Izhikevich, E M
1999-01-01
Many scientists believe that all pulse-coupled neural networks are toy models that are far away from the biological reality. We show here, however, that a huge class of biophysically detailed and biologically plausible neural-network models can be transformed into a canonical pulse-coupled form by a piece-wise continuous, possibly noninvertible, change of variables. Such transformations exist when a network satisfies a number of conditions; e.g., it is weakly connected; the neurons are Class 1 excitable (i.e., they can generate action potentials with an arbitrary small frequency); and the synapses between neurons are conventional (i.e., axo-dendritic and axo-somatic). Thus, the difference between studying the pulse-coupled model and Hodgkin-Huxley-type neural networks is just a matter of a coordinate change. Therefore, any piece of information about the pulse-coupled model is valuable since it tells something about all weakly connected networks of Class 1 neurons. For example, we show that the pulse-coupled network of identical neurons does not synchronize in-phase. This confirms Ermentrout's result that weakly connected Class 1 neurons are difficult to synchronize, regardless of the equations that describe dynamics of each cell.
Charmonium excited state spectrum in lattice QCD
Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards
2008-02-01
Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.
Excited light meson spectroscopy from lattice QCD
Christopher Thomas, Hadron Spectrum Collaboration
2012-04-01
I report on recent progress in calculating excited meson spectra using lattice QCD, emphasizing results and phenomenology. With novel techniques we can now extract extensive spectra of excited mesons with high statistical precision, including spin-four states and those with exotic quantum numbers. As well as isovector meson spectra, I will present new calculations of the spectrum of excited light isoscalar mesons, something that has up to now been a challenge for lattice QCD. I show determinations of the flavor content of these mesons, including the eta-eta' mixing angle, providing a window on annihilation dynamics in QCD. I will also discuss recent work on using lattice QCD to map out the energy-dependent phase shift in pi-pi scattering and future applications of the methodology to the study of resonances and decays.
Excited light isoscalar mesons from lattice QCD
Christopher Thomas
2011-07-01
I report a recent lattice QCD calculation of an excited spectrum of light isoscalar mesons, something that has up to now proved challenging for lattice QCD. With novel techniques we extract an extensive spectrum with high statistical precision, including spin-four states and, for the first time, light isoscalars with exotic quantum numbers. In addition, the hidden flavour content of these mesons is determined, providing a window on annihilation dynamics in QCD. I comment on future prospects including applications to the study of resonances.
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.
Driving magnetic order in a manganite by ultrafast lattice excitation.
Forst, M.; Tobey, R. I.; Wall, S.; Bromberger, H.; Khanna, V.; Cavalieri, A. L.; Chuang, Y.-D.; Lee, W. S.; Moore, R.; Schlotter, W. F.; Turner, J. J.; Krupin, O.; Trigo, M.; Zheng, H.; Mitchell, J. F.; Dhesi, S. S.; Hill, J. P.; Cavalleri, A.
2011-01-01
Femtosecond midinfrared pulses are used to directly excite the lattice of the single-layer manganite La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. Magnetic and orbital orders, as measured by femtosecond resonant soft x-ray diffraction with an x-ray free-electron laser, are reduced within a few picoseconds. This effect is interpreted as a displacive exchange quench, a prompt shift in the equilibrium value of the magnetic- and orbital-order parameters after the lattice has been distorted. Control of magnetism through ultrafast lattice excitation may be of use for high-speed optomagnetism.
Lattice QCD sprectrum of excited states of the nucleon
NASA Astrophysics Data System (ADS)
Wallace, Stephen
2012-03-01
Lattice QCD results are presented for the spectrum of excited states of the nucleon. Matrices of correlation functions are calculated using lattice operators that incorporate up to two covariant derivatives in combinations that transform according to SU(2) symmetry restricted to the lattice. Although the lattice has cubic symmetry, identification of continuum SU(2) spins is straightforward using such operators. Overlaps of the operators with the lattice QCD states obtained by diagonalizing matrices of correlation functions provide the link of continuum spins to lattice states. Spins up to 7/2 are identified clearly. Evidence for an approximate realization of rotational symmetry in the spectrum is presented, which helps to explain why the continuum spins can be identified. In lattice simulations with pion mass equal to 392 MeV, the low-lying excited states of lattice QCD are found to have the same spin quantum numbers as the states of SU(6)xO(3) symmetry. The lattice QCD spectra are inconsistent with either a quark-diquark model or parity doubling of states. They suggest that the Roper resonance may have a complex structure consisting of contributions from L=0, 1 and 2.
Intermittent movement of localized excitations of a nonlinear lattice.
Rumpf, Benno
2004-01-01
The mobility of localized high-amplitude excitations of the discrete nonlinear Schrödinger equation is studied. The excitations can either be pinned at the lattice or they can propagate depending on their energy and particle number. Such localized excitation can emit or absorb waves with a low amplitude which changes the amount of these quantities in the excitation. For statistical reasons, the excitations absorb a high amount of energy per particle through their interaction with low-amplitude waves. They can only move if their energy decreases temporarily either by a random fluctuation or by an external force.
Highly excited and exotic meson spectroscopy from lattice QCD
Christopher Thomas
2011-05-01
I will discuss recent progress in extracting highly excited and exotic meson spectra using lattice QCD. New results in the light meson sector will be presented, where a combination of techniques have enabled us to confidently identify the spin of extracted states. Highlights include many states with exotic quantum numbers and, for the first time in a lattice QCD calculation, spin-four states. I will conclude with comments on future prospects.
Excited-State Effective Masses in Lattice QCD
George Fleming, Saul Cohen, Huey-Wen Lin
2009-10-01
We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.
Excited-State Effective Masses in Lattice QCD
Fleming, George; Cohen, Saul; Lin, Huey-Wen
2009-01-01
We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.
Excited and exotic charmonium spectroscopy from lattice QCD
Liuming Liu, Graham Moir, Michael Peardon, Sinead Ryan, Christopher Thomas, Pol Vilaseca, Jozef Dudek, Robert Edwards, Balint Joo, David Richards
2012-07-01
We present a spectrum of highly excited charmonium mesons up to around 4.5 GeV calculated using dynamical lattice QCD. Employing novel computational techniques and the variational method with a large basis of carefully constructed operators, we extract and reliably identify the continuum spin of an extensive set of excited states, states with exotic quantum numbers (0+-, 1-+, 2+-) and states with high spin. Calculations are performed on two lattice volumes with pion mass ? 400 MeV and the mass determinations have high statistical precision even for excited states. We discuss the results in light of experimental observations, identify the lightest 'supermultiplet' of hybrid mesons and comment on the phenomenological implications of the spectrum of exotic mesons.
Fractional excitations in the square-lattice quantum antiferromagnet
NASA Astrophysics Data System (ADS)
Dalla Piazza, B.; Mourigal, M.; Christensen, N. B.; Nilsen, G. J.; Tregenna-Piggott, P.; Perring, T. G.; Enderle, M.; McMorrow, D. F.; Ivanov, D. A.; Rønnow, H. M.
2015-01-01
Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spin-1/2 particles is far from complete. The quantum square-lattice Heisenberg antiferromagnet, for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wavevector (π, 0). We use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound Cu(DCOO)2.4D2O, a known realization of the quantum square-lattice Heisenberg antiferromagnet model. Our experiments reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially extended pairs of fractional S = 1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wavevector, these fractional excitations are bound and form conventional magnons. Our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.
Fibonacci anyon excitations of one-dimensional dipolar lattice bosons
NASA Astrophysics Data System (ADS)
Äńurić, Tanja; Biedroń, Krzysztof; Zakrzewski, Jakub
2017-02-01
We study a system of dipolar bosons in a one-dimensional optical lattice using exact diagonalization and density matrix renormalization group methods. In particular, we analyze low energy properties of the system at an average filling of 3/2 atoms per lattice site. We identify the region of the parameter space where the system has non-Abelian Fibonacci anyon excitations that correspond to fractional domain walls between different charge-density waves. When such one-dimensional systems are combined into a two-dimensional network, braiding of Fibonacci anyon excitations has potential application for fault tolerant, universal, topological quantum computation. Contrary to previous calculations, our results also demonstrate that super-solid phases are not present in the phase diagram for the discussed 3/2 average filling. Instead, decreasing the value of the nearest-neighbor tunneling strength leads to a direct, Berezinskii-Kosterlitz-Thouless, superfluid to charge-density-wave quantum phase transition.
Toward the excited isoscalar meson spectrum from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; ...
2013-11-18
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identifiedmore » as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.« less
Toward the excited isoscalar meson spectrum from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.
2013-11-18
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most J^{PC} channels; one notable exception is the pseudoscalar sector where the approximate SU(3)_{F} octet, singlet structure of the η, η' is reproduced. We extract exotic J^{PC} states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.
Toward the excited isoscalar meson spectrum from lattice QCD
NASA Astrophysics Data System (ADS)
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.
2013-11-01
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to ˜400MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between (1)/(2)(uu¯+dd¯) and ss¯ in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qq¯ pair, along with nonexotic hybrid mesons embedded in a qq¯-like spectrum.
Fractional excitations in the square-lattice quantum antiferromagnet
Dalla Piazza, Bastien; Mourigal, M.; Christensen, N. B.; Nilsen, G. J.; Tregenna-Piggott, P.; Perring, T. G.; Enderle, M.; McMorrow, D. F.; Ivanov, D. A.; Ronnow, H. M.
2014-12-15
Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). Here, we use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experiments reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Lastly, our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.
Fractional excitations in the square-lattice quantum antiferromagnet
Dalla Piazza, Bastien; Mourigal, M.; Christensen, N. B.; ...
2014-12-15
Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). Here, we use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experimentsmore » reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Lastly, our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.« less
Fractional excitations in the square lattice quantum antiferromagnet.
Piazza, B Dalla; Mourigal, M; Christensen, N B; Nilsen, G J; Tregenna-Piggott, P; Perring, T G; Enderle, M; McMorrow, D F; Ivanov, D A; Rønnow, H M
2015-01-01
Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). We use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experiments reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.
Excited-state hadron masses from lattice QCD
NASA Astrophysics Data System (ADS)
Morningstar, C.; Bulava, J.; Foley, J.; Jhang, Y. C.; J, K. J.; Lenkner, D.; Wong, C. H.
2012-09-01
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators in addition to single-hadron operators is emphasized, necessitating the use of a new stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing. A new glueball operator is tested and computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible.
Gapped excitation in dense Kondo lattice CePtZn
NASA Astrophysics Data System (ADS)
Harriger, L.; Disseler, S. M.; Gunasekera, J.; Rodriguez-Rivera, J.; Pixley, J.; Manfrinetti, P.; Dhar, S. K.; Singh, D. K.
2017-01-01
We report on neutron scattering and muon spin relaxation measurements of dense Kondo lattice CePtZn. The system develops long-range incommensurate magnetic order as the temperature is reduced below TN=1.75 K. Interestingly, a Q -independent gap at E =0.65 meV in the energy spectrum is found to co-exist with the long-range magnetic order. The gap persists to a very high temperature of T ≃100 K. The Q -independent characteristic and its persistence to high temperature hint that the gapped excitation may be manifesting the excited state of the ground-state doublet of the crystal-field energy levels. However, the observed broadness in the linewidth with distinct temperature and field dependencies makes it a nontrivial phenomenon. Qualitative analysis of the experimental data suggests the possible co-existence of a local critical behavior, which is onset near the critical field of H ≃3 T, with the crystal-field excitation in the dynamic properties.
Object detection using pulse coupled neural networks.
Ranganath, H S; Kuntimad, G
1999-01-01
This paper describes an object detection system based on pulse coupled neural networks. The system is designed and implemented to illustrate the power, flexibility and potential the pulse coupled neural networks have in real-time image processing. In the preprocessing stage, a pulse coupled neural network suppresses noise by smoothing the input image. In the segmentation stage, a second pulse coupled neural-network iteratively segments the input image. During each iteration, with the help of a control module, the segmentation network deletes regions that do not satisfy the retention criteria from further processing and produces an improved segmentation of the retained image. In the final stage each group of connected regions that satisfies the detection criteria is identified as an instance of the object of interest.
Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams
Sakai, Kyosuke; Nomura, Kensuke; Yamamoto, Takeaki; Omura, Tatsuya; Sasaki, Keiji
2016-01-01
We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmonic crystal by two types of cylindrical vector beams and a linearly polarized Gaussian beam. Quadrupole lattice resonances are excited by all three beams, and the largest peak intensity is obtained by using a specific type of cylindrical vector beam. Because of their lower radiative losses with many hotspots, the quadrupole lattice resonances in plasmonic crystal may pave the way for photonic research and applications that require strong light-matter interactions. PMID:27734923
Interaction-induced excited-band condensate in a double-well optical lattice
Zhou Qi; Das Sarma, S.; Porto, J. V.
2011-09-15
We show theoretically that interaction effects in a double-well optical lattice can induce condensates in an excited band. For a symmetric double-well lattice, bosons condense into the bottom of the excited band at the edge of the Brillouin zone if the chemical potential is above a critical value. For an asymmetric lattice, a condensate with zero momentum is automatically induced in the excited band by the condensate in the lowest band. This is due to a combined effect of interaction and lattice potential, which reduces the band gap and breaks the inversion symmetry. Our work can be generalized to a superlattice composed of multiple-well potentials at each lattice site, where condensates can be induced in even higher bands.
Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD
Christopher Thomas
2010-09-01
We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors using lattice QCD. We mention results in the charmonium sector, including the first lattice QCD calculation of radiative transition rates involving excited charmonium states, highlighting results for high spin and exotic states. We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices. Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states, states with exotic quantum numbers and states of high spin. This spectrum includes the first spin-four state extracted from lattice QCD. We conclude with some comments on future prospects.
Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice.
Ha, Li-Chung; Clark, Logan W; Parker, Colin V; Anderson, Brandon M; Chin, Cheng
2015-02-06
We present experimental evidence showing that an interacting Bose condensate in a shaken optical lattice develops a roton-maxon excitation spectrum, a feature normally associated with superfluid helium. The roton-maxon feature originates from the double-well dispersion in the shaken lattice, and can be controlled by both the atomic interaction and the lattice modulation amplitude. We determine the excitation spectrum using Bragg spectroscopy and measure the critical velocity by dragging a weak speckle potential through the condensate-both techniques are based on a digital micromirror device. Our dispersion measurements are in good agreement with a modified Bogoliubov model.
NASA Astrophysics Data System (ADS)
Brajuskovic, V.; Barrows, F.; Phatak, C.; Petford-Long, A. K.
2016-10-01
Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. Additionally, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1D avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.
Brajuskovic, V; Barrows, F; Phatak, C; Petford-Long, A K
2016-10-03
Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. Additionally, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1D avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.
Brajuskovic, V.; Barrows, F.; Phatak, C.; ...
2016-10-03
Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. In addition, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1Dmore » avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.« less
Brajuskovic, V.; Barrows, F.; Phatak, C.; Petford-Long, A. K.
2016-10-03
Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. In addition, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1D avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.
Brajuskovic, V.; Barrows, F.; Phatak, C.; Petford-Long, A. K.
2016-01-01
Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. Additionally, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1D avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism. PMID:27694973
Probabilistic convergence guarantees for type-II pulse-coupled oscillators
NASA Astrophysics Data System (ADS)
Nishimura, Joel; Friedman, Eric J.
2012-08-01
We show that a large class of pulse-coupled oscillators converge with high probability from random initial conditions on a large class of graphs with time delays. Our analysis combines previous local convergence results, probabilistic network analysis, and a classification scheme for type-II phase response curves to produce rigorous lower bounds for convergence probabilities based on network density. These results suggest methods for the analysis of pulse-coupled oscillators, and provide insights into the balance of excitation and inhibition in the operation of biological type-II phase response curves and also the design of decentralized and minimal clock synchronization schemes in sensor nets.
Ultrafast lattice dynamics in lead selenide quantum dot induced by laser excitation
Wang, Xuan; Rahmani, Hamidreza; Zhou, Jun; Gorfien, Matthew; Mendez Plaskus, Joshua; Li, Dong; Voss, Ryan; Nelson, Cory A.; Wai Lei, Kin; Wolcott, Abraham; Zhu, Xiaoyang; Li, Junjie; Cao, Jianming
2016-10-10
We directly monitored the lattice dynamics in PbSe quantum dots induced by laser excitation using ultrafast electron di raction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any signi cant phonon bottleneck e ect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon- induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates signi cantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.
Ultrafast lattice dynamics in lead selenide quantum dot induced by laser excitation
NASA Astrophysics Data System (ADS)
Wang, Xuan; Rahmani, Hamidreza; Zhou, Jun; Gorfien, Matthew; Mendez Plaskus, Joshua; Li, Dong; Voss, Ryan; Nelson, Cory A.; Wai Lei, Kin; Wolcott, Abraham; Zhu, Xiaoyang; Li, Junjie; Cao, Jianming
2016-10-01
We directly monitored the lattice dynamics in PbSe quantum dots (QD) induced by laser excitation using ultrafast electron diffraction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any significant phonon bottleneck effect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon-induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates significantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.
Isolating excited states of the nucleon in lattice QCD
Mahbub, M. S.; Cais, Alan O.; Kamleh, Waseem; Lasscock, B. G.; Leinweber, Derek B.; Williams, Anthony G.
2009-09-01
We discuss a robust projection method for the extraction of excited-state masses of the nucleon from a matrix of correlation functions. To illustrate the algorithm in practice, we present results for the positive parity excited states of the nucleon in quenched QCD. Using eigenvectors obtained via the variational method, we construct an eigenstate-projected correlation function amenable to standard analysis techniques. The method displays its utility when comparing results from the fit of the projected correlation function with those obtained from the eigenvalues of the variational method. Standard nucleon interpolators are considered, with 2x2 and 3x3 correlation matrix analyses presented using various combinations of source-smeared, sink-smeared, and smeared-smeared correlation functions. Using these new robust methods, we observe a systematic dependency of the extracted nucleon excited-state masses on source- and sink-smearing levels. To the best of our knowledge, this is the first clear indication that a correlation matrix of standard nucleon interpolators is insufficient to isolate the eigenstates of QCD.
Impact of magnetic fluctuations on lattice excitations in fcc nickel.
Körmann, Fritz; Ma, Pui-Wai; Dudarev, Sergei L; Neugebauer, Jörg
2016-02-24
The spin-space averaging formalism is applied to compute atomic forces and phonon spectra for magnetically excited states of fcc nickel. Transverse and longitudinal magnetic fluctuations are taken into account by a combination of magnetic special quasi random structures and constrained spin-density-functional theory. It turns out that for fcc Ni interatomic force constants and phonon spectra are almost unaffected by both kinds of spin fluctuations. Given the computational expense to simulate coupled magnetic and atomic fluctuations, this insight facilitates computational modeling of magnetic alloys such as Ni-based superalloys.
Lattice low-delay vector excitation coding of speech at 8-16 kb/s
NASA Astrophysics Data System (ADS)
Peng, Rong; Cuperman, Vladimir
1994-06-01
Lattice low-delay vector excitation coding (LLD-VXC) is a speech coding system based on analysis-by-synthesis excitation coding and backward adaptation of the synthesis filter. The introduction of a lattice filter as a (high order) short-term predictor has significant advantages, such as fast tracking of speech signal nonstationarities, simple stability verification, and uniform distribution of the computational load. The objective of this paper is to present a lattice LD-VXC (LLD-VXC) codec and experimental results obtained at rates of 8, 9.6, and 16 kb/s. A sign algorithm for lattice filter adaptation is introduced in order to reduce computational complexity. An LLD-VXC codec with a 20th-order lattice predictor, a 10th-order lattice weighting filter, and a backward pitch predictor achieved toll quality at 16 kb/s and good communications quality at 8-9.6 kb/s with a delay of less than 2 ms and reasonable complexity.
NASA Astrophysics Data System (ADS)
Tikan, A. M.; Vatnik, I. D.; Churkin, D. V.; Sukhorukov, A. A.
2017-02-01
A method based on optical heterodyning is proposed for measuring relative optical phases of pulses circulating in synthetic photonic lattices (SPL). The knowledge of the phases can be further used for qualitative reconstruction of an eigenmode excitation spectrum in the SPL.
Renormalization of operators for excited-state hadrons in lattice QCD.
Ekaterina Mastropas, David Richards
2012-04-01
One of the primary aims of lattice QCD is to accurately compute the spectrum of hadronic excitations from first principles. However, obtaining an accurate resolution of excited states using methods of lattice QCD is not a trivial problem due to faster decay of excited-states correlation functions in Euclidean space in comparison to those of ground states. To overcome this difficulty, anisotropic lattices with a finer temporal discretization are used. To go beyond the spectrum, in order to study the properties of the states, one needs to compute corresponding matrix elements. Thus, for example, the quark distribution amplitudes in mesons are given by matrix elements of quark bilinear operators, while in baryons, the corresponding quark distribution amplitudes are related to matrix elements of three-quark operators. To relate the matrix elements calculated on the lattice to those in the continuum, and hence to relate to the measured experimentally, it is necessary to evaluate matching coefficients. In this work we describe the calculation of the matching coefficients using perturbation theory for the improved anisotropic-clover fermion action used for our studies of excited states.
Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2014-07-01
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.
Ferrimagnetism and single-particle excitations in a periodic Anderson model on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Seki, Kazuhiro; Shirakawa, Tomonori; Zhang, Qinfang; Li, Tao; Yunoki, Seiji
2015-04-01
By using the variationalcluster approximation and cluster perturbation theory, we investigate the magnetism and single-particle excitations of a periodic Anderson model on the honeycomb lattice as an effective model for the single-side hydrogenated graphene, namely, graphone. We calculate the magnetic moment as a function of U (Coulomb interaction on impurity sites) with showing that the ground state is ferrimagneticfor any U > 0. We then calculate the single-particle excitations and show that the single-particle excitations are gapless and exhibit quadratic dispersion relation near the Fermi energy.
Decay constants of the pion and its excitations on the lattice.
Mastropas, Ekaterina V.; Richards, David G.
2014-07-01
We present a calculation using lattice QCD of the ratios of decay constants of the excited states of the pion, to that of the pion ground state, at three values of the pion mass between 400 and 700 MeV, using an anisotropic clover fermion action with three flavors of quarks. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass. The strong suppression of the decay constant of the second excited state is consistent with its interpretation as a predominantly hybrid state.
Predicting synchrony in heterogeneous pulse coupled oscillators
NASA Astrophysics Data System (ADS)
Talathi, Sachin S.; Hwang, Dong-Uk; Miliotis, Abraham; Carney, Paul R.; Ditto, William L.
2009-08-01
Pulse coupled oscillators (PCOs) represent an ubiquitous model for a number of physical and biological systems. Phase response curves (PRCs) provide a general mathematical framework to analyze patterns of synchrony generated within these models. A general theoretical approach to account for the nonlinear contributions from higher-order PRCs in the generation of synchronous patterns by the PCOs is still lacking. Here, by considering a prototypical example of a PCO network, i.e., two synaptically coupled neurons, we present a general theory that extends beyond the weak-coupling approximation, to account for higher-order PRC corrections in the derivation of an approximate discrete map, the stable fixed point of which can predict the domain of 1:1 phase locked synchronous states generated by the PCO network.
Hamiltonian Lattice Studies of Pionic Collective Excitations in the Non-linear Sigma Model
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2001-04-01
The latticization of the non-linear sigma model reduces a chiral meson field theory to an O(4) spin system with quantum fluctuations. By solving the resulting lattice Hamiltonian by Monte Carlo methods, the dynamics and thermodynamics of pions can be determined non-perturbatively. In particular, the mas gap of pionic collective excitations with quantum number of vector mesons can be determined as the chiral phase transition is approached. Results based on a newly discovered 4th order method of solving for the ground state of a quantum many-body Hamitonian will be presented.
Lattice study of the leptonic decay constant of the pion and its excitations
Mastropas, Ekaterina; Richard, David
2014-11-01
We present a calculation of the decay constant of the pion, and its lowest-lying three excitations, at three values of the pion mass between around 400 and 700 MeV, using anisotropic clover lattices. We use the variational method to determine an optimal interpolating operator for each of the states. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass.
Nucleon, $$\\Delta$$ and $$\\Omega$$ excited states in $$N_f=2+1$$ lattice QCD
John Bulava; Edwards, Robert G.; Engelson, Eric; ...
2010-07-22
The energies of the excited states of the Nucleon,more » $$\\Delta$$ and $$\\Omega$$ are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses $$m_{\\pi}$$ = 392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we find reasonable agreement in the pattern of states. In addition, the need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified.« less
Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice
NASA Astrophysics Data System (ADS)
Ha, Li-Chung; Clark, Logan W.; Parker, Colin V.; Xu, Chen-Yu; Chin, Cheng
2015-05-01
We present a resonant lattice shaking technique for engineering the dispersion of a cesium Bose condensate. Through phase modulating an optical lattice at a frequency near the band splitting, the dispersion of the condensate can evolve from quadratic to quartic and finally into a double-well structure. We observe effective ferromagnetism in the double-well regime, and atoms form domains within one well in momentum space. We study the elementary excitations of this system by implementing projection-based Bragg spectroscopy and find a roton-maxon feature in the excitation spectrum in agreement with a Bogoliubov calculation. Consistent with Landau's prediction, we observe a suppressed superfluid critical velocity due to the existence of the roton. We will introduce more precise characterizations of the dispersion in an effort to pinpoint the critical point at which the dispersion is purely quartic, and study the dynamics of particles in that case. This work is supported by NSF, ARO and Chicago MRSEC.
Orientation-dependent excitations of lattice soliton trains with hybrid nonlinearity.
Hu, Yi; Lou, Cibo; Liu, Sheng; Zhang, Peng; Zhao, Jianlin; Xu, Jingjun; Chen, Zhigang
2009-04-01
We demonstrate selective excitation of soliton trains residing in different gaps or within the same Bloch band of a new type of photonic lattice merely by changing the orientation of an input probe beam. A self-focusing and -defocusing hybrid nonlinearity as established in a nonconventionally biased photorefractive crystal leads to controlled soliton transitions from different band edges or subband edges, in good agreement with our theoretical analysis.
Exotic and excited-state radiative transitions in charmonium from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.
2009-05-01
We compute, for the first time using lattice QCD methods, radiative transition rates involving excited charmonium states, states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exotic $1^{-+}$ $\\eta_{c1}$ radiative decay, we find a large partial width $\\Gamma(\\eta_{c1} \\to J/\\psi \\gamma) \\sim 100 \\,\\mathrm{keV}$. We find clear signals for electric dipole and magnetic quadrupole transition form factors in $\\chi_{c2} \\to J/\\psi \\gamma$, calculated for the first time in this framework, and study transitions involving excited $\\psi$ and $\\chi_{c1,2}$ states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a non-exotic vector hybrid candidate $Y_{\\mathrm{hyb?}} \\to \\et
Exotic and excited-state radiative transitions in charmonium from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.
2009-05-01
We compute, for the first time using lattice QCD methods, radiative transition rates involving excited charmonium states, states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exoticmore » $$1^{-+}$$ $$\\eta_{c1}$$ radiative decay, we find a large partial width $$\\Gamma(\\eta_{c1} \\to J/\\psi \\gamma) \\sim 100 \\,\\mathrm{keV}$$. We find clear signals for electric dipole and magnetic quadrupole transition form factors in $$\\chi_{c2} \\to J/\\psi \\gamma$$, calculated for the first time in this framework, and study transitions involving excited $$\\psi$$ and $$\\chi_{c1,2}$$ states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a non-exotic vector hybrid candidate $Y_{\\mathrm{hyb?}} \\to \\et« less
Grouping synchronization in a pulse-coupled network of chaotic spiking oscillators.
Nakano, H; Saito, T
2004-09-01
This paper studies a pulse-coupled network consisting of simple chaotic spiking oscillators (CSOs). If a unit oscillator and its neighbor(s) have (almost) the same parameter values, they exhibit in-phase synchronization of chaos. As the parameter values differ, they exhibit asynchronous phenomena. Based on such behavior, some synchronous groups appear partially in the network. Typical phenomena are verified in the laboratory via a simple test circuit. These phenomena can be evaluated numerically by using an effective mapping procedure. We then apply the proposed network to image segmentation. Using a lattice pulse-coupled network via grouping synchronous phenomena, the input image data can be segmented into some sub-regions.
Positive-parity excited states of the nucleon in quenched lattice QCD
Mahbub, M. S.; Cais, Alan O.; Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.
2010-11-01
Positive-parity spin-(1/2) excitations of the nucleon are explored in lattice QCD. The variational method is used in this investigation and several correlation matrices are employed. As our focus is on the utility and methodology of the variational approach, we work in the quenched approximation to QCD. Various sweeps of Gaussian fermion-field smearing are applied at the source and at the sink of {chi}{sub 1{chi}1} and {chi}{sub 1{chi}2} correlation functions to obtain a large basis of operators. Using several different approaches for constructing basis interpolators, we demonstrate how improving the basis can split what otherwise might be interpreted as a single state into multiple eigenstates. Consistency of the extracted excited energy states are explored over various dimensions of the correlation matrices. The use of large correlation matrices is emphasized for the reliable extraction of the excited eigenstates of QCD.
Decay constants of the pion and its excitations on the lattice
Mastropas, Ekaterina V.; Richards, David G.
2014-06-23
We present a lattice QCD calculation of the ratios of decay constants of the excited states of the pion, to that of the pion ground state. We use an anisotropic clover fermion action with three flavors of quarks, and study the pion decay constants at three values of the light-quark masses, corresponding to pion masses of 391, 524 and 702 MeV. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass. The strong suppression of the decay constant of the second excited state is consistent with its interpretation as a predominantly hybrid state.
Negative-quench-induced excitation dynamics for ultracold bosons in one-dimensional lattices
NASA Astrophysics Data System (ADS)
Mistakidis, S. I.; Cao, L.; Schmelcher, P.
2015-03-01
The nonequilibrium dynamics following a quench of strongly repulsive bosonic ensembles in one-dimensional finite lattices is investigated by employing interaction quenches and/or a ramp of the lattice potential. Both sudden and time-dependent quenches are analyzed in detail. For the case of interaction quenches we address the transition from the strong repulsive to the weakly interacting regime, suppressing in this manner the heating of the system. The excitation modes such as the cradle process and the local breathing mode are examined via local density observables. In particular, the cradle mode is inherently related to the initial delocalization and, following a negative interaction quench, can be excited only for incommensurate setups with filling larger than unity. Alternatively, a negative quench of the lattice depth which favors the spatial delocalization is used to access the cradle mode for setups with filling smaller than unity. Our results shed light on possible schemes to control the cradle and the breathing modes. Finally, employing the notion of fidelity we study the dynamical response of the system after a diabatic or adiabatic parameter modulation for short and long evolution times. The evolution of the system is obtained numerically using the ab initio multilayer multiconfiguration time-dependent Hartree method for bosons, which permits us to follow nonequilibrium dynamics including the corresponding investigation of higher-band effects.
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Cao, Lushuai; Schmelcher, Peter
2015-05-01
The correlated non-equilibrium dynamics of few-boson systems in one-dimensional finite lattices is investigated. Focusing on the low-lying modes of the finite lattice we observe the emergence of density-wave tunneling, breathing and cradle-like processes. In particular, the tunneling induced by the quench leads to a global density-wave oscillation. The resulting breathing and cradle modes are inherent to the local intrawell dynamics and related to excited-band states. Positive interaction quenches couple the density-wave and the cradle modes allowing for resonance phenomena. Moreover, the cradle mode is associated with the initial delocalization and following a negative interaction quench can be excited for setups with filling larger than unity. For subunit fillings it can be accessed with the aid of a negative quench of the lattice depth. Finally, our results shed light to possible controlling schemes for the cradle and the breathing modes. The evolution of the system is obtained numerically using the ab-initio multi-layer multi-configuration time-dependent Hartree method for bosons. (1)Hamburgisches Gesetz zur Förderung des wissenschaftlichen und künstlerischen Nachwuchses (HmbNFG), (2,3) Deutsche Forschungsgemeinschaft (DFG).
Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4
NASA Astrophysics Data System (ADS)
Paddison, Joseph A. M.; Daum, Marcus; Dun, Zhiling; Ehlers, Georg; Liu, Yaohua; Stone, Matthew B.; Zhou, Haidong; Mourigal, Martin
2016-12-01
A quantum spin liquid (QSL) is an exotic state of matter in which electrons’ spins are quantum entangled over long distances, but do not show magnetic order in the zero-temperature limit. The observation of QSL states is a central aim of experimental physics, because they host collective excitations that transcend our knowledge of quantum matter; however, examples in real materials are scarce. Here, we report neutron-scattering experiments on YbMgGaO4, a QSL candidate in which Yb3+ ions with effective spin-1/2 occupy a triangular lattice. Our measurements reveal a continuum of magnetic excitations--the essential experimental hallmark of a QSL--at very low temperature (0.06 K). The origin of this peculiar excitation spectrum is a crucial question, because isotropic nearest-neighbour interactions do not yield a QSL ground state on the triangular lattice. Using measurements in the field-polarized state, we identify antiferromagnetic next-nearest-neighbour interactions, spin-space anisotropies, and chemical disorder between the magnetic layers as key ingredients in YbMgGaO4.
Loading of a Bose-Einstein condensate into an optical lattice: The excitation of collective modes
NASA Astrophysics Data System (ADS)
Plata, J.
2004-03-01
The dynamics of a Bose-Einstein condensate in a harmonic trap with a nonadiabatically loaded optical lattice is studied analytically. As the global effect of the optical potential can be described in terms of a renormalized interaction coupling constant and of an effective mass in the laser direction, a fast loading can be understood as a sudden change of those characteristic parameters. In this approach, a standard scaling transformation is applied to study the resulting dynamics, in particular, the generation of collective modes. The relevance of the excited modes to the interference patterns obtained after free expansion is analyzed. The applicability of trap-frequency adjustments as a strategy for suppressing the loading induced excitations is discussed.
Excited-state spectroscopy of triply bottom baryons from lattice QCD
Meinel, Stefan
2012-06-25
Here, the spectrum of baryons containing three b quarks is calculated in nonperturbative QCD, using the lattice regularization. The energies of ten excited bbb states with JP = 1/2+, 3/2+, 5/2+, 7/2+, 1/2–, and 3/2– are determined with high precision. A domain-wall action is used for the up, down, and strange quarks, and the bottom quarks are implemented with nonrelativistic QCD. The computations are done at lattice spacings of a ≈ 0.11 fm and a ≈ 0.08 fm, and the results demonstrate the improvement of rotational symmetry as a is reduced. A large lattice volume of (2.7 fm)3 is used,more » and extrapolations of the bbb spectrum to realistic values of the light sea-quark masses are performed. All spin-dependent energy splittings are resolved with total uncertainties of order 1 MeV, and the dependence of these splittings on the couplings in the nonrelativistic QCD action is analyzed.« less
Excited-state spectroscopy of triply bottom baryons from lattice QCD
Meinel, Stefan
2012-06-25
Here, the spectrum of baryons containing three b quarks is calculated in nonperturbative QCD, using the lattice regularization. The energies of ten excited bbb states with J^{P} = 1/2^{+}, 3/2^{+}, 5/2^{+}, 7/2^{+}, 1/2^{–}, and 3/2^{–} are determined with high precision. A domain-wall action is used for the up, down, and strange quarks, and the bottom quarks are implemented with nonrelativistic QCD. The computations are done at lattice spacings of a ≈ 0.11 fm and a ≈ 0.08 fm, and the results demonstrate the improvement of rotational symmetry as a is reduced. A large lattice volume of (2.7 fm)^{3} is used, and extrapolations of the bbb spectrum to realistic values of the light sea-quark masses are performed. All spin-dependent energy splittings are resolved with total uncertainties of order 1 MeV, and the dependence of these splittings on the couplings in the nonrelativistic QCD action is analyzed.
Excited meson radiative transitions from lattice QCD using variationally optimized operators
Shultz, Christian J.; Dudek, Jozef J.; Edwards, Robert G.
2015-06-02
We explore the use of 'optimized' operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. In conclusion, the dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.
Excited meson radiative transitions from lattice QCD using variationally optimized operators
NASA Astrophysics Data System (ADS)
Shultz, Christian J.; Dudek, Jozef J.; Edwards, Robert G.; Hadron Spectrum Collaboration
2015-06-01
We explore the use of "optimized" operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and nonzero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited-state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form factors and transitions of pseudoscalar and vector meson excitations. The dependence on photon virtuality for a number of form factors and transitions is extracted, and some discussion of excited-state phenomenology is presented.
The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice
Qian, Yu; Zhang, Zhaoyang
2016-01-01
In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects. PMID:26900841
NASA Astrophysics Data System (ADS)
Vladimirov, Artem A.; Ihle, Dieter; Plakida, Nikolay M.
2017-03-01
We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic Heisenberg model on a stacked honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatures, the thermodynamic quantities (two-spin correlation functions, internal energy, magnetic susceptibility, staggered magnetization, Néel temperature, correlation length) and the spin-excitation spectrum are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. The Néel temperature is calculated for arbitrary interlayer couplings. Our results are in a good agreement with numerical computations for finite clusters and with available experimental data on the β-Cu2V2O2 compound.
Sepehri Javan, N.
2015-08-21
This work is a theoretical study on third harmonic generation in the nonlinear propagation of an intense laser pulse through a periodic three-dimensional lattice of nanoparticles. Using a perturbative method, the nonlinear equations that describe the laser–nanoparticle interaction in the weakly relativistic regime are derived. Additionally, the nonlinear dispersion relation and the amplitude of the third harmonic are obtained. Finally, the effects of the nanoparticle radius and separation length, the distribution of the nanoparticle electron density, and the laser frequency upon the third harmonic efficiency are investigated. In addition to the expected resonance that occurs when the third harmonic resonates with the plasmon wave, another resonance appears when the nonlinear interaction of the fundamental mode with the third harmonic excites a longitudinal collective plasmon wave via the parametric Raman mechanism.
Qian, Yu; Zhang, Zhaoyang
2016-01-01
In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.
Bishof, M.; Martin, M. J.; Swallows, M. D.; Benko, C.; Lin, Y.; Quemener, G.; Rey, A. M.; Ye, J.
2011-11-15
We observe two-body loss of {sup 3} P{sub 0} {sup 87}Sr atoms trapped in a one-dimensional optical lattice. We measure loss rate coefficients for atomic samples between 1 and 6 {mu}K that are prepared either in a single nuclear-spin sublevel or with equal populations in two sublevels. The measured temperature and nuclear-spin preparation dependence of rate coefficients agree well with calculations and reveal that rate coefficients for distinguishable atoms are only slightly enhanced over those of indistinguishable atoms. We further observe a suppression of excitation and losses during interrogation of the {sup 1} S{sub 0}-{sup 3} P{sub 0} transition as density increases and Rabi frequency decreases, which suggests the presence of strong interactions in our dynamically driven many-body system.
Ground state spin and excitation energies in half-filled Lieb lattices
NASA Astrophysics Data System (ADS)
Ţolea, M.; Niţǎ, M.
2016-10-01
We present detailed spectral calculations for small Lieb lattices having up to N =4 number of cells, in the regime of half-filling, an instance of particular relevance for the nanomagnetism of discrete systems such as quantum dot arrays, due to the degenerate levels at midspectrum. While for the Hubbard interaction model—and even number of sites—the ground state spin is given by the Lieb theorem, the inclusion of long-range interaction—or odd number of sites—makes the spin state not known a priori, which justifies our approach. We calculate also the excitation energies, which are of experimental importance, and find significant variation induced by the interaction potential. One obtains insights on the mechanisms involved that impose as ground state the Lieb state with lower spin rather than the Hund one with maximum spin for the degenerate levels, showing this in the first and second orders of the interaction potential for the smaller lattices. The analytical results agree with the numerical ones, which are performed by exact diagonalization calculations or by a combined mean-field and configuration interaction method. While the Lieb state is always lower in energy than the Hund state, for strong long-range interaction, when possible, another minimal spin state is imposed as ground state.
Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Lednev, V. N.; Pershin, S. M.
2015-11-15
The study of the time-resolved optical reflection from the silicon surface excited by single femtosecond laser pulses below and near the melting threshold reveals fast (less than 10 ps) Auger recombination of a photogenerated electron–hole plasma with simultaneous energy transfer to the lattice. The acoustic relaxation of the excited surface layer indicates (according to reported data) a characteristic depth of 150 nm of the introduction of the laser radiation energy, which is related to direct linear laser radiation absorption in the photoexcited material due to a decrease in the energy bandgap. The surface temperature, which is probed at a time delay of about 100 ps from the reflection thermomodulation of probe radiation and the integrated continuous thermal emission from the surface, increases with the laser fluence and, thus, favors a nonlinear increase in the fluorescence of sublimated silicon atoms. The surface temperature estimated near the picosecond melting threshold demonstrates a substantial (20%) overheating of the material with respect to the equilibrium melting temperature. Above the melting threshold, the delay of formation of the material melt decreases rapidly (from several tens of picoseconds to several fractions of a picosecond) when the laser fluence and, correspondingly, the surface temperature increase. In the times of acoustic relaxation of the absorbing layer and even later, the time modulation of the optical reflectivity of the material demonstrates acoustic reverberations with an increasing period, which are related to the formation of melt nuclei in the material.
Application of heterogeneous pulse coupled neural network in image quantization
NASA Astrophysics Data System (ADS)
Huang, Yi; Ma, Yide; Li, Shouliang; Zhan, Kun
2016-11-01
On the basis of the different strengths of synaptic connections between actual neurons, this paper proposes a heterogeneous pulse coupled neural network (HPCNN) algorithm to perform quantization on images. HPCNNs are developed from traditional pulse coupled neural network (PCNN) models, which have different parameters corresponding to different image regions. This allows pixels of different gray levels to be classified broadly into two categories: background regional and object regional. Moreover, an HPCNN also satisfies human visual characteristics. The parameters of the HPCNN model are calculated automatically according to these categories, and quantized results will be optimal and more suitable for humans to observe. At the same time, the experimental results of natural images from the standard image library show the validity and efficiency of our proposed quantization method.
Origin of chaotic transients in excitatory pulse-coupled networks
NASA Astrophysics Data System (ADS)
Zou, Hai-Lin; Li, Menghui; Lai, Choy-Heng; Lai, Ying-Cheng
2012-12-01
We develop an approach to understanding long chaotic transients in networks of excitatory pulse-coupled oscillators. Our idea is to identify a class of attractors, sequentially active firing (SAF) attractors, in terms of the temporal event structure of firing and receipt of pulses. Then all attractors can be classified into two groups: SAF attractors and non-SAF attractors. We establish that long transients typically arise in the transitional region of the parameter space where the SAF attractors are collectively destabilized. Bifurcation behavior of the SAF attractors is analyzed to provide a detailed understanding of the long irregular transients. Although demonstrated using pulse-coupled oscillator networks, our general methodology may be useful in understanding the origin of transient chaos in other types of networked systems, an extremely challenging problem in nonlinear dynamics and complex systems.
Delay, noise and phase locking in pulse coupled neural networks.
Haken, H
2001-01-01
This paper studies the effect of several delay times and noise on the stability of the phase-locked state in the lighthouse model and the integrate and fire model of a pulse coupled neural network. The coupling between neurons may be arbitrary. In both models the increase of delay times leads to a weakening of the stability and to the occurrence of relaxation oscillations.
Inherent features of wavelets and pulse coupled networks.
Lindblad, T; Kinser, J M
1999-01-01
Biologically inspired image/signal processing like the pulse coupled neural network (PCNN) and the wavelet (packet) transforms are described. The two methods are applied to two-dimensional data in order to demonstrate the features of each method, pinpoint differences as well as similarities. The inherent properties (with respect to filtering, segmentation, etc.) of the two approaches with respect to detectors for physics experiments as well as remote sensing are discussed.
Excitation dynamics in a lattice Bose gas within the time-dependent Gutzwiller mean-field approach
Krutitsky, Konstantin V.; Navez, Patrick
2011-09-15
The dynamics of the collective excitations of a lattice Bose gas at zero temperature is systematically investigated using the time-dependent Gutzwiller mean-field approach. The excitation modes are determined within the framework of the linear-response theory as solutions of the generalized Bogoliubov-de Gennes equations valid in the superfluid and Mott-insulator phases at arbitrary values of parameters. The expression for the sound velocity derived in this approach coincides with the hydrodynamic relation. We calculate the transition amplitudes for the excitations in the Bragg scattering process and show that the higher excitation modes make significant contributions. We simulate the dynamics of the density perturbations and show that their propagation velocity in the limit of week perturbation is satisfactorily described by the predictions of the linear-response analysis.
NASA Astrophysics Data System (ADS)
Watanabe, Shinta; Sasaki, Tomomi; Taniguchi, Rie; Ishii, Takugo; Ogasawara, Kazuyoshi
2009-02-01
We performed first-principles calculations of multiplet structures and the corresponding ground-state absorption and excited-state absorption spectra for ruby (Cr3+:α-Al2O3) and alexandrite (Cr3+:BeAl2O4) which included lattice relaxation. The lattice relaxation was estimated using the first-principles total energy and molecular-dynamics method of the CASTEP code. The multiplet structure and absorption spectra were calculated using the configuration-interaction method based on density-functional calculations. For both ruby and alexandrite, the theoretical absorption spectra, which were already in reasonable agreement with experimental spectra, were further improved by consideration of lattice relaxation. In the case of ruby, the peak positions and peak intensities were improved through the use of models with relaxations of 11 or more atoms. For alexandrite, the polarization dependence of the U band was significantly improved, even by a model with a relaxation of only seven atoms.
Pulse-coupled BZ oscillators with unequal coupling strengths.
Horvath, Viktor; Kutner, Daniel J; Chavis, John T; Epstein, Irving R
2015-02-14
Coupled chemical oscillators are usually studied with symmetric coupling, either between identical oscillators or between oscillators whose frequencies differ. Asymmetric connectivity is important in neuroscience, where synaptic strength inequality in neural networks commonly occurs. While the properties of the individual oscillators in some coupled chemical systems may be readily changed, enforcing inequality between the connection strengths in a reciprocal coupling is more challenging. We recently demonstrated a novel way of coupling chemical oscillators, which allows for manipulation of individual connection strengths. Here we study two identical, pulse-coupled Belousov-Zhabotinsky (BZ) oscillators with unequal connection strengths. When the pulse perturbations contain KBr (inhibitor), this system exhibits simple out-of-phase and complex oscillations, oscillatory-suppressed states as well as temporally periodic patterns (N : M) in which the two oscillators exhibit different numbers of peaks per cycle. The N : M patterns emerge due to the long-term effect of the inhibitory pulse-perturbations, a feature that has not been considered in earlier works. Time delay was previously shown to have a profound effect on the system's behaviour when pulse coupling was inhibitory and the coupling strengths were equal. When the coupling is asymmetric, however, delay produces no qualitative change in behaviour, though the 1 : 2 temporal pattern becomes more robust. Asymmetry in instantaneous excitatory coupling via AgNO3 injection produces a previously unseen temporal pattern (1 : N patterns starting with a double peak) with time delay and high [AgNO3]. Numerical simulations of the behaviour agree well with theoretical predictions in asymmetrical pulse-coupled systems.
Causal and Structural Connectivity of Pulse-Coupled Nonlinear Networks
NASA Astrophysics Data System (ADS)
Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David
2013-08-01
We study the reconstruction of structural connectivity for a general class of pulse-coupled nonlinear networks and show that the reconstruction can be successfully achieved through linear Granger causality (GC) analysis. Using spike-triggered correlation of whitened signals, we obtain a quadratic relationship between GC and the network couplings, thus establishing a direct link between the causal connectivity and the structural connectivity within these networks. Our work may provide insight into the applicability of GC in the study of the function of general nonlinear networks.
Parameter adaptation in a simplified pulse-coupled neural network
NASA Astrophysics Data System (ADS)
Szekely, Geza; Lindblad, Thomas
1999-03-01
In a general purpose pulse coupled neural network (PCNN) algorithm the following parameters are used: 2 weight matrices, 3 time constants, 3 normalization factors and 2 further parameters. In a given application, one has to determine the near optimal parameter set to achieve the desired goal. Here a simplified PCNN is described which contains a parameter fitting part, in the least squares sense. Given input and a desired output image, the program is able to determine the optimal value of a selected PCNN parameter. This method can be extended to more general PCNN algorithms, because partial derivatives are not required for the fitting. Only the sum of squares of the differences is used.
Excited and exotic charmonium, D s and D meson spectra for two light quark masses from lattice QCD
NASA Astrophysics Data System (ADS)
Cheung, Gavin K. C.; O'Hara, Cian; Moir, Graham; Peardon, Michael; Ryan, Sinéad M.; Thomas, Christopher E.; Tims, David
2016-12-01
We present highly-excited charmonium, D s and D meson spectra from dynamical lattice QCD calculations with light quarks corresponding to M π ˜ 240 MeV and compare these to previous results with M π ˜ 400 MeV. Utilising the distillation framework, large bases of carefully constructed interpolating operators and a variational procedure, we extract and reliably identify the continuum spin of an extensive set of excited mesons. These include states with exotic quantum numbers which, along with a number with non-exotic quantum numbers, we identify as having excited gluonic degrees of freedom and interpret as hybrid mesons. Comparing the spectra at the two different M π , we find only a mild light-quark mass dependence and no change in the overall pattern of states.
Ice flood detection based on pulse coupled neural network
NASA Astrophysics Data System (ADS)
Liu, Xian-hong; Chen, Zhi-bin; Wang, Wei-ming
2013-09-01
When ice run in the river course blocks the waterway severely, swelling will be speeded and of large scope, which will usually cause disasters. To judge the trend of ice flood and its disaster in the future, some data of ice flood, such as area, velocity and density, must be obtained timely. The velocity of ice flood can be got by analyzing the displacement and time interval of a same object in each image. The density of ice flood can be calculated from the ice area in a certain region. A precise area statistic of ice is the most important and difficult thing. In this paper, an edge extraction approach based on pulse coupled neural network is proposed to locate the edge of ice. Then, the area of ice can be obtained by the relativity between the ice and the region. The experimental results indicate that the method based on pulse coupled neural network is feasible. The extracted edge of the ice is distinct and continuous and the influence of noise on the infrared image is effectively eliminated.
Linear stability in networks of pulse-coupled neurons.
Olmi, Simona; Torcini, Alessandro; Politi, Antonio
2014-01-01
In a first step toward the comprehension of neural activity, one should focus on the stability of the possible dynamical states. Even the characterization of an idealized regime, such as that of a perfectly periodic spiking activity, reveals unexpected difficulties. In this paper we discuss a general approach to linear stability of pulse-coupled neural networks for generic phase-response curves and post-synaptic response functions. In particular, we present: (1) a mean-field approach developed under the hypothesis of an infinite network and small synaptic conductances; (2) a "microscopic" approach which applies to finite but large networks. As a result, we find that there exist two classes of perturbations: those which are perfectly described by the mean-field approach and those which are subject to finite-size corrections, irrespective of the network size. The analysis of perfectly regular, asynchronous, states reveals that their stability depends crucially on the smoothness of both the phase-response curve and the transmitted post-synaptic pulse. Numerical simulations suggest that this scenario extends to systems that are not covered by the perturbative approach. Altogether, we have described a series of tools for the stability analysis of various dynamical regimes of generic pulse-coupled oscillators, going beyond those that are currently invoked in the literature.
Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4
Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; ...
2015-11-27
We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs2CuBr4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs2CuBr4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above TN. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below TN the high-energy spin dynamicsmore » in Cs2CuBr4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.« less
NASA Astrophysics Data System (ADS)
Nagao, Masahiro; So, Yeong-Gi; Yoshida, Hiroyuki; Yamaura, Kazunari; Nagai, Takuro; Hara, Toru; Yamazaki, Atsushi; Kimoto, Koji
2015-10-01
Model calculations indicate that the magnetic skyrmion lattice (SkL) is represented by a superposition of three spin helices at an angle of 120∘ to each other, the so-called triple-Q state. Using Lorentz transmission electron microscopy, we investigated the relationship between the SkL and the helix in FeGe thin films. After the magnetic field is removed, the ordered skyrmions are trapped inside helimagnetic domain walls (HDWs) where the different helical Q vectors are encountered. In situ observation revealed an unexpected topological excitation under such a zero-field state: skyrmions are spontaneously formed at HDWs.
Pulse-coupled neural network implementation in FPGA
NASA Astrophysics Data System (ADS)
Waldemark, Joakim T. A.; Lindblad, Thomas; Lindsey, Clark S.; Waldemark, Karina E.; Oberg, Johnny; Millberg, Mikael
1998-03-01
Pulse Coupled Neural Networks (PCNN) are biologically inspired neural networks, mainly based on studies of the visual cortex of small mammals. The PCNN is very well suited as a pre- processor for image processing, particularly in connection with object isolation, edge detection and segmentation. Several implementations of PCNN on von Neumann computers, as well as on special parallel processing hardware devices (e.g. SIMD), exist. However, these implementations are not as flexible as required for many applications. Here we present an implementation in Field Programmable Gate Arrays (FPGA) together with a performance analysis. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications. The latter may include advanced on-line image analysis with close to real-time performance.
Analog implementation of pulse-coupled neural networks.
Ota, Y; Wilamowski, B M
1999-01-01
This paper presents a compact architecture for analog CMOS hardware implementation of voltage-mode pulse-coupled neural networks (PCNN's). The hardware implementation methods shows inherent fault tolerance specialties and high speed, which is usually more than an order of magnitude over the software counterpart. A computational style described in this article mimics a biological neural network using pulse-stream signaling and analog summation and multiplication. Pulse-stream encoding technique uses pulse streams to carry information and control analog circuitry, while storing further analog information on the time axis. The main feature of the proposed neuron circuit is that the structure is compact, yet exhibiting all the basic properties of natural biological neurons. Functional and structural forms of neural and synaptic functions are presented along with simulation results. Finally, the proposed design is applied to image processing to demonstrate successful restoration of images and their features.
Foveation by a pulse-coupled neural network.
Kinser, J M
1999-01-01
Humans do not stare at an image, they foveate. Their eyes move about points of interest within the image collecting clues as to the content of the image. Object shape is one of the driving forces of foveation. These foveation points are generally corners and, to a lesser extent, the edges. The pulse-coupled neural network (PCNN) has the inherent ability to segment an image. The corners and edges of the PCNN segments are similar to the foveation points. Thus, it is a natural extension of PCNN technology to use it as a foveation engine. This paper will present theory and examples of foveation through the use of a PCNN, and it will also demonstrate that it can be quite useful in image recognition.
Pulse-coupled neural networks for medical image analysis
NASA Astrophysics Data System (ADS)
Keller, Paul E.; McKinnon, A. D.
1999-03-01
Pulse-coupled neural networks (PCNNs) have recently become fashionable for image processing. This paper discusses some of the advantages and disadvantages of PCNNs for performing image segmentation in the realm of medical diagnostics. PCNNs were tested with magnetic resonance imagery (MRI) of the brian and abdominal region and nuclear scintigraphic imagery of the lungs (V/Q scans). Our preliminary results show that PCNNs do well at contrast enhancement. They also do well at image segmentation when each segment is approximately uniform in intensity. However, there are limits to what PCNNs can do. For example, when intensity significantly varies across a single segment, that segment does not properly separate from other objects. Another problem with the PCNN is properly setting the various parameters so that a uniform response is achieved over a set of imagery. Sometimes, a set of parameters that properly segment objects in one image fail on a similar image.
Implementation of a pulse coupled neural network in FPGA.
Waldemark, J; Millberg, M; Lindblad, T; Waldemark, K; Becanovic, V
2000-06-01
The Pulse Coupled neural network, PCNN, is a biologically inspired neural net and it can be used in various image analysis applications, e.g. time-critical applications in the field of image pre-processing like segmentation, filtering, etc. a VHDL implementation of the PCNN targeting FPGA was undertaken and the results presented here. The implementation contains many interesting features. By pipelining the PCNN structure a very high throughput of 55 million neuron iterations per second could be achieved. By making the coefficients re-configurable during operation, a complete recognition system could be implemented on one, or maybe two, chip(s). Reconsidering the ranges and resolutions of the constants may save a lot of hardware, since the higher resolution requires larger multipliers, adders, memories etc.
Generation and detection of squeezed phonons in lattice dynamics by ultrafast optical excitations
NASA Astrophysics Data System (ADS)
Benatti, Fabio; Esposito, Martina; Fausti, Daniele; Floreanini, Roberto; Titimbo, Kelvin; Zimmermann, Klaus
2017-02-01
We propose a fully quantum treatment for pump and probe experiments applied to the study of phonon excitations in solids. To describe the interaction between photons and phonons, a single effective hamiltonian is used that is able to model both the excitation induced by pump laser pulses and the subsequent measuring process through probe pulses. As the photoexcited phonons interact with their surroundings, mainly electrons and impurities in the target material, they cannot be considered isolated: their dynamics needs to be described by a master equation that takes into account the dissipative and noisy effects due to the presence of the environment. In this formalism, the quantum dynamics of pump excited phonons can be analyzed through suitable probe photon observables; in particular, a clear signature of squeezed phonons can be obtained by looking simultaneously at the behavior of the scattered probe mean photon number and its variance.
Image shadow removal using pulse coupled neural network.
Gu, Xiaodong; Yu, Daoheng; Zhang, Liming
2005-05-01
This paper introduces an approach for image shadow removal by using pulse coupled neural network (PCNN), based on the phenomena of synchronous pulse bursts in the animal visual cortexes. Two shadow-removing criteria are proposed. These two criteria decide how to choose the optimal parameter (the linking strength beta). The computer simulation results of shadow removal based on PCNN show that if these two criteria are satisfied, shadows are removed completely and the shadow-removed images are almost as the same as the original nonshadowed images. The shadow removal results are independent of changes of intensities of shadows in some range and variations of the places of shadows. When the first criterion is satisfied, even if the second criterion is not satisfied, as to natural grey images that have abundant grey levels, shadows also can be removed and PCNN shadow-removed images retain the shapes of the objects in original images. These two criteria also can be used for color images by dividing a color image into three channels (R, G, B). For shadows varying drastically, such as the noisy points in images, these two criteria are still right, but difficult to satisfy. Therefore, this approach can efficiently remove shadows that do not include the random noise.
Pulse-coupled neural networks for contour and motion matchings.
Yu, Bo; Zhang, Liming
2004-09-01
Two neural networks based on temporal coding are proposed in this paper to perform contour and motion matchings. Both of the proposed networks are three-dimensional (3-D) pulse-coupled neural networks (PCNNs). They are composed of simplified Eckhorn neurons and mimic the structure of the primary visual cortex. The PCNN for contour matching can segment from the background the object with a particular contour, which has been stored as prior knowledge and controls the network activity in the form of spike series; The PCNN for motion matching not only detects the motion in the visual field, but also extracts the object moving in an arbitrarily specified direction. The basic idea of these two models is to encode information into the timing of spikes and later to decode this information through coincidence detectors and synapse delays to realize the knowledge-controlled object matchings. The simulation results demonstrate that the temporal coding and the decoding mechanisms are powerful enough to perform the contour and motion matchings.
Cascades on a stochastic pulse-coupled network
NASA Astrophysics Data System (ADS)
Wray, C. M.; Bishop, S. R.
2014-09-01
While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.
Image fusion by pulse couple neural network with shearlet
NASA Astrophysics Data System (ADS)
Geng, Peng; Wang, Zhengyou; Zhang, Zhigang; Xiao, Zhong
2012-06-01
The shearlet representation forms a tight frame which decomposes a function into scales and directions, and is optimally sparse in representing images with edges. An image fusion method is proposed based on the shearlet transform. Firstly, transform the image A and image B by the shearlets. Secondly, a pulse couple neural network (PCNN) is used for the frequency subbands, which uses the number of output pulses from the PCNN's neurons to select fusion coefficients. Finally, an inverse shearlet transform is applied on the new fused coefficients to reconstruct the fused image. Some experiments are performed in images such as multi-focus images, multi-sensor images, medical images and multispectral images comparing the proposed algorithm with the wavelet, contourlet and nonsubsampled contourlet method based on the PCNN. The experimental results show that the proposed algorithm can not only extract more important visual information from source images, but also effectively avoid the introduction of artificial information. It significantly outperforms the traditional multiscale transform image fusion methods in terms of both visual quality and objective evaluation criteria such as MI and QAB/F.
Modeling the network dynamics of pulse-coupled neurons
NASA Astrophysics Data System (ADS)
Chandra, Sarthak; Hathcock, David; Crain, Kimberly; Antonsen, Thomas M.; Girvan, Michelle; Ott, Edward
2017-03-01
We derive a mean-field approximation for the macroscopic dynamics of large networks of pulse-coupled theta neurons in order to study the effects of different network degree distributions and degree correlations (assortativity). Using the ansatz of Ott and Antonsen [Chaos 18, 037113 (2008)], we obtain a reduced system of ordinary differential equations describing the mean-field dynamics, with significantly lower dimensionality compared with the complete set of dynamical equations for the system. We find that, for sufficiently large networks and degrees, the dynamical behavior of the reduced system agrees well with that of the full network. This dimensional reduction allows for an efficient characterization of system phase transitions and attractors. For networks with tightly peaked degree distributions, the macroscopic behavior closely resembles that of fully connected networks previously studied by others. In contrast, networks with highly skewed degree distributions exhibit different macroscopic dynamics due to the emergence of degree dependent behavior of different oscillators. For nonassortative networks (i.e., networks without degree correlations), we observe the presence of a synchronously firing phase that can be suppressed by the presence of either assortativity or disassortativity in the network. We show that the results derived here can be used to analyze the effects of network topology on macroscopic behavior in neuronal networks in a computationally efficient fashion.
Cascades on a stochastic pulse-coupled network
Wray, C. M.; Bishop, S. R.
2014-01-01
While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided. PMID:25213626
Physiologically motivated image fusion using pulse-coupled neural networks
NASA Astrophysics Data System (ADS)
Broussard, Randy P.; Rogers, Steven K.
1996-03-01
This paper uses a high level vision model to describe the information passing and linking within the primate visual system. Information linking schemes, such as state dependent modulation and temporal synchronization, are presented as methods the vision system uses to combine information using expectation to fill in missing information and remove unneeded information. The possibility of using linking methods derived from physiologically based theoretical models to combine current image processing techniques for pattern recognition purposes is investigated. These image processing techniques are transforms such as (but not limited to) wavelet filters, hit or miss filters, morphological filters, and difference of gausian filters. These particular filters are chosen because they simulate functions that are performed in the primate visual system. To implement the physiologically motivated linking methods, the Pulse Coupled Neural Network (PCNN) is chosen as a basic building block for the vision model which performs linking at the neuronal pulse level. Last, an image fusion network which incorporates information linking based on the PCNN is described, and initial results are presented.
Schor; O'Carroll
2000-06-01
We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region (beta<1). Each model is characterized by a single-site a priori spin probability distribution taken to be noneven. We state our results in terms of the parameter alpha=(<&smacr; (4)>-3<&smacr; (2)>(2)-<&smacr; (3)>(2)<&smacr; (2)>(-1))/(<&smacr; (4)>-<&smacr; (2)>(2)-<&smacr; (3)>(2)<&smacr; (2)>(-1)), where &smacr;=s-, and denotes the kth moment of the single-site distribution. Associated with the model is a lattice quantum field theory which is known to contain a particle of mass m approximately ln beta. Assuming <&smacr;(3)> not equal0 we show that for alpha>0, beta small, there exists a bound state with mass below the two-particle threshold 2m. For alpha<0 bound states do not exist. These results are obtained using a Bethe-Salpeter (BS) equation in the ladder approximation in conjunction with a representation for the inverse of the two-point function designed to analyze the spectrum below but close to 2m.
Barber, Z.W.; Hoyt, C.W.; Oates, C.W.; Hollberg, L.; Taichenachev, A.V.; Yudin, V.I.
2006-03-03
We report direct single-laser excitation of the strictly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} clock transition in {sup 174}Yb atoms confined to a 1D optical lattice. A small ({approx}1.2 mT) static magnetic field was used to induce a nonzero electric dipole transition probability between the clock states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FWHM) with high contrast were observed, demonstrating a resonance quality factor of 2.6x10{sup 13}. The previously unknown ac Stark shift-canceling (magic) wavelength was determined to be 759.35{+-}0.02 nm. This method for using the metrologically superior even isotope can be easily implemented in current Yb and Sr lattice clocks and can create new clock possibilities in other alkaline-earth-like atoms such as Mg and Ca.
NASA Astrophysics Data System (ADS)
Kriener, Birgit
2012-09-01
Under which conditions can a network of pulse-coupled oscillators sustain stable collective activity states? Previously, it was shown that stability of the simplest pattern conceivable, i.e., global synchrony, in networks of symmetrically pulse-coupled oscillators can be decided in a rigorous mathematical fashion, if interactions either all advance or all retard oscillation phases ("mono-interaction network"). Yet, many real-world networks—for example neuronal circuits—are asymmetric and moreover crucially feature both types of interactions. Here, we study complex networks of excitatory (phase-advancing) and inhibitory (phase-retarding) leaky integrate-and-fire (LIF) oscillators. We show that for small coupling strength, previous results for mono-interaction networks also apply here: pulse time perturbations eventually decay if they are smaller than a transmission delay and if all eigenvalues of the linear stability operator have absolute value smaller or equal to one. In this case, the level of inhibition must typically be significantly stronger than that of excitation to ensure local stability of synchrony. For stronger coupling, however, network synchrony eventually becomes unstable to any finite perturbation, even if inhibition is strong and all eigenvalues of the stability operator are at most unity. This new type of instability occurs when any oscillator, inspite of receiving inhibitory input from the network on average, can by chance receive sufficient excitatory input to fire a pulse before all other pulses in the system are delivered, thus breaking the near-synchronous perturbation pattern.
Breakdown of order preservation in symmetric oscillator networks with pulse-coupling.
Kielblock, Hinrich; Kirst, Christoph; Timme, Marc
2011-06-01
Symmetric networks of coupled dynamical units exhibit invariant subspaces with two or more units synchronized. In time-continuously coupled systems, these invariant sets constitute barriers for the dynamics. For networks of units with local dynamics defined on the real line, this implies that the units' ordering is preserved and that their winding number is identical. Here, we show that in permutation-symmetric networks with pulse-coupling, the order is often no longer preserved. We analytically study a class of pulse-coupled oscillators (characterizing for instance the dynamics of spiking neural networks) and derive quantitative conditions for the breakdown of order preservation. We find that in general pulse-coupling yields additional dimensions to the state space such that units may change their order by avoiding the invariant sets. We identify a system of two symmetrically pulse-coupled identical oscillators where, contrary to intuition, the oscillators' average frequencies and thus their winding numbers are different.
Wu, Wei; Chen, Tianping
2009-12-01
Fireflies, as one of the most spectacular examples of synchronization in nature, have been investigated widely. In 1990, Mirollo and Strogatz proposed a pulse-coupled oscillator model to explain the synchronization of South East Asian fireflies (Pteroptyx malaccae). However, transmission delays were not considered in their model. In fact, when transmission delays are introduced, the dynamic behaviors of pulse-coupled networks change a lot. In this paper, pulse-coupled oscillator networks with delayed excitatory coupling are studied. A concept of synchronization, named weak asymptotic synchronization, which is weaker than asymptotic synchronization, is proposed. We prove that for pulse-coupled oscillator networks with delayed excitatory coupling, weak asymptotic synchronization cannot occur.
NASA Astrophysics Data System (ADS)
Petrosyan, David; Mølmer, Klaus; Fleischhauer, Michael
2016-04-01
We examine the adiabatic preparation of crystalline phases of Rydberg excitations in a one-dimensional lattice gas by frequency sweep of the excitation laser, as proposed by Pohl et al (2010 Phys. Rev. Lett. 104 043002) and recently realized experimentally by Schauß et al (2015 Science 347 1455). We find that the preparation of crystals of a few Rydberg excitations in a unitary system of several tens of atoms requires exceedingly long times for the adiabatic following of the ground state of the system Hamiltonian. Using quantum stochastic (Monte Carlo) wavefunction simulations, we show that realistic decay and dephasing processes affecting the atoms during the preparation lead to a final state of the system that has only a small overlap with the target crystalline state. Yet, the final number and highly sub-Poissonian statistics of Rydberg excitations and their spatial order are little affected by the relaxations.
Izhikevich, E M
1999-01-01
We study pulse-coupled neural networks that satisfy only two assumptions: each isolated neuron fires periodically, and the neurons are weakly connected. Each such network can be transformed by a piece-wise continuous change of variables into a phase model, whose synchronization behavior and oscillatory associative properties are easier to analyze and understand. Using the phase model, we can predict whether a given pulse-coupled network has oscillatory associative memory, or what minimal adjustments should be made so that it can acquire memory. In the search for such minimal adjustments we obtain a large class of simple pulse-coupled neural networks that can memorize and reproduce synchronized temporal patterns the same way a Hopfield network does with static patterns. The learning occurs via modification of synaptic weights and/or synaptic transmission delays.
Frequency adjustment and synchrony in networks of delayed pulse-coupled oscillators
NASA Astrophysics Data System (ADS)
Nishimura, Joel
2015-01-01
We introduce a system of pulse-coupled oscillators that can change both their phases and frequencies and prove that when there is a separation of time scales between phase and frequency adjustment the system converges to exact synchrony on strongly connected graphs with time delays. The analysis involves decomposing the network into a forest of tree-like structures that capture causality. These results provide a robust method of sensor net synchronization as well as demonstrate a new avenue of possible pulse-coupled oscillator research.
Partial Synchronization in Pulse-Coupled Oscillator Networks I: Theory
NASA Astrophysics Data System (ADS)
Engelbrecht, Jan; Chen, Bolun; Mirollo, Renato
We study N identical integrate and fire model neurons coupled in an all to all network through α-function pulses, weighted by a parameter K. Studies of the dynamics of this system often focus on the stability of the fully synchronous and the fully asynchronous splay states, that naturally depend on the sign of K, i.e. excitation vs inhibition. We find that for finite N there is a rich set of other partially synchronized attractors, such as (N - 1 , 1) fixed states and partially synchronized splay states. Our framework exploits the neutrality of the dynamics for K = 0 which allows us to implement a dimensional reduction strategy that replaces the discrete pulses with a continuous flow, with the sign of K determining the flow direction. This framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new states lie. For N = 2 , 3 , 4 , we completely describe the sequence of bifurcations and the stability of all fixed points and limit cycles. Work Supported by NSF DMS 1413020.
Ziaja, Beata; Medvedev, Nikita; Tkachenko, Victor; Maltezopoulos, Theophilos; Wurth, Wilfried
2015-12-11
Femtosecond X-ray irradiation of solids excites energetic photoelectrons that thermalize on a timescale of a few hundred femtoseconds. The thermalized electrons exchange energy with the lattice and heat it up. Experiments with X-ray free-electron lasers have unveiled so far the details of the electronic thermalization. In this work we show that the data on transient optical reflectivity measured in GaAs irradiated with femtosecond X-ray pulses can be used to follow electron-lattice relaxation up to a few tens of picoseconds. With a dedicated theoretical framework, we explain the so far unexplained reflectivity overshooting as a result of band-gap shrinking. We also obtain predictions for a timescale of electron-lattice thermalization, initiated by conduction band electrons in the temperature regime of a few eVs. The conduction and valence band carriers were then strongly non-isothermal. The presented scheme is of general applicability and can stimulate further studies of relaxation within X-ray excited narrow band-gap semiconductors.
Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs_{2}CuBr_{4}
Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; Wosnitza, J.; Krzystek, J.; Yoshizawa, D.; Hagiwara, M.; Hu, Rongwei; Ryu, Hyejin; Petrovic, C.; Zhitomirsky, M. E.
2015-11-27
We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs_{2}CuBr_{4}. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs_{2}CuBr_{4} [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above T_{N}. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below T_{N} the high-energy spin dynamics in Cs_{2}CuBr_{4} is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.
Hannah, Daniel C; Brown, Kristen E; Young, Ryan M; Wasielewski, Michael R; Schatz, George C; Co, Dick T; Schaller, Richard D
2013-09-06
We report femtosecond stimulated Raman spectroscopy measurements of lattice dynamics in semiconductor nanocrystals and characterize longitudinal optical (LO) phonon production during confinement-enhanced, ultrafast intraband relaxation. Stimulated Raman signals from unexcited CdSe nanocrystals produce a spectral shape similar to spontaneous Raman signals. Upon photoexcitation, stimulated Raman amplitude decreases owing to experimentally resolved ultrafast phonon generation rates within the lattice. We find a ∼600 fs, particle-size-independent depletion time attributed to hole cooling, evidence of LO-to-acoustic down-conversion, and LO phonon mode softening.
NASA Astrophysics Data System (ADS)
Ito, T. U.; Koda, A.; Shimomura, K.; Higemoto, W.; Matsuzaki, T.; Kobayashi, Y.; Kageyama, H.
2017-01-01
Excited configurations of hydrogen in the oxyhydride BaTiO3 -xHx (x =0.1 -0.5 ), which are considered to be involved in its hydrogen transport and exchange processes, were investigated by positive muon spin relaxation spectroscopy using muonium (Mu) as a pseudoisotope of hydrogen. Muons implanted into the BaTiO3 -xHx perovskite lattice were mainly found in two qualitatively different metastable states. One was assigned to a highly mobile interstitial protonic state, which is commonly observed in perovskite oxides. The other was found to form an entangled two spin-1/2 system with the nuclear spin of an H- ion at the anion site. The structure of the (H,Mu) complex agrees well with that of a neutralized center containing two H- ions at a doubly charged oxygen vacancy, which was predicted to form in the SrTiO3 -δ perovskite lattice by a computational study [Y. Iwazaki et al., APL Mater. 2, 012103 (2014), 10.1063/1.4854355]. Above 100 K, interstitial Mu+ diffusion and retrapping to a deep defect were observed, which could be a rate-limiting step of macroscopic Mu/H transport in the BaTiO3 -xHx lattice.
Region growing with pulse-coupled neural networks: an alternative to seeded region growing.
Stewart, R D; Fermin, I; Opper, M
2002-01-01
The seeded region growing (SRG) algorithm is a fast robust parameter-free method for segmenting intensity images given initial seed locations for each region. The requirement of predetermined seeds means that the model cannot operate fully autonomously. In this paper, we demonstrate a novel region growing variant of the pulse-coupled neural network (PCNN), which offers comparable performance to the SRG and is able to generate seed locations internally, opening the way to fully autonomous operation.
Ye, Jinwu; Zhang, K.Y.; Li, Yan; Chen, Yan; Zhang, W.P.
2013-01-15
Ultracold atoms loaded on optical lattices can provide unprecedented experimental systems for the quantum simulations and manipulations of many quantum phases and quantum phase transitions between these phases. However, so far, how to detect these quantum phases and phase transitions effectively remains an outstanding challenge. In this paper, we will develop a systematic and unified theory of using the optical Bragg scattering, atomic Bragg scattering or cavity QED to detect the ground state and the excitation spectrum of many quantum phases of interacting bosons loaded in bipartite and frustrated optical lattices. The physically measurable quantities of the three experiments are the light scattering cross sections, the atom scattered clouds and the cavity leaking photons respectively. We show that the two photon Raman transition processes in the three detection methods not only couple to the density order parameter, but also the valence bond order parameter due to the hopping of the bosons on the lattice. This valence bond order coupling is very sensitive to any superfluid order or any valence bond (VB) order in the quantum phases to be probed. These quantum phases include not only the well-known superfluid and Mott insulating phases, but also other important phases such as various kinds of charge density waves (CDW), valence bond solids (VBS), and CDW-VBS phases with both CDW and VBS orders unique to frustrated lattices, and also various kinds of supersolids. We analyze respectively the experimental conditions of the three detection methods to probe these various quantum phases and their corresponding excitation spectra. We also address the effects of a finite temperature and a harmonic trap. We contrast the three scattering methods with recent in situ measurements inside a harmonic trap and argue that the two kinds of measurements are complementary to each other. The combination of both kinds of detection methods could be used to match the combination of
NASA Astrophysics Data System (ADS)
Barker, Beau J.; Berg, John M.; Kozimor, Stosh A.; Wozniak, Nicholas R.; Wilkerson, Marianne P.
2016-03-01
Visible and near-infrared illumination induces 5f-5f and ligand-to-metal charge-transfer (LMCT) transitions of the neptunyl tetrachloride anion in polycrystalline Cs2U(Np)O2Cl4, and results in near-infrared luminescence from the second electronically excited state to the ground state. This photoluminescence is used as a detection method to collect excitation spectra throughout the near-infrared and visible regions. The excitation spectra of LMCT transitions in excitation spectra were identified in previous work. Here the measurement and analysis is extended to include both LMCT and intra-5f transitions. The results manifest variation in structural properties of the neptunium-oxo bond among the low-lying electronic states. Vibronic intensity patterns and energy spacings are used to compare bond lengths and vibrational frequencies in the excited states, confirming significant characteristic differences between those excited by 5f-5f transitions from those due to LMCT transitions. Results are compared with recently published RASPT2/SO calculations of [NpO2Cl4]2-.
NASA Astrophysics Data System (ADS)
Mattioli, Marco
2016-12-01
In this mini-review, we report results from M. Mattioli, et al. [Phys. Rev. Lett. 111, 165302 (2013)], M. Dalmonte, et al. [Phys. Rev. B 92, 045106 (2015)] and M. Mattioli, et al. [New J. Phys. 17, 113039 (2015)], where it is shown that Rydberg atoms trapped in one-dimensional optical lattices are a useful tool to investigate the equilibrium phase diagram and the non-equilibrium dynamics of extended Hubbard models and Kinetically Constrained Models, respectively. Atoms weakly-dressed to an high-lying Rydberg state, which interact with a constant potential extended over several lattice sites, can be in an exotic quantum liquid state, the cluster Luttinger liquid phase [42, 43]. Furthermore, we show how a many-body model of interacting three-level atoms in the V-shaped configuration, where one of the level is a Rydberg state, might relax to equilibrium according to the same rules, so-called kinetic constraints, which are known to reproduce the characteristic dynamical arrest and separation of timescales of real glass-forming materials [62].
Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks.
Barranca, Victor J; Zhou, Douglas; Cai, David
2016-06-01
Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.
Observation of periodic waves in a pulse-coupled neural network.
Johnson, J L; Ritter, D
1993-08-01
A pulse-coupled neural network was implemented, for the first time to our knowledge, in a hybrid electro-optical laboratory demonstration system. Dynamic coherent traveling-wave patterns were observed that repeated their spatial patterns at each locality with a period that depended on the local input pattern and strength. Coherence and periodicity were maintained far beyond the physical limits of the linking receptive fields, suggesting a new mechanism for information transmission in a network with limited local connectivity. With no linking, the output became chaotic because the relative phases increased linearly in time.
Topological effects on dynamics in complex pulse-coupled networks of integrate-and-fire type
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim S.; Kovačič, Gregor; Cai, David
2012-03-01
For a class of integrate-and-fire, pulse-coupled networks with complex topology, we study the dependence of the pulse rate on the underlying architectural connectivity statistics. We derive the distribution of the pulse rate from this dependence and determine when the underlying scale-free architectural connectivity gives rise to a scale-free pulse-rate distribution. We identify the scaling of the pairwise coupling between the dynamical units in this network class that keeps their pulse rates bounded in the infinite-network limit. In the process, we determine the connectivity statistics for a specific scale-free network grown by preferential attachment.
Implementation of pulse-coupled neural networks in a CNAPS environment.
Kinser, J M; Lindblad, T
1999-01-01
Pulse coupled neural networks (PCNN's) are biologically inspired algorithms very well suited for image/signal preprocessing. While several analog implementations are proposed we suggest a digital implementation in an existing environment, the connected network of adapted processors system (CNAPS). The reason for this is two fold. First, CNAPS is a commercially available chip which has been used for several neural-network implementations. Second, the PCNN is, in almost all applications, a very efficient component of a system requiring subsequent and additional processing. This may include gating, Fourier transforms, neural classifiers, data mining, etc, with or without feedback to the PCNN.
Dynamically Maintained Spike Timing Sequences in Networks of Pulse-Coupled Oscillators with Delays
NASA Astrophysics Data System (ADS)
Gong, Pulin; van Leeuwen, Cees
2007-01-01
We demonstrate the widespread occurrence of dynamically maintained spike timing sequences in recurrent networks of pulse-coupled spiking neurons with large time delays. The sequences occur in transient, quasistable phase-locking states. The system spontaneously jumps between these states. This collective dynamics enables the system to generate a large number of distinct precise spike timing sequences. Distributed time delays play a constructive role by enhancing the dominance in parameter space of the dynamics responsible for producing the large variety of spike timing sequences.
Coexistence of Regular and Irregular Dynamics in Complex Networks of Pulse-Coupled Oscillators
NASA Astrophysics Data System (ADS)
Timme, Marc; Wolf, Fred; Geisel, Theo
2002-11-01
For general networks of pulse-coupled oscillators, including regular, random, and more complex networks, we develop an exact stability analysis of synchronous states. As opposed to conventional stability analysis, here stability is determined by a multitude of linear operators. We treat this multioperator problem exactly and show that for inhibitory interactions the synchronous state is stable, independent of the parameters and the network connectivity. In randomly connected networks with strong interactions this synchronous state, displaying regular dynamics, coexists with a balanced state exhibiting irregular dynamics. External signals may switch the network between qualitatively distinct states.
NASA Astrophysics Data System (ADS)
Alakhaly, Galal Ahmed; Dey, Bishwajyoti
2015-05-01
We have studied the dynamic evolution of the collective excitations in Bose-Einstein condensates in a deep optical lattice with tunable three-body interactions. Their dynamics is governed by a high order discrete nonlinear Schrödinger equation (DNLSE). The dynamical phase diagram of the system is obtained using the variational method. The dynamical evolution shows very interesting features. The discrete breather phase totally disappears in the regime where the three-body interaction completely dominates over the two-body interaction. The soliton phase in this particular regime exists only when the soliton line approaches the critical line in the phase diagram. When weak two-body interactions are reintroduced into this regime, the discrete breather solutions reappear, but occupies a very small domain in the phase space. Likewise, in this regime, the soliton as well as the discrete breather phases completely disappear if the signs of the two-and three-body interactions are opposite. We have analysed the causes of this unusual dynamical evolution of the collective excitations of the Bose-Einstein condensate with tunable interactions. We have also performed direct numerical simulations of the governing DNLS equation to show the existence of the discrete soliton solution as predicted by the variational calculations, and also to check the long term stability of the soliton solution.
Stability of two cluster solutions in pulse coupled networks of neural oscillators.
Chandrasekaran, Lakshmi; Achuthan, Srisairam; Canavier, Carmen C
2011-04-01
Phase response curves (PRCs) have been widely used to study synchronization in neural circuits comprised of pacemaking neurons. They describe how the timing of the next spike in a given spontaneously firing neuron is affected by the phase at which an input from another neuron is received. Here we study two reciprocally coupled clusters of pulse coupled oscillatory neurons. The neurons within each cluster are presumed to be identical and identically pulse coupled, but not necessarily identical to those in the other cluster. We investigate a two cluster solution in which all oscillators are synchronized within each cluster, but in which the two clusters are phase locked at nonzero phase with each other. Intuitively, one might expect this solution to be stable only when synchrony within each isolated cluster is stable, but this is not the case. We prove rigorously the stability of the two cluster solution and show how reciprocal coupling can stabilize synchrony within clusters that cannot synchronize in isolation. These stability results for the two cluster solution suggest a mechanism by which reciprocal coupling between brain regions can induce local synchronization via the network feedback loop.
NASA Astrophysics Data System (ADS)
Tarr, Gregory L.; Carreras, Richard A.; Fender, Janet S.; Clastres, Xavier; Freyss, Laurent; Samuelides, Manuel
1995-11-01
Unlike biological vision, most techniques for computer image processing are not robust over large samples of imagery. Natural systems seem unaffected by variation in local illumination and textures which interfere with conventional analysis. While change detection algorithms have been partially successful, many important tasks like extraction of roads and communication lines remain unsolved. The solution to these problems may lie in examining architectures and algorithms used by biological imaging systems. Pulsed oscillatory neural network design, based on biomemetics, seem to solve some of these problems. Pulsed oscillatory neural networks are examined for application to image analysis and segmentation of multispectral imagery from the Satellite Pour l'Observation de la Terre. Using biological systems as a model for image analysis of complex data, a pulsed coupled networks using an integrate and fire mechanism is developed. This architecture, based on layers of pulsed coupled neurons is tested against common image segmentation problems. Using a reset activation pulse similar to that generated by sacatic motor commands, an algorithm is developed which demonstrates the biological vision could be based on adaptive histogram techniques. This architecture is demonstrated to be both biologically plausible and more effective than conventional techniques. Using the pulse time-of-arrival as the information carrier, the image is reduced to a time signal, temporal encoding of imagery, which allows an intelligent filtering based on expectation. This technique is uniquely suited to multispectral/multisensor imagery and other sensor fusion problems.
Construction of a pulse-coupled dipole network capable of fear-like and relief-like responses
NASA Astrophysics Data System (ADS)
Lungsi Sharma, B.
2016-07-01
The challenge for neuroscience as an interdisciplinary programme is the integration of ideas among the disciplines to achieve a common goal. This paper deals with the problem of deriving a pulse-coupled neural network that is capable of demonstrating behavioural responses (fear-like and relief-like). Current pulse-coupled neural networks are designed mostly for engineering applications, particularly image processing. The discovered neural network was constructed using the method of minimal anatomies approach. The behavioural response of a level-coded activity-based model was used as a reference. Although the spiking-based model and the activity-based model are of different scales, the use of model-reference principle means that the characteristics that is referenced is its functional properties. It is demonstrated that this strategy of dissection and systematic construction is effective in the functional design of pulse-coupled neural network system with nonlinear signalling. The differential equations for the elastic weights in the reference model are replicated in the pulse-coupled network geometrically. The network reflects a possible solution to the problem of punishment and avoidance. The network developed in this work is a new network topology for pulse-coupled neural networks. Therefore, the model-reference principle is a powerful tool in connecting neuroscience disciplines. The continuity of concepts and phenomena is further maintained by systematic construction using methods like the method of minimal anatomies.
Shadow detection of the high-resolution remote sensing image based on pulse coupled neural network
NASA Astrophysics Data System (ADS)
Huang, Wei; Xiao, Yu; Lu, Shan
2011-12-01
Traditional shadow detection methods are usually detected shadow areas by the single threshold in shadow feature map. This leads to the detection results susceptible to affect by noise, and some special target (high-bright objects and green vegetation etc.) susceptible to misdetection. In this paper, a shadow detection method is proposed based on pulse coupled neural network (PCNN). The model can ignore small differences of pixels values in one area, because the network output is not only associated with the pixel brightness but also associated with pixel spatial location. Firstly, a new shadow feature map is build. Then PCNN model is applied to get optimal detection result with max entropy. The experimental results showed that the proposed model performed better than the single threshold models.
Geometry-invariant texture retrieval using a dual-output pulse-coupled neural network.
Li, Xiaojun; Ma, Yide; Wang, Zhaobin; Yu, Wenrui
2012-01-01
This letter proposes a novel dual-output pulse coupled neural network model (DPCNN). The new model is applied to obtain a more stable texture description in the face of the geometric transformation. Time series, which are computed from output binary images of DPCNN, are employed as translation-, rotation-, scale-, and distortion-invariant texture features. In the experiments, DPCNN has been well tested by using Brodatz's album and the VisTex database. Several existing models are compared with the proposed DPCNN model. The experimental results, based on different testing data sets for images with different translations, orientations, scales, and affine transformations, show that our proposed model outperforms existing models in geometry-invariant texture retrieval. Furthermore, the robustness of DPCNN to noisy data is examined in the experiments.
NASA Astrophysics Data System (ADS)
Du, Songlin; Yan, Yaping; Ma, Yide
2015-03-01
A novel image segmentation algorithm which uses quantum entropy and pulse-coupled neural networks (PCNN) is proposed in this paper. Optimal iteration of the PCNN is one of the key factors affecting segmentation accuracy. We borrow quantum entropy from quantum information to act as a criterion in determining optimal iteration of the PCNN. Optimal iteration is captured while total quantum entropy of the segments reaches a maximum. Moreover, compared with other PCNN-employed algorithms, the proposed algorithm works without any manual intervention, because all parameters of the PCNN are set automatically. Experimental results prove that the proposed method can achieve much lower probabilities of error segmentation than other PCNN-based image segmentation algorithms, and this suggests that higher image segmentation quality is achieved by the proposed method.
Cooperation-induced temporal complexity in networks of pulse-coupled units
NASA Astrophysics Data System (ADS)
Geneston, Elvis; Grigolini, Paolo
2012-02-01
We study a network of stochastic pulse-coupled units generating bursts with the same size distribution as the neuronal avalanches in mature cultured neurons, recently revealed by the experimental observation. We prove that in addition to this form of complexity this model yields a form of phase transition generating also temporal complexity. This means that the distance from two consecutive bursts fits the prescription of a Mittag-Leffler (ML) function renewal theory. There exists a critical value of the cooperation parameter at which this description applies to the whole time regime. By increasing the cooperation parameter the ML theory breaks down and the sequence of bursts tend to become periodic with the same intensity. We make the conjecture that the analysis of this model may shed light into the theoretical foundation of neuronal burst leaders and that the recently discovered principle of complexity management may be conveniently applied to the neuro-physiological processes that are properly described by this model.
Sisyphus effect in pulse-coupled excitatory neural networks with spike-timing-dependent plasticity
NASA Astrophysics Data System (ADS)
Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro
2014-06-01
The collective dynamics of excitatory pulse-coupled neural networks with spike-timing-dependent plasticity (STDP) is studied. Depending on the model parameters stationary states characterized by high or low synchronization can be observed. In particular, at the transition between these two regimes, persistent irregular low frequency oscillations between strongly and weakly synchronized states are observable, which can be identified as infraslow oscillations with frequencies ≃0.02-0.03 Hz. Their emergence can be explained in terms of the Sisyphus effect, a mechanism caused by a continuous feedback between the evolution of the coherent population activity and of the average synaptic weight. Due to this effect, the synaptic weights have oscillating equilibrium values, which prevents the neuronal population from relaxing into a stationary macroscopic state.
Zhang, Yaoyu; Xiao, Yanyang; Zhou, Douglas; Cai, David
2016-04-01
The Granger causality (GC) analysis is an effective approach to infer causal relations for time series. However, for data obtained by uniform sampling (i.e., with an equal sampling time interval), it is known that GC can yield unreliable causal inference due to aliasing if the sampling rate is not sufficiently high. To solve this unreliability issue, we consider the nonuniform sampling scheme as it can mitigate against aliasing. By developing an unbiased estimation of power spectral density of nonuniformly sampled time series, we establish a framework of spectrum-based nonparametric GC analysis. Applying this framework to a general class of pulse-coupled nonlinear networks and utilizing some particular spectral structure possessed by these nonlinear network data, we demonstrate that, for such nonlinear networks with nonuniformly sampled data, reliable GC inference can be achieved at a low nonuniform mean sampling rate at which the traditional uniform sampling GC may lead to spurious causal inference.
Synchronization phenomena in pulse-coupled networks driven by spike-train inputs.
Torikai, Hiroyuki; Saito, Toshimichi
2004-03-01
We present a pulse-coupled network (PCN) of spiking oscillators (SOCs) which can be implemented as a simple electrical circuit. The SOC has a periodic reset level that can realize rich dynamics represented by chaotic spike-trains. Applying a spike-train input, the PCN can exhibit the following interesting phenomena. 1) Each SOC synchronizes with a part of the input without overlapping, i.e., the input is decomposed. 2) Some SOCs synchronize with a part of the input with overlapping, i.e., the input is decomposed and the SOCs are clustered. The PCN has multiple synchronization phenomena and exhibits one of them depending on the initial state. We clarify the numbers of the synchronization phenomena and the parameter regions in which these phenomena can be observed. Also stability of the synchronization phenomena is clarified. Presenting a simple test circuit, typical phenomena are confirmed experimentally.
Basic dynamics from a pulse-coupled network of autonomous integrate-and-fire chaotic circuits.
Nakano, H; Saito, T
2002-01-01
This paper studies basic dynamics from a novel pulse-coupled network (PCN). The unit element of the PCN is an integrate-and-fire circuit (IFC) that exhibits chaos. We an give an iff condition for the chaos generation. Using two IFC, we construct a master-slave PCN. It exhibits interesting chaos synchronous phenomena and their breakdown phenomena. We give basic classification of the phenomena and their existence regions can be elucidated in the parameter space. We then construct a ring-type PCN and elucidate that the PCN exhibits interesting grouping phenomena based on the chaos synchronization patterns. Using a simple test circuit, some of typical phenomena can be verified in the laboratory.
Pulse-coupled neural networks for cruise missile guidance and mission planning
NASA Astrophysics Data System (ADS)
Waldemark, Joakim T. A.; Becanovic, Vlatko; Lindblad, Thomas; Lindsey, Clark S.; Waldemark, Karina E.; Kinser, Jason M.
1999-03-01
Mission planning and missile navigation control are important tasks to solve when dealing with cruise missiles. A large variation of solutions has been used all the way back to world war II and the German VI missile. Today, biologically inspired sensor analysis systems such as, e.g. pulsed coupled neural networks (PCNN), can be used in many different applications related to these two major tasks, mission planing and missile navigation. This paper discusses generally the cruise missile related problems and gives example on how they are being solved. New ideas as shown on how to use PCNN in combination with other image processing transforms, e.g. the radon transform, to solve the planning and navigation problems. This includes solving tasks such as image segmentation, target identification and maze navigation.
Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling
NASA Astrophysics Data System (ADS)
Canavier, Carmen C.; Tikidji-Hamburyan, Ruben A.
2017-03-01
The synchronization tendencies of networks of oscillators have been studied intensely. We assume a network of all-to-all pulse-coupled oscillators in which the effect of a pulse is independent of the number of oscillators that simultaneously emit a pulse and the normalized delay (the phase resetting) is a monotonically increasing function of oscillator phase with the slope everywhere less than 1 and a value greater than 2 φ -1 , where φ is the normalized phase. Order switching cannot occur; the only possible solutions are globally attracting synchrony and cluster solutions with a fixed firing order. For small conduction delays, we prove the former stable and all other possible attractors nonexistent due to the destabilizing discontinuity of the phase resetting at a phase of 0.
NASA Astrophysics Data System (ADS)
Zhang, Yaoyu; Xiao, Yanyang; Zhou, Douglas; Cai, David
2016-04-01
The Granger causality (GC) analysis is an effective approach to infer causal relations for time series. However, for data obtained by uniform sampling (i.e., with an equal sampling time interval), it is known that GC can yield unreliable causal inference due to aliasing if the sampling rate is not sufficiently high. To solve this unreliability issue, we consider the nonuniform sampling scheme as it can mitigate against aliasing. By developing an unbiased estimation of power spectral density of nonuniformly sampled time series, we establish a framework of spectrum-based nonparametric GC analysis. Applying this framework to a general class of pulse-coupled nonlinear networks and utilizing some particular spectral structure possessed by these nonlinear network data, we demonstrate that, for such nonlinear networks with nonuniformly sampled data, reliable GC inference can be achieved at a low nonuniform mean sampling rate at which the traditional uniform sampling GC may lead to spurious causal inference.
Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V; Tass, Peter A
2013-01-01
Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus.
Pulse-coupled neural networks (PCNN) and new approaches to biosensor applications
NASA Astrophysics Data System (ADS)
Padgett, Mary Lou; Roppel, Thaddeus A.; Johnson, John L.
1998-03-01
Recent developments in pulse coupled neural networks techniques provide an opportunity to extend the toolbox available for exploring new approaches to biosensor applications. This paper presents a demonstration of properties and limitations of new computational intelligence (CI) techniques as shown by and related to an application. New pulse coupled neural networks (PCNN) techniques are supplemented by combination with wavelet analysis and fine- tuned by radial basis functions. This toolbox is exercised to demonstrate its properties and limitations as related to the development of biosensor applications. The approach selected employs abstractions of biological models of peripheral vision and relates them to analysis of time series generated by biosensors such as chemosensors or motion detectors. Detection of targets (rare or interesting events) is facilitated by PCNN multi-scale image factorization. Interpretation of the resulting image set is aided by contrast enhancement and by segmentation using standard PCNNs. Wavelet coefficients provide supplemental discrimination and lead to characteristic sets of numbers useful in identifying image factors of interest. To complete the transition from acquisition of a complex, noisy image to recognition of targets of interest, radial basis function (RBF) analysis is appended. This five- step process (odor image generation, image factoring, PCNN analysis, wavelet analysis and RBF interpretation) was recently suggested, but is expanded and fully implemented here for the first time. This paper explores the properties and limitations of this approach for simulation of biosensors using small, incomplete sets of real-world data. The relationship between selection of appropriate design parameters and the need for supplementing the available data by simulation is investigated. Evolutionary computation is employed off line to explore and evaluate the possibilities and limitations. Sensor fault detection and RBF training vector
Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.
2015-01-01
Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131
Physiologically motivated image fusion for object detection using a pulse coupled neural network.
Broussard, R P; Rogers, S K; Oxley, M E; Tarr, G L
1999-01-01
This paper presents the first physiologically motivated pulse coupled neural network (PCNN)-based image fusion network for object detection. Primate vision processing principles, such as expectation driven filtering, state dependent modulation, temporal synchronization, and multiple processing paths are applied to create a physiologically motivated image fusion network. PCNN's are used to fuse the results of several object detection techniques to improve object detection accuracy. Image processing techniques (wavelets, morphological, etc.) are used to extract target features and PCNN's are used to focus attention by segmenting and fusing the information. The object detection property of the resulting image fusion network is demonstrated on mammograms and Forward Looking Infrared Radar (FLIR) images. The network removed 94% of the false detections without removing any true detections in the FLIR images and removed 46% of the false detections while removing only 7% of the true detections in the mammograms. The model exceeded the accuracy obtained by any individual filtering methods or by logical ANDing the individual object detection technique results.
Robust automatic rodent brain extraction using 3-D pulse-coupled neural networks (PCNN).
Chou, Nigel; Wu, Jiarong; Bai Bingren, Jordan; Qiu, Anqi; Chuang, Kai-Hsiang
2011-09-01
Brain extraction is an important preprocessing step for further processing (e.g., registration and morphometric analysis) of brain MRI data. Due to the operator-dependent and time-consuming nature of manual extraction, automated or semi-automated methods are essential for large-scale studies. Automatic methods are widely available for human brain imaging, but they are not optimized for rodent brains and hence may not perform well. To date, little work has been done on rodent brain extraction. We present an extended pulse-coupled neural network algorithm that operates in 3-D on the entire image volume. We evaluated its performance under varying SNR and resolution and tested this method against the brain-surface extractor (BSE) and a level-set algorithm proposed for mouse brain. The results show that this method outperforms existing methods and is robust under low SNR and with partial volume effects at lower resolutions. Together with the advantage of minimal user intervention, this method will facilitate automatic processing of large-scale rodent brain studies.
Harris, Meagan A; Van, Andrew N; Malik, Bilal H; Jabbour, Joey M; Maitland, Kristen C
2015-01-01
Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard.
Independent Noise Can Synchronize Interacting Networks of Pulse-Coupled Oscillators
NASA Astrophysics Data System (ADS)
Riecke, Hermann; Meng, John
Structured networks comprised of subnetwork modules are ubiquitous. Motivated by the observation of rhythms and their interaction in different brain areas, we study a network consisting of two subnetworks of pulse-coupled integrate-fire neurons. Through mutual inhibition the neurons in the individual subnetworks can become synchronized and each subnetwork can exhibit coherent oscillatory dynamics, e.g. an ING-rhythm. In the absence of coupling between the networks the rhythms will in general have different frequencies. We investigate the interaction between these different rhythms. Strikingly, we find that increasing the noise level in the input to the individual neurons can synchronize the rhythms of the two networks, even though the inputs to different neurons are uncorrelated, sharing no common component. A heuristic phase model for the coupled networks shows that this synchronization hinges on the fact that only a fraction of the neurons may spike in a given cycle. Thus, the synchronization of the network rhythms differs qualitatively from that of individual oscillators. Supported by NSF-CMMI 1435358.
Real-time robot path planning based on a modified pulse-coupled neural network model.
Qu, Hong; Yang, Simon X; Willms, Allan R; Yi, Zhang
2009-11-01
This paper presents a modified pulse-coupled neural network (MPCNN) model for real-time collision-free path planning of mobile robots in nonstationary environments. The proposed neural network for robots is topologically organized with only local lateral connections among neurons. It works in dynamic environments and requires no prior knowledge of target or barrier movements. The target neuron fires first, and then the firing event spreads out, through the lateral connections among the neurons, like the propagation of a wave. Obstacles have no connections to their neighbors. Each neuron records its parent, that is, the neighbor that caused it to fire. The real-time optimal path is then the sequence of parents from the robot to the target. In a static case where the barriers and targets are stationary, this paper proves that the generated wave in the network spreads outward with travel times proportional to the linking strength among neurons. Thus, the generated path is always the global shortest path from the robot to the target. In addition, each neuron in the proposed model can propagate a firing event to its neighboring neuron without any comparing computations. The proposed model is applied to generate collision-free paths for a mobile robot to solve a maze-type problem, to circumvent concave U-shaped obstacles, and to track a moving target in an environment with varying obstacles. The effectiveness and efficiency of the proposed approach is demonstrated through simulation and comparison studies.
Wu, Wei; Liu, Bo; Chen, Tianping
2010-09-01
In this paper, we investigate the firing behaviors in networks of pulse-coupled oscillators with delayed excitatory coupling according to the coupling strength epsilon and delay tau. We find out that the parameter space A={(epsilon,tau)|0
Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.
Qu, Hong; Yi, Zhang; Yang, Simon X
2013-06-01
Shortest path tree (SPT) computation is a critical issue for routers using link-state routing protocols, such as the most commonly used open shortest path first and intermediate system to intermediate system. Each router needs to recompute a new SPT rooted from itself whenever a change happens in the link state. Most commercial routers do this computation by deleting the current SPT and building a new one using static algorithms such as the Dijkstra algorithm at the beginning. Such recomputation of an entire SPT is inefficient, which may consume a considerable amount of CPU time and result in a time delay in the network. Some dynamic updating methods using the information in the updated SPT have been proposed in recent years. However, there are still many limitations in those dynamic algorithms. In this paper, a new modified model of pulse-coupled neural networks (M-PCNNs) is proposed for the SPT computation. It is rigorously proved that the proposed model is capable of solving some optimization problems, such as the SPT. A static algorithm is proposed based on the M-PCNNs to compute the SPT efficiently for large-scale problems. In addition, a dynamic algorithm that makes use of the structure of the previously computed SPT is proposed, which significantly improves the efficiency of the algorithm. Simulation results demonstrate the effective and efficient performance of the proposed approach.
NASA Astrophysics Data System (ADS)
Kong, Weiwei; Liu, Jianping
2013-01-01
A new technique for image fusion based on nonsubsampled shearlet transform (NSST) and improved pulse-coupled neural network (PCNN) is proposed. NSST, as a novel multiscale geometric analysis tool, can be optimally efficient in representing images and capturing the geometric features of multidimensional data. As a result, NSST is introduced into the area of image fusion to complete the decompositions of source images in any scale and any direction. Then the basic PCNN model is improved to be improved PCNN (IPCNN), which is more concise and more effective. IPCNN adopts the contrast of each pixel in images as the linking strength β, and the time matrix T of subimages can be obtained via the synchronous pulse-burst property. By using IPCNN, the fused subimages can be achieved. Finally, the final fused image can be obtained by using inverse NSST. The numerical experiments demonstrate that the new technique presented in this paper is competitive in the field of image fusion in terms of both fusion performance and computational efficiency.
Automatic cropping of MRI rat brain volumes using pulse coupled neural networks.
Murugavel, Murali; Sullivan, John M
2009-04-15
The Pulse Coupled Neural Network (PCNN) was developed by Eckhorn to model the observed synchronization of neural assemblies in the visual cortex of small mammals such as a cat. In this paper we show the use of the PCNN as an image segmentation strategy to crop MR images of rat brain volumes. We then show the use of the associated PCNN image 'signature' to automate the brain cropping process with a trained artificial neural network. We tested this novel algorithm on three T2 weighted acquisition configurations comprising a total of 42 rat brain volumes. The datasets included 40 ms, 48 ms and 53 ms effective TEs, acquisition field strengths of 4.7 T and 9.4 T, image resolutions from 64x64 to 256x256, slice locations ranging from +6 mm to -11 mm AP, two different surface coil manufacturers and imaging protocols. The results were compared against manually segmented gold standards and Brain Extraction Tool (BET) V2.1 results. The Jaccard similarity index was used for numerical evaluation of the proposed algorithm. Our novel PCNN cropping system averaged 0.93 compared to BET scores circa 0.84.
[Qualitative analysis of Raman spectra based on pulse coupled neural network].
Wang, Cheng; Li, Shao-fa; Wu, Zheng-jie; He, Kai; Huang, Yao-xiong
2010-09-01
By studying on pulse coupled neural network (PCNN) and Raman spectra qualitative analysis, a method based on PCNN for Raman spectra qualitative analysis was proposed. After encoding the Raman spectra by using PCNN neurons' characteristics of fatigue and refractory period, the improved Horspool algorithm was used to match the code corresponding to the detected sample with all of the base code in the database one by one, and then their matching similarity was acquired to determine the sample type. Experimental results and analysis of data proved that the method proposed in this paper is accurate and effective for Raman spectra qualitative analysis. Meanwhile, traditional qualitative analysis method based on spectral template has some deficiencies, like that it is difficult to determine the characteristic peak of the detected sample and the matching analysis process has a high degree of redundancy. While our proposed method not only can avoid these deficiencies very well, but also needs a small amount of data storage. The requirement of the storage space was only 5.8% of that used in the traditional qualitative analysis method based on spectral template.
[A new impulse noise filter based on pulse coupled neural network].
Ma, Yide; Shi, Fei; Li, Lian; An, Lizhe
2004-12-01
This paper presents a new impulse noise filter based on pulse coupled neural networks according to the apparent difference of gray value between noised pixels and the pixels around them. Comparing with the state-of-the-art denoised PCNN filter, the step by step modifying algorithm based on PCNN also, the new PCNN filter suggested in this paper costs less computation and less execution time. At the same time this new PCNN filter has been compared with other nonlinear filters, such as median filter, the stack filter based on omnidirectional structural elements constrains, the Omnidirectional morphology Open-Closing maximum filter (OOCmax) and the Omnidirectional morphology Close-Opening minimum (OCOmin) filter. The results of simulation shows that this algorithm is superior to standard median filter, the state-of-the-art PCNN filter, the maximal, minimal morphological filter with omnidirectional structuring elements, and the optimal stack filter based on omnidirectional structural elements constrains in the aspect of the impulse noise removal. What is more important is that this algorithm can keep the details of images more effectively.
Fu, J C; Chen, C C; Chai, J W; Wong, S T C; Li, I C
2010-06-01
We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation.
NASA Astrophysics Data System (ADS)
Schreiter, Juerg; Ramacher, Ulrich; Heittmann, Arne; Matolin, Daniel; Schuffny, Rene
2004-05-01
We present a cellular pulse coupled neural network with adaptive weights and its analog VLSI implementation. The neural network operates on a scalar image feature, such as grey scale or the output of a spatial filter. It detects segments and marks them with synchronous pulses of the corresponding neurons. The network consists of integrate-and-fire neurons, which are coupled to their nearest neighbors via adaptive synaptic weights. Adaptation follows either one of two empirical rules. Both rules lead to spike grouping in wave like patterns. This synchronous activity binds groups of neurons and labels the corresponding image segments. Applications of the network also include feature preserving noise removal, image smoothing, and detection of bright and dark spots. The adaptation rules are insensitive for parameter deviations, mismatch and non-ideal approximation of the implied functions. That makes an analog VLSI implementation feasible. Simulations showed no significant differences in the synchronization properties between networks using the ideal adaptation rules and networks resembling implementation properties such as randomly distributed parameters and roughly implemented adaptation functions. A prototype is currently being designed and fabricated using an Infineon 130nm technology. It comprises a 128 × 128 neuron array, analog image memory, and an address event representation pulse output.
Optimization of a hardware implementation for pulse coupled neural networks for image applications
NASA Astrophysics Data System (ADS)
Gimeno Sarciada, Jesús; Lamela Rivera, Horacio; Warde, Cardinal
2010-04-01
Pulse Coupled Neural Networks are a very useful tool for image processing and visual applications, since it has the advantages of being invariant to image changes as rotation, scale, or certain distortion. Among other characteristics, the PCNN changes a given image input into a temporal representation which can be easily later analyzed for pattern recognition. The structure of a PCNN though, makes it necessary to determine all of its parameters very carefully in order to function optimally, so that the responses to the kind of inputs it will be subjected are clearly discriminated allowing for an easy and fast post-processing yielding useful results. This tweaking of the system is a taxing process. In this paper we analyze and compare two methods for modeling PCNNs. A purely mathematical model is programmed and a similar circuital model is also designed. Both are then used to determine the optimal values of the several parameters of a PCNN: gain, threshold, time constants for feed-in and threshold and linking leading to an optimal design for image recognition. The results are compared for usefulness, accuracy and speed, as well as the performance and time requirements for fast and easy design, thus providing a tool for future ease of management of a PCNN for different tasks.
Two pulse-coupled non-identical, frequency-different BZ oscillators with time delay.
Lavrova, Anastasia I; Vanag, Vladimir K
2014-04-14
Two non-identical, frequency-different pulse-coupled oscillators with time delay have been systematically studied using four-variable model of the Belousov-Zhabotinsky (BZ) reaction at mutual inhibitory, mutual excitatory, and mixed excitatory-inhibitory types of coupling. Different resonances like 1 : 2, 2 : 3, 1 : 3, etc., as well as complex rhythms and abrupt changes between them occur depending on the coupling strengths, time delay, and frequency ratio. Analogously to in-phase and anti-phase oscillations for 1 : 1 resonance, a similar phase locking exists for 1 : 2 resonance in the case of inhibitory coupling. For excitatory coupling, a bursting regime is found. The number of spikes in a single burst can be tuned by both the frequency ratio and time delay. For excitatory-inhibitory coupling, a region where one oscillator is suppressed (OS zone) has been found. Boundary of the OS zone depends on the frequency ratio. For weakly coupled oscillators, Farey sequence has been found for excitatory-inhibitory and mutual excitatory coupling.
Antikainen, Osmo; Kachrimanis, Kyriakos; Malamataris, Stavros; Yliruusi, Jouko; Sandler, Niklas
2007-01-01
A biologically inspired spiking neural network model, the pulse coupled neural network (PCNN), has been applied for the first time in bulk particle characterization, and specifically in the characterization of pharmaceutical granule size distributions. The PCNN was trained on surface images of pharmaceutical granule beds, and the adjustable parameters (radius neuron interconnection, r0, linking weight coefficient, beta, local threshold potential, VTheta, and number of iterations) were successfully optimized using design of experiments. As demonstrated with size fractions of granules, it was found that the PCNN produced granule size-dependent signals. In general, a first highest and relatively narrow peak located in the region of two to twelve iterations corresponded to smaller particle size, while larger particles resulted in wider peaks and in highest (not first) peak at a range between 13 and 25 iterations. Better predictions, i.e. lower RMSEP (root mean squared error of prediction) values, were obtained using high beta value, low r0 and VTheta values, while the number of iterations had to exceed 110 and the optimized model (RMSEP lower than 5) corresponded to PCNN variables: r0=1, beta=0.4, VTheta=2, and number of iterations=150. The coefficient of determination (R2) of the model was 0.94 and the predicted variation (Q2) was 0.91, while the Pearson correlation coefficient between the predicted and the measured mean particle size by sieving for eight test batches was 0.98. These findings could be characterized as promising and encouraging for the further use of image analysis by PCNNs in pharmaceutical bulk particle size and shape characterization.
NASA Astrophysics Data System (ADS)
Xie, Weiying; Ma, Yide; Li, Yunsong
2015-05-01
A novel approach to mammographic image segmentation, termed as PCNN-based level set algorithm, is presented in this paper. Just as its name implies, a method based on pulse coupled neural network (PCNN) in conjunction with the variational level set method for medical image segmentation. To date, little work has been done on detecting the initial zero level set contours based on PCNN algorithm for latterly level set evolution. When all the pixels of the input image are fired by PCNN, the small pixel value will be a much more refined segmentation. In mammographic image, the breast tumor presents big pixel value. Additionally, the mammographic image with predominantly dark region, so that we firstly obtain the negative of mammographic image with predominantly dark region except the breast tumor before all the pixels of an input image are fired by PCNN. Therefore, in here, PCNN algorithm is employed to achieve mammary-specific, initial mass contour detection. After that, the initial contours are all extracted. We define the extracted contours as the initial zero level set contours for automatic mass segmentation by variational level set in mammographic image analysis. What's more, a new proposed algorithm improves external energy of variational level set method in terms of mammographic images in low contrast. In accordance with the gray scale of mass region in mammographic image is higher than the region surrounded, so the Laplace operator is used to modify external energy, which could make the bright spot becoming much brighter than the surrounded pixels in the image. A preliminary evaluation of the proposed method performs on a known public database namely MIAS, rather than synthetic images. The experimental results demonstrate that our proposed approach can potentially obtain better masses detection results in terms of sensitivity and specificity. Ultimately, this algorithm could lead to increase both sensitivity and specificity of the physicians' interpretation of
Lamela, Horacio; Ruiz-Llata, Marta
2008-04-01
We describe the concept of a vision system based on an optoelectronic hardware neural processor. The proposed system is composed of a pulse coupled neural network (PCNN) preprocessor stage that converts an input image into a temporal pulsed pattern. These pulses are inputs to the optical broadcast neural network (OBNN) processor, which classifies the input pattern between a set of reference patterns based on a pattern matching strategy. The PCNN is to provide immunity to the scale, rotation, and translation of objects in the image. The OBNN provides high parallelism and a high speed hardware neural processor.
Liu, Li; Shi, Haiying; Huo, Liqin; Zhang, Feng; Zheng, Chongxun; You, Jia; He, Xining; Zhang, Jie
2011-10-01
This paper is to provide a basis for the establishment of an early diagnostic system for hypoxic-ischemic encephalopathy (HIE) by performing segmentation and feature extraction of lesions on the MR images of neonatal babies with HIE. The segmentation on MR images of HIE based on the genetic algorithm (GA) combined with a pulse-coupled neural network (PCNN) were carried out. There were better segmentation results by using PCNN segmentation based on GA than PCNN segmentation with fixed parameters. The data suggested that a PCNN based on GA could provide effective assistance for diagnosis and research.
Kanamaru, Takashi; Aihara, Kazuyuki
2008-08-01
The synchronous firing of neurons in a pulse-coupled neural network composed of excitatory and inhibitory neurons is analyzed. The neurons are connected by both chemical synapses and electrical synapses among the inhibitory neurons. When electrical synapses are introduced, periodically synchronized firing as well as chaotically synchronized firing is widely observed. Moreover, we find stochastic synchrony where the ensemble-averaged dynamics shows synchronization in the network but each neuron has a low firing rate and the firing of the neurons seems to be stochastic. Stochastic synchrony of chaos corresponding to a chaotic attractor is also found.
NASA Astrophysics Data System (ADS)
Yoshida, Hiroyuki; Noguchi, Naoya; Matsushita, Yoshitaka; Ishii, Yuto; Ihara, Yoshihiko; Oda, Migaku; Okabe, Hirotaka; Yamashita, Satoshi; Nakazawa, Yasuhiro; Takata, Atsushi; Kida, Takanori; Narumi, Yasuo; Hagiwara, Masayuki
2017-03-01
We have succeeded in preparing single crystals of CaCu3(OH)6Cl2 • 0.6H2O, a candidate for the S = 1/2 Kagome lattice antiferromagnet. Magnetic properties of the compound are dominated by the nearest neighbor antiferromagnetic interaction J1, and the next nearest neighbor ferromagnetic J2 and an antiferromagnetic Jd across a hexagon, which is different from related compounds Kapellasite and Haydeeite with ferromagnetic J1. Magnetic susceptibility exhibits a sudden increase below 13 K and a cusp anomaly at T* = 7.2 K in the ab-plane, whereas only a moderate enhancement is observed below T* along the c-axis. A tiny peak detected in heat capacity at T* indicates the occurrence of a magnetic phase transition. The low temperature magnetic heat capacity was reproduced by assuming a two-dimensional spin-wave component and a temperature-linear term. The spin-wave contribution suggests a magnon excitation in a short-range ordered region, whereas the relatively large T-linear term 5.9 mJ/(Cu-mol·K2) at H = 0 T of this insulating compound suggests the existence of an unusual quasi-particle excitation below T*. They apparently reveal the unconventionality of the ground state of this S = 1/2 Kagome lattice antiferromagnet.
NASA Astrophysics Data System (ADS)
Lang, Jun; Hao, Zhengchao
2014-01-01
In this paper, we first propose the discrete multi-parameter fractional random transform (DMPFRNT), which can make the spectrum distributed randomly and uniformly. Then we introduce this new spectrum transform into the image fusion field and present a new approach for the remote sensing image fusion, which utilizes both adaptive pulse coupled neural network (PCNN) and the discrete multi-parameter fractional random transform in order to meet the requirements of both high spatial resolution and low spectral distortion. In the proposed scheme, the multi-spectral (MS) and panchromatic (Pan) images are converted into the discrete multi-parameter fractional random transform domains, respectively. In DMPFRNT spectrum domain, high amplitude spectrum (HAS) and low amplitude spectrum (LAS) components carry different informations of original images. We take full advantage of the synchronization pulse issuance characteristics of PCNN to extract the HAS and LAS components properly, and give us the PCNN ignition mapping images which can be used to determine the fusion parameters. In the fusion process, local standard deviation of the amplitude spectrum is chosen as the link strength of pulse coupled neural network. Numerical simulations are performed to demonstrate that the proposed method is more reliable and superior than several existing methods based on Hue Saturation Intensity representation, Principal Component Analysis, the discrete fractional random transform etc.
Al-Mekhlafi, Zeyad Ghaleb; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.
Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs. PMID:28056020
Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J.
2013-01-01
Synchronization is crucial to wireless sensor networks due to their decentralized structure. We propose an energy-efficient pulse-coupled synchronization strategy to achieve this goal. The basic idea is to reduce idle listening by intentionally introducing a large refractory period in the sensors’ cooperation. The large refractory period greatly reduces idle listening in each oscillation period, and is analytically proven to have no influence on the time to synchronization. Hence, it significantly reduces the total energy consumption in a synchronization process. A topology control approach tailored for pulse-coupled synchronization is given to guarantee a k-edge strongly connected interaction topology, which is tolerant to communication-link failures. The topology control approach is totally decentralized and needs no information exchange among sensors, and it is applicable to dynamic network topologies as well. This facilitates a completely decentralized implementation of the synchronization strategy. The strategy is applicable to mobile sensor networks, too. QualNet case studies confirm the effectiveness of the synchronization strategy. PMID:24307831
David Richards
2004-10-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.
Ge, Ji; Wang, Yaonan; Zhou, Bowen; Zhang, Hui
2009-01-01
A biologically inspired spiking neural network model, called pulse-coupled neural networks (PCNN), has been applied in an automatic inspection machine to detect visible foreign particles intermingled in glucose or sodium chloride injection liquids. Proper mechanisms and improved spin/stop techniques are proposed to avoid the appearance of air bubbles, which increases the algorithms' complexity. Modified PCNN is adopted to segment the difference images, judging the existence of foreign particles according to the continuity and smoothness properties of their moving traces. Preliminarily experimental results indicate that the inspection machine can detect the visible foreign particles effectively and the detection speed, accuracy and correct detection rate also satisfying the needs of medicine preparation.
Das, Sudeb; Kundu, Malay Kumar
2012-10-01
In this article, a novel multimodal medical image fusion (MIF) method based on non-subsampled contourlet transform (NSCT) and pulse-coupled neural network (PCNN) is presented. The proposed MIF scheme exploits the advantages of both the NSCT and the PCNN to obtain better fusion results. The source medical images are first decomposed by NSCT. The low-frequency subbands (LFSs) are fused using the 'max selection' rule. For fusing the high-frequency subbands (HFSs), a PCNN model is utilized. Modified spatial frequency in NSCT domain is input to motivate the PCNN, and coefficients in NSCT domain with large firing times are selected as coefficients of the fused image. Finally, inverse NSCT (INSCT) is applied to get the fused image. Subjective as well as objective analysis of the results and comparisons with state-of-the-art MIF techniques show the effectiveness of the proposed scheme in fusing multimodal medical images.
NASA Astrophysics Data System (ADS)
Rossoni, Enrico; Chen, Yonghong; Ding, Mingzhou; Feng, Jianfeng
2005-06-01
We study the synchronization dynamics for a system of two Hodgkin-Huxley (HH) neurons coupled diffusively or through pulselike interactions. By calculating the maximum transverse Lyapunov exponent, we found that, with diffusive coupling, there are three regions in the parameter space, corresponding to qualitatively distinct behaviors of the coupled dynamics. In particular, the two neurons can synchronize in two regions and desynchronize in the third. When excitatory and inhibitory pulse coupling is considered, we found that synchronized dynamics becomes more difficult to achieve in the sense that the parameter regions where the synchronous state is stable are smaller. Numerical simulations of the coupled system are presented to validate these results. The stability of a network of coupled HH neurons is then analyzed and the stability regions in the parameter space are exactly obtained.
Rossoni, Enrico; Chen, Yonghong; Ding, Mingzhou; Feng, Jianfeng
2005-06-01
We study the synchronization dynamics for a system of two Hodgkin-Huxley (HH) neurons coupled diffusively or through pulselike interactions. By calculating the maximum transverse Lyapunov exponent, we found that, with diffusive coupling, there are three regions in the parameter space, corresponding to qualitatively distinct behaviors of the coupled dynamics. In particular, the two neurons can synchronize in two regions and desynchronize in the third. When excitatory and inhibitory pulse coupling is considered, we found that synchronized dynamics becomes more difficult to achieve in the sense that the parameter regions where the synchronous state is stable are smaller. Numerical simulations of the coupled system are presented to validate these results. The stability of a network of coupled HH neurons is then analyzed and the stability regions in the parameter space are exactly obtained.
Ge, Ji; Wang, YaoNan; Zhou, BoWen; Zhang, Hui
2009-01-01
A biologically inspired spiking neural network model, called pulse-coupled neural networks (PCNN), has been applied in an automatic inspection machine to detect visible foreign particles intermingled in glucose or sodium chloride injection liquids. Proper mechanisms and improved spin/stop techniques are proposed to avoid the appearance of air bubbles, which increases the algorithms' complexity. Modified PCNN is adopted to segment the difference images, judging the existence of foreign particles according to the continuity and smoothness properties of their moving traces. Preliminarily experimental results indicate that the inspection machine can detect the visible foreign particles effectively and the detection speed, accuracy and correct detection rate also satisfying the needs of medicine preparation. PMID:22412318
NASA Astrophysics Data System (ADS)
Ramírez Ávila, G. M.; Kurths, J.; Guisset, J. L.; Deneubourg, J. L.
2014-12-01
We studied synchronization and clustering in two types of pulse-coupled oscillators, namely, integrate-and-fire and light-controlled oscillators. We considered for the analysis globally coupled oscillators, either by a mean-field type coupling or a distance-dependent one. Using statistically diverse measures such as the transient, probability of total synchronization, fraction of clustered oscillators, mean size, and mean number of clusters, we describe clustering and synchronous behavior for populations of nonidentical oscillators and perform a comparative analysis of the behavioral differences and similitudes among these types of oscillators. Considering a mean-field approach, we found high probability of total synchronization in all cases for integrate-and-fire oscillators; on the other hand, in a more realistic situation, for light-controlled oscillators, i.e., when oscillators do not fire instantaneously, the probability of total synchronization decreases drastically for small differences among the oscillators and subsequently, for larger differences, it slightly increases. When the coupling strength depends on the distance, the probability of total synchronization plummets dramatically with the number of oscillators especially in the case of integrate-and-fire oscillators. The latter constitutes an interesting result because it indicates that in realistic situations, the probability of total synchronization is not very high for a population of pulse-coupled oscillators; this entails that its utilization as a paradigmatic model of total synchronization does not suit well, especially when the coupling depends on the distance. This article is dedicated to our good friend and colleague Hilda Cerdeira as a tribute to the scientific work developed over her career.
NASA Astrophysics Data System (ADS)
Babkevich, P.; Katukuri, Vamshi M.; Fâk, B.; Rols, S.; Fennell, T.; Pajić, D.; Tanaka, H.; Pardini, T.; Singh, R. R. P.; Mitrushchenkov, A.; Yazyev, O. V.; Rønnow, H. M.
2016-12-01
Sr2 CuTeO6 presents an opportunity for exploring low-dimensional magnetism on a square lattice of S =1 /2 Cu2 + ions. We employ ab initio multireference configuration interaction calculations to unravel the Cu2 + electronic structure and to evaluate exchange interactions in Sr2 CuTeO6 . The latter results are validated by inelastic neutron scattering using linear spin-wave theory and series-expansion corrections for quantum effects to extract true coupling parameters. Using this methodology, which is quite general, we demonstrate that Sr2 CuTeO6 is an almost ideal realization of a nearest-neighbor Heisenberg antiferromagnet but with relatively weak coupling of 7.18(5) meV.
Precision of pulse-coupled networks of integrate-and-fire neurons.
Tiesinga, P H; Sejnowski, T J
2001-05-01
Some sensory tasks in the nervous system require highly precise spike trains to be generated in the presence of intrinsic neuronal noise. Collective enhancement of precision (CEP) can occur when spike trains of many neurons are pooled together into a more precise population discharge. We study CEP in a network of N model neurons connected by recurrent excitation. Each neuron is driven by a periodic inhibitory spike train with independent jitter in the spike arrival time. The network discharge is characterized by sigmaW, the dispersion in the spike times within one cycle, and sigmaB, the jitter in the network-averaged spike time between cycles. In an uncoupled network sigmaB approximately = 1/square root(N) and sigmaW is independent of N. In a strongly coupled network sigmaB approximately = 1/square root(log N) and sigmaW is close to zero. At intermediate coupling strengths, sigmaW is reduced, while sigmaB remains close to its uncoupled value. The population discharge then has optimal biophysical properties compared with the uncoupled network.
Frigge, T.; Hafke, B.; Tinnemann, V.; Witte, T.; Horn-von Hoegen, M.
2015-01-01
Ultrafast high energy electron diffraction in reflection geometry is employed to study the structural dynamics of self-organized Germanium hut-, dome-, and relaxed clusters on Si(001) upon femtosecond laser excitation. Utilizing the difference in size and strain state the response of hut- and dome clusters can be distinguished by a transient spot profile analysis. Surface diffraction from {105}-type facets provide exclusive information on hut clusters. A pixel-by-pixel analysis of the dynamics of the entire diffraction pattern gives time constants of 40, 160, and 390 ps, which are assigned to the cooling time constants for hut-, dome-, and relaxed clusters. PMID:26798797
Cluster synchronization in networks of identical oscillators with α -function pulse coupling
NASA Astrophysics Data System (ADS)
Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato
2017-02-01
We study a network of N identical leaky integrate-and-fire model neurons coupled by α -function pulses, weighted by a coupling parameter K . Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K , i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N -1 ,1 ) states, which have synchronized clusters of sizes N -1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K =0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N =2 -4 . The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014), 10.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N -1 ,1 ) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ -neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.
Jozef Dudek
2007-08-05
Charmonium is an attractive system for the application of lattice QCD methods. While the sub-threshold spectrum has been considered in some detail in previous works, it is only very recently that excited and higher-spin states and further properties such as radiative transitions and two-photon decays have come to be calculated. I report on this recent progress with reference to work done at Jefferson Lab.
Hage, Ilige S; Hamade, Ramsey F
2013-01-01
The aim of this study is to automatically discern the micro-features in histology slides of cortical bone using pulse coupled neural networks (PCNN). To the best knowledge of the authors, utilizing PCNN in such an application has not been reported in the literature and, as such, constitutes a novel application. The network parameters are optimized using particle swarm optimization (PSO) where the PSO fitness function was introduced as the entropy and energy of the bone micro-constituents extracted from a training image. Another novel contribution is combining the above with the method of adaptive threshold (T) where the PCNN algorithm is repeated until the best threshold T is found corresponding to the maximum variance between two segmented regions. To illustrate the quality of resulting segmentation according to this methodology, a comparison of the entropy/energy obtained of each pulse is reported. Suitable quality metrics (precision rate, sensitivity, specificity, accuracy, and dice) were used to benchmark the resulting segments against those found by a more traditional method namely K-means. The quality of the segments revealed by this methodology was found to be of much superior quality. Another testament to the quality of this methodology was that the images resulting from testing pulses were found to be of similarly good quality to those of the training images.
NASA Astrophysics Data System (ADS)
Jin, Xin; Nie, Rencan; Zhou, Dongming; Yao, Shaowen; Chen, Yanyan; Yu, Jiefu; Wang, Quan
2016-11-01
A novel method for the calculation of DNA sequence similarity is proposed based on simplified pulse-coupled neural network (S-PCNN) and Huffman coding. In this study, we propose a coding method based on Huffman coding, where the triplet code was used as a code bit to transform DNA sequence into numerical sequence. The proposed method uses the firing characters of S-PCNN neurons in DNA sequence to extract features. Besides, the proposed method can deal with different lengths of DNA sequences. First, according to the characteristics of S-PCNN and the DNA primary sequence, the latter is encoded using Huffman coding method, and then using the former, the oscillation time sequence (OTS) of the encoded DNA sequence is extracted. Simultaneously, relevant features are obtained, and finally the similarities or dissimilarities of the DNA sequences are determined by Euclidean distance. In order to verify the accuracy of this method, different data sets were used for testing. The experimental results show that the proposed method is effective.
NASA Astrophysics Data System (ADS)
Chen, Jun; Shibata, Tadashi
2007-04-01
Pulse-coupled neural networks (PCNNs) are biologically inspired algorithms that have been shown to be highly effective for image feature generation. However, conventional PCNNs are software-oriented algorithms that are too complicated to implement as very-large-scale integration (VLSI) hardware. To employ PCNNs in image-feature-generation VLSIs, a hardware-implementation-friendly PCNN is proposed here. By introducing the concepts of exponentially decaying output and a one-branch dendritic tree, the new PCNN eliminates the large number of convolution operators and floating-point multipliers in conventional PCNNs without compromising its performance at image feature generation. As an analog VLSI implementation of the new PCNN, an image-feature-generation circuit is proposed. By employing floating-gate metal-oxide-semiconductor (MOS) technology, the circuit achieves a full voltage-mode implementation of the PCNN in a compact structure. Inheriting the merits of the PCNN, the circuit is capable of generating rotation-independent and translation-independent features for input patterns, which has been verified by SPICE simulation.
NASA Astrophysics Data System (ADS)
Jin, Xin; Zhou, Dongming; Yao, Shaowen; Nie, Rencan; Yu, Chuanbo; Ding, Tingting
2016-04-01
In CIELab color space, we propose a remote sensing image fusion technique based on nonsubsampled shearlet transform (NSST) and pulse coupled neural network (PCNN), which aim to improve the efficiency and performance of the remote sensing image fusion by combining the excellent properties of the two methods. First, panchromatic (PAN) and multispectral (MS) are transformed into CIELab color space to get different color components. Second, PAN and L component of MS are decomposed by the NSST to obtain corresponding the low-frequency coefficients and high-frequency coefficients. Third, the low-frequency coefficients are fused by intersecting cortical model (ICM); the high-frequency coefficients are divided into several sub-blocks to calculate the average gradient (AG), and the linking strength β of PCNN model is determined by the AG, so that the parameters β can be adaptively set according to the quality of the sub-block images, then the sub-blocks image are input into PCNN to get the oscillation frequency graph (OFG), the method can get the fused high-frequency coefficients according to the OFG. Finally, the fused L component is obtained by inverse NSST, and the fused RGB color image is obtained through inverse CIELab transform. The experimental results demonstrate that the proposed method provide better effect compared with other common methods.
Lattice Studies of Hyperon Spectroscopy
Richards, David G.
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
Hadronic Resonances from Lattice QCD
John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace
2007-06-16
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Hadronic Resonances from Lattice QCD
Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.
2007-10-26
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Mello Koch, Robert de; Mashile, Grant; Park, Nicholas
2010-05-15
In this article the anomalous dimension of a class of operators with a bare dimension of O(N) is studied. The operators considered are dual to excited states of a two giant graviton system. In the Yang-Mills theory they are described by restricted Schur polynomials, labeled with Young diagrams that have at most two columns. In a certain limit the dilatation operator looks like a lattice version of a second derivative, with the lattice emerging from the Young diagram itself.
Quantum transport in d-dimensional lattices
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-04-28
We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. Lastly, we then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour ofmore » uniform spin lattices is a consequence of the interaction between different excitations.« less
Strange Baryon Physics in Full Lattice QCD
Huey-Wen Lin
2007-11-01
Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles.
Results and Frontiers in Lattice Baryon Spectroscopy
Bulava, John; Morningstar, Colin; Edwards, Robert; Richards, David; Fleming, George; Juge, K. Jimmy; Lichtl, Adam C.; Mathur, Nilmani; Wallace, Stephen J.
2007-10-26
The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references.
Exciton-polariton gap solitons in two-dimensional lattices.
Cerda-Méndez, E A; Sarkar, D; Krizhanovskii, D N; Gavrilov, S S; Biermann, K; Skolnick, M S; Santos, P V
2013-10-04
We report on the two-dimensional gap-soliton nature of exciton-polariton macroscopic coherent phases (PMCP) in a square lattice with a tunable amplitude. The resonantly excited PMCP forms close to the negative mass M point of the lattice band structure with energy within the lattice band gap and its wave function localized within a few lattice periods. The PMCPs are well described as gap solitons resulting from the interplay between repulsive polariton-polariton interactions and effective attractive forces due to the negative mass. The solitonic nature accounts for the reduction of the PMCP coherence length and optical excitation threshold with increasing lattice amplitude.
NASA Technical Reports Server (NTRS)
Wilczek, Frank
1987-01-01
A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.
Scanning phononic lattices with ultrasound
Vines, R.E.; Wolfe, J.P.; Every, A.V.
1999-11-01
A method for probing the elastic properties of newly developed periodic structures using acoustic waves is introduced. Highly anisotropic transmission of surface acoustic waves is observed by continuously scanning the wave vector angle. Preliminary models of wave propagation through multilayers and two-dimensional lattices explain some of the experimental features, while other features can be attributed to the resonant excitation of interface waves. {copyright} {ital 1999} {ital The American Physical Society}
Excitations of strange bottom baryons
NASA Astrophysics Data System (ADS)
Woloshyn, R. M.
2016-09-01
The ground-state and first-excited-state masses of Ωb and Ω_{bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
Study of excited nucleons and their structure
Burkert, Volker D.
2014-01-01
Recent advances in the study of excited nucleons are discussed. Much of the progress has been achieved due to the availability of high precision meson production data in the photoproduction and electroproduction sectors, the development of multi-channel partial wave analysis techniques, and advances in Lattice QCD with predictions of the full excitation spectrum.
Quantum transport in d-dimensional lattices
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-04-28
We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. Lastly, we then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence of the interaction between different excitations.
Lattice results on nucleon/roper properties
Lin, Huey-Wen
2009-12-01
In this proceeding, I review the attempts to calculate the Nucleon resonance (including Roper as first radially excited state of nucleon and other excited states) using lattice quantum chromodynamics (QCD). The latest preliminary results from Hadron Spectrum Collaboration (HSC) with mπ thickapprox 380 MeV are reported. The Sachs electric form factor of the proton and neutron and their transition with the Roper at large Q2 are also updated in this work.
Spectroscopy of charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
NASA Technical Reports Server (NTRS)
Mcpeak, W. L.
1975-01-01
A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.
Renormalization transformation of periodic and aperiodic lattices
Macia, Enrique; Rodriguez-Oliveros, Rogelio
2006-10-01
In this work we introduce a similarity transformation acting on transfer matrices describing the propagation of elementary excitations through either periodic or Fibonacci lattices. The proposed transformation can act at two different scale lengths. At the atomic scale the transformation allows one to express the systems' global transfer matrix in terms of an equivalent on-site model one. Correlation effects among different hopping terms are described by a series of local phase factors in that case. When acting on larger scale lengths, corresponding to short segments of the original lattice, the similarity transformation can be properly regarded as describing an effective renormalization of the chain. The nature of the resulting renormalized lattice significantly depends on the kind of order (i.e., periodic or quasiperiodic) of the original lattice, expressing a delicate balance between chemical complexity and topological order as a consequence of the renormalization process.
Beam-Plasma Instabilities in a 2D Yukawa Lattice
Kyrkos, S.; Kalman, G. J.; Rosenberg, M.
2009-06-05
We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.
Radial and orbital excitations of static-light mesons
Foley, Justin; O Cais, Alan; Peardon, Mike; Ryan, Sinead M.
2007-05-01
We present results for the spectrum of static-light mesons from N{sub f}=2 lattice QCD. These results were obtained using all-to-all light-quark propagators on an anisotropic lattice, yielding an improved signal resolution when compared to more conventional lattice techniques. With a light-quark mass close to the strange quark, we have measured the splittings between the ground-state S-wave static-light meson and higher excitations. We attempt to identify the quantum numbers of the excited states in the context of the reduced spatial symmetries of the lattice.
Anyonic braiding in optical lattices
Zhang, Chuanwei; Scarola, V. W.; Tewari, Sumanta; Das Sarma, S.
2007-01-01
Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo nontrivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new motivation for experimentally observing a topological state. Here, we explicitly work out a realistic experimental scheme to create and braid the Abelian topological excitations in the Kitaev model built on a tunable robust system, a cold atom optical lattice. We also demonstrate how to detect the key feature of these excitations: their braiding statistics. Observation of this statistics would directly establish the existence of anyons, quantum particles that are neither fermions nor bosons. In addition to establishing topological matter, the experimental scheme we develop here can also be adapted to a non-Abelian topological state, supported by the same Kitaev model but in a different parameter regime, to eventually build topologically protected quantum gates. PMID:18000038
Palmer, R.B.
1987-05-01
This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.
ERIC Educational Resources Information Center
Wright, Bradford L.
1975-01-01
Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)
One-dimensional sawtooth and zigzag lattices for ultracold atoms
Zhang, Ting; Jo, Gyu-Boong
2015-01-01
We describe tunable optical sawtooth and zigzag lattices for ultracold atoms. Making use of the superlattice generated by commensurate wavelengths of light beams, tunable geometries including zigzag and sawtooth configurations can be realised. We provide an experimentally feasible method to fully control inter- (t) and intra- (t′) unit-cell tunnelling in zigzag and sawtooth lattices. We analyse the conversion of the lattice geometry from zigzag to sawtooth, and show that a nearly flat band is attainable in the sawtooth configuration by means of tuning the lattice parameters. The bandwidth of the first excited band can be reduced up to 2% of the ground bandwidth for a wide range of lattice setting. A nearly flat band available in a tunable sawtooth lattice would offer a versatile platform for the study of interaction-driven quantum many-body states with ultracold atoms. PMID:26530007
Topological phases: An expedition off lattice
Freedman, Michael H.; Gamper, Lukas; Gils, Charlotte; Isakov, Sergei V.; Trebst, Simon; Troyer, Matthias
2011-08-15
Highlights: > Models of topological phases where the lattice topology is a dynamical variable. > We discuss off-lattice hazards that destroy topological protection. > The Cheeger constant yields upper bound to the energy of excited states. > Baby universes meet condensed matter physics. > We study the graph Laplacian of loop gases and string nets on fluctuating lattices. - Abstract: Motivated by the goal to give the simplest possible microscopic foundation for a broad class of topological phases, we study quantum mechanical lattice models where the topology of the lattice is one of the dynamical variables. However, a fluctuating geometry can remove the separation between the system size and the range of local interactions, which is important for topological protection and ultimately the stability of a topological phase. In particular, it can open the door to a pathology, which has been studied in the context of quantum gravity and goes by the name of 'baby universe', here we discuss three distinct approaches to suppressing these pathological fluctuations. We complement this discussion by applying Cheeger's theory relating the geometry of manifolds to their vibrational modes to study the spectra of Hamiltonians. In particular, we present a detailed study of the statistical properties of loop gas and string net models on fluctuating lattices, both analytically and numerically.
Excited nucleon spectrum using non-perturbative improved clover action
D. G. Richards; M. Gockeler; R. Horsley; D. Pleiter; P. E. L. Rakow; G. Schierholz; C. M. Maynard
2001-07-01
We discuss the extraction of negative-parity baryon masses from lattice QCD calculations. The mass of the lowest-lying negative-parity J = 1/2- state is computed in quenched lattice QCD using an O(a)-improved clover fermion action, and a splitting found with the nucleon mass. The calculation is performed on two lattice volumes, and three lattice spacings enabling a study of both finite-volume and finite-lattice-spacing uncertainties. A measurement of the first excited radial excitation of the nucleon finds a mass comparable, or even somewhat larger than that of the negative-parity ground state, in accord with other lattice determinations but in disagreement with experiment. Results are also presented for the lightest negative-parity I=3/2 state.
Cavalli, Enrico Boutinaud, Philippe; Bettinelli, Marco; Dorenbos, Pieter
2008-05-15
The luminescence properties of KLa(MoO{sub 4}){sub 2} (KLM) single crystals doped with Pr{sup 3+} have been measured in the 10-600 K temperature range in order to investigate the mechanisms involved in the radiationless processes. At variance with previously studied scheelite-like molybdates activated with Pr{sup 3+}, no effects attributed to the formation of intervalence charge transfer states have been observed. The model proposed in order to account for this behaviour allows the determination of the energy of the Pr{sup 3+} levels relative to the valence and conduction bands of the host. This model has firstly been confirmed for Tb{sup 3+}-doped KLM, for which suitable experimental data are available, and then extended to the other rare earth ions on the basis of the systematic nature of the lanthanide energy levels properties. The obtained conclusions are finally supported in the light of the comparison with some other representative cases. - Graphical abstract: The study of the excited state dynamics of KLa(MoO{sub 4}){sub 2} single crystals doped with Pr{sup 3+} allows to determine the energies of the levels of the active ion relative to the valence and conduction bands of the host. This model has then been extended to the other rare earth ions on the basis of the systematic nature of the lanthanide energy levels properties.
Path-integral approach to lattice polarons
NASA Astrophysics Data System (ADS)
Kornilovitch, P. E.
2007-06-01
The basic principles behind a path integral approach to the lattice polaron are reviewed. Analytical integration of phonons reduces the problem to one self-interacting imaginary-time path, which is then simulated by Metropolis Monte Carlo. Projection operators separate states of different symmetry, which provides access to various excited states. Shifted boundary conditions in imaginary time enable calculation of the polaron mass, spectrum and density of states. Other polaron characteristics accessible by the method include the polaron energy, number of excited phonons and isotope exponent on mass. Monte Carlo updates are formulated in continuous imaginary time on infinite lattices and as such provide statistically unbiased results without finite-size and finite time-step errors. Numerical data are presented for models with short-range and long-range electron-phonon interactions.
Blackbody Effects in the Yb Lattice Clock
2012-05-21
unprecedented levels of accuracy and stability. The most recent evaluation of the ytterbium optical lattice clock at NIST yielded a fractional frequency...108 153002, 2012. [4] V. A. Dzuba and A. Derevianko, “Dynamic polarizabilities and related properties of clock states of the ytterbium atom,” J. Phys. B...Experimental investigation of excited-state lifetimes in atomic ytterbium ,” Phys. Rev. A 53 3103, 1996.
Extracting excited mesons from the finite volume
Doring, Michael
2014-12-01
As quark masses come closer to their physical values in lattice simulations, finite volume effects dominate the level spectrum. Methods to extract excited mesons from the finite volume are discussed, like moving frames in the presence of coupled channels. Effective field theory can be used to stabilize the determination of the resonance spectrum.
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
Dissipative photonic lattice solitons.
Ultanir, Erdem A; Stegeman, George I; Christodoulides, Demetrios N
2004-04-15
We show that discrete dissipative optical lattice solitons are possible in waveguide array configurations that involve periodically patterned semiconductor optical amplifiers and saturable absorbers. The characteristics of these low-power soliton states are investigated, and their propagation constant eigenvalues are mapped on Floquet-Bloch band diagrams. The prospect of observing such low-power dissipative lattice solitons is discussed in detail.
Lattice-induced transparency in planar metamaterials
NASA Astrophysics Data System (ADS)
Manjappa, Manukumara; Srivastava, Yogesh Kumar; Singh, Ranjan
2016-10-01
Lattice modes are intrinsic to periodic structures and they can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed the excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report an experimental observation of a lattice-induced transparency (LIT) by coupling the first-order lattice mode (FOLM) to the structural resonance of a terahertz asymmetric split ring resonator. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM assisted dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes a large change in its bandwidth and resonance position. We propose a three-oscillator model to explain the underlying coupling mechanism in LIT system that shows good agreement with the observed results. Besides controlling the transparency behavior, LIT also shows a huge enhancement in its Q factor and exhibits a high group delay of 28 ps with an enhanced group index of 4.5 ×104 , which could be pivotal in ultrasensitive sensing and slow-light device applications.
Ultracold polar molecules in a 3D optical lattice
NASA Astrophysics Data System (ADS)
Yan, Bo
2015-05-01
Ultracold polar molecules, with their long-range electric dipolar interactions, offer new opportunities for studying quantum magnetism and many-body physics. KRb molecules loaded into a three-dimensional (3D) optical lattice allow one to study such a spin-lattice system in a stable environment without losses arising from chemical reactions. In the case with strong lattice confinement along two directions and a weak lattice potential along the third, we find the loss rate is suppressed by the quantum Zeno effect. In a deep 3D lattice with no tunneling, we observe evidences for spin exchange interactions. We use Ramsey spectroscopy to investigate the spin dynamics. By choosing the appropriate lattice polarizations and implementing a spin echo sequence, the single particle dephasing is largely suppressed, leaving the dipolar exchange interactions as the dominant contribution to the observed dynamics. This is supported by many-body theoretical calculations. While this initial demonstration was done with low lattice fillings, our current experimental efforts are focused on increasing the lattice filling fraction. This will greatly benefit the study of complex many-body dynamics with long-range interactions, such as transport of excitations in an out-of-equilibrium system and spin-orbit coupling in a lattice.
Progress in adaptive control of flexible spacecraft using lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.
1985-01-01
This paper reviews the use of the least square lattice filter in adaptive control systems. Lattice filters have been used primarily in speech and signal processing, but they have utility in adaptive control because of their order-recursive nature. They are especially useful in dealing with structural dynamics systems wherein the order of a controller required to damp a vibration is variable depending on the number of modes significantly excited. Applications are presented for adaptive control of a flexible beam. Also, difficulties in the practical implementation of the lattice filter in adaptive control are discussed.
Saturable discrete vector solitons in one-dimensional photonic lattices
Vicencio, Rodrigo A.; Smirnov, Eugene; Rueter, Christian E.; Kip, Detlef; Stepic, Milutin
2007-09-15
Localized vectorial modes, with equal frequencies and mutually orthogonal polarizations, are investigated both analytically and experimentally in a one-dimensional photonic lattice with defocusing saturable nonlinearity. It is shown that these modes may span over many lattice elements and that energy transfer among the two components is both phase and intensity dependent. The transverse electrically polarized mode exhibits a single-hump structure and spreads in cascades in saturation, while the transverse magnetically polarized mode exhibits splitting into a two-hump structure. Experimentally such discrete vector solitons are observed in lithium niobate lattices for both coherent and mutually incoherent excitations.
Toward the excited meson spectrum of dynamical QCD
Dudek, Jozef J.; Edwards, Robert G.; Peardon, Michael J.; Richards, David G.; Thomas, Christopher E.
2010-08-01
We present a detailed description of the extraction of the highly excited isovector meson spectrum on dynamical anisotropic lattices using a new quark-field construction algorithm and a large variational basis of operators. With careful operator construction, the combination of these techniques is used to identify the continuum spin of extracted states reliably, overcoming the reduced rotational symmetry of the cubic lattice. Excited states, states with exotic quantum numbers (0+-, 1-+ and 2+-) and states of high spin are resolved, including, for the first time in a lattice QCD calculation, spin-four states. The determinations of the spectrum of isovector mesons and kaons are performed on dynamical lattices with two volumes and with pion masses down to ~ 400 MeV, with statistical precision typically at or below 1% even for highly excited states.
Stationary Phonon Squeezing by Optical Polaron Excitation
NASA Astrophysics Data System (ADS)
Papenkort, T.; Axt, V. M.; Kuhn, T.
2017-03-01
We demonstrate that a stationary squeezed phonon state can be prepared by a pulsed optical excitation of a semiconductor quantum well. Unlike previously discussed scenarios for generating squeezed phonons, the corresponding uncertainties become stationary after the excitation and do not oscillate in time. The effect is caused by two-phonon correlations within the excited polaron. We demonstrate by quantum kinetic simulations and by a perturbation analysis that the energetically lowest polaron state comprises two-phonon correlations which, after the pulse, result in an uncertainty of the lattice momentum that is continuously lower than in the ground state of the semiconductor. The simulations show the dynamics of the polaron formation process and the resulting time-dependent lattice uncertainties.
Asymmetric magnon excitation by spontaneous toroidal ordering
Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi
2016-04-12
The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky–Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin–orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb lattice gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. Furthermore, the implications regarding candidate materials for asymmetric magnon excitations are presented.
Courant, E.D.; Garren, A.A.
1985-10-01
A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Nathal, M. V.; Hebsur, M. G.; Kraus, D. L.
2003-01-01
In their simplest form, lattice block panels are produced by direct casting and result in lightweight, fully triangulated truss-like configurations which provide strength and stiffness [2]. The earliest realizations of lattice block were made from A1 and steels, primarily under funding from the US Navy [3]. This work also showed that the mechanical efficiency (eg., specific stiffness) of lattice block structures approached that of honeycomb structures [2]. The lattice architectures are also less anisotropic, and the investment casting route should provide a large advantage in cost and temperature capability over honeycombs which are limited to alloys that can be processed into foils. Based on this early work, a program was initiated to determine the feasibility of extending the high temperature superalloy lattice block [3]. The objective of this effort was to provide an alternative to intermetallics and composites in achieving a lightweight high temperature structure without sacrificing the damage tolerance and moderate cost inherent in superalloys. To establish the feasibility of the superalloy lattice block concept, work was performed in conjunction with JAMCORP, Inc. Billerica, MA, to produce a number of lattice block panels from both IN71 8 and Mar-M247.
Quasicrystallography from Bn lattices
NASA Astrophysics Data System (ADS)
Koca, M.; Koca, N. O.; Al-Mukhaini, A.; Al-Qanabi, A.
2014-11-01
We present a group theoretical analysis of the hypercubic lattice described by the affine Coxeter-Weyl group Wa (Bn). An h-fold symmetric quasicrystal structure follows from the hyperqubic lattice whose point group is described by the Coxeter-Weyl group W (Bn) with the Coxeter number h=2n. Higher dimensional cubic lattices are explicitly constructed for n = 4,5,6 by identifying their rank-3 Coxeter subgroups and maximal dihedral subgroups. Decomposition of their Voronoi cells under the respective rank-3 subgroups W (A3), W (H2)×W (A1) and W (H3)lead to the rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron respectively. Projection of the lattice B4 describes a quasicrystal structure with 8-fold symmetry. The B5 lattice leads to quasicrystals with both 5fold and 10 fold symmetries. The lattice B6 projects on a 12-fold symmetric quasicrystal as well as a 3D icosahedral quasicrystal depending on the choice of subspace of projections. The projected sets of lattice points are compatible with the available experimental data.
Stoller, R J
1976-08-01
Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.
Jammed lattice sphere packings
NASA Astrophysics Data System (ADS)
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Pindzola, Michael S; Schultz, David Robert
2008-01-01
Time-dependent lattice methods in both Cartesian and cylindrical coordinates are applied to calculate excitation cross sections for p+H collisions at 40 keV incident energy. The time-dependent Schroedinger equation is solved using a previously formulated Cartesian coordinate single-channel method on a full 3D lattice and a newly formulated cylindrical coordinate multichannel method on a set of coupled 2D lattices. Cartesian coordinate single-channel and cylindrical coordinate five-channel calculations are found to be in reasonable agreement for excitation cross sections from the 1s ground state to the 2s, 2p, 3s, 3p, and 3d excited states. For extension of the time-dependent lattice method to handle the two electron dynamics found in p+He collisions, the cylindrical coordinate multichannel method appears promising due to the reduced dimensionality of its lattice.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
NASA Astrophysics Data System (ADS)
Weidner, Carrie; Yu, Hoon; Anderson, Dana
2016-05-01
In this work, we report on progress towards performing interferometry using atoms trapped in an optical lattice. That is, we start with atoms in the ground state of an optical lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , and by a prescribed phase function ϕ(t) , transform from one atomic wavefunction to another. In this way, we implement the standard interferometric sequence of beam splitting, propagation, reflection, reverse propagation, and recombination. Through the use of optimal control techniques, we have computationally demonstrated a scalable accelerometer that provides information on the sign of the applied acceleration. Extension of this idea to a two-dimensional shaken-lattice-based gyroscope is discussed. In addition, we report on the experimental implementation of the shaken lattice system.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.
2016-01-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822
$N^*$ Resonances in Lattice QCD from (mostly) Low to (sometimes) High Virtualities
Richards, David G.
2016-11-01
I present a survey of calculations of the excited $N^*$ spectrum in lattice QCD. I then describe recent advances aimed at extracting the momentum-dependent phase shifts from lattice calculations, notably in the meson sector, and the potential for their application to baryons. I conclude with a discussion of calculations of the electromagnetic transition form factors to excited nucleons, including calculations at high $Q^2$.
N* Spectroscopy from Lattice QCD: The Roper Explained
NASA Astrophysics Data System (ADS)
Leinweber, Derek; Kamleh, Waseem; Kiratidis, Adrian; Liu, Zhan-Wei; Mahbub, Selim; Roberts, Dale; Stokes, Finn; Thomas, Anthony W.; Wu, Jiajun
This brief review focuses on the low-lying even- and odd-parity excitations of the nucleon obtained in recent lattice QCD calculations. Commencing with a survey of the 2014-15 literature we'll see that results for the first even-parity excitation energy can differ by as much as 1 GeV, a rather unsatisfactory situation. Following a brief review of the methods used to isolate excitations of the nucleon in lattice QCD, and drawing on recent advances, we'll see how a consensus on the low-lying spectrum has emerged among many different lattice groups. To provide insight into the nature of these states we'll review the wave functions and electromagnetic form factors that are available for a few of these states. Consistent with the Luscher formalism for extracting phase shifts from finite volume spectra, the Hamiltonian approach to effective field theory in finite volume can provide guidance on the manner in which physical quantities manifest themselves in the finite volume of the lattice. With this insight, we will address the question; Have we seen the Roper in lattice QCD?
Phonon-enhanced crystal growth and lattice healing
Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna
2013-05-28
A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.
Fast dynamics for atoms in optical lattices.
Łącki, Mateusz; Zakrzewski, Jakub
2013-02-08
Cold atoms in optical lattices allow for accurate studies of many body dynamics. Rapid time-dependent modifications of optical lattice potentials may result in significant excitations in atomic systems. The dynamics in such a case is frequently quite incompletely described by standard applications of tight-binding models (such as, e.g., Bose-Hubbard model or its extensions) that typically neglect the effect of the dynamics on the transformation between the real space and the tight-binding basis. We illustrate the importance of a proper quantum mechanical description using a multiband extended Bose-Hubbard model with time-dependent Wannier functions. We apply it to situations directly related to experiments.
The NIM Sr Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, Q.; Li, Y.; Meng, F.; Lin, B.; Zang, E.; Sun, Z.; Fang, F.; Li, T.; Fang, Z.
2016-06-01
A 87Sr optical lattice clock is built at the National Institute of Metrology (NIM) of China. The atoms undergo two stages of laser cooling before being loaded into a horizontal optical lattice at the magic wavelength of 813 nm. After being interrogated by a narrow linewidth 698 nm clock laser pulse, the normalized excitation rate is measured to get the frequency error, which is then used to lock the clock laser to the ultra-narrow 1S0-3P0 clock transition. The total systematic uncertainty of the clock is evaluated to be 2.3 × 10-16, and the absolute frequency of the clock is measured to be 429 228 004 229 873.7(1.4) Hz with reference to the NIM5 cesium fountain.
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
Learning-induced synchronization of a globally coupled excitable map system.
Hayakawa, Y; Sawada, Y
2000-05-01
We propose a pulse-coupled neural network model in which one-dimensional excitable maps connected in a time-delayed network serve as the neural processing units. Although the individual processing unit has simple dynamical properties, the network exhibits collective chaos in the active states. Introducing a Hebbian learning algorithm for synaptic connections enhances the synchronization of excitation timing of the units within a subpopulation. The synchronizing clusters approximately exhibit a power-law size distribution, suggesting a hierarchy of synchronization. After applying a stationary signal to a subpopulation of the units with learning, the network then reproduces the signal. The learnable time range is much longer than the inherent time scale of the processing units, i.e., the synaptic delay time. Also, the network can reproduce periodic signals with time resolution finer than the delay time. Our present network model can be considered as a temporal association device which operates in chaotic states.
Crossing on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Gu, Hang; Ziff, Robert M.
2012-05-01
We divide the circular boundary of a hyperbolic lattice into four equal intervals and study the probability of a percolation crossing between an opposite pair as a function of the bond occupation probability p. We consider the {7,3} (heptagonal), enhanced or extended binary tree (EBT), the EBT-dual, and the {5,5} (pentagonal) lattices. We find that the crossing probability increases gradually from 0 to 1 as p increases from the lower pl to the upper pu critical values. We find bounds and estimates for the values of pl and pu for these lattices and identify the self-duality point p* corresponding to where the crossing probability equals 1/2. Comparison is made with recent numerical and theoretical results.
NASA Astrophysics Data System (ADS)
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Assembling Fibonacci anyons from a Z3 parafermion lattice model
NASA Astrophysics Data System (ADS)
Stoudenmire, E. M.; Clarke, David J.; Mong, Roger S. K.; Alicea, Jason
2015-06-01
Recent concrete proposals suggest it is possible to engineer a two-dimensional bulk phase supporting non-Abelian Fibonacci anyons out of Abelian fractional quantum Hall systems. The low-energy degrees of freedom of such setups can be modeled as Z3 parafermions "hopping" on a two-dimensional lattice. We use the density matrix renormalization group to study a model of this type interpolating between the decoupled-chain, triangular-lattice, and square-lattice limits. The results show clear evidence of the Fibonacci phase over a wide region of the phase diagram, most notably including the isotropic triangular-lattice point. We also study the broader phase diagram of this model and show that elsewhere it supports an Abelian state with semionic excitations.
PT-symmetric phase in kagome-based photonic lattices.
Chern, Gia-Wei; Saxena, Avadh
2015-12-15
The kagome lattice is a two-dimensional network of corner-sharing triangles and is often associated with geometrical frustration. In particular, the frustrated coupling between waveguide modes in a kagome array leads to a dispersionless flat band consisting of spatially localized modes. Here we propose a complex photonic lattice by placing PT-symmetric dimers at the kagome lattice points. Each dimer corresponds to a pair of strongly coupled waveguides. With balanced arrangement of gain and loss on individual dimers, the system exhibits a PT-symmetric phase for finite gain/loss parameter up to a critical value. The beam evolution in this complex kagome waveguide array exhibits a novel oscillatory rotation of optical power along the propagation distance. Long-lived local chiral structures originating from the nearly flat bands of the kagome structure are observed when the lattice is subject to a narrow beam excitation.
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
NASA Astrophysics Data System (ADS)
Oates, Chris
2012-06-01
Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths << 1 Hz). To suppress the effects of atomic motion/recoil, the atoms in the sample (˜10^4 atoms) are confined tightly in the potential wells of an optical standing wave (lattice). The wavelength of the lattice light is tuned to its ``magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates
Isoscalar meson spectroscopy from lattice QCD
Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas, Balint Joo, Michael Peardon
2011-06-01
We extract to high statistical precision an excited spectrum of single-particle isoscalar mesons using lattice QCD, including states of high spin and, for the first time, light exotic JPC isoscalars. The use of a novel quark field construction has enabled us to overcome the long-standing challenge of efficiently including quark-annihilation contributions. Hidden-flavor mixing angles are extracted and while most states are found to be close to ideally flavor mixed, there are examples of large mixing in the pseudoscalar and axial sectors in line with experiment. The exotic JPC isoscalar states appear at a mass scale comparable to the exotic isovector states.
Kondo lattice without Nozieres exhaustion effect.
Kikoin, K.; Kiselev, M. N.; Materials Science Division; Ben-Gurion Univ. of the Negev; Ludwig-Maximilians Univ.
2006-01-01
We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in the z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres exhaustion problem does not occur. The high-temperature perturbational description is matched to exact low-T Bethe-ansatz solution. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.
Skyrmion Flux Lattices and their μSR signature
NASA Astrophysics Data System (ADS)
Li, Qi; Toner, John; Belitz, Dietrich
2008-03-01
Recently, topological excitations known as skyrmions were predicted to exist in p-wave superconductors [1]. The elastic theory of an induced skyrmion lattice was developed in [2], and its melting curve was found to be qualitatively different from that for vortex lattices. Here we show that the muon spin resonance (μSR) signatures of the two types of lattices are also very different. μSR has been applied extensively to study the magnetic properties of vortex flux lattices [3]. The observable in this technique is the μSR line shape n(B), which is the probability density that a muon experiences a local magnetic induction B. In a vortex lattice, for small B, n(B) (1/B)/B. By contrast, for a skyrmion lattice we predict n(B) B^ (-3/2). This difference provides another way to easily distinguish between vortex and skyrmion flux lattices, and can thus help to identify p-wave superconductors. [1] A. Knigavko, B. Rosenstein, and Y.F. Chen, Phys. Rev. B 60, 550 (1999). [2] Qi Li, John Toner, and D. Belitz, Phys.Rev. Lett. 98, 187002 (2007). [3] J. E. Sonier, J.H. Brewer, and R. F. Kiefl, Rev. Mod. Phys. 72, 769 (2000).
Coherent and incoherent structural dynamics in laser-excited antimony
NASA Astrophysics Data System (ADS)
Waldecker, Lutz; Vasileiadis, Thomas; Bertoni, Roman; Ernstorfer, Ralph; Zier, Tobias; Valencia, Felipe H.; Garcia, Martin E.; Zijlstra, Eeuwe S.
2017-02-01
We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric A1 g optical phonon mode via the shift of the minimum of the atomic potential energy surface. Ab initio molecular dynamics simulations on laser excited potential energy surfaces are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. Good agreement is obtained between the parameter-free calculations and the experiment. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. The electron-phonon coupling is determined as a function of electronic temperature from our DFT calculations and the data by applying different models for the energy transfer.
Moving embedded lattice solitons.
Malomed, B A; Fujioka, J; Espinosa-Cerón, A; Rodríguez, R F; González, S
2006-03-01
It was recently proved that solitons embedded in the spectrum of linear waves may exist in discrete systems, and explicit solutions for isolated unstable embedded lattice solitons (ELS) of a differential-difference version of a higher-order nonlinear Schrodinger equation were found [Gonzalez-Perez-Sandi, Fujioka, and Malomed, Physica D 197, 86 (2004)]. The discovery of these ELS gives rise to relevant questions such as the following: (1) Are there continuous families of ELS? (2) Can ELS be stable? (3) Is it possible for ELS to move along the lattice? (4) How do ELS interact? The present work addresses these questions by showing that a novel equation (a discrete version of a complex modified Korteweg-de Vries equation that includes next-nearest-neighbor couplings) has a two-parameter continuous family of exact ELS. These solitons can move with arbitrary velocities across the lattice, and the numerical simulations demonstrate that these ELS are completely stable. Moreover, the numerical tests show that these ELS are robust enough to withstand collisions, and the result of a collision is only a shift in the positions of the solitons. The model may apply to the description of a Bose-Einstein condensate with dipole-dipole interactions between the atoms, trapped in a deep optical-lattice potential.
Generalizing Word Lattice Translation
2008-02-01
demonstrate substantial gains for Chinese -English and Arabic -English translation. Keywords: word lattice translation, phrase-based and hierarchical...introduce in reordering models. Our experiments evaluating the approach demonstrate substantial gains for Chinese -English and Arabic -English translation. 15...Section 4 presents two applications of the noisier channel paradigm, demonstrating substantial performance gains in Arabic -English and Chinese -English
NASA Astrophysics Data System (ADS)
Schaich, David
2016-03-01
Lattice field theory provides a non-perturbative regularization of strongly interacting systems, which has proven crucial to the study of quantum chromodynamics among many other theories. Supersymmetry plays prominent roles in the study of physics beyond the standard model, both as an ingredient in model building and as a tool to improve our understanding of quantum field theory. Attempts to apply lattice techniques to supersymmetric field theories have a long history, but until recently these efforts have generally encountered insurmountable difficulties related to the interplay of supersymmetry with the lattice discretization of spacetime. In recent years these difficulties have been overcome for a class of theories that includes the particularly interesting case of maximally supersymmetric Yang-Mills (N = 4 SYM) in four dimensions, which is a cornerstone of AdS/CFT duality. In combination with computational advances this progress enables practical numerical investigations of N = 4 SYM on the lattice, which can address questions that are difficult or impossible to handle through perturbation theory, AdS/CFT duality, or the conformal bootstrap program. I will briefly review some of the new ideas underlying this recent progress, and present some results from ongoing large-scale numerical calculations, including comparisons with analytic predictions.
Feng Haidong; Siegel, Warren
2006-08-15
We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.
Andreas S. Kronfeld
2002-09-30
After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
NASA Technical Reports Server (NTRS)
Savelyev, V. A.
1979-01-01
The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.
Mode-selective control of the crystal lattice.
Först, M; Mankowsky, R; Cavalleri, A
2015-02-17
CONSPECTUS: Driving phase changes by selective optical excitation of specific vibrational modes in molecular and condensed phase systems has long been a grand goal for laser science. However, phase control has to date primarily been achieved by using coherent light fields generated by femtosecond pulsed lasers at near-infrared or visible wavelengths. This field is now being advanced by progress in generating intense femtosecond pulses in the mid-infrared, which can be tuned into resonance with infrared-active crystal lattice modes of a solid. Selective vibrational excitation is particularly interesting in complex oxides with strong electronic correlations, where even subtle modulations of the crystallographic structure can lead to colossal changes of the electronic and magnetic properties. In this Account, we summarize recent efforts to control the collective phase state in solids through mode-selective lattice excitation. The key aspect of the underlying physics is the nonlinear coupling of the resonantly driven phonon to other (Raman-active) modes due to lattice anharmonicities, theoretically discussed as ionic Raman scattering in the 1970s. Such nonlinear phononic excitation leads to rectification of a directly excited infrared-active mode and to a net displacement of the crystal along the coordinate of all anharmonically coupled modes. We present the theoretical basis and the experimental demonstration of this phenomenon, using femtosecond optical spectroscopy and ultrafast X-ray diffraction at a free electron laser. The observed nonlinear lattice dynamics is shown to drive electronic and magnetic phase transitions in many complex oxides, including insulator-metal transitions, charge/orbital order melting and magnetic switching in manganites. Furthermore, we show that the selective vibrational excitation can drive high-TC cuprates into a transient structure with enhanced superconductivity. The combination of nonlinear phononics with ultrafast crystallography at
Ultrafast zone-center coherent lattice dynamics in ferroelectric lithium tantalate
Hu, Jianbo; Misochko, Oleg V; Takahashi, Hiroshi; Koguchi, Hiroaki; Eda, Takayuki; Nakamura, Kazutaka G
2011-01-01
Femtosecond time-resolved pump–probe experiments were carried out to study ultrafast lattice dynamics of ferroelectric lithium tantalate. Both the fully symmetric (A1 mode) and doubly degenerate (E mode) coherent phonons at the center of the Brillouin zone were excited via impulsive stimulated Raman scattering, as confirmed by the excitation intensity dependence. PMID:27877400
Localization and delocalization of ultracold bosonic atoms in finite optical lattices
Luehmann, Dirk-Soeren; Pfannkuche, Daniela; Bongs, Kai; Sengstock, Klaus
2008-02-15
We study bosonic atoms in small optical lattices by exact diagonalization and observe a striking similarity to the superfluid to Mott insulator transition in macroscopic systems. The momentum distribution, the formation of an energy gap, and the pair correlation function show only a weak size dependence. For noncommensurate filling we reveal in deep lattices a mixture of localized and delocalized particles, which is sensitive to lattice imperfections. Breaking the lattice symmetry causes a Bose-glass-like behavior. We discuss the nature of excited states and orbital effects by using an exact diagonalization technique that includes higher bands.
Localization oscillation in antidot lattices
NASA Astrophysics Data System (ADS)
Uryu, S.; Ando, T.
1998-06-01
The Anderson localization in square and hexagonal antidot lattices is numerically studied with the use of a Thouless number method. It is revealed that localization is very sensitive to the aspect ratio between the antidot diameter and the lattice constant. In a hexagonal lattice, both the Thouless number and the localization length oscillate with the period equal to the Al’tshuler-Aronov-Spivak oscillation. The oscillation is quite weak in a square lattice.
Spectroscopy of magnetic excitations in magnetic superconductors using vortex motion.
Bulaevskii, L N; Hruska, M; Maley, M P
2005-11-11
In magnetic superconductors a moving vortex lattice is accompanied by an ac magnetic field which leads to the generation of spin waves. At resonance conditions the dynamics of vortices in magnetic superconductors changes drastically, resulting in strong peaks in the dc I-V characteristics at voltages at which the washboard frequency of the vortex lattice matches the spin wave frequency omegaS(g), where g are the reciprocal vortex lattice vectors. We show that if the washboard frequency lies above the magnetic gap, measurement of the I-V characteristics provides a new method to obtain information on the spectrum of magnetic excitations in borocarbides and cuprate layered magnetic superconductors.
Richards, David G.; Orginos, Konstantinos
2014-06-23
We present an investigation of the excited meson spectrum at the N_f= 3 point obtained on isotropic clover lattices with a plaquette Wilson gauge action, and a NP-improved clover fermion action, at a lattice spacing of a \\simeq 0.08 fm, and compare with corresponding calculations on an anisotropic lattice at fine temporal lattice spacing but a spatial lattice spacing of a_s \\simeq 0.125 fm. The methodology adopted follows that employed in the calculation of the spectrum on anisotropic lattices, and we test the efficacy of that approach for isotropic lattices. In particular, we explore the extent to which rotational symmetry for predominantly single-hadron states is realized. By comparison of the energy levels with that obtained using the anisotropic lattice, we obtain an indication of discretization uncertainties in the single-hadron spectrum.
Pattern reverberation in networks of excitable systems with connection delays
NASA Astrophysics Data System (ADS)
Lücken, Leonhard; Rosin, David P.; Worlitzer, Vasco M.; Yanchuk, Serhiy
2017-01-01
We consider the recurrent pulse-coupled networks of excitable elements with delayed connections, which are inspired by the biological neural networks. If the delays are tuned appropriately, the network can either stay in the steady resting state, or alternatively, exhibit a desired spiking pattern. It is shown that such a network can be used as a pattern-recognition system. More specifically, the application of the correct pattern as an external input to the network leads to a self-sustained reverberation of the encoded pattern. In terms of the coupling structure, the tolerance and the refractory time of the individual systems, we determine the conditions for the uniqueness of the sustained activity, i.e., for the functionality of the network as an unambiguous pattern detector. We point out the relation of the considered systems with cyclic polychronous groups and show how the assumed delay configurations may arise in a self-organized manner when a spike-time dependent plasticity of the connection delays is assumed. As excitable elements, we employ the simplistic coincidence detector models as well as the Hodgkin-Huxley neuron models. Moreover, the system is implemented experimentally on a Field-Programmable Gate Array.
Pattern reverberation in networks of excitable systems with connection delays.
Lücken, Leonhard; Rosin, David P; Worlitzer, Vasco M; Yanchuk, Serhiy
2017-01-01
We consider the recurrent pulse-coupled networks of excitable elements with delayed connections, which are inspired by the biological neural networks. If the delays are tuned appropriately, the network can either stay in the steady resting state, or alternatively, exhibit a desired spiking pattern. It is shown that such a network can be used as a pattern-recognition system. More specifically, the application of the correct pattern as an external input to the network leads to a self-sustained reverberation of the encoded pattern. In terms of the coupling structure, the tolerance and the refractory time of the individual systems, we determine the conditions for the uniqueness of the sustained activity, i.e., for the functionality of the network as an unambiguous pattern detector. We point out the relation of the considered systems with cyclic polychronous groups and show how the assumed delay configurations may arise in a self-organized manner when a spike-time dependent plasticity of the connection delays is assumed. As excitable elements, we employ the simplistic coincidence detector models as well as the Hodgkin-Huxley neuron models. Moreover, the system is implemented experimentally on a Field-Programmable Gate Array.
Fractional lattice charge transport
Flach, Sergej; Khomeriki, Ramaz
2017-01-01
We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Nadler, Walder; Grassberger, Peter
2005-07-01
The scaling behavior of randomly branched polymers in a good solvent is studied in two to nine dimensions, modeled by lattice animals on simple hypercubic lattices. For the simulations, we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. We obtain high statistics of animals with up to several thousand sites in all dimension 2⩽d⩽9. The partition sum (number of different animals) and gyration radii are estimated. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and ⩾8. In addition, we present the hitherto most precise estimates for growth constants in d⩾3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy.
Crystallographic Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-06-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.
Digital lattice gauge theories
NASA Astrophysics Data System (ADS)
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
NASA Astrophysics Data System (ADS)
Bietenholz, W.; Gerber, U.; Pepe, M.; Wiese, U.-J.
2010-12-01
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility {χ_t} = {{{left< {{Q^2}} rightrangle }} left/ {V} right.} is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.
Fusion basis for lattice gauge theory and loop quantum gravity
NASA Astrophysics Data System (ADS)
Delcamp, Clement; Dittrich, Bianca; Riello, Aldo
2017-02-01
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2 + 1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel'd double of the gauge group, and can be readily "fused" together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2 + 1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
An Artificial Ising System with Phononic Excitations
NASA Astrophysics Data System (ADS)
Ghaffari, Hamed; Griffith, W. Ashley; Benson, Philip; Nasseri, M. H. B.; Young, R. Paul
Many intractable systems and problems can be reduced to a system of interacting spins. Here, we report mapping collective phononic excitations from different sources of crystal vibrations to spin systems. The phononic excitations in our experiments are due to micro and nano cracking (yielding crackling noises due to lattice distortion). We develop real time mapping of the multi-array senores to a network-space and then mapping the excitation- networks to spin-like systems. We show that new mapped system satisfies the quench (impulsive) characteristics of the Ising model in 2D classical spin systems. In particular, we show that our artificial Ising system transits between two ground states and approaching the critical point accompanies with a very short time frozen regime, inducing formation of domains separated by kinks. For a cubic-test under a true triaxial test (3D case), we map the system to a 6-spin ring under a transversal-driving field where using functional multiplex networks, the vector components of the spin are inferred (i.e., XY model). By visualization of spin patterns of the ring per each event, we demonstrate that ``kinks'' (as defects) proliferate when system approach from above to its critical point. We support our observations with employing recorded acoustic excitations during distortion of crystal lattices in nano-indentation tests on different crystals (silicon and graphite), triaxial loading test on rock (poly-crystal) samples and a true 3D triaxial test.
RESONANT CAVITY EXCITATION SYSTEM
Baker, W.R.; Kerns, Q.A.; Riedel, J.
1959-01-13
An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.
Ultraviolet laser spectroscopy of neutral mercury in a one-dimensional optical lattice
Mejri, S.; McFerran, J. J.; Yi, L.; Le Coq, Y.; Bize, S.
2011-09-15
We present details on the ultraviolet lattice spectroscopy of the (6s{sup 2}) {sup 1}S{sub 0}{r_reversible} (6s6p) {sup 3}P{sub 0} transition in neutral mercury, specifically {sup 199}Hg. Mercury atoms are loaded into a one-dimensional vertically aligned optical lattice from a magneto-optical trap with an rms temperature of {approx}60 {mu}K. We describe aspects of the magneto-optical trapping, the lattice cavity design, and the techniques employed to trap and detect mercury in an optical lattice. The clock-line frequency dependence on lattice depth is measured at a range of lattice wavelengths. We confirm the magic wavelength to be 362.51(0.16) nm. Further observations to those reported by Yi et al.[Phys. Rev. Lett. 106, 073005 (2011)] are presented regarding the laser excitation of a Wannier-Stark ladder of states.
Lattice parameters guide superconductivity in iron-arsenides.
Konzen, Lance M N; Sefat, Athena S
2017-03-01
The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped 'parent' materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which 'dopants' can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce 'in-plane' superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.
Skyrmion Flux Lattices in p,-wave Superconductors
NASA Astrophysics Data System (ADS)
Li, Qi; Toner, John; Belitz, Dietrich
2007-03-01
In p,-wave superconductors, topological excitations known as skyrmions are allowed, in addition to the usual vortices. In strongly type-II materials in an external magnetic field, a skyrmion flux lattice is expected to be energetically favored compared to a vortex flux lattice [1]. We analytically calculate the energy, magnetization curves (B(H)), and elasticity of skyrmion flux lattices in p,-wave superconductors near the lower critical field Hc1, and use these results with the Lindemann criterion to predict their melting curve [2]. In striking contrast to vortex flux lattices, which always melt at an external field H > Hc1, skyrmion flux lattices never melt near Hc1. This provides a simple and unambiguous test for the presence of skyrmions. In addition, the internal magnetic field distributions (which are measurable by muon spin rotation techniques [3]) of skyrmion and vortex lattices are very different. [1] A. Knigavko, B. Rosenstein, and Y.F. Chen, Phys. Rev. B 60, 550 (1999). [2] Qi Li, John Toner, and D. Belitz, cond-mat/0607391 [3] J.E. Sonier, J. Phys. Cond. Matt. 16, S4499 (2004)
Lattice parameters guide superconductivity in iron-arsenides
NASA Astrophysics Data System (ADS)
Konzen, Lance M. N.; Sefat, Athena S.
2017-03-01
The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.
Nanoscale control of phonon excitations in graphene
Kim, Hyo Won; Ko, Wonhee; Ku, JiYeon; Jeon, Insu; Kim, Donggyu; Kwon, Hyeokshin; Oh, Youngtek; Ryu, Seunghwa; Kuk, Young; Hwang, Sung Woo; Suh, Hwansoo
2015-01-01
Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron–phonon excitations, further influencing phonon-assisted inelastic electron tunnelling. PMID:26109454
Lattice-induced nonadiabatic frequency shifts in optical lattice clocks
Beloy, K.
2010-09-15
We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.
Scarola, V W; Das Sarma, S
2005-07-15
Cold atom optical lattices typically simulate zero-range Hubbard models. We discuss the theoretical possibility of using excited states of optical lattices to generate extended range Hubbard models. We find that bosons confined to higher bands of optical lattices allow for a rich phase diagram, including the supersolid phase. Using Gutzwiller, mean-field theory we establish the parameter regime necessary to maintain metastable states generated by an extended Bose-Hubbard model.
Single identities for lattice theory and for weakly associative lattices
McCune, W.; Padmanabhan, R.
1995-03-13
We present a single identity for the variety of all lattices that is much simpler than those previously known to us. We also show that the variety of weakly associative lattices is one-based, and we present a generalized one-based theorem for subvarieties of weakly associative lattices that can be defined with absorption laws. The automated theorem-proving program OTTER was used in substantial way to obtain the results.
Thermodynamics of the Relationship between Lattice Energy and Lattice Enthalpy
NASA Astrophysics Data System (ADS)
Jenkins, H. Donald B.
2005-06-01
Incorporation of lattice potential energy, U POT , within a Born Fajans Haber thermochemical cycle based on enthalpy changes necessitates correction of the energy of the lattice to an enthalpy term, Δ H L . For a lattice containing p i ions of type i in the formula unit, the lattice enthalpy is given by Δ H L = U POT + ∑ s i [( c i /2) - 2] RT where R is the gas constant (= 8.314 J K -1 mol -1 ), T is the absolute temperature, and c i is defined according as to whether the ion i is monatomic ( c i = 3), linear polyatomic ( c i = 5), or polyatomic ( c i = 6), respectively.
Exciton-polariton gap soliton dynamics in moving acoustic square lattices
NASA Astrophysics Data System (ADS)
Buller, J. V. T.; Balderas-Navarro, R. E.; Biermann, K.; Cerda-Méndez, E. A.; Santos, P. V.
2016-09-01
The modulation by a surface acoustic wave (SAW) provides a powerful tool for the formation of tunable lattices of exciton-polariton macroscopic quantum states (MQSs) in semiconductor microcavities. The MQSs were resonantly excited in an optical parametric oscillator configuration. We investigate the temporal dynamics of these lattices using time and spatially resolved photoluminescence (PL). Photoluminescence images of the MQSs clearly show the motion of the lattice at the acoustic velocity. Interestingly, the PL intensity emitted by the MQSs as well as their coherence length oscillate with the position of the lattice sites relative to the exciting laser beam. The coherence length and the PL intensity are correlated. The PL oscillation amplitude depends on both the intensity and the size of the exciting laser spot and increases considerably for excitation intensities close to the optical threshold power for the formation of the MQS. The oscillations are explained by a model that takes into account the combined effects of SAW reflections, which dynamically distort the amplitude of the potential, and the spatial phase of the acoustic lattice within the exciting laser spot. This paper could pave the way to tailor polariton-based light-emitting sources with intensity variations controlled by the SAWs.
NASA Astrophysics Data System (ADS)
Beane, Silas
2016-09-01
Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.
Dyons and Roberge - Weiss transition in lattice QCD
NASA Astrophysics Data System (ADS)
Bornyakov, V. G.; Boyda, D. L.; Goy, V. A.; Ilgenfritz, E.-M.; Martemyanov, B. V.; Molochkov, A. V.; Nakamura, Atsushi; Nikolaev, A. A.; Zakharov, V. I.
2017-03-01
We study lattice QCD with Nf = 2 Wilson fermions at nonzero imaginary chemical potential and nonzero temperature. We relate the Roberge - Weiss phase transition to the properties of dyons which are constituents of the KvBLL calorons. We present numerical evidence that the characteristic features of the spectral gap of the overlap Dirac operator as function of an angle modifying the boundary condition are determined by the Z3 sector of the respective imaginary chemical potential. We then demonstrate that dyon excitations in thermal configurations could be responsible (in line with perturbative excitations) for these phenomena.
Direct Tunneling Delay Time Measurement in an Optical Lattice
NASA Astrophysics Data System (ADS)
Fortun, A.; Cabrera-Gutiérrez, C.; Condon, G.; Michon, E.; Billy, J.; Guéry-Odelin, D.
2016-07-01
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.
Pinning an ion with an intracavity optical lattice.
Linnet, Rasmus B; Leroux, Ian D; Marciante, Mathieu; Dantan, Aurélien; Drewsen, Michael
2012-12-07
We report one-dimensional pinning of a single ion by an optical lattice. A standing-wave cavity produces the lattice potential along the rf-field-free axis of a linear Paul trap. The ion's localization is detected by measuring its fluorescence when excited by standing-wave fields with the same period, but different spatial phases. The experiments agree with an analytical model of the localization process, which we test against numerical simulations. For the best localization achieved, the ion's average coupling to the cavity field is enhanced from 50% to 81(3)% of its maximum possible value, and we infer that the ion is bound in a lattice well with over 97% probability.
Spin-orbit coupling in a strontium optical lattice clock
NASA Astrophysics Data System (ADS)
Bothwell, Tobias; Bromley, Sarah; Kolkowitz, Shimon; Zhang, Xibo; Wall, Michael; Rey, Ana Maria; Ye, Jun
2016-05-01
Synthetic gauge fields are a promising tool for creating complex Hamiltonians with ultracold neutral atoms that may mimic the fractional Quantum Hall effect and other topological states. A promising approach is to use spin-orbit coupling to treat an internal degree of freedom as an effective `synthetic' spatial dimension. Here, this synthetic dimension is comprised by the internal ground and excited states used for high-precision clock spectroscopy in a fermionic strontium optical lattice clock. We report on our progress towards this goal in a system where atoms tunnel through a 1D optical lattice during clock interrogation. We present measurements of the lattice band structure under varying Lamb-Dicke parameters and in a regime where s-wave collisions are expected to contribute density dependent frequency shifts.
PT-symmetry and kagome lattices (Conference Presentation)
NASA Astrophysics Data System (ADS)
Saxena, Avadh; Chern, Gia-Wei
2016-09-01
We consider a complex photonic lattice by placing PT-symmetric dimers at the Kagome lattice points. This lattice is a two-dimensional network of corner-sharing triangles. Each dimer represents a pair of strongly coupled waveguides. The frustrated coupling between waveguide modes results in a dispersionless flat band comprising spatially localized modes. For a balanced arrangement of gain and loss on each dimer, up to a critical value of the gain/loss parameter the system exhibits a PT-symmetric phase. The beam evolution in the waveguide array leads to an oscillatory rotation of the optical power. We observe local chiral structures with a narrow beam excitation. We also study nonlinearity and disorder in this set up.
Baryon Spectroscopy and Operator Construction in Lattice QCD
S. Basak; I. Sato; S. Wallace; R. Edwards; D. Richards; R. Fiebig; G. Fleming; U. Heller; C. Morningstar
2004-07-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances. I will describe how such calculations provide insight into the structure of the hadrons, and enable comparison both with experiment, and with QCD-inspired pictures of hadron structure, such as calculations in the limit of large N{sub c}.
Tuning ground states and excitations in complex electronic materials
Bishop, A.R.
1996-09-01
Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.
Lattice harmonics expansion revisited
NASA Astrophysics Data System (ADS)
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
Orthocomplemented complete lattices and graphs
NASA Astrophysics Data System (ADS)
Ollech, Astrid
1995-08-01
The problem I consider originates from Dörfler, who found a construction to assign an Orthocomplemented lattice H(G) to a graph G. By Dörfler it is known that for every finite Orthocomplemented lattice L there exists a graph G such that H(G)=L. Unfortunately, we can find more than one graph G with this property, i.e., orthocomplemented lattices which belong to different graphs can be isomorphic. I show some conditions under which two graphs have the same orthocomplemented lattice.
S.R. Beane; P.F.Bedaque; A. Parreno; M.J. Savage
2004-04-01
The two-nucleon sector is near an infrared fixed point of QCD and as a result the S-wave scattering lengths are unnaturally large compared to the effective ranges and shape parameters. It is usually assumed that a lattice QCD simulation of the two-nucleon sector will require a lattice that is much larger than the scattering lengths in order to extract quantitative information. In this paper we point out that this does not have to be the case: lattice QCD simulations on much smaller lattices will produce rigorous results for nuclear physics.
Ab initio nuclear structure from lattice effective field theory
Lee, Dean
2014-11-11
This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.
Spectroscopy of doubly charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-05-06
This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction a_{t}⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)_{F} symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
Spectroscopy of doubly charmed baryons from lattice QCD
NASA Astrophysics Data System (ADS)
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael; Hadron Spectrum Collaboration
2015-05-01
We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 1 63×128 , with inverse spacing in temporal direction at-1=5.67 (4 ) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3 ) F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7 /2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU (6 )×O (3 ) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
Butler, J.N.; Shukla, S.
1995-05-01
The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one.
NASA Technical Reports Server (NTRS)
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Realization of ground-state artificial skyrmion lattices at room temperature
Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai
2015-10-08
We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.
Realization of ground-state artificial skyrmion lattices at room temperature
Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; ...
2015-10-08
We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from themore » dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.« less
Realization of ground-state artificial skyrmion lattices at room temperature.
Gilbert, Dustin A; Maranville, Brian B; Balk, Andrew L; Kirby, Brian J; Fischer, Peter; Pierce, Daniel T; Unguris, John; Borchers, Julie A; Liu, Kai
2015-10-08
The topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. Here, we demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. The imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.
NASA Astrophysics Data System (ADS)
Liu, Sha; Liu, Junjie; Hänggi, Peter; Wu, Changqin; Li, Baowen
2014-11-01
Guided by a stylized experiment we develop a self-consistent anharmonic phonon concept for nonlinear lattices which allows for explicit "visualization." The idea uses a small external driving force which excites the front particles in a nonlinear lattice slab and subsequently one monitors the excited wave evolution using molecular dynamics simulations. This allows for a simultaneous, direct determination of the existence of the phonon mean-free path with its corresponding anharmonic phonon wave number as a function of temperature. The concept for the mean-free path is very distinct from known prior approaches: the latter evaluate the mean-free path only indirectly, via using both a scale for for the phonon relaxation time and yet another one for the phonon velocity. Notably, the concept here is neither limited to small lattice nonlinearities nor to small frequencies. The scheme is tested for three strongly nonlinear lattices of timely current interest which either exhibit normal or anomalous heat transport.
Realization of ground-state artificial skyrmion lattices at room temperature
Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai
2015-01-01
The topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. Here, we demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. The imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices. PMID:26446515
Optical Abelian lattice gauge theories
Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.
2013-03-15
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.
Terahertz lattice dynamics of the potassium rare-earth binary molybdates.
Poperezhai, S; Gogoi, P; Zubenko, N; Kutko, K; Kutko, V I; Kovalev, A S; Kamenskyi, D
2017-03-08
We report a systematic study of low-energy lattice vibrations in the layered systems KY(MoO4)2, KDy(MoO4)2, KEr(MoO4)2, and KTm(MoO4)2. A layered crystal structure and low symmetry of the local environment of the rare-earth ion cause the appearance of vibrational and electronic excitations in Terahertz frequencies. The interaction between these excitations leads to sophisticated dynamical properties, including non-linear effects in paramagnetic resonance spectra. The THz study in magnetic field allows for the clear distinction between lattice vibrations and electronic excitations. We measured the THz transmission spectra and show that the low energy lattice vibrations in binary molybdates can be well described within the quasi-one-dimensional model. The developed model describes the measured far-infrared spectra, and results of our calculations agree with previous Raman and ultrasound studies.
Terahertz lattice dynamics of the potassium rare-earth binary molybdates
NASA Astrophysics Data System (ADS)
Poperezhai, S.; Gogoi, P.; Zubenko, N.; Kutko, K.; Kutko, V. I.; Kovalev, A. S.; Kamenskyi, D.
2017-03-01
We report a systematic study of low-energy lattice vibrations in the layered systems KY(MoO4)2, KDy(MoO4)2, KEr(MoO4)2, and KTm(MoO4)2. A layered crystal structure and low symmetry of the local environment of the rare-earth ion cause the appearance of vibrational and electronic excitations in Terahertz frequencies. The interaction between these excitations leads to sophisticated dynamical properties, including non-linear effects in paramagnetic resonance spectra. The THz study in magnetic field allows for the clear distinction between lattice vibrations and electronic excitations. We measured the THz transmission spectra and show that the low energy lattice vibrations in binary molybdates can be well described within the quasi-one-dimensional model. The developed model describes the measured far-infrared spectra, and results of our calculations agree with previous Raman and ultrasound studies.
NASA Astrophysics Data System (ADS)
Owerre, S. A.
2016-07-01
Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κxy changes sign as a function of magnetic field or temperature on the kagome lattice, and κxy changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κxy has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T2 law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.
Masuda, Hiroshi; Okubo, Tsuyoshi; Kawamura, Hikaru
2012-08-03
Motivated by the recent experiment on kagome-lattice antiferromagnets, we study the zero-field ordering behavior of the antiferromagnetic classical Heisenberg model on a uniaxially distorted kagome lattice by Monte Carlo simulations. A first-order transition, which has no counterpart in the corresponding undistorted model, takes place at a very low temperature. The origin of the transition is ascribed to a cooperative proliferation of topological excitations inherent to the model.
Acoustically excited heated jets. 1: Internal excitation
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.
1988-01-01
The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.
Recent progress in lattice QCD
Sharpe, S.R.
1992-12-01
A brief overview of the status of lattice QCD is given, with emphasis on topics relevant to phenomenology. The calculation of the light quark spectrum, the lattice prediction of {alpha} {sub {ovr MS}} (M {sub Z}), and the calculation of f{sub B} are discussed. 3 figs., 3 tabs., 40 refs.
Introduction to lattice gauge theory
NASA Astrophysics Data System (ADS)
Gupta, R.
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.
Study of lattice defect vibration
NASA Technical Reports Server (NTRS)
Elliott, R. J.
1969-01-01
Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.
Branes and integrable lattice models
NASA Astrophysics Data System (ADS)
Yagi, Junya
2017-01-01
This is a brief review of my work on the correspondence between four-dimensional 𝒩 = 1 supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.
Buckling modes in pantographic lattices
NASA Astrophysics Data System (ADS)
Giorgio, Ivan; Della Corte, Alessandro; dell'Isola, Francesco; Steigmann, David J.
2016-07-01
We study buckling patterns in pantographic sheets, regarded as two-dimensional continua consisting of lattices of continuously distributed fibers. The fibers are modeled as beams endowed with elastic resistance to stretching, shearing, bending and twist. Included in the theory is a non-standard elasticity due to geodesic bending of the fibers relative to the lattice surface. xml:lang="fr"
Doublon dynamics and polar molecule production in an optical lattice.
Covey, Jacob P; Moses, Steven A; Gärttner, Martin; Safavi-Naini, Arghavan; Miecnikowski, Matthew T; Fu, Zhengkun; Schachenmayer, Johannes; Julienne, Paul S; Rey, Ana Maria; Jin, Deborah S; Ye, Jun
2016-04-14
Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices.
Doublon dynamics and polar molecule production in an optical lattice
Covey, Jacob P.; Moses, Steven A.; Gärttner, Martin; Safavi-Naini, Arghavan; Miecnikowski, Matthew T.; Fu, Zhengkun; Schachenmayer, Johannes; Julienne, Paul S.; Rey, Ana Maria; Jin, Deborah S.; Ye, Jun
2016-01-01
Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices. PMID:27075831
Lattice models of ionic systems
NASA Astrophysics Data System (ADS)
Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.
2002-05-01
A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.
Qi, Yiling; Zhang, Guoquan
2010-09-13
We study the linear discrete diffraction characteristics of light in two-dimensional backbone lattices. It is found that, as the refractive index modulation depth of the backbone lattice increases, high-order band gaps become open and broad in sequence, and the allowed band curves of the Floquet-Bloch modes become flat gradually. As a result, the diffraction pattern at the exit face converges gradually for both the on-site and off-site excitation cases. Particularly, when the refractive index modulation depth of the backbone lattice is high enough, for example, on the order of 0.01 for a square lattice, the light wave propagating in the backbone lattice will be localized in transverse dimension for both the on-site and off-site excitation cases. This is because only the first several allowed bands with nearly flat band curves are excited in the lattice, and the transverse expansion velocities of the Floquet-Bloch modes in these flat allowed bands approach to zero. Such a linear transverse localization of light may have potential applications in navigating light propagation dynamics and optical signal processing.
Wave propagation in metamaterial lattice sandwich plates
NASA Astrophysics Data System (ADS)
Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong
2016-04-01
This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.
Lee, W. S.; Johnston, S.; Moritz, B.; Lee, J.; Yi, M.; Zhou, K. J.; Schmitt, T.; Patthey, L.; Strocov, V.; Kudo, K.; Koike, Y.; van den Brink, J.; Devereaux, T. P.; Shen, Z. X.
2013-06-25
High resolution resonant inelastic x-ray scattering has been performed to reveal the role of lattice coupling in a family of quasi-1D insulating cuprates, Ca_{2+5x}Y_{2-5x}Cu_{5}O_{10}. Site-dependent low-energy excitations arising from progressive emissions of a 70 meV lattice vibrational mode are resolved for the first time, providing a direct measurement of electron-lattice coupling strength. We show that such electron-lattice coupling causes doping-dependent distortions of the Cu-O-Cu bond angle, which sets the intrachain spin exchange interactions. Our results indicate that the lattice degrees of freedom are fully integrated into the electronic behavior in low-dimensional systems.
Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.
Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun
2016-02-26
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.
THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets
NASA Astrophysics Data System (ADS)
Bonetti, S.; Hoffmann, M. C.; Sher, M.-J.; Chen, Z.; Yang, S.-H.; Samant, M. G.; Parkin, S. S. P.; Dürr, H. A.
2016-08-01
We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (˜30 fs ). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering.
Hamiltonian Effective Field Theory Study of the N*(1535 ) Resonance in Lattice QCD
NASA Astrophysics Data System (ADS)
Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B.; Stokes, Finn M.; Thomas, Anthony W.; Wu, Jia-Jun
2016-02-01
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying JP=1 /2- nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.
Nonlinear dust-lattice waves: a modified Toda lattice
Cramer, N. F.
2008-09-07
Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.
NASA Astrophysics Data System (ADS)
Mboumba, M. D.; Moubissi, A. B.; Ekogo, T. B.; Belobo Belobo, D.; Ben-Bolie, G. H.; Kofane, T. C.
2015-10-01
The stability and collective excitations of binary Bose-Einstein condensates with cubic and quintic nonlinearities in variable anharmonic optical lattices are investigated. By using the variational approach, the influences of the quintic nonlinearities and the shape of the external potential on the stability are discussed in details. It is found that the quintic intraspecies and interspecies interatomic interactions profoundly affect the stability criterion and collective excitations of the system. The shape dependent potential form that characterizes the optical lattice deeply alters the stability regions. Direct numerical simulations of the mean-field coupled Gross-Pitaevskii equation describing the system agree well with the analytical predictions.
Exciton-like electromagnetic excitations in non-ideal microcavity supercrystals
Rumyantsev, Vladimir; Fedorov, Stanislav; Gumennyk, Kostyantyn; Sychanova, Marina; Kavokin, Alexey
2014-01-01
We study localized photonic excitations in a quasi-two-dimensional non-ideal binary microcavity lattice with use of the virtual crystal approximation. The effect of point defects (vacancies) on the excitation spectrum is investigated by numerical modelling. We obtain the dispersion and the energy gap of the electromagnetic excitations which may be considered as Frenkel exciton-like quasiparticles and analyze the dependence of their density of states on the defect concentrations in a microcavity supercrystal. PMID:25374150
Decay modes of the excited pseudoscalar glueball
NASA Astrophysics Data System (ADS)
Eshraim, Walaa I.; Schramm, Stefan
2017-01-01
We study three different chiral Lagrangians that describe the two- and three-body decays of an excited pseudoscalar glueball, JP C=0*-+ , into light mesons and charmonium states as well as into a scalar and pseudoscalar glueball. We compute the decay channels for an excited pseudoscalar glueball with a mass of 3.7 GeV and consider a ground-state pseudoscalar glueball of mass 2.6 GeV, following predictions from lattice QCD simulations. These states and channels are in reach of the ongoing BESIII experiment and the PANDA experiments at the upcoming FAIR facility experiment. We present the resulting decay branching ratios with a parameter-free prediction.
Localized structures in Kagome lattices
Saxena, Avadh B; Bishop, Alan R; Law, K J H; Kevrekidis, P G
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Lattice QCD: Status and Prospect
Ukawa, Akira
2006-02-08
A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years.
Yang, Yi-feng; Fisk, Zachary; Lee, Han-Oh; Thompson, J D; Pines, David
2008-07-31
The origin of magnetic order in metals has two extremes: an instability in a liquid of local magnetic moments interacting through conduction electrons, and a spin-density wave instability in a Fermi liquid of itinerant electrons. This dichotomy between 'local-moment' magnetism and 'itinerant-electron' magnetism is reminiscent of the valence bond/molecular orbital dichotomy present in studies of chemical bonding. The class of heavy-electron intermetallic compounds of cerium, ytterbium and various 5f elements bridges the extremes, with itinerant-electron magnetic characteristics at low temperatures that grow out of a high-temperature local-moment state. Describing this transition quantitatively has proved difficult, and one of the main unsolved problems is finding what determines the temperature scale for the evolution of this behaviour. Here we present a simple, semi-quantitative solution to this problem that provides a basic framework for interpreting the physics of heavy-electron materials and offers the prospect of a quantitative determination of the physical origin of their magnetic ordering and superconductivity. It also reveals the difference between the temperature scales that distinguish the conduction electrons' response to a single magnetic impurity and their response to a lattice of local moments, and provides an updated version of the well-known Doniach diagram.
Searching for X (3872) using lattice QCD
NASA Astrophysics Data System (ADS)
Lee, Song-Haeng; Detar, Carleton; MILC / Fermilab Collaboration
2016-03-01
For decades, many excited charmonium states have been discovered that cannot be explained within the conventional quark model. Among the those mesons, the narrow charmonium-like state X (3872) has been examined using various phenomenological models, however, the question for its constituent still remains open. One of the strong candidates is a DD* molecular state because its mass is within 1MeV of the DD* threshold, however, such a molecular state can't be directly studied by perturbative QCD in such a low energy regime where the interaction of the colored quarks and gluons is very strong. Numerical simulation with lattice QCD provides a nonperturbative, ab initio method for studying this mysterious meson state. In this talk, I present preliminary simulation results for this charmonium-like states with quantum numbers JPC =1++ in both the isospin 0 and 1 channels. We use interpolating operators including both the conventional excited P-wave charmonium state (χc 1) and the DD* open charm state for the isospin 0 channel, but only DD* for the isospin 1 channel. We extract large negative S-wave scattering length and find an X (3872) candidate 13 +/- 6 MeV below the DD* threshold in the isospin 0 channel.
Noisy quantum cellular automata for quantum versus classical excitation transfer.
Avalle, Michele; Serafini, Alessio
2014-05-02
We introduce a class of noisy quantum cellular automata on a qubit lattice that includes all classical Markov chains, as well as maps where quantum coherence between sites is allowed to build up over time. We apply such a construction to the problem of excitation transfer through 1D lattices, and compare the performance of classical and quantum dynamics with equal local transition probabilities. Our discrete approach has the merits of stripping down the complications of the open system dynamics, of clearly isolating coherent effects, and of allowing for an exact treatment of conditional dynamics, all while capturing a rich variety of dynamical behaviors.
Excited-Nucleon Spectroscopy with 2+1 Fermion Flavors
Cohen, Saul; Foley, Justin; Morningstar, Colin; Wong, Ricky; Edwards, Robert G; Joo, Balint; Richards, David G; Juge, Jimmy; Lin, Huey-Lin; Mathur, Nilmani; Peardon, Micheal J; Ryan, Sinead M
2010-01-01
We present progress made by the Hadron Spectrum Collaboration (HSC) in determining the tower of excited nucleon states using 2+1-flavor anisotropic clover lattices. The HSC has been investigating interpolating operators projected into irreducible representations of the cubic group in order to better calculate two-point correlators for nucleon spectroscopy; results are published for quenched and 2-flavor anisotropic Wilson lattices. In this work, we present the latest results using a new technique, distillation, which allows us to reach higher statistics than before. Future directions will be outlined at the end.
Noisy Quantum Cellular Automata for Quantum versus Classical Excitation Transfer
NASA Astrophysics Data System (ADS)
Avalle, Michele; Serafini, Alessio
2014-05-01
We introduce a class of noisy quantum cellular automata on a qubit lattice that includes all classical Markov chains, as well as maps where quantum coherence between sites is allowed to build up over time. We apply such a construction to the problem of excitation transfer through 1D lattices, and compare the performance of classical and quantum dynamics with equal local transition probabilities. Our discrete approach has the merits of stripping down the complications of the open system dynamics, of clearly isolating coherent effects, and of allowing for an exact treatment of conditional dynamics, all while capturing a rich variety of dynamical behaviors.
Counting Lattice-Gas Invariants
2007-11-02
Dominique d’Humières, Brosl Hasslacher, Pierre Lallemand, Yves Pomeau, and Jean-Pierre Rivet . Lattice gas hydrodynamics in two and three dimensions...177. Springer -Verlag, Februrary 1989. Proceedings of the Winter School, Les Houches, France. 6
LATTICE QCD AT FINITE TEMPERATURE.
PETRECZKY, P.
2005-03-12
I review recent progress in lattice QCD at finite temperature. Results on the transition temperature will be summarized. Recent progress in understanding in-medium modifications of interquark forces and quarkonia spectral functions at finite temperatures is discussed.
Lattice Multiplication: Old and New.
ERIC Educational Resources Information Center
Givan, Betty; Karr, Rosemary
1988-01-01
The author presents two examples of lattice multiplication followed by a computer algorithm to perform this multiplication. The algorithm is given in psuedocode but could easily be given in Pascal. (PK)
Andreas S. Kronfeld
2003-11-05
This paper is a review of heavy quarks in lattice gauge theory, focusing on methodology. It includes a status report on some of the calculations that are relevant to heavy-quark spectroscopy and to flavor physics.
Lattice QCD in rotating frames.
Yamamoto, Arata; Hirono, Yuji
2013-08-23
We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.
Yamamoto, Arata
2016-07-29
We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
Lattice QCD: A Brief Introduction
NASA Astrophysics Data System (ADS)
Meyer, H. B.
A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.
DeGrand, T.
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Advances in Lattice Quantum Chromodynamics
NASA Astrophysics Data System (ADS)
McGlynn, Greg
In this thesis we make four contributions to the state of the art in numerical lattice simulations of quantum chromodynamics (QCD). First, we present the most detailed investigation yet of the autocorrelations of topological observations in hybrid Monte Carlo simulations of QCD and of the effects of the boundary conditions on these autocorrelations. This results in a numerical criterion for deciding when open boundary conditions are useful for reducing these autocorrelations, which are a major barrier to reliable calculations at fine lattice spacings. Second, we develop a dislocation-enhancing determinant, and demonstrate that it reduces the autocorrelation time of the topological charge. This alleviates problems with slow topological tunneling at fine lattice spacings, enabling simulations on fine lattices to be completed with much less computational effort. Third, we show how to apply the recently developed zMobius technique to hybrid Monte Carlo evolutions with domain wall fermions, achieving nearly a factor of two speedup in the light quark determinant, the single most expensive part of the calculation. The dislocation-enhancing determinant and the zMobius technique have enabled us to begin simulations of fine ensembles with four flavors of dynamical domain wall quarks. Finally, we show how to include the previously-neglected G1 operator in nonperturbative renormalization of the DeltaS = 1 effective weak Hamiltonian on the lattice. This removes an important systematic error in lattice calculations of weak matrix elements, in particular the important K → pipi decay.
Optimal lattice-structured materials
NASA Astrophysics Data System (ADS)
Messner, Mark C.
2016-11-01
This work describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.
Phyllotaxis of flux lattices in layered superconductors
Levitov, L.S. )
1991-01-14
The geometry of a flux lattice pinned by superconducting layers is studied. Under variation of magnetic field the lattice undergoes an infinite sequence of continuous transitions corresponding to different ways of selection of shortest distances. All possible lattices form a hierarchical structure identified as the hierarchy of Farey numbers. It is shown that dynamically accessible lattices are characterized by pairs of consecutive Fibonacci numbers.
NASA Astrophysics Data System (ADS)
Jiang, Hong; Hu, Xue-Ning; Zhao, Yin-chang; Zhang, Chao
2017-02-01
Spin excitation in poly(1,4-bis(2,2,6,6-tetramethyl-4-oxy-piperidyl-1-oxyl)-butadiin) (poly-BIPO), a quasi-one-dimensional organic ferromagnet, was investigated based on the extended Su-Schriffer-Heeger model by considering electron hopping and the spin correlation between the main chain and side radicals. The lattice, charge density, and spin density configurations of the single spin as well as spin domain excited states of the organic ferromagnet poly-BIPO were systematically studied. The side radical spin excitation gives rise to lattice distortion, charge density localization, and a spin density defect on the main chain. A peak induced by spin excitation is predicted to appear in the density of states of the organic ferromagnet poly-BIPO based on calculations for different spin electron states. These results expand knowledge on elementary excitation in organic materials and have significant implications for the design of spintronic devices.
8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER ...
8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER No. 2., AND GENERATOR UNITS BEHIND EXCITER No. 2 IN BACKGROUND. EXCITER No. 1 GENERATOR HAS A COVER OVER TOP HALF OF COMMUTATOR ELEMENT. VIEW TO NORTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA
Deformation of Lattice in a Solid Nuclear Matter
NASA Astrophysics Data System (ADS)
Takahashi, K.
1994-02-01
The effect of the deformation of lattice in the three dimensional (3D) ALS (i.e., alternating layer spin) solid of neutron matter is investigated, taking the elastic-, spin- and isospin-wave excitations into account in the model with Pandharipande-Smith (PS)'s potential and non-vanishing classical pion field. The q-number part of pion-field is replaced by the effective one-pion-exchange potential (OPEP). The tetragonal structure of lattice is presumed. Solutions of the equation of motion (EOM) for the ground state are sought by the variational method for two cases in which c-number part of π--field is non-vanishing and is supposed to be propagating either (i) perpendicularly to or (ii) within layers of 3D ALS solid. The phonon and magnon sectors of Hamiltonian are diagonalized for case (i) and the phonon sector for case (ii). The criterion of the stability is the absence of imaginary part in the dispersion relations of phonon and of magnon. In both cases, tetragonal lattices have energies about 40 MeV/nucleon lower than the simple cubic (sc) lattices in the density region of [0.35 fm-3, 0.75 fm-3]. In (i), the zero-point energy of magnon is a few percent of phonon. Both in (i) and (ii), the charged pion condensations are negligible.
Frustrated square lattice Heisenberg model and magnetism in Iron Telluride
NASA Astrophysics Data System (ADS)
Zaliznyak, Igor; Xu, Zhijun; Gu, Genda; Tranquada, John; Stone, Matthew
2011-03-01
We have measured spin excitations in iron telluride Fe1.1Te, the parent material of (1,1) family of iron-based superconductors. It has been recognized that J1-J2-J3 frustrated Heisenberg model on a square lattice might be relevant for the unusual magnetism and, perhaps, the superconductivity in cuprates [1,2]. Recent neutron scattering measurements show that similar frustrated model might also provide reasonable account for magnetic excitations in iron pnictide materials. We find that it also describes general features of spin excitations in FeTe parent compound observed in our recent neutron measurements, as well as in those by other groups. Results imply proximity of magnetic system to the limit of extreme frustration. Selection of spin ground state under such conditions could be driven by weak extrinsic interactions, such as lattice distortion, or strain. Consequently, different nonuniversal types of magnetic order could arise, both commensurate and incommensurate. These are not necessarily intrinsic to an ideal J1-J2-J3 model, but might result from lifting of its near degeneracy by weak extrinsic perturbations.
Excitability dependent pattern formation
NASA Astrophysics Data System (ADS)
Prabhakara, Kaumudi; Gholami, Azam; Bodenschatz, Eberhard
2014-03-01
On starvation, the amoebae Dictyostelium discoideum emit the chemo-attractant cyclic adenosine monophosphate (cAMP) at specific frequencies. The neighboring amoebae sense cAMP through membrane receptors and produce their own cAMP. Soon the cells synchronize and move via chemotaxis along the gradient of cAMP. The response of the amoebae to the emission of cAMP is seen as spiral waves or target patterns under a dark field microscope. The causal reasons for the selection of one or the other patterns are still unclear. Here we present a possible explanation based on excitability. The excitability of the amoebae depends on the starvation time because the gene expression changes with starvation. Cells starved for longer times are more excitable. In this work, we mix cells of different excitabilities to study the dependence of the emergent patterns on the excitability. Preliminary results show a transition from spirals to target patterns for specific excitabilities. A phase map of the patterns for different combinations of excitability and number densities is obtained. We compare our findings with numerical simulations of existing theoretical models.
NASA Technical Reports Server (NTRS)
Jacobi, N.; Zmuidzinas, J. S.
1974-01-01
A formalism was developed for temperature-dependent, self-consistent phonons in quantum solids with defects. Lattice vacancies and interstitials in solid helium and metallic hydrogen, as well as electronic excitations in solid helium, were treated as defects that modify properties of these systems. The information to be gained from the modified phonon spectrum is discussed.
Stress Wave Propagation in Two-dimensional Buckyball Lattice
NASA Astrophysics Data System (ADS)
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
Lattice Vibrations Boost Demagnetization Entropy in Shape Memory Alloy
Stonaha, Paul J.; Manley, Michael E.; Bruno, Nick; Karaman, Ibrahim; Arroyave, Raymundo; Singh, Navdeep; Abernathy, Douglas L.; Chi, Songxue
2015-10-07
Magnetocaloric (MC) materials present an avenue for chemical-free, solid state refrigeration through cooling via adiabatic demagnetization. We have used inelastic neutron scattering to measure the lattice dynamics in the MC material Ni_{45}Co_{5}Mn_{36.6}In_{13.4}. Upon heating across TC, the material exhibits an anomalous increase in phonon entropy of 0.17 0.04 k_B/atom, which is nine times larger than expected from conventional thermal expansion. We find that the phonon softening is focused in a transverse optic phonon, and we present the results of first-principle calculations which predict a strong coupling between lattice distortions and magnetic excitations.
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-01-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices. PMID:27892963
Lattice Vibrations Boost Demagnetization Entropy in Shape Memory Alloy
Stonaha, Paul J.; Manley, Michael E.; Bruno, Nick; ...
2015-10-07
Magnetocaloric (MC) materials present an avenue for chemical-free, solid state refrigeration through cooling via adiabatic demagnetization. We have used inelastic neutron scattering to measure the lattice dynamics in the MC material Ni45Co5Mn36.6In13.4. Upon heating across TC, the material exhibits an anomalous increase in phonon entropy of 0.17 0.04 k_B/atom, which is nine times larger than expected from conventional thermal expansion. We find that the phonon softening is focused in a transverse optic phonon, and we present the results of first-principle calculations which predict a strong coupling between lattice distortions and magnetic excitations.
Dynamics and control of oscillations in a complex crystalline lattice
NASA Astrophysics Data System (ADS)
Aero, Eron; Fradkov, Alexander; Andrievsky, Boris; Vakulenko, Sergey
2006-04-01
A highly nonlinear system of acoustic and optical oscillations in a complex crystalline lattice consisting of two sublattices is analyzed. The system is obtained as a generalization of the linear Carman Born Kun Huang theory. Large displacements of atoms up to structure stability loss and restructuring are admitted. It is shown that the system has nontrivial solutions describing movements of fronts, emergence of periodic structures and defects. Strong interaction of acoustic and optical modes of oscillation for media without center of symmetry is demonstrated. A possibility of energy-excitation of the optical mode by means of controlling torque applied to the ends of the lattice is examined. Control algorithm based on speed-gradient method is proposed and analyzed numerically. Simulation results demonstrate that application of control may eliminate or reduce influence of initial conditions. An easily realizable nonfeedback version of control algorithm is proposed possessing similar properties.
Strongly Interacting Fermions in Optical Lattices
NASA Astrophysics Data System (ADS)
Koetsier, A. O.
2009-07-01
This thesis explores certain extraordinary phenomena that occur when a gas of neutral atoms is cooled to the coldest temperatures in the universe --- much colder, in fact, than the electromagnetic radiation that permeates the vacuum of interstellar space. At those extreme temperatures, quantum effects dominate and the collective behaviour of the atoms can have unexpected consequences. For example, Bose-Einstein condensation may occur where the atoms lose their individual identities to coalesce into a macroscopic quantum particle. Although such ultracold atomic gases are interesting in their own right, much of the excitement generated in this field is due to the possibility that studying these gases could shed light on intractable problems in other areas of physics. This is predominantly due to the uniquely high degree of control over various physical parameters that ultracold atomic gases afford to experimentalists. Recent technological advances exploit this advantage to study quantum phenomena in a detail that would not be possible in other systems. For instance, atoms can be made to attract or repel each other, the strength of this interaction can be set to almost any value, and external potentials of various geometries and periodicities can be introduced. In this way, atoms can be used to model phenomena as diverse as the quark-gluon plasmas arising in high-energy particle physics, the colour superfluids conjectured to exist in the core of neutron stars, and the high-temperature superconductivity exhibited by electrons on the ion lattice of certain compounds. Indeed, ultracold atomic gases also have a demonstrated applicability to quantum information and computation. Due to a subtle interplay between electronic and nuclear spins known as the hyperfine interaction, atoms can have either an integer or half-integer total spin quantum number, making them either bosonic or fermionic at low temperatures, respectively. With the exception of chapter 7, the work
15. POWERHOUSE INTERIOR SHOWING EXCITER No. 2 WITH EXCITER No. ...
15. POWERHOUSE INTERIOR SHOWING EXCITER No. 2 WITH EXCITER No. 1 BEHIND. OVERHEAD CRANE DANGLES AT TOP OF PHOTO. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA
Discrete vortices on anisotropic lattices
NASA Astrophysics Data System (ADS)
Chen, Gui-Hua; Wang, Hong-Cheng; Chen, Zi-Fa
2015-08-01
We consider the effects of anisotropy on two types of localized states with topological charges equal to 1 in two-dimensional nonlinear lattices, using the discrete nonlinear Schrödinger equation as a paradigm model. We find that on-site-centered vortices with different propagation constants are not globally stable, and that upper and lower boundaries of the propagation constant exist. The region between these two boundaries is the domain outside of which the on-site-centered vortices are unstable. This region decreases in size as the anisotropy parameter is gradually increased. We also consider off-site-centered vortices on anisotropic lattices, which are unstable on this lattice type and either transform into stable quadrupoles or collapse. We find that the transformation of off-sitecentered vortices into quadrupoles, which occurs on anisotropic lattices, cannot occur on isotropic lattices. In the quadrupole case, a propagation-constant region also exists, outside of which the localized states cannot stably exist. The influence of anisotropy on this region is almost identical to its effects on the on-site-centered vortex case.
Non-compact local excitations in spin-glasses
NASA Astrophysics Data System (ADS)
Lamarcq, J.; Bouchaud, J.-P.; Martin, O. C.; Mézard, M.
2002-05-01
We study numerically the local low-energy excitations in the 3d Edwards-Anderson model for spin-glasses. Given the ground state, we determine the lowest-lying connected cluster of flipped spins with a fixed volume containing one given spin. These excitations are not compact, having a fractal dimension close to two, suggesting an analogy with lattice animals. Also, their energy does not grow with their size; the associated exponent is slightly negative whereas the one for compact clusters is positive. These findings call for a modification of the basic hypotheses underlying the droplet model.
Dynamics of Hubbard Nano-Clusters Following Strong Excitation
NASA Astrophysics Data System (ADS)
Bonitz, M.; Hermanns, S.; Balzer, K.
2013-12-01
The Hubbard model is a prototype for strongly correlated electrons in condensed matter, for molecules and fermions or bosons in optical lattices. While the equilibrium properties of these systems have been studied in detail, the excitation and relaxation dynamics following a perturbation of the system are only poorly explored. Here, we present results for the dynamics of electrons following nonlinear strong excitation that are based on a nonequilibrium Green functions approach. We focus on small systems---"Hubbard nano-clusters"---that contain just a few particles where, in addition to the correlation effects, finite size effects and spatial inhomegeneity can be studied systematically.
Excited baryons from Bayesian priors and overlap fermions
F.X. Lee; S.J. Dong; T. Draper; I. Horvath; K.F. Liu; N. Mathur; J.B. Zhang
2003-05-01
Using the constrained-fitting method based on Bayesian priors, we extract the masses of the two lowest states of octet and decouplet baryons with both parities. The calculation is done on quenched 163 x 28 lattices of a = 0.2 fm using an improved gauge action and overlap fermions, with the pion mass as low as 180 MeV. The Roper state N(1440)+ is clearly observed for the first time as the 1st-excited state of the nucleon from the standard interpolating field. Together with other baryons, our preliminary results indicate that the level-ordering of the low-lying baryon states on the lattice is largely consistent with experiment. The realization is helped by cross-overs between the excited + and - states in the region of mp 300 to 400 MeV.
Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted
NASA Technical Reports Server (NTRS)
Krause, David L.; Whittenberger, J. Daniel
2002-01-01
The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction
Geomagnetic excitation of nutation
NASA Astrophysics Data System (ADS)
Ron, C.; Vondrák, J.
2015-08-01
We tested the hypothesis of Malkin (2013), who demonstrated that the observed changes of Free Core Nutation parameters (phase, amplitude) occur near the epochs of geomagnetic jerks. We found that if the numerical integration of Brzeziński broad-band Liouville equations of atmospheric/oceanic excitations is re-initialized at the epochs of geomagnetic jerks, the agreement between the integrated and observed celestial pole offsets is improved (Vondrák & Ron, 2014). Nevertheless, this approach assumes that the influence of geomagnetic jerks leads to a stepwise change in the position of celestial pole, which is physically not acceptable. Therefore we introduce a simple continuous excitation function that hypothetically describes the influence of geomagnetic jerks, and leads to rapid but continuous changes of pole position. The results of numerical integration of atmospheric/oceanic excitations and this newly introduced excitation are then compared with the observed celestial pole offsets, and prove that the agreement is improved significantly.
Lattice Structures For Aerospace Applications
NASA Astrophysics Data System (ADS)
Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.
2012-07-01
The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.
Algebraic Lattices in QFT Renormalization
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Spin excitations in fluctuating stripe phases of doped cuprate superconductors.
Vojta, Matthias; Vojta, Thomas; Kaul, Ribhu K
2006-09-01
Using a phenomenological lattice model of coupled spin and charge modes, we determine the spin susceptibility in the presence of fluctuating stripe charge order. We assume the charge fluctuations to be slow compared to those of the spins, and combine Monte Carlo simulations for the charge order parameter with exact diagonalization of the spin sector. Our calculations unify the spin dynamics of both static and fluctuating stripe phases and support the notion of a universal spin excitation spectrum in doped cuprate superconductors.
Elementary spin excitations in ultrathin itinerant magnets
NASA Astrophysics Data System (ADS)
Zakeri, Khalil
2014-12-01
Elementary spin excitations (magnons) play a fundamental role in condensed matter physics, since many phenomena e.g. magnetic ordering, electrical (as well as heat) transport properties, ultrafast magnetization processes, and most importantly electron/spin dynamics can only be understood when these quasi-particles are taken into consideration. In addition to their fundamental importance, magnons may also be used for information processing in modern spintronics. Here the concept of spin excitations in ultrathin itinerant magnets is discussed and reviewed. Starting with a historical introduction, different classes of magnons are introduced. Different theoretical treatments of spin excitations in solids are outlined. Interaction of spin-polarized electrons with a magnetic surface is discussed. It is shown that, based on the quantum mechanical conservation rules, a magnon can only be excited when a minority electron is injected into the system. While the magnon creation process is forbidden by majority electrons, the magnon annihilation process is allowed instead. These fundamental quantum mechanical selection rules, together with the strong interaction of electrons with matter, make the spin-polarized electron spectroscopies as appropriate tools to excite and probe the elementary spin excitations in low-dimensional magnets e.g ultrathin films and nanostructures. The focus is put on the experimental results obtained by spin-polarized electron energy loss spectroscopy and spin-polarized inelastic tunneling spectroscopy. The magnon dispersion relation, lifetime, group and phase velocity measured using these approaches in various ultrathin magnets are discussed in detail. The differences and similarities with respect to the bulk excitations are addressed. The role of the temperature, atomic structure, number of atomic layers, lattice strain, electronic complexes and hybridization at the interfaces are outlined. A possibility of simultaneous probing of magnons and phonons
Spin-orbital short-range order on a honeycomb-based lattice.
Nakatsuji, S; Kuga, K; Kimura, K; Satake, R; Katayama, N; Nishibori, E; Sawa, H; Ishii, R; Hagiwara, M; Bridges, F; Ito, T U; Higemoto, W; Karaki, Y; Halim, M; Nugroho, A A; Rodriguez-Rivera, J A; Green, M A; Broholm, C
2012-05-04
Frustrated magnetic materials, in which local conditions for energy minimization are incompatible because of the lattice structure, can remain disordered to the lowest temperatures. Such is the case for Ba(3)CuSb(2)O(9), which is magnetically anisotropic at the atomic scale but curiously isotropic on mesoscopic length and time scales. We find that the frustration of Wannier's Ising model on the triangular lattice is imprinted in a nanostructured honeycomb lattice of Cu(2+) ions that resists a coherent static Jahn-Teller distortion. The resulting two-dimensional random-bond spin-1/2 system on the honeycomb lattice has a broad spectrum of spin-dimer-like excitations and low-energy spin degrees of freedom that retain overall hexagonal symmetry.
Nucleon Structure from Lattice QCD
Haegler, Philipp
2011-10-24
Hadron structure calculations in lattice QCD have seen substantial progress during recent years. We illustrate the achievements that have been made by discussing latest lattice results for a limited number of important observables related to nucleon form factors and generalized parton distributions. A particular focus is placed on the decomposition of the nucleon spin 1/2 in terms of quark spin and orbital angular momentum contributions. Results and limitations of the necessary chiral extrapolations based on ChPT will be briefly discussed.
Tetraquark states from lattice QCD
Mathur, Nilmani
2011-10-24
Recently there have been considerable interests in studying hadronic states beyond the usual two and three quark configurations. With the renewed experimental interests in {sigma}(600) and the inability of quark model to incorporate too many light scalar mesons, it is quite appropriate to study hadronic states with four quark configurations. Moreover, some of the newly observed charmed hadrons may well be described by four quark configurations. Lattice QCD is perhaps the most desirable tool to adjudicate the theoretical controversy of the scalar mesons and to interpret the structures of the newly observed charmed states. Here we briefly reviewed the lattice studies of four-quark hadrons.
Negative-viscosity lattice gases
Rothman, D.H. )
1989-08-01
A new irreversible collision rule is introduced for lattice-gas automata. The rule maximizes the flux of momentum in the direction of the local momentum gradient, yielding a negative shear viscosity. Numerically results in 2D show that the negative viscosity leads to the spontaneous ordering of the velocity field, with vorticity resolvable down to one lattice-link length. The new rule may be used in conjunction with previously proposed collision rules to yield a positive shear viscosity lower than the previous rules provide. In particular, Poiseuille flow tests demonstrate a decrease in viscosity by more than a factor of 2.
Lattice QCD and Nuclear Physics
Konstantinos Orginos
2007-03-01
A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.
Nuclear Physics from Lattice QCD
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Chiral symmetry on the lattice
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Lattice Green's Function for the Body-Centered Cubic Lattice
NASA Astrophysics Data System (ADS)
Sakaji, A. J.
2002-05-01
An expression for the Green's function (GF) of Body-Centered Cubic (BCC) lat tice is evaluated analytically and numerically for a single impurity lattice. Th e density of states (DOS), phase shift, and scattering cross section are express ed in terms of complete elliptic integrals of the first kind.
Rho Meson Decay into pi+pi- on Asymmetrical Lattices
NASA Astrophysics Data System (ADS)
Pelissier, Craig S.
The computation of the lowest-lying hadron masses was the earliest success of lattice QCD. Current spectroscopy is faced with the task of computing excited-states. This is particularly challenging when excited-states appear as scattering resonances. In this case, the resonance parameters have to be determined by studying the energies of the scattering states. Currently it is only computationally feasible to compute resonances of the simplest systems. In our work, we carry out a calculation of the ρ(770) resonance seen in the isospin l = 1 two-pion system in the l = 1 channel. To determine the resonance parameters, we compute the scattering phase shifts from the two-pion spectrum using Luscher's formula. Unlike other studies which employ the moving frame formalism, we use lattices with one spatial direction elongated. To vary the momentum of the two-pion state, we adjust the length of the elongated direction. With this approach, the two-pion momentum can be tuned more finely, which allows one to map out the resonance more accurately. In this work, we employed nHYP-smeared clover fermions with two mass-degenerate quarks. The lattice computations were carried out on large elongated lattices with spatial volumes ≥ 33 fm3. We carried out an exploratory quenched study and found the two-pion spectrum to be compatible with the results obtained using dynamical fermions. Our results showed a disagreement with the physical decay at the level of 20% which is typical for quenched simulations. After completing the quenched study, we recomputed the resonance parameters on fully dynamical gauge configurations with a pion mass of 304(2) MeV. We found a value mρ = 827(3)(5) MeV and gρππ = 6.67(42) for the resonance mass and coupling constant. Our results are consistent with other lattice studies at similar pion masses and are in good agreement with the prediction from unitarized Chiral Perturbation Theory at NLO. The scattering phase shifts we computed are more evenly
Nonlocal optical properties in periodic lattice of graphene layers.
Chern, Ruey-Lin; Han, Dezhuan
2014-02-24
Based on the effective medium model, nonlocal optical properties in periodic lattice of graphene layers with the period much less than the wavelength are investigated. Strong nonlocal effects are found in a broad frequency range for TM polarization, where the effective permittivity tensor exhibits the Lorentzian resonance. The resonance frequency varies with the wave vector and coincides well with the polaritonic mode. Nonlocal features are manifest on the emergence of additional wave and the occurrence of negative refraction. By examining the characters of the eigenmode, the nonlocal optical properties are attributed to the excitation of plasmons on the graphene surfaces.
Lattice QCD solution to the U(1) problem
Fukugita, M. ); Kuramashi, Y.; Okawa, M. , Tsukuba, Ibaraki 305 ); Ukawa, A. )
1995-04-01
It is shown in quenched lattice QCD that the mass splitting between [eta][prime] and a pion arises from gauge configurations with a nonzero topological charge [ital Q], its magnitude increasing for larger values of [vert bar][ital Q][vert bar]; the contribution from the disconnected quark loop is strongly hindered unless the topological charge is excited. This demonstrates the explicit relation between the large [eta][prime] meson mass and gauge field topology, which is in the line of the argument in the continuum of instantons and the 1/[ital N] expansion.
Spectroscopy of triply charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; ...
2014-10-14
The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6) x O(3) symmetry. As a result, energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses.
Orbital excitation blockade and algorithmic cooling in quantum gases.
Bakr, Waseem S; Preiss, Philipp M; Tai, M Eric; Ma, Ruichao; Simon, Jonathan; Greiner, Markus
2011-12-21
Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability.
Electron excitation after plasmon decay in proton-aluminum collisions
Bocan, G.; Miraglia, J.E.
2003-03-01
When a projectile travels inside a metal, it interacts with the electron gas, producing both binary and collective excitations (plasmons). Within the nearly-free-electron-gas scheme, Roesler and co-workers showed that plasmons decay in first order and a conduction electron is emitted (interband transition). Working within the frame of atomic collisions, we develop a simple model to describe this decay. The first-order Born expansion is used to approximate the electron wave functions. The influence of the lattice potential on the excited electron is considered in the calculations in order to balance the momentum-conservation equation. It gives contributions associated with sites of the reciprocal lattice. The potential expansion coefficients are obtained following Animalu and co-workers [Philos. Mag. 9, 451 (1964)]. First- and second-differential spectra (in energy and angle) are analyzed discriminating contributions due to different lattice momenta. In all cases, contributions due to binary excitations of the valence electrons and inner-shell ionization are presented to establish a comparison.
Spin-flavor composition of excited baryons
NASA Astrophysics Data System (ADS)
Fernando, Ishara; Goity, Jose
2015-10-01
The excited baryon masses are analyzed in the framework of the 1 /Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU (6) × O (3) , where the [ 56 ,lP =0+ ] ground state and excited baryons, and the [ 56 ,2+ ] and [ 70 ,1- ] excited states are analyzed. The analyses are carried out to O 1 /Nc and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. Predictions for physically unknown states for each multiplet are obtained. From the quark-mass dependence of the coefficients in the baryon mass formulas an increasingly simpler picture of the spin-flavor composition of the baryons is observed with increasing pion mass (equivalently, increasing mu , d masses), as measured by the number of significant mass operators. This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the NSF (USA) through Grant PHY-0855789 and PHY-1307413 (I. P. F and J. L. G).
Asymmetric magnon excitation by spontaneous toroidal ordering
Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi
2016-04-12
The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky–Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin–orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb latticemore » gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. Furthermore, the implications regarding candidate materials for asymmetric magnon excitations are presented.« less
Unravelling the Excitation Spectrum of the Nucleon
Sandorfi, Andrew M.
2013-03-01
The low-energy structure of QCD lies encoded in the excited states of the nucleon, a complicated overlap of many resonances. Recent Lattice calculations have confirmed the longstanding quark model predictions of many more excited states than have been identified. Reactions that probe the spectrum are clouded by effects that dress the interactions and complicate the identification of excited levels and the interpretation of their structure. Recent theoretical work has exposed dramatic effects from such dressings. On the experimental side, new complete measurements of pseudoscalar meson photo-production are being pursued at several laboratories, where here the designation of complete refers to measurements of most if not all of the 16 possible reaction observables. This has been the focus of a series of experiments at Jefferson Lab culminating in the recently completed g9/FROST and g14/HDice runs which are now under analysis. With realistic errors, the number of observables needed to constrain the production amplitude is many more than required of a mathematical solution.
Topological spin liquids in the ruby lattice with anisotropic Kitaev interactions
NASA Astrophysics Data System (ADS)
Jahromi, Saeed S.; Kargarian, Mehdi; Masoudi, S. Farhad; Langari, Abdollah
2016-09-01
The ruby lattice is a four-valent lattice interpolating between honeycomb and triangular lattices. In this work we investigate the topological spin-liquid phases of a spin Hamiltonian with Kitaev interactions on the ruby lattice using exact diagonalization and perturbative methods. The latter interactions combined with the structure of the lattice yield a model with Z2×Z2 gauge symmetry. We mapped out the phase diagram of the model and found gapped and gapless spin-liquid phases. While the low-energy sector of the gapped phase corresponds to the well-known topological color code model on a honeycomb lattice, the low-energy sector of the gapless phases is described by an effective spin model with three-body interactions on a triangular lattice. A gap is opened in the spectrum in small magnetic fields, where we showed that the ground state has a finite topological entanglement entropy. We argue that the gapped phases could be possibly described by exotic excitations, and their corresponding spectrum is richer than the Ising phase of the Kitaev model.
Transient lattice contraction in the solid-to-plasma transition
Ferguson, Ken R.; Bucher, Maximilian; Gorkhover, Tais; Boutet, Sébastien; Fukuzawa, Hironobu; Koglin, Jason E.; Kumagai, Yoshiaki; Lutman, Alberto; Marinelli, Agostino; Messerschmidt, Marc; Nagaya, Kiyonobu; Turner, Jim; Ueda, Kiyoshi; Williams, Garth J.; Bucksbaum, Philip H.; Bostedt, Christoph
2016-01-01
In condensed matter systems, strong optical excitations can induce phonon-driven processes that alter their mechanical properties. We report on a new phenomenon where a massive electronic excitation induces a collective change in the bond character that leads to transient lattice contraction. Single large van der Waals clusters were isochorically heated to a nanoplasma state with an intense 10-fs x-ray (pump) pulse. The structural evolution of the nanoplasma was probed with a second intense x-ray (probe) pulse, showing systematic contraction stemming from electron delocalization during the solid-to-plasma transition. These findings are relevant for any material in extreme conditions ranging from the time evolution of warm or hot dense matter to ultrafast imaging with intense x-ray pulses or, more generally, any situation that involves a condensed matter-to-plasma transition. PMID:27152323
Lattice continuum and diffusional creep
NASA Astrophysics Data System (ADS)
Mesarovic, Sinisa Dj.
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
Lattice continuum and diffusional creep
2016-01-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. PMID:27274696
Lattice QCD in Background Fields
William Detmold, Brian Tiburzi, Andre Walker-Loud
2009-06-01
Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present at finite volume.
Confinement and lattice gauge theory
Creutz, M
1980-06-01
The motivation for formulating gauge theories on a lattice to study non-perturbative phenomena is reviewed, and recent progress supporting the compatibility of asymptotic freedom and quark confinement in the standard SU(3) Yang-Mills theory of the strong interaction is discussed.
Hadronic Interactions from Lattice QCD
Konstantinos Orginos
2006-03-19
In this talk I discuss a few recent results on lattice calculations of scattering lengths in hadronic processes. In particular, I present the scattering length of the pion-pion scattering in the I=2 channel and the nucleon-nucleon {sup 1}S{sub 0} channel and {sup 3}S{sub 1}-{sup 3}D{sub 1} coupled channels.
Mofakham, Sima; Fink, Christian G; Booth, Victoria; Zochowski, Michal R
2016-10-01
While the interplay between neuronal excitability properties and global properties of network topology is known to affect network propensity for synchronization, it is not clear how detailed characteristics of these properties affect spatiotemporal pattern formation. Here we study mixed networks, composed of neurons having type I and/or type II phase response curves, with varying distributions of local and random connections and show that not only average network properties, but also the connectivity distribution statistics, significantly affect network synchrony. Namely, we study networks with fixed networkwide properties, but vary the number of random connections that nodes project. We show that varying node excitability (type I vs type II) influences network synchrony most dramatically for systems with long-tailed distributions of the number of random connections per node. This indicates that a cluster of even a few highly rewired cells with a high propensity for synchronization can alter the degree of synchrony in the network as a whole. We show this effect generally on a network of coupled Kuramoto oscillators and investigate the impact of this effect more thoroughly in pulse-coupled networks of biophysical neurons.
NASA Astrophysics Data System (ADS)
Mofakham, Sima; Fink, Christian G.; Booth, Victoria; Zochowski, Michal R.
2016-10-01
While the interplay between neuronal excitability properties and global properties of network topology is known to affect network propensity for synchronization, it is not clear how detailed characteristics of these properties affect spatiotemporal pattern formation. Here we study mixed networks, composed of neurons having type I and/or type II phase response curves, with varying distributions of local and random connections and show that not only average network properties, but also the connectivity distribution statistics, significantly affect network synchrony. Namely, we study networks with fixed networkwide properties, but vary the number of random connections that nodes project. We show that varying node excitability (type I vs type II) influences network synchrony most dramatically for systems with long-tailed distributions of the number of random connections per node. This indicates that a cluster of even a few highly rewired cells with a high propensity for synchronization can alter the degree of synchrony in the network as a whole. We show this effect generally on a network of coupled Kuramoto oscillators and investigate the impact of this effect more thoroughly in pulse-coupled networks of biophysical neurons.
Chiral four-dimensional heterotic covariant lattices
NASA Astrophysics Data System (ADS)
Beye, Florian
2014-11-01
In the covariant lattice formalism, chiral four-dimensional heterotic string vacua are obtained from certain even self-dual lattices which completely decompose into a left-mover and a right-mover lattice. The main purpose of this work is to classify all right-mover lattices that can appear in such a chiral model, and to study the corresponding left-mover lattices using the theory of lattice genera. In particular, the Smith-Minkowski-Siegel mass formula is employed to calculate a lower bound on the number of left-mover lattices. Also, the known relationship between asymmetric orbifolds and covariant lattices is considered in the context of our classification.
NASA Astrophysics Data System (ADS)
Cecile, D. J.
In Quantum Chromodynamics (QCD), the pions are the lightest bound states. Current lattice QCD calculations are not able to study pions at realistic masses due to algorithmic difficulties. Instead, lattice studies are limited to unphysically large pion masses, and Chiral Perturbation Theory (ChPT) is often relied upon to extrapolate lattice results to the phenomenological regime and to the chiral limit, where quarks are massless. One of the outstanding problems in the field is to determine the range of quark masses where ChPT is valid and to understand the nonperturbative physics that may cause ChPT to break down. Given the difficulty of studying QCD, it is interesting and useful to construct a lattice field theory model of pions, which would allow a direct lattice calculation without the need for chiral extrapolations. This model can be used to evaluate the reliability of chiral extrapolations as applied to lattice data in the context of a lattice field theory that is exactly solvable numerically even at small quark masses and in the chiral limit. In this light, to create a model of pions of two-flavor Quantum Chromodynamics (QCD), a lattice field theory involving two flavors of staggered quarks interacting strongly with Abelian gauge fields is constructed. In the chiral limit, this theory exhibits a SUL(2) x SU R(2) x UA(1) symmetry. The UA(1) symmetry can be broken by introducing a four-fermion term into the action, thereby incorporating the physics of the QCD anomaly. To qualify as a meaningful model of QCD, this lattice model must exhibit spontaneous chiral symmetry breaking and confinement and must have a continuum limit. An interesting mechanism is introduced to address the continuum limit. In particular, an extra dimension allows one to tune a fictitious temperature in order to access a phase of broken symmetry and to find a range where the pion decay constant is much smaller than the lattice cutoff, i.e. Fpi ≪1a . Unlike lattice QCD, a major advantage of
Green-Schwarz superstring on the lattice
NASA Astrophysics Data System (ADS)
Bianchi, L.; Bianchi, M. S.; Forini, V.; Leder, B.; Vescovi, E.
2016-07-01
We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry the model. We compare our results with the expected behavior at various values of g=√{λ }/4π . For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in [1].
Aspects of Pure Quantum Chromodynamics on Large Lattices.
NASA Astrophysics Data System (ADS)
Ford, Ian John
1987-09-01
Available from UMI in association with The British Library. Requires signed TDF. We use Monte Carlo methods to study pure quantum chromodynamics on a four-dimensional Euclidean spacetime lattice consisting of 32^4 points. The features we investigate are relevant to hadron spectroscopy. We take values of the bare coupling beta equal to 6.29, 6.585 and 6.88 in order to monitor the approach towards the continuum limit of the lattice system. To exploit the available Monte Carlo configurations as far as possible, we study correlation functions of extended operators whose overlap with the required lattice state is enhanced. Through the correlations of improved quarkonium operators and also through those of extended Polyakov lines we study the potential between static triplet and antitriplet colour charges (which represent a heavy quark and antiquark). The resulting string tensions do not vary with beta according to the expectations of asymptotic scaling, and consequently it is not possible to confirm that our lattices exhibit continuum behaviour. With similar methods we investigate the potential between two static octet colour charges, the potential between sextet and antisextet colour charges and also the energies of static quark and antiquark systems which have E_{u} and A_{1u} excitations of the gluon field. We also calculate the masses of glueballs with J^{PC} of 0 ^{++} and 2^{++ } using these extended operator techniques. The 32^4 lattice configurations are supplemented by additional configurations of a 10 ^4 lattice at beta = 6.0 and a 20^4 lattice at beta = 6.2 for a study of the spin-dependent corrections to the non-relativistic potential between a heavy quark and antiquark. One of the two spin-orbit potentials, V_1, is found to have long range behaviour, whilst the other, V_2, and the tensor and scalar spin-spin potentials (V _3 and V_4 respectively) are short range. The pattern of this behaviour is consistent with scalar confinement and a vector Coulomb
Evidence for lattice-polarization-enhanced field effects at the SrTiO3-based heterointerface
Li, Y.; Zhang, H. R.; Lei, Y.; Chen, Y. Z.; Pryds, N.; Shen, Baogen; Sun, Jirong
2016-01-01
Electrostatic gating provides a powerful approach to tune the conductivity of the two-dimensional electron liquid between two insulating oxides. For the LaAlO3/SrTiO3 (LAO/STO) interface, such gating effect could be further enhanced by a strong lattice polarization of STO caused by simultaneous application of gate field and illumination light. Herein, by monitoring the discharging process upon removing the gate field, we give firm evidence for the occurrence of this lattice polarization at the amorphous-LaAlO3/SrTiO3 interface. Moreover, we find that the lattice polarization is accompanied with a large expansion of the out-of-plane lattice of STO. Photo excitation affects the polarization process by accelerating the field-induced lattice expansion. The present work demonstrates the great potential of combined stimuli in exploring emergent phenomenon at complex oxide interfaces. PMID:26926433
NASA Astrophysics Data System (ADS)
Wall, S.; Prabhakaran, D.; Boothroyd, A. T.; Cavalleri, A.
2009-08-01
Coherent lattice vibrations are excited and probed with pulses of 10 fs duration in LaMnO3. The measured frequencies correspond to those of Jahn-Teller stretching and of out-of phase rotations of the oxygen octahedra. Surprisingly, the amplitude and damping rate of both modes exhibit a sharp discontinuity at the Néel temperature, highlighting nontrivial coupling between light, lattice, and magnetic structure. We explain this effect by applying the Goodenough-Kanamori rules to the excited state of LaMnO3, and note that charge transfer can invert the sign of the semicovalent exchange interaction, which in turn perturbs the equilibrium bond lengths.
Wall, S; Prabhakaran, D; Boothroyd, A T; Cavalleri, A
2009-08-28
Coherent lattice vibrations are excited and probed with pulses of 10 fs duration in LaMnO(3). The measured frequencies correspond to those of Jahn-Teller stretching and of out-of phase rotations of the oxygen octahedra. Surprisingly, the amplitude and damping rate of both modes exhibit a sharp discontinuity at the Néel temperature, highlighting nontrivial coupling between light, lattice, and magnetic structure. We explain this effect by applying the Goodenough-Kanamori rules to the excited state of LaMnO(3), and note that charge transfer can invert the sign of the semicovalent exchange interaction, which in turn perturbs the equilibrium bond lengths.
Lattice dynamics and lattice thermal conductivity of thorium dicarbide
NASA Astrophysics Data System (ADS)
Liao, Zongmeng; Huai, Ping; Qiu, Wujie; Ke, Xuezhi; Zhang, Wenqing; Zhu, Zhiyuan
2014-11-01
The elastic and thermodynamic properties of ThC2 with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C2 dimer in ThC2 is similar to that of a free standing C2 dimer. This indicates that the C2 dimer in ThC2 is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC2 was calculated by means of the Debye-Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC2 contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.
Excitation Methods for Bridge Structures
Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.
1999-02-08
This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.
The CKM Matrix from Lattice QCD
Mackenzie, Paul B.; /Fermilab
2009-07-01
Lattice QCD plays an essential role in testing and determining the parameters of the CKM theory of flavor mixing and CP violation. Very high precisions are required for lattice calculations analyzing CKM data; I discuss the prospects for achieving them. Lattice calculations will also play a role in investigating flavor mixing and CP violation beyond the Standard Model.
Long-Range Lattice-Gas Algorithm
2007-11-02
lattice-gases, and therefore inherits exact computabil- ity on a discrete spacetime lattice. Our contribution is the use of nonlocal interactions that...gases, and therefore inherits exact computability on a discrete spacetime lattice. Our contribution is the use of nonlocal interactions that allow us to
Lattice Boltzmann solver of Rossler equation
NASA Astrophysics Data System (ADS)
Yan, Guangwu; Ruan, Li
2000-06-01
We proposed a lattice Boltzmann model for the Rossler equation. Using a method of multiscales in the lattice Boltzmann model, we get the diffusion reaction as a special case. If the diffusion effect disappeared, we can obtain the lattice Boltzmann solution of the Rossler equation on the mesescopic scale. The numerical results show the method can be used to simulate Rossler equation.
Comprehensive Studies of Ultrafast Laser Excited Warm Dense Gold
NASA Astrophysics Data System (ADS)
Chen, Zhijiang; Mo, Mianzhen; Russell, Brandon; Tsui, Ying; Wang, Xijie; Ng, Andrew; Glenzer, Siegfried
2016-10-01
Isochoric excitation of solids by ultrafast laser pulses is an important approach to generate warm dense matter in laboratory. Electrical conductivity, structural dynamics and lattice stabilities are the most important properties in ultrafast laser excited warm dense matter. To investigate these properties, we have developed multiple advanced capabilities at SLAC recently, including the measurement of semi-DC electrical conductivity with ultrafast THz radiation, the study of solid and liquid structural dynamics by ultrafast electron diffraction (UED), and the investigation of lattice stability using frequency domain interferometry (FDI) on both front and rear surfaces. Due to the non-reversible nature in exciting solid to warm dense matter, all these diagnostics are implemented with single-shot approaches, reducing the uncertainties due to shot-to-shot fluctuations. In this talk, we will introduce these novel capabilities and present some highlighted studies in warm dense gold, which was uniformly excited by ultrafast laser pulses at 400nm. We appreciate the supports from DOE FES under FWP #100182.
Direct characterization of photoinduced lattice dynamics in BaFe2As2.
Gerber, S; Kim, K W; Zhang, Y; Zhu, D; Plonka, N; Yi, M; Dakovski, G L; Leuenberger, D; Kirchmann, P S; Moore, R G; Chollet, M; Glownia, J M; Feng, Y; Lee, J-S; Mehta, A; Kemper, A F; Wolf, T; Chuang, Y-D; Hussain, Z; Kao, C-C; Moritz, B; Shen, Z-X; Devereaux, T P; Lee, W-S
2015-06-08
Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.
Lattice gaugefixing and other optics in lattice gauge theory
Yee, Ken.
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
NASA Astrophysics Data System (ADS)
Jallouli, A.; Kacem, N.; Bouhaddi, N.
2017-01-01
The influence of an external harmonic excitation on the intrinsic localized modes of a chain of nonlinear pendulums is numerically investigated. We show, in particular, how the existence and stability domains of solitons are modified when the coupled pendulums are simultaneously subjected to external and parametric excitations. This stabilization mechanism opens the way towards the control of the energy localization phenomena in damped nonlinear periodic lattices for efficient energy transport applications.
Spin waves and magnetic excitations
Borovik-Romanov, A.S.; Sinha, S.K.
1988-01-01
This book describes both simple spin waves (magnons) and complicated excitations in magnetic systems. The following subjects are covered: - various methods of magnetic excitation investigations such as neutron scattering on magnetic excitations, spin-wave excitation by radio-frequency, power light scattering on magnons and magnetic excitation observation within the light-absorption spectrum; - oscillations of magnetic electron systems coupled with phonons, nuclear spin systems and localized impurity modes: - low-dimensional magnetics, amorphous magnetics and spin glasses.
Spin–orbit-coupled fermions in an optical lattice clock
NASA Astrophysics Data System (ADS)
Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.
2016-12-01
Engineered spin–orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin–orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin–orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin–orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin–momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.
Probing many-body interactions in an optical lattice clock
Rey, A.M.; Gorshkov, A.V.; Kraus, C.V.; Martin, M.J.; Bishof, M.; Swallows, M.D.; Zhang, X.; Benko, C.; Ye, J.; Lemke, N.D.; Ludlow, A.D.
2014-01-15
We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA {sup 87}Sr and NIST {sup 171}Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems. -- Highlights: •Derived a theoretical framework that describes many-body effects in a lattice clock. •Validated the analysis with recent experimental measurements. •Demonstrated the importance of beyond mean field corrections in the dynamics.
Phase diagram of interacting spinless fermions on the honeycomb lattice.
Capponi, Sylvain
2017-02-01
Fermions hopping on a hexagonal lattice represent one of the most active research fields in condensed matter since the discovery of graphene in 2004 and its numerous applications. Another exciting aspect of the interplay between geometry and quantum mechanical effects is given by the Haldane model (Haldane 1988 Phys. Rev. Lett. 61 2015), where spinless fermions experiencing a certain flux pattern on the honeycomb lattice leads to the stabilization of a topological phase of matter, distinct from a Mott insulator and nowadays dubbed Chern insulator. In this context, it is crucial to understand the role of interactions and this review will describe recent results that have been obtained for a minimal model, namely spinless fermions with nearest and next-nearest neighbour density-density interactions on the honeycomb lattice at half-filling. Topics addressed include an introduction of the minimal model and a discussion of the possible instabilities of the Dirac semimetal, a presentation of various theoretical and numerical approaches, and a summary of the results with a particular emphasis on the stability or not of some exotic quantum phases such as charge ordered ones (similar to Wigner crystals) and spontaneous Chern insulator phases.
Phase diagram of interacting spinless fermions on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Capponi, Sylvain
2017-02-01
Fermions hopping on a hexagonal lattice represent one of the most active research fields in condensed matter since the discovery of graphene in 2004 and its numerous applications. Another exciting aspect of the interplay between geometry and quantum mechanical effects is given by the Haldane model (Haldane 1988 Phys. Rev. Lett. 61 2015), where spinless fermions experiencing a certain flux pattern on the honeycomb lattice leads to the stabilization of a topological phase of matter, distinct from a Mott insulator and nowadays dubbed Chern insulator. In this context, it is crucial to understand the role of interactions and this review will describe recent results that have been obtained for a minimal model, namely spinless fermions with nearest and next-nearest neighbour density-density interactions on the honeycomb lattice at half-filling. Topics addressed include an introduction of the minimal model and a discussion of the possible instabilities of the Dirac semimetal, a presentation of various theoretical and numerical approaches, and a summary of the results with a particular emphasis on the stability or not of some exotic quantum phases such as charge ordered ones (similar to Wigner crystals) and spontaneous Chern insulator phases.
Vector and scalar charmonium resonances with lattice QCD
Lang, C. B.; Leskovec, Luka; Mohler, Daniel; Prelovsek, Sasa
2015-09-15
We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ψ(3770). For m_{π} = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state _{Χc0}(1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scattering in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at _{Χc0}(1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia.
Vector and scalar charmonium resonances with lattice QCD
Lang, C. B.; Leskovec, Luka; Mohler, Daniel; ...
2015-09-15
We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ψ(3770). For mπ = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state Χc0(1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scattering inmore » s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at Χc0(1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia.« less
Proteins of Excitable Membranes
Nachmansohn, David
1969-01-01
Excitable membranes have the special ability of changing rapidly and reversibly their permeability to ions, thereby controlling the ion movements that carry the electric currents propagating nerve impulses. Acetylcholine (ACh) is the specific signal which is released by excitation and is recognized by a specific protein, the ACh-receptor; it induces a conformational change, triggering off a sequence of reactions resulting in increased permeability. The hydrolysis of ACh by ACh-esterase restores the barrier to ions. The enzymes hydrolyzing and forming ACh and the receptor protein are present in the various types of excitable membranes. Properties of the two proteins directly associated with electrical activity, receptor and esterase, will be described in this and subsequent lectures. ACh-esterase has been shown to be located within the excitable membranes. Potent enzyme inhibitors block electrical activity demonstrating the essential role in this function. The enzyme has been recently crystallized and some protein properties will be described. The monocellular electroplax preparation offers a uniquely favorable material for analyzing the properties of the ACh-receptor and its relation to function. The essential role of the receptor in electrical activity has been demonstrated with specific receptor inhibitors. Recent data show the basically similar role of ACh in the axonal and junctional membranes; the differences of electrical events and pharmacological actions are due to variations of shape, structural organization, and environment. PMID:19873642
NASA Technical Reports Server (NTRS)
Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.
1990-01-01
The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.
LATTICE QCD AT FINITE DENSITY.
SCHMIDT, C.
2006-07-23
I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.
Lattice Simulations and Infrared Conformality
Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; ...
2011-09-01
We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore » does work well for another theory expected to be infrared conformal.« less
The Fermilab lattice supercomputer project
NASA Astrophysics Data System (ADS)
Fischler, Mark; Atac, R.; Cook, A.; Deppe, J.; Gaines, I.; Husby, D.; Nash, T.; Pham, T.; Zmuda, T.; Hockney, George; Eichten, E.; Mackenzie, P.; Thacker, H. B.; Toussaint, D.
1989-06-01
The ACPMAPS system is a highly cost effective, local memory MIMD computer targeted at algorithm development and production running for gauge theory on the lattice. The machine consists of a compound hypercube of crates, each of which is a full crossbar switch containing several processors. The processing nodes are single board array processors based on the Weitek XL chip set, each with a peak power of 20 MFLOPS and supported by 8MBytes of data memory. The system currently being assembled has a peak power of 5 GFLOPS, delivering performance at approximately $250/MFLOP. The system is programmable in C and Fortran. An underpinning of software routines (CANOPY) provides an easy and natural way of coding lattice problems, such that the details of parallelism, and communication and system architecture are transparent to the user. CANOPY can easily be ported to any single CPU or MIMD system which supports C, and allows the coding of typical applications with very little effort.
Dru Renner
2012-04-01
Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen precent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nucleon mass, accurate to a few percent. As computational power increases and algorithms advance, the precise calculation of a variety of more demanding hadronic properties will become realistic. With this in mind, I discuss the current lattice QCD calculations of generalized parton distributions with an emphasis on the prospects for well-controlled calculations for these observables as well. I will do this by way of several examples: the pion and nucleon form factors and moments of the nucleon parton and generalized-parton distributions.
Tracking the SSC test lattices
Leemann, B.T.; Douglas, D.R.; Forest, E.
1990-01-01
The dynamic aperture and its determination emerged from the SSC reference design study as the single most important accelerator physics issue pertinent to the SSC. Beside the fundamental need of a finite dynamic aperture for any accelerator, it was considered to be a useful criterion for the magnet selection. An aperture workshop organized in November 1984 at LBL served the purpose to identify the various aspects of the aperture question and to organize the aperture task force accordingly. It was recognized that numerical models had to play an important role and the qualifications of several tracking codes were investigated. None of the existing codes could meet all of the criteria for an ideal tracking code and substantial program development became unavoidable. It was therefore decided to begin tracking SSC test lattices, which were provided by the aperture task force's lattice group and are described in an other paper to this conference, with existing tracking programs. 6 refs., 5 figs., 2 tabs.
Innovations in Lattice QCD Algorithms
Konstantinos Orginos
2006-06-25
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.
Optical techniques for Rydberg physics in lattice geometries. A technical guide
NASA Astrophysics Data System (ADS)
Naber, Julian B.; Vos, Jannie; Rengelink, Robert J.; Nusselder, Rosanne J.; Davtyan, David
2016-12-01
We address the technical challenges when performing quantum information experiments with ultracold Rydberg atoms in lattice geometries. We discuss the following key aspects: (i) the coherent manipulation of atomic ground states, (ii) the coherent excitation of Rydberg states, and (iii) spatial addressing of individual lattice sites. We briefly review methods and solutions which have been successfully implemented, and give examples based on our experimental apparatus. This includes an optical phase-locked loop, an intensity and frequency stabilization setup for lasers, and a nematic liquid-crystal spatial light modulator.
Open waveguides in a thin Dirichlet lattice: II. localized waves and radiation conditions
NASA Astrophysics Data System (ADS)
Nazarov, S. A.
2017-02-01
Wave processes localized near an angular open waveguide obtained by thickening two perpendicular semi-infinite rows of ligaments in a thin square lattice of quantum waveguides (Dirichlet problem for the Helmholtz equation) are investigated. Waves of two types are discovered: the first are observed near the lattice nodes and almost do not affect the ligaments, while the second, on the contrary, excite oscillations in the ligaments, whereas the nodes stay relatively at rest. Asymptotic representations of the wave fields are derived, and radiation conditions are imposed on the basis of the Umov-Mandelstam energy principle.
Atomic Landau-Zener tunneling in Fourier-synthesized optical lattices.
Salger, Tobias; Geckeler, Carsten; Kling, Sebastian; Weitz, Martin
2007-11-09
We report on an experimental study of quantum transport of atoms in variable periodic optical potentials. The band structure of both ratchet-type asymmetric and symmetric lattice potentials is explored. The variable atom potential is realized by superimposing a conventional standing wave potential of lambda/2 spatial periodicity with a fourth-order multiphoton potential of lambda/4 periodicity. We find that the Landau-Zener tunneling rate between the first and the second excited Bloch band depends critically on the relative phase between the two spatial lattice harmonics.
Atomic Landau-Zener Tunneling in Fourier-Synthesized Optical Lattices
Salger, Tobias; Geckeler, Carsten; Kling, Sebastian; Weitz, Martin
2007-11-09
We report on an experimental study of quantum transport of atoms in variable periodic optical potentials. The band structure of both ratchet-type asymmetric and symmetric lattice potentials is explored. The variable atom potential is realized by superimposing a conventional standing wave potential of {lambda}/2 spatial periodicity with a fourth-order multiphoton potential of {lambda}/4 periodicity. We find that the Landau-Zener tunneling rate between the first and the second excited Bloch band depends critically on the relative phase between the two spatial lattice harmonics.
Evidence from Lattice Data for a New Particle on the Worldsheet of the QCD Flux Tube
NASA Astrophysics Data System (ADS)
Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor
2013-08-01
We propose a new approach for the calculation of the spectrum of excitations of QCD flux tubes. It relies on the fact that the worldsheet theory is integrable at low energies. With this approach, energy levels can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative comparison with existing lattice data. The improved theoretical control makes it manifest that existing lattice data provides strong evidence for a new pseudoscalar particle localized on the QCD flux tube—the worldsheet axion.
Evidence from lattice data for a new particle on the worldsheet of the QCD flux tube.
Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor
2013-08-09
We propose a new approach for the calculation of the spectrum of excitations of QCD flux tubes. It relies on the fact that the worldsheet theory is integrable at low energies. With this approach, energy levels can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative comparison with existing lattice data. The improved theoretical control makes it manifest that existing lattice data provides strong evidence for a new pseudoscalar particle localized on the QCD flux tube--the worldsheet axion.
Hadron physics from lattice QCD
NASA Astrophysics Data System (ADS)
Bietenholz, Wolfgang
2016-07-01
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last, we address two outstanding issues: topological freezing and the sign problem.
Apiary B Factory Lattice Design
Donald, M.H.R.; Garren, A.A.
1991-05-03
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper presents the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent.
Apiary B Factory lattice design
Donald, M.H.R. ); Garren, A.A. )
1991-04-01
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab.
Cluster Mott insulators and two Curie-Weiss regimes on an anisotropic kagome lattice
NASA Astrophysics Data System (ADS)
Chen, Gang; Kee, Hae-Young; Kim, Yong Baek
2016-06-01
Motivated by recent experiments on the quantum-spin-liquid candidate material LiZn2Mo3O8 , we study a single-band extended Hubbard model on an anisotropic kagome lattice with the 1/6 electron filling. Due to the partial filling of the lattice, the intersite repulsive interaction is necessary to generate Mott insulators, where electrons are localized in clusters rather than at lattice sites. It is shown that these cluster Mott insulators are generally U(1) quantum spin liquids with spinon Fermi surfaces. The nature of charge excitations in cluster Mott insulators can be quite different from conventional Mott insulator and we show that there exists a cluster Mott insulator where charge fluctuations around the hexagonal cluster induce a plaquette charge order (PCO). The spinon excitation spectrum in this spin-liquid cluster Mott insulator is reconstructed due to the PCO so that only 1/3 of the total spinon excitations are magnetically active. Based on these results, we propose that the two Curie-Weiss regimes of the spin susceptibility in LiZn2Mo3O8 may be explained by finite-temperature properties of the cluster Mott insulator with the PCO as well as fractionalized spinon excitations. Existing and possible future experiments on LiZn2Mo3O8 , and other Mo-based cluster magnets are discussed in light of these theoretical predictions.
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.
Ectopic A-lattice seams destabilize microtubules.
Katsuki, Miho; Drummond, Douglas R; Cross, Robert A
2014-01-01
Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe.
Lattice Truss Structural Response Using Energy Methods
NASA Technical Reports Server (NTRS)
Kenner, Winfred Scottson
1996-01-01
A deterministic methodology is presented for developing closed-form deflection equations for two-dimensional and three-dimensional lattice structures. Four types of lattice structures are studied: beams, plates, shells and soft lattices. Castigliano's second theorem, which entails the total strain energy of a structure, is utilized to generate highly accurate results. Derived deflection equations provide new insight into the bending and shear behavior of the four types of lattices, in contrast to classic solutions of similar structures. Lattice derivations utilizing kinetic energy are also presented, and used to examine the free vibration response of simple lattice structures. Derivations utilizing finite element theory for unique lattice behavior are also presented and validated using the finite element analysis code EAL.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Koroleva, I.; Manevitch, L. I.; Bergman, L. A.; Vakakis, A. F.
2016-09-01
We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "N L pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the
Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F
2016-09-01
We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the
Emergent structure in a dipolar Bose gas in a one-dimensional lattice
Wilson, Ryan M.; Bohn, John L.
2011-02-15
We consider an ultracold dipolar Bose gas in a one-dimensional lattice. For a sufficiently large lattice recoil energy, such a system becomes a series of nonoverlapping Bose-Einstein condensates that interact via the long-range dipole-dipole interaction (ddi). We model this system via a coupled set of nonlocal Gross-Pitaevskii equations (GPEs) for lattices of both infinite and finite extent. We find significantly modified stability properties in the lattice due to the softening of a discrete roton-like mode, as well as ''islands'' in parameter space where biconcave densities are predicted to exist and that only exist in the presence of the other condensates on the lattice. We solve for the elementary excitations of the system to check the dynamical stability of these solutions and to uncover the nature of their collapse. By solving a coupled set of GPEs exactly on a full numeric grid, we show that this emergent biconcave structure can be realized in a finite lattice with atomic {sup 52}Cr.
Magnetostrictive resonance excitation
Schwarz, Ricardo B.; Kuokkala, Veli-Tapani
1992-01-01
The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.
Experiments on excitation waves
NASA Astrophysics Data System (ADS)
Müller, S. C.
Recent trends in the experimentation on chemical and biochemical excitation waves are presented. In the Belousov-Zhabotinsky reaction, which is the most suitable chemical laboratory system for the study of wave propagation in excitable medium, the efficient control of wave dynamics by electrical fields and by light illumination is illustrated. In particular, the effects of a feedback control are shown. Further new experiments in this system are concerned with three-dimensional topologies and boundary effects. Important biological applications are found in the aggregation of slime mould amoebae, in proton waves during oscillatory glycolysis, and in waves of spreading depression in neuronal tissue as studied by experiments in chicken retina. Numerical simulations with appropriate reaction-diffusion models complement a large number of these experimental findings.
NASA Astrophysics Data System (ADS)
Copelli, M.; Campos, P. R. A.
2007-04-01
When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic range is maximum when the coupling among the elements is critical, corroborating a general reasoning recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse than that of random networks, for special SF networks which lack loops the enhancement of the dynamic range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer function we propose a simple model in which the density of loops in the network can be gradually increased, and show that this is accompanied by a gradual decrease of dynamic range.
Harmonically excited orbital variations
Morgan, T.
1985-08-06
Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.
Electromagnetic excitation of the Delta(1232) resonance
V. Pascalutsa; M. Vanderhaeghen; Shin Nan Yang
2006-09-05
We review the description of the lowest-energy nucleon excitation--the Delta(1232)-resonance. Much of the recent effort has been focused on the precision measurements of the nucleon to Delta transition by means of electromagnetic probes. We review the results of those measurements and confront them with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, and QCD-inspired models. Some of the theoretical approaches are reviewed in detail. In particular, we describe the chiral EFT of QCD in the energy domain of the Delta-resonance, and its applications to the electromagnetic nucleon-to-Delta transition (gamma N Delta). We also describe the recent dynamical and unitary-isobar models of pion electroproduction which are extensively used in the extraction of the gamma* N Delta form factors from experiment. Furthermore, we discuss the link of the gamma* N Delta form factors to generalized parton distributions (GPDs), as well as the predictions of perturbative QCD for these transition form factors. The present status of understanding the Delta-resonance properties and the nature of its excitation is summarized.
Unbiased sampling of lattice Hamilton path ensembles
NASA Astrophysics Data System (ADS)
Mansfield, Marc L.
2006-10-01
Hamilton paths, or Hamiltonian paths, are walks on a lattice which visit each site exactly once. They have been proposed as models of globular proteins and of compact polymers. A previously published algorithm [Mansfield, Macromolecules 27, 5924 (1994)] for sampling Hamilton paths on simple square and simple cubic lattices is tested for bias and for efficiency. Because the algorithm is a Metropolis Monte Carlo technique obviously satisfying detailed balance, we need only demonstrate ergodicity to ensure unbiased sampling. Two different tests for ergodicity (exact enumeration on small lattices, nonexhaustive enumeration on larger lattices) demonstrate ergodicity unequivocally for small lattices and provide strong support for ergodicity on larger lattices. Two other sampling algorithms [Ramakrishnan et al., J. Chem. Phys. 103, 7592 (1995); Lua et al., Polymer 45, 717 (2004)] are both known to produce biases on both 2×2×2 and 3×3×3 lattices, but it is shown here that the current algorithm gives unbiased sampling on these same lattices. Successive Hamilton paths are strongly correlated, so that many iterations are required between statistically independent samples. Rules for estimating the number of iterations needed to dissipate these correlations are given. However, the iteration time is so fast that the efficiency is still very good except on extremely large lattices. For example, even on lattices of total size 10×10×10 we are able to generate tens of thousands of uncorrelated Hamilton paths per hour of CPU time.
Topological magnon bands in ferromagnetic star lattice.
Owerre, S A
2017-05-10
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.
Pulse excitation of bolometer bridges
NASA Technical Reports Server (NTRS)
Rusk, S. J.
1972-01-01
Driving bolometer bridge by appropriately phased excitation pulses increases signal-to-noise ratio of bolometer sensor which operates on a chopped light beam. Method allows higher applied voltage than is possible by conventional ac or dc excitation.
Apparatus for photon excited catalysis
NASA Technical Reports Server (NTRS)
Saffren, M. M. (Inventor)
1977-01-01
An apparatus is described for increasing the yield of photonically excited gas phase reactions by extracting excess energy from unstable, excited species by contacting the species with the surface of a finely divided solid.
Fractional random walk lattice dynamics
NASA Astrophysics Data System (ADS)
Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2017-02-01
We analyze time-discrete and time-continuous ‘fractional’ random walks on undirected regular networks with special focus on cubic periodic lattices in n = 1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices {{L}\\fracα{2}}} where α =2 recovers the normal walk. First we demonstrate that the interval 0<α ≤slant 2 is admissible for the fractional random walk. We derive analytical expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix {{Z}(α )} , and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix {{Z}(α )} relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic n-dimensional lattices a power law decay of an n-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the n-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times t by slowly relaxing long-wave modes leading to a characteristic {{t}-\\frac{n{α}} -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen.
Casimir effect for Dirac lattices
NASA Astrophysics Data System (ADS)
Bordag, M.; Pirozhenko, I. G.
2017-03-01
We consider polarizable sheets, which recently received some attention, especially in the context of the dispersion interaction of thin sheets like graphene. These sheets are modeled by a collection of delta function potentials and resemble zero-range potentials, which are known in quantum mechanics. We develop a theoretical description and apply the so-called TGTG formula to calculate the interaction of two such lattices. Thereby, we make use of the formulation of the scattering of waves off such sheets provided earlier. We consider all limiting cases, providing a link to earlier results. Also, we discuss the relation to the pairwise summation method.
Percolation in finite matching lattices
NASA Astrophysics Data System (ADS)
Mertens, Stephan; Ziff, Robert M.
2016-12-01
We derive an exact, simple relation between the average number of clusters and the wrapping probabilities for two-dimensional percolation. The relation holds for periodic lattices of any size. It generalizes a classical result of Sykes and Essam, and it can be used to find exact or very accurate approximations of the critical density. The criterion that follows is related to the criterion used by Scullard and Jacobsen to find precise approximate thresholds, and our work provides a different perspective on their approach.
Fractal lattice of gelatin nanoglobules
NASA Astrophysics Data System (ADS)
Novikov, D. V.; Krasovskii, A. N.
2012-11-01
The globular structure of polymer coatings on a glass, which were obtained from micellar solutions of gelatin in the isooctane-water-sodium (bis-2-ethylhexyl) sulfosuccinate system, has been studied using electron microscopy. It has been shown that an increase in the average globule size is accompanied by the formation of a fractal lattice of nanoglobules and a periodic physical network of macromolecules in the coating. The stability of such system of the "liquid-in-a-solid" type is limited by the destruction of globules and the formation of a homogeneous network structure of the coating.
Lattice models of biological growth
Young, D.A.; Corey, E.M. )
1990-06-15
We show that very simple iterative rules for the growth of cells on a two-dimensional lattice can simulate biological-growth phenomena realistically. We discuss random cellular automata models for the growth of fern gametophytes, branching fungi, and leaves, and for shape transformations useful in the study of biological variation and evolution. Although there are interesting analogies between biological and physical growth processes, we stress the uniqueness of biological automata behavior. The computer growth algorithms that successfully mimic observed growth behavior may be helpful in determining the underlying biochemical mechanisms of growth regulation.
Get excited: reappraising pre-performance anxiety as excitement.
Brooks, Alison Wood
2014-06-01
Individuals often feel anxious in anticipation of tasks such as speaking in public or meeting with a boss. I find that an overwhelming majority of people believe trying to calm down is the best way to cope with pre-performance anxiety. However, across several studies involving karaoke singing, public speaking, and math performance, I investigate an alternative strategy: reappraising anxiety as excitement. Compared with those who attempt to calm down, individuals who reappraise their anxious arousal as excitement feel more excited and perform better. Individuals can reappraise anxiety as excitement using minimal strategies such as self-talk (e.g., saying "I am excited" out loud) or simple messages (e.g., "get excited"), which lead them to feel more excited, adopt an opportunity mind-set (as opposed to a threat mind-set), and improve their subsequent performance. These findings suggest the importance of arousal congruency during the emotional reappraisal process.
Localization of Waves in Merged Lattices
Alagappan, G.; Png, C. E.
2016-01-01
This article describes a new two–dimensional physical topology–merged lattice, that allows dense number of wave localization states. Merged lattices are obtained as a result of merging two lattices of scatters of the same space group, but with slightly different spatial resonances. Such merging creates two–dimensional scattering “beats” which are perfectly periodic on the longer spatial scale. On the shorter spatial scale, the systematic breakage of the translational symmetry leads to strong wave scattering, and this causes the occurrences of wave localization states. Merged Lattices promises variety of localization states including tightly confined, and ring type annular modes. The longer scale perfect periodicity of the merged lattice, enables complete prediction and full control over the density of the localization states and its’ quality factors. In addition, the longer scale periodicity, also allows design of integrated slow wave components. Merged lattices, thus, can be engineered easily to create technologically beneficial applications. PMID:27535096
Localization of Waves in Merged Lattices
NASA Astrophysics Data System (ADS)
Alagappan, G.; Png, C. E.
2016-08-01
This article describes a new two–dimensional physical topology–merged lattice, that allows dense number of wave localization states. Merged lattices are obtained as a result of merging two lattices of scatters of the same space group, but with slightly different spatial resonances. Such merging creates two–dimensional scattering “beats” which are perfectly periodic on the longer spatial scale. On the shorter spatial scale, the systematic breakage of the translational symmetry leads to strong wave scattering, and this causes the occurrences of wave localization states. Merged Lattices promises variety of localization states including tightly confined, and ring type annular modes. The longer scale perfect periodicity of the merged lattice, enables complete prediction and full control over the density of the localization states and its’ quality factors. In addition, the longer scale periodicity, also allows design of integrated slow wave components. Merged lattices, thus, can be engineered easily to create technologically beneficial applications.
Working Group Report: Lattice Field Theory
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate.
Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H C; Steffens, P; Boehm, M; Hao, Yiqing; Quintero-Castro, D L; Harriger, L W; Frontzek, M D; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun
2016-12-05
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinons'). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.
Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate
NASA Astrophysics Data System (ADS)
Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H. C.; Steffens, P.; Boehm, M.; Hao, Yiqing; Quintero-Castro, D. L.; Harriger, L. W.; Frontzek, M. D.; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun
2016-12-01
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.
Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate
Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H. C.; Steffens, P.; Boehm, M.; Hao, Yiqing; Quintero-Castro, D. L.; Harriger, L. W.; Frontzek, M. D.; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun
2016-12-05
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO_{4} that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO_{4}, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.
Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate
Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...
2016-12-05
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering amore » wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less
Thermodynamic properties of magnetic strings on a square lattice
NASA Astrophysics Data System (ADS)
Mol, Lucas; Oliveira, Denis Da Mata; Bachmann, Michael
2015-03-01
In the last years, spin ice systems have increasingly attracted attention by the scientific community, mainly due to the appearance of collective excitations that behave as magnetic monopole like particles. In these systems, geometrical frustration induces the appearance of degenerated ground states characterized by a local energy minimization rule, the ice rule. Violations of this rule were shown to behave like magnetic monopoles connected by a string of dipoles that carries the magnetic flux from one monopole to the other. In order to obtain a deeper knowledge about the behavior of these excitations we study the thermodynamics of a kind of magnetic polymer formed by a chain of magnetic dipoles in a square lattice. This system is expected to capture the main properties of monopole-string excitations in the artificial square spin ice. It has been found recently that in this geometry the monopoles are confined, but the effective string tension is reduced by entropic effects. To obtain the thermodynamic properties of the strings we have exactly enumerated all possible string configurations of a given length and used standard statistical mechanics analysis to calculate thermodynamic quantities. We show that the low-temperature behavior is governed by strings that satisfy ice rules. Financial support from FAPEMIG and CNPq (Brazilian agencies) are gratefully acknowledged.
Magnetism of one-dimensional Wigner lattices and its impact on charge order
Daghofer, Maria; Noack, R. M.; Horsch, P.
2008-01-01
The magnetic phase diagram of the quarter-filled generalized Wigner lattice with nearest-neighbor and next-nearest-neighbor hoppings, t1 and t2, is explored. We find a region at negative t2 with fully saturated ferromagnetic ground states that we attribute to kinetic exchange. Such interaction disfavors antiferromag- netism at t2 0 and stems from virtual excitations across the charge gap of the Wigner lattice, which is much smaller than the Mott-Hubbard gap U. Remarkably, we find a strong dependence of the charge structure factor on magnetism even in the limit U , in contrast to the expectation that charge ordering in the Wigner lattice regime should be well described by spinless fermions. Our results, obtained using the density-matrix renormalization group and exact diagonalization, can be transparently explained by means of an effective low-energy Hamiltonian.
Matter waves of Bose-Fermi mixtures in one-dimensional optical lattices
Bludov, Yu. V.; Santhanam, J.; Kenkre, V. M.; Konotop, V. V.
2006-10-15
We describe solitary wave excitations in a Bose-Fermi mixture loaded in a one-dimensional and strongly elongated lattice. We focus on the mean-field theory under the condition that the fermion number significantly exceeds the boson number, and limit our consideration to lattice amplitudes corresponding to the order of a few recoil energies or less. In such a case, the fermionic atoms display 'metallic' behavior and are well-described by the effective mass approximation. After classifying the relevant cases, we concentrate on gap solitons and coupled gap solitons in the two limiting cases of large and small fermion density, respectively. In the former, the fermionic atoms are distributed almost homogeneously and thus can move freely along the lattice. In the latter, the fermionic density becomes negligible in the potential maxima, and this leads to negligible fermionic current in the linear regime.
NASA Astrophysics Data System (ADS)
Topcu, T.; Derevianko, A.
2016-07-01
We predict the possibility of ‘triply magic’ optical lattice trapping of neutral divalent atoms. In such a lattice, the {}1{{{S}}}0 and {}3{{{P}}}0 clock states and an additional Rydberg state experience identical optical potentials, fully mitigating detrimental effects of the motional decoherence. In particular, we show that this triply magic trapping condition can be satisfied for Yb atom at optical wavelengths and for various other divalent systems (Ca, Mg, Hg and Sr) in the UV region. We assess the quality of triple magic trapping conditions by estimating the probability of excitation out of the motional ground state as a result of the excitations between the clock and the Rydberg states. We also calculate trapping laser-induced photoionization rates of divalent Rydberg atoms at magic frequencies. We find that such rates are below the radiative spontaneous-emission rates, due to the presence of Cooper minima in photoionization cross-sections.
Observation of Nonlinear Looped Band Structure of Bose-Einstein condensates in an optical lattice
NASA Astrophysics Data System (ADS)
Goldschmidt, Elizabeth; Koller, Silvio; Brown, Roger; Wyllie, Robert; Wilson, Ryan; Porto, Trey
2016-05-01
We study experimentally the stability of excited, interacting states of bosons in a double-well optical lattice in regimes where the nonlinear interactions are expected to induce ``swallow-tail'' looped band structure. By carefully preparing different initial coherent states and observing their subsequent decay, we observe distinct decay rates, which provide direct evidence for multi-valued band structure. The double well lattice both stabilizes the looped band structure and allows for dynamic preparation of different initial states, including states within the loop structure. We confirm our state preparation procedure with dynamic Gross-Pitaevskii calculations. The excited loop states are found to be more stable than dynamically unstable ground states, but decay faster than expected based on a mean-field stability calculation, indicating the importance of correlations beyond a mean-field description. Now at Georgia Tech Research Institute.
Suppression of Faraday waves in a Bose-Einstein condensate in the presence of an optical lattice
Capuzzi, Pablo; Gattobigio, Mario; Vignolo, Patrizia
2011-01-15
We study the formation of Faraday waves in an elongated Bose-Einstein condensate in the presence of a one-dimensional optical lattice. The waves are parametrically excited by modulating the radial confinement of the condensate close to a transverse breathing mode of the system. For very shallow optical lattices, phonons with a well-defined wave vector propagate along the condensate, as in the absence of the lattice, and we observe the formation of a Faraday pattern. We find that by increasing the potential depth the local sound velocity decreases, and when it equals the condensate local phase velocity, the condensate develops an incoherent superposition of several modes and the parametric excitation of Faraday waves is suppressed.
Observing dynamical SUSY breaking with lattice simulation
Kanamori, Issaku
2008-11-23
On the basis of the recently developed lattice formulation of supersymmetric theories which keeps a part of the supersymmetry, we propose a method of observing dynamical SUSY breaking with lattice simulation. We use Hamiltonian as an order parameter and measure the ground state energy as a zero temperature limit of the finite temperature simulation. Our method provides a way of obtaining a physical result from the lattice simulation for supersymmetric theories.
Bose-Einstein condensates in rotating lattices.
Bhat, Rajiv; Holland, M J; Carr, L D
2006-02-17
Strongly interacting bosons in a two-dimensional rotating square lattice are investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds to a rotating lattice potential imprinted on a trapped Bose-Einstein condensate. Second-order quantum phase transitions between states of different symmetries are observed at discrete rotation rates. For the square lattice we study, there are four possible ground-state symmetries.
The Fermilab lattice supercomputer project
Fischler, M.; Atac, R.; Cook, A.; Deppe, J.; Gaines, I.; Husby, D.; Nash, T.; Pham, T.; Zmuda, T.; Hockney, G.
1989-02-01
The ACPMAPS system is a highly cost effective, local memory MIMD computer targeted at algorithm development and production running for gauge theory on the lattice. The machine consists of a compound hypercube of crates, each of which is a full crossbar switch containing several processors. The processing nodes are single board array processors based on the Weitek XL chip set, each with a peak power of 20 MFLOPS and supported by 8 MBytes of data memory. The system currently being assembled has a peak power of 5 GFLOPS, delivering performance at approximately $250/MFLOP. The system is programmable in C and Fortran. An underpinning of software routines (CANOPY) provides an easy and natural way of coding lattice problems, such that the details of parallelism, and communication and system architecture are transparent to the user. CANOPY can easily be ported to any single CPU or MIMD system which supports C, and allows the coding of typical applications with very little effort. 3 refs., 1 fig.
QCD thermodynamics on a lattice
NASA Astrophysics Data System (ADS)
Levkova, Ludmila A.
Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.
Computational study of lattice models
NASA Astrophysics Data System (ADS)
Zujev, Aleksander
This dissertation is composed of the descriptions of a few projects undertook to complete my doctorate at the University of California, Davis. Different as they are, the common feature of them is that they all deal with simulations of lattice models, and physics which results from interparticle interactions. As an example, both the Feynman-Kikuchi model (Chapter 3) and Bose-Fermi mixture (Chapter 4) deal with the conditions under which superfluid transitions occur. The dissertation is divided into two parts. Part I (Chapters 1-2) is theoretical. It describes the systems we study - superfluidity and particularly superfluid helium, and optical lattices. The numerical methods of working with them are described. The use of Monte Carlo methods is another unifying theme of the different projects in this thesis. Part II (Chapters 3-6) deals with applications. It consists of 4 chapters describing different projects. Two of them, Feynman-Kikuchi model, and Bose-Fermi mixture are finished and published. The work done on t - J model, described in Chapter 5, is more preliminary, and the project is far from complete. A preliminary report on it was given on 2009 APS March meeting. The Isentropic project, described in the last chapter, is finished. A report on it was given on 2010 APS March meeting, and a paper is in preparation. The quantum simulation program used for Bose-Fermi mixture project was written by our collaborators Valery Rousseau and Peter Denteneer. I had written my own code for the other projects.
Collapsing lattice animals and lattice trees in two dimensions
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Grassberger, Peter
2005-06-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the
Search for Gluonic Excitations
Eugenio, Paul
2007-10-26
Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by a discussion of plans at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.
Search for Gluonic Excitations
Paul Eugenio
2007-10-01
Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by a discussion of plans at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.
Creveling, R.
1957-12-17
S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.
Metastable Interactions: Dissociative Excitation.
1985-05-01
participate. The mercuric halide compounds HgBr2 , HgCl 2 , and HgI2 are of recent interest because of laser output achieved on the B2 E - X2 E transition in...the * respective mercuric halide radicals in the range of 400-600 nm. Population inversion has been obtained by photodissociation and electron impact...excitation in mixtures o the mercuric - halide compounds and the rare gases. Chang and -* Burnham (3) have noted Improved laser efficiency and improved
Transmission Electron Microscope Measures Lattice Parameters
NASA Technical Reports Server (NTRS)
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Lattices of processes in graphs with inputs
Shakhbazyan, K.V.
1995-09-01
This article is a continuation of others work, presenting a detailed analysis of finite lattices of processes in graphs with input nodes. Lattices of processes in such graphs are studied by representing the lattices in the form of an algebra of pairs. We define the algebra of pairs somewhat generalizing the definition. Let K and D be bounded distributive lattices. A sublattice {delta} {contained_in} K x D is called an algebra of pairs if for all K {element_of} K we have (K, 1{sub D}) {element_of} {delta} and for all d {element_of} D we have (O{sub K}).
Commissioning Simulations for the APS Upgrade Lattice
Sajaev, V.; Borland, M.
2015-01-01
A hybrid seven-bend-achromat lattice that features very strong focusing elements and a relatively small vacuum chamber has been proposed for the APS upgrade. Achieving design lattice parameters during commissioning will need to be accomplished quickly in order to minimize dark time for APS users. The paper will describe start-to-end simulation of the machine commissioning beginning from first-turn trajectory correction, progressing to orbit and lattice correction, and culminating in evaluation of the nonlinear performance of the corrected lattice
NASA Astrophysics Data System (ADS)
Costanza, E. F.; Costanza, G.
2017-02-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a hexagonal lattice which has the particular feature that need four types of dynamical variables. This example shows additional features to the general procedure and some extensions are also suggested in order to provide a wider insight in the present approach.
NASA Astrophysics Data System (ADS)
Costanza, E. F.; Costanza, G.
2016-12-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a triangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.
Polarization response of RHIC electron lens lattices
NASA Astrophysics Data System (ADS)
Ranjbar, V. H.; Méot, F.; Bai, M.; Abell, D. T.; Meiser, D.
2016-10-01
Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Subwavelength Lattice Optics by Evolutionary Design
2015-01-01
This paper describes a new class of structured optical materials—lattice opto-materials—that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens. PMID:25380062
Dark periodic lattices in nonlinear liquid media
NASA Astrophysics Data System (ADS)
Alvarado-Méndez, Edgar; Trejo-Durán, Mónica; Cano-Lara, Miroslava; Huerta-Mascotte, Eduardo; Castaňo, Víctor M.
2007-11-01
Experimental evidence of the formation of one- and two-dimensional dark periodic lattices in a negative Kerr-type nonlinear liquid media is presented. Bright periodic lattices propagate throughout two nonlinear liquids [alcohol with rhodamine (R6G), and acetone with R6G] as the negative nonlinear refractive index forms a dark periodic lattice. Our experiments demonstrate that the nonlinearity increases with the optical power and that a proper selection of the period leads to self-phase modulation of the lattice.
Elastic lattice in an incommensurate background
Dickman, R.; Chudnovsky, E.M. )
1995-01-01
We study a harmonic triangular lattice, which relaxes in the presence of an incommensurate short-wavelength potential. Monte Carlo simulations reveal that the elastic lattice exhibits only short-ranged translational correlations, despite the absence of defects in either lattice. Extended orientational order, however, persists in the presence of the background. Translational correlation lengths exhibit approximate power-law dependence upon cooling rate and background strength. Our results may be relevant to Wigner crystals, atomic monolayers on crystals surfaces, and flux-line and magnetic bubble lattices.
Compactons of nonlinear Schrödinger lattices under strong nonlinearity management
NASA Astrophysics Data System (ADS)
Salerno, Mario
2016-09-01
We review recent work on compacton matter waves in Bose-Einstein condensates (BEC) trapped in deep optical lattices in the presence of strong and rapid periodic time modulations of the atomic scattering length. In particular, we derive averaged discrete nonlinear Schrödinger equations (DNLSE) and show that compacton solutions of different types can exist as stable excitations. Stability properties are also investigated both by linear analysis and by direct numerical integrations of the DNLSE.
Magnonic Crystal as a Medium with Tunable Disorder on a Periodical Lattice
NASA Astrophysics Data System (ADS)
Ding, J.; Kostylev, M.; Adeyeye, A. O.
2011-07-01
We show that periodic magnetic nanostructures represent a perfect system for studying excitations on disordered periodical lattices because of the possibility of controlled variation of the degree of disorder by varying the applied magnetic field. Magnetic force microscopy images and ferromagnetic resonance (FMR) data collected inside minor hysteresis loops for a periodic array of Permalloy nanowires were used to demonstrate correlation between the type of FMR response and the degree of disorder of the magnetic ground state.
The Bose-Hubbard model: from Josephson junction arrays to optical lattices
NASA Astrophysics Data System (ADS)
Bruder, C.; Fazio, R.; Schön, G.
2005-09-01
[Dedicated to Bernhard Mühlschlegel on the occasion ofhis 80th birthday]The Bose-Hubbard model is a paradigm for the study of strongly correlated bosonic systems. We review some of its properties with emphasis on the implications on quantum phase transitions of Josephson junction arrays and quantum dynamics of topological excitations as well as the properties of ultra-cold atoms in optical lattices.
Quantum Phase Transition of a Triangular Lattice Spin Tube and Edge Spin Effects
NASA Astrophysics Data System (ADS)
Okunishi, Kouichi; Yoshikawa, Shin-Ichiro; Sakai, Tôru; Miyashita, Seiji
We study the low-energy excitation of the quantum spin tube with the triangular lattice structure, using density matrix renormalization group. Taking account of the edge spin effect, we particularly investigate the spin gap behavior and the low-field magnetization curve near the quantum phase transition point in contrast with the usual free boundary condition. We then find that the bulk behavior of the spin tube can be extracted easier for the single spin termination.
Effect of impurities on the vortex lattice in Bose-Einstein condensates on optical lattice
NASA Astrophysics Data System (ADS)
Mithun, T.; Porsezian, K.; Dey, Bishwajyoti
2015-06-01
We numerically solve the Gross-Pitaeveskii equation to study the Bose-Einstein condensate in the rotating harmonical tarp and co-rotating optical lattice. The effect of a pinning site or impurity shows that it is able to move the vortex lattice center to either left or right depending on the position of the impurity. Also, it is observed that the impurity at the random positions can destroy the vortex lattice and the resulting disordered lattice has more energy.