the relationship between pulse wave and human cardiovascular physiological parameters can not only help clinical diagnosis and treatment of cardiovascular diseases, but also contribute to develop many new medical instruments. Based on the traditional double elastic cavity model, the human cardiovascular system was established by using the electric network model in this paper. The change of wall pressure and blood flow in artery was simulated. And the influence of the peripheral resistance and vessel compliance to the distribution of blood flow in artery was analyzed. The simulation results were compared with the clinical monitoring results to predict the physiological and pathological state of human body. The result showed that the simulation waveform of arterial wall pressure and blood flow was stabile after the second cardiac cycle. With the increasing of peripheral resistance, the systolic blood pressure of artery increased, the diastolic blood pressure had no significant change, and the pulse pressure of artery increased gradually. With the decreasing of vessel compliance, the vasoactivity became worse and the pulse pressure increased correspondingly. The simulation results were consistent with the clinical monitoring results. The increasing of peripheral resistance and decreasing of vascular compliance indicated that the incidence of hypertension and atherosclerosis was increased.

  6. Pulsed dc- and sine-wave-excited cold atmospheric plasma plumes: A comparative analysis

    NASA Astrophysics Data System (ADS)

    Xiong, Q.; Lu, X. P.; Ostrikov, K.; Xian, Y.; Zou, C.; Xiong, Z.; Pan, Y.

    2010-04-01

    Cold atmospheric-pressure plasma plumes are generated in the ambient air by a single-electrode plasma jet device powered by pulsed dc and ac sine-wave excitation sources. Comprehensive comparisons of the plasma characteristics, including electrical properties, optical emission spectra, gas temperatures, plasma dynamics, and bacterial inactivation ability of the two plasmas are carried out. It is shown that the dc pulse excited plasma features a much larger discharge current and stronger optical emission than the sine-wave excited plasma. The gas temperature in the former discharge remains very close to the room temperature across the entire plume length; the sine-wave driven discharge also shows a uniform temperature profile, which is 20-30 degrees higher than the room temperature. The dc pulse excited plasma also shows a better performance in the inactivation of gram-positive staphylococcus aureus bacteria. These results suggest that the pulsed dc electric field is more effective for the generation of nonequilibrium atmospheric pressure plasma plumes for advanced plasma health care applications.

  7. Analysis of the cryogenic system behavior for pulsed heat load in EAST

    SciTech Connect

    Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H.

    2014-01-29

    EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

  8. Thermal analysis of an indirectly heat pulsed non-volatile phase change material microwave switch

    SciTech Connect

    Young, Robert M. El-Hinnawy, Nabil; Borodulin, Pavel; Wagner, Brian P.; King, Matthew R.; Jones, Evan B.; Howell, Robert S.; Lee, Michael J.

    2014-08-07

    We show the finite element simulation of the melt/quench process in a phase change material (GeTe, germanium telluride) used for a radio frequency switch. The device is thermally activated by an independent NiCrSi (nickel chrome silicon) thin film heating element beneath a dielectric separating it electrically from the phase change layer. A comparison is made between the predicted and experimental minimum power to amorphize (MPA) for various thermal pulse powers and pulse time lengths. By including both the specific heat and latent heat of fusion for GeTe, we find that the MPA and the minimum power to crystallize follow the form of a hyperbola on the power time effect plot. We also find that the simulated time at which the entire center GeTe layer achieves melting accurately matches the MPA curve for pulse durations ranging from 75–1500 ns and pulse powers from 1.6–4 W.

  9. Analysis of laser damage tests on a coating for broad bandwidth high reflection of femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Bellum, John; Winstone, Trevor; Lamaignere, Laurent; Sozet, Martin; Kimmel, Mark; Rambo, Patrick; Field, Ella; Kletecka, Damon

    2015-07-01

    We have designed and produced an optical coating suitable for broad bandwidth high reflection (BBHR) at 45° angle of incidence (AOI), P polarization (Ppol) of petawatt (PW) class fs laser pulses of ~ 900 nm center wavelength. We have produced such BBHR coatings consisting of TiO2/SiO2 layer pairs deposited by ion assisted e-beam evaporation using the large optics coater at Sandia National Laboratories. This paper focuses on laser-induced damage threshold (LIDT) tests of these coatings. LIDT is difficult to measure for such coatings due to the broad range of wavelengths over which they can operate. An ideal test would be in the vacuum environment of the fs-pulse PW use laser using fs pulses identical to of the PW laser. Short of this ideal testing would be tests over portions of the HR band of the BBHR coating using ns or sub-ps pulses produced by tunable lasers. Such tests could be over ~ 10 nm wide wavelength intervals whose center wavelengths could be tuned over the BBHR coating's operational band. Alternatively, the HR band of the BBHR coating could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to absorbed moisture by the coating under ambient conditions. We conduct LIDT tests on the BBHR coatings at selected AOIs to gain insight into the coatings' laser damage properties, and analyze how the results of the different LIDT tests compare.

  10. Investigation of the Effect of Finite Pulse Errors on BABA Pulse Sequence Using Floquet-Magnus Expansion Approach

    PubMed Central

    Mananga, Eugene S.; Reid, Alicia E.

    2013-01-01

    This paper presents the study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order F1 is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the Λ1 (t) function not present in other schemes. This function provides an easy way for evaluating the spin evolution during “the time in between” through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of Λ1 (t) is useful especially for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provides a natural choice of Λ1 (0) is ignored. This work uses the Λ1 (t) function to compare the efficiency of the BABA pulse sequence with δ – pulses and the BABA pulse sequence with finite pulses. Calculations of Λ1 (t) and F1 are presented. PMID:25792763

  11. Analysis and reconstruction of a pulsed jet in crossflow by multi-plane snapshot POD

    NASA Astrophysics Data System (ADS)

    Vernet, Romain; Thomas, Lionel; David, Laurent

    2009-10-01

    In this work, snapshot proper orthogonal decomposition (POD) is used to study a pulsed jet in crossflow where the velocity fields are extracted from stereoscopic particle image velocimetry (SPIV) results. The studied pulsed jet is characterized by a frequency f = 1 Hz, a Reynolds number Re j = 500 (based on the mean jet velocity {overline{U}j} = 1.67 cm/s and a mean velocity ratio of R = 1). Pulsed jet and continuous jet are compared via mean velocity field trajectory and Q criterion. POD results of instantaneous, phase-averaged and fluctuating velocity fields are presented and compared in this paper. Snapshot POD applied on one plane allows us to distinguish an organization of the first spatial eigenmodes. A distinction between “natural modes” and “pulsed modes” is achieved with the results obtained by the pulsed and unforced jet. Secondly, the correlation tensor is established with four parallel planes (multi-plane snapshot POD) for the evaluation of volume spatial modes. These resulting modes are interpolated and the volume velocity field is reconstructed with a minimal number of modes for all the times of the pulsation period. These reconstructions are compared to orthogonal measurements to the transverse jet in order to validate the obtained three-dimensional velocity fields. Finally, this POD approach for the 3D flow field reconstruction from experimental data issued from planes parallel to the flow seems capable to extract relevant information from a complex three-dimensional flow and can be an alternative to tomo-PIV for large volume of measurement.

  12. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    SciTech Connect

    Li, Shihong; Chang, Eric Y.; Chung, Christine B.; Bae, Won C.; Du, Jiang; Hua, Yanqing; Zhou, Yi

    2014-02-15

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can

  13. Missing pulse detector for a variable frequency source

    DOEpatents

    Ingram, Charles B.; Lawhorn, John H.

    1979-01-01

    A missing pulse detector is provided which has the capability of monitoring a varying frequency pulse source to detect the loss of a single pulse or total loss of signal from the source. A frequency-to-current converter is used to program the output pulse width of a variable period retriggerable one-shot to maintain a pulse width slightly longer than one-half the present monitored pulse period. The retriggerable one-shot is triggered at twice the input pulse rate by employing a frequency doubler circuit connected between the one-shot input and the variable frequency source being monitored. The one-shot remains in the triggered or unstable state under normal conditions even though the source period is varying. A loss of an input pulse or single period of a fluctuating signal input will cause the one-shot to revert to its stable state, changing the output signal level to indicate a missing pulse or signal.

  14. Spinal cord stimulation with interleaved pulses: a randomized, controlled trial.

    PubMed

    North, Richard B; Kidd, David H; Olin, John; Sieracki, Jeffrey M; Boulay, Marc

    2007-10-01

    Objectives.  The development of multicontact electrodes and programmable, implanted pulse generators has increased the therapeutic success of spinal cord stimulation (SCS) by enhancing the ability to capture and maintain pain/paresthesia overlap. This study sought to determine if interleaved stimulation and/or frequency doubling improves pain/paresthesia overlap in patients with failed back surgery syndrome. Methods.  Using a patient-interactive computer system that quantifies SCS performance and presents stimulation settings in randomized, double-blind fashion, we compared the effect on pain/paresthesia overlap of interleaved stimulation (rapidly interleaved pulse trains using two different contact combinations) vs. standard treatment with a single contact combination, controlling for frequency doubling. Stimulation amplitude (charge per phase, as determined by varying pulse voltage or width) was adjusted to a subjectively comfortable intensity (usage amplitude), which was maintained for all trials in each patient. The number of percutaneous spinal electrodes used (one or two) and the phase angle between interleaved pulses were additional study variables. Results.  Multivariate analysis of 266 test results from 15 patients revealed a statistically significant (p ≤ 0.05) association between increased computer-calculated pain/paresthesia overlap and 1) high- and low-frequency interleaved stimulation using two combinations of contacts and 2) frequency doubling using one combination. We found no significant effect for electrode configuration (single or dual), pulse width matching, or phase angle. Conclusions.  The statistically significant advantages we observed for SCS with interleaved stimulation are explained, at least in part, by the effects of frequency doubling. These findings have important implications for the design and adjustment of pulse generators. PMID:22150894

  15. Demonstration of negative signal delay with short-duration transient pulse

    NASA Astrophysics Data System (ADS)

    Ravelo, B.

    2011-07-01

    This paper introduces theoretic and experimental analyses of short-duration pulse propagation through a negative group delay (NGD) circuit. The basic analysis method of this electronic circuit operating in baseband and microwave frequencies is investigated. Then, its electrical fundamental characteristics vis-à-vis transient signals are developed. To validate the theoretic concept, planar hybrid devices with one- and two-stage NGD cells were designed, simulated, fabricated and tested. Transient analyses with ultra-wide band (UWB) pulse signals with different widths are realized. Then, experimental results in good agreement with the theoretical predictions were observed. Consequently, group delay going down under -2.5 ns is evidenced in baseband frequency up to 63 MHz with one-stage NGD cell. In time-domain, a Gaussian pulse in advance of about t0 = -1.5 ns or 20% of its half-height time-width was measured. This corresponds to a negative group velocity of about vg = L/t0 = -0.13c (L is the physical length of the tested device and c is light speed in the vacuum). More significant NGD value over 100-MHz bandwidth is stated with two-stage NGD cells. This results in a Gaussian pulse peak advance of about -5 ns (raising a group velocity of about vg = -0.12c) or 31% of its half-height time-width. Finally, some potential applications based on the NGD function are discussed.

  16. Peak holding circuit for extremely narrow pulses

    NASA Technical Reports Server (NTRS)

    Oneill, R. W. (Inventor)

    1975-01-01

    An improved pulse stretching circuit comprising: a high speed wide-band amplifier connected in a fast charge integrator configuration; a holding circuit including a capacitor connected in parallel with a discharging network which employs a resistor and an FET; and an output buffer amplifier. Input pulses of very short duration are applied to the integrator charging the capacitor to a value proportional to the input pulse amplitude. After a predetermined period of time, conventional circuitry generates a dump pulse which is applied to the gate of the FET making a low resistance path to ground which discharges the capacitor. When the dump pulse terminates, the circuit is ready to accept another pulse to be stretched. The very short input pulses are thus stretched in width so that they may be analyzed by conventional pulse height analyzers.

  17. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin

    2016-07-01

    Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

  18. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin

    2016-10-01

    Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

  19. PULSE SORTER

    DOEpatents

    Wade, E.J.

    1958-07-29

    An apparatus is described for counting and recording the number of electrical pulses occurring in each of a timed sequence of groups of pulses. The particular feature of the invention resides in a novel timing circuit of the univibrator type which provides very accurately timed pulses for opening each of a series of coincidence channels in sequence. The univibrator is shown incorporated in a pulse analyzing system wherein a series of pulse counting channels are periodically opened in order, one at a time, for a predetermtned open time interval, so that only one channel will be open at the time of occurrence of any of the electrical pulses to be sorted.

  20. AlGaInP red-emitting light emitting diode under extremely high pulsed pumping

    NASA Astrophysics Data System (ADS)

    Yadav, Amit; Titkov, Ilya E.; Sokolovskii, Grigorii S.; Karpov, Sergey Y.; Dudelev, Vladislav V.; Soboleva, Ksenya K.; Strassburg, Martin; Pietzonka, Ines; Lugauer, Hans-Juergen; Rafailov, Edik U.

    2016-03-01

    Efficiency of commercial 620 nm AlGaInP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. To understand the nature of LED efficiency decrease with current, pulse width variation is used. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major factor controlling the LED efficiency reduction at CW and sub-microsecond pumping. The overheating can be effectively avoided by the use of sub-nanosecond current pulses. A direct correlation between the onset of the efficiency decrease and LED overheating is demonstrated.

  1. Numerical Analysis of Narrow Band Ultrasonic Wave Generation with High Repetition Pulse Laser and Laser Scanning

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Yamaguchi, K.; Biwa, S.

    2014-06-01

    Although the easiest way to enhance ultrasonic energy generated with pulse laser is to increase laser output, excessive laser output causes damage of the surface. This study introduced an alternative way to generate burst signals without any damages at the surface using a newly developed high repetition pulse laser controlled by galvano mirrors. The calculation results using two-dimensional elastodynamic finite integration technique coupled with thermoelastic effect proved that burst wave of 1 MHz and its higher harmonics were generated while supressing excessive temperature rise using this technique. Moreover, significantly large displacements at the frequency range sufficiently lower than laser repetition rate were observed of the same order of displacements generated with one single shot with the same input energy.

  2. Determination of crash test pulses and their application to aircraft seat analysis

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Williams, M. S.; Fasanella, E. L.

    1981-01-01

    Deceleration time histories (crash pulses) from a series of twelve light aircraft crash tests conducted at NASA Langley Research Center (LaRC) were analyzed to provide data for seat and airframe design for crashworthiness. Two vertical drop tests at 12.8 m/s (42 ft/s) and 36 G peak deceleration (simulating one of the vertical light aircraft crash pulses) were made using an energy absorbing light aircraft seat prototype. Vertical pelvis acceleration measured in a 50 percentile dummy in the energy absorbing seat were found to be 45% lower than those obtained from the same dummy in a typical light aircraft seat. A hybrid mathematical seat-occupant model was developed using the DYCAST nonlinear finite element computer code and was used to analyze a vertical drop test of the energy absorbing seat. Seat and occupant accelerations predicted by the DYCAST model compared quite favorably with experimental values.

  3. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    NASA Astrophysics Data System (ADS)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  4. Analysis of the Interaction of Short-Pulse High-Fluence Radiation with Targets

    SciTech Connect

    Lawrence, R.Jeffery

    1999-07-23

    We generally use large-scale hydrocodes to study the dynamic response of targets to influence pulsed radiation loads. However, for many applications where the desired solution does not require a detailed specification of pressure- or velocity-time histories, there are simple analytic approaches that can yield surprisingly accurate results. Examples include determining either the final velocity of a radiation-driven flying plate or the impulse delivered to a structural element. These methods are all based on relatively straightforward use of conservation of mass and momentum, but they typically need one scaling-law parameter. In this context, short pulse means short compared to the characteristic time of the desired response, which allows for the phenomena to be essentially uncoupled. High fluence means that the input energy is great enough to yield vaporization or blowoff of one or more portions of the configuration. We discuss some of these methods, give examples, and suggest limitations and criteria for their use.

  5. Gas chromatography coupled to tunable pulsed glow discharge time-of-flight mass spectrometry for environmental analysis.

    PubMed

    Solà-Vázquez, Auristela; Lara-Gonzalo, Azucena; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2010-05-01

    A tuneable microsecond pulsed direct current glow discharge (GD)-time-of-flight mass spectrometer MS(TOF) developed in our laboratory was coupled to a gas chromatograph (GC) to obtain sequential collection of the mass spectra, at different temporal regimes occurring in the GD pulses, during elution of the analytes. The capabilities of this set-up were explored using a mixture of volatile organic compounds of environmental concern: BrClCH, Cl(3)CH, Cl(4)C, BrCl(2)CH, Br(2)ClCH, Br(3)CH. The experimental parameters of the GC-pulsed GD-MS(TOF) prototype were optimized in order to separate appropriately and analyze the six selected organic compounds, and two GC carrier gases, helium and nitrogen, were evaluated. Mass spectra for all analytes were obtained in the prepeak, plateau and afterpeak temporal regimes of the pulsed GD. Results showed that helium offered the best elemental sensitivity, while nitrogen provided higher signal intensities for fragments and molecular peaks. The analytical performance characteristics were also worked out for each analyte. Absolute detection limits obtained were in the order of ng. In a second step, headspace solid phase microextraction (HS SPME), as sample preparation and preconcentration technique, was evaluated for the quantification of the compounds under study, in order to achieve the required analytical sensitivity for trihalomethanes European Union (EU) environmental legislation. The analytical figures of merit obtained using the proposed methodology showed rather good detection limits (between 2 and 13 microg L(-1) depending on the analyte). In fact, the developed methodology met the EU legislation requirements (the maximum level permitted in tap water for the "total trihalomethanes" is set at 100 microg L(-1)). Real analysis of drinking water and river water were successfully carried out. To our knowledge this is the first application of GC-pulsed GD-MS(TOF) for the analysis of real samples. Its ability to provide elemental

  6. Synchronous Pulsed Flowering: Analysis of the Flowering Phenology in Juncus (Juncaceae)

    PubMed Central

    Michalski, Stefan G.; Durka, Walter

    2007-01-01

    Background and Aims The timing of flowering within and among individuals is of fundamental biological importance because of its influence on total seed production and, ultimately, fitness. Traditional descriptive parameters of flowering phenology focus on onset and duration of flowering and on synchrony among individuals. These parameters do not adequately account for variability in flowering across the flowering duration at individual and population level. This study aims to analyse the flowering phenology of wind-pollinated Juncus species that has been described as temporally highly variable (‘pulsed flowering’). Additionally, an attempt is made to identify proximate environmental factors that may cue the flowering, and ultimate causes for the flowering patterns are discussed. Methods Flowering phenology was examined in populations of nine Juncus species by estimating flowering synchrony and by using the coefficient of variation (CV) to describe the temporal variation in flowering on individual and population levels. Phenologies were compared with null models to test which patterns deviate from random flowering. All parameters assessed were compared with each other and the performance of the parameters in response to randomization and varying synchrony was evaluated using a model population. Flowering patterns were correlated with temperature and humidity. Key Results Most flowering patterns of Juncus were best described as synchronous pulsed flowering, characterized as population-wide concerted flowering events separated by days with no or few open flowers. Flowering synchrony and variability differed from a random pattern in most cases. CV values in combination with a measure of synchrony differentiated among flowering patterns found. Synchrony varied among species and was independent from variability in flowering. Neither temperature nor humidity could be determined as potential cues for the flowering pulses. Conclusions The results indicate that selection

  7. High resolution wavenumber analysis for investigation of arterial pulse wave propagation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki; Sato, Masakazu; Irie, Takasuke

    2016-07-01

    The propagation of the pulse wave along the artery is relatively fast (several m/s), and a high-temporal resolution is required to measure pulse wave velocity (PWV) in a regional segment of the artery. High-frame-rate ultrasound enables the measurement of the regional PWV. In analyses of wave propagation phenomena, the direction and propagation speed are generally identified in the frequency-wavenumber space using the two-dimensional Fourier transform. However, the wavelength of the pulse wave is very long (1 m at a propagation velocity of 10 m/s and a temporal frequency of 10 Hz) compared with a typical lateral field of view of 40 mm in ultrasound imaging. Therefore, PWV cannot be identified in the frequency-wavenumber space owing to the low resolution of the two-dimensional Fourier transform. In the present study, PWV was visualized in the wavenumber domain using phases of arterial wall acceleration waveforms measured by high-frame-rate ultrasound.

  8. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure

    SciTech Connect

    Qiu, Feng; Yan, Eryan Meng, Fanbao; Ma, Hongge; Liu, Minghai

    2015-07-15

    This paper analyzes certain evolution processes in nitrogen plasmas discharged using pulsed microwaves at low pressure. Comparing the results obtained from the global model incorporating diffusion and the microwave transmission method, the temporal variation of the electron density is analyzed. With a discharge pressure of 300 Pa, the results obtained from experiments and the global model calculation show that when the discharge begins the electron density in the plasma rises quickly, to a level above the critical density corresponding to the discharge microwave frequency, but falls slowly when the discharge microwave pulse is turned off. The results from the global model also show that the electron temperature increases rapidly to a peak, then decays after the electron density reaches the critical density, and finally decreases quickly to room temperature when the discharge microwave pulse is turned off. In the global model, the electron density increases because the high electron temperature induces a high ionization rate. The decay of the electron density mainly comes from diffusion effect.

  9. Analysis of pulse and relaxation behavior in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Bernardi, Dawn M.; Go, Joo-Young

    A mathematical model of a lithium-ion cell is used to analyze pulse and relaxation behavior in cells designed for hybrid-electric-vehicle propulsion. Predictions of cell voltage show good agreement with experimental results. Model results indicate the ohmic voltage loss in the positive electrode is the dominant contributor to cell overvoltage in the first instances of a pulse. The concentration overvoltage associated with the reduced lithium in the solid phase of the positive is of secondary importance through pulse duration, but dominates after current interruption. Effects of anisotropy in the particle diffusion coefficient are also studied. Heaviside mollification functions are utilized to describe the thermodynamic open-circuit voltage of lithiated graphite, and the "pleated-layer model" is extended to realize the phase behavior of primary-particle aggregates during cell operation. The negative electrode contributes little to the cell overvoltage, and two-phase behavior results in a reaction front within the electrode. No voltage relaxation is associated with the negative electrode, and after full relaxation, a stable composition gradient of lithium exists throughout the solid phase. Internal galvanic coupling removes the composition gradients in the positive electrode during relaxation.

  10. Ignition Prediction of Pressed HMX based on Hotspot Analysis Under Shock Pulse Loading

    NASA Astrophysics Data System (ADS)

    Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min

    The ignition behavior of pressed HMX under shock pulse loading with a flyer is analyzed using a cohesive finite element method (CFEM) which accounts for large deformation, microcracking, frictional heating, and thermal conduction. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.7 and 4.0 km/s. The study focuses on the computational prediction of ignition threshold using James criterion which involves loading intensity and energy imparted to the material. The predicted thresholds are in good agreement with measurements from shock experiments. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. In addition, significant stress attenuation is observed in high intensity pulse loading as compared to low intensity pulse loading, which affects density of hotspot distribution. The microstructure-performance relations obtained can be used to design explosives with tailored attributes and safety envelopes.

  11. SEM/EDS analysis of boron in waste glasses with ultrathin window detector and digital pulse processor

    SciTech Connect

    Luo, J.S.; Wolf, S.F.; Ebert, W.L.; Bates, J.K.

    1996-07-01

    Analysis of boron in waste glasses and in the reaction products that form during the reaction of glass is important for understanding the reaction kinetics and mechanism of glass corrosion. Two borosilicate waste glasses (1.55 and 3.47 wt% B) have been analyzed by SEM/EDS. The 1.55 wt% is the lowest B concentration detected with EDS. However, the B peaks severely overlap with the C peaks due to the carbon films used for conductive layers, but this problem can be solved by subtracting the C peaks, and possibly even lower B content could be detected by EDS with the digital pulse processor.

  12. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...

  13. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  14. In situ pulsed-field gradient NMR determination of the size of oil bodies in vegetable seeds. Analysis of the effect of the gradient pulse length.

    PubMed

    Guillermo, Armel; Bardet, Michel

    2007-09-01

    We report a pulsed-field gradient NMR study of the size of the oil bodies in lettuce seeds. The pulsed-field gradient spin-echo method (PFGSE) was applied to measure the self-diffusion coefficient of triacylglycerol molecules (TAG) inside the oil bodies. The confined nature of TAG diffusion is used to determine the size dispersion of the oil bodies. At long diffusion time, we measure a spin-echo attenuation that is related to the form factor of the confining volumes in the reciprocal q space, where q is proportional to the product of the gradient intensity and the length of the pulse gradient. Specific care was taken in analyzing the influence of the gradient pulse length delta on the shape of the PFGSE decay in order to construct the function corresponding to the short gradient pulse approximation (SGP). The SGP model gives an analytical framework for the PFGSE signal that enables the size distribution of the oil bodies to be determined. The SGP function was unambiguously obtained by varying the gradient pulse length delta in order to linearly extrapolate at delta = 0 the SGP limit. In this work, we also consider the Gaussian phase distribution (GPD) assumption that is often used to analyze confined diffusion experiments. Although the GPD assumption is known to be inaccurate in predicting the fine structure of the PFGSE function in q space, we point out that in the present case it can be used to take into account the finite value of delta. A log-normal distribution of the radius values was assumed in simulating the PFGNMR experiments since this type of distribution is observed in vegetable seeds by transmission electronic microscopy. From a practical and experimental standpoint, the NMR measurements reported here require no specific treatment of the seeds and the size of oil bodies is determined "in situ" on seeds poured into the NMR tube.

  15. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    SciTech Connect

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-03-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms.

  16. High-rate dead-time corrections in a general purpose digital pulse processing system.

    PubMed

    Abbene, Leonardo; Gerardi, Gaetano

    2015-09-01

    Dead-time losses are well recognized and studied drawbacks in counting and spectroscopic systems. In this work the abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape, etc.) at high input counting rates (ICRs), allowing accurate counting loss corrections even for variable or transient radiations. The fast analysis is used to obtain both the ICR and energy spectra with high throughput, while the slow analysis is used to obtain high-resolution energy spectra. A complete characterization of the counting capabilities, through both theoretical and experimental approaches, was performed. The dead-time modeling, the throughput curves, the experimental time-interval distributions (TIDs) and the counting uncertainty of the recorded events of both the fast and the slow channels, measured with a planar CdTe (cadmium telluride) detector, will be presented. The throughput formula of a series of two types of dead-times is also derived. The results of dead-time corrections, performed through different methods, will be reported and discussed, pointing out the error on ICR estimation and the simplicity of the procedure. Accurate ICR estimations (nonlinearity < 0.5%) were performed by using the time widths and the TIDs (using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital system allows, after a simple parameter setting, different and sophisticated procedures for dead-time correction, traditionally implemented in complex/dedicated systems and time-consuming set-ups.

  17. High-rate dead-time corrections in a general purpose digital pulse processing system

    PubMed Central

    Abbene, Leonardo; Gerardi, Gaetano

    2015-01-01

    Dead-time losses are well recognized and studied drawbacks in counting and spectroscopic systems. In this work the abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape, etc.) at high input counting rates (ICRs), allowing accurate counting loss corrections even for variable or transient radiations. The fast analysis is used to obtain both the ICR and energy spectra with high throughput, while the slow analysis is used to obtain high-resolution energy spectra. A complete characterization of the counting capabilities, through both theoretical and experimental approaches, was performed. The dead-time modeling, the throughput curves, the experimental time-interval distributions (TIDs) and the counting uncertainty of the recorded events of both the fast and the slow channels, measured with a planar CdTe (cadmium telluride) detector, will be presented. The throughput formula of a series of two types of dead-times is also derived. The results of dead-time corrections, performed through different methods, will be reported and discussed, pointing out the error on ICR estimation and the simplicity of the procedure. Accurate ICR estimations (nonlinearity < 0.5%) were performed by using the time widths and the TIDs (using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital system allows, after a simple parameter setting, different and sophisticated procedures for dead-time correction, traditionally implemented in complex/dedicated systems and time-consuming set-ups. PMID:26289270

  18. Analysis of the Fall-1989 two-meter box test bed experiments performed at the Army Pulse Radiation Facility (APRF)

    NASA Astrophysics Data System (ADS)

    Johnson, J. O.; Drischler, J. D.; Barnes, J. M.

    This report summarizes the results of a benchmark analysis of the Monte Carlo Adjoint Shielding Code System (MASH) against a series of experiments performed at the Army Pulse Radiation Facility (APRF) in Aberdeen Proving Ground, Maryland. The series of experiments was performed in the Fall of 1989 and involved experimentalists from APRF; the Defense Research Establishment Ottawa, Canada (DREO); Bubble Technology Industries, Canada, (BTI); and the Establishment Technique Central de l'Armement, France (ETCA). The 'benchmark' analysis of MASH is designed to determine the capability of MASH to reproduce the measured neutron and gamma ray integral and differential (spectral) data. Results of the 'benchmark' analysis are to be used in the recommendations to the North Atlantic Treaty Organization (NATO) Panel 7 Ad Hoc Group of Shielding Experts for replacing the Vehicle Code System (VCS) with MASH as the reference code of choice for armored vehicle nuclear vulnerability calculations.

  19. Dynamics of Self-Healing Slip Pulses on Velocity-Weakening Interfaces: Formation, steady propagation and interaction with stress heterogeneity

    NASA Astrophysics Data System (ADS)

    Elbanna, A. E.; Lapusta, N.; Heaton, T. H.

    2009-12-01

    Seismic inversions indicate that earthquake ruptures may propagate in a self-healing pulse-like mode. Prior studies have shown that velocity-weakening (VW) interfaces can produce crack-like, pulse-like, and multi-pulse ruptures, depending on fault prestress and the assumed weakening. Multiple pulses have been explained by destabilization of steady sliding behind the front of the crack-like rupture that forms after the nucleation stage. We explore the possibility that transition from the initial crack-like rupture to a self-healing pulse can also be understood based on such stability analysis. Prior numerical simulations of dynamic rupture on uniformly prestressed VW interfaces have found either growing or decaying pulse-like ruptures. We show that steady slip pulses can be produced on such interfaces by a special nucleation procedure and study response of such pulses to prestress changes. In particular, we find that such solutions lose their steadiness once they enter areas of different constant prestress. We study the formation and propagation of pulse-like ruptures in a 2D antiplane fault model with rate and state friction and enhanced VW at seismic slip velocities. The fault has uniform prestress, except in a small overstressed region of rupture nucleation. For a range of model parameters that favors slip pulses, we find that the decrease of slip velocity behind the front of the initial crack causes significant increase in the maximum growth rate and phase velocities of unstable modes. We hypothesize that this leads to the local rupture arrest and slip-pulse formation. Phase velocities of the growing wavelengths affect the healing-front speed of the resulting slip pulse and hence the evolution of the pulse width, since the difference between the healing-front speed and the rupture speed of the pulse determines how the pulse width changes with propagation. Using a special stress distribution in the nucleation region, we are able to produce steady pulse

  20. Artifacts for Calibration of Submicron Width Measurements

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank; Grunthaner, Paula; Bryson, Charles, III

    2003-01-01

    Artifacts that are fabricated with the help of molecular-beam epitaxy (MBE) are undergoing development for use as dimensional calibration standards with submicron widths. Such standards are needed for calibrating instruments (principally, scanning electron microscopes and scanning probe microscopes) for measuring the widths of features in advanced integrated circuits. Dimensional calibration standards fabricated by an older process that involves lithography and etching of trenches in (110) surfaces of single-crystal silicon are generally reproducible to within dimensional tolerances of about 15 nm. It is anticipated that when the artifacts of the present type are fully developed, their critical dimensions will be reproducible to within 1 nm. These artifacts are expected to find increasing use in the semiconductor-device and integrated- circuit industries as the width tolerances on semiconductor devices shrink to a few nanometers during the next few years. Unlike in the older process, one does not rely on lithography and etching to define the critical dimensions. Instead, one relies on the inherent smoothness and flatness of MBE layers deposited under controlled conditions and defines the critical dimensions as the thicknesses of such layers. An artifact of the present type is fabricated in two stages (see figure): In the first stage, a multilayer epitaxial wafer is grown on a very flat substrate. In the second stage, the wafer is cleaved to expose the layers, then the exposed layers are differentially etched (taking advantage of large differences between the etch rates of the different epitaxial layer materials). The resulting structure includes narrow and well-defined trenches and a shelf with thicknesses determined by the thicknesses of the epitaxial layers from which they were etched. Eventually, it should be possible to add a third fabrication stage in which durable, electronically inert artifacts could be replicated in diamondlike carbon from a master made by