NASA Astrophysics Data System (ADS)
Lower, Kim Nigel
1985-03-01
Modulation processes associated with the digital implementation of pulse width modulation (PWM) switching strategies were examined. A software package based on a portable turnkey structure is presented. Waveform synthesizer implementation techniques are reviewed. A three phase PWM waveform synthesizer for voltage fed inverters was realized. It is based on a constant carrier frequency of 18 kHz and a regular sample, single edge, asynchronous PWM switching scheme. With high carrier frequencies, it is possible to utilize simple switching strategies and as a consequence, many advantages are highlighted, emphasizing the importance to industrial and office markets.
Effect of different methods of pulse width modulation on power losses in an induction motor
NASA Astrophysics Data System (ADS)
Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii
2017-10-01
We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.
Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes.
Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi
2017-01-06
In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.
Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi
2017-01-01
In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.
Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes
Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi
2017-01-01
In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments. PMID:28059148
Mansuori, M; Zareei, G H; Hashemi, H
2015-10-01
We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation.
Jitter model and signal processing techniques for pulse width modulation optical recording
NASA Technical Reports Server (NTRS)
Liu, Max M.-K.
1991-01-01
A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.
NASA Astrophysics Data System (ADS)
Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong
2018-05-01
Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.
2009-06-23
Environmental Portrait, Electrical Power Systems Employee, hardware for the High Power 300-Volt Power Processing Unit (PPU). The Printed Circuit Boards (PCBs) are the Discharge Module Inverter and the Pulse Width Modulation (PWM) Controller
Single event effects in pulse width modulation controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penzin, S.H.; Crain, W.R.; Crawford, K.B.
1996-12-01
SEE testing was performed on pulse width modulation (PWM) controllers which are commonly used in switching mode power supply systems. The devices are designed using both Set-Reset (SR) flip-flops and Toggle (T) flip-flops which are vulnerable to single event upset (SEU) in a radiation environment. Depending on the implementation of the different devices the effect can be significant in spaceflight hardware.
PWM Switching Strategy for Torque Ripple Minimization in BLDC Motor
NASA Astrophysics Data System (ADS)
Salah, Wael A.; Ishak, Dahaman; Hammadi, Khaleel J.
2011-05-01
This paper describes a new PWM switching strategy to minimize the torque ripples in BLDC motor which is based on sensored rotor position control. The scheme has been implemented using a PIC microcontroller to generate a modified Pulse Width Modulation (PWM) signals for driving power inverter bridge. The modified PWM signals are successfully applied to the next up-coming phase current such that its current rise is slightly delayed during the commutation instant. Experimental results show that the current waveforms of the modified PWM are smoother than that in conventional PWM technique. Hence, the output torque exhibits lower ripple contents.
Droplet size distributions of adjuvant-amended sprays from an air-assisted five-port PWM nozzle
USDA-ARS?s Scientific Manuscript database
Verification of droplet size distributions is essential for the development of real-time variable-rate sprayers that synchronize spray outputs with canopy structures. Droplet sizes from a custom-designed, air-assisted, five-port nozzle coupled with a pulse-width-modulated (PWM) solenoid valve were m...
Parallel PWMs Based Fully Digital Transmitter with Wide Carrier Frequency Range
Zhou, Bo; Zhang, Kun; Zhou, Wenbiao; Zhang, Yanjun; Liu, Dake
2013-01-01
The carrier-frequency (CF) and intermediate-frequency (IF) pulse-width modulators (PWMs) based on delay lines are proposed, where baseband signals are conveyed by both positions and pulse widths or densities of the carrier clock. By combining IF-PWM and precorrected CF-PWM, a fully digital transmitter with unit-delay autocalibration is implemented in 180 nm CMOS for high reconfiguration. The proposed architecture achieves wide CF range of 2 M–1 GHz, high power efficiency of 70%, and low error vector magnitude (EVM) of 3%, with spectrum purity of 20 dB optimized in comparison to the existing designs. PMID:24223503
The 120V 20A PWM switch for applications in high power distribution
NASA Astrophysics Data System (ADS)
Borelli, V.; Nimal, W.
1989-08-01
A 20A/120VDC (voltage direct current) PWM (Pulse Width Modulation) Solid State Power Controller (SSPC) developed under ESA contract to be used in the power distribution system of Columbus is described. The general characteristics are discussed and the project specification defined. The benefits of a PWM solution over a more conventional approach, for the specific application considered are presented. An introduction to the SSPC characteristics and a functional description are presented.
NASA Astrophysics Data System (ADS)
Deshmukh, Ram; Moses, A. J.; Anayi, F.
The core losses and the lower-order voltage harmonics of four different chorded motors fed from sinusoidal supply and inverter voltage supply were invigilated at no-load condition. All the four motors were tested with 4, 8 and 16 kHz switching frequencies and 30, 40, 50 and 60 Hz modulation frequencies The motor with 120° coil pitch has the least core losses and the lower-order voltage harmonics under sinusoidal and pulse width modulation (PWM) voltage supplies at all switching and modulation frequencies. The drop in the core losses for this motor was 46% and 53% under sinusoidal and PWM voltage supplies, respectively. The motor with 120° coil pitch is recommended to be used under sinusoidal and PWM voltage supplies.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
Optically powered oil tank multichannel detection system with optical fiber link
NASA Astrophysics Data System (ADS)
Yu, Zhijing
1998-08-01
A novel oil tanks integrative parameters measuring system with optically powered are presented. To realize optical powered and micro-power consumption multiple channels and parameters detection, the system has taken the PWM/PPM modulation, ratio measurement, time division multiplexing and pulse width division multiplexing techniques. Moreover, the system also used special pulse width discriminator and single-chip microcomputer to accomplish signal pulse separation, PPM/PWM signal demodulation, the error correction of overlapping pulse and data processing. This new transducer has provided with high characteristics: experimental transmitting distance is 500m; total consumption of the probes is less than 150 (mu) W; measurement error: +/- 0.5 degrees C and +/- 0.2 percent FS. The measurement accuracy of the liquid level and reserves is mainly determined by the pressure accuracy. Finally, some points of the experiment are given.
Compact pulse width modulation circuitry for silicon photomultiplier readout.
Bieniosek, M F; Olcott, P D; Levin, C S
2013-08-07
The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.
An electronic flow control system for a variable-rate tree sprayer
USDA-ARS?s Scientific Manuscript database
Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...
Development of digital flow control system for multi-channel variable-rate sprayers
USDA-ARS?s Scientific Manuscript database
Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, F.; Nehl, T.W.
1998-09-01
Because of their high efficiency and power density the PM brushless dc motor is a strong candidate for electric and hybrid vehicle propulsion systems. An analytical approach is developed to predict the inverter high frequency pulse width modulation (PWM) switching caused eddy-current losses in a permanent magnet brushless dc motor. The model uses polar coordinates to take curvature effects into account, and is also capable of including the space harmonic effect of the stator magnetic field and the stator lamination effect on the losses. The model was applied to an existing motor design and was verified with the finite elementmore » method. Good agreement was achieved between the two approaches. Hence, the model is expected to be very helpful in predicting PWM switching losses in permanent magnet machine design.« less
Design of a ZVS PWM inverter for a brushless DC motor in an EMA application
NASA Technical Reports Server (NTRS)
Bell, J. Brett; Nelms, R. M.; Shepherd, Michael T.
1993-01-01
The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently investigating the use of electromechanical actuators for use in space transportation applications such as Thrust Vector Control (TVC). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 Vdc. This paper will discuss the design and implementation of a zero-voltage-switched PWM (Pulse Width Modulation) inverter which operates from a 270 Vdc source at currents up to 100 A.
PWM Switching Frequency Effects on Eddy Current Sensors for Magnetically Suspended Flywheel Systems
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Lebron, Ramon; Dever, Timothy P.; Birchenough, Arthur G.
2003-01-01
A flywheel magnetic bearing (MB) pulse width modulated power amplifier (PWM) configuration is selected to minimize noise generated by the PWMs in the flywheel position sensor system. Two types of noise are addressed: beat frequency noise caused by variations in PWM switching frequencies, and demodulation noise caused by demodulation of high order harmonics of the switching voltage into the MB control band. Beat frequency noise is eliminated by synchronizing the PWM switch frequencies, and demodulation noise is minimized by selection of a switching frequency which does not have harmonics at the carrier frequency of the sensor. The recommended MB PWM system has five synchronized PWMs switching at a non-integer harmonic of the sensor carrier.
Modeling and Simulation of a DG-Integrated Intelligent Microgrid
2010-02-01
17. The I-V curve from the manufacturer for BP-4175 175W PV module...........................32 Fig. 18. Wind turbine model...33 Fig. 19. Electrical outputs of wind turbine... PMSG : Permanent Magnet Synchronous Generator PLL : Phase Lock Loop PV : Photovoltaic PWM : Pulse Width Modulation TOU : Time of Use VTES
Development of variable-rate sprayer for nursery liner applications
USDA-ARS?s Scientific Manuscript database
Sensor-guided application technologies are needed to achieve constant spray deposition for the rapid growth of nursery liner trees during a growing season. An experimental real-time variable-rate sprayer that implemented 20 Hz ultrasonic sensors and pulse width modulation (PWM) solenoid valve-contro...
Spray outputs from a variable-rate sprayer manipulated with PWM solenoid valves
USDA-ARS?s Scientific Manuscript database
Pressure fluctuations during variable-rate spray applications can affect nozzle flow rate fluctuations, resulting in spray outputs that do not coincide with the prescribed canopy structure volume. Variations in total flow rate discharged from 40 nozzles, each coupled with a pulse-width-modulated (PW...
Control strategy based on SPWM switching patterns for grid connected photovoltaic inverter
NASA Astrophysics Data System (ADS)
Hassaine, L.; Mraoui, A.
2017-02-01
Generally, for lower installation of photovoltaic systems connected to the grid, pulse width modulation (PWM) is a widely used technique for controlling the voltage source inverters injects currents into the grid. The current injected must be sinusoidal with reduced harmonic distortion. In this paper, a digital implementation of a control strategy based on PWM switching patterns for an inverter for photovoltaic system connected to the grid is presented. This strategy synchronize a sinusoidal inverter output current with a grid voltage The digital implementation of the proposed PWM switching pattern when is compared with the conventional one exhibit the advantage: Simplicity, reduction of the memory requirements and power calculation for the control
Badets, Franck; Nouet, Pascal; Masmoudi, Mohamed
2018-01-01
A fully integrated sensor interface for a wide operational temperature range is presented. It translates the sensor signal into a pulse width modulated (PWM) signal that is then converted into a 12-bit digital output. The sensor interface is based on a pair of injection locked oscillators used to implement a differential time-domain architecture with low sensitivity to temperature variations. A prototype has been fabricated using a 180 nm partially depleted silicon-on-insulator (SOI) technology. Experimental results demonstrate a thermal stability as low as 65 ppm/°C over a large temperature range from −20 °C up to 220 °C. PMID:29621171
An improved immune algorithm for optimizing the pulse width modulation control sequence of inverters
NASA Astrophysics Data System (ADS)
Sheng, L.; Qian, S. Q.; Ye, Y. Q.; Wu, Y. H.
2017-09-01
In this article, an improved immune algorithm (IIA), based on the fundamental principles of the biological immune system, is proposed for optimizing the pulse width modulation (PWM) control sequence of a single-phase full-bridge inverter. The IIA takes advantage of the receptor editing and adaptive mutation mechanisms of the immune system to develop two operations that enhance the population diversity and convergence of the proposed algorithm. To verify the effectiveness and examine the performance of the IIA, 17 cases are considered, including fixed and disturbed resistances. Simulation results show that the IIA is able to obtain an effective PWM control sequence. Furthermore, when compared with existing immune algorithms (IAs), genetic algorithms (GAs), a non-traditional GA, simplified simulated annealing, and a generalized Hopfield neural network method, the IIA can achieve small total harmonic distortion (THD) and large magnitude. Meanwhile, a non-parametric test indicates that the IIA is significantly better than most comparison algorithms. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2016.1250894.
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
Control Systems with Pulse Width Modulation in Matrix Converters
NASA Astrophysics Data System (ADS)
Bondarev, A. V.; Fedorov, S. V.; Muravyova, E. A.
2018-03-01
In this article, the matrix frequency converter for the system of the frequency control of the electric drive is considered. Algorithms of formation of an output signal on the basis of pulse width modulation were developed for the quantitative analysis of quality of an output signal on the basis of mathematical models. On the basis of simulation models of an output signal, assessment of quality of this signal was carried out. The analysis of harmonic composition of the voltage output received on the basis of pulse width modulation was made for the purpose of determination of opportunities of the control system for improving harmonic composition. The result of such analysis led to the fact that the device formation of switching functions of the control system on the basis of PWM does not lead to a distortion reduction of a harmonic of the control signal, and leads to offset of harmonic in the field of frequencies, the multiple relatively carrier frequency.
NASA Astrophysics Data System (ADS)
Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun
2016-04-01
Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.
System and method for determining stator winding resistance in an AC motor using motor drives
Lu, Bin; Habetler, Thomas G; Zhang, Pinjia
2013-02-26
A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.
Color adjustable LED driver design based on PWM
NASA Astrophysics Data System (ADS)
Du, Yiying; Yu, Caideng; Que, Longcheng; Zhou, Yun; Lv, Jian
2012-10-01
Light-emitting diode (LED) is a liquid cold source light source that rapidly develops in recent years. The merits of high brightness efficiency, long duration, high credibility and no pollution make it satisfy our demands for consumption and natural life, and gradually replace the traditional lamp-house-incandescent light and fluorescent light. However, because of the high cost and unstable drive circuit, the application range is restricted. To popularize the applications of the LED, we focus on improving the LED driver circuit to change this phenomenon. Basing on the traditional LED drive circuit, we adopt pre-setup constant current model and introduce pulse width modulation (PWM) control method to realize adjustable 256 level-grays display. In this paper, basing on human visual characteristics and the traditional PWM control method, we propose a new PWM control timing clock to alter the duty cycle of PWM signal to realize the simple gamma correction. Consequently, the brightness can accord with our visual characteristics.
Toward a reduced-wire readout system for ultrasound imaging.
Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam
2014-01-01
We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.
Toward a Reduced-Wire Readout System for Ultrasound Imaging
Lim, Jaemyung; Arkan, Evren F.; Degertekin, F. Levent; Ghovanloo, Maysam
2015-01-01
We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply. PMID:25571135
Closed-loop torque feedback for a universal field-oriented controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.
A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.
Closed-loop torque feedback for a universal field-oriented controller
De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.
1992-11-24
A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.
Closed-loop torque feedback for a universal field-oriented controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.
A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.
Yin, Ming; Ghovanloo, Maysam
2013-01-01
We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5-μm standard CMOS process and consumes 4.5 mW from ±1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of ~ 2.26 Mb/s. PMID:19497823
Operation of a voltage source converter at increased utility voltage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaura, V.; Blasko, V.
1997-01-01
The operation of a voltage source converter (VSC) with regeneration capability, controllable power factor, and low distortion of utility currents is analyzed at increased utility voltage. Increase in the utility voltage causes a VSC to saturate and enter a nonlinear mode of operation. To operate under elevated utility, two steps are taken: (1) a pulse width modulation (PWM) algorithm is implemented which extends the linear region of operation by 15% and (2) a PWM saturation regulator is used to control the reactive current at higher utility voltages. The PWM algorithm reduces the switching losses by at least 33% and themore » effect of blanking time by one-third. All analytical results are experimentally verified on a 100 kW three-phase VSC.« less
Low-Cost Servomotor Driver for PFM Control
Aragon-Jurado, David
2017-01-01
Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM. PMID:29301221
Low-Cost Servomotor Driver for PFM Control.
Aragon-Jurado, David; Morgado-Estevez, Arturo; Perez-Peña, Fernando
2017-12-31
Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM.
NASA Astrophysics Data System (ADS)
Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham
2017-07-01
After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.
A dual slope charge sampling analog front-end for a wireless neural recording system.
Lee, Seung Bae; Lee, Byunghun; Gosselin, Benoit; Ghovanloo, Maysam
2014-01-01
This paper presents a novel dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which amplifies neural signals by taking advantage of the charge sampling concept for analog signal conditioning, such as amplification and filtering. The presented DSCS-AFE achieves amplification, filtering, and sampling in a simultaneous fashion, while consuming very small amount of power. The output of the DSCS-AFE produces a pulse width modulated (PWM) signal that is proportional to the input voltage amplitude. A circular shift register (CSR) utilizes time division multiplexing (TDM) of the PWM pulses to create a pseudo-digital TDM-PWM signal that can feed a wireless transmitter. The 8-channel system-on-a-chip was fabricated in a 0.35-μm CMOS process, occupying 2.4 × 2.1 mm(2) and consuming 255 μW from a 1.8V supply. Measured input-referred noise for the entire system, including the FPGA in order to recover PWM signal is 6.50 μV(rms) in the 288 Hz~10 kHz range. For each channel, sampling rate is 31.25 kHz, and power consumption is 31.8 μW.
A Dual Slope Charge Sampling Analog Front-End for a Wireless Neural Recording System
Lee, Seung Bae; Lee, Byunghun; Gosselin, Benoit
2015-01-01
This paper presents a novel dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which amplifies neural signals by taking advantage of the charge sampling concept for analog signal conditioning, such as amplification and filtering. The presented DSCS-AFE achieves amplification, filtering, and sampling in a simultaneous fashion, while consuming very small amount of power. The output of the DSCS-AFE produces a pulse width modulated (PWM) signal that is proportional to the input voltage amplitude. A circular shift register (CSR) utilizes time division multiplexing (TDM) of the PWM pulses to create a pseudo-digital TDM-PWM signal that can feed a wireless transmitter. The 8-channel system-on-a-chip was fabricated in a 0.35-µm CMOS process, occupying 2.4 × 2.1 mm2 and consuming 255 µW from a 1.8V supply. Measured input-referred noise for the entire system, including the FPGA in order to recover PWM signal is 6.50 µVrms in the 288 Hz~10 kHz range. For each channel, sampling rate is 31.25 kHz, and power consumption is 31.8 µW. PMID:25570655
Lin, Tingyou; Ho, Yingchieh; Su, Chauchin
2017-06-15
This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs). An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC) is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM) methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET) bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm². The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%.
Lin, Tingyou; Ho, Yingchieh; Su, Chauchin
2017-01-01
This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs). An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC) is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM) methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET) bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm2. The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%. PMID:28617346
Hybrid zero-voltage switching (ZVS) control for power inverters
Amirahmadi, Ahmadreza; Hu, Haibing; Batarseh, Issa
2016-11-01
A power inverter combination includes a half-bridge power inverter including first and second semiconductor power switches receiving input power having an intermediate node therebetween providing an inductor current through an inductor. A controller includes input comparison circuitry receiving the inductor current having outputs coupled to first inputs of pulse width modulation (PWM) generation circuitry, and a predictive control block having an output coupled to second inputs of the PWM generation circuitry. The predictive control block is coupled to receive a measure of Vin and an output voltage at a grid connection point. A memory stores a current control algorithm configured for resetting a PWM period for a switching signal applied to control nodes of the first and second power switch whenever the inductor current reaches a predetermined upper limit or a predetermined lower limit.
An analog method of cross-talk compensation for a RGB wavelength division multiplexed optical link
NASA Astrophysics Data System (ADS)
Chisholm, George; Leveneur, Jérôme; Futter, John; Kennedy, John
2018-06-01
Pulse-width modulation (PWM) over optical fiber can be a very advantageous data transmission approach when an electrically isolated data link is required. The use of wavelength division multiplexing allows multiple data streams to be sent through a single fiber independently. The present investigation aims to demonstrate a novel approach to reduce cross-talk in a three-channel RGB optical link without the need for complex optical componentry. An op-amp circuit is developed to reduce the cross-talk so that the resolution of the PWM data is preserved. An iterative Monte-Carlo simulation approach is used to optimize the op-amp circuit. The approach is developed for a set of three PWM Hall effect magnetometers with 12-bit resolution and 128 Hz sampling rate. We show that, in these conditions, the loss of resolution due to cross-talk is prevented. We also show that the cross-talk compensation allows the RGB PWM link to outperform other transmission schemes.
Ayvali, Elif; Desai, Jaydev P
2014-04-01
This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.
Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Rodriguez, Miguel; Sinha, Mohit
We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy formore » switch interleaving of paralleled dc-dc buck converters.« less
Methods, systems and apparatus for adjusting duty cycle of pulse width modulated (PWM) waveforms
Gallegos-Lopez, Gabriel; Kinoshita, Michael H; Ransom, Ray M; Perisic, Milun
2013-05-21
Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a vector controlled motor drive system when the multi-phase machine operates in an overmodulation region. The disclosed embodiments provide a mechanism for adjusting a duty cycle of PWM waveforms so that the correct phase voltage command signals are applied at the angle transitions. This can reduce variations/errors in the phase voltage command signals applied to the multi-phase machine so that phase current may be properly regulated thus reducing current/torque oscillation, which can in turn improve machine efficiency and performance, as well as utilization of the DC voltage source.
Actuator Characterization of Man Portable Precision Maneuver Concepts
2014-03-01
brushless DC motors, along with a model of the rotating wing concept and a prototype 40-mm projectile, which was fired through the spark range (14), is... Brushless Electronic Speed Controller) was used to drive the three motor commutator input lines. This controller inputs a pulse-width modulated (PWM...Part II: The Brushless D.C. Motor Drive. IEEE Transactions on Industry Applications 1989, 25 (2), 274–279. 16. Hemati, N.; Leu, M. A Complete
Decentralized Interleaving of Paralleled Dc-Dc Buck Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Rodriguez, Miguel; Sinha, Mohit
We present a decentralized control strategy that yields switch interleaving among parallel-connected dc-dc buck converters. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform and no communication between different controllers is needed. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work presents themore » first fully decentralized strategy for switch interleaving in paralleled dc-dc buck converters.« less
Adjustable speed drive study, part 1
NASA Astrophysics Data System (ADS)
Wallace, A.
1989-08-01
Advances in speed control for motors in recent years, notably those in power electronics, have widened the range of application for several adjustable speed drive (ASD) types to include the smaller horsepower sizes. The dc motor drive, formerly in almost universal use for speed control, is being challenged by the high efficiency induction motor/pulse width modulation (PWM) drive; and for special small horsepower size applications, by the permanent magnet motor/PWM inverter drive or by the switched reluctance motor drive. The main characteristics of the several ASD types suitable for small horsepower size applications are discussed, as well as their unwanted side effects: poor power factor, harmonic distortion of the supply, acoustic noise, and electromagnetic interference. A procedure is recommended for determining which, if any, ASD to use.
NASA Astrophysics Data System (ADS)
Denis, Nicolas; Kato, Yoshiyuki; Ieki, Masaharu; Fujisaki, Keisuke
2016-05-01
In this paper, an interior permanent magnet synchronous motor (IPMSM) with a stator core made of amorphous magnetic material (AMM) is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM) control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.
Design, Construction and Testing of a Prototype Holonomic Autonomous Vehicle
2007-12-01
Circuit A simple 100 kHz crystal oscillator tank circuit using an LM741 opamp was fed to a LM393N comparator . The circuit’s schematic is provided...research in areas that support development of unmanned ground and air battlefield vehicles. Little attention has been paid to applying robotics to...motion control using a single board computer, a pulse width modulation (PWM) and optical isolation circuit, and a low-cost inertial measurement unit
NASA Astrophysics Data System (ADS)
Megayanti, Meti; Panatarani, Camellia; Joni, I. Made
2016-03-01
Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.
The ac propulsion system for an electric vehicle, phase 1
NASA Astrophysics Data System (ADS)
Geppert, S.
1981-08-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
The ac propulsion system for an electric vehicle, phase 1
NASA Technical Reports Server (NTRS)
Geppert, S.
1981-01-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
Low Temperature Operation of a Switching Power Converter
NASA Technical Reports Server (NTRS)
Anglada-Sanchez, Carlos R.; Perez-Feliciano, David; Ray, Biswajit
1997-01-01
The low temperature operation of a 48 W, 50 kHz, 36/12 V pulse width modulated (PWM) buck de-de power converter designed with standard commercially available components and devices is reported. The efficiency of the converter increased from 85.6% at room temperature (300 K) to 92.0% at liquid nitrogen temperature (77 K). The variation of power MOSFET, diode rectifier, and output filter inductor loss with temperature is discussed. Relevant current, voltage. and power waveforms are also included.
Adjustable speed drive study, June 1985 to September 1988. Part 2: Appendices
NASA Astrophysics Data System (ADS)
Wallace, Alan
1989-08-01
Advances in speed control for motors in recent years, notably those in power electronics, have widened the range of application for several adjustable speed drive (ASD) types to include the smaller horsepower sizes. The dc motor drive, formerly in almost universal use for speed control, is being challenged by the high efficiency induction motor/pulse width modulation (PWM) drive; and for special small horsepower size applications, by the permanent magnet motor/PWM inverter drive or by the switched reluctance motor drive. The main characteristics of the several ASD types suitable for small horsepower size applications are discussed, as well as their unwanted side effects: poor power factor, harmonic distortion of the supply, acoustic noise, and electromagnetic interference. A procedure is recommended for determining which, if any, ASD to use.
Design and test hardware for a solar array switching unit
NASA Technical Reports Server (NTRS)
Patil, A. R.; Cho, B. H.; Sable, D.; Lee, F. C.
1992-01-01
This paper describes the control of a pulse width modulated (PWM) type sequential shunt switching unit (SSU) for spacecraft applications. It is found that the solar cell output capacitance has a significant impact on SSU design. Shorting of this cell capacitance by the PWM switch causes input current surges. These surges are minimized by the use of a series filter inductor. The system with a filter is analyzed for ripple and the control to output-voltage transfer function. Stable closed loop design considerations are discussed. The results are supported by modeling and measurements of loop gain and of closed-loop bus impedance on test hardware for NASA's 120 V Earth Observation System (EOS). The analysis and modeling are also applicable to NASA's 160 V Space Station power system.
Performance of High-Speed PWM Control Chips at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard; Overton, Eric
2001-01-01
The operation of power electronic systems at cryogenic temperatures is anticipated in many NASA space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. As part of the NASA Glenn Low Temperature Electronics Program, several commercial high-speed Pulse Width Modulation (PWM) chips have been characterized in terms of their performance as a function of temperature in the range of 25 to -196 C (liquid nitrogen). These chips ranged in their electrical characteristics, modes of control, packaging options, and applications. The experimental procedures along with the experimental data obtained on the investigated chips are presented and discussed.
NASA Astrophysics Data System (ADS)
Goraj, R.
2015-12-01
In order to estimate the inductive power set in the armature of the high-speed solenoid valve (HSV) during the open loop control (OLC) using pulse width modulation (PWM) an analytical explicit formula has been derived. The simplifications taken both in the geometry and in the physical behavior of the HSV were described. The inductive power was calculated for different boundary conditions and shown as a function of the frequency of the coil current. The power set in the armature was used as an input to the thermal calculation. The thermal calculation had an objective to estimate the time dependent temperature distribution in the armature of the HSV. All the derivation steps were presented and the influence of different boundary conditions was shown and discussed. The increase of the temperature during the heating with inductive power has been evaluated both in the core and on the side surface of the HSV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megayanti, Meti; Panatarani, Camellia; Joni, I. Made, E-mail: imadejoni@phys.unpad.ac.id
Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach amore » temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.« less
Shiraishi, Y; Yambe, T; Saijo, Y; Sato, F; Tanaka, A; Yoshizawa, M; Sugai, T K; Sakata, R; Luo, Y; Park, Y; Uematsu, M; Umezu, M; Fujimoto, T; Masumoto, N; Liu, H; Baba, A; Konno, S; Nitta, S; Imachi, K; Tabayashi, K; Sasada, H; Homma, D
2008-01-01
The authors have been developing an artificial myocardium, which is capable of supporting natural contractile function from the outside of the ventricle. The system was originally designed by using sophisticated covalent shape memory alloy fibres, and the surface did not implicate blood compatibility. The purpose of our study on the development of artificial myocardium was to achieve the assistance of myocardial functional reproduction by the integrative small mechanical elements without sensors, so that the effective circulatory support could be accomplished. In this study, the authors fabricated the prototype artificial myocardial assist unit composed of the sophisticated shape memory alloy fibre (Biometal), the diameter of which was 100 microns, and examined the mechanical response by using pulse width modulation (PWM) control method in each unit. Prior to the evaluation of dynamic characteristics, the relationship between strain and electric resistance and also the initial response of each unit were obtained. The component for the PWM control was designed in order to regulate the myocardial contractile function, which consisted of an originally-designed RISC microcomputer with the input of displacement, and its output signal was controlled by pulse wave modulation method. As a result, the optimal PWM parameters were confirmed and the fibrous displacement was successfully regulated under the different heat transfer conditions simulating internal body temperature as well as bias tensile loading. Then it was indicated that this control theory might be applied for more sophisticated ventricular passive or active restraint by the artificial myocardium on physiological demand.
Optimized Signaling Method for High-Speed Transmission Channels with Higher Order Transfer Function
NASA Astrophysics Data System (ADS)
Ševčík, Břetislav; Brančík, Lubomír; Kubíček, Michal
2017-08-01
In this paper, the selected results from testing of optimized CMOS friendly signaling method for high-speed communications over cables and printed circuit boards (PCBs) are presented and discussed. The proposed signaling scheme uses modified concept of pulse width modulated (PWM) signal which enables to better equalize significant channel losses during data high-speed transmission. Thus, the very effective signaling method to overcome losses in transmission channels with higher order transfer function, typical for long cables and multilayer PCBs, is clearly analyzed in the time and frequency domain. Experimental results of the measurements include the performance comparison of conventional PWM scheme and clearly show the great potential of the modified signaling method for use in low power CMOS friendly equalization circuits, commonly considered in modern communication standards as PCI-Express, SATA or in Multi-gigabit SerDes interconnects.
Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke
2016-09-01
Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.
Electrical motor/generator drive apparatus and method
Su, Gui Jia
2013-02-12
The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.
Design of intelligent vehicle control system based on single chip microcomputer
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-06-01
The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.
Bi-directional power control system for voltage converter
Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward
1999-01-01
A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.
Bi-directional power control system for voltage converter
Garrigan, N.R.; King, R.D.; Schwartz, J.E.
1999-05-11
A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.
Temperature Prediction in High Speed Bone Grinding using Motor PWM Signal
Tai, Bruce L.; Zhang, Lihui; Wang, Anthony C.; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J.
2013-01-01
This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. PMID:23806419
Design and implementation of a prototype micropositioning and fusion of optical fibers
NASA Astrophysics Data System (ADS)
Vega, Fabio; Torres, Cesar; Mattos, Lorenzo
2011-09-01
We developed an automated system in micro and optical fiber fusion, using stepper motors of 3.6 ° (1.8 ° Medium step) with a threaded system for displacements in the order of microns, a LM016 LCD for User message management, a PIC16F877A microcontroller to control the prototype. We also used internal modules: TMR0, EEPROM, PWM (pulse width modulation) control using a pulse opto-cupped the discharge circuit high voltage (20 to 35 kilovolt transformer for FLYBACK fusion) The USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial interface with the PC. The software platform developed under Visual Basic 6.0, which lets you manipulate the prototype from the PC. The entire program is optimized for microcontroller interrupt, macro-functions and is written in MPLAB 7.31. The prototype is now finished.
Klein, R; Adler, A; Beanlands, R S; deKemp, R A
2004-01-01
A rubidium-82 (/sup 82/Rb) elution system is described for use with clinical positron emission tomography. The system is self-calibrating with 1.4% repeatability, independent of generator activity and elution flow rate. Saline flow is switched between a /sup 82/Sr//sup 82/Rb generator and a bypass line to achieve a constant activity elution of /sup 82/Rb. In the present study, pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control algorithm is developed which produces a constant activity elution within the constraints of long feedback delay and short elution time. Accurate constant-activity elutions of 10-70% of the total generator activity were demonstrated using the threshold comparison control. The adaptive-corrective control of the PWM valve provided a substantial improvement in precision of the steady-state output.
Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation
NASA Astrophysics Data System (ADS)
Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong
2018-05-01
According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.
NASA Astrophysics Data System (ADS)
Roshani, Amir; Erfanian, Abbas
2016-08-01
Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS through an array of microelectrodes.
Temperature prediction in high speed bone grinding using motor PWM signal.
Tai, Bruce L; Zhang, Lihui; Wang, Anthony C; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J
2013-10-01
This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Multiloop Rapid-Rise/Rapid Fall High-Voltage Power Supply
NASA Technical Reports Server (NTRS)
Bearden, Douglas
2007-01-01
A proposed multiloop power supply would generate a potential as high as 1.25 kV with rise and fall times <100 s. This power supply would, moreover, be programmable to generate output potentials from 20 to 1,250 V and would be capable of supplying a current of at least 300 A at 1,250 V. This power supply is intended to be a means of electronic shuttering of a microchannel plate that would be used to intensify the output of a charge-coupled-device imager to obtain exposure times as short as 1 ms. The basic design of this power supply could also be adapted to other applications in which high voltages and high slew rates are needed. At the time of reporting the information for this article, there was no commercially available power supply capable of satisfying the stated combination of voltage, rise-time, and fall-time requirements. The power supply would include a preregulator that would be used to program a voltage 1/30 of the desired output voltage. By means of a circuit that would include a pulse-width modulator (PWM), two voltage doublers, and a transformer having two primary and two secondary windings, the preregulator output voltage would be amplified by a factor of 30. A resistor would limit the current by controlling a drive voltage applied to field-effect transistors (FETs) during turn-on of the PWM. Two feedback loops would be used to regulate the high output voltage. A pulse transformer would be used to turn on four FETs to short-circuit output capacitors when the outputs of the PWM were disabled. Application of a 0-to-5-V square to a PWM shut-down pin would cause a 20-to-1,250-V square wave to appear at the output.
High-Voltage Power Supply With Fast Rise and Fall Times
NASA Technical Reports Server (NTRS)
Bearden, Douglas B.; Acker, Richard M.; Kapuslka, Robert E.
2007-01-01
A special-purpose high-voltage power supply can be electronically switched on and off with fast rise and fall times, respectively. The output potential is programmable from 20 to 1,250 V. An output current of 50 A can be sustained at 1,250 V. The power supply was designed specifically for electronically shuttering a microchannel plate in an x-ray detector that must operate with exposure times as short as 1 ms. The basic design of the power supply is also adaptable to other applications in which there are requirements for rapid slewing of high voltages. The power-supply circuitry (see figure) includes a preregulator, which is used to program the output at 1/30 of the desired output potential. After the desired voltage has been set, the outputs of a pulse width modulator (PWM) are enabled and used to amplify the preregulator output potential by 30. The amplification is achieved by use of two voltage doublers with a transformer that has two primary and two secondary windings. A resistor is used to limit the current by controlling the drive voltage of two field-effect transistors (FETs) during turn-on of the PWM. A pulse transformer is used to turn on four FETs to short-circuit four output capacitors when the outputs of the PWM have been disabled. The most notable aspects of the performance of the power supply are a rise time of only 80 s and a fall time of only 60 s at a load current of 50 A or less. Another notable aspect is that the application of a 0-to-5-V square wave to a shutdown pin of the PWM causes the production of a 0-to-1,250-V square wave at the output terminals.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-07-09
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End
Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam
2015-01-01
An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP). PMID:27069422
An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.
Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam
2016-01-15
An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm 2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP).
The 5-kW arcjet power electronics
NASA Technical Reports Server (NTRS)
Gruber, R. P.; Gott, R. W.; Haag, T. W.
1989-01-01
The initial design and evaluation of a 5 kW arcjet power electronics breadboard which as been integrated with a modified 1 kW design laboratory arcjet is presented. A single stage, 5 kW full bridge, pulse width modulated (PWM), power converter was developed which was phase shift regulated. The converter used metal oxide semiconductor field effect transistor (MOSFET) power switches and incorporated current mode control and an integral arcjet pulse ignition circuit. The unoptimized power efficiency was 93.5 and 93.9 percent at 5 kW and 50A output at input voltages of 130 and 150V, respectively. Line and load current regulation at 50A output was within one percent. The converter provided up to 6.6 kW to the arcjet with simulated ammonia used as a propellant.
Power control electronics for cryogenic instrumentation
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.
Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle
NASA Technical Reports Server (NTRS)
Ingham, John C. (Inventor); Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Kuhn, III, Theodore R. (Inventor); Babel, III, Walter C. (Inventor); Fox, legal representative, Christopher L. (Inventor); Adams, James K. (Inventor); Laughter, Sean A. (Inventor)
2011-01-01
A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.
S-Band POSIX Device Drivers for RTEMS
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2011-01-01
This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).
High-temperature brushless DC motor controller
Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan
2017-05-16
A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.
A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas.
Lee, Seung Bae; Yin, Ming; Manns, Joseph R; Ghovanloo, Maysam
2013-07-01
A low-noise wideband receiver (Rx) is presented for a multichannel wireless implantable neural recording (WINeR) system that utilizes time-division multiplexing of pulse width modulated (PWM) samples. The WINeR-6 Rx consists of four parts: 1) RF front end; 2) signal conditioning; 3) analog output (AO); and 4) field-programmable gate array (FPGA) back end. The RF front end receives RF-modulated neural signals in the 403-490 MHz band with a wide bandwidth of 18 MHz. The frequency-shift keying (FSK) PWM demodulator in the FPGA is a time-to-digital converter with 304 ps resolution, which converts the analog pulse width information to 16-bit digital samples. Automated frequency tracking has been implemented in the Rx to lock onto the free-running voltage-controlled oscillator in the transmitter (Tx). Two antennas and two parallel RF paths are used to increase the wireless coverage area. BCI-2000 graphical user interface has been adopted and modified to acquire, visualize, and record the recovered neural signals in real time. The AO module picks three demultiplexed channels and converts them into analog signals for direct observation on an oscilloscope. One of these signals is further amplified to generate an audio output, offering users the ability to listen to ongoing neural activity. Bench-top testing of the Rx performance with a 32-channel WINeR-6 Tx showed that the input referred noise of the entire system at a Tx-Rx distance of 1.5 m was 4.58 μV rms with 8-bit resolution at 640 kSps. In an in vivo experiment, location-specific receptive fields of hippocampal place cells were mapped during a behavioral experiment in which a rat completed 40 laps in a large circular track. Results were compared against those acquired from the same animal and the same set of electrodes by a commercial hardwired recording system to validate the wirelessly recorded signals.
A Wideband Dual-Antenna Receiver for Wireless Recording From Animals Behaving in Large Arenas
Lee, Seung Bae; Yin, Ming; Manns, Joseph R.
2014-01-01
A low-noise wideband receiver (Rx) is presented for a multichannel wireless implantable neural recording (WINeR) system that utilizes time-division multiplexing of pulse width modulated (PWM) samples. The WINeR-6 Rx consists of four parts: 1) RF front end; 2) signal conditioning; 3) analog output (AO); and 4) field-programmable gate array (FPGA) back end. The RF front end receives RF-modulated neural signals in the 403–490 MHz band with a wide bandwidth of 18 MHz. The frequency-shift keying (FSK) PWM demodulator in the FPGA is a time-to-digital converter with 304 ps resolution, which converts the analog pulse width information to 16-bit digital samples. Automated frequency tracking has been implemented in the Rx to lock onto the free-running voltage-controlled oscillator in the transmitter (Tx). Two antennas and two parallel RF paths are used to increase the wireless coverage area. BCI-2000 graphical user interface has been adopted and modified to acquire, visualize, and record the recovered neural signals in real time. The AO module picks three demultiplexed channels and converts them into analog signals for direct observation on an oscilloscope. One of these signals is further amplified to generate an audio output, offering users the ability to listen to ongoing neural activity. Bench-top testing of the Rx performance with a 32-channel WINeR-6 Tx showed that the input referred noise of the entire system at a Tx–Rx distance of 1.5 m was 4.58 μVrms with 8-bit resolution at 640 kSps. In an in vivo experiment, location-specific receptive fields of hippocampal place cells were mapped during a behavioral experiment in which a rat completed 40 laps in a large circular track. Results were compared against those acquired from the same animal and the same set of electrodes by a commercial hardwired recording system to validate the wirelessly recorded signals. PMID:23428612
Design of 5 V DC to 20 V DC switching regulator for power supply module
NASA Astrophysics Data System (ADS)
Azmi, N. A.; Murad, S. A. Z.; Harun, A.; Ismail, R. C.; Isa, M. N. M.; Zulkifeli, M. A.
2017-09-01
This paper presents the design of 5 V to 20 V DC switching regulator for power supply module. A voltage multiplier which consists of cascaded diode-capacitor combination is used in order to obtain a high voltage power supply. Due to power loss that has occurred in a stray of component arrangement, the proposed design employs a pulse width modulation (PWM) controller circuit with an inclusion of a capacitor, diode, and inductor components. The input supply of 5 V DC to LT1618 controller circuit has produced 20.35 V based from simulation results. Meanwhile, the measurement results of 19.36 V are obtained and the feedback signal is required for the purpose of stabilizing the output. The proposed design can reduce the components as well as the PCB size, thus minimizing the overall cost of making a switching regulator for power supply module.
Design of PID temperature control system based on STM32
NASA Astrophysics Data System (ADS)
Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru
2018-03-01
A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.
Constant-current control method of multi-function electromagnetic transmitter.
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
Constant-current control method of multi-function electromagnetic transmitter
NASA Astrophysics Data System (ADS)
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
A PWM Controller of a Full Bridge Single-Phase Synchronous Inverter for Micro-Grid System
NASA Astrophysics Data System (ADS)
Rahman, Tawfikur; Motakabber, S. M. A.; Ibrahimy, M. I.; Raghib, Aliza ‘Aini Binti Md Ralib@ Md
2017-12-01
Nowadays, microgrid system technology is becoming popular for small area power management systems. It is essential to be less harmonic-distortion and high efficiency of the inverter for microgrid applications. Pulse width modulation (PWM) controller is a conventional switching control technique which is suitable to use in the microgrid connected power inverter system. The control method and algorithm of this technique are challenging, and different approaches are required to avoid the complexity for a customized solution of the microgrid application. This paper proposes a comparative analysis of different controller and their operational methods. A PWM controller is used to reduce the ripple voltage noise while a continuous current mode provides a small output ripple which gives steady-state error as zero on fundamental and cutoff frequency. To reduce the ripple current, higher frequency harmonic distortion, switching loss and phase noise, LC low pass filter is used on either side of input and output terminals. The proposed inverter is designed by MATLAB 2016a simulation software. A balanced load resistance (RL = 20.5 Ω) of star configuration and a dual input DC voltage of ± 35V are considered. In this design, the circuit parameters, the fundamental frequency of 50 Hz, the PWM duty cycle of 95%, the cutoff frequency of the switching controller of 33 kHz are considered. The inverter in this paper exhibits THD of 0.44% and overall efficiency approximately of 98%. The proposed inverter is expected to be suitable for microgrid applications.
Design of power electronics for TVC EMA systems
NASA Technical Reports Server (NTRS)
Nelms, R. Mark
1993-01-01
The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.
Simulation of an Electromechanical Spin Motor System of a Control Moment Gyroscope
NASA Technical Reports Server (NTRS)
Inampudi, Ravi; Gordeuk, John
2016-01-01
A two-phase brushless DC motor (BDCM) with pulse-width modulated (PWM) voltage drive is simulated to control the flywheel speed of a control moment gyroscope (CMG). An overview of a double-gimballed control moment gyroscope (DGCMG) assembly is presented along with the CMG torque effects on the spacecraft. The operating principles of a two-phase brushless DC motor are presented and the system's electro-mechanical equations of motion are developed for the root-mean-square (RMS) currents and wheel speed. It is shown that the system is an extremely "stiff" set of first-order equations for which an implicit Euler integrator is required for a stable solution. An adaptive proportional voltage controller is presented which adjusts the PWM voltages depending on several control modes for speed, current, and torque. The simulation results illustrate the interaction between the electrical system and the load dynamics and how these influence the overall performance of the system. As will be shown, the CMG spin motor model can directly provide electrical power use and thermal power output to spacecraft subsystems for effective (average) calculations of CMG power consumption.
Trabelsi, Mohamed; Boussak, Mohamed; Gossa, Moncef
2012-03-01
This paper deals with a fault detection technique for insulated-gate bipolar transistors (IGBTs) open-circuit faults in voltage source inverter (VSI)-fed induction motor drives. The novelty of this idea consists in analyzing the pulse-width modulation (PWM) switching signals and the line-to-line voltage levels during the switching times, under both healthy and faulty operating conditions. The proposed method requires line-to-line voltage measurement, which provides information about switching states and is not affected by the load. The fault diagnosis scheme is achieved using simple hardware and can be included in the existing inverter system without any difficulty. In addition, it allows not only accurate single and multiple faults diagnosis but also minimization of the fault detection time to a maximum of one switching period (T(c)). Simulated and experimental results on a 3-kW squirrel-cage induction motor drive are displayed to validate the feasibility and the effectiveness of the proposed strategy. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Design of Solar Street Lamp Control System Based on MPPT
NASA Astrophysics Data System (ADS)
Cui, Fengying
This paper proposes a new solar street lamp control system which is composed of photovoltaic cell, controller, battery and load. In this system controller as the key part applies the microchip to achieve many functions. According to the nonlinear output characteristics of solar cell and the influence of environment, it uses the perturbation and observation (P&O) method to realize the maximum power point tracking (MPPT) and promotes the efficiency. In order to prolong the battery life the pulse width modulation (PWM) charge mode is selected to control the battery capacity and provent the battery from the state of over-charge and over-discharge. Meanwhile the function of temperature compensation, charge and discharge protection are set to improve the running safety and stability.
Dynamic Performance of a Back-to-Back HVDC Station Based on Voltage Source Converters
NASA Astrophysics Data System (ADS)
Khatir, Mohamed; Zidi, Sid-Ahmed; Hadjeri, Samir; Fellah, Mohammed-Karim
2010-01-01
The recent developments in semiconductors and control equipment have made the voltage source converter based high voltage direct current (VSC-HVDC) feasible. This new DC transmission is known as "HVDC Light or "HVDC Plus by leading vendors. Due to the use of VSC technology and pulse width modulation (PWM) the VSC-HVDC has a number of potential advantages as compared with classic HVDC. In this paper, the scenario of back-to-back VSC-HVDC link connecting two adjacent asynchronous AC networks is studied. Control strategy is implemented and its dynamic performances during disturbances are investigated in MATLAB/Simulink program. The simulation results have shown good performance of the proposed system under balanced and unbalanced fault conditions.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-20
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.
Development of a PLC modem for data transmission over a PWM power supply
NASA Astrophysics Data System (ADS)
Batard, Christophe; Ginot, Nicolas; Mannah, Marc Anthony; Millet, Christophe; Poitiers, Frédéric
2014-04-01
In variable-speed electrical drive and online conditioning monitoring, a feedback loop is required in order to transmit the sensor information from the motor to the controller close to the inverter. Additional cabling is used for signalling. This extra cabling has a significant cost and data transmission may not be reliable. Thus, the use of power line communication (PLC) technology to transmit data in motor drive application is quite interesting. The use of a PLC modem dedicated to the home network in a three-phase inverter-fed motor power cable does not work. Therefore, specific coupling interfaces are developed to transmit data through a pulse-width modulated power supply. Laboratory tests have shown that the couplers are operating properly. They ensure reliable data transmission in a motor drive application.
A MISO UCA Beamforming Dimmable LED System for Indoor Positioning
Taparugssanagorn, Attaphongse; Siwamogsatham, Siwaruk; Pomalaza-Ráez, Carlos
2014-01-01
The use of a multiple input single output (MISO) transmit beamforming system using dimmable light emitting arrays (LEAs) in the form of a uniform circular array (UCA) of transmitters is proposed in this paper. With this technique, visible light communications between a transmitter and a receiver (LED reader) can be achieved with excellent performance and the receiver's position can be estimated. A hexagonal lattice alignment of LED transmitters is deployed to reduce the coverage holes and the areas of overlapping radiation. As a result, the accuracy of the position estimation is better than when using a typical rectangular grid alignment. The dimming control is done with pulse width modulation (PWM) to obtain an optimal closed loop beamforming and minimum energy consumption with acceptable lighting. PMID:24481234
Global synchronization of parallel processors using clock pulse width modulation
Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.
2013-04-02
A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.
Design and application of electromechanical actuators for deep space missions
NASA Technical Reports Server (NTRS)
Haskew, Tim A.; Wander, John
1993-01-01
The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.
Power Electronics for a Miniaturized Arcjet
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bowers, Glen E.
1997-01-01
A 0.3 kW Power Processing Unit (PPU) was designed, tested on resistive loads, and then integrated with a miniaturized arcjet. The main goal of the design was to minimize size and mass while maintaining reasonable efficiency. In order to obtain the desired reductions in mass, simple topologies and control methods were considered. The PPU design incorporates a 50 kHz, current-mode-control, pulse-width-modulated (PWM), push-pull topology. An input voltage of 28 +/- 4V was chosen for compatibility with typical unregulated low voltage busses anticipated for smallsats. An efficiency of 0.90 under nominal operating conditions was obtained. The component mass of the PPU was 0.475 kg and could be improved by optimization of the output filter design. The estimated mass for a flight PPU based on this design is less than a kilogram.
NASA Astrophysics Data System (ADS)
Al-Rabadi, Anas N.
2009-10-01
This research introduces a new method of intelligent control for the control of the Buck converter using newly developed small signal model of the pulse width modulation (PWM) switch. The new method uses supervised neural network to estimate certain parameters of the transformed system matrix [Ã]. Then, a numerical algorithm used in robust control called linear matrix inequality (LMI) optimization technique is used to determine the permutation matrix [P] so that a complete system transformation {[B˜], [C˜], [Ẽ]} is possible. The transformed model is then reduced using the method of singular perturbation, and state feedback control is applied to enhance system performance. The experimental results show that the new control methodology simplifies the model in the Buck converter and thus uses a simpler controller that produces the desired system response for performance enhancement.
Flux-Based Deadbeat Control of Induction-Motor Torque
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Lorenz, Robert D.
2003-01-01
An improved method and prior methods of deadbeat direct torque control involve the use of pulse-width modulation (PWM) of applied voltages. The prior methods are based on the use of stator flux and stator current as state variables, leading to mathematical solutions of control equations in forms that do not lend themselves to clear visualization of solution spaces. In contrast, the use of rotor and stator fluxes as the state variables in the present improved method lends itself to graphical representations that aid in understanding possible solutions under various operating conditions. In addition, the present improved method incorporates the superposition of high-frequency carrier signals for use in a motor-self-sensing technique for estimating the rotor shaft angle at any speed (including low or even zero speed) without need for additional shaft-angle-measuring sensors.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-01
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833
Temperature-stabilized, narrowband tunable fiber-Bragg gratings for matched-filter receiver
NASA Astrophysics Data System (ADS)
Roth, Jeffrey M.; Kummer, Joseph W.; Minch, Jeffrey R.; Malinsky, Bryan G.; Scalesse, Vincent; Walther, Frederick G.
2017-02-01
We report on a 1550-nm matched filter based on a pair of fiber Bragg gratings (FBGs) that is actively stabilized over temperature. The filter is constructed of a cascaded pair of athermally-packaged FBGs. The tandem FBG pair produces an aggregate 3-dB bandwidth of 3.9-GHz that is closely matched to a return-to-zero, 2.880-GHz differential-phase-shift-keyed optical waveform. The FBGs comprising the filter are controlled in wavelength using a custom-designed, pulse-width modulation (PWM) heater controller. The controllers allow tuning of the FBGs over temperature to compensate and cancel out native temperature dependence of the athermal FBG (AFBG) package. Two heaters are bonded to each FBG device, one on each end. One heater is a static offset that biases the FBG wavelength positively. The second heater is a PWM controller that actively moves the FBG wavelength negatively. A temperature sensor measures the FBGs' temperature, and a feed-forward control loop adjusts the PWM signal to hold the wavelength within a desired range. This stabilization technique reduces the device's native temperature dependence from approximately 0.65 pm/°C to 0.06 pm/°C, improving the temperature stability by tenfold, while retaining some control for poten- tial long-term drifts. The technique demonstrates that the FBGs can be held to +/-1.5 pm (+/-188 MHz) of the target wavelength over a 0 to +50°C temperature range. The temperature-stabilized FBGs are integrated into a low-noise, optical pre-amplifier that operates over a wide temperature range for a laser communication system.
Park, Sung-Yun; Cho, Jihyun; Lee, Kyuseok; Yoon, Euisik
2015-12-01
We report a pulse width modulation (PWM) buck converter that is able to achieve a power conversion efficiency (PCE) of > 80% in light loads 100 μA) for implantable biomedical systems. In order to achieve a high PCE for the given light loads, the buck converter adaptively reconfigures the size of power PMOS and NMOS transistors and their gate drivers in accordance with load currents, while operating at a fixed frequency of 1 MHz. The buck converter employs the analog-digital hybrid control scheme for coarse/fine adjustment of power transistors. The coarse digital control generates an approximate duty cycle necessary for driving a given load and selects an appropriate width of power transistors to minimize redundant power dissipation. The fine analog control provides the final tuning of the duty cycle to compensate for the error from the coarse digital control. The mode switching between the analog and digital controls is accomplished by a mode arbiter which estimates the average of duty cycles for the given load condition from limit cycle oscillations (LCO) induced by coarse adjustment. The fabricated buck converter achieved a peak efficiency of 86.3% at 1.4 mA and > 80% efficiency for a wide range of load conditions from 45 μA to 4.1 mA, while generating 1 V output from 2.5-3.3 V supply. The converter occupies 0.375 mm(2) in 0.18 μm CMOS processes and requires two external components: 1.2 μF capacitor and 6.8 μH inductor.
NASA Astrophysics Data System (ADS)
Khalifa, Aly A.; Aly, Hussein A.; El-Sherif, Ashraf F.
2016-02-01
Near infrared (NIR) dynamic scene projection systems are used to perform hardware in-the-loop (HWIL) testing of a unit under test operating in the NIR band. The common and complex requirement of a class of these units is a dynamic scene that is spatio-temporal variant. In this paper we apply and investigate active external modulation of NIR laser in different ranges of temporal frequencies. We use digital micromirror devices (DMDs) integrated as the core of a NIR projection system to generate these dynamic scenes. We deploy the spatial pattern to the DMD controller to simultaneously yield the required amplitude by pulse width modulation (PWM) of the mirror elements as well as the spatio-temporal pattern. Desired modulation and coding of high stable, high power visible (Red laser at 640 nm) and NIR (Diode laser at 976 nm) using the combination of different optical masks based on DMD were achieved. These spatial versatile active coding strategies for both low and high frequencies in the range of kHz for irradiance of different targets were generated by our system and recorded using VIS-NIR fast cameras. The temporally-modulated laser pulse traces were measured using array of fast response photodetectors. Finally using a high resolution spectrometer, we evaluated the NIR dynamic scene projection system response in terms of preserving the wavelength and band spread of the NIR source after projection.
Method and apparatus for electromagnetically braking a motor
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Radford, Nicolaus A (Inventor); Permenter, Frank Noble (Inventor); Parsons, Adam H (Inventor); Mehling, Joshua S (Inventor)
2011-01-01
An electromagnetic braking system and method is provided for selectively braking a motor using an electromagnetic brake having an electromagnet, a permanent magnet, a rotor assembly, and a brake pad. The brake assembly applies when the electromagnet is de-energized and releases when the electromagnet is energized. When applied the permanent magnet moves the brake pad into frictional engagement with a housing, and when released the electromagnet cancels the flux of the permanent magnet to allow a leaf spring to move the brake pad away from the housing. A controller has a DC/DC converter for converting a main bus voltage to a lower braking voltage based on certain parameters. The converter utilizes pulse-width modulation (PWM) to regulate the braking voltage. A calibrated gap is defined between the brake pad and permanent magnet when the brake assembly is released, and may be dynamically modified via the controller.
Auxiliary quasi-resonant dc tank electrical power converter
Peng, Fang Z.
2006-10-24
An auxiliary quasi-resonant dc tank (AQRDCT) power converter with fast current charging, voltage balancing (or charging), and voltage clamping circuits is provided for achieving soft-switched power conversion. The present invention is an improvement of the invention taught in U.S. Pat. No. 6,111,770, herein incorporated by reference. The present invention provides faster current charging to the resonant inductor, thus minimizing delay time of the pulse width modulation (PWM) due to the soft-switching process. The new AQRDCT converter includes three tank capacitors or power supplies to achieve the faster current charging and minimize the soft-switching time delay. The new AQRDCT converter further includes a voltage balancing circuit to charge and discharge the three tank capacitors so that additional isolated power supplies from the utility line are not needed. A voltage clamping circuit is also included for clamping voltage surge due to the reverse recovery of diodes.
Powder Flux Regulation in the Laser Material Deposition Process
NASA Astrophysics Data System (ADS)
Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel
In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.
A soft switching with reduced voltage stress ZVT-PWM full-bridge converter
NASA Astrophysics Data System (ADS)
Sahin, Yakup; Ting, Naim Suleyman; Acar, Fatih
2018-04-01
This paper introduces a novel active snubber cell for soft switching pulse width modulation DC-DC converters. In the proposed converter, the main switch is turned on under zero voltage transition and turned off under zero voltage switching (ZVS). The auxiliary switch is turned on under zero current switching (ZCS) and turned off under zero current transition. The main diode is turned on under ZVS and turned off under ZCS. All of the other semiconductors in the converter are turned on and off with soft switching. There is no extra voltage stress on the semiconductor devices. Besides, the proposed converter has simple structure and ease of control due to common ground. The detailed theoretical analysis of the proposed converter is presented and also verified with both simulation and experimental study at 100 kHz switching frequency and 600 W output power. Furthermore, the efficiency of the proposed converter is 95.7% at nominal power.
Electronics for Deep Space Cryogenic Applications
NASA Technical Reports Server (NTRS)
Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.
2002-01-01
Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.
A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruxi; Wang, Fei; Boroyevich, Dushan
It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemesmore » is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.« less
NASA Astrophysics Data System (ADS)
Hasibuan, R.; Hidayati, J.; Sundari, R.; Wicaksono, A. S.
2018-02-01
A drying combination of solar heating and silica gel dessicant has been applied to dry gambir leaves. The solar energy is captured by a collector to heat the air and the hot air is used to dry gambir leaves in a drying chamber. An exhaust fan in drying chamber assists to draw water molecules from gambir leaves accelerated by silica gel dessicant. This study has investigated the drying kinetics and drying characteristics of gambir leaves drying. In drying operation the air velocity is tuned by a PWM (pulse width modulation) controller to adjust minimum and maximum level, which is based on the rotation speed of the exhaust fan. The results show that the air velocity influenced the drying kinetics and drying characteristics of gambir leaves using solar-dessicant drying at 40 cm distance between exhaust fan and silica gel dessicant.
Hardware and circuit design of a vibrational cleaner
NASA Astrophysics Data System (ADS)
Fhong Soon, Chin; Thong, Kok Tung; Sek Tee, Kian; Nayan, Nafarizal; Khairul Ahmad, Mohd; Nurashikin Nordin, Anis
2016-11-01
Microtissue can be grown on soft substrates of hydrogel or liquid crystal gel. These gels are adherent to the microtissues and they may interfere fluorescence imaging as background noise due to their absorbance property. A microfluidic vibrational cleaner with polydimethylsiloxane (PDMS) microfluidic chip platform was proposed and developed to remove the residual gel of liquid crystal adhered to the microtissues. The microtissues were placed in a microfluidic chip attaching to a microfluidic vibrational platform. In the system design, two motorised vibrators vibrating attached to a microfluidic platform and generating vibration signals at 148 Hz and 0.89 Grms to clean the microtissues. The acceleration of the vibration increased gradually from 0 to 0.96 Grms when the duty cycle of PWM pulses increased from 50 - 90%. It dropped slightly to 0.89 Grms at 100% duty cycle. Irrigation water valve was designed to control the fluid flow from water pump during cleaning process. Water pumps were included to flush the channels of the microfluidic device. The signals in controlling the pump, motor and valve were linearly proportional to the duty cycles of the pulse width modulation signals generated from a microcontroller.
NASA Astrophysics Data System (ADS)
Şahingil, Mehmet C.; Aslan, Murat Š.
2013-10-01
Infrared guided missile seekers utilizing pulse width modulation in target tracking is one of the threats against air platforms. To be able to achieve a "soft-kill" protection of own platform against these type of threats, one needs to examine carefully the seeker operating principle with its special electronic counter-counter measure (ECCM) capability. One of the cost-effective ways of soft kill protection is to use flare decoys in accordance with an optimized dispensing program. Such an optimization requires a good understanding of the threat seeker, capabilities of the air platform and engagement scenario information between them. Modeling and simulation is very powerful tool to achieve a valuable insight and understand the underlying phenomenology. A careful interpretation of simulation results is crucial to infer valuable conclusions from the data. In such an interpretation there are lots of factors (features) which affect the results. Therefore, powerful statistical tools and pattern recognition algorithms are of special interest in the analysis. In this paper, we show how self-organizing maps (SOMs), which is one of those powerful tools, can be used in analyzing the effectiveness of various flare dispensing programs against a PWM seeker. We perform several Monte Carlo runs for a typical engagement scenario in a MATLAB-based simulation environment. In each run, we randomly change the flare dispending program and obtain corresponding class: "successful" or "unsuccessful", depending on whether the corresponding flare dispensing program deceives the seeker or not, respectively. Then, in the analysis phase, we use SOMs to interpret and visualize the results.
Power Electronic Transformer based Three-Phase PWM AC Drives
NASA Astrophysics Data System (ADS)
Basu, Kaushik
A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common-mode voltage suppression at the load end, 3) High quality output voltage waveform (comparable to conventional space vector PWM modulated two level inverter) and 4) Minimization of output voltage loss, common-mode voltage switching and distortion of the load current waveform due to leakage inductance commutation. All of the proposed topologies along with the proposed control schemes have been analyzed and simulated in MATLABSimulink. A hardware prototype has been fabricated and tested. The simulation and experimental results verify the operation and advantages of the proposed topologies and their control.
Schultz, Benjamin G; van Vugt, Floris T
2016-12-01
Timing abilities are often measured by having participants tap their finger along with a metronome and presenting tap-triggered auditory feedback. These experiments predominantly use electronic percussion pads combined with software (e.g., FTAP or Max/MSP) that records responses and delivers auditory feedback. However, these setups involve unknown latencies between tap onset and auditory feedback and can sometimes miss responses or record multiple, superfluous responses for a single tap. These issues may distort measurements of tapping performance or affect the performance of the individual. We present an alternative setup using an Arduino microcontroller that addresses these issues and delivers low-latency auditory feedback. We validated our setup by having participants (N = 6) tap on a force-sensitive resistor pad connected to the Arduino and on an electronic percussion pad with various levels of force and tempi. The Arduino delivered auditory feedback through a pulse-width modulation (PWM) pin connected to a headphone jack or a wave shield component. The Arduino's PWM (M = 0.6 ms, SD = 0.3) and wave shield (M = 2.6 ms, SD = 0.3) demonstrated significantly lower auditory feedback latencies than the percussion pad (M = 9.1 ms, SD = 2.0), FTAP (M = 14.6 ms, SD = 2.8), and Max/MSP (M = 15.8 ms, SD = 3.4). The PWM and wave shield latencies were also significantly less variable than those from FTAP and Max/MSP. The Arduino missed significantly fewer taps, and recorded fewer superfluous responses, than the percussion pad. The Arduino captured all responses, whereas at lower tapping forces, the percussion pad missed more taps. Regardless of tapping force, the Arduino outperformed the percussion pad. Overall, the Arduino is a high-precision, low-latency, portable, and affordable tool for auditory experiments.
Design of a compact low-power human-computer interaction equipment for hand motion
NASA Astrophysics Data System (ADS)
Wu, Xianwei; Jin, Wenguang
2017-01-01
Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.
Instrumentation System Diagnoses a Thermocouple
NASA Technical Reports Server (NTRS)
Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley
2008-01-01
An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.
NASA Astrophysics Data System (ADS)
Priya Darshini, B.; Ranjit, M.; Babu, V. Ramesh
2018-04-01
In this paper different Multicarrier PWM (MCPWM) techniques are proposed for dual inverter fed open end induction motor (IM) drive to achieve multilevel operation. To generate the switching pulses for the dual inverter sinusoidal modulating signal is compared with multi carrier signals. A common mode voltage (CMV) has been analyzed in the proposed open end winding induction motor drive. All the proposed techniques mitigate the CMV along with the harmonic distortion in the phase voltage. To authenticate the proposed work several simulation techniques have been carried out using MATLAB/SIMULINK and the corresponding results are presented and compared.
NASA Astrophysics Data System (ADS)
Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan
2018-03-01
A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.
Synthesizing genetic sequential logic circuit with clock pulse generator.
Chuang, Chia-Hua; Lin, Chun-Liang
2014-05-28
Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.
LWIR pupil imaging and prospects for background compensation
NASA Astrophysics Data System (ADS)
LeVan, Paul; Sakoglu, Ünal; Stegall, Mark; Pierce, Greg
2015-08-01
A previous paper described LWIR Pupil Imaging with a sensitive, low-flux focal plane array, and behavior of this type of system for higher flux operations as understood at the time. We continue this investigation, and report on a more detailed characterization of the system over a broad range of pixel fluxes. This characterization is then shown to enable non-uniformity correction over the flux range, using a standard approach. Since many commercial tracking platforms include a "guider port" that accepts pulse width modulation (PWM) error signals, we have also investigated a variation on the use of this port to "dither" the tracking platform in synchronization with the continuous collection of infrared images. The resulting capability has a broad range of applications that extend from generating scene motion in the laboratory for quantifying performance of "realtime, scene-based non-uniformity correction" approaches, to effectuating subtraction of bright backgrounds by alternating viewing aspect between a point source and adjacent, source-free backgrounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, S.K.; Kim, H.S.; Kim, C.G.
1998-05-01
a new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal fluxmore » distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results well demonstrate the effectiveness of the proposed control.« less
NASA Astrophysics Data System (ADS)
Faisal, A.; Hasan, S.; Suherman
2018-03-01
AC-DC converter is widely used in the commercial industry even for daily purposes. The AC-DC converter is used to convert AC voltage into DC. In order to obtain the desired output voltage, the converter usually has a controllable regulator. This paper discusses buck boost regulator with a power MOSFET as switching component which is adjusted based on the duty cycle of pulse width modulation (PWM). The main problems of the buck boost converter at start up are the high overshoot, the long peak time and rise time. This paper compares the effectiveness of two control techniques: proportional integral derivative (PID) and fuzzy logic control in controlling the buck boost converter through simulations. The results show that the PID is more sensitive to voltage change than fuzzy logic. However, PID generates higher overshoot, long peak time and rise time. On the other hand, fuzzy logic generates no overshoot and shorter rise time.
Solar power generation system for reducing leakage current
NASA Astrophysics Data System (ADS)
Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi
2018-04-01
This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.
Optimal time-domain technique for pulse width modulation in power electronics
NASA Astrophysics Data System (ADS)
Mayergoyz, I.; Tyagi, S.
2018-05-01
Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.
NASA Astrophysics Data System (ADS)
Klein, R.; Adler, A.; Beanlands, R. S.; de Kemp, R. A.
2007-02-01
A rubidium-82 (82Rb) elution system is described for use with positron emission tomography. Due to the short half-life of 82Rb (76 s), the system physics must be modelled precisely to account for transport delay and the associated activity decay and dispersion. Saline flow is switched between a 82Sr/82Rb generator and a bypass line to achieve a constant-activity elution of 82Rb. Pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control (PCC) algorithm is developed which produces a constant-activity elution within the constraints of long feedback delay and short elution time. The system model parameters are adjusted through a self-tuning algorithm to minimize error versus the requested time-activity profile. The system is self-calibrating with 2.5% repeatability, independent of generator activity and elution flow rate. Accurate 30 s constant-activity elutions of 10-70% of the total generator activity are achieved using both control methods. The combined PWM-PCC method provides significant improvement in precision and accuracy of the requested elution profiles. The 82Rb elution system produces accurate and reproducible constant-activity elution profiles of 82Rb activity, independent of parent 82Sr activity in the generator. More reproducible elution profiles may improve the quality of clinical and research PET perfusion studies using 82Rb.
Canuto, Enrico; Acuña-Bravo, Wilber; Agostani, Marco; Bonadei, Marco
2014-07-01
Solenoid current regulation is well-known and standard in any proportional electro-hydraulic valve. The goal is to provide a wide-band transfer function from the reference to the measured current, thus making the solenoid a fast and ideal force actuator within the limits of the power supplier. The power supplier is usually a Pulse Width Modulation (PWM) amplifier fixing the voltage bound and the Nyquist frequency of the regulator. Typical analog regulators include three main terms: a feedforward channel, a proportional feedback channel and the electromotive force compensation. The latter compensation may be accomplished by integrative feedback. Here the problem is faced through a model-based design (Embedded Model Control), on the basis of a wide-band embedded model of the solenoid which includes the effect of eddy currents. To this end model parameters must be identified. The embedded model includes a stochastic disturbance dynamics capable of estimating and correcting the electromotive contribution together with parametric uncertainty, variability and state dependence. The embedded model which is fed by the measured current and the supplied voltage becomes a state predictor of the controllable and disturbance dynamics. The control law combines reference generator, state feedback and disturbance rejection to dispatch the PWM amplifier with the appropriate duty cycle. Modeling, identification and control design are outlined together with experimental result. Comparison with an existing analog regulator is also provided. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Klein, R; Adler, A; Beanlands, R S; Dekemp, R A
2007-02-07
A rubidium-82 ((82)Rb) elution system is described for use with positron emission tomography. Due to the short half-life of (82)Rb (76 s), the system physics must be modelled precisely to account for transport delay and the associated activity decay and dispersion. Saline flow is switched between a (82)Sr/(82)Rb generator and a bypass line to achieve a constant-activity elution of (82)Rb. Pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control (PCC) algorithm is developed which produces a constant-activity elution within the constraints of long feedback delay and short elution time. The system model parameters are adjusted through a self-tuning algorithm to minimize error versus the requested time-activity profile. The system is self-calibrating with 2.5% repeatability, independent of generator activity and elution flow rate. Accurate 30 s constant-activity elutions of 10-70% of the total generator activity are achieved using both control methods. The combined PWM-PCC method provides significant improvement in precision and accuracy of the requested elution profiles. The (82)Rb elution system produces accurate and reproducible constant-activity elution profiles of (82)Rb activity, independent of parent (82)Sr activity in the generator. More reproducible elution profiles may improve the quality of clinical and research PET perfusion studies using (82)Rb.
Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Santiago, Walter
2004-01-01
NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.
Synthesizing genetic sequential logic circuit with clock pulse generator
2014-01-01
Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665
NASA Astrophysics Data System (ADS)
Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad
2017-08-01
Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.
Power supply circuit for an ion engine sequentially operated power inverters
NASA Technical Reports Server (NTRS)
Cardwell, Jr., Gilbert I. (Inventor)
2000-01-01
A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.
Konrad, C.E.; Boothe, R.W.
1994-02-15
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.
Konrad, C.E.; Boothe, R.W.
1996-01-23
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.
Konrad, Charles E.; Boothe, Richard W.
1996-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
Konrad, Charles E.; Boothe, Richard W.
1994-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator
NASA Technical Reports Server (NTRS)
Chen, Dakai; Forney, James
2017-01-01
The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).
Pulse-Width-Modulating Driver for Brushless dc Motor
NASA Technical Reports Server (NTRS)
Salomon, Phil M.
1991-01-01
High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.
Reliability assessment and improvement for a fast corrector power supply in TPS
NASA Astrophysics Data System (ADS)
Liu, Kuo-Bin; Liu, Chen-Yao; Wang, Bao-Sheng; Wong, Yong Seng
2018-07-01
Fast Orbit Feedback System (FOFB) can be installed in a synchrotron light source to eliminate undesired disturbances and to improve the stability of beam orbit. The design and implementation of an accurate and reliable Fast Corrector Power Supply (FCPS) is essential to realize the effectiveness and availability of the FOFB. A reliability assessment for the FCPSs in the FOFB of Taiwan Photon Source (TPS) considering MOSFETs' temperatures is represented in this paper. The FCPS is composed of a full-bridge topology and a low-pass filter. A Hybrid Pulse Width Modulation (HPWM) requiring two MOSFETs in the full-bridge circuit to be operated at high frequency and the other two be operated at the output frequency is adopted to control the implemented FCPS. Due the characteristic of HPWM, the conduction loss and switching loss of each MOSFET in the FCPS is not same. Two of the MOSFETs in the full-bridge circuit will suffer higher temperatures and therefore the circuit reliability of FCPS is reduced. A Modified PWM Scheme (MPWMS) designed to average MOSFETs' temperatures and to improve circuit reliability is proposed in this paper. Experimental results measure the MOSFETs' temperatures of FCPS controlled by the HPWM and the proposed MPWMS. The reliability indices under different PWM controls are then assessed. From the experimental results, it can be observed that the reliability of FCPS using the proposed MPWMS can be improved because the MOSFETs' temperatures are closer. Since the reliability of FCPS can be enhanced, the availability of FOFB can also be improved.
Pulse-width-modulated servo valve for autopilot system
NASA Technical Reports Server (NTRS)
Garner, H. D.
1974-01-01
Valve was developed for autopilot wing-lever system and is to be used in light, single-engine aircraft. Valve is controlled by electronic circuit which feeds pulse-width-modulated correction signals to two solenoids. Valve housing is cast from plastic, making it very economical to fabricate.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhu, Zheng H.; Meguid, S. A.
2016-07-01
This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.
Pulse width modulation inverter with battery charger
Slicker, James M.
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Pulse width modulation inverter with battery charger
NASA Technical Reports Server (NTRS)
Slicker, James M. (Inventor)
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
[Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
Wang, Lulu; Hu, Xin; Hu, Jie; Fang, Youfang; He, Rongrong; Yu, Hongliu
2016-12-01
In order to help the patients with upper-limb disfunction go on rehabilitation training,this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom(DOF),and realized two control schemes,i.e.,voice control and electromyography control.The hardware and software design of the voice control system was completed based on RSC-4128 chips,which realized the speech recognition technology of a specific person.Besides,this study adapted self-made surface eletromyogram(sEMG)signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing,extracting time domain features and fixed threshold algorithm.In addition,the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system.Voice control and electromyography control experiments were then carried out,and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1%and 90.9%,respectively.The results proved the feasibility of the control system.This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.
An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive
NASA Astrophysics Data System (ADS)
Singh, Bhim; Bist, Vashist
2014-01-01
This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.
Jiang, Feng; Bai, Jingfeng; Chen, Yazhu
2005-08-01
Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.
NASA Astrophysics Data System (ADS)
Yaseen, Mundher H. A.
Magnetic levitation is a technique to suspend an object without any mechanical support. The main objective of this study is to demonstrate stabilized closed loop control of 1-DOF Maglev experimentally using real-time control simulink feature of (SIMLAB) microcontroller. Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers are employed to examine the stability performance of the Maglev control system under effect of unbalanced change of load and wave signal on Maglev plane. The effect of unbalanced change of applied load on single point, line and plane are presented. Furthermore, in order to study the effect of sudden change in input signal, the input of wave signal has been applied on all points of the prototype maglev plate simultaneously. The results of pulse width modulation (PWM) reveal that the control system using LQR controller provides faster response to adjust the levitated plane comparing to PID controller. Moreover, the air gap distance that controlled using PID controller is rather stable with little oscillation. Meanwhile, LQR controller provided more stability and homogeneous response.
Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation
NASA Astrophysics Data System (ADS)
Singh, B.; Shahani, D. T.; Verma, A. K.
2015-03-01
This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.
NASA Astrophysics Data System (ADS)
Evuri, Geetha Reddy; Rao, G. Srinivasa; Reddy, T. Ramasubba; Reddy, K. Srinivasa
2018-04-01
Pulse width modulation (PWM) based (a non-consistent) breaking system is used to keep the wheels from being bolted in the proposed antilock breaking system (ABS). Using this method a better hold of the street by wheels is possible and halting separations likewise diminish essentially particularly on precarious street surfaces like frosty or wet streets. The active vitality of the wheel is by and large lost amid braking as warmth because of grinding among brake cushions. This vitality can be recuperated using regenerative braking systems (RBS). In this strategy, the overabundance vitality is put away incidentally in capacitor banks before it gets changed over to warm vitality and is squandered. This framework delays the battery life by reviving the battery utilizing the put away vitality. Subsequently the mileage of the electric vehicle likewise increments as it can travel more separation in a solitary battery charge. These two techniques together help make electric vehicle vitality productive and more secure and less demanding to utilize subsequently anticipating and diminishing the quantity of mischance's.
Single-state electronic ballast with dimming feature and unity power factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.F.; Yu, T.H.; Chiang, M.C.
1998-05-01
Analysis, design, and practical consideration of a single-stage electronic ballast with dimming feature and unity power factor are presented in this paper. The proposed single-stage ballast is the combination of a boost converter and a half-bridge series-resonant parallel-loaded inverter. The boost semistage working in the discontinuous conduction mode functions as a power factor corrector and the inverter semistage operated above resonance are employed to ballast the lamp. Replacing the lamp with the plasma model, analysis of the ballast is fulfilled. The dimming feature is carried out by pulse-width modulation (PWM) and variable-frequency controls simultaneously. The proposed single-stage ballast is suitablemore » for applications with moderate power level and low-line voltage while requiring a high-output voltage. It can save a controller, an active switch and its driver, reduce size, and possibly increase system reliability while requiring two additional diodes over a conventional two-stage system. A prototype was implemented to verify the theoretical discussion. The hardware measurements have shown that the desired performance can be achieved feasibly.« less
Analysis and Control of Pulse-Width Modulated AC to DC Voltage Source Converters.
NASA Astrophysics Data System (ADS)
Wu, Rusong
The pulse width modulated AC to DC voltage source converter is comprehensively analyzed in the thesis. A general mathematical model of the converter is first established, which is discontinuous, time-variant and non-linear. The following three techniques are used to obtain closed form solutions: Fourier analysis, transformation of reference frame and small signal linearization. Three models, namely, a steady-state DC model, a low frequency small signal AC model and a high frequency model, are consequently developed. Finally, three solution sets, namely, the steady-state solution, various dynamic transfer functions and the high frequency harmonic components, are obtained from the three models. Two control strategies, the Phase and Amplitude Control (PAC) and a new proposed strategy, Predicted Current Control with a Fixed Switching Frequency (PCFF), are investigated. Based on the transfer functions derived from the above mentioned analysis, regulators for a closed-loop control are designed. A prototype circuit is built to experimentally verify the theoretical predictions. The analysis and experimental results show that both strategies produce nearly sinusoidal line current with unity power factor on the utility side in both rectifying and regenerating operations and concurrently provide a regulated DC output voltage on the load side. However the proposed PCFF control has a faster and improved dynamic response over the PAC control. Moreover it is also easier to be implemented. Therefore, the PCFF control is preferable to the PAC control. As an example of application, a configuration of variable DC supply under PCFF control is proposed. The quasi-optimal dynamic response obtained shows that the PWM AC to DC converter lays the foundation for building a four-quadrant, fast-dynamic system, and the PCFF control is an effective strategy for improving dynamic performances not only as applied to the AC to DC converter, but also as applied to the DC to DC chopper or other circuits.
Method and apparatus for pulse width modulation control of an AC induction motor
Geppert, Steven; Slicker, James M.
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Method and apparatus for pulse width modulation control of an AC induction motor
NASA Technical Reports Server (NTRS)
Geppert, Steven (Inventor); Slicker, James M. (Inventor)
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
Performance optimization of a photovoltaic chain conversion by the PWM control
NASA Astrophysics Data System (ADS)
Rezoug, M. R.; Chenni, R.
2017-02-01
The interest of the research technique of maximum power point tracking, exposed by this article, lays in the fact of work instantly on the real characteristic of the photovoltaic module. This work is based on instantaneous measurements of its terminals' current & voltage as well as the exploitation of the characteristic "Power - Duty Cycle" to define rapidly the Duty cycle in which power reaches its maximum value. To ensure instantaneous tracking of the point of maximum power, we use "DC/DC Converter" based on "Pulse Wave Modulation's (PWM) Command" controlled by an algorithm implanted in a microcontroller's memory. This algorithm responds to the quick changes in climate (sunlight and temperature). To identify the control parameters "VPV & IPV" at any change in operating conditions, sensors are projected. this algorithm applied to the Duty cycle of the static converter enables the control of power supplied by the photovoltaic generator thanks to oscillatory movement around the MPP. Our article highlights the importance of this technique which lays in its simplicity and performance in changing climatic conditions. This efficiency is confirmed by experimental tests and this technique will improve its predecessors.
Pulse width and height modulation for multi-level resistance in bi-layer TaOx based RRAM
NASA Astrophysics Data System (ADS)
Alamgir, Zahiruddin; Beckmann, Karsten; Holt, Joshua; Cady, Nathaniel C.
2017-08-01
Mutli-level switching in resistive memory devices enables a wide range of computational paradigms, including neuromorphic and cognitive computing. To this end, we have developed a bi-layer tantalum oxide based resistive random access memory device using Hf as the oxygen exchange layer. Multiple, discrete resistance levels were achieved by modulating the RESET pulse width and height, ranging from 2 kΩ to several MΩ. For a fixed pulse height, OFF state resistance was found to increase gradually with the increase in the pulse width, whereas for a fixed pulse width, the increase in the pulse height resulted in drastic changes in resistance. Resistive switching in these devices transitioned from Schottky emission in the OFF state to tunneling based conduction in the ON state, based on I-V curve fitting and temperature dependent current measurements. These devices also demonstrated endurance of more than 108 cycles with a satisfactory Roff/Ron ratio and retention greater than 104 s.
Graphene Oxide: A Perfect Material for Spatial Light Modulation Based on Plasma Channels
Tan, Chao; Wu, Xinghua; Wang, Qinkai; Tang, Pinghua; Shi, Xiaohui; Zhan, Shiping; Xi, Zaifang; Fu, Xiquan
2017-01-01
The graphene oxide (GO) is successfully prepared from a purified natural graphite through a pressurized oxidation method. We experimentally demonstrate that GO as an optical media can be used for spatial light modulation based on plasma channels induced by femtosecond pulses. The modulated beam exhibits good propagation properties in free space. It is easy to realize the spatial modulation on the probe beam at a high concentration of GO dispersion solutions, high power and smaller pulse width of the pump beam. We also find that the spatial modulation on the probe beam can be conveniently adjusted through the power and pulse width of pump lasers, dispersion solution concentration. PMID:28772712
NASA Astrophysics Data System (ADS)
Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun
2014-05-01
In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.
Full-Circle Resolver-to-Linear-Analog Converter
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Smith, Dennis A.; Howard, David E.
2005-01-01
A circuit generates sinusoidal excitation signals for a shaft-angle resolver and, like the arctangent circuit described in the preceding article, generates an analog voltage proportional to the shaft angle. The disadvantages of the circuit described in the preceding article arise from the fact that it must be made from precise analog subcircuits, including a functional block capable of implementing some trigonometric identities; this circuitry tends to be expensive, sensitive to noise, and susceptible to errors caused by temperature-induced drifts and imprecise matching of gains and phases. These disadvantages are overcome by the design of the present circuit. The present circuit (see figure) includes an excitation circuit, which generates signals Ksin(Omega(t)) and Kcos(Omega(t)) [where K is an amplitude, Omega denotes 2(pi)x a carrier frequency (the design value of which is 10 kHz), and t denotes time]. These signals are applied to the excitation terminals of a shaft-angle resolver, causing the resolver to put out signals C sin(Omega(t)-Theta) and C cos(Omega(t)-Theta). The cosine excitation signal and the cosine resolver output signal are processed through inverting comparator circuits, which are configured to function as inverting squarers, to obtain logic-level or square-wave signals .-LL[cos(Omega(t)] and -LL[cos(Omega(t)-Theta)], respectively. These signals are fed as inputs to a block containing digital logic circuits that effectively measure the phase difference (which equals Theta between the two logic-level signals). The output of this block is a pulse-width-modulated signal, PWM(Theta), the time-averaged value of which ranges from 0 to 5 VDC as Theta ranges from .180 to +180deg. PWM(Theta) is fed to a block of amplifying and level-shifting circuitry, which converts the input PWM waveform to an output waveform that switches between precise reference voltage levels of +10 and -10 V. This waveform is processed by a two-pole, low-pass filter, which removes the carrier-frequency component. The final output signal is a DC potential, proportional to Theta that ranges continuously from -10 V at Theta = -180deg to +10 V at Theta = +180deg..
A design of LED adaptive dimming lighting system based on incremental PID controller
NASA Astrophysics Data System (ADS)
He, Xiangyan; Xiao, Zexin; He, Shaojia
2010-11-01
As a new generation energy-saving lighting source, LED is applied widely in various technology and industry fields. The requirement of its adaptive lighting technology is more and more rigorous, especially in the automatic on-line detecting system. In this paper, a closed loop feedback LED adaptive dimming lighting system based on incremental PID controller is designed, which consists of MEGA16 chip as a Micro-controller Unit (MCU), the ambient light sensor BH1750 chip with Inter-Integrated Circuit (I2C), and constant-current driving circuit. A given value of light intensity required for the on-line detecting environment need to be saved to the register of MCU. The optical intensity, detected by BH1750 chip in real time, is converted to digital signal by AD converter of the BH1750 chip, and then transmitted to MEGA16 chip through I2C serial bus. Since the variation law of light intensity in the on-line detecting environment is usually not easy to be established, incremental Proportional-Integral-Differential (PID) algorithm is applied in this system. Control variable obtained by the incremental PID determines duty cycle of Pulse-Width Modulation (PWM). Consequently, LED's forward current is adjusted by PWM, and the luminous intensity of the detection environment is stabilized by self-adaptation. The coefficients of incremental PID are obtained respectively after experiments. Compared with the traditional LED dimming system, it has advantages of anti-interference, simple construction, fast response, and high stability by the use of incremental PID algorithm and BH1750 chip with I2C serial bus. Therefore, it is suitable for the adaptive on-line detecting applications.
Three-Level 48-Pulse STATCOM with Pulse Width Modulation
NASA Astrophysics Data System (ADS)
Singh, Bhim; Srinivas, Kadagala Venkata
2016-03-01
In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.
NASA Astrophysics Data System (ADS)
Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong
2016-02-01
Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle force reproduction and muscle fatigue reduction.
High-resolution laser-projection display system using a grating electromechanical system (GEMS)
NASA Astrophysics Data System (ADS)
Brazas, John C.; Kowarz, Marek W.
2004-01-01
Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.
NASA Astrophysics Data System (ADS)
Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro
The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak.
DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter
NASA Astrophysics Data System (ADS)
Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi
2013-06-01
Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.
Development and performance of pulse-width-modulated static inverter and converter modules
NASA Technical Reports Server (NTRS)
Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.
1971-01-01
Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.
A novel compact low impedance Marx generator with quasi-rectangular pulse output
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Jiang, Ping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Xie, Weiping
2018-04-01
In this paper, a novel low impedance compact Marx generator with near-square pulse output based on the Fourier theory is developed. Compared with the traditional Marx generator, capacitors with different capacity have been used. It can generate a high-voltage quasi-rectangular pulse with a width of 100 ns at low impedance load, and it also has high energy density and power density. The generator consists of 16 modules. Each module comprises an integrative single-ended plastic case capacitor with a nominal value of 54 nF, four ceramic capacitors with a nominal value of 1.5 nF, a gas switch, a charging inductor, a grounding inductor, and insulators which provide mechanical support for all elements. In the module, different discharge periods from different capacitors add to the main circuit to form a quasi-rectangular pulse. The design process of the generator is analyzed, and the test results are provided here. The generator achieved pulse output with a rise time of 32 ns, pulse width of 120 ns, flat-topped width (95%-95%) of 50 ns, voltage of 550 kV, and power of 20 GW.
Development of a Power Electronics Unit for the Space Station Plasma Contactor
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.
1994-01-01
A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.
Liu, Shu-Hung; Huang, Tse-Shih; Yen, Jia-Yush
2010-01-01
Shape memory alloys (SMAs) offer a high power-to-weight ratio, large recovery strain, and low driving voltages, and have thus attracted considerable research attention. The difficulty of controlling SMA actuators arises from their highly nonlinear hysteresis and temperature dependence. This paper describes a combination of self-sensing and model-based control, where the model includes both the major and minor hysteresis loops as well as the thermodynamics effects. The self-sensing algorithm uses only the power width modulation (PWM) signal and requires no heavy equipment. The method can achieve high-accuracy servo control and is especially suitable for miniaturized applications. PMID:22315530
A Simple Accelerometer Calibrator
NASA Astrophysics Data System (ADS)
Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal
2016-08-01
High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.
A Solid-State Modulator for High Speed Kickers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Cook, E G; Chen, Y J
2001-06-11
An all solid-state modulator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high-speed beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. It provides a nominal 18kV pulse with {+-} 10% amplitude modulation on the order of several MHz, rise times on the order of 10nS, and can be configured for either positive or negative polarity. The presentation will include measured performance data.
Phase coded, micro-power impulse radar motion sensor
McEwan, Thomas E.
1996-01-01
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.
Phase coded, micro-power impulse radar motion sensor
McEwan, T.E.
1996-05-21
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Charles Joseph
The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design,more » development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all failure prone capacitors from the power stage. Q-Sync’s simpler electronics also result in higher efficiency because it eliminates the power required by the PCB to perform the obviated power conversions and PWM processes after line synchronous operating speed is reached in the first 5 seconds of operation, after which the PWM circuits drop out and a much less energy intensive “pass through” circuit takes over, allowing the grid-supplied AC power to sustain the motor’s ongoing operation.« less
Single-Chip Microcomputer Control Of The PWM Inverter
NASA Astrophysics Data System (ADS)
Morimoto, Masayuki; Sato, Shinji; Sumito, Kiyotaka; Oshitani, Katsumi
1987-10-01
A single-chip microcomputer-based con-troller for a pulsewidth modulated 1.7 KVA inverter of an airconditioner is presented. The PWM pattern generation and the system control of the airconditioner are achieved by software of the 8-bit single-chip micro-computer. The single-chip microcomputer has the disadvantages of low processing speed and small memory capacity which can be overcome by the magnetic flux control method. The PWM pattern is generated every 90 psec. The memory capacity of the PWM look-up table is less than 2 kbytes. The simple and reliable control is realized by the software-based implementation.
Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang
2017-01-01
This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554
Electric Machine with Boosted Inductance to Stabilize Current Control
NASA Technical Reports Server (NTRS)
Abel, Steve
2013-01-01
High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.
An electromagnetic microvalve for pneumatic control of microfluidic systems.
Liu, Xuling; Li, Songjing
2014-10-01
An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. © 2014 Society for Laboratory Automation and Screening.
Software and hardware complex for research and management of the separation process
NASA Astrophysics Data System (ADS)
Borisov, A. P.
2018-01-01
The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.
Gaussian temporal modulation for the behavior of multi-sinc Schell-model pulses in dispersive media
NASA Astrophysics Data System (ADS)
Liu, Xiayin; Zhao, Daomu; Tian, Kehan; Pan, Weiqing; Zhang, Kouwen
2018-06-01
A new class of pulse source with correlation being modeled by the convolution operation of two legitimate temporal correlation function is proposed. Particularly, analytical formulas for the Gaussian temporally modulated multi-sinc Schell-model (MSSM) pulses generated by such pulse source propagating in dispersive media are derived. It is demonstrated that the average intensity of MSSM pulses on propagation are reshaped from flat profile or a train to a distribution with a Gaussian temporal envelope by adjusting the initial correlation width of the Gaussian pulse. The effects of the Gaussian temporal modulation on the temporal degree of coherence of the MSSM pulse are also analyzed. The results presented here show the potential of coherence modulation for pulse shaping and pulsed laser material processing.
Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Santiago, Walter
2004-01-01
The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.
Transverse Mode Dynamics of VCSELs Undergoing Current Modulation
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind
2000-01-01
Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling
NASA Astrophysics Data System (ADS)
Belyayev, Serhiy; Ivchenko, Nickolay
2018-04-01
Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself.
NASA Astrophysics Data System (ADS)
Qian, Zhengyang; Takezawa, Yoshiki; Shimokawa, Kenji; Kino, Hisashi; Fukushima, Takafumi; Kiyoyama, Koji; Tanaka, Tetsu
2018-04-01
Health monitoring and self-management have become increasingly more important because of health awareness improvement, the aging of population, and other reasons. In general, pulse waves are among the most useful physiological signals that can be used to calculate several parameters such as heart rate and blood pressure for health monitoring and self-management. To realize an automatic and real-time pulse-wave monitoring system that can be used in daily life, we have proposed a trans-nail pulse-wave monitoring system that was placed on the fingernail to detect photoplethysmographic (PPG) signals as pulse waves. In this study, we designed a PPG recording circuit that was composed of a 600 × 600 µm2 photodiode (PD), an LED driver with pulse wave modulation (PWM) and a low-frequency ring oscillator (RING), and a PPG signal readout circuit. The proposed circuit had a very small area of 2.2 × 1.1 mm2 designed with 0.18 µm CMOS technology. The proposed circuit was used to detect pulse waves on the human fingernail in both the reflection and transmission modes. Electrical characteristics of the prototype system were evaluated precisely and PPG waveforms were obtained successfully.
Controller for a High-Power, Brushless dc Motor
NASA Technical Reports Server (NTRS)
Fleming, David J.; Makdad, Terence A.
1987-01-01
Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.
FPGA Techniques Based New Hybrid Modulation Strategies for Voltage Source Inverters
Sudha, L. U.; Baskaran, J.; Elankurisil, S. A.
2015-01-01
This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results. PMID:25821852
Pegasus power system facility upgrades
NASA Astrophysics Data System (ADS)
Lewicki, B. T.; Kujak-Ford, B. A.; Winz, G. R.
2008-11-01
Two key Pegasus systems have been recently upgraded: the Ohmic-transformer IGCT bridge control system, and the plasma-gun injector power system. The Ohmic control system contains two new microprocessor controlled components to provide an interface between the PWM controller and the IGCT bridges. An interface board conditions the command signals from the PWM controller. A splitter/combiner board routes the conditioned PWM commands to an array of IGCT bridges and interprets IGCT bridge status. This system allows for any PWM controller to safely control IGCT bridges. Future developments will include a transition to a polyphasic bridge control. This will allow for 3 to 4 times the present pulse length and provide a much higher switching frequency. The plasma gun injector system now includes active current feedback control on gun bias current via PWM buck type power supplies. Near term goals include a doubling or tripling of the applied bias voltage. Future arc bias system power supplies may include a simpler boost type system which will allow access to even higher voltages using existing low voltage energy storage systems.
Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.
Chen, Jingyuan; Li, Peili
2015-08-10
A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.
ADJUSTABLE DOUBLE PULSE GENERATOR
Gratian, J.W.; Gratian, A.C.
1961-08-01
>A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)
An inexpensive Arduino-based LED stimulator system for vision research.
Teikari, Petteri; Najjar, Raymond P; Malkki, Hemi; Knoblauch, Kenneth; Dumortier, Dominique; Gronfier, Claude; Cooper, Howard M
2012-11-15
Light emitting diodes (LEDs) are being used increasingly as light sources in life sciences applications such as in vision research, fluorescence microscopy and in brain-computer interfacing. Here we present an inexpensive but effective visual stimulator based on light emitting diodes (LEDs) and open-source Arduino microcontroller prototyping platform. The main design goal of our system was to use off-the-shelf and open-source components as much as possible, and to reduce design complexity allowing use of the system to end-users without advanced electronics skills. The main core of the system is a USB-connected Arduino microcontroller platform designed initially with a specific emphasis on the ease-of-use creating interactive physical computing environments. The pulse-width modulation (PWM) signal of Arduino was used to drive LEDs allowing linear light intensity control. The visual stimulator was demonstrated in applications such as murine pupillometry, rodent models for cognitive research, and heterochromatic flicker photometry in human psychophysics. These examples illustrate some of the possible applications that can be easily implemented and that are advantageous for students, educational purposes and universities with limited resources. The LED stimulator system was developed as an open-source project. Software interface was developed using Python with simplified examples provided for Matlab and LabVIEW. Source code and hardware information are distributed under the GNU General Public Licence (GPL, version 3). Copyright © 2012 Elsevier B.V. All rights reserved.
Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi
2017-12-01
In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.
Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia.
Xiaohua, Feng; Fei, Gao; Yuanjin, Zheng
2015-07-01
Hyperthermia therapy requires tight temperature control to achieve selective killing of cancerous tissue with minimal damage on surrounding healthy tissues. To this end, accurate temperature monitoring and subsequent heating control are critical. However, an economic, portable, and real-time temperature control solution is currently lacking. To bridge this gap, we present a novel portable close-loop system for hyperthermia temperature control, in which photoacoustic technique is proposed for noninvasive real-time temperature measurement. Exploiting the high sensitivity of photoacoustics, the temperature is monitored with an accuracy of around 0.18 °C and then fed back to a controller implemented on field programmable gate array (FPGA) for temperature control. Dubbed as portable hyperthermia feedback controller (pHFC), it stabilizes the temperature at preset values by regulating the hyperthermia power with a proportional-integral-derivative (PID) algorithm; and to facilitate digital implementation, the pHFC further converts the PID output into switching values (0 and 1) with the pulse width modulation (PWM) algorithm. Proof-of-concept hyperthermia experiments demonstrate that the pHFC system is able to bring the temperature from baseline to predetermined value with an accuracy of 0.3° and a negligible temperature overshoot. The pHFC can potentially be translated to clinical applications with customized hyperthermia system design. This paper can facilitate future efforts in seamless integration of close-loop temperature control solution and various clinical hyperthermia systems.
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.
A new topology and control method for electromagnetic transmitter power supplies
NASA Astrophysics Data System (ADS)
Zhang, Yiming; Zhang, Jialin; Yuan, Dakang
2017-04-01
As essential equipment for electromagnetic exploration, electromagnetic transmitter reverse the steady power supply with desired frequency and transmit the power through grounding electrodes. To obtain effective geophysical data during deep exploration, the transmitter needs to be high-voltage, high-current, with high-accuracy output, and yet compact and light. The researches on the power supply technologies for high-voltage high-power electromagnetic transmitter is of significant importance to the deep geophysical explorations. Therefore, the performance of electromagnetic transmitter is mainly subject to the following two aspects: the performance of emission current and voltage, and the power density. These requirements bring technical difficulties to the development of power supplies. Conventionally, high-frequency switching power supplies are applied in the design of a high-power transmitter power supply. However, the structure of the topology is complicate, which may reduce the controllability of the output voltage and the reliability of the system. Without power factor control, the power factor of the structure is relatively low. Moreover high switching frequency causes high loss. With the development of the PWM (pulse width modulation) technique, its merits of simple structure, low loss, convenient control and unit power factor have made it popular in electrical energy feedback, active filter, and power factor compensation. Studies have shown that using PWM converters and space vector modulation have become the trend in designing transmitter power supply. However, the earth load exhibits different impedances at different frequencies. Thus ensuing high-accuracy and a stable output from a transmitter power supply in harsh environment has become a key topic in the design of geophysical exploration instruments. Based on SVPWM technology, an electromagnetic transmitter power supply has been designed and its control strategy has been studied. The transmitting system is composed of power supply, SVPWM converter, and power inverter units. The functions of the units are as follows: (1) power supply: a generator providing power with three phase; (2) SVPWM converter: convert AC to DC output; (3) power inverter unit: the inverter is used to convert DC to AC output whose frequency, amplitude and waveform are variable. In the SVPWM technique, the active current and the reactive current are controlled separately, and each variable is analyzed individually, thus the power factor of the system is improved. Through controlling the PWM converter at the generation side, we can get any power factor. Usually the power factor of the generation side is set to 1. Finally, simulation and experimental results validate both the correctness of the established model and the effectiveness of the control method. We can acquire unity power factor for the input and steady current for the output. They also demonstrated that the electromagnetic transmitter power supply designed in this study can meet the practical needs of field geological exploration. We can improve the utilization of the transmitter system.
Guo, Jia; Buxton, Richard B.; Wong, Eric C.
2015-01-01
Purpose In pulsed arterial spin labeling (PASL) methods, arterial blood is labeled via inverting a slab with uniform thickness, resulting in different temporal widths of boluses in vessels with different flow velocities. This limits the temporal resolution and signal-to-noise ratio (SNR) efficiency gains in PASL-based methods intended for high temporal resolution and SNR efficiency, such as Turbo-ASL and Turbo-QUASAR. Theory and Methods A novel wedge-shaped (WS) adiabatic inversion pulse is developed by adding in-plane gradient pulses to a slice-selective (SS) adiabatic inversion pulse to linearly modulate the inversion thicknesses at different locations while maintaining the adiabatic properties of the original pulse. A hyperbolic secant (HS) based WS inversion pulse was implemented. Its performance was tested in simulations, phantom and human experiments, and compared to an SS HS inversion pulse. Results Compared to the SS inversion pulse, the WS inversion pulse is capable of inducing different inversion thicknesses at different locations. It can be adjusted to generate a uniform temporal width of boluses in arteries at locations with different flow velocities. Conclusion The WS inversion pulse can be used to control the temporal widths of labeled boluses in PASL experiments. This should benefit PASL experiments by maximizing labeling duty cycle, and improving temporal resolution and SNR efficiency. PMID:26451521
Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun
2011-12-01
We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.
Welchko, Brian A [Torrance, CA
2012-02-14
Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotovskii, I O; Lapin, V A; Sementsov, D I
2016-01-31
We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
NASA Astrophysics Data System (ADS)
Hmood, Jassim K.; Harun, Sulaiman W.
2018-05-01
A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.
Multiwavelength self-pulsating fibre laser based on cascaded SPM spectral broadening and filtering
NASA Astrophysics Data System (ADS)
Rochette, Martin; Sun, Kai; Hernández-Cordero, Juan; Chen, Lawrence R.
2008-06-01
We experimentally demonstrate the operation of a laser based on self-phase modulation followed by offset spectral filtering. This laser has three operation modes: a continuous-wave mode, a self-pulsating mode where the laser self ignites and produces pulses, and a pulse-buffering mode where no new pulse is formed from spontaneous emission noise but only pulses already propagating or pulses injected in the laser cavity can be sustained. In the self-pulsating and pulse-buffering modes, the laser is multi-wavelength and continuously tunable over the entire gain band of the amplifiers. The output pulse width is quasi transform-limited with respect to the spectral-width of the filters used in the cavity. Overall, this device provides a simple alternative to pulsed laser source and also represents a promising approach for signal buffering.
Microwave influence on the isolated heart function. 1: Effect of modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakhomov, A.G.; Dubovick, B.V.; Degtyariov, I.G.
1995-09-01
Dependence of the microwave effect on modulation parameters (pulse width, duty ratio, and peak intensity) was studied in an isolated frog auricle preparation. The rate and amplitude of spontaneous auricle twitches were measured during and after a 2 min exposure to 915 or 885 MHz microwaves and were compared to preexposure values. The studied ranges of modulation parameters were: pulse width, 10{sup {minus}6}--10{sup {minus}2} s; duty ratio, 7:100000, and peak specific absorption rate, 100--3,000 W/kg. Combinations of the parameters were chosen by chance, and about 400 various exposure regimes were tested. The experiments established that no regime was effective unlessmore » the average microwave power was high enough to induce preparation heating (0.1--0.4 C). The twitch rate instantly increased, and the amplitude decreased, as the temperature rose; similar changes could be induced by equivalent conventional heating. the data provide evidence that the effect of short-term microwave exposure on the isolated heart pacemaker and contractile functions depends on pulse modulation just as much as modulation determines the average absorbed power. These functions demonstrated no specific dependence on exposure parameters such as frequency or power windows.« less
Rogers, III, C. E.; Gould, P. L.
2016-02-01
Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Rogers, C E; Gould, P L
2016-02-08
We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
High power solid state laser modulator
Birx, Daniel L.; Ball, Don G.; Cook, Edward G.
2004-04-27
A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.
Gattinger, Norbert; Moessnang, Georg; Gleich, Bernhard
2012-07-01
Transcranial magnetic stimulation (TMS) is able to noninvasively excite neuronal populations due to brief magnetic field pulses. The efficiency and the characteristics of stimulation pulse shapes influence the physiological effect of TMS. However, commercial devices allow only a minimum of control of different pulse shapes. Basically, just sinusoidal and monophasic pulse shapes with fixed pulse widths are available. Only few research groups work on TMS devices with controllable pulse parameters such as pulse shape or pulse width. We describe a novel TMS device with a full-bridge circuit topology incorporating four insulated-gate bipolar transistor (IGBT) modules and one energy storage capacitor to generate arbitrary waveforms. This flexible TMS (flexTMS ) device can generate magnetic pulses which can be adjusted with respect to pulse width, polarity, and intensity. Furthermore, the equipment allows us to set paired pulses with a variable interstimulus interval (ISI) from 0 to 20 ms with a step size of 10 μs. All user-defined pulses can be applied continually with repetition rates up to 30 pulses per second (pps) or, respectively, up to 100 pps in theta burst mode. Offering this variety of flexibility, flexTMS will allow the enhancement of existing TMS paradigms and novel research applications.
Coherent THz Repetitive Pulse Generation in a GaSe Crystal by Dual-wavelength Nd:YLF Laser
NASA Astrophysics Data System (ADS)
Bezotosnyi, V. V.; Cheshev, E. A.; Gorbunkov, M. V.; Koromyslov, A. L.; Krokhin, O. N.; Mityagin, Yu. A.; Popov, Yu. M.; Savinov, S. A.; Tunkin, V. G.
We present modification of difference frequency generator of coherent THz radiation in a nonlinear GaSe crystal using dual-wavelength diode-pumped solid-state Nd:YLF laser. Generation at the two wavelengths (1.047 and 1.053 μm) was carried out by equalization of the gains at these wavelengths near the frequency degeneracy of the transverse modes in resonator cavity, Q-switched by acousto-optical modulator. The main parameters of the device were measured: angular synchronism (width 0.6 degrees), polarization ratio (1:100), conversion efficiency (10-7), pulse power (0.8 mW), frequency and width (53,8 сm-1, 0,6 сm-1), pulse width and repetition rate (10 ns,7 kHz). The method is promising for practical purposes.
NASA Technical Reports Server (NTRS)
Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel
2012-01-01
Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.
NASA Astrophysics Data System (ADS)
Citarsa, I. B. F.; Satiawan, I. N. W.; Wiryajati, I. K.; Supriono
2016-01-01
Multilevel inverters have been widely used in many applications since the technology is advantageous to increase the converter capability as well as to improve the output voltage quality. According to the applied switching frequency, multilevel modulations can be subdivided into three classes, i.e: fundamental switching frequency, high switching frequency and mixed switching frequency. This paper investigates the performance of cascaded H-bridge (CHB) multilevel inverter that is modulated using mixed switching frequency (MSF) PWM with various dc-link voltage ratios. The simulation results show the nearly sinusoidal load output voltages are successfully achieved. It is revealed that there is improvement in output voltages quality in terms of THD and low-order harmonics content. The CHB inverter that is modulated using MSF PWM with equal dc-link voltage ratio (½ Vdc: ½ Vdc) produces output voltage with the lowest low-order harmonics (less than 1% of fundamental) while the CHB inverter that is modulated using MSF PWM with un-equal dc-link voltage ratio (2/3 Vdc: 1/3 Vdc) produces a 7-level output voltage with the lowest THD (16.31%) compared to the other PWM methods. Improvement of the output voltage quality here is also in line with improvement of the number of available levels provided in the output voltage. Here only 2 cells H-bridge inverter (contain 8 switches) are needed to produce a 7- level output voltage, while in the conventional CHB inverter at least 3 cells of H-bridge inverter (contain 12 switches) are needed to produce a 7-level output voltage. Hence it is valuable in term of saving number of component.
Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Anaya, R M; Caporaso, G C
2002-11-15
A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beammore » centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.« less
Noise-like pulse generation in an ytterbium-doped fiber laser using tungsten disulphide
NASA Astrophysics Data System (ADS)
Zhang, Wenping; Song, Yanrong; Guoyu, Heyang; Xu, Runqin; Dong, Zikai; Li, Kexuan; Tian, Jinrong; Gong, Shuang
2017-12-01
We demonstrated the noise-like pulse (NLP) generation in an ytterbium-doped fiber (YDF) laser with tungsten disulphide (WS2). Stable fundamental mode locking and second-order harmonic mode locking were observed. The saturable absorber (SA) was a WS2-polyvinyl alcohol film. The modulation depth of the WS2 film was 2.4%, and the saturable optical intensity was 155 MW cm-2. Based on this SA, the fundamental NLP with a pulse width of 20 ns and repetition rate of 7 MHz were observed. The autocorrelation trace of output pulses had a coherent spike, which came from NLP. The average pulse width of the spike was 550 fs on the top of a broad pedestal. The second-order harmonic NLP had a spectral bandwidth of 1.3 nm and pulse width of 10 ns. With the pump power of 400 mW, the maximum output power was 22.2 mW. To the best of our knowledge, this is the first time a noise-like mode locking in an YDF laser based on WS2-SA in an all normal dispersion regime was obtained.
Rise time analysis of pulsed klystron-modulator for efficiency improvement of linear colliders
NASA Astrophysics Data System (ADS)
Oh, J. S.; Cho, M. H.; Namkung, W.; Chung, K. H.; Shintake, T.; Matsumoto, H.
2000-04-01
In linear accelerators, the periods during the rise and fall of a klystron-modulator pulse cannot be used to generate RF power. Thus, these periods need to be minimized to get high efficiency, especially in large-scale machines. In this paper, we present a simplified and generalized voltage rise time function of a pulsed modulator with a high-power klystron load using the equivalent circuit analysis method. The optimum pulse waveform is generated when this pulsed power system is tuned with a damping factor of ˜0.85. The normalized rise time chart presented in this paper allows one to predict the rise time and pulse shape of the pulsed power system in general. The results can be summarized as follows: The large distributed capacitance in the pulse tank and operating parameters, Vs× Tp , where Vs is load voltage and Tp is the pulse width, are the main factors determining the pulse rise time in the high-power RF system. With an RF pulse compression scheme, up to ±3% ripple of the modulator voltage is allowed without serious loss of compressor efficiency, which allows the modulator efficiency to be improved as well. The wiring inductance should be minimized to get the fastest rise time.
Multiphoton correlations in parametric down-conversion and their measurement in the pulsed regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, O A; Iskhakov, T Sh; Penin, A N
2006-10-31
We consider normalised intensity correlation functions (CFs) of different orders for light emitted via parametric down-conversion (PDC) and their dependence on the number of photons per mode. The main problem in measuring such correlation functions is their extremely small width, which considerably reduces their contrast. It is shown that if the radiation under study is modulated by a periodic sequence of pulses that are short compared to the CF width, no decrease in the contrast occurs. A procedure is proposed for measuring normalised CFs of various orders in the pulsed regime. For nanosecond-pulsed PDC radiation, normalised second-order CF is measuredmore » experimentally as a function of the mean photon number. (nonlinear optical phenomena)« less
A Spacecraft Housekeeping System-on-Chip in a Radiation Hardened Structured ASIC
NASA Technical Reports Server (NTRS)
Suarez, George; DuMonthier, Jeffrey J.; Sheikh, Salman S.; Powell, Wesley A.; King, Robyn L.
2012-01-01
Housekeeping systems are essential to health monitoring of spacecraft and instruments. Typically, sensors are distributed across various sub-systems and data is collected using components such as analog-to-digital converters, analog multiplexers and amplifiers. In most cases programmable devices are used to implement the data acquisition control and storage, and the interface to higher level systems. Such discrete implementations require additional size, weight, power and interconnect complexity versus an integrated circuit solution, as well as the qualification of multiple parts. Although commercial devices are readily available, they are not suitable for space applications due the radiation tolerance and qualification requirements. The Housekeeping System-o n-A-Chip (HKSOC) is a low power, radiation hardened integrated solution suitable for spacecraft and instrument control and data collection. A prototype has been designed and includes a wide variety of functions including a 16-channel analog front-end for driving and reading sensors, analog-to-digital and digital-to-analog converters, on-chip temperature sensor, power supply current sense circuits, general purpose comparators and amplifiers, a 32-bit processor, digital I/O, pulse-width modulation (PWM) generators, timers and I2C master and slave serial interfaces. In addition, the device can operate in a bypass mode where the processor is disabled and external logic is used to control the analog and mixed signal functions. The device is suitable for stand-alone or distributed systems where multiple chips can be deployed across different sub-systems as intelligent nodes with computing and processing capabilities.
Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reghu, T.; Mandloi, V.; Shrivastava, Purushottam
Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses ofmore » 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.« less
Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron
NASA Astrophysics Data System (ADS)
Reghu, T.; Mandloi, V.; Shrivastava, Purushottam
2014-05-01
Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.
Closed-loop pulsed helium ionization detector
Ramsey, Roswitha S.; Todd, Richard A.
1987-01-01
A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.
Theory of active mode locking of a semiconductor laser in an external cavity
NASA Technical Reports Server (NTRS)
Yeung, J. A.
1981-01-01
An analytical treatment is given for the active mode locking of a semiconductor laser in an external resonator. The width of the mode-locked pulses is obtained as a function of the laser and cavity parameters and the amount of frequency detuning. The effects of self-modulation and saturation are included in the treatment. The pulse output is compared with that obtained by a strong modulation of the laser diode with no external cavity.
Analysis of a PWM Resonant Buck Chopper for Use as a Ship Service Converter Module
1999-01-01
zonal architecture [2] has a number of advantages over the current radial distribution architecture. The radial network includes generators supplying...Several representative topologies are considered in this section. The literature is replete with softswitching dc-dc converter topologies and control...differs from a conventional PWM buck by the addition of a resonant network consisting of inductor Lr, capacitor Q, an auxiliary switch Sr, an auxiliary
Research on single-chip microcomputer controlled rotating magnetic field mineralization model
NASA Astrophysics Data System (ADS)
Li, Yang; Qi, Yulin; Yang, Junxiao; Li, Na
2017-08-01
As one of the method of selecting ore, the magnetic separation method has the advantages of stable operation, simple process flow, high beneficiation efficiency and no chemical environment pollution. But the existing magnetic separator are more mechanical, the operation is not flexible, and can not change the magnetic field parameters according to the precision of the ore needed. Based on the existing magnetic separator is mechanical, the rotating magnetic field can be used for single chip microcomputer control as the research object, design and trial a rotating magnetic field processing prototype, and through the single-chip PWM pulse output to control the rotation of the magnetic field strength and rotating magnetic field speed. This method of using pure software to generate PWM pulse to control rotary magnetic field beneficiation, with higher flexibility, accuracy and lower cost, can give full play to the performance of single-chip.
Generation of picosecond optical pulse based on chirp compensation
NASA Astrophysics Data System (ADS)
Sun, Xiaofeng; Yang, Jiaqian; Li, Shangyuan; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun
2017-10-01
Picosecond optical pulses are widely used in optical communication systems, such as the optical time division multiplexing (OTDM) and photonic analog-to-digital converter (ADC). We have proposed and demonstrated a simple method to generate picosecond optical pulse using the mach-zehnder modulator (MZM), phase modulator (PM) and single model fiber (SMF). The phase modulator is used to generate a frequency chirp which varies periodically with time. The MZM is used to suppress the pedestal of the pulse and improve the performance of the pulse. The SMF is used to compensate the frequency chirp. We have carried out theoretical analysis and numerical simulation for the generation process of the picosecond optical pulse. The influence of phase shift between the modulation signals loaded on the MZM and PM is analyzed by numerical simulation and the conditions for the generation of picosecond optical pulse are given. The formula for calculating the optimum length of SMF which is used to compensate the linear chirp is given. The optical pulses with a repetition frequency of 10 GHz and a pulse width of 8.5 ps were obtained. The time-bandwidth product was as small as 1.09 and the timing jitter is as low as 83 fs.
Generating nonlinear FM chirp radar signals by multiple integrations
Doerry, Armin W [Albuquerque, NM
2011-02-01
A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.
NASA Astrophysics Data System (ADS)
Liu, Yang; Wang, Chao; Luo, Daping; Yang, Chao; Li, Jiang; Ge, Lin; Pan, Yubai; Li, Wenxue
2017-12-01
We demonstrate the passively mode-locked laser performances of bulk Yb:YAG ceramic prepared by non-aqueous tape casting, which generates initial pulses in temporal width of 3 ps and spectrum width of 3 nm without intra-cavity dispersion management. The ceramic laser is further used as seeding oscillator in a fiber nonlinear amplification system, where ultrashort pulses in maximum output power of ˜100 W and pulse duration of 70 fs are achieved. Moreover, the laser spectrum is broadened to be ˜41 nm due to self-phase modulation effects in the gain fiber, overcoming the narrow spectrum limitations of ceramic materials. Our approach opens a new avenue for power-scaling and spectrum-expanding of femtosecond ceramic lasers.
Mazinan, A H; Pasand, M; Soltani, B
2015-09-01
In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Characterization of Pilot Technique
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Aponso, Bimal; Godfroy, Martine
2017-01-01
Skilled pilots often use pulse control when controlling higher order (i.e. acceleration-command) vehicle dynamics. Pulsing does not produce a stick response that resembles what the human Crossover Model predicts. The Crossover Model (CM) assumes the pilot provides compensation necessary (lead or lag) such that the suite of display-human-vehicle approximates an integrator in the region of crossover frequency. However, it is shown that the CM does appear to drive the pilots pulsing behavior in a very predictable manner. Roughly speaking, the pilot generates pulses such that the area under the pulse (pulse amplitude multiplied by pulse width) is approximately equal to area under the hypothetical CM output. This can allow a pilot to employ constant amplitude pulsing so that only the pulse duration (width) is modulated a drastic simplification over the demands of continuous tracking. A pilot pulse model is developed, with which the parameters of the pilots internally-generated CM can be computed in real time for pilot monitoring and display compensation. It is also demonstrated that pursuit tracking may be activated when pulse control is employed.
Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers
NASA Astrophysics Data System (ADS)
Zameroski, Nathan D.; Wanke, Michael; Bossert, David
2013-03-01
The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Passively mode-locked soliton femtosecond pulses employing graphene saturable absorber
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Muhammad, F. D.; Latif, A. A.; Abu Bakar, M. H.; Yusoff, Z.; Mahdi, M. A.
2017-09-01
We demonstrate a passively mode-locked fiber laser incorporating graphene thin film (GTF) as saturable absorber (SA). The SA is fabricated by sandwiching the GTF between two single mode fiber ferrules through a fiber adaptor. The transmission loss at 1560 nm and non-linear saturation absorption modulation depth for GTF-SA are 0.8 dB and 2.90%, respectively. An erbium-doped fiber laser cavity is constructed to verify the functionality of GTF-SA and is designed to have net anomalous dispersion. It generates large spectral width of 4.99 nm with pulse repetition rate of 9.655 MHz and pulse width of 670 fs. Net anomalous dispersion and time bandwidth product higher than the sech2 transform-limited pulse validate the experimental result. In short, we demonstrate high performance GTF-SA that is able to generate ultrafast pulse duration in femtosecond range effortlessly with simple and green SA fabrication procedures.
Repetitive transcranial magnetic stimulator with controllable pulse parameters
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Repetitive transcranial magnetic stimulator with controllable pulse parameters.
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Solid-state pulse modulator using Marx generator for a medical linac electron-gun
NASA Astrophysics Data System (ADS)
Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae
2016-04-01
A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.
A third-order class-D amplifier with and without ripple compensation
NASA Astrophysics Data System (ADS)
Cox, Stephen M.; du Toit Mouton, H.
2018-06-01
We analyse the nonlinear behaviour of a third-order class-D amplifier, and demonstrate the remarkable effectiveness of the recently introduced ripple compensation (RC) technique in reducing the audio distortion of the device. The amplifier converts an input audio signal to a high-frequency train of rectangular pulses, whose widths are modulated according to the input signal (pulse-width modulation) and employs negative feedback. After determining the steady-state operating point for constant input and calculating its stability, we derive a small-signal model (SSM), which yields in closed form the transfer function relating (infinitesimal) input and output disturbances. This SSM shows how the RC technique is able to linearise the small-signal response of the device. We extend this SSM through a fully nonlinear perturbation calculation of the dynamics of the amplifier, based on the disparity in time scales between the pulse train and the audio signal. We obtain the nonlinear response of the amplifier to a general audio signal, avoiding the linearisation inherent in the SSM; we thereby more precisely quantify the reduction in distortion achieved through RC. Finally, simulations corroborate our theoretical predictions and illustrate the dramatic deterioration in performance that occurs when the amplifier is operated in an unstable regime. The perturbation calculation is rather general, and may be adapted to quantify the way in which other nonlinear negative-feedback pulse-modulated devices track a time-varying input signal that slowly modulates the system parameters.
NASA Astrophysics Data System (ADS)
Zuo, Chao; Chen, Qian; Gu, Guohua; Feng, Shijie; Feng, Fangxiaoyu; Li, Rubin; Shen, Guochen
2013-08-01
This paper introduces a high-speed three-dimensional (3-D) shape measurement technique for dynamic scenes by using bi-frequency tripolar pulse-width-modulation (TPWM) fringe projection. Two wrapped phase maps with different wavelengths can be obtained simultaneously by our bi-frequency phase-shifting algorithm. Then the two phase maps are unwrapped using a simple look-up-table based number-theoretical approach. To guarantee the robustness of phase unwrapping as well as the high sinusoidality of projected patterns, TPWM technique is employed to generate ideal fringe patterns with slight defocus. We detailed our technique, including its principle, pattern design, and system setup. Several experiments on dynamic scenes were performed, verifying that our method can achieve a speed of 1250 frames per second for fast, dense, and accurate 3-D measurements.
Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren
2018-04-01
This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.
Control System for the LLNL Kicker Pulse Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Anaya, R M; Cook, E G
2002-06-18
A solid-state high voltage pulse generator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high speed electron beam kickers has been designed and tested at LLNL. A control system calculates a desired waveform to be applied to the kicker based on measured electron beam displacement then adjusts the pulse generators to provide the desired waveform. This paper presents the design of the control system and measure performance data from operation on the ETA-11 accelerator at LLNL.
Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1992-01-01
Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite laser is reported. The forsterite laser was actively mode locked by using an acoustooptic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intracavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses measured had a 60-fs pulse width.
Analysis and design of a class-D amplifier
NASA Technical Reports Server (NTRS)
1968-01-01
Analysis of a basic class-D amplifier circuit configuration shows its adaptability to a variety of applications. The feedback, input and output configuration and the frequency spectrum of the pulse-width-modulated signal are analyzed.
A New Type Hi-Speed BLDC Control System Base on Indirect Current Control Strategy
NASA Astrophysics Data System (ADS)
Wang, D. P.; Wang, Y. C.; Zhang, F. G.; Jin, S.
2017-05-01
High speed BLDC has the characteristic as larger air gap smaller armature inductance, traditional PWM modulation will produce a great number of high frequency current harmonics which led problem like large torque ripple and serious motor heat. In the meantime traditional PWM modulation use the diode rectifier which cause harmonic pollution in electric power net. To solve the problem above, proposes a new motor controller topology. Using the IGBT device to replace the diode on frequency converter rectifier side, apply the power factor correction technology, reduce the pollution on the grid. Using busbar current modulation on the inverter, driving bridge-arm use 3-phase 6-state open as driving Mode, realize the control on a 10000r/min,10kw BLDC. The results of Simulation on matlab show the topological structure as proposed can effectively improve the network side power factor and reduce the motor armature winding harmonic and motor torque ripple.
Caracterisation des mecanismes d'usure en cavitation de revetements HVOF a base de CaviTec
NASA Astrophysics Data System (ADS)
Lavigne, Sebastien
The increasing demand for high performance power conversion systems continuously pushes for improvement in efficiency and power density. This dissertation focuses on a topological effort to efficiently utilize the active and passive devices. In particular, a hybrid approach is adopted, where both capacitors and inductors are used in the voltage conversion and power transfer process. Conventional capacitor-based converters, called switched-capacitor (SC) converters, suffer from poor efficiency due to the inevitable charge redistribution process. With a strategic placement of one or more inductors, the charge redistribution loss can be eliminated by inductively charging/discharging the capacitors, a process called soft-charging operation. As a result, the capacitor size can be greatly reduced without reducing the efficiency. A general analytical framework is presented, which determines whether an arbitrary SC topology is able to achieve full soft-charging operation with a single inductor. For topologies that cannot, a split-phase control technique is introduced, which amends existing two-phase controls to completely eliminate the charge redistribution loss. In addition, alternative placements of inductors are explored to extend the family of hybrid converters. The hybrid converters can have two modes of operation, the fixed-ratio mode and pulse width modulated (PWM) mode. The fixed-conversion-ratio hybrid converters operate in a similar manner to that of a conventional SC converter, with the addition of a soft-charging inductor. The switching frequency of such converters can be adjusted to operate in either zero current switching (ZCS) mode or continuous conduction mode (CCM), which allows for the trade-off of switching loss and conduction loss. It is shown that the capacitor and inductor values can be selected to achieve a minimal passive component volume, which can be significantly smaller than that of a conventional SC converter or a magnetic-based converter. On the other hand, PWM-based hybrid converters generate a PWM rectangular wave as the terminal voltage to the inductor, similar to the operation of a buck converter. In contrast to conventional SC converters, such hybrid converters can achieve lossless and continuous regulation of the output voltage. Compared to buck converters, the required inductor is greatly reduced, as well as the switch stress. A 80-170 V input, 12-24 V output prototype PWM Dickson converter is implemented using GaN switches. The measured peak efficiency is 97%, and high efficiency can be maintained over the entire input and output operating range. In addition, the similarity between multilevel converters (for example, flying capacitor multilevel (FCML) converters) and the PWM-based hybrid SC converters is discussed. Both types of converters can be seen as a hybrid converter which uses both capacitors and inductors for energy transfer. A general framework to compare these converters, along with conventional buck converters, is proposed. In this framework, the power losses (including conduction loss and switching loss) are kept constant, while the total passive component volume is used as the figure of merit. Based on the principle of maximizing energy utilization of passive components, a 7-level FCML converter and an active energy buffer are designed and implemented for single phase dc-ac applications. In addition, the stand-alone system includes a start-up circuitry, EMC filter and auxiliary power supply. The enclosed box achieves a combined power density of 216 W/in3 and an efficiency of 97.4%, and compares favorably against the state-of-the-art designs under the same specification. To further improve the efficiency and power density, soft-switching techniques are investigated and applied on the hybrid converters. A zero voltage switching (ZVS) technique is introduced for both the fixed-ratio mode and the PWM mode operated hybrid converters. The previous hardware prototypes are modified for ZVS operation, and prove the feasibility of simultaneous soft-charging and soft-switching operation. Last but not the least, some of the practical issues associated with the hybrid converter are discussed, such as practical capacitor selection, capacitor voltage balancing and other circuit implementation challenges. Future work based on these topics is given. In summary, these hybrid converters are suited for applications where extreme efficiency and power density are critical. Through efficient utilization of active and passive devices, the hybrid topologies can offer a greater optimization opportunity and ability to take advantage of technology improvement than is possible with conventional designs.
Arcjet power supply and start circuit
NASA Technical Reports Server (NTRS)
Gruber, Robert P. (Inventor)
1988-01-01
A dc power supply for spacecraft arcjet thrusters has an integral automatic starting circuit and an output averaging inductor. The output averaging inductor, in series with the load, provides instantaneous current control, and ignition pulse and an isolated signal proportional to the arc voltage. A pulse width modulated converter, close loop configured, is also incorporated to give fast response output current control.
NASA Astrophysics Data System (ADS)
Zhang, Cunshan; Zheng, Xinxin; Li, Haitao; Li, Zhenmei; Zhang, Tao; Jiao, Can
2018-04-01
High temperature superconducting pulsed power transformer (HTSPPT) is an important device for pulsed power supplies. It consists of a superconducting primary and a normal conducting secondary, which is used for energy storage and current amplification. The critical current density, the energy storage, and the coupling coefficient are three main performance indexes. They are affected by the geometry parameters of HTSPPT modules, such as the height and the width of the superconducting coils. In addition, the hoop stress of the HTSPPT coils is limited by the maximum tensile strength of high temperature superconducting (HTS) tapes. In this paper, Bi-2223/Ag HTS tapes are selected as the wire of primary inductor and the toroidal structure model is selected for multiple HTSPPT modules. The relationships between the geometry parameters of HTSPPT modules and the electrical performance are studied.
A laser based frequency modulated NL-OSL phenomenon
NASA Astrophysics Data System (ADS)
Mishra, D. R.; Bishnoi, A. S.; Soni, Anuj; Rawat, N. S.; Bhatt, B. C.; Kulkarni, M. S.; Babu, D. A. R.
2015-01-01
The detailed theoretical and experimental approach to novel technique of pulse frequency modulated stimulation (PFMS) method has been described for NL-OSL phenomenon. This method involved pulsed frequency modulation with respect to time for fixed pulse width of 532 nm continuous wave (CW)-laser light. The linearly modulated (LM)-, non-linearly (NL)-stimulation profiles have been generated using fast electromagnetic optical shutter. The PFMS parameters have been determined for present experimental setup. The PFMS based LM-, NL-OSL studies have been carried out on dosimetry grade single crystal α-Al2O3:C. The photo ionization cross section of α-Al2O3:C has been found to be ∼9.97 × 10-19 cm2 for 532 nm laser light using PFMS LM-OSL studies under assumption of first order of kinetic. This method of PFMS is found to be a potential alternative to generate different stimulation profiles using CW-light sources.
Micro-scale patterning of indium tin oxide film by spatially modulated pulsed Nd:YAG laser beam
NASA Astrophysics Data System (ADS)
Lee, Jinsoo; Kim, Seongsu; Lee, Myeongkyu
2012-09-01
Here we demonstrate that indium tin oxide (ITO) films deposited on glass can be directly patterned by a spatially -modulated pulsed Nd-YAG laser beam (wavelength = 1064 nm, pulse width = 6 ns) incident onto the film. This method utilizes a pulsed laser-induced thermo-elastic force exerting on the film which plays a role to detach it from the substrate. Sharp-edged clean patterns with feature size as small as 4 μm could be obtained. The threshold pulse energy density for patterning was estimated to be ˜0.8 J/cm2 for 150 nm-thick ITO film, making it possible to pattern over one square centimeter by a single pulse with energy of 850 mJ. Not only being free from photoresist and chemical etching steps, the presented method can also provide much higher throughput than the tradition photoablation process utilizing a tightly focused beam.
Shock position sensor for supersonic inlets. [measuring pressure in the throat of a supersonic inlet
NASA Technical Reports Server (NTRS)
Dustin, M. O. (Inventor)
1975-01-01
Static pressure taps or ports are provided in the throat of a supersonic inlet, and signals indicative of the pressure at each of the ports is fed to respective comparators. Means are also provided for directing a signal indicative of the total throat pressure to the comparators. A periodic signal is superimposed on the total throat pressure so that the signal from the static pressure tabs is compared to a varying scan signal rather than to total throat pressure only. This type of comparison causes each comparator to provide a pulse width modulated output which may vary from 0% 'time on' to 100% 'time on'. The pulse width modulated outputs of the comparators are summed, filtered, and directed to a controller which operates a bypass valve such as a door whereby air is dumped from the inlet to prevent the shock wave from being expelled out the front.
Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Shahab, Azin
In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.
Effects of 900 MHz radiofrequency radiation on skin hydroxyproline contents.
Çam, Semra Tepe; Seyhan, Nesrin; Kavaklı, Cengiz; Çelikbıçak, Ömür
2014-09-01
The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann-Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.
Li, Tao; Zhao, Shengzhi; Zhuo, Zhuang; Yang, Kejian; Li, Guiqiu; Li, Dechun
2009-04-20
A diode end-pumped doubly Q-switched YVO4/Nd:YVO4 laser has been realized for the first time to our knowledge by using both an electro-optic (EO) modulator and a Cr4):YAG saturable absorber. A 3.8 ns pulse width is generated by this laser under a pump power of 15 W at 2 kHz, which is obviously compressed in comparison with that of 8.8 ns from a single actively EO Q-switched laser. Under the same conditions, peak power values of 174.7 and 93 kW are also obtained. A coupled equation is given to theoretically analyze the experimental data. The experimental and theoretical results show that the doubly Q-switched laser has the advantages of a shorter pulse width and higher pulse peak power in contrast with a singly Q-switched laser.
Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2013-01-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487
Development, Fabrication, and Testing of Inverter Power System for Metroliner
DOT National Transportation Integrated Search
1979-11-01
This report documents the development and subsequent fabrication of a solid state auxiliary power conditioning unit (APCU) for the upgraded Metroliner. The APCU is an inverter of the pulse width modulated type having multiple parallel transistors in ...
Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser
NASA Astrophysics Data System (ADS)
Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.
2018-02-01
Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.
NASA Astrophysics Data System (ADS)
Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun
2011-07-01
Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230fs, which is caused by the spatial--temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.
Nanosecond pulsed electric field thresholds for nanopore formation in neural cells
NASA Astrophysics Data System (ADS)
Roth, Caleb C.; Tolstykh, Gleb P.; Payne, Jason A.; Kuipers, Marjorie A.; Thompson, Gary L.; DeSilva, Mauris N.; Ibey, Bennett L.
2013-03-01
The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excitability of neurons leads to Ca overload and neurodegeneration. Thus, to prevent unintended consequences of nsPEF-induced neural stimulation, knowledge of optimum exposure parameters is required. We determined the relationship between nsPEF exposure parameters (pulse width and amplitude) and nanopore formation in two cell types: rodent neuroblastoma (NG108) and mouse primary hippocampal neurons (PHN). We identified thresholds for nanoporation using Annexin V and FM1-43, to detect changes in membrane asymmetry, and through Ca influx using Calcium Green. The ED50 for a single 600 ns pulse, necessary to cause uptake of extracellular Ca, was 1.76 kV/cm for NG108 and 0.84 kV/cm for PHN. At 16.2 kV/cm, the ED50 for pulse width was 95 ns for both cell lines. Cadmium, a nonspecific Ca channel blocker, failed to prevent Ca uptake suggesting that observed influx is likely due to nanoporation. These data demonstrate that moderate amplitude single nsPEF exposures result in rapid Ca influx that may be capable of controllably modulating neurological function.
Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, E G; Hickman, B C; Lee, B S
2002-06-24
The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50{Omega} load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy ismore » switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described.« less
Generation of programmable temporal pulse shape and applications in micromachining
NASA Astrophysics Data System (ADS)
Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.
2009-02-01
In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.
A coaxial-output capacitor-loaded annular pulse forming line.
Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo
2018-04-01
A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.
A coaxial-output capacitor-loaded annular pulse forming line
NASA Astrophysics Data System (ADS)
Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo
2018-04-01
A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.
Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media.
Radhakrishnan, R; Aravinthan, K
2007-06-01
A fairly general form of the two-component (dark-dark) vector one-soliton solution of the integrable coupled nonlinear Schrödinger equation (Manakov model) with self-defocusing nonlinearity is obtained by using the Hirota method. It couples two dark components with the same envelope width, envelope speed, and envelope trough location using two complex arbitrary parameters not only in the envelope amplitude but also in the complex modulation. Although it has the freedom to change its pulse width without affecting its speed, it can also tune its grayness (depth of the pulse relative to background) without disturbing the envelope width and speed. The variations in peak power against the depth of localization of two dark components are investigated with and without a parametric restriction. The collision between many dark-dark vector solitons has also been studied by constructing a multisoliton solution with more free parameters.
978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Li, Shujie; Xu, Lixin; Gu, Chun
2018-01-01
A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.
Redondo, L M; Fernando Silva, J; Margato, E
2007-03-01
This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.
Freye, Chris E; Bahaghighat, H Daniel; Synovec, Robert E
2018-01-15
Partial modulation via a pulsed flow valve for comprehensive two-dimensional (2D) gas chromatography (GC × GC) is demonstrated, producing narrow peak widths, 2 W b , on the secondary separation dimension, 2 D, coupled with short modulation periods, P M , thus producing a high peak capacity on the 2 D dimension, 2 n c . The GC × GC modulator is a pulse flow valve that injects a pulse of carrier gas at the specified P M , at the connection between the primary, 1 D, column and the 2 D column. Using a commercially available pulse flow valve, this injection technique performs a combination of vacancy chromatography and frontal analysis, whereby each pulse disturbance in the analyte concentration profile as it exits the 1 D column results in data that is readily converted into a 2 D separation. A three-step process converts the raw data into a format analogous to a GC × GC separation, incorporating signal differentiation, baseline correction and conversion to a GC × GC chromatogram representation. A 115-component test mixture with a wide range of boiling points (36-372°C) of nine compound classes is demonstrated using modulation periods of P M = 50, 100, 250, and 500ms, respectively. For the test mixture with a P M of 250ms, peak shapes on 2 D are symmetric with apparent 2 W b ranging from 12 to 45ms producing a 2 n c of ~ 10. Based on the average peak width of 0.93s on the 1 D separation for a time window of 400s, the 1 D peak capacity is 1 n c ∼ 430. Thus, the ideal 2D peak capacity n c,2D is 4300 or a peak capacity production of 650 peaks/min using the P M of 250ms. Additionally, for a P M of 50, 100 and 500ms, the 2 n c are 4, 7, and 12, respectively. Retention times on 2 D, 2 t R , are reproducible having standard deviations less than 1ms. Finally, the processed data is shown to be quantitative, with an average RSD of 4.7% for test analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A.; Muetsch, Steffen
2018-01-01
The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2–150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2–150 kHz frequency range. PMID:29360754
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.
Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems
Lim, Jaemyung; Tekes, Coskun; Degertekin, F. Levent; Ghovanloo, Maysam
2016-01-01
Having intravascular ultrasound (IVUS) imaging capability on guide wires used in cardiovascular interventions may eliminate the need for separate IVUS catheters and expand the use of IVUS in a larger portion of the vasculature. High frequency capacitive micro machined ultrasonic transducer (CMUT) arrays should be integrated with interface electronics and placed on the guide wire for this purpose. Besides small size, this system-on-a-chip (SoC) front-end should connect to the back-end imaging system with a minimum number of wires to preserve the critical mechanical properties of the guide wire. We present a 40 MHz CMUT array interface SoC, which will eventually use only two wires for power delivery and transmits image data using a combination of analog-to-time conversion (ATC) and an impulse radio ultra-wideband (IR-UWB) wireless link. The proof-of-concept prototype ASIC consumes only 52.8 mW and occupies 4.07 mm2 in a 0.35-μm standard CMOS process. A rectifier and regulator power the rest of the SoC at 3.3 V from a 10 MHz power carrier that is supplied through a 2.4 m micro-coax cable with an overall efficiency of 49.1%. Echo signals from an 8-element CMUT array are amplified by a transimpedance amplifier (TIA) array and down-converted to baseband by quadrature sampling using a 40 MHz clock, derived from the power carrier. The ATC generates pulse-width-modulated (PWM) samples at 2 × 10 MS/s with 6 bit resolution, while the entire system achieved 5.1 ENOB. Preliminary images from the prototype system are presented, and alternative data transmission and possible future directions towards practical implementation are discussed. PMID:27662686
Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems.
Lim, Jaemyung; Tekes, Coskun; Degertekin, F Levent; Ghovanloo, Maysam
2017-04-01
Having intravascular ultrasound (IVUS) imaging capability on guide wires used in cardiovascular interventions may eliminate the need for separate IVUS catheters and expand the use of IVUS in a larger portion of the vasculature. High frequency capacitive micro machined ultrasonic transducer (CMUT) arrays should be integrated with interface electronics and placed on the guide wire for this purpose. Besides small size, this system-on-a-chip (SoC) front-end should connect to the back-end imaging system with a minimum number of wires to preserve the critical mechanical properties of the guide wire. We present a 40 MHz CMUT array interface SoC, which will eventually use only two wires for power delivery and transmits image data using a combination of analog-to-time conversion (ATC) and an impulse radio ultra-wideband (IR-UWB) wireless link. The proof-of-concept prototype ASIC consumes only 52.8 mW and occupies 4.07 [Formula: see text] in a 0.35- [Formula: see text] standard CMOS process. A rectifier and regulator power the rest of the SoC at 3.3 V from a 10 MHz power carrier that is supplied through a 2.4 m micro-coax cable with an overall efficiency of 49.1%. Echo signals from an 8-element CMUT array are amplified by a transimpedance amplifier (TIA) array and down-converted to baseband by quadrature sampling using a 40 MHz clock, derived from the power carrier. The ATC generates pulse-width-modulated (PWM) samples at 2 × 10 MS/s with 6 bit resolution, while the entire system achieved 5.1 ENOB. Preliminary images from the prototype system are presented, and alternative data transmission and possible future directions towards practical implementation are discussed.
A fully dynamic magneto-rheological fluid damper model
NASA Astrophysics Data System (ADS)
Jiang, Z.; Christenson, R. E.
2012-06-01
Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper.
Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A; Martos, Julio; Soret, Jesus; Garcia-Olcina, Raimundo; Muetsch, Steffen
2018-01-23
The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2-150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2-150 kHz frequency range.
NASA Astrophysics Data System (ADS)
Raja, Anju M.; Xu, Shuoyu; Sun, Wanxin; Zhou, Jianbiao; Tai, Dean C. S.; Chen, Chien-Shing; Rajapakse, Jagath C.; So, Peter T. C.; Yu, Hanry
2010-09-01
Pulse-modulated second harmonic imaging microscopes (PM-SHIMs) exhibit improved signal-to-noise ratio (SNR) over conventional SHIMs on sensitive imaging and quantification of weak collagen signals inside tissues. We quantify the spatial distribution of sparse collagen inside a xenograft model of human acute myeloid leukemia (AML) tumor specimens treated with a new drug against receptor tyrosine kinase (ABT-869), and observe a significant increase in collagen area percentage, collagen fiber length, fiber width, and fiber number after chemotherapy. This finding reveals new insights into tumor responses to chemotherapy and suggests caution in developing new drugs and therapeutic regimens against cancers.
Laser processing of sapphire with picosecond and sub-picosecond pulses
NASA Astrophysics Data System (ADS)
Ashkenasi, D.; Rosenfeld, A.; Varel, H.; Wähmer, M.; Campbell, E. E. B.
1997-11-01
Laser processing of sapphire using a Ti:sapphire laser at 790 and 395 nm and pulse widths varying between 0.2 and 5 ps is reported. A clear improvement in quality is demonstrated for multi-shot processing with sub-ps laser pulses. For fluences between 3 and 12 J/cm 2 two ablation phases were observed, in agreement with previous work from Tam et al. using 30 ps, 266 nm laser pulses [A.C. Tam, J.L. Brand, D.C. Cheng, W. Zapka, Appl. Phys. Lett. 55 (20) (1994) 2045]. During the `gentle ablation' phase periodic wavelike structures, i.e. ripples, were observed on the Al 2O 3 surface, perpendicular to the laser polarisation and with a spacing almost equalling the laser wavelength, indicating metallic-like behaviour. The ripple modulation depth was in the order of a few tens of nm. For fluences between 1 and 2.5 J/cm 2, below the single-shot surface damage threshold and at a pulse width above 200 fs, microstructures could be produced at the rear side of a 1 mm thick sapphire substrate without affecting the front surface.
Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber.
Wang, Mengixa; Zhang, Fang; Wang, Zhengping; Wu, Zhixin; Xu, Xinguang
2018-02-19
Based on the saturable absorption feature of a two-dimensional (2D) nano-material, antimonene, the passively Q-switched operation for solid-state laser was realized for the first time. For the 946 and 1064 nm laser emissions of the Nd:YAG crystal, the Q-switched pulse widths were 209 and 129 ns, and the peak powers were 1.48, 1.77 W, respectively. For the 1342 nm laser emission of the Nd:YVO 4 crystal, the Q-switched pulse width was 48 ns, giving a peak power of 28.17 W. Our research shows that antimonene can be used as a stable, broadband optical modulating device for a solid-state laser, which will be particularly effective for long wavelength operation.
Computerized Torque Control for Large dc Motors
NASA Technical Reports Server (NTRS)
Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.
1987-01-01
Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.
Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun
2011-07-20
Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200 mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230 fs, which is caused by the spatial-temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Kaltenbach, André; Hofmann, Julian; Seidel, Dirk; Lauritsen, Kristian; Bugge, Frank; Fricke, Jörg; Paschke, Katrin; Erdmann, Rainer; Tränkle, Günther
2017-02-01
A miniaturized picosecond pulsed semiconductor laser source in the spectral range around 560nm is realized by integrating a frequency doubled distributed Bragg reflector ridge waveguide laser (DBR-RWL) into a micromodule. Such compact laser sources are suitable for mobile application, e.g. in microscopes. The picosecond optical pulses are generated by gain-switching which allows for arbitrary pulse repetition frequencies. For frequency conversion a periodically poled magnesium doped lithium niobate ridge waveguide crystal (PPLN) is used to provide high conversion efficiency with single-pass second harmonic generation (SHG). The coupling of the pulsed radiation into the PPLN crystal is realized by a GRIN-lens. Such types of lenses collect the divergent laser radiation and focus it into the crystal waveguide providing high coupling efficiency at a minimum of space compared to the usage of fast axis collimator(FAC)/slow axis collimator (SAC) lens combinations. The frequency doubled output pulses show a pulse width of about 60 ps FWHM and a spectral width around 0.06nm FWHM at a central wavelength of 557nm at 15Å. The pulse peak power could be determined to be more than 300mW at a repetition frequency of 40 MHz.
Method for exciting inductive-resistive loads with high and controllable direct current
Hill, Jr., Homer M.
1976-01-01
Apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100% duty factor, amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity.
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen
2009-04-01
A geometrical and phasor representation technique is presented to illustrate the modulation of the lightwave carrier to generate quadrature amplitude modulated (QAM) signals. The modulation of the amplitude and phase of the lightwave carrier is implemented using only one dual-drive Mach-Zehnder interferometric modulator (MZIM) with the assistance of phasor techniques. Any multilevel modulation scheme can be generated, but we illustrate specifically, the multilevel amplitude and differential phase shift keying (MADPSK) signals. The driving voltage levels are estimated for driving the traveling wave electrodes of the modulator. Phasor diagrams are extensively used to demonstrate the effectiveness of modulation schemes. MATLAB Simulink models are formed to generate the multilevel modulation formats, transmission, and detection in optically amplified fiber communication systems. Transmission performance is obtained for the multilevel optical signals and proven to be equivalent or better than those of binary level with equivalent bit rate. Further, the resilience to nonlinear effects is much higher for MADPSK of 50% and 33% pulse width as compared to non-return-to-zero (NRZ) pulse shaping.
FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM
The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...
FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM
The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...
Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's
NASA Technical Reports Server (NTRS)
Gruber, Robert P.; Gott, Robert W.
1991-01-01
In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.
Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.
Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less
Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses
Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.
2018-01-31
Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less
Ultrafast Power Processor for Smart Grid Power Module Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAITRA, ARINDAM; LITWIN, RAY; lai, Jason
This project’s goal was to increase the switching speed and decrease the losses of the power semiconductor devices and power switch modules necessary to enable Smart Grid energy flow and control equipment such as the Ultra-Fast Power Processor. The primary focus of this project involves exploiting the new silicon-based Super-GTO (SGTO) technology and build on prototype modules already being developed. The prototype super gate-turn-off thyristor (SGTO) has been tested fully under continuously conducting and double-pulse hard-switching conditions for conduction and switching characteristics evaluation. The conduction voltage drop measurement results indicate that SGTO has excellent conduction characteristics despite inconsistency among somemore » prototype devices. Tests were conducted with two conditions: (1) fixed gate voltage and varying anode current condition, and (2) fixed anode current and varying gate voltage condition. The conduction voltage drop is relatively a constant under different gate voltage condition. In terms of voltage drop as a function of the load current, there is a fixed voltage drop about 0.5V under zero current condition, and then the voltage drop is linearly increased with the current. For a 5-kV voltage blocking device that may operate under 2.5-kV condition, the projected voltage drop is less than 2.5 V under 50-A condition, or 0.1%. If the device is adopted in a converter operating under soft-switching condition, then the converter can achieve an ultrahigh efficiency, typically above 99%. The two-pulse switching test results indicate that SGTO switching speed is very fast. The switching loss is relatively low as compared to that of the insulated-gate-bipolar-transistors (IGBTs). A special phenomenon needs to be noted is such a fast switching speed for the high-voltage switching tends to create an unexpected Cdv/dt current, which reduces the turn-on loss because the dv/dt is negative and increases the turn-off loss because the dv/dt is positive. As a result, the turn-on loss at low current is quite low, and the turn-off loss at low current is relatively high. The phenomenon was verified with junction capacitance measurement along with the dv/dt calculation. Under 2-kV test condition, the turn-on and turn-off losses at 25-A is about 3 and 9 mJ, respectively. As compared to a 4.5-kV, 60-A rated IGBT, which has turn-on and turn-off losses about 25 and 20 mJ under similar test condition, the SGTO shows significant switching loss reduction. The switching loss depends on the switching frequency, but under hard-switching condition, the SGTO is favored to the IGBT device. The only concern is during low current turn-on condition, there is a voltage bump that can translate to significant power loss and associated heat. The reason for such a current bump is not known from this study. It is necessary that the device manufacturer perform though test and provide the answer so the user can properly apply SGTO in pulse-width-modulated (PWM) converter and inverter applications.« less
An Energy Saving Green Plug Device for Nonlinear Loads
NASA Astrophysics Data System (ADS)
Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed
2018-03-01
The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..
A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy.
Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio
2008-03-01
We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20GHz from an input of 4-5GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6mT using 80 degrees pulses of 1.5ns.
Self-Phase Modulation: A Review
1975-01-01
tions were noted in both media. A measurement of the time width of the continuum pulse shows it to be at least as short as the incident laser pulse...established. The excited singlet lifetime is 1.15 t. .15 nsec in ethanol and 560 _ 70 psec in water. The transient absorption spectra of DTTC was...determined that the band at 525 nm has a lifetime of 90 1 30 psec. FUTURE STUDIES SPM will be studied in a variety of materials with large electro- optic
Laser direct writing (LDW) of magnetic structures
NASA Astrophysics Data System (ADS)
Alasadi, Alaa; Claeyssens, F.; Allwood, D. A.
2018-05-01
Laser direct writing (LDW) has been used to pattern 90nm thick permalloy (Ni81Fe19) into 1-D and 2-D microstructures with strong shape anisotropy. Sub-nanosecond laser pulses were focused with a 0.75 NA lens to a 1.85μm diameter spot, to achieve a fluence of approximately 350 mJ.cm-2 and ablate the permalloy film. Computer-controlled sample scanning then allowed structures to be defined. Scan speeds were controlled to give 30% overlap between successive laser pulses and reduce the extent of width modulation in the final structures. Continuous magnetic wires that adjoined the rest of the film were fabricated with widths from 650 nm - 6.75μm and magneto-optical measurements showed coercivity reducing across this width range from 47 Oe to 11 Oe. Attempts to fabricate wires narrower than 650nm resulted in discontinuities in the wires and a marked decrease in coercivity. This approach is extremely rapid and was carried out in air, at room temperature and with no chemical processing. The 6-kHz laser pulse repetition rate allowed wire arrays across an area of 4 mm x 0.18 mm to be patterned in 85 s.
Wang, Chunhua; Zhang, Xiang; Ye, Zhibin; Liu, Chong; Chen, Jun
2013-07-01
A high-energy single-frequency hundred-microsecond long-pulse solid-state laser is demonstrated, which features an electro-optically modulated seed laser and two-stage double-passed pulse-pumped solid-state laser rod amplifier. Laser output with energy of 180 mJ, repetition rate of 50 Hz, and pulse width of 150 μs is achieved. The laser linewidth is measured to be less than 25.52 kHz by a fiber delay self-heterodyne method. In addition, a closed-loop controlling system is adopted to lock the center wavelength. No relaxation oscillation spikes appear in the pulse temporal profile, which is beneficial for further amplification.
All-Fiber, Directly Chirped Laser Source for Chirped-Pulse-Amplification
NASA Astrophysics Data System (ADS)
Xin, Ran
Chirped-pulse-amplification (CPA) technology is widely used to produce ultra-short optical pulses (sub picosecond to femtoseconds) with high pulse energy. A chirped pulse laser source with flexible dispersion control is highly desirable as a CPA seed. This thesis presents an all-fiber, directly chirped laser source (DCLS) that produces nanosecond, linearly-chirped laser pulses at 1053 nm for seeding high energy CPA systems. DCLS produces a frequency chirp on an optical pulse through direct temporal phase modulation. DCLS provides programmable control for the temporal phase of the pulse, high pulse energy and diffraction-limited beam performance, which are beneficial for CPA systems. The DCLS concept is first described. Its key enabling technologies are identified and their experimental demonstration is presented. These include high-precision temporal phase control using an arbitrary waveform generator, multi-pass phase modulation to achieve high modulation depth, regenerative amplification in a fiber ring cavity and a negative feedback system that controls the amplifier cavity dynamics. A few technical challenges that arise from the multi-pass architecture are described and their solutions are presented, such as polarization management and gain-spectrum engineering in the DCLS fiber cavity. A DCLS has been built and its integration into a high energy OPCPA system is demonstrated. DCLS produces a 1-ns chirped pulse with a 3-nm bandwidth. The temporal phase and group delay dispersion on the DCLS output pulse is measured using temporal interferometry. The measured temporal phase has an ˜1000 rad amplitude and is close to a quadratic shape. The chirped pulse is amplified from 0.9 nJ to 76 mJ in an OPCPA system. The amplified pulse is compressed to close to its Fourier transform limit, producing an intensity autocorrelation trace with a 1.5-ps width. Direct compressed-pulse duration control by adjusting the phase modulation drive amplitude is demonstrated. Limitation to pulse compression is investigated using numerical simulation.
Skeldon, Mark D.; Letzring, Samuel A.
1999-03-23
Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.
Skeldon, M.D.; Letzring, S.A.
1999-03-23
Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.
NASA Technical Reports Server (NTRS)
Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)
1991-01-01
A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.
Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack
NASA Astrophysics Data System (ADS)
Ma, Hong-Xin; Bao, Wan-Su; Li, Hong-Wei; Chou, Chun
2016-08-01
We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).
NASA Astrophysics Data System (ADS)
Shoupeng, Song; Zhou, Jiang
2017-03-01
Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.
Hu, Qinglei
2007-10-01
This paper presents a dual-stage control system design method for the flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration control by input shaper. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. As a stepping stone, an integral variable structure controller with the assumption of knowing the upper bounds of the mismatched lumped perturbation has been designed which ensures exponential convergence of attitude angle and angular velocity in the presence of bounded uncertainty/disturbances. To reconstruct estimates of the system states for use in a full information variable structure control law, an asymptotic variable structure observer is also employed. In addition, the thruster output is modulated in pulse-width pulse-frequency so that the output profile is similar to the continuous control histories. For actively suppressing the induced vibration, the input shaping technique is used to modify the existing command so that less vibration will be caused by the command itself, which only requires information about the vibration frequency and damping of the closed-loop system. The rationale behind this hybrid control scheme is that the integral variable structure controller can achieve good precision pointing, even in the presence of uncertainties/disturbances, whereas the shaped input attenuator is applied to actively suppress the undesirable vibrations excited by the rapid maneuvers. Simulation results for the spacecraft model show precise attitude control and vibration suppression.
Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D
2014-12-15
An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose.
Experimental studies on twin PTCs driven by dual piston head linear compressor
NASA Astrophysics Data System (ADS)
Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.
2017-02-01
An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.
Pulse Width Affects Scalp Sensation of Transcranial Magnetic Stimulation.
Peterchev, Angel V; Luber, Bruce; Westin, Gregory G; Lisanby, Sarah H
Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 point increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 points increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. Copyright © 2016 Elsevier Inc. All rights reserved.
Pulse width affects scalp sensation of transcranial magnetic stimulation
Peterchev, Angel V.; Luber, Bruce; Westin, Gregory G.; Lisanby, Sarah H.
2016-01-01
Background Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. Objective We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Methods Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Results Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 points increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 point increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Conclusions Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. PMID:28029593
Wang, Shau-Chun; Chen, Hsiao-Ping; Lee, Chia-Yu; Yeo, Leslie Y
2005-04-15
In capillary electrophoresis, effective optical signal quality improvement is obtained when high frequency (>100 Hz) external pulse fields modulate analyte velocities with synchronous lock-in detection. However, the pulse frequency is constrained under a critical value corresponding to the time required for the bulk viscous flow, which arises due to viscous momentum diffusion from the electro-osmotic slip in the Debye layer, to reach steady-state. By solving the momentum diffusion equation for transient bulk flow in the micro-channel, we show that this set-in time to steady-state and hence, the upper limit for the pulse frequency is dependent on the characteristic diffusion length scale and therefore the channel geometry; for cylindrical capillaries, the set-in time is approximately one half of that for rectangular slot channels. From our estimation of the set-in time and hence the upper frequency modulation limit, we propose that the half width of planar channels does not exceed 100 microm and that the radii of cylindrical channels be limited to 140 microm such that there is a finite working bandwidth range above 100 Hz and below the upper limit in order for flicker noise to be effectively suppressed.
NASA Astrophysics Data System (ADS)
Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo
2017-05-01
Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.
Cavity-Dumped Communication Laser Design
NASA Technical Reports Server (NTRS)
Roberts, W. T.
2003-01-01
Cavity-dumped lasers have significant advantages over more conventional Q-switched lasers for high-rate operation with pulse position modulation communications, including the ability to emit laser pulses at 1- to 10-megahertz rates, with pulse widths of 0.5 to 5 nanoseconds. A major advantage of cavity dumping is the potential to vary the cavity output percentage from pulse to pulse, maintaining the remainder of the energy in reserve for the next pulse. This article presents the results of a simplified cavity-dumped laser model, establishing the requirements for cavity efficiency and projecting the ultimate laser efficiency attainable in normal operation. In addition, a method of reducing or eliminating laser dead time is suggested that could significantly enhance communication capacity. The design of a laboratory demonstration laser is presented with estimates of required cavity efficiency and demonstration potential.
Single event burnout sensitivity of embedded field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koga, R.; Crain, S.H.; Crawford, K.B.
Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr; University of Farhat Abbas Setif1, Sétif, 19000; Mohamadi, Tayeb
In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.
Single event burnout sensitivity of embedded field effect transistors
NASA Astrophysics Data System (ADS)
Koga, R.; Crain, S. H.; Crawford, K. B.; Yu, P.; Gordon, M. J.
1999-12-01
Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.
Faster Hall-Effect Current-Measuring Circuit
NASA Technical Reports Server (NTRS)
Sullender, Craig C.; Johnson, Daniel D.; Walker, Daniel D.
1993-01-01
Current-measuring circuit operates on Hall-effect-sensing and magnetic-field-nulling principles similar to those described in article, "Nulling Hall-Effect Current-Measuring Circuit" (LEW-15023), but simpler and responds faster. Designed without feedback loop, and analog pulse-width-modulated output indicates measured current. Circuit measures current at frequency higher than bandwidth of its Hall-effect sensor.
Monitoring Digital Closed-Loop Feedback Systems
NASA Technical Reports Server (NTRS)
Katz, Richard; Kleyner, Igor
2011-01-01
A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal frequency of the TDC s pulse width modulated outputs is approximately 40 kHz. In this system, the technique is implemented by means of a monitoring circuit that includes a 20-MHz sampling circuit and a 24-bit accumulator with a gate time of 10 ms. The monitoring circuit measures the duty cycle of each of the 12 TDCs at a repetition rate of 28 Hz. The accumulator content is reset to all zeroes at the beginning of each measurement period and is then incremented or decremented based of the value of the state of the pulse width modulated signal. Positive or negative values in the accumulator correspond to duty cycles greater or less, respectively, than 50 percent.
NASA Technical Reports Server (NTRS)
Helder, Dennis; Choi, Taeyoung; Rangaswamy, Manjunath
2005-01-01
The spatial characteristics of an imaging system cannot be expressed by a single number or simple statement. However, the Modulation Transfer Function (MTF) is one approach to measure the spatial quality of an imaging system. Basically, MTF is the normalized spatial frequency response of an imaging system. The frequency response of the system can be evaluated by applying an impulse input. The resulting impulse response is termed the Point Spread function (PSF). This function is a measure of the amount of blurring present in the imaging system and is itself a useful measure of spatial quality. An underlying assumption is that the imaging system is linear and shift-independent. The Fourier transform of the PSF is called the Optical Transfer Function (OTF) and the normalized magnitude of the OTF is the MTF. In addition to using an impulse input, a knife-edge in technique has also been used in this project. The sharp edge exercises an imaging system at all spatial frequencies. The profile of an edge response from an imaging system is called an Edge Spread Function (ESF). Differentiation of the ESF results in a one-dimensional version of the Point Spread Function (PSF). Finally, MTF can be calculated through use of Fourier transform of the PSF as stated previously. Every image includes noise in some degree which makes MTF of PSF estimation more difficult. To avoid the noise effects, many MTF estimation approaches use smooth numerical models. Historically, Gaussian models and Fermi functions were applied to reduce the random noise in the output profiles. The pulse-input method was used to measure the MTF of the Landsat Thematic Mapper (TM) using 8th order even functions over the San Mateo Bridge in San Francisco, California. Because the bridge width was smaller than the 30-meter ground sample distance (GSD) of the TM, the Nyquist frequency was located before the first zero-crossing point of the sinc function from the Fourier transformation of the bridge pulse. To avoid the zero-crossing points in the frequency domain from a pulse, the pulse width should be less than the width of two pixels (or 2 GSD's), but the short extent of the pulse results in a poor signal-to-noise ratio. Similarly, for a high-resolution satellite imaging system such as Quickbird, the input pulse width was critical because of the zero crossing points and noise present in the background area. It is important, therefore, that the width of the input pulse be appropriately sized. Finally, the MTF was calculated by taking ratio between Fourier transform of output and Fourier transform of input. Regardless of whether the edge, pulse and impulse target method is used, the orientation of the targets is critical in order to obtain uniformly spaced sub-pixel data points. When the orientation is incorrect, sample data points tend to be located in clusters that result in poor reconstruction of the edge or pulse profiles. Thus, a compromise orientation must be selected so that all spectral bands can be accommodated. This report continues by outlining the objectives in Section 2, procedures followed in Section 3, descriptions of the field campaigns in Section 4, results in Section 5, and a brief summary in Section 6.
Molecular solid-state inverter-converter system
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1973-01-01
A modular approach for aerospace electrical systems has been developed, using lightweight high efficiency pulse width modulation techniques. With the modular approach, a required system is obtained by paralleling modules. The modular system includes the inverters and converters, a paralleling system, and an automatic control and fault-sensing protection system with a visual annunciator. The output is 150 V dc, or a low distortion three phase sine wave at 120 V, 400 Hz. Input power is unregulated 56 V dc. Each module is rated 2.5 kW or 3.6 kVA at 0.7 power factor.
1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao
2015-02-01
A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.
Modular, Microprocessor-Controlled Flash Lighting System
NASA Technical Reports Server (NTRS)
Kiefer, Dwayne; Gray, Elizabeth; Skupinski, Robert; Stachowicz, Arthur; Birchenough, William
2006-01-01
A microprocessor-controlled lighting system generates brief, precisely timed, high-intensity flashes of light for scientific imaging at frame rates up to about 1 kHz. The system includes an array of light-emitting diodes (LEDs) that are driven in synchronism with an externally generated timing signal (for example, a timing signal generated by a video camera). The light output can be varied in peak intensity, pulse duration, pulse delay, and pulse rate, all depending on the timing signal and associated externally generated control signals. The array of LEDs comprises as many as 16 LED panels that can be attached together. Each LED panel is a module consisting of a rectangular subarray of 10 by 20 LEDs of advanced design on a printed-circuit board in a mounting frame with a power/control connector. The LED panels are controlled by an LED control module that contains an AC-to-DC power supply, a control board, and 8 LED-panel driver boards. In prior LED panels, the LEDs are packaged at less than maximum areal densities in bulky metal housings that reduce effective active areas. In contrast, in the present LED panels, the LEDs are packed at maximum areal density so as to afford 100-percent active area and so that when panels are joined side by side to form the array, there are no visible seams between them and the proportion of active area is still 100 percent. Each panel produces an illuminance of .5 x 10( exp 4) lux at a distance of 5.8 in. (approx.1.6 cm). The LEDs are driven according to a pulse-width-modulation control scheme that makes it safe to drive the LEDs beyond their rated steady-state currents in order to generate additional light during short periods. The drive current and the pulse-width modulation for each LED panel can be controlled independently of those of the other 15 panels. The maximum allowable duration of each pulse of drive current is a function of the amount of overdrive, the total time to be spent in overdrive operation, and the limitations of the LEDs. The system is configured to limit the overdrive according to values specific to each type of LED in the array. These values are coded into firmware to prevent inadvertent damage to the LED panels.
Application of drive circuit based on L298N in direct current motor speed control system
NASA Astrophysics Data System (ADS)
Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao
2016-10-01
In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.
NASA Astrophysics Data System (ADS)
Qiao, Junpeng; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao
2017-06-01
An idler-resonant KTiOAsO4 (KTA)-based intracavity optical parametric oscillator (IOPO) pumped by a dual-loss-modulated Q-switched laser with an acousto-optic modulator (AOM) and a Cr4+:YAG saturable absorber (Cr4+:YAG-SA) has been presented. By utilizing a type-II non-critically phase-matched KTA crystal, signal wave at 1535 nm and idler wave at 3467 nm have been generated. Under an incident pump power of 18.3 W, maximum output powers of 615 mW for signal wave and 228 mW for idler wave were obtained at an AOM modulation rate of 10 kHz, corresponding to a whole optical-to-optical conversion efficiency of 4.6%. The shortest pulse widths of signal and idler wave were measured to be 898 ps and 2.9 ns, corresponding to the highest peak powers of 68.4 and 7.9 kW, respectively. In comparison with IOPO pumped by a singly Q-switched laser with an AOM, the IOPO pumped by a doubly Q-switched laser (DIOPO) with an AOM and a Cr4+:YAG-SA can generate signal wave and idler wave with shorter pulse width and higher peak power. By considering the spatial Gaussian distribution of intracavity photon density, a set of coupled rate equations for the idler-resonant DIOPO were built for the first time to the best of our knowledge. The simulation results agreed well with the experimental results.
Motor/Generator and Inverter Characterization for Flywheel System Applications
NASA Technical Reports Server (NTRS)
Tamarcus, Jeffries L.
2004-01-01
The Advanced Electrical Systems Development Branch at NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheels systems for satellite energy storage and attitude applications. These flywheels will serve as replacement for chemical nickel hydrogen, nickel cadmium batteries and gyroscopic wheels. The advantages of using flywheel systems for energy storage on satellites are high energy density, high power density, long life, deep depth of discharge, and broad operating temperature ranges. A flywheel system for space applications consist of a number of flywheel modules, the motor/generator and magnetic bearing, and an electronics package. The motor/generator electronics package includes a pulse-width modulated inverter that drives the flywheel permanent magnet motor/generator located at one end of the shaft. This summer, I worked under the direct supervision of my mentor, Walter Santiago, and the goal for this summer was to characterize motor generator and inverter attributes in order to increase their viability as a more efficient energy storage source for space applications. To achieve this goal, magnetic field measurements around the motor/generator permanent magnet and the impedance of the motor/generator three phase windings were characterized, and a recreation of the inverter pulse width modulated control system was constructed. The Flywheel modules for space use are designed to maximize energy density and minimize loss, and attaining these values will aid in locating and reducing losses within the flywheel system as a whole, making flywheel technology more attractive for use as energy storage in future space applications.
Voyager Uranus encounter 0.2lbf T/VA short pulse test report
NASA Technical Reports Server (NTRS)
1986-01-01
The attitude control thrusters on the Voyager spacecraft were tested for operation at electrical pulse widths of less than the current 10-millisecond minimum to reduce impulse bit and, therefore, reduce image smear of pictures taken during the Uranus encounter. Thrusters with the identical configuration of the units on the spacecraft were fired in an altitude chamber to characterize impulse bit and impulse bit variations as a function of electrical pulse widths and to determine if the short pulses decreased thruster life. Pulse widths of 4.0 milliseconds provide approximately 45 percent of the impulse provided by a 10-ms pulse, and thruster-to-thruster and pulse-to-pulse variation is approximately plus or minus 10 percent. Pulse widths shorter than 4 ms showed wide variation, and no pulse was obtained at 3 ms. Three thrusters were each subjected to 75,000 short pulses of 4 ms or less without performance degradation. A fourth thruster exhibited partial flow blockage after 13,000 short pulses, but this was attributed to prevous test history and not short pulse exposure. The Voyager attitude control thrusters should be considered flight qualified for short pulse operation at pulse widths of 4.0 ms or more.
Ng, Boon C.; Timms, Daniel; Cohn, William E.
2018-01-01
Despite the widespread acceptance of rotary blood pump (RBP) in clinical use over the past decades, the diminished flow pulsatility generated by a fixed speed RBP has been regarded as a potential factor that may lead to adverse events such as vasculature stiffening and hemorrhagic strokes. In this study, we investigate the feasibility of generating physiological pulse pressure in the pulmonary circulation by modulating the speed of a right ventricular assist device (RVAD) in a mock circulation loop. A rectangular pulse profile with predetermined pulse width has been implemented as the pump speed pattern with two different phase shifts (0% and 50%) with respect to the ventricular contraction. In addition, the performance of the speed modulation strategy has been assessed under different cardiovascular states, including variation in ventricular contractility and pulmonary arterial compliance. Our results indicated that the proposed pulse profile with optimised parameters (Apulse = 10000 rpm and ωmin = 3000 rpm) was able to generate pulmonary arterial pulse pressure within the physiological range (9–15 mmHg) while avoiding undesirable pump backflow under both co- and counter-pulsation modes. As compared to co-pulsation, stroke work was reduced by over 44% under counter-pulsation, suggesting that mechanical workload of the right ventricle can be efficiently mitigated through counter-pulsing the pump speed. Furthermore, our results showed that improved ventricular contractility could potentially lead to higher risk of ventricular suction and pump backflow, while stiffening of the pulmonary artery resulted in increased pulse pressure. In conclusion, the proposed speed modulation strategy produces pulsatile hemodynamics, which is more physiologic than continuous blood flow. The findings also provide valuable insight into the interaction between RVAD speed modulation and the pulmonary circulation under various cardiovascular states. PMID:29677212
Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter
NASA Technical Reports Server (NTRS)
Harrigill, W. T., Jr.; Myers, I. T.
1976-01-01
A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvetsov, N. K., E-mail: elmash@em.ispu.ru
2016-11-15
The results of calculations of the increase in losses in an induction motor with frequency control and different forms of the supply voltage are presented. The calculations were performed by an analytic method based on harmonic analysis of the supply voltage as well as numerical calculation of the electromagnetic processes by the finite-element method.
From Broadband to Electrochromic Notch Filters with Printed Monochiral Carbon Nanotubes
2018-01-01
Dense layers of semiconducting single-walled carbon nanotubes (SWNTs) serve as electrochromic (EC) materials in the near-infrared with high optical density and high conductivity. EC cells with tunable notch filter properties instead of broadband absorption are created via highly selective dispersion of specific semiconducting SWNTs through polymer-wrapping followed by deposition of thick films by aerosol-jet printing. A simple planar geometry with spray-coated mixed SWNTs as the counter electrode renders transparent metal oxides redundant and facilitates complete bleaching within a few seconds through iongel electrolytes with high ionic conductivities. Monochiral (6,5) SWNT films as working electrodes exhibit a narrow absorption band at 997 nm (full width at half-maximum of 55–73 nm) with voltage-dependent optical densities between 0.2 and 4.5 and a modulation depth of up to 43 dB. These (6,5) SWNT notch filters can retain more than 95% of maximum bleaching for several hours under open-circuit conditions. In addition, different levels of transmission can be set by applying constant low voltage (1.5 V) pulses with modulated width or by a given number of fixed short pulses. PMID:29521086
NASA Astrophysics Data System (ADS)
Ajay Kumar, M.; Srikanth, N. V.
2014-03-01
In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.
Unity PF current-source rectifier based on dynamic trilogic PWM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Wang; Boon-Teck Ooi
1993-07-01
One remaining step in perfecting the stand-along, unity power factor, regulated current-source PWM rectifier is to reduce cost, by bringing the 12-valve converter (consisting of three single-phase full bridges that operate with two-level or bilogic PWM) to the six-valve bridge. However, the six-valve topology requires a three-level or trilogic PWM strategy that can handle feedback signals. This feature was not available until now. The paper describes a general method of translating three-phase bilogic PWM signals to three-phase trilogic PWM signals. The method of translation retains the characteristics of the bilogic PWM, including the frequency bandwidth. Experiments show that the trilogicmore » PWM signals produced by the method can not only handle stabilizing feedback signals but also signals for active filtering.« less
Logo2PWM: a tool to convert sequence logo to position weight matrix.
Gao, Zhen; Liu, Lu; Ruan, Jianhua
2017-10-03
position weight matrix (PWM) and sequence logo are the most widely used representations of transcription factor binding site (TFBS) in biological sequences. Sequence logo - a graphical representation of PWM, has been widely used in scientific publications and reports, due to its easiness of human perception, rich information, and simple format. Different from sequence logo, PWM works great as a precise and compact digitalized form, which can be easily used by a variety of motif analysis software. There are a few available tools to generate sequence logos from PWM; however, no tool does the reverse. Such tool to convert sequence logo back to PWM is needed to scan a TFBS represented in logo format in a publication where the PWM is not provided or hard to be acquired. A major difficulty in developing such tool to convert sequence logo to PWM is to deal with the diversity of sequence logo images. We propose logo2PWM for reconstructing PWM from a large variety of sequence logo images. Evaluation results on over one thousand logos from three sources of different logo format show that the correlation between the reconstructed PWMs and the original PWMs are constantly high, where median correlation is greater than 0.97. Because of the high recognition accuracy, the easiness of usage, and, the availability of both web-based service and stand-alone application, we believe that logo2PWM can readily benefit the study of transcription by filling the gap between sequence logo and PWM.
Ultra-narrow pulse generator with precision-adjustable pulse width
NASA Astrophysics Data System (ADS)
Fu, Zaiming; Liu, Hanglin
2018-05-01
In this paper, a novel ultra-narrow pulse generation approach is proposed. It is based on the decomposition and synthesis of pulse edges. Through controlling their relative delay, an ultra-narrow pulse could be generated. By employing field programmable gate array digital synthesis technology, the implemented pulse generator is with programmable ability. The amplitude of pulse signals is controlled by the radio frequency amplifiers and bias tees, and high precision can be achieved. More importantly, the proposed approach can break through the limitation of device's propagation delay and optimize the resolution and the accuracy of the pulse width significantly. The implemented pulse generator has two channels, whose minimum pulse width, frequency range, and amplitude range are 100 ps, 15 MHz-1.5 GHz, and 0.1 Vpp-1.8 Vpp, respectively. Both resolution of pulse width and channel delay are 1 ps, and amplitude resolution is 10 mVpp.
NASA Astrophysics Data System (ADS)
Uno, Kazuyuki; Jitsuno, Takahisa
2018-05-01
In a longitudinally excited CO2 laser that had a 45 cm-long discharge tube with a 1:1:2 mixture of CO2/N2/He gas at a pressure of 3.0 kPa, we realized the generation of a short laser pulse with a spike pulse width of about 200 ns and a pulse tail length of several tens of microseconds, control of the energy ratio of the spike pulse part to the pulse tail part in the short laser pulse, the generation of a long laser pulse with a pulse width of several tens of microseconds, and control of the pulse width in the long laser pulse, by using four types of excitation circuits in which the capacitance was adjusted. In the short laser pulse, the energy ratio was in the range 1:14-1:112. In the long laser pulse, the pulse width was in the range 25.7-82.7 μs.
The Study of Phase-shift Super-Frequency Induction Heating Power Supply
NASA Astrophysics Data System (ADS)
Qi, Hairun; Peng, Yonglong; Li, Yabin
This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis
Han, Weina; Jiang, Lan; Li, Xiaowei; Wang, Qingsong; Li, Hao; Lu, YongFeng
2014-06-30
We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.
A review of ultrabrief pulse width electroconvulsive therapy
Katalinic, Natalie; Martin, Donel; Schweitzer, Isaac
2012-01-01
The effect of shortening the pulse width of the electrical stimulus when administering electroconvulsive therapy (ECT) has recently been systematically studied with promising results. This review examines reported outcomes from three randomized controlled trials which compared ultrabrief (≤0.3 ms) with brief (0.5–1.5 ms) pulse width ECT, and other recent clinical trials of ultrabrief pulse width ECT. The emerging evidence for ultrabrief pulse right unilateral (RUL) ECT suggests clinically meaningful efficacy and substantially reduced neuropsychological side effects compared with standard (brief) pulse ECT; this may represent a generational advance in the ECT technique. However, it is unclear if patients receiving ultrabrief pulse RUL ECT may have a slower speed of response and require additional treatments compared with brief pulse ECT. Therefore, until further data are available, clinicians may be well advised to use brief pulse ECT in situations requiring an urgent clinical response. The evidence base for ultrabrief bilateral ECT is limited, with findings that efficacy may be reduced compared with brief pulse width ECT. Thus ultrabrief bilateral ECT should not be used outside the research setting. PMID:23251770
Nd:YAG-laser-Q-switching with a photo-elastic modulator and applications
NASA Astrophysics Data System (ADS)
Bammer, F.; Petkovšek, R.; Dominguez, H.; Liedl, G.
2010-05-01
We present a rod-Nd:YAG-Laser, side-pumped with eight 50W-laser diode bars at 808nm, and Q-switched with a Single Crystal Photo-Elastic Modulator at 95.1 kHz. The latter is made of a z-cut LiNbO3-crystal, which is electrically y-excited on the mechanical resonance frequency of the x-longitudinal oscillation. With a voltage amplitude of 3 V the crystal shows a strong oscillation such that due to the photo-elastic effect a high polarization modulation is achieved, which, together with a polarizer, can be used as a simple optical switch. With this inside the laser resonator the average power is 47.8W in cw-mode and 45.5W in pulsed mode, with pulse peak powers of 4 kW and pulse widths of 100ns. This kind of operation is similar to cw-operation but offers due to the high peak powers different interaction physics with matter. The source is therefore suited for micro-welding of metals, LIDAR, rapid prototyping of plastics, marking/engraving/cutting of plastics, marking of glasses. In cases where high precision and a small heat affected zone are necessary this simple kind of pulsed operation may be advantageous, when compared to cw-operation.
Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik
2018-07-20
We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.
NASA Astrophysics Data System (ADS)
Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik
2018-07-01
We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.
An Experimental Testbed for a Free-Floating Manipulator
1993-12-01
brushless servo amplifiers are four quadrant , 20 kHz PWM amplifiers that provide economical control of brushless motors rated from 1/3 to 2 Hp shaft Watts...backplanes that came out of the Versa-Module- Europa consortium [Ref. 15]. The VME is a bus that acts as the path and translator of information between
Permanent magnet DC motor control by using arduino and motor drive module BTS7960
NASA Astrophysics Data System (ADS)
Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.
2018-05-01
This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.
High performance thyratron driver with low jitter.
Verma, Rishi; Lee, P; Springham, S V; Tan, T L; Rawat, R S
2007-08-01
We report the design and development of insulated gate bipolar junction transistor based high performance driver for operating thyratrons in grounded grid mode. With careful design, the driver meets the specification of trigger output pulse rise time less than 30 ns, jitter less than +/-1 ns, and time delay less than 160 ns. It produces a -600 V pulse of 500 ns duration (full width at half maximum) at repetition rate ranging from 1 Hz to 1.14 kHz. The developed module also facilitates heating and biasing units along with protection circuitry in one complete package.
Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width
NASA Astrophysics Data System (ADS)
Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.
2016-06-01
Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.
Hardware realization of an SVM algorithm implemented in FPGAs
NASA Astrophysics Data System (ADS)
Wiśniewski, Remigiusz; Bazydło, Grzegorz; Szcześniak, Paweł
2017-08-01
The paper proposes a technique of hardware realization of a space vector modulation (SVM) of state function switching in matrix converter (MC), oriented on the implementation in a single field programmable gate array (FPGA). In MC the SVM method is based on the instantaneous space-vector representation of input currents and output voltages. The traditional computation algorithms usually involve digital signal processors (DSPs) which consumes the large number of power transistors (18 transistors and 18 independent PWM outputs) and "non-standard positions of control pulses" during the switching sequence. Recently, hardware implementations become popular since computed operations may be executed much faster and efficient due to nature of the digital devices (especially concurrency). In the paper, we propose a hardware algorithm of SVM computation. In opposite to the existing techniques, the presented solution applies COordinate Rotation DIgital Computer (CORDIC) method to solve the trigonometric operations. Furthermore, adequate arithmetic modules (that is, sub-devices) used for intermediate calculations, such as code converters or proper sectors selectors (for output voltages and input current) are presented in detail. The proposed technique has been implemented as a design described with the use of Verilog hardware description language. The preliminary results of logic implementation oriented on the Xilinx FPGA (particularly, low-cost device from Artix-7 family from Xilinx was used) are also presented.
Design of the control system for full-color LED display based on MSP430 MCU
NASA Astrophysics Data System (ADS)
Li, Xue; Xu, Hui-juan; Qin, Ling-ling; Zheng, Long-jiang
2013-08-01
The LED display incorporate the micro electronic technique, computer technology and information processing as a whole, it becomes the most preponderant of a new generation of display media with the advantages of bright in color, high dynamic range, high brightness and long operating life, etc. The LED display has been widely used in the bank, securities trading, highway signs, airport and advertising, etc. According to the display color, the LED display screen is divided into monochrome screen, double color display and full color display. With the diversification of the LED display's color and the ceaseless rise of the display demands, the LED display's drive circuit and control technology also get the corresponding progress and development. The earliest monochrome screen just displaying Chinese characters, simple character or digital, so the requirements of the controller are relatively low. With the widely used of the double color LED display, the performance of its controller will also increase. In recent years, the full color LED display with three primary colors of red, green, blue and grayscale display effect has been highly attention with its rich and colorful display effect. Every true color pixel includes three son pixels of red, green, blue, using the space colour mixture to realize the multicolor. The dynamic scanning control system of LED full-color display is designed based on MSP430 microcontroller technology of the low power consumption. The gray control technology of this system used the new method of pulse width modulation (PWM) and 19 games show principle are combining. This method in meet 256 level grayscale display conditions, improves the efficiency of the LED light device, and enhances the administrative levels feels of the image. Drive circuit used 1/8 scanning constant current drive mode, and make full use of the single chip microcomputer I/O mouth resources to complete the control. The system supports text, pictures display of 256 grayscale full-color LED screen.
NASA Astrophysics Data System (ADS)
Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.
A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.
Interface Design Description for the Multi-Mode Magnetic Detection System
2008-11-21
400001E D/A Spare H 16 0000 48 4000020 PWM Piezo A 16 6230 Formatted Table 3MDS IDD 0BSB2-03-C-0388-01 Rev I 24 21 November 2008 Relative Base...Address (bytes) FPGA Address Item Size (bits) Definition Units/LSB Value/Other 50 4000022 PWM Piezo B 16 6230 52 4000024 PWM Piezo C 16...6230 54 4000026 PWM Piezo D 16 6230 56 4000028 PWM Piezo E 16 6230 58 400002A PWM Piezo F 16 6230 60 400002C Set the starting place for temp sweep 16
A 120kV IGBT modulator for driving a pierce electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earley, L. M.; Brown, R. W.; Carlson, R. L.
2004-01-01
An IGBT modulator has been developed to drive a 120 kV, 23 A Pierce electron gun. The modulator is capable of producing pulses up to 10 {mu}s in width at repetition rates up to 10Hz with no active reset. The pulse rise time on the electron gun will be approximately 2 {mu}s and the remaining 8 {mu}s of flattop is tuned to have a ripple of less than 1 percent rms. The modulator technology was developed from a previous 50 kV prototype. The modulator consists of six boards, each with one EUPEC IGBT that drives a single common step-up transformermore » wound on METGLAS 2605SC cores. The six transformer cores share a common bi-filar output secondary winding. The modulator uses a fiber optic trigger system and has a high voltage cable output with an epoxy receptacle on the oil end and a ceramic receptacle on the vacuum end. The 120 kV electron gun was manufactured by MDS Co. and will be used to generate sheet electron beams from the standard pencil beam produced by the Pierce electron gun.« less
Effective switching frequency multiplier inverter
Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI
2007-08-07
A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.
Erratum: Erratum to Central European Journal of Engineering, Volume 4, Issue 1
NASA Astrophysics Data System (ADS)
Kumar, M. Ajay; Srikanth, N. V.
2014-06-01
Paper by M. Ajay Kumar, N. V. Srikanth, et al. "An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions" in Volume 4, Issue 1, 27-38/March 2014 doi: 10.2478/s13531-013-0143-4 contains an error in the title. The correct title is presented below
Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle
NASA Astrophysics Data System (ADS)
Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao
2017-12-01
In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.
TEMPORAL EVOLUTION OF THE VELA PULSAR’S PULSE PROFILE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palfreyman, J. L.; Dickey, J. M.; Ellingsen, S. P.
The mechanisms of emission and changes in rotation frequency (“glitching”) of the Vela pulsar (J0835−4510) are not well understood. Further insight into these mechanisms can be achieved by long-term studies of integrated pulse width, timing residuals, and bright-pulse rates. We have undertaken an intensive observing campaign of Vela and collected over 6000 hr of single-pulse data. The data shows that the pulse width changes with time, including marked jumps in width after micro-glitches (frequency changes). The abundance of bright pulses also changes after some micro-glitches, but not all. The secular changes in pulse width have three possible cyclic periods thatmore » match with X-ray periodicities of a helical jet that are interpreted as free precession.« less
NASA Astrophysics Data System (ADS)
Zhang, Haikun; Xia, Wei; Song, Peng; Wang, Jing; Li, Xin
2018-03-01
A laser-diode-pumped actively Q-switched Yb:NaY(WO4)2 laser operating at around 1040 nm is presented for the first time with acoustic-optic modulator. The dependence of pulse width on incident pump power for different pulse repetition rates is measured. By considering the Guassian spatial distribution of the intracavity photon density and the initial population-inversion density as well as the longitudinal distribution of the photon density along the cavity axis and the turn off time of the acoustic-optic Q-switch, the coupled equations of the actively Q-switched Yb:NaY(WO4)2 laser are given. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.
Quasi-periodic dynamics in system with multilevel pulse modulated control
NASA Astrophysics Data System (ADS)
Gol'tsov, Yu A.; Kizhuk, A. S.; Rubanov, V. G.
2018-03-01
In this paper, the authors describe the transitions from the regular periodic mode to quasiperiodicity that can be observed in a multilevel pulse-width modulated control system for a high-power heating unit. The behavior of such system can be described by a set of two coupled non-autonomous differential equations with discontinuous right-hand sides. The authors reduce the investigation of this system to the studying of a two-dimensional piecewise-smooth map. The authors demonstrate how a closed invariant curve associated with quasiperiodic dynamics can arise from a stable periodic motion through a border-collision bifurcation. The paper also considers a variety of interesting nonlinear phenomena, including phase-locking modes, the coexistence of several stable closed invariant curves, embedded one into the other and with their basins of attraction separated by intervening repelling closed curves.
Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi
2017-07-31
High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jason; Dobrzynski, Daniel S.
A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less
NASA Technical Reports Server (NTRS)
Burris, John
2011-01-01
We report the use of a return-to- zero (RZPN) pseudo noise modulation technique for making range resolved measurements of CO2 within the planetary boundary layer (PBL) using commercial, off-the-shelf, components. Conventional, range resolved, DIAL measurements require laser pulse widths that are significantly shorter than the desired spatial resolution and necessitate using pulses whose temporal spacing is such that scattered returns from only a single pulse are observed by the receiver at any one time (for the PBL pulse separations must be greater than approximately 20 microseconds). This imposes significant operational limitations when using currently available fiber lasers because of the resulting low duty cycle (less than approximately 0.0005) and consequent low average laser output power. The RZPN modulation technique enables a fiber laser to operate at much higher duty cycles (approaching 0.04) thereby more effectively utilizing the amplifier's output. This increases the counts received by approximately two orders of magnitude. Our approach involves employing two distributed feedback lasers (DFB), each modulated by a different RPZN code, whose outputs are then amplified by a CW fiber amplifier. One laser is tuned to a CO2 absorption line; the other operates offline thereby permitting the simultaneous acquisition of both on and offline signals using independent RZPN codes. This minimizes the impact of atmospheric turbulence on the measurement. The on and offline signals are retrieved by deconvolving the return signal using the appropriate kernels.
Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses.
Chen, Jie; Chen, Wei-Kan; Tang, Jau; Rentzepis, Peter M
2011-11-22
We utilize 100 fs optical pulses to induce ultrafast disorder of 35- to 150-nm thick single Au(111) crystals and observe the subsequent structural evolution using 0.6-ps, 8.04-keV X-ray pulses. Monitoring the picosecond time-dependent modulation of the X-ray diffraction intensity, width, and shift, we have measured directly electron/phonon coupling, phonon/lattice interaction, and a histogram of the lattice disorder evolution, such as lattice breath due to a pressure wave propagating at sonic velocity, lattice melting, and recrystallization, including mosaic formation. Results of theoretical simulations agree and support the experimental data of the lattice/liquid phase transition process. These time-resolved X-ray diffraction data provide a detailed description of all the significant processes induced by ultrafast laser pulses impinging on thin metallic single crystals.
Well-behaved dynamics in a dissipative nonideal periodically kicked rotator.
Chacón, R; Martínez García-Hoz, A
2003-12-01
Well-behaved dynamical properties are found in a dissipative kicked rotator subjected to a periodic string of asymmetric pulses of finite amplitude and width. The stability boundaries of the equilibrium are determined to arbitrary approximation for trigonometric pulses by means of circular harmonic balance, and to first approximation for general elliptic pulses by means of an elliptic harmonic balance method. The bifurcation behavior at the stability boundaries is determined numerically. We show how the extension of the instability region of the equilibrium in pulse parameter space reaches a maximum as the pulse width is varied. We also characterize the dependence of the mean duration of the transients to the equilibrium on the pulse width. The evolution of the basins of attraction of chaotic attractors when solely the pulse width is varied is characterized numerically. Finally, we show that the order-chaos route when solely the width of the pulses is altered appears to be especially rich, including different types of crises. The mechanism underlying these reshaping-induced crises is discussed with the aid of a two-dimensional map.
Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR.
Pan, Chao; Liu, Xiaorui; Zhu, Hui; Shan, Xuekang; Sun, Xiaohan
2017-08-21
A real-time distributed optical fiber vibration sensing prototype based on the Sagnac interference in conjunction with the optical time domain reflectometry (OTDR) was developed. The sensing mechanism for single- and multi-points vibrations along the sensing fiber was analyzed theoretically and demonstrated experimentally. The experimental results show excellent agreement with the theoretical models. It is verified that single-point vibration induces a significantly abrupt and monotonous power change in the corresponding position of OTDR trace. As to multi-points vibrations, the detection of the following vibration is influenced by all previous ones. However, if the distance between the adjacent two vibrations is larger than half of the input optical pulse width, abrupt power changes induced by them are separate and still monotonous. A time-shifting differential module was developed and carried out to convert vibration-induced power changes to pulses. Consequently, vibrations can be located accurately by measuring peak or valley positions of the vibration-induced pulses. It is demonstrated that when the width and peak power of input optical pulse are set to 1 μs and 35 mW, respectively, the position error is less than ± 0.5 m in a sensing range of more than 16 km, with the spatial resolution of ~110 m.
Photoacoustic simulation study of chirp excitation response from different size absorbers
NASA Astrophysics Data System (ADS)
Jnawali, K.; Chinni, B.; Dogra, V.; Rao, N.
2017-03-01
Photoacoustic (PA) imaging is a hybrid imaging modality that integrates the strength of optical and ultrasound imaging. Nanosecond (ns) pulsed lasers used in current PA imaging systems are expensive, bulky and they often waste energy. We propose and evaluate, through simulations, the use of a continuous wave (CW) laser whose amplitude is linear frequency modulated (chirp) for PA imaging. The chirp signal provides signal-to-side-lobe ratio (SSR) improvement potential and full control over PA signal frequencies excited in the sample. The PA signal spectrum is a function of absorber size and the time frequencies present in the chirp. A mismatch between the input chirp spectrum and the output PA signal spectrum can affect the compressed pulse that is recovered from cross-correlating the two. We have quantitatively characterized this effect. The k-wave Matlab tool box was used to simulate PA signals in three dimensions for absorbers ranging in size from 0.1 mm to 0.6 mm, in response to laser excitation amplitude that is linearly swept from 0.5 MHz to 4 MHz. This sweep frequency range was chosen based on the spectrum analysis of a PA signal generated from ex-vivo human prostate tissue samples. In comparison, the energy wastage by a ns laser pulse was also estimated. For the chirp methodology, the compressed pulse peak amplitude, pulse width and side lobe structure parameters were extracted for different size absorbers. While the SSR increased 6 fold with absorber size, the pulse width decreased by 25%.
Capacitor charging FET switcher with controller to adjust pulse width
Mihalka, Alex M.
1986-01-01
A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.
Low power arcjet thruster pulse ignition
NASA Technical Reports Server (NTRS)
Sarmiento, Charles J.; Gruber, Robert P.
1987-01-01
An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.
Pulse Width Modulator Controller Design for a Brushless DC Motor Position Servo.
1987-06-01
C. POWER CONDITIONER SIMULATION Accurate modeling of power conditioning and commutation in brushless dc motors requires explicit definition of the...Study of a Brushless DC Motor Power Conditioner for a Cruise Missile Fin Control Actuator, Master’s Thesis, Naval Postgraduate School, Monterey, Ca...DESIGN FOR A BRUSHLESS DC MOTOR POSITION SERVO by Vincent S. Rossitto June 1987 Thesis Advisor: Alex Gerba, Jr. Approved for public release
NASA Technical Reports Server (NTRS)
Lyubashevskiy, G. S.
1973-01-01
Fourier processing of automatic signals transforms direct current voltage into a numerical form through bandpass filtration in time-pulse multiplying devices. It is shown that the ratio of the interference energy to the useful signal energy is inversely proportional to the square of the product of the depth of the width modulation and the ratio of the time constant averaging to the cross-multiplied signals.
Warnell, Ronald L; Swartz, Conrad M; Thomson, Alice
2011-11-01
We measured cognitive side effects from bitemporal electroconvulsive therapy (ECT) using stimuli of 0.5 msec pulse width 900 milliamperes (mA). Mini-Mental State Exam (MMSE) and 21-item Hamilton Rating Scale for Depression (HRSD-21) were rated within 36 hours before and 36 hours after a series of 6 bitemporal ECT sessions on 15 patients age ≥45. MMSE remained high after ECT (pre-ECT mean 29, standard deviation [SD] 1.60, post-ECT mean 28.53, SD 1.36) with no significant change. The mean HRSD-21 fell from 27.5 to 16.3. Post-ECT MMSE was significantly and markedly higher than in previous studies of bitemporal ECT; all had used ECT stimuli of pulse width at least 1 msec. With stimuli of 0.5 msec pulse width and 900 mA, 6 bitemporal ECTs did not decrease MMSE score. This result leaves no opportunity for further decrease in basic cognitive side effects, and complements published reports of stronger physiological effects with stimuli of 0.5 msec pulse width and 900 mA. ECT stimuli of 0.5 msec pulse width and 900 mA are more desirable than wider pulse widths. Six bitemporal ECT sessions using these stimuli generally will not have more cognitive side effects than treatments with other placements, allowing maintenance of full efficacy with clinically insubstantial side effects.
Demonstration of an 8*10-Gb/s OTDM system
NASA Astrophysics Data System (ADS)
Huo, Li; Yang, Yanfu; Lou, Caiyun; Gao, Yizhi
2005-03-01
An 8*10 Gb/s optical time-division-multiplexing (OTDM) system was demonstrated with an electroabsorption modulator (EAM) based short pulse generator followed by a two-stage nonlinear compression scheme which generated stable 10-GHz, 2-ps full-width at half-maximum (FWHM) pulse train, an opto-electronic oscillator (OEO) that extracted 10-GHz clock with a timing jitter of 300 fs from 80-Gb/s OTDM signal and a self cascaded EAM which produced a switching window of about 10 ps. A back-to-back error free demultiplexing experiment with a power penalty of 3.25 dB was carried out to verify the system performance.
Graphene mode-lockers for fiber lasers functioned with evanescent field interaction
NASA Astrophysics Data System (ADS)
Song, Yong-Won; Jang, Sung-Yeon; Han, Won-Suk; Bae, Mi-Kyung
2010-02-01
Employing graphene as an intracavity passive power modulating element, we demonstrate the efficient laser pulsation in high pulse-energy regime with evanescent field interaction between the propagating light and graphene layer. Graphene is prepared by the solution based reduction of graphene oxide, and dispersed homogeneously into the water for spray onto an all-fiber substrate, side-polished fiber. With the intracavity power up to 21.41 dBm, we ensure the robust high-energy operation without any thermal damage of graphene. Resultant output pulses have center wavelength, spectral width, and repetition rate of 1561.6 nm, 1.96 nm, and 6.99 MHz, respectively.
J-modulation effects in DOSY experiments and their suppression: the Oneshot45 experiment.
Botana, Adolfo; Aguilar, Juan A; Nilsson, Mathias; Morris, Gareth A
2011-02-01
Diffusion-ordered spectroscopy (DOSY) is a powerful NMR method for identifying compounds in mixtures. DOSY experiments are very demanding of spectral quality; even small deviations from expected behaviour in NMR signals can cause significant distortions in the diffusion domain. This is a particular problem when signals overlap, so it is very important to be able to acquire clean data with as little overlap as possible. DOSY experiments all suffer to a greater or lesser extent from multiplet phase distortions caused by J-modulation, requiring a trade-off between such distortions and gradient pulse width. Multiplet distortions increase spectral overlap and may cause unexpected and misleading apparent diffusion coefficients in DOSY spectra. These effects are described here and a simple and effective remedy, the addition of a 45° purging pulse immediately before the onset of acquisition to remove the unwanted anti-phase terms, is demonstrated. As well as affording significantly cleaner results, the new method allows much longer diffusion-encoding pulses to be used without problems from J-modulation, and hence greatly increases the range of molecular sizes that can be studied for coupled spin systems. The sensitivity loss is negligible and the added phase cycling is modest. The new method is illustrated for a widely-used general purpose DOSY pulse sequence, Oneshot. Copyright © 2010 Elsevier Inc. All rights reserved.
Henry, J.J.
1961-09-01
A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.
Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong
2017-03-01
High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.
High resolution, high rate X-ray spectrometer
Goulding, Frederick S.; Landis, Donald A.
1987-01-01
A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.
Megagauss Fields during Milliseconds
NASA Astrophysics Data System (ADS)
Campbell, L. J.; Embury, D.; Han, K.; Parkin, D. M.; Baca, A. G.; Kihara, K. H.; Sims, J. R.; Boebinger, G.; Eyssa, Y.; Lesch, B.; Li, L.; Schillig, J.; Schneider-Muntau, H.; Walsh, R.
2004-11-01
A non-destructive, one megagauss magnet is now being designed in cooperation between the Los Alamos National Laboratory and the National High Magnetic Field Laboratory (NHMFL) through joint funding by the US Department of Energy and the US National Science Foundation. The design combines two types of pulsed magnet now in use at the NHMFL: a capacitor-driven `insert' magnet with a total pulse width of order 10 ms and a much larger `outsert' magnet with a total pulse width of order 2 seconds that is driven by a controlled power source. The insert and outsert produce approximately 1/2 megagauss each. Although the design uses CuAg as the principal conductor, further design efforts and materials development involve exploring CuNb and stainless steel-clad copper as possible future alternatives. A crucial innovation employed wound steel strip (sheet) as reinforcement in both insert and outsert coils. This gives extra strength due to the higher degree of cold-work possible in strip materials. A key role is played by materials development for this leading edge magnet. A major component, the 7-module, 560 MVA controlled dc power supply required for the outsert has been installed and commissioned.
Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun
2012-01-16
A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed.
Chaos Through-Wall Imaging Radar
NASA Astrophysics Data System (ADS)
Xu, Hang; Wang, Bingjie; Zhang, Jianguo; Liu, Li; Li, Ying; Wang, Yuncai; Wang, Anbang
2017-12-01
We experimentally demonstrate a chaos through-wall imaging radar using ultra-wideband chaotic-pulse-position modulation (CPPM) microwave signal. The CPPM signal based on logistic map with 1-ns pulse width and 1-GHz bandwidth is implemented by a field programmable gate array (FPGA) and then up-converted as the radar transmitting signal. Two-dimensional image of human objects behind obstacles is obtained by correlation method and back projection algorithm. Our experiments successfully perform through-wall imaging for single and multiple human objects through 20-cm thick wall. The down-range resolution of the proposed radar is 15 cm. Furthermore, the anti-jamming properties of the proposed radar in CPPM jamming, linear frequency-modulated jamming, and Gaussian noise jamming environments are demonstrated by electromagnetic simulations using the finite-difference time-domain. The simulation results show the CPPM microwave signal possesses excellent jamming immunity to the noise and radio frequency interference, which makes it perform superbly in multiradar environments.
Pulse width modulated push-pull driven parallel resonant converter with active free-wheel
Reass, William A.; Schrank, Louis
2004-06-22
An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.
Revisiting NMR composite pulses for broadband 2H excitation
Shen, Ming; Roopchand, Rabia; Mananga, Eugene S.; Amoureux, Jean-Paul; Chen, Qun; Boutis, Gregory S.; Hu, Bingwen
2014-01-01
Quadrupolar echo NMR spectroscopy of static solids often requires RF excitation that covers spectral widths exceeding 100 kHz, which is difficult to obtain due to instrumental limitations. In this work we revisit four well-known composite pulses (COM-I, II, III and IV) for broadband excitation in deuterium quadrupolar echo spectroscopy. These composite pulses are combined with several phase cycling schemes that were previously shown to decrease finite pulse width distortions in deuterium solid-echo experiments performed with two single pulses. The simulations and experiments show that COM-II and IV composite pulses combined with an 8-step phase cycling aid in achieving broadband excitation with limited pulse width distortions. PMID:25583576
Intracavity optically controlled crystal modulators for a CO/sub 2/ laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhevskii, V.N.; Churakov, V.V.
1986-06-01
This paper presents the results of studies of intracavity amplitude modulation of CW CO/sub 2/ laser radiation by its optically controlled absorption on nonequilibrium charge carriers (NCC) in KRS-5, KRS-6, and ZnSe crystals. The fundamental variables which determine the efficiency of such a modulation method are discussed. The radiation from a ruby laser with a 35-nsec pulse width was used to produce the nonequilibrium charge carriers. The variation of the modulation percentage of the intensity vs. excitation level at lambda = 0.6943 ..mu..m is shown for different powers of the CO/sub 2/ laser. The studies attest to the relatively highmore » efficiency of intracavity modulation based on IR radiation absorption by NCC in crystals, where the NCC are generated under the influence of external excitation.« less
Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J
2015-12-08
Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.
A low-power high-speed ultra-wideband pulse radio transmission system.
Wei Tang; Culurciello, E
2009-10-01
We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.
NASA Astrophysics Data System (ADS)
Lv, Zhiguo; Yang, Zhi; Li, Feng; Yang, Xiaojun; Li, Qianglong; Zhang, Xin; Wang, Yishan; Zhao, Wei
2018-03-01
We report on an experimental study on fully fusion spliced high power all-polarization-maintaining Yb-doped photonic crystal fiber (PCF) femtosecond nonlinear chirped-pulse amplifier (CPA), which features large values of the positive third-order dispersion (TOD) superposed from the single-mode fiber stretcher (SMFs) and grating-pair compressor. Compensation of the TOD is realized by means of self-phase modulation (SPM) induced nonlinear phase shift during amplification. Up to 9.8 W of compressed average power at 275 kHz repetition rates with 36 μJ pulse energy and 495 fs pulse width has been obtained. To the best of our knowledge, this is the highest output power generated from the strictly all-fiber nonlinear CPA amplifier in femtosecond domain, which provides a possibility for the industrialized promotion and development of the high energy femtosecond fiber laser.
On-axis non-linear effects with programmable Dammann lenses under femtosecond illumination.
Pérez Vizcaíno, Jorge; Mendoza-Yero, Omel; Borrego-Varillas, Rocío; Mínguez-Vega, Gladys; Vázquez de Aldana, Javier R; Láncis, Jesús
2013-05-15
We demonstrate the utilization of Dammann lenses codified onto a spatial light modulator (SLM) for triggering non-linear effects. With continuous wave illumination Dammann lenses are binary phase optical elements that generate a set of equal intensity foci. We theoretically calculate the influence of ultrashort pulse illumination on the uniformity of the generated pattern, which is affected by chromatic aberration for pulses with temporal widths lower than 100 fs. The simulations also indicate that acceptable uniformity can be achieved for pulses of several fs by shortening the distance among foci which can be easily modified with the SLM. Multifocal second-harmonic generation (SHG) and on-axis multiple filamentation are produced and actively controlled in β-BaB2O4 (BBO) and fused silica samples, respectively, with an amplified Ti: Sapphire femtosecond laser of 30 fs pulse duration. Experimental results are in very good agreement with theoretical calculations.
NASA Astrophysics Data System (ADS)
Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui
2015-10-01
In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.
SYSTEM FOR AND METHOD OF DETERMINING RANGE
Horrell, M.W.; Sanders, E.R.
1963-11-01
A system and method for indicating a predetermined altitude of an object or aircraft is described. The device utilizes a pulse transmit-receive system wherein pulses of predetermined width are transmitted towards the ground and the reflected pulses received gating only pulses having a predetermined width. (AEC)
Digital control of a direct current converter for a hybrid vehicle
NASA Astrophysics Data System (ADS)
Hernandez, Juan Manuel
The nonlinear feedback loops permitting the large signal control of pulse width modulators in direct current converters are discussed. A digital feedback loop on a converter controlling the coupling of a direct current machine is described. It is used in the propulsion of a hybrid vehicle (thermal-electric) with regenerative braking. The protection of the power switches is also studied. An active protection of the MOST bipolar transistor association is proposed.
Voltage-Boosting Driver For Switching Regulator
NASA Technical Reports Server (NTRS)
Trump, Ronald C.
1990-01-01
Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.
Self-balanced modulation and magnetic rebalancing method for parallel multilevel inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Shi, Yanjun
A self-balanced modulation method and a closed-loop magnetic flux rebalancing control method for parallel multilevel inverters. The combination of the two methods provides for balancing of the magnetic flux of the inter-cell transformers (ICTs) of the parallel multilevel inverters without deteriorating the quality of the output voltage. In various embodiments a parallel multi-level inverter modulator is provide including a multi-channel comparator to generate a multiplexed digitized ideal waveform for a parallel multi-level inverter and a finite state machine (FSM) module coupled to the parallel multi-channel comparator, the FSM module to receive the multiplexed digitized ideal waveform and to generate amore » pulse width modulated gate-drive signal for each switching device of the parallel multi-level inverter. The system and method provides for optimization of the output voltage spectrum without influence the magnetic balancing.« less
NASA Astrophysics Data System (ADS)
Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting
2018-02-01
Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.
NASA Astrophysics Data System (ADS)
Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team
This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.
Performance benefits from pulsed laser heating in heat assisted magnetic recording
NASA Astrophysics Data System (ADS)
Xu, B. X.; Cen, Z. H.; Goh, J. H.; Li, J. M.; Toh, Y. T.; Zhang, J.; Ye, K. D.; Quan, C. G.
2014-05-01
Smaller cross track thermal spot size and larger down track thermal gradient are desired for increasing the density of heat assisted magnetic recording. Both parameters are affected significantly by the thermal energy accumulation and diffusion in the recording media. Pulsed laser heating is one of the ways to reduce the thermal diffusion. In this paper, we describe the benefits from the pulsed laser heating such as the dependences of the cross track thermal width, down track thermal gradient, the required laser pulse/average powers, and the transducer temperature rise on the laser pulse width at different media thermal properties. The results indicate that as the pulse width decreases, the thermal width decreases, the thermal gradient increases, the required pulse power increases and the average power decreases. For shorter pulse heating, the effects of the medium thermal properties on the thermal performances become weaker. This can greatly relax the required thermal properties of the media. The results also show that the pulsed laser heating can effectively reduce the transducer temperature rise and allow the transducer to reach its "dynamically" stable temperature more quickly.
NASA Technical Reports Server (NTRS)
Poultney, S. K.
1971-01-01
The behavior of the photomultiplier is considered, as well as the method of derivation of the photomultiplier output pulse and its relation to the reflected light pulse width and amplitude, and the calibration of range precision and accuracy. Pulsed laser radars with light pulse widths of 30, 3, and 0.1 nanosec a considered, with the 0.1 nanosec system capable of highest precision in several modes of operation, including a high repetition rate, single photoelectron reception mode. An alternate calibration scheme using a fast, triggerable light pulser is described in detail.
Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.
2018-04-01
This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Hong; Liu, Sheng; Department of Physics, University of Maryland, Baltimore County
2015-02-02
We study the Kerr nonlinearity of quantum cascade lasers (QCLs) by coupling resonant and off-resonant mid-infrared (mid-IR) femtosecond (fs) pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-infrared (mid-IR) pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. Wemore » experimentally estimate the nonlinear refractive index n{sub 2} of a QCL to be ∼8 × 10{sup −9 }cm{sup 2}/W using the far-field beam profile of the transmitted pulses. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results.« less
NASA Astrophysics Data System (ADS)
Gao, Liang; Sun, Jizhong; Feng, Chunlei; Bai, Jing; Ding, Hongbin
2012-01-01
A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N2(A3 Σu+) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N2(A3 Σu+) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N2(A3 Σu+) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N2(A3 Σu+) density can achieve a value in the order of 109 cm-3. The N2(A3 Σu+) density at such a value could be easily detected by laser-based experimental methods.
Chen, Shaoqiang; Yoshita, Masahiro; Sato, Aya; Ito, Takashi; Akiyama, Hidefumi; Yokoyama, Hiroyuki
2013-05-06
Picosecond-pulse-generation dynamics and pulse-width limiting factors via spectral filtering from intensely pulse-excited gain-switched 1.55-μm distributed-feedback laser diodes were studied. The spectral and temporal characteristics of the spectrally filtered pulses indicated that the short-wavelength component stems from the initial part of the gain-switched main pulse and has a nearly linear down-chirp of 5.2 ps/nm, whereas long-wavelength components include chirped pulse-lasing components and steady-state-lasing components. Rate-equation calculations with a model of linear change in refractive index with carrier density explained the major features of the experimental results. The analysis of the expected pulse widths with optimum spectral widths was also consistent with the experimental data.
Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung
2017-09-01
Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1995-01-01
Laser altimeters measure the time of flight of the laser pulses to determine the range of the target. The simplest altimeter receiver consists of a photodetector followed by a leading edge detector. A time interval unit (TIU) measures the time from the transmitted laser pulse to the leading edge of the received pulse as it crosses a preset threshold. However, the ranging error of this simple detection scheme depends on the received, pulse amplitude, pulse shape, and the threshold. In practice, the pulse shape and the amplitude are determined by the target target characteristics which has to be assumed unknown prior to the measurement. The ranging error can be improved if one also measures the pulse width and use the average of the leading and trailing edges (half pulse width) as the pulse arrival time. The ranging error becomes independent of the received pulse amplitude and the pulse width as long as the pulse shape is symmetric. The pulse width also gives the slope of the target. The ultimate detection scheme is to digitize the received waveform and calculate the centroid as the pulse arrival time. The centroid detection always gives unbiased measurement even for asymmetric pulses. In this report, we analyze the laser altimeter ranging errors for these three detection schemes using the Mars Orbital Laser Altimeter (MOLA) as an example.
Precise delay measurement through combinatorial logic
NASA Technical Reports Server (NTRS)
Burke, Gary R. (Inventor); Chen, Yuan (Inventor); Sheldon, Douglas J. (Inventor)
2010-01-01
A high resolution circuit and method for facilitating precise measurement of on-chip delays for FPGAs for reliability studies. The circuit embeds a pulse generator on an FPGA chip having one or more groups of LUTS (the "LUT delay chain"), also on-chip. The circuit also embeds a pulse width measurement circuit on-chip, and measures the duration of the generated pulse through the delay chain. The pulse width of the output pulse represents the delay through the delay chain without any I/O delay. The pulse width measurement circuit uses an additional asynchronous clock autonomous from the main clock and the FPGA propagation delay can be displayed on a hex display continuously for testing purposes.
NASA Astrophysics Data System (ADS)
Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun
2018-05-01
A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.
A compact 100 kV high voltage glycol capacitor.
Wang, Langning; Liu, Jinliang; Feng, Jiahuai
2015-01-01
A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.
NASA Astrophysics Data System (ADS)
Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.
1990-05-01
A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.
Zhou, Yue; Cheung, Kim K Y; Li, Qin; Yang, Sigang; Chui, P C; Wong, Kenneth K Y
2010-07-15
We demonstrate a dispersion-tuned fiber optical parametric oscillator (FOPO)-based swept source with a sweep rate of 40 kHz and a wavelength tuning range of 109 nm around 1550 nm. The cumulative speed exceeds 4,000,000 nm/s. The FOPO is pumped by a sinusoidally modulated pump, which is driven by a clock sweeping linearly from 1 to 1.0006 GHz. A spool of dispersion-compensating fiber is added inside the cavity to perform dispersion tuning. The instantaneous linewidth is 0.8 nm without the use of any wavelength selective element inside the cavity. 1 GHz pulses with pulse width of 150 ps are generated.
Motor/generator and electronic control considerations for energy storage flywheels
NASA Technical Reports Server (NTRS)
Nola, F. J.
1984-01-01
A spacecraft electric power supply system is described. Requirements of the system are to accelerate a momentum wheel to a fixed maximum speed when solar energy is available and to maintain a constant voltage on the spacecraft bus under varying loads when solar energy is not available. Candidate motor types, pulse width modulated current control systems, and efficiency considerations are discussed. In addition, the Lunar Roving Vehicle motors are described along with their respective efficiencies.
A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.
Chang, Gwo-Ching
2013-01-01
Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.
The Use of a Pseudo Noise Code for DIAL Lidar
NASA Technical Reports Server (NTRS)
Burris, John F.
2010-01-01
Retrievals of CO2 profiles within the planetary boundary layer (PBL) are required to understand CO2 transport over regional scales and for validating the future space borne CO2 remote sensing instrument, such as the CO2 Laser Sounder, for the ASCENDS mission, We report the use of a return-to-zero (RZ) pseudo noise (PN) code modulation technique for making range resolved measurements of CO2 within the PBL using commercial, off-the-shelf, components. Conventional, range resolved, measurements require laser pulse widths that are s#rorter than the desired spatial resolution and have pulse spacing such that returns from only a single pulse are observed by the receiver at one time (for the PBL pulse separations must be greater than approximately 2000m). This imposes a serious limitation when using available fiber lasers because of the resulting low duty cycle (less than 0.001) and consequent low average laser output power. RZ PN code modulation enables a fiber laser to operate at much higher duty cycles (approaching 0.1) thereby more effectively utilizing the amplifier's output. This results in an increase in received counts by approximately two orders of magnitude. The approach involves employing two, back to back, CW fiber amplifiers seeded at the appropriate on and offline CO2 wavelengths (approximately 1572 nm) using distributed feedback diode lasers modulated by a PN code at rates significantly above 1 megahertz. An assessment of the technique, discussions of measurement precision and error sources as well as preliminary data will be presented.
Relativistic Electron Acceleration with Ultrashort Mid-IR Laser Pulses
NASA Astrophysics Data System (ADS)
Feder, Linus; Woodbury, Daniel; Shumakova, Valentina; Gollner, Claudia; Miao, Bo; Schwartz, Robert; Pugžlys, Audrius; Baltuška, Andrius; Milchberg, Howard
2017-10-01
We report the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (λ = 3.9 μm , pulsewidth 100 fs, energy <20 mJ, peak power <1 TW), which enables near- and above-critical density interactions with moderate-density gas jets. We present thresholds for electron acceleration based on critical parameters for relativistic self-focusing and target width, as well as trends in the accelerated beam profiles, charge and energy spectra which are supported by 3D particle-in-cell simulations. These results extend earlier work with sub-TW self-modulated laser wakefield acceleration using near IR drivers to the Mid-IR, and enable us to capture time-resolved images of relativistic self-focusing of the laser pulse. This work supported by DOE (DESC0010706TDD, DESC0015516); AFOSR(FA95501310044, FA95501610121); NSF(PHY1535519); DHS.
An actively Q-switched fiber laser with cylindrical vector beam generation
NASA Astrophysics Data System (ADS)
Zhang, Jiaojiao; Zhang, Zuxing; Cai, Yu; Wan, Hongdan; Wang, Zhiqiang; Zhang, Lin
2018-03-01
We demonstrate an actively Q-switched fiber laser with cylindrical vector beam (CVB) emission using a few-mode fiber Bragg grating as the mode selection component and an acousto-optic modulator to achieve Q-switching. To the best of our knowledge, this is the first such demonstration. Using a linear cavity configuration, an actively Q-switched CVB with a pulse width of about 64 ns, a pulse energy of 4.25 µJ and a repetition rate of 20 kHz has been obtained. Moreover, by tuning the polarization controllers radially and azimuthally, polarized Q-switched beams can be excited separately with a polarization purity of >94.5%. This compact Q-switched fiber laser with ns CVB pulse output could find potential applications in the field of material processing, nonlinear optics and so on.
Laurence, T. A.; Negres, R. A.; Ly, S.; ...
2017-06-22
Here, we investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1–60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damagemore » properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, T. A.; Negres, R. A.; Ly, S.
Here, we investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1–60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damagemore » properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.« less
[Loudness optimized registration of compound action potential in cochlear implant recipients].
Berger, Klaus; Hocke, Thomas; Hessel, Horst
2017-11-01
Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.
Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets
NASA Astrophysics Data System (ADS)
Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan
2018-05-01
Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.
Dohnke, Birte; Steinhilber, Amina; Fuchs, Tanja
2015-01-01
To investigate the prototype-willingness model (PWM) for eating behaviour in general and in the peer context in order to gain further evidence on the PWM and social-reactive processes in adolescents' eating behaviour. A longitudinal study was conducted. PWM variables for unhealthy and healthy eating were assessed at baseline in 356 adolescents (mean age 12.61 years). Eating behaviour was measured four weeks after baseline by two indicators: general eating pattern index (self-report) and consumption of unhealthy and healthy snacks in the peer context (behavioural observation). For both, structural equation models were conducted introducing PWM variables for either unhealthy or healthy eating. The PWM was mainly confirmed for the eating pattern index; intention, willingness and prototype perception had direct effects. Differences between unhealthy and healthy eating were found. Moreover, the PWM contributed to the prediction of healthy, but not unhealthy, snack consumption over and above current hunger; willingness had a direct effect. The PWM can be applied to predict and understand adolescents' eating behaviour. Social-reactive processes, namely willingness and prototype perception, are behavioural determinants that should be considered in theory and as novel targets in health promotion interventions.
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA
2012-06-05
A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.
A simple 5-DoF MR-compatible motion signal measurement system.
Chung, Soon-Cheol; Kim, Hyung-Sik; Yang, Jae-Woong; Lee, Su-Jeong; Choi, Mi-Hyun; Kim, Ji-Hye; Yeon, Hong-Won; Park, Jang-Yeon; Yi, Jeong-Han; Tack, Gye-Rae
2011-09-01
The purpose of this study was to develop a simple motion measurement system with magnetic resonance (MR) compatibility and safety. The motion measurement system proposed here can measure 5-DoF motion signals without deteriorating the MR images, and it has no effect on the intense and homogeneous main magnetic field, the temporal-gradient magnetic field (which varies rapidly with time), the transceiver radio frequency (RF) coil, and the RF pulse during MR data acquisition. A three-axis accelerometer and a two-axis gyroscope were used to measure 5-DoF motion signals, and Velcro was used to attach a sensor module to a finger or wrist. To minimize the interference between the MR imaging system and the motion measurement system, nonmagnetic materials were used for all electric circuit components in an MR shield room. To remove the effect of RF pulse, an amplifier, modulation circuit, and power supply were located in a shielded case, which was made of copper and aluminum. The motion signal was modulated to an optic signal using pulse width modulation, and the modulated optic signal was transmitted outside the MR shield room using a high-intensity light-emitting diode and an optic cable. The motion signal was recorded on a PC by demodulating the transmitted optic signal into an electric signal. Various kinematic variables, such as angle, acceleration, velocity, and jerk, can be measured or calculated by using the motion measurement system developed here. This system also enables motion tracking by extracting the position information from the motion signals. It was verified that MR images and motion signals could reliably be measured simultaneously.
NASA Astrophysics Data System (ADS)
Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.
2015-03-01
Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.
EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, D.; Li, B.; Pascoe, D. J.
2015-02-01
We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wavemore » pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere.« less
The application of laser triangulation method on the blind guidance
NASA Astrophysics Data System (ADS)
Wu, Jih-Huah; Wang, Jinn-Der; Fang, Wei; Shan, Yi-Chia; Ma, Shih-Hsin; Kao, Hai-Ko; Jiang, Joe-Air; Lee, Yun-Parn
2011-08-01
A new apparatus for blind-guide is proposed in this paper. Optical triangulation method was used to realize the system. The main components comprise a notebook computer, a camera and two laser modules. One laser module emits a light line beam on the vertical axis. Another laser module emits a light line beam on the tilt horizontal axis. The track of the light line beam on the ground or on the object is captured by the camera, and the image is sent to the notebook computer for calculation. The system can calculate the object width and the distance between the object and the blind in terms of the light line positions on the image. Based on the experiment, the distance between the test object and the blind can be measured with a standard deviation of less than 3% within the range of 60 to 150 cm. The test object width can be measured with a standard deviation of less than 1% within the range of 60 to 150 cm. For saving the power consumption, the laser modules are switched on/off with a trigger pulse. And for reducing the complex computation, the two laser modules are switched on alternately. Besides this, a band pass filter is used to filter out the signal except the specific laser light, which can increase the signal to noise ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai
2013-05-13
Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.
Design of a variable width pulse generator feasible for manual or automatic control
NASA Astrophysics Data System (ADS)
Vegas, I.; Antoranz, P.; Miranda, J. M.; Franco, F. J.
2017-01-01
A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications.
Power electronics for low power arcjets
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.
1991-01-01
In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.
Wheeler, Alyssa R.; Fulton, Kara A.; Gaudette, Jason E.; Simmons, Ryan A.; Matsuo, Ikuo; Simmons, James A.
2016-01-01
Big brown bats (Eptesicus fuscus) emit trains of brief, wideband frequency-modulated (FM) echolocation sounds and use echoes of these sounds to orient, find insects, and guide flight through vegetation. They are observed to emit sounds that alternate between short and long inter-pulse intervals (IPIs), forming sonar sound groups. The occurrence of these strobe groups has been linked to flight in cluttered acoustic environments, but how exactly bats use sonar sound groups to orient and navigate is still a mystery. Here, the production of sound groups during clutter navigation was examined. Controlled flight experiments were conducted where the proximity of the nearest obstacles was systematically decreased while the extended scene was kept constant. Four bats flew along a corridor of varying widths (100, 70, and 40 cm) bounded by rows of vertically hanging plastic chains while in-flight echolocation calls were recorded. Bats shortened their IPIs for more rapid spatial sampling and also grouped their sounds more tightly when flying in narrower corridors. Bats emitted echolocation calls with progressively shorter IPIs over the course of a flight, and began their flights by emitting shorter starting IPI calls when clutter was denser. The percentage of sound groups containing 3 or more calls increased with increasing clutter proximity. Moreover, IPI sequences having internal structure become more pronounced when corridor width narrows. A novel metric for analyzing the temporal organization of sound sequences was developed, and the results indicate that the time interval between echolocation calls depends heavily on the preceding time interval. The occurrence of specific IPI patterns were dependent upon clutter, which suggests that sonar sound grouping may be an adaptive strategy for coping with pulse-echo ambiguity in cluttered surroundings. PMID:27445723
NASA Astrophysics Data System (ADS)
Lee, Yong Wook; Yoon, Hyung Do; Park, Jae-Hyoun; Ryu, Uh-Chan
2018-05-01
UV LED lightings have been displacing conventional UV lamps due to their high efficiency, long lifetime, etc. A sterilizing lighting was prepared by assembling a UV LED module composed of 265-nm UVC LEDs and a silica lens array with a driver module comprised of a driver IC controlling pulse width modulation and constant current. The silica lens array was designed and fabricated to focus UV beam and simultaneously to give a uniform light distribution over specimens. Then pasteurizing effect of the lighting was analyzed for four kinds of bacteria and one yeast which are dangerous to people with low immunity. Sterilizing tests on these germs were carried out at the both exposure distances of 10 and 100 mm for various exposure durations up to 600 s.
Pressure Studies of Protein Dynamics
1989-02-26
infrared flash photolysis system with the monitoring light produced by a Spectra-Physics/ Laser Analytics tunable- diode laser and detected by a liquid...refrigerator. Time range extends from about 100 ms to 100 s. The diode laser current is modulated at 10 kHz and the signal is amplified with a PAR 5101...Photolysis is obtained with a Phase-R D 121OOC dye laser using rhodamine 6G (pulse 4 width 500 ns, 0.3 J). Kinetic spectra are obtained from about 10
System-wide power management control via clock distribution network
Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.
2015-05-19
An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.
Novel zero voltage transition pulse width modulation flyback converter
NASA Astrophysics Data System (ADS)
Adib, Ehsan; Farzanehfard, Hosein
2010-09-01
In this article, a new zero voltage (ZV) transition flyback converter is introduced which uses a simple auxiliary circuit. In this converter, ZV switching condition is achieved for the converter switch while zero current switching condition is attained for the auxiliary switch. There is no additional voltage and current stress on the main switch. Main diode, auxiliary circuit voltage and current ratings are low. The proposed converter is analysed and design procedure is discussed. The presented experimental results of a prototype converter justify the theoretical analysis.
20 kHz main inverter unit. [for space station power supplies
NASA Technical Reports Server (NTRS)
Hussey, S.
1989-01-01
A proof-of-concept main inverter unit has demonstrated the operation of a pulse-width-modulated parallel resonant power stage topology as a 20-kHz ac power source driver, showing simple output regulation, parallel operation, power sharing and short-circuit operation. The use of a two-stage dc input filter controls the electromagnetic compatibility (EMC) characteristics of the dc power bus, and the use of an ac harmonic trap controls the EMC characteristics of the 20-kHz ac power bus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benveniste, E.; Stevens, R.H.
1983-04-01
Tetanus toxoid immunization of humans generates circulating B cells which secrete IgG anti-tetanus toxoid antibodies (IgG-Tet) when stimulated in vitro with T cells and pokeweed mitogen (PWM). A unique property of these cells is the inhibition of maturation into antibody-secreting plasma cells following a 1-hr in vitro pulse with tetanus toxoid. Studies were undertaken to determine if different T-cell subsets could modulate the in vitro generated B-cell unresponsive state. The addition of OKT4+/OKT8- cells to antigen-treated B cells resulted in a partial reversal of the antigen-induced inhibition of IgG-Tet synthesis. The addition of OKT4-/OKT8+ cells to the treated B cellsmore » caused a suppression of IgG-Tet synthesis comparable to that seen in cultures containing unfractionated T cells. These results indicate that (1) the B-cell unresponsive state generated by antigen treatment is not absolute, (2) the degree of B-cell unresponsiveness results from a balance of suppressor and helper signals, and (3) T-suppressor cells need to be present to induce and maintain the B-cell unresponsive state.« less
Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin
2017-01-01
A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508
Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei
2016-11-28
We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.
Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications
NASA Astrophysics Data System (ADS)
Zhang, Yuefeng
1995-01-01
To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has been designed for the power factor correction, and the simulation results show that the power factor has been improved.
A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer
NASA Astrophysics Data System (ADS)
Sitnikov, A.; Kalabukhova, E.; Oliynyk, V.; Kolisnichenko, M.
2017-05-01
We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.
A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer.
Sitnikov, A; Kalabukhova, E; Oliynyk, V; Kolisnichenko, M
2017-05-01
We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.
Sub-20-ps pulses from a passively Q-switched microchip laser at 1 MHz repetition rate.
Mehner, Eva; Bernard, Benjamin; Giessen, Harald; Kopf, Daniel; Braun, Bernd
2014-05-15
We present a 50 μm Nd3+:YVO4 microchip laser that is passively Q-switched by a semiconductor saturable absorber mirror. To reduce handling problems caused by the small crystal dimensions, the 50 μm Nd3+:YVO4 crystal is optically bonded to an undoped YVO4 crystal of a length of about 500 μm. By using a saturable absorber mirror with an effective modulation depth of >10% the system is able to deliver 16 ps pulses at a repetition rate of up to 1.0 MHz. The average laser power is 16 mW at 1064 nm. To our knowledge these are the shortest Q-switched pulses ever reported from a solid-state laser. The limits in terms of pulse width, repetition rate, output power, and system stability are discussed. Additionally, continuous-wave behavior is analyzed. Experimental data is compared with the simulation results of the coupled rate equations.
Kim, Yong Sang; Kim, Young Seok; Kim, Sung Hyun
2010-07-01
Thermal decomposition properties of plastic waste-waste lube oil compounds were investigated under nonisothermal conditions. Polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were selected as representative household plastic wastes. A plastic waste mixture (PWM) and waste lube oil (WLO) were mixed with mixing ratios of 33, 50, and 67 (w/w) % on a PWM weight basis, and thermogravimetric (TG) experiments were performed from 25 to 600 degrees C. The Flynn-Wall method and the Ozawa-Flynn-Wall method were used for analyses of thermodynamic parameters. In this study, activation energies of PWM/WLO compounds ranged from 73.4 to 229.6 kJ/mol between 0.2 and 0.8 of normalized mass conversions, and the 50% PWM/WLO compound had lower activation energies and enthalpies among the PWM/WLO samples at each mass conversion. At the point of maximum differential mass conversion, the analyzed activation energies, enthalpies, entropies, and Gibbs free energies indicated that mixing PWM and WLO has advantages in reducing energy to decrease the degree of disorder. However, no difference in overall energy that would require overcoming both thermal decomposition reactions and degree of disorder was observed among PWM/WLO compounds under these experimental conditions.
Magnetic measurement of soft magnetic composites material under 3D SVPWM excitation
NASA Astrophysics Data System (ADS)
Zhang, Changgeng; Jiang, Baolin; Li, Yongjian; Yang, Qingxin
2018-05-01
The magnetic properties measurement and analysis of soft magnetic material under the rotational space-vector pulse width modulation (SVPWM) excitation are key factors in design and optimization of the adjustable speed motor. In this paper, a three-dimensional (3D) magnetic properties testing system fit for SVPWM excitation is built, which includes symmetrical orthogonal excitation magnetic circuit and cubic field-metric sensor. Base on the testing system, the vector B and H loci of soft magnetic composite (SMC) material under SVPWM excitation are measured and analyzed by proposed 3D SVPWM control method. Alternating and rotating core losses under various complex excitation with different magnitude modulation ratio are calculated and compared.
Self-organized plasmonic metasurfaces for all-optical modulation
NASA Astrophysics Data System (ADS)
Della Valle, G.; Polli, D.; Biagioni, P.; Martella, C.; Giordano, M. C.; Finazzi, M.; Longhi, S.; Duò, L.; Cerullo, G.; Buatier de Mongeot, F.
2015-06-01
We experimentally demonstrate a self-organized metasurface with a polarization dependent transmittance that can be dynamically controlled by optical means. The configuration consists of tightly packed plasmonic nanowires with a large dispersion of width and height produced by the defocused ion-beam sputtering of a thin gold film supported on a silica glass. Our results are quantitatively interpreted according to a theoretical model based on the thermomodulational nonlinearity of gold and a finite-element numerical analysis of the absorption and scattering cross-sections of the nanowires. We found that the polarization sensitivity of the metasurface can be strongly enhanced by pumping with ultrashort laser pulses, leading to potential applications in ultrafast all-optical modulation and switching of light.
Optimal space communications techniques. [discussion of video signals and delta modulation
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1974-01-01
The encoding of video signals using the Song Adaptive Delta Modulator (Song ADM) is discussed. The video signals are characterized as a sequence of pulses having arbitrary height and width. Although the ADM is suited to tracking signals having fast rise times, it was found that the DM algorithm (which permits an exponential rise for estimating an input step) results in a large overshoot and an underdamped response to the step. An overshoot suppression algorithm which significantly reduces the ringing while not affecting the rise time is presented along with formuli for the rise time and the settling time. Channel errors and their effect on the DM encoded bit stream were investigated.
Yarrington, C. D.; Abere, M. J.; Adams, D. P.; ...
2017-04-03
We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm 2 and 1189 W/cm 2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model themore » progress from reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.« less
2008-10-01
acoustic phenomenon. Our results indicate that the shorter pulse width (with lower energy/pulse) required ~30-35 mJ/pulse to initiate ignition of... acoustic behavior and some other novel phenomena associated with radiation absorption by SWCNTs. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...pressure level (SPL) from the photo acoustic phenomenon. Our results indicate that the shorter pulse width (with lower energy/pulse) required ~30-35
Tissue effects of Ho:YAG laser with varying fluences and pulse widths
NASA Astrophysics Data System (ADS)
Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.
1994-02-01
We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.
Speed of response in ultrabrief and brief pulse width right unilateral ECT.
Loo, Colleen K; Garfield, Joshua B B; Katalinic, Natalie; Schweitzer, Isaac; Hadzi-Pavlovic, Dusan
2013-05-01
Ultrabrief pulse width stimulation electroconvulsive therapy (ECT) results in less cognitive side-effects than brief pulse ECT, but recent work suggests that more treatment sessions may be required to achieve similar efficacy. In this retrospective analysis of subjects pooled from three research studies, time to improvement was analysed in 150 depressed subjects who received right unilateral ECT with a brief pulse width (at five times seizure threshold) or ultrabrief pulse width (at six times seizure threshold). Multivariate Cox regression analyses compared the number of treatments required for 50% reduction in depression scores (i.e. speed of response) in these two samples. The analyses controlled for clinical, demographic and treatment variables that differed between the samples or that were found to be significant predictors of speed of response in univariate analyses. In the multivariate analysis, older age predicted faster speed of response. There was a non-significant trend for faster time to 50% improvement with brief pulse ECT (p = 0.067). Remission rates were higher after brief pulse ECT than ultrabrief pulse ECT (p = 0.007) but response rates were similar. This study, the largest of its kind reported to date, suggests that fewer treatments may be needed to attain response with brief than ultrabrief pulse ECT and that remission rates are higher with brief pulse ECT. Further research with a larger randomized and blinded study is recommended.
High-power Yb-fiber comb based on pre-chirped-management self-similar amplification
NASA Astrophysics Data System (ADS)
Luo, Daping; Liu, Yang; Gu, Chenglin; Wang, Chao; Zhu, Zhiwei; Zhang, Wenchao; Deng, Zejiang; Zhou, Lian; Li, Wenxue; Zeng, Heping
2018-02-01
We report a fiber self-similar-amplification (SSA) comb system that delivers a 250-MHz, 109-W, 42-fs pulse train with a 10-dB spectral width of 85 nm at 1056 nm. A pair of grisms is employed to compensate the group velocity dispersion and third-order dispersion of pre-amplified pulses for facilitating a self-similar evolution and a self-phase modulation (SPM). Moreover, we analyze the stabilities and noise characteristics of both the locked carrier envelope phase and the repetition rate, verifying the stability of the generated high-power comb. The demonstration of the SSA comb at such high power proves the feasibility of the SPM-based low-noise ultrashort comb.
Franks, L.A.; Nelson, M.A.
1979-12-07
The invention is a method by which an optical pulse of an arbitrary but defined shape may be transformed into a virtual multitude of optical or electrical output pulse shapes. Since the method is not limited to any particular input pulse shape, the output pulse shapes that can be generated thereby are virtually unlimited. Moreover, output pulse widths as narrow as about 0.1 nsec can be readily obtained since optical pulses of less than a few picoseconds are available for use as driving pulses. The range of output pulse widths obtainable is very large, the limiting factors being the driving source energy and the particular shape of the desired output pulse.
Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L
2009-05-15
Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further research with control optimization, urea distribution and possible use of oxidation catalysts is recommended to improve the NOx reduction capabilities while minimizing ammonia slip.
Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL)
NASA Astrophysics Data System (ADS)
Rifin, S. N. M.; Zulkifli, M. Z.; Hassan, S. N. M.; Munajat, Y.; Ahmad, H.
2016-11-01
We demonstrate two flat plateaus and the low-noise spectrum of supercontinuum generation (SCG) in a highly nonlinear fiber (HNLF), injected by an amplified picosecond pulse seed of a carbon nanotube-based passively mode locked erbium-doped fiber laser. A broad spectrum of width approximately 1090 nm spanning the range 1130-2220 nm is obtained and the pulse width is compressed to the shorter duration of 70 fs. Variations of the injected peak power up to 33.78 kW into the HNLF are compared and the broad spectrum SCG profiles slightly expand for each of the injected peak powers. This straightforward configuration of SCG offers low output power and ultra-narrow femtosecond pulse width. The results facilitate the development of all fiber time-domain spectroscopy systems based on the photoconductive antenna technique.
Isolated terawatt attosecond hard X-ray pulse generated from single current spike.
Shim, Chi Hyun; Parc, Yong Woon; Kumar, Sandeep; Ko, In Soo; Kim, Dong Eon
2018-05-10
Isolated terawatt (TW) attosecond (as) hard X-ray pulse is greatly desired for four-dimensional investigations of natural phenomena with picometer spatial and attosecond temporal resolutions. Since the demand for such sources is continuously increasing, the possibility of generating such pulse by a single current spike without the use of optical or electron delay units in an undulator line is addressed. The conditions of a current spike (width and height) and a modulation laser pulse (wavelength and power) is also discussed. We demonstrate that an isolated TW-level as a hard X-ray can be produced by a properly chosen single current spike in an electron bunch with simulation results. By using realistic specifications of an electron bunch of the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL), we show that an isolated, >1.0 TW and ~36 as X-ray pulse at 12.4 keV can be generated in an optimized-tapered undulator line. This result opens a new vista for current XFEL operation: the attosecond XFEL.
NASA Astrophysics Data System (ADS)
Zeng, Fei; Li, Xiaojun; Li, Sizhao; Chang, Chiating; Hu, Yuandong
2017-03-01
Pulse responses were studied for the heterojunctions within the structure of Ti/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/Ti. The pulse response was found to resemble that of the action potential after the pulse width was modulated to a time scale of nanoseconds. Using the pulse as a stimulation protocol to simulate synaptic plasticity produced spike rate-dependent plasticity-like phenomena. Thus, the application scope of this conducting polymer-based memristor can be extended from a time scale of milliseconds to one of nanoseconds, depending on the requirement of neuromorphic circuits. Current oscillations were observed with a period within 100 ns. The mechanisms of the behavior response were analyzed according to memristor protocol. An interface barrier is thought to primarily account for the origin of the capacitive feature and the charge q, i.e., one of the basic characteristic of the memristor. The chain structure of this conducting polymer should primarily account for the origin of its inductive feature and the flux φ, i.e., another basic characteristic of the memristor.
Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃.
Dou, Zhiyuan; Song, Yanrong; Tian, Jinrong; Liu, Jinghui; Yu, Zhenhua; Fang, Xiaohui
2014-10-06
We demonstrated an all-normal-dispersion Yb-doped mode-locked fiber laser based on Bi₂Se₃ topological insulator (TI). Different from previous TI-mode-locked fiber lasers in which TIs were mixed with film-forming agent, we used a special way to paste a well-proportioned pure TI on a fiber end-facet. In this way, the effect of the film-forming agent could be removed, thus the heat deposition was relieved and damage threshold could be improved. The modulation depth of the Bi₂Se₃ film was measured to be 5.2%. When we used the Bi₂Se₃ film in the Yb-doped fiber laser, the mode locked pulses with pulse energy of 0.756 nJ, pulse width of 46 ps and the repetition rate of 44.6 MHz were obtained. The maximum average output power was 33.7 mW. When the pump power exceeded 270 mW, the laser can operate in multiple pulse state that six-pulse regime can be realized. This contribution indicates that Bi₂Se₃ has an attractive optoelectronic property at 1μm waveband.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu.; Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod
A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of themore » incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.« less
Dead-time optimisation with reducing voltage distortion for nine-switch inverter
NASA Astrophysics Data System (ADS)
Alizadeh Pahlavani, Mohamadreza; Sanatgar Hasankiadeh, Meisam; Bali Lashak, Aref
2018-03-01
Nine-switch inverter with two sets of three-phase outputs is an improved topology proposed in place of the 12-switch back-to-back converters and has therefore attracted much attention in recent years. This inverter can be used with two conventional pulse width modulation approaches: different frequency and the constant frequency. One disadvantage of using this modulation method is the possibility of short-circuits in the legs (shoot-through), which decreases the reliability of converter and system. This paper presents a new modulation technique, in which switching pulses of nine-switch inverter are produced by not only the original carrier signals but also through two auxiliary carrier signals. In this method, adjustable three-phase voltages are produced in the inverter's terminals, and so there is no possibility of any shoot-through in the inverter's legs. The suggested reliable modulation approach does not rely on any information about the load polarity, as switching is performed by a simple and reliable algorithm. The result is the considerably better waveform quality of the output voltages in comparison with other methods. To verify the analysis, an experimental platform based on DSP is built. The simulation and experimental results are given to demonstrate the effectiveness and feasibility of this new approach.
Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse
NASA Astrophysics Data System (ADS)
Nie, Jianye; Liu, Guodong; Zhang, Rongzhu
2018-05-01
Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.
Polarized millijoule fiber laser system with high beam quality and pulse shaping ability
NASA Astrophysics Data System (ADS)
Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng
2017-05-01
The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.
Pulsed helium ionization detection system
Ramsey, R.S.; Todd, R.A.
1985-04-09
A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.
Pulsed helium ionization detection system
Ramsey, Roswitha S.; Todd, Richard A.
1987-01-01
A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.
Effect of Pulse Width on Oxygen-fed Ozonizer
NASA Astrophysics Data System (ADS)
Okada, Sho; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori
Though general ozonizers based on silent discharge (barrier discharge) have been used to supply ozone at many industrial situations, there is still some problem, such as improvements of ozone yield. In this work, ozone was generated by pulsed discharge in order to improve the characteristics of ozone generation. It is known that a pulse width gives strong effect to the improvement of energy efficiency in exhaust gas processing. In this paper, the effect of pulse duration on ozone generation by pulsed discharge in oxygen would be reported.
Pulsed Magnetic Welding for Advanced Core and Cladding Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Guoping; Yang, Yong
2013-12-19
To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pinmore » end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.« less
NASA Astrophysics Data System (ADS)
Calderone, Luigi; Pinola, Licia; Varoli, Vincenzo
1992-04-01
The paper describes an analytical procedure to optimize the feed-forward compensation for any PWM dc/dc converters. The aims of achieving zero dc audiosusceptibility was found to be possible for the buck, buck-boost, Cuk, and SEPIC cells; for the boost converter, however, only nonoptimal compensation is feasible. Rules for the design of PWM controllers and procedures for the evaluation of the hardware-introduced errors are discussed. A PWM controller implementing the optimal feed-forward compensation for buck-boost, Cuk, and SEPIC cells is described and fully experimentally characterized.
Inactivation of Viruses by Coherent Excitations with a Low Power Visible Femtosecond Laser
2007-06-05
visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power density...was greater than or equal to 50 MW/cm2. The inactivation of M13 phages was determined by plaque counts and had been found to depend on the pulse width...visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power
Lu, Chunming; Qi, Zhenghan; Harris, Adrianne; Weil, Lisa Wisman; Han, Michelle; Halverson, Kelly; Perrachione, Tyler K.; Kjelgaard, Margaret; Wexler, Kenneth; Tager-Flusberg, Helen; Gabrieli, John D. E.
2015-01-01
Background Individuals with reading disability or individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading or social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. Methods White-matter structural connectivity via diffusion weighted imaging was examined in sixty-four children, ages 5-17 years, with reading disability, ASD, or typical development (TD), who were matched in age, gender, intelligence, and diffusion data quality. Results Children with reading disability and children with ASD exhibited reduced PWM compared to children with TD. The two diagnostic groups showed altered white-matter microstructure in the temporo-parietal portion of the left arcuate fasciculus (AF) and in the temporo-occipital portion of the right inferior longitudinal fasciculus (ILF), as indexed by reduced fractional anisotropy and increased radial diffusivity. Moreover, the structural integrity of the right ILF was positively correlated with PWM ability in the two diagnostic groups, but not in the TD group. Conclusions These findings suggest that impaired PWM is transdiagnostically associated with shared neuroanatomical abnormalities in ASD and reading disability. Microstructural characteristics in left AF and right ILF may play important roles in the development of PWM. The right ILF may support a compensatory mechanism for children with impaired PWM. PMID:26949750
Lu, Chunming; Qi, Zhenghan; Harris, Adrianne; Weil, Lisa Wisman; Han, Michelle; Halverson, Kelly; Perrachione, Tyler K; Kjelgaard, Margaret; Wexler, Kenneth; Tager-Flusberg, Helen; Gabrieli, John D E
2016-03-01
Individuals with reading disability or individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading or social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. White-matter structural connectivity via diffusion weighted imaging was examined in sixty-four children, ages 5-17 years, with reading disability, ASD, or typical development (TD), who were matched in age, gender, intelligence, and diffusion data quality. Children with reading disability and children with ASD exhibited reduced PWM compared to children with TD. The two diagnostic groups showed altered white-matter microstructure in the temporo-parietal portion of the left arcuate fasciculus (AF) and in the temporo-occipital portion of the right inferior longitudinal fasciculus (ILF), as indexed by reduced fractional anisotropy and increased radial diffusivity. Moreover, the structural integrity of the right ILF was positively correlated with PWM ability in the two diagnostic groups, but not in the TD group. These findings suggest that impaired PWM is transdiagnostically associated with shared neuroanatomical abnormalities in ASD and reading disability. Microstructural characteristics in left AF and right ILF may play important roles in the development of PWM. The right ILF may support a compensatory mechanism for children with impaired PWM.
The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.
Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K
2018-02-09
A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of laser pulse tailored welding of Inconel 718
NASA Technical Reports Server (NTRS)
Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.
1990-01-01
Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.
1645-nm single-frequency, injection-seeded Q-switched Er:YAG master oscillator and power amplifier
NASA Astrophysics Data System (ADS)
Wang, Shuo; Gao, Chunqing; Shi, Yang; Song, Rui; Na, Quanxin; Gao, Mingwei; Wang, Qing
2018-02-01
A 1645-nm injection-seeded Q-switched Er:YAG master oscillator and power amplifier system is reported. The master oscillator generates single-frequency pulse energy of 11.10 mJ with a pulse width of 188.8 ns at 200 Hz. An Er:YAG monolithic nonplanar ring oscillator is employed as a seed laser. The output pulse from the master oscillator is amplified to 14.33-mJ pulse energy through an Er:YAG amplifier, with a pulse width of 183.3 ns. The M2-factors behind the amplifier are 1.14 and 1.23 in x- and y-directions, respectively. The full width at half maximum of the fast Fourier transformation spectrum of the heterodyne beating signal is 2.84 MHz.
Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry
Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.
2010-01-01
Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will both allow better dissemination of this technology and better exploit the traditionally underutilized parameter of fluorescence lifetime. PMID:20662090
Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons.
Saran, Sant; Gupta, Neha; Roy, Sukhdev
2018-04-01
A detailed theoretical analysis of low-power, fast optogenetic control of firing of Chronos-expressing neurons has been presented. A three-state model for the Chronos photocycle has been formulated and incorporated in a fast-spiking interneuron circuit model. The effect of excitation wavelength, pulse irradiance, pulse width, and pulse frequency has been studied in detail and compared with ChR2. Theoretical simulations are in excellent agreement with recently reported experimental results and bring out additional interesting features. At very low irradiances ([Formula: see text]), the plateau current in Chronos exhibits a maximum. At [Formula: see text], the plateau current is 2 orders of magnitude smaller and saturates at longer pulse widths ([Formula: see text]) compared to ChR2 ([Formula: see text]). [Formula: see text] in Chronos saturates at much shorter pulse widths (1775 pA at 1.5 ms and [Formula: see text]) than in ChR2. Spiking fidelity is also higher at lower irradiances and longer pulse widths compared to ChR2. Chronos exhibits an average maximal driven rate of over [Formula: see text] in response to [Formula: see text] stimuli, each of 1-ms pulse-width, in the intensity range 0 to [Formula: see text]. The analysis is important to not only understand the photodynamics of Chronos and Chronos-expressing neurons but also to design opsins with optimized properties and perform precision experiments with required spatiotemporal resolution.
A compact high current pulsed electron gun with subnanosecond electron pulse widths
NASA Technical Reports Server (NTRS)
Khakoo, M. A.; Srivastava, S. K.
1984-01-01
A magnetically-collimated, double-pulsed electron gun capable of generating electron pulses with a peak instantaneous current of approximately 70 microamps and a temporal width of 0.35 ns (FWHM) has been developed. Calibration is accomplished by measuring the lifetime of the well known 2(1P)-to-1(1S) transition in helium (58.4nm) at a near-threshold electron-impact energy by use of the delayed-coincidence technique.
Hölscher, Thilo; Raman, Rema; Fisher, David J; Ahadi, Golnaz; Zadicario, Eyal; Voie, Arne
2013-01-01
The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy.
2013-01-01
The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy. PMID:25512862
Microwave influence on the isolated heart function. 2: Combined effect of radiation and some drugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakhomov, A.G.; Dubovick, B.V.; Degtyariov, I.G.
1995-09-01
The combined effects of microwave radiation and some drugs were studied in an isolated frog auricle preparation. The experiments established that exposure to pulse-modulated 915 Mhz microwaves for up to 40 min had no effect on either the rate or the amplitude of spontaneous auricle twitches, unless the average absorbed power was high enough to produce preparation heating. Treatment of the preparation with saline containing (0.6--3.0) 10{sup {minus}5} M of propranolol or (0.5--1.5) 10{sup {minus}7} M of atropine altered neither its pacemaker nor its contractile functions; these drugs also had no effect when they were combined with nonthermal microwave irradiation.more » Caffeine (1 mM) strongly increased the average heart power, which was calculated as the product of twitch rate ad amplitude. The caffeine effect appeared to be significantly augmented (by about 15%, P<0.02) under exposure to burst-type pulsed microwaves (pulse width, 1.5 msec; pause, 2.5 msec; 8 pulses/burst, 16 bursts/s; average SAR, 8--10 W/kg). By itself, this modulation was not effective; the heating of the preparation and saline during exposure was approximately 0.1 C, which could not account for the detected changes. The experimental results demonstrate that caffeine treatment increases the microwave sensitivity of the frog auricle preparation and reveals primarily subthreshold, nonthermal microwave effect.« less
Design and performance of a pulse transformer based on Fe-based nanocrystalline core.
Yi, Liu; Xibo, Feng; Lin, Fuchang
2011-08-01
A dry-type pulse transformer based on Fe-based nanocrystalline core with a load of 0.88 nF, output voltage of more than 65 kV, and winding ratio of 46 is designed and constructed. The dynamic characteristics of Fe-based nanocrystalline core under the impulse with the pulse width of several microseconds were studied. The pulse width and incremental flux density have an important effect on the pulse permeability, so the pulse permeability is measured under a certain pulse width and incremental flux density. The minimal volume of the toroidal pulse transformer core is determined by the coupling coefficient, the capacitors of the resonant charging circuit, incremental flux density, and pulse permeability. The factors of the charging time, ratio, and energy transmission efficiency in the resonant charging circuit based on magnetic core-type pulse transformer are analyzed. Experimental results of the pulse transformer are in good agreement with the theoretical calculation. When the primary capacitor is 3.17 μF and charge voltage is 1.8 kV, a voltage across the secondary capacitor of 0.88 nF with peak value of 68.5 kV, rise time (10%-90%) of 1.80 μs is obtained.
Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R
2011-07-04
Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.
A flexible master oscillator for a pulse-burst laser system
NASA Astrophysics Data System (ADS)
Den Hartog, D. J.; Young, W. C.
2015-12-01
A new master oscillator is being installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a Laser Quantum ventus 1064 diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 1064 nm, 2.7 mm diameter polarized beam is focused into the gallium phosphide crystal of a Brimrose AOM, which deflects the beam by approximately 60 mR when driven by the 400 MHz fixed frequency driver. Beam deflection is controlled by a simple digital input pulse, and is capable of producing deflected pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These deflected pulses from the output of the AOM are collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma.
Steering population transfer of the Na2 molecule by an ultrashort pulse train
NASA Astrophysics Data System (ADS)
Niu, Dong-Hua; Wang, Shuo; Zhan, Wei-Shen; Tao, Hong-Cai; Wang, Si-Qi
2018-05-01
We theoretically investigate the complete population transfer among quantum states of the Na2 molecule using ultrashort pulse trains using the time-dependent wave packet method. The population accumulation of the target state can be steered by controlling the laser parameters, such as the variable pulse pairs, the different pulse widths, the time delays and the repetition period between two contiguous pulses; in particular, the pulse pairs and the pulse widths have a great effect on the population transfer. The calculations show that the ultrashort pulse train is a feasible solution, which can steer the population transfer from the initial state to the target state efficiently with lower peak intensities.
Device for detecting imminent failure of high-dielectric stress capacitors. [Patent application
McDuff, G.G.
1980-11-05
A device is described for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capacitor banks are utilized.
Device for detecting imminent failure of high-dielectric stress capacitors
McDuff, George G.
1982-01-01
A device for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capactior banks are utilized.
Novel Modulation Method for Multidirectional Matrix Converter
Misron, Norhisam; Aris, Ishak Bin; Yamada, Hiroaki
2014-01-01
This study presents a new modulation method for multidirectional matrix converter (MDMC), based on the direct duty ratio pulse width modulation (DDPWM). In this study, a new structure of MDMC has been proposed to control the power flow direction through the stand-alone battery based system and hybrid vehicle. The modulation method acts based on the average voltage over one switching period concept. Therefore, in order to determine the duty ratio for each switch, the instantaneous input voltages are captured and compared with triangular waveform continuously. By selecting the proper switching pattern and changing the slope of the carriers, the sinusoidal input current can be synthesized with high power factor and desired output voltage. The proposed system increases the discharging time of the battery by injecting the power to the system from the generator and battery at the same time. Thus, it makes the battery life longer and saves more energy. This paper also derived necessary equation for proposed modulation method as well as detail of analysis and modulation algorithm. The theoretical and modulation concepts presented have been verified in MATLAB simulation. PMID:25298969
Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo
2015-10-01
In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.
NASA Astrophysics Data System (ADS)
Luo, Hanjun; Ouyang, Zhengbiao; Liu, Qiang; Chen, Zhiliang; Lu, Hualan
2017-10-01
Cumulative pulses detection with appropriate cumulative pulses number and threshold has the ability to improve the detection performance of the pulsed laser ranging system with GM-APD. In this paper, based on Poisson statistics and multi-pulses cumulative process, the cumulative detection probabilities and their influence factors are investigated. With the normalized probability distribution of each time bin, the theoretical model of the range accuracy and precision is established, and the factors limiting the range accuracy and precision are discussed. The results show that the cumulative pulses detection can produce higher target detection probability and lower false alarm probability. However, for a heavy noise level and extremely weak echo intensity, the false alarm suppression performance of the cumulative pulses detection deteriorates quickly. The range accuracy and precision is another important parameter evaluating the detection performance, the echo intensity and pulse width are main influence factors on the range accuracy and precision, and higher range accuracy and precision is acquired with stronger echo intensity and narrower echo pulse width, for 5-ns echo pulse width, when the echo intensity is larger than 10, the range accuracy and precision lower than 7.5 cm can be achieved.
A report on the introduction of ultrabrief pulse width ECT in a private psychiatric hospital.
Galletly, Cherrie; Paterson, Tom; Burton, Cassandra
2012-03-01
We report on 6 months of data since the introduction of ultrabrief pulse width electroconvulsive therapy (UB ECT) at a private psychiatric hospital in Adelaide. Results suggest that psychiatrists welcomed the availability of UB ECT, with an increase in prescription of ECT. About a quarter of UB ECT patients changed to standard pulse width (SPW) ECT, but those who did respond to UB ECT had an equivalent response to those who had SPW ECT. Courses of treatment were longer with UB ECT, which was reflected in an increased length of stay.
Enhanced Nonlinear Optical Devices Using Artificial Slow-Light Structures
2010-08-19
through a slit of about 2 mm width. Lock -in detection is performed by modulating the 86 MHz pulse train at 2 kHz, and average incident power is 75 mW...condition [8]: knωt = nk ω t +mK, (5) where n is the harmonic order, K is a reciprocal lattice vector with |K| = 2π/Λ, Λ is the aperture spacing, m is the...diffraction order, and kt represents a transverse light wave- vector . For a square lattice, and assuming that the optical wavevectors have only the x̂
Broadhurst, Matthew S; Akst, Lee M; Burns, James A; Kobler, James B; Heaton, James T; Anderson, R Rox; Zeitels, Steven M
2007-02-01
Selective vascular ablation (photoangiolysis) using pulsed lasers that target hemoglobin is an effective treatment strategy for many vocal fold lesions. However, vessel rupture with extravasation of blood reduces selectivity for vessels, which is frequently observed with the 0.45-ms, 585-nm pulsed dye laser. Previous studies have shown that vessel rupture is the result of vaporization of blood, an event that varies with laser pulse width and pulse fluence (energy per unit area). Clinical observations using a 532-nm wavelength pulsed potassium-titanyl-phosphate (KTP) laser revealed less laser-induced hemorrhage than the pulsed dye laser. This study investigated settings for the pulsed KTP laser to achieve selective vessel destruction without rupture using the avian chorioallantoic membrane under conditions similar to flexible laryngoscopic delivery of the laser in clinical practice. The chick chorioallantoic membrane offers convenient access to many small blood vessels similar in size to those targeted in human vocal fold. Using a 532-nm pulsed KTP laser, pulse width, pulse energy, and working distance from the optical delivery fiber were varied to assess influence on the ability to achieve vessel coagulation without vessel wall rupture. Third-order vessels (n = 135) were irradiated: Energy (471-550 mJ), pulse width (10, 15, 30 ms), and fiber-to-tissue distance (1 mm, 3 mm) were varied systematically. Selective vessel destruction without vessel wall rupture was more often achieved by increasing pulse width, increasing the fiber-to-tissue distance, and decreasing energy. Vessel destruction without rupture was consistently achieved using 15- or 30-ms pulses with a fiber-to-tissue distance of 3 mm (pulse fluence of 13-16 J/cm). This study substantiates our clinical observation that a 532-nm pulsed KTP laser was effective for ablating microcirculation while minimizing vessel wall rupture and hemorrhage.
Fine tuning of transmission features in nanoporous anodic alumina distributed Bragg reflectors
NASA Astrophysics Data System (ADS)
Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel
2018-01-01
This study introduces an innovative apodisation strategy to tune the filtering features of distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs). The effective medium of NAA-DBRs, which is modulated in a stepwise fashion by a pulse-like anodisation approach, is apodised following a logarithmic negative function to engineer the transmission features of NAA-DBRs. We investigate the effect of various apodisation parameters such as apodisation amplitude difference, anodisation period, current density offset and pore widening time, to tune and optimise the optical properties of NAA-DBRs in terms of central wavelength position, full width at half maximum and quality of photonic stop band. The transmission features of NAA-DBRs are shown to be fully controllable with precision across the spectral regions by means of the apodisation parameters. Our study demonstrates that an apodisation strategy can significantly narrow the width and enhance the quality of the characteristic photonic stop band of NAA-DBRs. This rationally designed anodisation approach based on the combination of apodisation and stepwise pulse anodisation enables the development of optical filters with tuneable filtering features to be integrated into optical technologies acting as essential photonic elements in devices such as optical sensors and biosensors.
Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waxer, Leon; Dorrer, Christophe; Kalb, Adam
To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.
Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP
Waxer, Leon; Dorrer, Christophe; Kalb, Adam; ...
2018-02-19
To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...
2014-11-05
Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC 5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC 5 composite at the laser wavelength, and the pulse-width dependencemore » is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon
Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC 5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC 5 composite at the laser wavelength, and the pulse-width dependencemore » is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less
Zianni, Xanthippi; Jean, Valentin; Termentzidis, Konstantinos; Lacroix, David
2014-11-21
We report on scaling behavior of the thermal conductivity of width-modulated nanowires and nanofilms that have been studied with the phonon Monte Carlo technique. It has been found that the reduction of the thermal conductivity scales with the nanostructure transmissivity, a property entirely determined by the modulation geometry, irrespectively of the material choice. Tuning of the thermal conductivity is possible by the nanostructure width-modulation without strict limitations for the modulation profile. In addition, a very significant constriction thermal resistance due to width-discontinuity has been identified, in analogy to the contact thermal resistance between two dissimilar materials. The constriction thermal resistance also scales with the modulated nanostructure transmissivity. Our conclusions are generic indicating that a wide range of materials can be used for the modulated nanostructures. Direct heat flow control can be provided by designing the nanostructure width-modulation.
Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier
NASA Astrophysics Data System (ADS)
Song, Rui; Lei, Cheng-Min; Chen, Sheng-Ping; Wang, Ze-Feng; Hou, Jing
2015-08-01
The effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier is investigated theoretically and experimentally. The complex Ginzburg-Landau equation and adaptive split-step Fourier method are used to simulate the propagation of pulses with different pulse widths in the fiber amplifier, and the results show that a longer pulse is more profitable in near-infrared supercontinuum generation if the central wavelength of the input laser lies in the normal dispersion region of the gain fiber. A four-stage master oscillator power amplifier configuration is adopted and the output spectra under picosecond and nanosecond input pulses are compared with each other. The experimental results are in good accordance with the simulations which can provide some guidance for further optimization of the system. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404404 and 11274385) and the Outstanding Youth Fund Project of Hunan Province and the Fund of Innovation of National University of Defense Technology, China (Grant No. B120701).
Analysis of mode-locked and intracavity frequency-doubled Nd:YAG laser
NASA Technical Reports Server (NTRS)
Siegman, A. E.; Heritier, J.-M.
1980-01-01
The paper presents analytical and computer studies of the CW mode-locked and intracavity frequency-doubled Nd:YAG laser which provide new insight into the operation, including the detuning behavior, of this type of laser. Computer solutions show that the steady-state pulse shape for this laser is much closer to a truncated cosine than to a Gaussian; there is little spectral broadening for on-resonance operation; and the chirp is negligible. This leads to a simplified analytical model carried out entirely in the time domain, with atomic linewidth effects ignored. Simple analytical results for on-resonance pulse shape, pulse width, signal intensity, and harmonic conversion efficiency in terms of basic laser parameters are derived from this model. A simplified physical description of the detuning behavior is also developed. Agreement is found with experimental studies showing that the pulsewidth decreases as the modulation frequency is detuned off resonance; the harmonic power output initially increases and then decreases; and the pulse shape develops a sharp-edged asymmetry of opposite sense for opposite signs of detuning.
k and q Dedicated to Paul Callaghan
NASA Astrophysics Data System (ADS)
Blümich, Bernhard
2016-06-01
The symbols k and q denote wave numbers in scattering experiments as well as in NMR imaging. Their exploration in NMR is intimately linked to the legacy of Paul Callaghan with his books Magnetic Resonance Microscopy and Translational Dynamics & Magnetic Resonance (Oxford University Press, Oxford 1991 and 2011) placing their focus with their titles on k and q, respectively. Some aspects of k and q have been revisited in the Paul Callaghan lecture of the author at the ISMAR Conference in Shanghai in 2015, which are reviewed here. In particular, there are two definitions of q, one relating to diffusive displacement (q) and the other to coherent flow (qv). Concerning the latter, it turns out, that in the short gradient pulse limit, the common anti-phase pulsed field-gradient scheme can be replaced with schemes employing three and more gradient pulses, which derive from differentiation rules in numerical analysis. Practical gradient modulation schemes with finite gradient pulse widths follow from these to measure velocity with improved accuracy. This approach can be expanded to acceleration and higher order transport coefficients with applications to measurements of flow and potentially also restricted diffusion.
Todd, Jemma; Kothe, Emily; Mullan, Barbara; Monds, Lauren
2016-01-01
The prototype willingness model (PWM) was designed to extend expectancy-value models of health behaviour by also including a heuristic, or social reactive pathway, to better explain health-risk behaviours in adolescents and young adults. The pathway includes prototype, i.e., images of a typical person who engages in a behaviour, and willingness to engage in behaviour. The current study describes a meta-analysis of predictive research using the PWM and explores the role of the heuristic pathway and intentions in predicting behaviour. Eighty-one studies met inclusion criteria. Overall, the PWM was supported and explained 20.5% of the variance in behaviour. Willingness explained 4.9% of the variance in behaviour over and above intention, although intention tended to be more strongly related to behaviour than was willingness. The strength of the PWM relationships tended to vary according to the behaviour being tested, with alcohol consumption being the behaviour best explained. Age was also an important moderator, and, as expected, PWM behaviour was best accounted for within adolescent samples. Results were heterogeneous even after moderators were taken into consideration. This meta-analysis provides support for the PWM and may be used to inform future interventions that can be tailored for at-risk populations.
Resolving the shape of a sonoluminescence pulse in sulfuric acid by the use of streak camera.
Huang, Wei; Chen, Weizhong; Cui, Weicheng
2009-06-01
A streak camera is used to measure the shape of sonoluminescence pulses from a cavitation bubble levitated stably in a sulfuric acid solution. The shape and response to an acoustic pressure field of the sonoluminescence pulse in 85% by weight sulfuric acid are qualitatively similar to those in water. However, the pulse width in sulfuric acid is wider than that in water by over one order of magnitude. The width of the sonoluminescence pulse is strongly dependent on the concentration of the sulfuric acid solution, while the skewed distribution of the shape remains unchanged.
A compact plasma pre-ionized TEA-CO2 laser pulse clipper for material processing
NASA Astrophysics Data System (ADS)
Gasmi, Taieb
2017-08-01
An extra-laser cavity CO2-TEA laser pulse clipper using gas breakdown techniques for high spatial resolution material processing and shallow material engraving and drilling processes is presented. Complete extinction of the nitrogen tail, that extends the pulse width, is obtained at pressures from 375 up to 1500 torr for nitrogen and argon gases. Excellent energy stability and pulse repeatability were further enhanced using high voltage assisted preionized plasma gas technique. Experimental data illustrates the direct correlation between laser pulse width and depth of engraving in aluminum and alumina materials.
Seo, Weeseong; Yu, Wuyang; Tan, Tianlin; Ziaie, Babak; Jung, Byunghoo
2017-06-01
Urinary tract infection (UTI) is one of the most common infections in humans. UTI is easily treatable using antibiotics if identified in early stage. However, without early identification and treatment, UTI can be a major source of serious complications in geriatric patients, in particular, those suffering from neurodegenerative diseases. Also, for infants who have difficulty in describing their symptoms, UTI may lead to serious development of the disease making early identification of UTI crucial. In this paper, we present a diaper-embedded, wireless, self-powered, and autonomous UTI monitoring sensor module that allows an early detection of UTI with minimal effort. The sensor module consists of a paper-based colorimetric nitrite sensor, urine-activated batteries, a boost dc-dc converter, a low-power sensor interface utilizing pulse width modulation, and a Bluetooth low energy module for wireless transmission. Experimental results show a better detection of nitrite, a surrogate of UTI, than that of conventional dipstick testing. The proposed sensor module achieves a sensitivity of 1.35 ms/(mg/L) and a detection limit of 4 mg/L for nitrite.
Hyde, Melissa K; White, Katherine M
2010-05-01
To explore whether people's organ donation consent decisions occur via a reasoned and/or social reaction pathway. We examined prospectively students' and community members' decisions to register consent on a donor register and discuss organ donation wishes with family. Participants completed items assessing theory of planned behaviour (TPB; attitude, subjective norm, perceived behavioural control (PBC)), prototype/willingness model (PWM; donor prototype favourability/similarity, past behaviour), and proposed additional influences (moral norm, self-identity, recipient prototypes) for registering (N=339) and discussing (N=315) intentions/willingness. Participants self-reported their registering (N=177) and discussing (N=166) behaviour 1 month later. The utility of the (1) TPB, (2) PWM, (3) augmented TPB with PWM, and (4) augmented TPB with PWM and extensions was tested using structural equation modelling for registering and discussing intentions/willingness, and logistic regression for behaviour. While the TPB proved a more parsimonious model, fit indices suggested that the other proposed models offered viable options, explaining greater variance in communication intentions/willingness. The TPB, augmented TPB with PWM, and extended augmented TPB with PWM best explained registering and discussing decisions. The proposed and revised PWM also proved an adequate fit for discussing decisions. Respondents with stronger intentions (and PBC for registering) had a higher likelihood of registering and discussing. People's decisions to communicate donation wishes may be better explained via a reasoned pathway (especially for registering); however, discussing involves more reactive elements. The role of moral norm, self-identity, and prototypes as influences predicting communication decisions were highlighted also.
Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve
2002-01-01
NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.
Muthusamy, Natarajan; Breidenbach, Heather; Andritsos, Leslie; Flynn, Joseph; Jones, Jeffrey; Ramanunni, Asha; Mo, Xiaokui; Jarjoura, David; Byrd, John C.; Heerema, Nyla A.
2011-01-01
Reproducible cytogenetic analysis in CLL has been limited by the inability to obtain reliable metaphase cells for analysis. CpG oligonucleotide and cytokine stimulation have been shown to improve metaphase analysis of CLL cytogenetic abnormalities, but is limited by variability in the cytokine receptor levels, stability and biological activity of the cytokine in culture conditions and high costs associated with these reagents. We report here use of a novel, stable CpG, GNKG168 along with pokeweed mitogen (PWM) and phorbol 12-myristate 13-acetate (PMA) for conventional cytogenetic assessment in CLL. We demonstrate that the combined use of GNKG168+PWM/PMA increased the sensitivity of detection of chromosomal abnormalities compared to PWM/PMA (n=207, odds ratio=2.2, p=0.0002) and GNKG168 (n=219, odds ratio=1.5, p=0.0452). Further, a significant increase in sensitivity to detect complexity ≥3 with GNKG168+PWM/PMA compared to GNKG168 alone (odds ratio 8.0, p=0.0022) or PWM/PMA alone (odds ratio 9.6, p=0.0007) was observed. The trend toward detection of higher complexity was significantly greater with GNKG168+PWM/PMA compared to GNKG168 alone (p=0.0412). The increased sensitivity was mainly attributed to the addition of PWM/PMA with GNKG168 because GNKG168 alone showed no difference in sensitivity for detection of complex abnormalities (p=0.17). Comparison of fluorescence in situ hybridization (FISH) results with karyotypic results showed a high degree of consistency, although some complex karyotypes were present in cases with no adverse FISH abnormality. These studies provide evidence for potential use of GNKG168 in combination with PWM and PMA in karyotypic analysis of CLL patient samples to better identify chromosomal abnormalities for risk stratification. PMID:21494579
High power radiators of ultra-short electromagnetic quasi-unipolar pulses
NASA Astrophysics Data System (ADS)
Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.
2017-05-01
Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.
Motor control for a brushless DC motor
NASA Technical Reports Server (NTRS)
Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)
1985-01-01
This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, S; Ahmad, M; Xiang, L
Purpose: To report our investigations of proton acoustic imaging, including computer simulations and preliminary experimental studies at clinical facilities. The ultimate achievable accuracy, sensitivity and clinical translation challenges are discussed. Methods: The acoustic pulse due to pressure rise was estimated using finite element model. Since the ionoacoustic pulse is highly dependent on the proton pulse width and energy, multiple pulse widths were studied. Based on the received signal spectrum at piezoelectric ultrasound transducer with consideration of random thermal noise, maximum spatial resolution of the proton-acoustic imaging modality was calculated. The simulation studies defined the design specifications of the system tomore » detect proton acoustic signal from Hitachi and Mevion clinical machines. A 500 KHz hydrophone with 100 dB amplification was set up in a water tank placed in front of the proton nozzle A 40 MHz data acquisition was synchronized by a trigger signal provided by the machine. Results: Given 30–800 mGy dose per pulse at the Bragg peak, the minimum number of protons detectable by the proton acoustic technique was on the order of 10×10^6 per pulse. The broader pulse widths produce signal with lower acoustic frequencies, with 10 µs pulses producing signals with frequency less than 100 kHz. As the proton beam pulse width increases, a higher dose rate is required to measure the acoustic signal. Conclusion: We have established the minimal detection limit for protonacoustic range validation for a variety of pulse parameters. Our study indicated practical proton-acoustic range verification can be feasible with a pulse shorter than 10 µs, 5×10^6 protons/pulse, 50 nA beam current and a highly sensitive ultrasonic transducer. The translational challenges into current clinical machines include proper magnetic shielding of the measurement equipment, providing a clean trigger signal from the proton machine, providing a shorter proton beam pulse and higher dose per pulse.« less